prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
import unittest
import numpy as np
from op_test import OpTest
class TestLodResetOpByAttr(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[0, 3, 5, 10]]
target_lod_0 = [0, 7, 10]
self.inputs = {'X': (x, lod)}
self.attrs = {'target_lod': target_lod_0}
self.outputs = {'Out': (x, [target_lod_0])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestLodResetOpByInput(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[0, 3, 5, 10]]
target_lod_0 = [0, 4, 7, 10]
self.inputs = {
'X': (x, lod),
'TargetLoD': | np.array([target_lod_0]) | numpy.array |
# -*- coding: utf-8 -*-
# ----------------------------------------------------------------------
# Copyright (c) 2021
#
# See the LICENSE file for details
# see the AUTHORS file for authors
# ----------------------------------------------------------------------
#--------------------
# System wide imports
# -------------------
import os
import os.path
import logging
import statistics
# ---------------------
# Third party libraries
# ---------------------
import PIL
import numpy as np
import matplotlib.pyplot as plt
import sklearn.cluster as cluster
from matplotlib.widgets import Button
#--------------
# local imports
# -------------
from streetool.utils import get_image, paging
# -----------------------
# Module global variables
# -----------------------
log = logging.getLogger("streetoool")
# ----------------
# Module constants
# ----------------
class Cycler:
def __init__(self, connection, subject_list, **kwargs):
self.subject = [] if subject_list is None else subject_list
self.i = 0
self.N = len(self.subject)
self.conn = connection
self.epsilon = kwargs.get('epsilon',1)
self.compute = kwargs.get('compute',False)
self.fix = kwargs.get('fix',False)
self.reset()
if self.compute:
self.one_compute_step(0)
else:
self.one_database_step(0)
def reset(self):
self.fig, self.axe = plt.subplots()
# The dimensions are [left, bottom, width, height]
# All quantities are in fractions of figure width and height.
axnext = self.fig.add_axes([0.90, 0.01, 0.095, 0.050])
self.bnext = Button(axnext, 'Next')
self.bnext.on_clicked(self.next)
axprev = self.fig.add_axes([0.79, 0.01, 0.095, 0.050])
self.bprev = Button(axprev, 'Previous')
self.bprev.on_clicked(self.prev)
self.axe.set_xlabel("X, pixels")
self.axe.set_ylabel("Y, pixels")
self.axim = None
self.sca = list()
self.txt = list()
self.prev_extent = dict()
def load(self, i):
subject_id = self.subject[i][0]
log.info(f"Searching for image whose subject id is {subject_id}")
filename, image_id = get_image(self.conn, subject_id)
if not filename:
raise Exception(f"No image for subject-id {subject_id}")
img = PIL.Image.open(filename)
width, height = img.size
if self.axim is None:
self.axim = self.axe.imshow(img, alpha=0.5, zorder=-1, aspect='equal', origin='upper')
self.prev_extent[(width,height)] = self.axim.get_extent()
else:
self.axim.set_data(img)
ext = self.prev_extent.get((width,height), None)
# Swap exteent components when current image is rotated respect to the previous
if ext is None:
ext = list(self.prev_extent[(height,width)])
tmp = ext[1]
ext[1] = ext[2]
ext[2] = tmp
self.prev_extent[(width,height)] = tuple(ext)
self.axim.set_extent(ext)
self.axe.relim()
self.axe.autoscale_view()
return subject_id, image_id
def update(self, i):
# remove whats drawn in the scatter plots
for sca in self.sca:
sca.remove()
self.sca = list()
for txt in self.txt:
txt.remove()
self.txt = list()
if self.compute:
self.one_compute_step(i)
else:
self.one_database_step(i)
self.fig.canvas.draw_idle()
self.fig.canvas.flush_events()
def next(self, event):
self.i = (self.i +1) % self.N
self.update(self.i)
def prev(self, event):
self.i = (self.i -1 + self.N) % self.N
self.update(self.i)
def one_database_step(self, i):
subject_id, image_id = self.load(i)
self.axe.set_title(f'Subject {subject_id}\nEC5 Id {image_id}\nLight Sources from the database')
cursor = self.conn.cursor()
cursor.execute('''
SELECT DISTINCT cluster_id
FROM spectra_classification_v
WHERE subject_id = :subject_id
ORDER BY cluster_id ASC
''',
{'subject_id': subject_id}
)
cluster_ids = cursor.fetchall()
for (cluster_id,) in cluster_ids:
cursor2 = self.conn.cursor()
cursor2.execute('''
SELECT source_x, source_y, epsilon
FROM spectra_classification_v
WHERE subject_id = :subject_id
AND cluster_id = :cluster_id
''',
{'subject_id': subject_id, 'cluster_id': cluster_id}
)
coordinates = cursor2.fetchall()
N_Classifications = len(coordinates)
log.info(f"Subject {subject_id}: cluster_id {cluster_id} has {N_Classifications} data points")
X, Y, EPS = tuple(zip(*coordinates))
Xc = statistics.mean(X); Yc = statistics.mean(Y);
sca = self.axe.scatter(X, Y, marker='o', zorder=1)
self.sca.append(sca)
txt = self.axe.text(Xc+EPS[0], Yc+EPS[0], cluster_id, fontsize=9, zorder=2)
self.txt.append(txt)
def one_compute_step(self, i):
fix = self.fix
epsilon = self.epsilon
subject_id, image_id = self.load(i)
self.axe.set_title(f'Subject {subject_id}\nEC5 Id {image_id}\nDetected light sources by DBSCAN (\u03B5 = {epsilon} px)')
cursor = self.conn.cursor()
cursor.execute('''
SELECT source_x, source_y
FROM spectra_classification_v
WHERE subject_id = :subject_id
''',
{'subject_id': subject_id}
)
coordinates = cursor.fetchall()
N_Classifications = len(coordinates)
coordinates = np.array(coordinates)
model = cluster.DBSCAN(eps=epsilon, min_samples=2)
# Fit the model and predict clusters
yhat = model.fit_predict(coordinates)
# retrieve unique clusters
clusters = np.unique(yhat)
log.info(f"Subject {subject_id}: {len(clusters)} clusters from {N_Classifications} classifications, ids: {clusters}")
for cl in clusters:
# get row indexes for samples with this cluster
row_ix = | np.where(yhat == cl) | numpy.where |
"""
.. module:: constraints
:platform: Unix
:synopsis: This module implements the usual statistical tools you need to calculate cosmological parameters confidence intervals
.. moduleauthor:: <NAME> <<EMAIL>>
"""
from __future__ import division,print_function,with_statement
from operator import mul
from functools import reduce
import sys
if sys.version_info.major>=3:
import _pickle as pickle
else:
import cPickle as pickle
#########################################################
import numpy as np
from numpy.linalg import solve,inv
from scipy.interpolate import interp1d,Rbf
from emcee.ensemble import _function_wrapper
###########################################################################
###########Hack to make scipy interpolate objects pickleable###############
###########################################################################
class _interpolate_wrapper(object):
def __init__(self,f,args,kwargs):
self.f = f
self.args = args
self.kwargs = kwargs
def __call__(self):
try:
return self.f(*self.args,**self.kwargs)
except:
import traceback
print("lenstools: Exception while building the interpolators")
print(" exception:")
traceback.print_exc()
raise
#################################################################################################
#############################Principal Component Analysis handler################################
#################################################################################################
def pca_transform(data,pca,n_components):
assert n_components<=pca.components_.shape[0]
return pca.transform(data).T[:n_components].T
class PCA(object):
"""
Handles principal component analysis
"""
def fit(self,data):
#Scale the data to zero mean and unit variance
self._pca_mean = data.mean(0)
self._pca_std = data.std(0)
self._data_scaled = data.copy()
self._data_scaled -= self._pca_mean[None]
self._data_scaled /= self._pca_std[None]
self._data_scaled /= np.sqrt(self._data_scaled.shape[0] - 1)
#Perform singular value decomposition
left,eigenvalues,right = np.linalg.svd(self._data_scaled,full_matrices=False)
#Assign eigenvalues and eigenvectors as attributes
self.components_ = right
self.explained_variance_ = eigenvalues**2
@property
def eigenvalues(self):
return self.explained_variance_
@property
def eigenvectors(self):
return self.components_*np.sqrt(self._data_scaled.shape[0] - 1)*self._pca_std[None] + self._pca_mean[None]
def transform(self,X):
#Cast X to the right dimensions
if len(X.shape)==1:
X_copy = X.copy()[None]
else:
X_copy = X.copy()
#Subtract mean and scale by variance
X_copy -= self._pca_mean[None]
X_copy /= (self._pca_std[None]*np.sqrt(self._data_scaled.shape[0] - 1))
#Compute the projection via dot product
components = X_copy.dot(self.components_.transpose())
if len(X.shape)==1:
return components[0]
else:
return components
def inverse_transform(self,X,n_components=None):
#Cast X to the right dimensions
if len(X.shape)==1:
X_copy = X.copy()[None]
else:
X_copy = X.copy()
#Use the PCA basis vectors to project back to the original space
if n_components is not None:
basis_vectors = self.components_[:n_components]
X_copy = X_copy[:,:n_components]
else:
basis_vectors = self.components_
#Original space
original_components = X_copy.dot(basis_vectors)
#De-whitening
original_components *= (self._pca_std[None]*np.sqrt(self._data_scaled.shape[0] - 1))
original_components += self._pca_mean[None]
if original_components.shape[0]==1:
return original_components[0]
else:
return original_components
def select_components(self,X,n_components):
all_components = self.transform(X)
return self.inverse_transform(all_components,n_components=n_components)
#########################################################
#############Default Gaussian data likelihood############
#########################################################
def gaussian_likelihood(chi2,norm=1.0):
return norm*np.exp(-0.5*chi2)
######################################################################
##########Default chi2 calculation with the sandwich product##########
######################################################################
def chi2(parameters,*args,**kwargs):
model_feature = _predict(parameters,kwargs["num_bins"],kwargs["interpolator"])
inverse_covariance = kwargs["inverse_covariance"]
if model_feature.ndim == 1:
observed_feature = kwargs["observed_feature"]
else:
observed_feature = kwargs["observed_feature"][np.newaxis,:]
inverse_covariance_dot = np.dot(observed_feature - model_feature,inverse_covariance)
return ((observed_feature - model_feature) * inverse_covariance_dot).sum(-1)
#######################################################################
#############Feature prediction wrapper################################
#######################################################################
def _predict(parameters,num_bins,interpolator):
#For each feature bin, compute its interpolated value
if parameters.ndim == 1:
interpolated_feature = np.zeros(num_bins)
for n in range(num_bins):
interpolated_feature[n] = interpolator[n]()(*parameters)
else:
interpolated_feature = np.zeros((parameters.shape[0],num_bins))
for n in range(num_bins):
interpolated_feature[:,n] = interpolator[n]()(*parameters.transpose())
return interpolated_feature
##############################################
###########Analysis base class################
##############################################
class Analysis(object):
"""
The base class of this module; the idea in weak lensing analysis is that one has a set of simulated data, that serves as training model, and then uses that set to fit the observations for the best model parameters.
:param parameter_set: the points in parameter space that the simulated data cover; the first axis refers to the model, the second to the number of parameters
:type parameter_set: array
:param training_set: the measured feature in each model; the first axis refers to the model, the others to the feature indices (or bins)
:type training_set: array
:param observed_set: the measured feature in the data, should be a one dimensional array
:type observed_set: array
"""
_analysis_type = None
def __init__(self,parameter_set=None,training_set=None):
assert self._analysis_type is not None,"Don't instantiate this class directly, use one of its subclasses!"
if parameter_set is not None and training_set is not None:
assert parameter_set.shape[0] == training_set.shape[0],"There should be one feature for each of the simulated models!"
self.parameter_set = parameter_set
self.training_set = training_set
def __repr__(self):
try:
return "{0} type analysis, based on {1} models spanning a {2}-dimensional parameter space ({3} bins)".format(self._analysis_type,self.parameter_set.shape[0],self.parameter_set.shape[1],self.training_set.shape[1])
except AttributeError:
return "{0} type analysis, no models in it yet!".format(self._analysis_type)
def __mul__(self,other):
assert isinstance(other,self.__class__)
assert (self.parameter_set==other.parameter_set).all()
new_analysis = self.__class__(parameter_set=self.parameter_set.copy(),training_set=np.hstack((self.training_set,other.training_set)))
return new_analysis
def add_feature_label(self,feature_label):
"""
Add a feature label to the current analysis, i.e. a set of multipole moments if the feature is the power spectrum, or a set of thresholds if the feature is a PDF, etc...
:param feature_label: the feature label to add, must have the same shape as the training set
:type feature_label: array.
"""
assert feature_label.shape == self.training_set.shape[1:],"Feature label must have the same shape as the simulated feature!"
self.feature_label = feature_label
def add_model(self,parameters,feature):
"""
Add a model to the training set of the current analysis
:param parameters: parameter set of the new model
:type parameters: array
:param feature: measured feature of the new model
:type feature: array
"""
#If the analysis doesn't have any models, add the first, otherwise simply vstack them
if self.parameter_set is None:
assert self.training_set is None
self.parameter_set = parameters.copy()[np.newaxis,:]
self.training_set = feature.copy()[np.newaxis,:]
else:
#Check for input valudity
assert parameters.shape[0] == self.parameter_set.shape[1]
assert feature.shape == self.training_set.shape[1:]
self.parameter_set = np.vstack((self.parameter_set,parameters))
self.training_set = np.vstack((self.training_set,feature))
def remove_model(self,model_list):
"""
Remove one or more models from the Analysis instance
:param model_list: list of the indices of the models to remove (0 indicates the first model)
:type model_list: int. or list of int.
"""
try:
self.parameter_set = np.delete(self.parameter_set,model_list,axis=0)
self.training_set = np.delete(self.training_set,model_list,axis=0)
except:
print("No models to delete or indices are out of bounds!")
def reparametrize(self,formatter,*args,**kwargs):
"""
Reparametrize the parameter set of the analysis by calling the formatter handle on the current parameter set (can be used to enlarge/shrink/relabel the parameter set)
:param formatter: formatter function called on the current parameter_set (args and kwargs are passed to it)
:type formatter: callable
"""
self.parameter_set = formatter(self.parameter_set,*args,**kwargs)
assert self.parameter_set.shape[0]==self.training_set.shape[0],"The reparametrization messed up the number of points in parameter space!!"
def transform(self,transformation,inplace=False,**kwargs):
"""
Allows a general transformation on the training_set of the analysis by calling an arbitrary transformation function
:param transformation: callback function called on the training_set
:type transformation: callable
:param inplace: if True the transformation is performed in place, otherwise a new Analysis instance is created
:type inplace: bool.
:param kwargs: the keyword arguments are passed to the transformation callable
:type kwargs: dict.
"""
transformed_training_set = transformation(self.training_set,**kwargs)
assert self.parameter_set.shape[0]==transformed_training_set.shape[0],"The reparametrization messed up the number of training features!!"
if inplace:
self.training_set = transformed_training_set
else:
return self.__class__(parameter_set=self.parameter_set.copy(),training_set=transformed_training_set)
def principalComponents(self):
"""
Computes the principal components of the training_set
:returns: pcaHandler instance
"""
pca = PCA()
pca.fit(self.training_set)
return pca
def find(self,parameters,rtol=1.0e-05):
"""
Finds the index of the training model that has the specified combination of parameters
:param parameters: the parameters of the model to find
:type parameters: array.
:param rtol: tolerance of the search (must be less than 1)
:type rtol: float.
:returns: array of int. with the indices of the corresponding models
"""
assert len(parameters)==self.parameter_set.shape[1]
search_result = np.all(np.isclose(self.parameter_set,parameters,rtol=rtol),axis=1)
return np.where(search_result==True)[0]
def save(self,filename):
"""
Save the current Analysis instance as a pickled binary file for future reuse as an emulator; useful after you trained the emulator with a simulated feature set and you want to reuse it in the future
:param filename: Name of the file to which you want to save the emulator, or file object
:type filename: str. or file object
"""
assert type(filename) in [str,file],"filename must be a string or a file object!"
if type(filename)==str:
with open(filename,"wb") as dumpfile:
pickle.dump(self,dumpfile)
else:
pickle.dump(self,filename)
@classmethod
def load(cls,filename):
"""
Unpickle a previously pickled instance: be sure the file you are unpickling comes from a trusted source, this operation is potentially dangerous for your computer!
:param filename: Name of the file from which you want to load the instance, or file object
:type filename: str. or file object
"""
assert type(filename) in [str,file],"filename must be a string or a file object!"
if type(filename)==str:
with open(filename,"rb") as dumpfile:
emulator = pickle.load(dumpfile)
else:
emulator = pickle.load(filename)
assert isinstance(emulator,cls)
return emulator
###################################################
#############Fisher matrix analysis################
###################################################
class FisherAnalysis(Analysis):
_analysis_type = "Fisher"
_fiducial = 0
"""
The class handler of a Fisher matrix analysis, inherits from the base class Analysis
"""
def add_model(self,parameters,feature):
super(FisherAnalysis,self).add_model(parameters,feature)
try:
self.check()
except Exception as e:
self.remove_model(-1)
raise RuntimeError(e)
def set_fiducial(self,n):
"""
Sets the fiducial model (with respect to which to compute the derivatives), default is 0 (i.e. self.parameter_set[0])
:param n: the parameter set you want to use as fiducial
:type n: int.
"""
assert n < self.parameter_set.shape[0],"There are less than {0} models in your analysis".format(n+1)
self._fiducial = n
@property
def fiducial(self):
return self.training_set[self._fiducial]
@property
def _variations(self):
"""
Checks the parameter variations with respect to the fiducial cosmology
:returns: bool array (True if the parameter is varied, False otherwise)
"""
return self.parameter_set!=self.parameter_set[self._fiducial]
@property
def variations(self):
"""
Checks the parameter variations with respect to the fiducial cosmology
:returns: iterable with the positions of the variations
"""
for n,b in enumerate(self._variations.sum(1)):
if b:
yield n
def check(self):
"""
Asserts that the parameters are varied one at a time, and that a parameter is not varied more than once
:raises: AssertionError
"""
assert (self._variations.sum(1)<2).all(),"You can vary only a parameter at a time!"
#Check how many variations are there for each parameter
num_par_variations = self._variations.sum(0)
if (num_par_variations<2).all():
return 0
else:
return 1
def where(self,par=None):
"""
Finds the locations of the varied parameters in the parameter set
:returns: dict. with the locations of the variations, for each parameter
"""
loc = dict()
v = np.where(self._variations==1)
#Decide if keys are lists or simple numbers
if self.check():
for n in range(self.parameter_set.shape[1]):
loc[n] = list()
for n in range(len(v[0])):
loc[v[1][n]].append(v[0][n])
else:
for n in range(len(v[0])):
loc[v[1][n]] = v[0][n]
if par is None:
return loc
else:
return loc[par]
@property
def varied(self):
"""
Returns the indices of the parameters that are varied
:returns: list with the indices of the varied parameters
"""
loc = self.where().keys()
loc.sort()
return loc
def compute_derivatives(self):
"""
Computes the feature derivatives with respect to the parameter sets using one step finite differences; the derivatives are computed with respect to the fiducial parameter set
:returns: array of shape (p,N), where N is the feature dimension and p is the number of varied parameters
"""
assert self.parameter_set.shape[0] > 1,"You need at least 2 models to proceed in a Fisher Analysis!"
assert self.check()==0,"Finite differences implemented only at first order! Cannot compute derivatives"
#Find the varied parameters and their locations
loc_varied = self.where()
par_varied = loc_varied.keys()
par_varied.sort()
#Allocate space for the derivatives
derivatives = np.zeros((len(par_varied),)+self.training_set.shape[1:])
#cycle to parameters to calculate derivatives
for n,p in enumerate(par_varied):
#Calculate the finite difference derivative with respect to this parameter
derivatives[n] = (self.training_set[loc_varied[p]] - self.training_set[self._fiducial]) / (self.parameter_set[loc_varied[p],p] - self.parameter_set[self._fiducial,p])
#set the derivatives attribute and return the result
self.derivatives = derivatives
return derivatives
#############################################################################################################################
def observables2parameters(self,features_covariance=None):
"""
Computes the conversion matrix M that allows to match a feature vector V to its best fit parameters P, in the sense P = P[fiducial] + MV
:param features_covariance: covariance matrix of the simulated features, must be provided!
:type features_covariance: 2 dimensional array (or 1 dimensional if diagonal)
:returns: the (p,N) conversion matrix
:rtype: array
"""
#Safety checks
assert features_covariance is not None,"No science without the covariance matrix, you must provide one!"
assert features_covariance.shape in [self.training_set.shape[-1:],self.training_set.shape[-1:]*2]
#Check if derivatives are already computed
if not hasattr(self,"derivatives"):
self.compute_derivatives()
#Linear algebra manipulations (parameters = M x features)
if features_covariance.shape == self.training_set.shape[1:] * 2:
Y = solve(features_covariance,self.derivatives.transpose())
else:
Y = (1/features_covariance[:,np.newaxis]) * self.derivatives.transpose()
XY = np.dot(self.derivatives,Y)
return solve(XY,Y.transpose())
#############################################################################################################################
def chi2(self,observed_feature,features_covariance):
"""
Computes the chi2 between an observed feature and the fiducial feature, using the provided covariance
:param observed_feature: observed feature to fit, its last dimension must have the same shape as self.training_set[0]
:type observed_feature: array
:param features_covariance: covariance matrix of the simulated features, must be provided for a correct fit!
:type features_covariance: 2 dimensional array (or 1 dimensional if diagonal)
:returns: chi2 of the comparison
:rtype: float.
"""
assert features_covariance is not None,"No science without the covariance matrix, you must provide one!"
#Cast the observed feature in suitable shape
if len(observed_feature.shape)==1:
observed_feature = observed_feature[None]
single = True
else:
single = False
#Check for correct shape of input
assert observed_feature.shape[-1:]==self.training_set.shape[-1:]
assert features_covariance.shape in [self.training_set.shape[-1:],self.training_set.shape[-1:]*2]
#Compute the difference
difference = observed_feature - self.fiducial[None]
#Compute the chi2
if features_covariance.shape==self.training_set.shape[-1:]:
result = ((difference**2)/features_covariance[None]).sum(-1)
else:
result = (difference * solve(features_covariance,difference.transpose()).transpose()).sum(-1)
#Return the result
if single:
return result[0]
else:
return result
#############################################################################################################################
def fit(self,observed_feature,features_covariance):
"""
Maximizes the gaussian likelihood on which the Fisher matrix formalism is based, and returns the best fit for the parameters given the observed feature
:param observed_feature: observed feature to fit, must have the same shape as self.training_set[0]
:type observed_feature: array
:param features_covariance: covariance matrix of the simulated features, must be provided for a correct fit!
:type features_covariance: 2 dimensional array (or 1 dimensional if assumed diagonal)
:returns: array with the best fitted parameter values
"""
assert features_covariance is not None,"No science without the covariance matrix, you must provide one!"
#Check for correct shape of input
assert observed_feature.shape==self.training_set.shape[1:]
assert features_covariance.shape==observed_feature.shape * 2 or features_covariance.shape==observed_feature.shape
#If derivatives are not computed, compute them
if not hasattr(self,"derivatives"):
self.compute_derivatives()
M = self.observables2parameters(features_covariance)
#Compute difference in parameters (with respect to the fiducial model)
dP = np.dot(M,observed_feature - self.training_set[self._fiducial])
#Return the actual best fit
return self.parameter_set[self._fiducial,self.varied] + dP
def classify(self,observed_feature,features_covariance,labels=range(2),confusion=False):
"""
Performs a Fisher classification of the observed feature, choosing the most probable label based on the value of the chi2
:param observed_feature: observed feature to fit, the last dimenstion must have the same shape as self.training_set[0]
:type observed_feature: array
:param features_covariance: covariance matrix of the simulated features, must be provided for a correct classification!
:type features_covariance: 2 dimensional array (or 1 dimensional if assumed diagonal)
:param labels: labels of the classification, must be the indices of the available classes (from 0 to training_set.shape[0])
:type labels: iterable
:param confusion: if True, an array with the label percentage occurrences is returned; if False an array of labels is returned
:type confusion: bool.
:returns: array with the labels resulting from the classification
:rtype: int.
"""
fiducial_original = self._fiducial
#Compute all the chi squared values, for each observed feature and each label
all_chi2 = list()
for l in labels:
self.set_fiducial(l)
all_chi2.append(self.chi2(observed_feature,features_covariance))
self.set_fiducial(fiducial_original)
#Cast the list into an array
all_chi2 = | np.array(all_chi2) | numpy.array |
__authors__ = ["<NAME> - ESRF ISDD Advanced Analysis and Modelling"]
__license__ = "MIT"
__date__ = "30-08-2018"
"""
Wiggler code: computes wiggler radiation distributions and samples rays according to them.
Fully replaces and upgrades the shadow3 wiggler model.
The radiation is calculating using sr-xraylib
"""
import numpy
from srxraylib.util.inverse_method_sampler import Sampler1D
from srxraylib.sources.srfunc import wiggler_trajectory, wiggler_spectrum, wiggler_cdf, sync_f
import scipy
from scipy.interpolate import interp1d
import scipy.constants as codata
from shadow4.sources.s4_electron_beam import S4ElectronBeam
from shadow4.sources.s4_light_source import S4LightSource
from shadow4.sources.wiggler.s4_wiggler import S4Wiggler
from shadow4.beam.beam import Beam
# This is similar to sync_f in srxraylib but faster
def sync_f_sigma_and_pi(rAngle, rEnergy):
r""" angular dependency of synchrotron radiation emission
NAME:
sync_f_sigma_and_pi
PURPOSE:
Calculates the function used for calculating the angular
dependence of synchrotron radiation.
CATEGORY:
Mathematics.
CALLING SEQUENCE:
Result = sync_f_sigma_and_pi(rAngle,rEnergy)
INPUTS:
rAngle: (array) the reduced angle, i.e., angle[rads]*Gamma. It can be a
scalar or a vector.
rEnergy: (scalar) a value for the reduced photon energy, i.e.,
energy/critical_energy.
KEYWORD PARAMETERS:
OUTPUTS:
returns the value of the sync_f for sigma and pi polarizations
The result is an array of the same dimension as rAngle.
PROCEDURE:
The number of emitted photons versus vertical angle Psi is
proportional to sync_f, which value is given by the formulas
in the references.
References:
<NAME>, "Spectra and optics of synchrotron radiation"
BNL 50522 report (1976)
<NAME> and <NAME>, Synchrotron Radiation,
Akademik-Verlag, Berlin, 1968
OUTPUTS:
returns the value of the sync_f function
PROCEDURE:
Uses BeselK() function
MODIFICATION HISTORY:
Written by: <NAME>, <EMAIL>, 2002-05-23
2002-07-12 <EMAIL> adds circular polarization term for
wavelength integrated spectrum (S&T formula 5.25)
2012-02-08 <EMAIL>: python version
2019-10-31 <EMAIL> speed-up changes for shadow4
"""
#
# ; For 11 in Pag 6 in Green 1975
#
ji = numpy.sqrt((1.0 + rAngle**2)**3) * rEnergy / 2.0
efe_sigma = scipy.special.kv(2.0 / 3.0, ji) * (1.0 + rAngle**2)
efe_pi = rAngle * scipy.special.kv(1.0 / 3.0, ji) / numpy.sqrt(1.0 + rAngle ** 2) * (1.0 + rAngle ** 2)
return efe_sigma**2,efe_pi**2
class S4WigglerLightSource(S4LightSource):
def __init__(self, name="Undefined", electron_beam=None, magnetic_structure=None):
super().__init__(name,
electron_beam=electron_beam if not electron_beam is None else S4ElectronBeam(),
magnetic_structure=magnetic_structure if not magnetic_structure is None else S4Wiggler())
# results of calculations
self.__result_trajectory = None
self.__result_parameters = None
self.__result_cdf = None
def get_trajectory(self):
return self.__result_trajectory, self.__result_parameters
def __calculate_radiation(self):
wiggler = self.get_magnetic_structure()
electron_beam = self.get_electron_beam()
if wiggler._magnetic_field_periodic == 1:
(traj, pars) = wiggler_trajectory(b_from=0,
inData="",
nPer=wiggler.number_of_periods(),
nTrajPoints=wiggler._NG_J,
ener_gev=electron_beam._energy_in_GeV,
per=wiggler.period_length(),
kValue=wiggler.K_vertical(),
trajFile="",)
elif wiggler._magnetic_field_periodic == 0:
print(">>>>>>>>>>>>>>>>>>>>>>",
"shift_x_flag = ",wiggler._shift_x_flag,
"shift_x_value = ",wiggler._shift_x_value,
"shift_betax_flag = ",wiggler._shift_betax_flag,
"shift_betax_value = ",wiggler._shift_betax_value
)
(traj, pars) = wiggler_trajectory(b_from=1,
inData=wiggler._file_with_magnetic_field,
nPer=1,
nTrajPoints=wiggler._NG_J,
ener_gev=electron_beam._energy_in_GeV,
# per=self.syned_wiggler.period_length(),
# kValue=self.syned_wiggler.K_vertical(),
trajFile="",
shift_x_flag = wiggler._shift_x_flag ,
shift_x_value = wiggler._shift_x_value ,
shift_betax_flag = wiggler._shift_betax_flag ,
shift_betax_value = wiggler._shift_betax_value,)
self.__result_trajectory = traj
self.__result_parameters = pars
# print(">>>>>>>>>> traj pars: ",traj.shape,pars)
#
# plot(traj[1, :], traj[0, :], xtitle="Y", ytitle="X")
# plot(traj[1, :], traj[3, :], xtitle="Y", ytitle="BetaX")
# plot(traj[1, :], traj[6, :], xtitle="Y", ytitle="Curvature")
# plot(traj[1, :], traj[7, :], xtitle="Y", ytitle="B")
# traj[0,ii] = yx[i]
# traj[1,ii] = yy[i]+j * per - start_len
# traj[2,ii] = 0.0
# traj[3,ii] = betax[i]
# traj[4,ii] = betay[i]
# traj[5,ii] = 0.0
# traj[6,ii] = curv[i]
# traj[7,ii] = bz[i]
#
# calculate cdf and write file for Shadow/Source
#
print(">>>>>>>>>>>>>>>>>>>> wiggler._EMIN,wiggler._EMAX,wiggler._NG_E",wiggler._EMIN,wiggler._EMAX,wiggler._NG_E)
self.__result_cdf = wiggler_cdf(self.__result_trajectory,
enerMin=wiggler._EMIN,
enerMax=wiggler._EMAX,
enerPoints=wiggler._NG_E,
outFile="tmp.cdf",
elliptical=False)
def __calculate_rays(self,user_unit_to_m=1.0,F_COHER=0,NRAYS=5000,SEED=123456,EPSI_DX=0.0,EPSI_DZ=0.0,
psi_interval_in_units_one_over_gamma=None,
psi_interval_number_of_points=1001,
verbose=True):
"""
compute the rays in SHADOW matrix (shape (npoints,18) )
:param F_COHER: set this flag for coherent beam
:param user_unit_to_m: default 1.0 (m)
:return: rays, a numpy.array((npoits,18))
"""
if self.__result_cdf is None:
self.__calculate_radiation()
if verbose:
print(">>> Results of calculate_radiation")
print(">>> trajectory.shape: ", self.__result_trajectory.shape)
print(">>> cdf: ", self.__result_cdf.keys())
wiggler = self.get_magnetic_structure()
syned_electron_beam = self.get_electron_beam()
sampled_photon_energy,sampled_theta,sampled_phi = self._sample_photon_energy_theta_and_phi(NRAYS)
if verbose:
print(">>> sampled sampled_photon_energy,sampled_theta,sampled_phi: ",sampled_photon_energy,sampled_theta,sampled_phi)
if SEED != 0:
numpy.random.seed(SEED)
sigmas = syned_electron_beam.get_sigmas_all()
rays = numpy.zeros((NRAYS,18))
#
# sample sizes (cols 1-3)
#
#
if wiggler._FLAG_EMITTANCE:
if numpy.array(numpy.abs(sigmas)).sum() == 0:
wiggler._FLAG_EMITTANCE = False
if wiggler._FLAG_EMITTANCE:
x_electron = numpy.random.normal(loc=0.0,scale=sigmas[0],size=NRAYS)
y_electron = 0.0
z_electron = numpy.random.normal(loc=0.0,scale=sigmas[2],size=NRAYS)
else:
x_electron = 0.0
y_electron = 0.0
z_electron = 0.0
# traj[0,ii] = yx[i]
# traj[1,ii] = yy[i]+j * per - start_len
# traj[2,ii] = 0.0
# traj[3,ii] = betax[i]
# traj[4,ii] = betay[i]
# traj[5,ii] = 0.0
# traj[6,ii] = curv[i]
# traj[7,ii] = bz[i]
PATH_STEP = self.__result_cdf["step"]
X_TRAJ = self.__result_cdf["x"]
Y_TRAJ = self.__result_cdf["y"]
SEEDIN = self.__result_cdf["cdf"]
ANGLE = self.__result_cdf["angle"]
CURV = self.__result_cdf["curv"]
EPSI_PATH = numpy.arange(CURV.size) * PATH_STEP # self._result_trajectory[7,:]
# ! C We define the 5 arrays:
# ! C Y_X(5,N) ---> X(Y)
# ! C Y_XPRI(5,N) ---> X'(Y)
# ! C Y_CURV(5,N) ---> CURV(Y)
# ! C Y_PATH(5,N) ---> PATH(Y)
# ! C F(1,N) contains the array of Y values where the nodes are located.
# CALL PIECESPL(SEED_Y, Y_TEMP, NP_SY, IER)
# CALL CUBSPL (Y_X, X_TEMP, NP_TRAJ, IER)
# CALL CUBSPL (Y_Z, Z_TEMP, NP_TRAJ, IER)
# CALL CUBSPL (Y_XPRI, ANG_TEMP, NP_TRAJ, IER)
# CALL CUBSPL (Y_ZPRI, ANG2_TEMP, NP_TRAJ, IER)
# CALL CUBSPL (Y_CURV, C_TEMP, NP_TRAJ, IER)
# CALL CUBSPL (Y_PATH, P_TEMP, NP_TRAJ, IER)
SEED_Y = interp1d(SEEDIN,Y_TRAJ,kind='linear')
Y_X = interp1d(Y_TRAJ,X_TRAJ,kind='cubic')
Y_XPRI = interp1d(Y_TRAJ,ANGLE,kind='cubic')
Y_CURV = interp1d(Y_TRAJ,CURV,kind='cubic')
Y_PATH = interp1d(Y_TRAJ,EPSI_PATH,kind='cubic')
# ! C+++
# ! C Compute the path length to the middle (origin) of the wiggler.
# ! C We need to know the "center" of the wiggler coordinate.
# ! C input: Y_PATH ---> spline array
# ! C NP_TRAJ ---> # of points
# ! C Y_TRAJ ---> calculation point (ind. variable)
# ! C output: PATH0 ---> value of Y_PATH at X = Y_TRAJ. If
# ! C Y_TRAJ = 0, then PATH0 = 1/2 length
# ! C of trajectory.
# ! C+++
Y_TRAJ = 0.0
# CALL SPL_INT (Y_PATH, NP_TRAJ, Y_TRAJ, PATH0, IER)
PATH0 = Y_PATH(Y_TRAJ)
# ! C
# ! C These flags are set because of the original program structure.
# ! C
# F_PHOT = 0
# F_COLOR = 3
# FSOUR = 3
# FDISTR = 4
ws_ev,ws_f,tmp = wiggler_spectrum(self.__result_trajectory,
enerMin=wiggler._EMIN, enerMax=wiggler._EMAX, nPoints=500,
# per=self.syned_wiggler.period_length(),
electronCurrent=syned_electron_beam._current,
outFile="", elliptical=False)
ws_flux_per_ev = ws_f / (ws_ev*1e-3)
samplerE = Sampler1D(ws_flux_per_ev,ws_ev)
sampled_energies,h,h_center = samplerE.get_n_sampled_points_and_histogram(NRAYS)
###############################################
gamma = syned_electron_beam.gamma()
m2ev = codata.c * codata.h / codata.e
TOANGS = m2ev * 1e10
#####################################################
RAD_MIN = 1.0 / numpy.abs(self.__result_cdf["curv"]).max()
critical_energy = TOANGS * 3.0 * numpy.power(gamma, 3) / 4.0 / numpy.pi / 1.0e10 * (1.0 / RAD_MIN)
if psi_interval_in_units_one_over_gamma is None:
c = numpy.array([-0.3600382, 0.11188709]) # see file fit_psi_interval.py
# x = numpy.log10(self._EMIN / critical_energy)
x = numpy.log10(wiggler._EMIN / (4 * critical_energy)) # the wiggler that does not have an unique
# Ec. To be safe, I use 4 times the
# Ec vale to make the interval wider than for the BM
y_fit = c[1] + c[0] * x
psi_interval_in_units_one_over_gamma = 10 ** y_fit # this is the semi interval
psi_interval_in_units_one_over_gamma *= 4 # doubled interval
if psi_interval_in_units_one_over_gamma < 2:
psi_interval_in_units_one_over_gamma = 2
if verbose:
print(">>> psi_interval_in_units_one_over_gamma: ",psi_interval_in_units_one_over_gamma)
angle_array_mrad = numpy.linspace(-0.5*psi_interval_in_units_one_over_gamma * 1e3 / gamma,
0.5*psi_interval_in_units_one_over_gamma * 1e3 / gamma,
psi_interval_number_of_points)
# a = numpy.linspace(-0.6,0.6,150)
a = angle_array_mrad
#####################################################################
a8 = 1.0
hdiv_mrad = 1.0
# i_a = self.syned_electron_beam._current
#
# fm = sync_f(a*self.syned_electron_beam.gamma()/1e3,eene,polarization=0) * \
# numpy.power(eene,2)*a8*i_a*hdiv_mrad*numpy.power(self.syned_electron_beam._energy_in_GeV,2)
#
# plot(a,fm,title="sync_f")
#
# samplerAng = Sampler1D(fm,a)
#
# sampled_theta,hx,h = samplerAng.get_n_sampled_points_and_histogram(10*NRAYS)
# plot(h,hx)
for itik in range(NRAYS):
# ARG_Y = GRID(2,ITIK)
# CALL SPL_INT (SEED_Y, NP_SY, ARG_Y, Y_TRAJ, IER)
arg_y = numpy.random.random() # ARG_Y[itik]
Y_TRAJ = SEED_Y(arg_y)
# ! <EMAIL> 2014-05-19
# ! in wiggler some problems arise because spl_int
# ! does not return a Y value in the correct range.
# ! In those cases, we make a linear interpolation instead.
# if ((y_traj.le.y_temp(1)).or.(y_traj.gt.y_temp(NP_SY))) then
# y_traj_old = y_traj
# CALL LIN_INT (SEED_Y, NP_SY, ARG_Y, Y_TRAJ, IER)
# print*,'SOURCESYNC: bad y_traj from SPL_INT, corrected with LIN_SPL: ',y_traj_old,'=>',y_traj
# endif
#
# CALL SPL_INT (Y_X, NP_TRAJ, Y_TRAJ, X_TRAJ, IER)
# CALL SPL_INT (Y_XPRI, NP_TRAJ, Y_TRAJ, ANGLE, IER)
# CALL SPL_INT (Y_CURV, NP_TRAJ, Y_TRAJ, CURV, IER)
# CALL SPL_INT (Y_PATH, NP_TRAJ, Y_TRAJ, EPSI_PATH, IER)
# END IF
X_TRAJ = Y_X(Y_TRAJ)
ANGLE = Y_XPRI(Y_TRAJ)
CURV = Y_CURV(Y_TRAJ)
EPSI_PATH = Y_PATH(Y_TRAJ)
# print("\n>>><<<",arg_y,Y_TRAJ,X_TRAJ,ANGLE,CURV,EPSI_PATH)
# EPSI_PATH = EPSI_PATH - PATH0 ! now refer to wiggler's origin
# IF (CURV.LT.0) THEN
# POL_ANGLE = 90.0D0 ! instant orbit is CW
# ELSE
# POL_ANGLE = -90.0D0 ! CCW
# END IF
# IF (CURV.EQ.0) THEN
# R_MAGNET = 1.0D+20
# ELSE
# R_MAGNET = ABS(1.0D0/CURV)
# END IF
# POL_ANGLE = TORAD*POL_ANGLE
EPSI_PATH = EPSI_PATH - PATH0 # now refer to wiggler's origin
if CURV < 0:
POL_ANGLE = 90.0 # instant orbit is CW
else:
POL_ANGLE = -90.0 # CCW
if CURV == 0.0:
R_MAGNET = 1.0e20
else:
R_MAGNET = numpy.abs(1.0/CURV)
POL_ANGLE = POL_ANGLE * numpy.pi / 180.0
# ! C
# ! C Compute the actual distance (EPSI_W*) from the orbital focus
# ! C
EPSI_WX = EPSI_DX + EPSI_PATH
EPSI_WZ = EPSI_DZ + EPSI_PATH
# ! BUG <EMAIL> found that these routine does not make the
# ! calculation correctly. Changed to new one BINORMAL
# !CALL GAUSS (SIGMAX, EPSI_X, EPSI_WX, XXX, E_BEAM(1), istar1)
# !CALL GAUSS (SIGMAZ, EPSI_Z, EPSI_WZ, ZZZ, E_BEAM(3), istar1)
# !
# ! calculation of the electrom beam moments at the current position
# ! (sX,sZ) = (epsi_wx,epsi_ez):
# ! <x2> = sX^2 + sigmaX^2
# ! <x x'> = sX sigmaXp^2
# ! <x'2> = sigmaXp^2 (same for Z)
#
# ! then calculate the new recalculated sigmas (rSigmas) and correlation rho of the
# ! normal bivariate distribution at the point in the electron trajectory
# ! rsigmaX = sqrt(<x2>)
# ! rsigmaXp = sqrt(<x'2>)
# ! rhoX = <x x'>/ (rsigmaX rsigmaXp) (same for Z)
#
# if (abs(sigmaX) .lt. 1e-15) then !no emittance
# sigmaXp = 0.0d0
# XXX = 0.0
# E_BEAM(1) = 0.0
# else
# sigmaXp = epsi_Xold/sigmaX ! true only at waist, use epsi_xOld as it has been redefined :(
# rSigmaX = sqrt( (epsi_wX**2) * (sigmaXp**2) + sigmaX**2 )
# rSigmaXp = sigmaXp
# if (abs(rSigmaX*rSigmaXp) .lt. 1e-15) then !no emittance
# rhoX = 0.0
# else
# rhoX = epsi_wx * sigmaXp**2 / (rSigmaX * rSigmaXp)
# endif
#
# CALL BINORMAL (rSigmaX, rSigmaXp, rhoX, XXX, E_BEAM(1), istar1)
# endif
#
if wiggler._FLAG_EMITTANCE:
# CALL BINORMAL (rSigmaX, rSigmaXp, rhoX, XXX, E_BEAM(1), istar1)
# [ c11 c12 ] [ sigma1^2 rho*sigma1*sigma2 ]
# [ c21 c22 ] = [ rho*sigma1*sigma2 sigma2^2 ]
sigmaX,sigmaXp,sigmaZ,sigmaZp = syned_electron_beam.get_sigmas_all()
epsi_wX = sigmaX * sigmaXp
rSigmaX = numpy.sqrt( (epsi_wX**2) * (sigmaXp**2) + sigmaX**2 )
rSigmaXp = sigmaXp
rhoX = epsi_wX * sigmaXp**2 / (rSigmaX * rSigmaXp)
mean = [0, 0]
cov = [[sigmaX**2, rhoX*sigmaX*sigmaXp], [rhoX*sigmaX*sigmaXp, sigmaXp**2]] # diagonal covariance
sampled_x, sampled_xp = | numpy.random.multivariate_normal(mean, cov, 1) | numpy.random.multivariate_normal |
import numpy as np
def nichols_grid(gmin,pmin,pmax,cm=None,cp=None):
# Round Gmin from below to nearest multiple of -20dB,
# and Pmin,Pmax to nearest multiple of 360
gmin = min(-20,20*np.floor(gmin/20))
pmax = 360*np.ceil(pmax/360);
pmin = min(pmax-360,360*np.floor(pmin/360));
if cp is None:
p1 = np.array([1,5,10,20,30,50,90,120,150,180])
else:
p1 = cp
g1_part1 = np.array([6,3,2,1,.75,.5,.4,.3,.25,.2,.15,.1,.05,0,-.05,-.1,-.15,-.2,-.25,-.3,-.4,-.5,-.75,-1,-2,-3,-4,-5,-6,-9,-12,-16])
g1_part2 =np.arange(-20,max(-40,gmin)-1,-10)
if gmin >-40:
g1 = np.hstack([g1_part1,g1_part2])
else:
g1 = np.hstack([g1_part1,g1_part2,gmin])
# Compute gains GH and phases PH in H plane
[p,g] = np.meshgrid((np.pi/180)*p1,10**(g1/20))
z = g* np.exp(1j*p)
H = z/(1-z)
gH = 20*np.log10(np.abs(H))
pH = np.remainder((180/np.pi)*np.angle(H)+360,360)
# Add phase lines for angle between 180 and 360 (using symmetry)
p_name = ["%.2f deg" % p1_temp for p1_temp in np.hstack([-360+p1,-p1])]
gH = np.hstack([gH,gH])
pH = np.hstack([pH,360-pH])
phase_lines = []
for indice in range(gH.shape[1]):
phase_lines.append({"y": gH[:,indice],"x": pH[:,indice]-360,"name":p_name[indice]})
# (2) Generate isogain lines for following gain values:
if cm is None:
g2_part1 = np.array([6,3,1,.5,.25,0,-1,-3,-6,-12,-20])
g2_part2 = np.arange(-40,-20,gmin-1)
g2 = np.hstack([g2_part1,g2_part2])
else:
g2 = cm
#% Phase points
p2 = np.array([1,2,3,4,5,7.5,10,15,20,25,30,45,60,75,90,105,120,135,150,175,180]);
p2 = np.hstack([p2,np.flip(360-p2[:-1])])
[g,p] = np.meshgrid(10**(g2/20),(np.pi/180)*p2) # mesh in H/(1+H) plane
z = g* np.exp(1j*p)
H = z/(1-z)
gH = 20*np.log10(np.abs(H))
pH = np.remainder((180/np.pi)*np.angle(H)+360,360)
# add gain line using symmetry
g_name = ["%.2f dB" % g2_temp for g2_temp in g2]
pH = pH-360
mag_lines = []
for indice in range(pH.shape[1]):
mag_lines.append({"y": gH[:,indice],"x": pH[:,indice],"name":g_name[indice]})
return mag_lines,phase_lines
def rlocus_grid(rad_max):
data = []
# add frequency line
wn_vect = np.linspace(0,rad_max,10)
theta_vect = np.linspace(np.pi/2,3*np.pi/2,30)
for index in range(len(wn_vect)):
wn = wn_vect[index]
name = "{:.3f} rad/s".format(wn)
x = np.ravel(wn*np.cos(theta_vect))
y = np.ravel(wn*np.sin(theta_vect))
data_temp = {"x": x,"y":y,"name":name}
data.append(data_temp)
#add damping line
wn_vect = np.linspace(0,rad_max,30)
theta_vect = (np.pi/2)+np.pi*np.arange(20)/20
for index in range(len(theta_vect)):
theta = theta_vect[index]
m = np.abs(np.cos(-theta))
name = "m={:.3f}".format(m)
x = np.ravel(wn_vect* | np.cos(theta) | numpy.cos |
import matplotlib
matplotlib.use("agg")
import numpy as np
import os
import time
import plotly.graph_objs as go
import ot
import torch
from torch import nn, optim, distributions
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = False
if "CUDNN_DETERMINISTIC" in os.environ:
if os.environ["CUDNN_DETERMINISTIC"] not in (0, False, "false", "FALSE", "False"):
cudnn.benchmark = False
cudnn.deterministic = True
from batchgenerators.dataloading import MultiThreadedAugmenter
from trixi.util import Config, ResultLogDict
from trixi.experiment import PytorchExperiment
from neuralprocess.util import set_seeds, tensor_to_loc_scale
from neuralprocess.experiment.util import (
get_default_experiment_parser,
run_experiment,
)
from neuralprocess.data import (
GaussianProcessGenerator,
WeaklyPeriodicKernel,
StepFunctionGenerator,
LotkaVolterraGenerator,
FourierSeriesGenerator,
TemperatureGenerator,
)
from neuralprocess.data.gp import GaussianKernel, WeaklyPeriodicKernel, Matern52Kernel
from neuralprocess.model import (
NeuralProcess,
AttentiveNeuralProcess,
ConvCNP,
ConvDeepSet,
GPConvDeepSet,
generic,
)
def make_defaults(representation_channels=128):
DEFAULTS = Config(
# Base
name="NeuralProcessExperiment",
description="Learn a distribution over functions with a Neural Process",
n_epochs=600000,
batch_size=256,
seed=1,
device="cuda",
representation_channels=representation_channels,
# Data
generator=GaussianProcessGenerator,
generator_kwargs=dict(
kernel_type=GaussianKernel,
kernel_kwargs=dict(lengthscale=0.5),
x_range=[-3, 3],
num_context=[3, 100],
num_target=[3, 100],
target_larger_than_context=True,
target_includes_context=False,
target_fixed_size=False,
output_noise=0.0, # additive noise on context values
linspace=False, # x values from linspace instead of uniform
number_of_threads_in_multithreaded=1, # will use MP if > 1
),
# Model:
# modules are instantiated first and then passed to the constructor
# of the model
model=NeuralProcess,
model_kwargs=dict(distribution=distributions.Normal),
modules=dict(prior_encoder=generic.MLP, decoder=generic.MLP),
modules_kwargs=dict(
prior_encoder=dict(
in_channels=2, # context in + out
out_channels=2 * representation_channels, # mean + sigma
hidden_channels=128,
hidden_layers=6,
),
decoder=dict(
in_channels=representation_channels + 1, # sample + target in
out_channels=2, # mean + sigma
hidden_channels=128,
hidden_layers=6,
),
),
output_transform_logvar=True, # logvar to sigma transform on sigma outputs
# Optimization
optimizer=optim.Adam,
optimizer_kwargs=dict(lr=1e-3),
lr_min=1e-6, # training stops when LR falls below this
scheduler=optim.lr_scheduler.StepLR,
scheduler_kwargs=dict(step_size=1000, gamma=0.995),
scheduler_step_train=True,
clip_grad=1e3, # argument for nn.clip_grad_norm
lr_warmup=0, # linearly increase LR from 0 during first lr_warmup epochs
# Logging
backup_every=1000,
validate_every=1000,
show_every=100,
num_samples=50,
plot_y_range=[-3, 3],
# Testing
test_batches_single=100,
test_batches_distribution=30,
test_batches_diversity=100,
test_batch_size=1024,
test_num_context=[
"random",
], # can also have integers in this list
test_num_context_random=[3, 100],
test_num_target_single=100,
test_num_target_distribution=100,
test_num_target_diversity=100,
test_latent_samples=100, # use this many latent samples for NP and ANP
test_single=True,
test_distribution=True,
test_diversity=True,
)
MODS = {}
MODS["ATTENTION"] = Config( # you also need to set DETERMINISTICENCODER for this
model=AttentiveNeuralProcess,
model_kwargs=dict(
project_to=128, # embed_dim in attention mechanism
project_bias=True,
in_channels=1, # context and target in
representation_channels=representation_channels,
),
modules=dict(attention=nn.MultiheadAttention),
modules_kwargs=dict(attention=dict(embed_dim=128, num_heads=8)),
)
MODS["CONVCNP"] = Config(
model=ConvCNP,
model_kwargs=dict(
in_channels=1,
out_channels=1,
use_gp=False,
learn_length_scale=True,
init_length_scale=0.1,
use_density=True,
use_density_norm=True,
points_per_unit=20, # grid resolution
range_padding=0.1, # grid range extension
grid_divisible_by=64,
),
modules=dict(conv_net=generic.SimpleUNet),
modules_kwargs=dict(
conv_net=dict(
in_channels=8,
out_channels=8,
num_blocks=6,
input_bypass=True, # input concatenated to output
)
),
)
MODS["GPCONVCNP"] = Config( # Requires CONVCNP
model_kwargs=dict(use_gp=True, use_density_norm=False)
)
MODS["NOSAMPLE"] = Config(model_kwargs=dict(gp_sample_from_posterior=False))
MODS["LEARNNOISE"] = Config( # Requires GPCONVCNP
model_kwargs=dict(
gp_noise_learnable=True,
gp_noise_init=-2.0,
)
)
MODS["LEARNLAMBDA"] = Config( # Requires GPCONVCNP
model_kwargs=dict(gp_lambda_learnable=True)
)
MODS["MATERNKERNEL"] = Config(generator_kwargs=dict(kernel_type=Matern52Kernel))
MODS["WEAKLYPERIODICKERNEL"] = Config(
generator_kwargs=dict(kernel_type=WeaklyPeriodicKernel)
)
MODS["STEP"] = Config(
generator=StepFunctionGenerator,
generator_kwargs=dict(
y_range=[-3, 3],
number_of_steps=[3, 10],
min_step_width=0.1,
min_step_height=0.1,
),
)
MODS["FOURIER"] = Config(
generator=FourierSeriesGenerator,
generator_kwargs=dict(
series_length=[10, 20],
amplitude=[-1, 1],
phase=[-1, 1],
bias=[-1, 1],
frequency_scale=1.0,
),
)
MODS["FOURIERSINGLE"] = Config(
generator=FourierSeriesGenerator,
generator_kwargs=dict(
series_length=[1, 2],
amplitude=[-2, 2],
phase=[-1, 1],
bias=[-1, 1],
frequency_scale=[0.1, 2.0],
),
)
MODS["LOTKAVOLTERRA"] = Config(
generator=LotkaVolterraGenerator,
generator_kwargs=dict(
num_context=[20, 80],
num_target=[70, 150],
number_of_threads_in_multithreaded=8,
predator_init=[50, 100],
prey_init=[100, 150],
rate0=[0.005, 0.01],
rate1=[0.5, 0.8],
rate2=[0.5, 0.8],
rate3=[0.005, 0.01],
sequence_length=10000,
y_rescale=0.01,
x_rescale=0.1,
max_time=100.0,
max_population=500,
super_sample=1.5,
x_range=[0, 5],
),
model_kwargs=dict(out_channels=2),
modules_kwargs=dict(
prior_encoder=dict(in_channels=3),
decoder=dict(out_channels=4),
deterministic_encoder=dict(in_channels=3),
),
plot_y_range=[0, 3],
test_num_context_random=[20, 80],
)
MODS["TEMPERATURE"] = Config(
generator=TemperatureGenerator,
generator_kwargs=dict(
num_context=[20, 100],
num_target=[20, 100],
sequence_length=30 * 24, # ca. 1 month
x_range=(0, 3),
),
test_num_context_random=[20, 100],
)
MODS["DETERMINISTICENCODER"] = Config(
modules=dict(deterministic_encoder=generic.MLP),
modules_kwargs=dict(
deterministic_encoder=dict(
in_channels=2,
out_channels=representation_channels,
hidden_channels=128,
hidden_layers=6,
),
decoder=dict(in_channels=2 * representation_channels + 1),
),
)
MODS["LONG"] = Config(n_epochs=1200000, scheduler_kwargs=dict(step_size=2000))
return {"DEFAULTS": DEFAULTS}, MODS
class NeuralProcessExperiment(PytorchExperiment):
def setup(self):
set_seeds(self.config.seed, "cuda" in self.config.device)
self.setup_model()
self.setup_optimization()
self.setup_data()
def setup_model(self):
modules = dict()
for mod_name, mod_type in self.config.modules.items():
modules[mod_name] = mod_type(**self.config.modules_kwargs[mod_name])
modules.update(self.config.model_kwargs)
self.model = self.config.model(**modules)
self.clog.show_text(repr(self.model), "Model")
def setup_optimization(self):
self.optimizer = self.config.optimizer(
self.model.parameters(), **self.config.optimizer_kwargs
)
self.scheduler = self.config.scheduler(
self.optimizer, **self.config.scheduler_kwargs
)
if self.config.lr_warmup > 0:
for group in self.optimizer.param_groups:
group["lr"] = 0.0
def setup_data(self):
self.generator = self.config.generator(
self.config.batch_size, **self.config.generator_kwargs
)
if self.generator.number_of_threads_in_multithreaded > 1:
self.generator = MultiThreadedAugmenter(
self.generator,
None,
self.generator.number_of_threads_in_multithreaded,
seeds=np.arange(self.generator.number_of_threads_in_multithreaded)
+ self.generator.number_of_threads_in_multithreaded * self.config.seed,
)
def _setup_internal(self):
super()._setup_internal()
# manually set up a ResultLogDict with running mean ability
self.results.close()
self.results = ResultLogDict(
"results-log.json",
base_dir=self.elog.result_dir,
mode="w",
running_mean_length=self.config.show_every,
)
# save modifications we made to config
self.elog.save_config(self.config, "config")
def prepare(self):
# move everything to specified device
for name, model in self.get_pytorch_modules().items():
model.to(self.config.device)
def train(self, epoch):
self.model.train()
self.optimizer.zero_grad()
batch = next(self.generator)
batch["epoch"] = epoch # logging
context_in = batch["context_in"].to(self.config.device)
context_out = batch["context_out"].to(self.config.device)
target_in = batch["target_in"].to(self.config.device)
target_out = batch["target_out"].to(self.config.device)
# forward
# ------------------------------------
# on rare occasions, the cholesky decomposition in the GP
# fails, if it does, we just go to the next batch
skip = False
try:
prediction = self.model(
context_in,
context_out,
target_in,
target_out,
store_rep=False,
)
prediction = tensor_to_loc_scale(
prediction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
batch["prediction_mu"] = prediction.loc.detach().cpu().repeat(1, 1, 2)
batch["prediction_sigma"] = prediction.scale.detach().cpu().repeat(1, 1, 2)
# loss
loss_recon = -prediction.log_prob(target_out)
loss_recon = loss_recon.mean(0).sum() # batch mean
loss_total = loss_recon
if hasattr(self.model, "prior"):
loss_latent = distributions.kl_divergence(
self.model.posterior, self.model.prior
)
loss_latent = loss_latent.mean(0).sum() # batch mean
loss_total += loss_latent
# backward, check for NaN gradients
loss_total.backward()
if (
type(self.model) == ConvCNP
and type(self.model.input_interpolation) == GPConvDeepSet
):
for p in self.model.parameters():
if p.grad is not None and torch.any(torch.isnan(p.grad)):
skip = True
break
except RuntimeError as re:
skip = True
# if Cholesky fails or we get NaN gradients, we skip this batch
if not skip:
if self.config.clip_grad > 0:
nn.utils.clip_grad_norm_(self.model.parameters(), self.config.clip_grad)
self.optimizer.step()
else:
self.print("Skipping batch at epoch {}".format(epoch))
return
# logging and LR updates
batch["loss_recon"] = loss_recon.item()
if hasattr(self.model, "prior"):
batch["loss_latent"] = loss_latent.item()
batch["loss_total"] = loss_total.item()
self.log(batch, validate=False)
self.step_params(loss_total.item(), epoch, val=False)
def log(self, summary, validate=False):
if validate:
backup = True
show = True
else:
backup = (summary["epoch"] + 1) % self.config.backup_every == 0
show = (summary["epoch"] + 1) % self.config.show_every == 0
# add_result logs to self.results and also plots
for l in ("loss_recon", "loss_latent", "loss_total"):
if l in summary:
name = l
if validate:
name += "_val"
self.add_result(
summary[l],
name,
summary["epoch"],
"Loss",
plot_result=show,
plot_running_mean=not validate,
)
self.make_plots(summary, save=backup, show=show, validate=validate)
def make_plots(self, summary, save=False, show=True, validate=False):
if not save and not show:
return
if hasattr(self.generator, "x_range"):
x_range = self.generator.x_range
elif hasattr(self.generator.generator, "x_range"):
x_range = self.generator.generator.x_range
else:
x_range = [-3, 3]
# we select the first batch item for plotting
context_in = summary["context_in"][0, :, 0].numpy()
context_out = summary["context_out"][0].numpy()
target_in = summary["target_in"][0, :, 0].numpy()
target_out = summary["target_out"][0].numpy()
prediction_mu = summary["prediction_mu"][0].numpy()
prediction_sigma = summary["prediction_sigma"][0].numpy()
if "samples" in summary:
samples = summary["samples"][:, 0, :, 0].numpy().T
if validate:
name = "val" + os.sep
else:
name = ""
# plotly plot for Visdom
if show and self.vlog is not None:
fig = go.Figure()
fig.update_xaxes(range=x_range)
fig.update_yaxes(range=self.config.plot_y_range)
for c in range(context_out.shape[-1]):
fig.add_trace(
go.Scatter(
x=target_in,
y=target_out[..., c],
mode="lines",
line=dict(color="blue", width=1, dash="dash"),
name="target[{}]".format(c),
)
)
fig.add_trace(
go.Scatter(
x=context_in,
y=context_out[..., c],
mode="markers",
marker=dict(color="blue", size=6),
name="context[{}]".format(c),
)
)
fig.add_trace(
go.Scatter(
x=target_in,
y=prediction_mu[..., c],
mode="lines",
line=dict(color="black", width=1),
name="prediction[{}]".format(c),
)
)
fig.add_trace(
go.Scatter(
x=target_in,
y=prediction_mu[..., c] - prediction_sigma[..., c],
mode="lines",
line=dict(width=0, color="black"),
name="- 1 sigma[{}]".format(c),
)
)
fig.add_trace(
go.Scatter(
x=target_in,
y=prediction_mu[..., c] + prediction_sigma[..., c],
mode="lines",
fill="tonexty",
fillcolor="rgba(0,0,0,0.1)",
line=dict(width=0, color="black"),
name="+ 1 sigma[{}]".format(c),
)
)
# samples will only be shown for first channel!
if "samples" in summary:
for s in range(samples.shape[1]):
fig.add_trace(
go.Scatter(
x=target_in,
y=samples[:, s],
mode="lines",
line=dict(width=1, color="rgba(0,255,0,0.2)"),
showlegend=False,
)
)
self.vlog.show_plotly_plt(fig, name=name + "samples")
else:
id_ = "prior" if validate else "posterior"
self.vlog.show_plotly_plt(fig, name=name + id_)
del fig
# matplotlib plot for saving
if save and self.elog is not None:
epoch_str = "{:05d}".format(summary["epoch"])
fig, ax = matplotlib.pyplot.subplots(1, 1)
ax.plot(target_in, target_out, "b--", lw=1)
ax.plot(context_in, context_out, "bo", ms=6)
ax.plot(target_in, prediction_mu, color="black")
ax.axis([*x_range, *self.config.plot_y_range])
for c in range(context_out.shape[-1]):
ax.fill_between(
target_in,
prediction_mu[..., c] - prediction_sigma[..., c],
prediction_mu[..., c] + prediction_sigma[..., c],
color="black",
alpha=0.2,
)
if "samples" in summary:
ax.plot(target_in, samples, color="green", alpha=0.2)
self.elog.show_matplot_plt(
fig, name=os.path.join(name, "samples", epoch_str)
)
else:
id_ = "prior" if validate else "posterior"
self.elog.show_matplot_plt(fig, name=os.path.join(name, id_, epoch_str))
matplotlib.pyplot.close(fig)
def validate(self, epoch):
if (epoch + 1) % self.config.validate_every != 0:
return
self.model.eval()
with torch.no_grad():
batch = next(self.generator)
batch["epoch"] = epoch # logging
context_in = batch["context_in"].to(self.config.device)
context_out = batch["context_out"].to(self.config.device)
target_in = batch["target_in"].to(self.config.device)
target_out = batch["target_out"].to(self.config.device)
prediction = self.model(
context_in, context_out, target_in, target_out, store_rep=False
)
prediction = tensor_to_loc_scale(
prediction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
batch["prediction_mu"] = prediction.loc.detach().cpu()
batch["prediction_sigma"] = prediction.scale.detach().cpu()
loss_recon = -prediction.log_prob(target_out)
loss_recon = loss_recon.mean(0).sum() # batch mean
loss_total = loss_recon
batch["loss_recon"] = loss_recon.item() # logging
if hasattr(self.model, "prior"):
loss_latent = distributions.kl_divergence(
self.model.posterior, self.model.prior
)
loss_latent = loss_latent.mean(0).sum() # batch mean
loss_total += loss_latent
batch["loss_latent"] = loss_latent.item()
batch["loss_total"] = loss_total.item()
self.log(batch, "val")
# create plot with different samples
try:
summary = self.make_samples()
summary["epoch"] = epoch
self.make_plots(summary, save=True, show=True, validate=True)
except (
ValueError,
NotImplementedError,
AttributeError,
) as e: # if models can't sample
pass
except RuntimeError as e: # numerical instability in GP cholesky
self.print("Skipped sampling because of numerical instability.")
pass
except Exception as e:
raise e
# default configuration doesn't do anything here, but when
# we use something like ReduceLROnPlateau, we need this call
self.step_params(loss_total.item(), epoch, val=True)
def make_samples(self):
with torch.no_grad():
if isinstance(self.generator, MultiThreadedAugmenter):
generator = self.generator.generator
else:
generator = self.generator
generator.batch_size = 1
generator.num_target = 100
generator.num_context = 10
batch = next(generator)
generator.batch_size = self.config.batch_size
generator.num_target = self.config.generator_kwargs.num_target
generator.num_context = self.config.generator_kwargs.num_context
context_in = batch["context_in"].to(self.config.device)
context_out = batch["context_out"].to(self.config.device)
target_in = batch["target_in"].to(self.config.device)
target_out = batch["target_out"].to(self.config.device)
prediction = self.model(
context_in, context_out, target_in, target_out, store_rep=True
)
prediction = tensor_to_loc_scale(
prediction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
samples = self.model.sample(target_in, self.config.num_samples)
samples = tensor_to_loc_scale(
samples, distributions.Normal, logvar_transform=True, axis=3
).loc
batch["prediction_mu"] = prediction.loc.cpu()
batch["prediction_sigma"] = prediction.scale.cpu()
batch["samples"] = samples.cpu()
return batch
def step_params(self, loss, epoch, val):
if epoch < self.config.lr_warmup:
for group in self.optimizer.param_groups:
lr = (
self.config.optimizer_kwargs.lr
* (epoch + 1)
/ self.config.lr_warmup
)
group["lr"] = lr
return
if self.config.scheduler_step_train and val:
pass
elif self.config.scheduler_step_train:
self.scheduler.step(epoch)
elif val:
self.scheduler.step(loss)
else:
pass
for group in self.optimizer.param_groups:
if group["lr"] < self.config.lr_min:
self.print("Learning rate too small, stopping...")
self.stop()
def test(self):
if self.config.test_single:
self.test_single()
if self.config.test_distribution:
self.test_distribution()
if self.config.test_diversity:
self.test_diversity()
def test_single(self):
if isinstance(self.generator, MultiThreadedAugmenter):
generator = self.generator.generator
else:
generator = self.generator
# for this evaluation we want to separate target and context entirely
generator.target_include_context = False
generator.batch_size = self.config.test_batch_size
generator.num_target = self.config.test_num_target_single
generator.test = True
self.model.eval()
info = {}
info["dims"] = ["instance", "test_num_context", "metric"]
info["coords"] = {
"test_num_context": self.config.test_num_context,
"metric": [
"predictive_likelihood",
"predictive_error_squared",
"reconstruction_likelihood",
"reconstruction_error_squared",
],
}
scores = []
# Catch possible RuntimeError from GP
fail_counter = 0
while len(scores) < self.config.test_batches_single and fail_counter < 100:
try:
scores_batch = []
for num_context in self.config.test_num_context:
with torch.no_grad():
if num_context == "random":
generator.num_context = self.config.test_num_context_random
else:
generator.num_context = int(num_context)
batch = next(generator)
context_in = batch["context_in"].to(self.config.device)
context_out = batch["context_out"].to(self.config.device)
target_in = batch["target_in"].to(self.config.device)
target_out = batch["target_out"].to(self.config.device)
# PREDICTIVE PERFORMANCE
prediction = self.model(
context_in,
context_out,
target_in,
target_out,
store_rep=True,
)
prediction = tensor_to_loc_scale(
prediction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
predictive_error = torch.pow(prediction.loc - target_out, 2)
predictive_error = predictive_error.cpu().numpy()
predictive_error = np.nanmean(predictive_error, axis=(1, 2))
if isinstance(
self.model, (NeuralProcess, AttentiveNeuralProcess)
):
predictive_ll = []
while len(predictive_ll) < self.config.test_latent_samples:
prediction = self.model.sample(target_in, 1)[0].cpu()
prediction = tensor_to_loc_scale(
prediction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
ll = prediction.log_prob(target_out.cpu()).numpy()
ll = np.nanmean(ll, axis=(1, 2))
predictive_ll.append(ll)
predictive_ll = np.nanmean(predictive_ll, axis=0)
elif self.model.use_gp:
predictive_ll = []
for i in range(20):
prediction = self.model.sample(
target_in, self.config.test_latent_samples // 20
).cpu()
prediction = tensor_to_loc_scale(
prediction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=3,
)
ll = prediction.log_prob(
target_out.cpu()
.unsqueeze(0)
.expand_as(prediction.loc)
).numpy()
predictive_ll.append(np.nanmean(ll, axis=(2, 3)))
predictive_ll = np.concatenate(predictive_ll, 0)
predictive_ll = np.nanmean(predictive_ll, 0)
else:
predictive_ll = prediction.log_prob(target_out)
predictive_ll = predictive_ll.cpu().numpy()
predictive_ll = np.nanmean(predictive_ll, axis=(1, 2))
# RECONSTRUCTION PERFORMANCE
reconstruction = self.model(
context_in,
context_out,
context_in,
context_out,
store_rep=True,
)
reconstruction = tensor_to_loc_scale(
reconstruction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
reconstruction_error = torch.pow(
reconstruction.loc - context_out, 2
)
reconstruction_error = reconstruction_error.cpu().numpy()
reconstruction_error = np.nanmean(
reconstruction_error, axis=(1, 2)
)
if isinstance(
self.model, (NeuralProcess, AttentiveNeuralProcess)
):
reconstruction_ll = []
while (
len(reconstruction_ll) < self.config.test_latent_samples
):
reconstruction = self.model.sample(context_in, 1)[
0
].cpu()
reconstruction = tensor_to_loc_scale(
reconstruction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=2,
)
ll = reconstruction.log_prob(context_out.cpu()).numpy()
ll = np.nanmean(ll, axis=(1, 2))
reconstruction_ll.append(ll)
reconstruction_ll = np.nanmean(reconstruction_ll, axis=0)
elif self.model.use_gp:
reconstruction_ll = []
for i in range(20):
reconstruction = self.model.sample(
context_in, self.config.test_latent_samples // 20
).cpu()
reconstruction = tensor_to_loc_scale(
reconstruction,
distributions.Normal,
logvar_transform=self.config.output_transform_logvar,
axis=3,
)
ll = reconstruction.log_prob(
context_out.cpu()
.unsqueeze(0)
.expand_as(reconstruction.loc)
).numpy()
reconstruction_ll.append( | np.nanmean(ll, axis=(2, 3)) | numpy.nanmean |
"""
anni_RL
test file for testing keras reinforcement learning.
Uses pygame_visualizer to visualize the results.
"""
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from utils import pygame_visualizer, ingest
import gym
# Things to note:
# distance in each direction to a wall
# distance to the goal (do we include direction?)
# 4 actions that can be taken, N,E,S,W
# Configuration parameters for the whole setup
seed = 42
gamma = 0.99 # Discount factor for past rewards
max_steps_per_episode = 10000
env = gym.make("CartPole-v0") # Create the environment
env.seed(seed)
eps = np.finfo(np.float32).eps.item() # Smallest number such that 1.0 + eps != 1.0
def step(visualizer, grid):
# runs every iteration, makes an RL prediction on where to go
pass
if __name__ == "__main__":
# grid = ingest.txt_to_np("grid.txt")
DIRECTIONS = ["N", "E", "S", "W"]
BLOCKSIZE = 50
VISUALIZE = True
# create the visualizer
# visualizer = pygame_visualizer.Visualizer(grid, BLOCKSIZE, VISUALIZE)
# create the model
num_inputs = 4
num_actions = 2
num_hidden = 128 # not sure what this does
inputs = layers.Input(shape=(num_inputs,))
common = layers.Dense(num_hidden, activation="relu")(inputs)
action = layers.Dense(num_actions, activation="softmax")(common)
critic = layers.Dense(1, activation="linear")(common)
model = keras.Model(inputs=inputs, outputs=[action, critic])
optimizer = keras.optimizers.Adam(learning_rate=0.01)
huber_loss = keras.losses.Huber()
action_probs_history = []
critic_value_history = []
rewards_history = []
running_reward = 0
episode_count = 0
while True:
state = env.reset()
episode_reward = 0
with tf.GradientTape() as tape:
for timestep in range(1, max_steps_per_episode):
env.render()
# Adding this line would show the attempts
# of the agent in a pop up window.
state = tf.convert_to_tensor(state)
state = tf.expand_dims(state, 0)
# Predict action probabilities and estimated future rewards
# from environment state
action_probs, critic_value = model(state)
critic_value_history.append(critic_value[0, 0])
# Sample action from action probability distribution
action = np.random.choice(num_actions, p=np.squeeze(action_probs))
action_probs_history.append(tf.math.log(action_probs[0, action]))
# Apply the sampled action in our environment
state, reward, done, _ = env.step(action)
rewards_history.append(reward)
episode_reward += reward
if done:
break
# Update running reward to check condition for solving
running_reward = 0.05 * episode_reward + (1 - 0.05) * running_reward
# Calculate expected value from rewards
# - At each timestep what was the total reward received after that timestep
# - Rewards in the past are discounted by multiplying them with gamma
# - These are the labels for our critic
returns = []
discounted_sum = 0
for r in rewards_history[::-1]:
discounted_sum = r + gamma * discounted_sum
returns.insert(0, discounted_sum)
# Normalize
returns = | np.array(returns) | numpy.array |
'''
Generate bounding box as the minimum exterior rectangle of a cluster by searching.
'''
import os
from ctypes import alignment
from frame import get_frames, get_timestamps
import matplotlib.pyplot as plt
import matplotlib.patches as pc
from numpy import ndarray, max, min, abs, zeros, where,array, cov, dot, transpose, arccos, cos, pi
from numpy.linalg import inv, eig
from typing import List, Tuple
from radar_scenes.sequence import Sequence
# bounding box type
AABB = Tuple[float, float, float, float]
OBB = Tuple[float, float, float, float, float]
def get_AABB(cluster: ndarray)-> AABB:
'''
get axis algned bounding boxes from a frame by finding the max, min x and y
param cluster: numpy array with the first row as x coordinate, second row as y coordinate
return aligned_box: <x, y, w, h> as YOLO convention
'''
max_x = max(cluster[0, :])
max_y = max(cluster[1, :])
min_x = min(cluster[0, :])
min_y = min(cluster[1, :])
w = abs(max_x-min_x)
h = abs(max_y-min_y) # becuase of vehicle coordinate system
x = (max_x + min_x) / 2
y = (max_y + min_y) / 2
aligned_box = (x, y, w, h)
return aligned_box
def get_OBB(cluster: ndarray): #-> Tuple(ndarray, OBB):
cluster = | transpose(cluster) | numpy.transpose |
import h5py
import os.path
import numpy as np
from argparse import ArgumentParser
from typing import Tuple
from adaptiveleak.utils.file_utils import make_dir
def load_dataset(path: str) -> Tuple[np.ndarray, np.ndarray]:
with h5py.File(path, 'r') as fin:
inputs = fin['inputs'][:]
labels = fin['output'][:]
return inputs, labels
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--dataset', type=str, required=True)
args = parser.parse_args()
dataset_folder = os.path.join('..', 'datasets', args.dataset)
# Load the data folds
train_inputs, train_labels = load_dataset(path=os.path.join(dataset_folder, 'train', 'data.h5'))
test_inputs, test_labels = load_dataset(path=os.path.join(dataset_folder, 'test', 'data.h5'))
# Merge the folds
merged_inputs = | np.concatenate([train_inputs, test_inputs], axis=0) | numpy.concatenate |
import sys
import os
import unittest
import numpy as np
import numpy.testing as npt
from oct2py import octave
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'build', 'debug'))
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'build', 'debug', 'swig'))
import yafft
class Test2PointFFT(unittest.TestCase):
def setUp(self):
octave.restart()
octave.addpath('./octave')
octave.addpath('./test/octave')
octave.eval('pkg load signal') # load signal package
# Test data
self.in1 = np.array([1, 0], dtype=np.complex64)
self.out1 = np.array([1, 1], dtype=np.complex64)
self.in2 = np.array([0, 1], dtype=np.complex64)
self.out2 = np.array([1, -1], dtype=np.complex64)
def tearDown(self):
octave.exit()
def test_octave_2point_fft(self):
res = octave.my_fft(self.in1)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out1)
res = octave.my_fft(self.in2)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out2)
def test_dit_2point_fft(self):
data = self.in1
yafft.fft_radix2(data, yafft.DECIMATION_IN_TIME)
npt.assert_almost_equal(data, self.out1)
data = self.in2
yafft.fft_radix2(data, yafft.DECIMATION_IN_TIME)
npt.assert_almost_equal(data, self.out2)
def test_dif_2point_fft(self):
data = self.in1
yafft.fft_radix2(data, yafft.DECIMATION_IN_FREQUENCY)
npt.assert_almost_equal(data, self.out1)
data = self.in2
yafft.fft_radix2(data, yafft.DECIMATION_IN_FREQUENCY)
npt.assert_almost_equal(data, self.out2)
class Test4PointFFT(unittest.TestCase):
def setUp(self):
octave.restart()
octave.addpath('./octave')
octave.addpath('./test/octave')
octave.eval('pkg load signal') # load signal package
# Test data
self.in1 = np.array([1, 0, 0, 0], dtype=np.complex64)
self.out1 = np.array([1, 1, 1, 1], dtype=np.complex64)
self.in2 = np.array([0, 1, 0, 0], dtype=np.complex64)
self.out2 = np.array([1, -1j, -1, 1j], dtype=np.complex64)
self.in3 = np.array([0, 0, 1, 0], dtype=np.complex64)
self.out3 = np.array([1, -1, 1, -1], dtype=np.complex64)
self.in4 = np.array([0, 0, 0, 1], dtype=np.complex64)
self.out4 = np.array([1, 1j, -1, -1j], dtype=np.complex64)
def tearDown(self):
octave.exit()
def test_octave_4point_fft(self):
res = octave.my_fft(self.in1)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out1)
res = octave.my_fft(self.in2)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out2)
res = octave.my_fft(self.in3)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out3)
res = octave.my_fft(self.in4)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out4)
def test_dit_4point_fft(self):
data = self.in1
yafft.fft_radix2(data, yafft.DECIMATION_IN_TIME)
npt.assert_almost_equal(data, self.out1)
data = self.in2
yafft.fft_radix2(data, yafft.DECIMATION_IN_TIME)
npt.assert_almost_equal(data, self.out2)
data = self.in3
yafft.fft_radix2(data, yafft.DECIMATION_IN_TIME)
npt.assert_almost_equal(data, self.out3)
data = self.in4
yafft.fft_radix2(data, yafft.DECIMATION_IN_TIME)
npt.assert_almost_equal(data, self.out4)
def test_dif_4point_fft(self):
data = self.in1
yafft.fft_radix2(data, yafft.DECIMATION_IN_FREQUENCY)
npt.assert_almost_equal(data, self.out1)
data = self.in2
yafft.fft_radix2(data, yafft.DECIMATION_IN_FREQUENCY)
npt.assert_almost_equal(data, self.out2)
data = self.in3
yafft.fft_radix2(data, yafft.DECIMATION_IN_FREQUENCY)
npt.assert_almost_equal(data, self.out3)
data = self.in4
yafft.fft_radix2(data, yafft.DECIMATION_IN_FREQUENCY)
npt.assert_almost_equal(data, self.out4)
class Test8PointFFT(unittest.TestCase):
def setUp(self):
octave.restart()
octave.addpath('./octave')
octave.addpath('./test/octave')
octave.eval('pkg load signal') # load signal package
# Test data
v = 1/np.sqrt(2)
self.in1 = np.array([1, 0, 0, 0, 0, 0, 0, 0], dtype=np.complex64)
self.out1 = np.array([1, 1, 1, 1, 1, 1, 1, 1], dtype=np.complex64)
self.in2 = np.array([0, 1, 0, 0, 0, 0, 0, 0], dtype=np.complex64)
self.out2 = np.array([1, v-1j*v, -1j, -v-1j*v, -1, -v+1j*v, 1j, v+1j*v], dtype=np.complex64)
self.in3 = np.array([0, 0, 1, 0, 0, 0, 0, 0], dtype=np.complex64)
self.out3 = np.array([1, -1j, -1, 1j, 1, -1j, -1, 1j], dtype=np.complex64)
self.in4 = np.array([0, 0, 0, 1, 0, 0, 0, 0], dtype=np.complex64)
self.out4 = np.array([1, -v-1j*v, 1j, v-1j*v, -1, v+1j*v, -1j, -v+1j*v], dtype=np.complex64)
self.in5 = np.array([0, 0, 0, 0, 1, 0, 0, 0], dtype=np.complex64)
self.out5 = np.array([1, -1, 1, -1, 1, -1, 1, -1], dtype=np.complex64)
self.in6 = np.array([0, 0, 0, 0, 0, 1, 0, 0], dtype=np.complex64)
self.out6 = np.array([1, -v+1j*v, -1j, v+1j*v, -1, v-1j*v, 1j, -v-1j*v], dtype=np.complex64)
self.in7 = np.array([0, 0, 0, 0, 0, 0, 1, 0], dtype=np.complex64)
self.out7 = np.array([1, 1j, -1, -1j, 1, 1j, -1, -1j], dtype=np.complex64)
self.in8 = np.array([0, 0, 0, 0, 0, 0, 0, 1], dtype=np.complex64)
self.out8 = np.array([1, v+1j*v, 1j, -v+1j*v, -1, -v-1j*v, -1j, v-1j*v], dtype=np.complex64)
def tearDown(self):
octave.exit()
def test_octave_8point_fft(self):
res = octave.my_fft(self.in1)
res = np.squeeze(res)
npt.assert_almost_equal(res, self.out1)
res = octave.my_fft(self.in2)
res = | np.squeeze(res) | numpy.squeeze |
import numpy as np
_2PI_ = np.pi * 2
_PI_ = np.pi
def _get_x_y_mtx(Lx, Ly, Mx, My):
v_x, v_y = np.arange(Mx)/Mx*Lx, np.arange(My)/My*Ly
mtx_x, mtx_y = np.meshgrid(v_x, v_y)
return mtx_x, mtx_y
def _get_kx_ky_mtx(Lx, Ly, Mx, My, real_x=True):
if real_x:
v_kx = np.fft.rfftfreq(Mx) * Mx / Lx * _2PI_
else:
v_kx = np.fft.fftfreq(Mx) * Mx / Lx * _2PI_
v_ky = np.fft.fftfreq(My) * My / Ly * _2PI_
return np.meshgrid(v_kx, v_ky)
_logistic_der = lambda x: 4.0 * | np.exp(-x) | numpy.exp |
import numpy as np
from typing import *
from numpy.typing import ArrayLike
from scipy.spatial import Delaunay
from tallem.utility import ask_package_install, package_exists
def flywing():
''' Fly wings example (Klingenberg, 2015 | https://en.wikipedia.org/wiki/Procrustes_analysis) '''
arr1 = np.array([[588.0, 443.0], [178.0, 443.0], [56.0, 436.0], [50.0, 376.0], [129.0, 360.0], [15.0, 342.0], [92.0, 293.0], [79.0, 269.0], [276.0, 295.0], [281.0, 331.0], [785.0, 260.0], [754.0, 174.0], [405.0, 233.0], [386.0, 167.0], [466.0, 59.0]])
arr2 = np.array([[477.0, 557.0], [130.129, 374.307], [52.0, 334.0], [67.662, 306.953], [111.916, 323.0], [55.119, 275.854], [107.935, 277.723], [101.899, 259.73], [175.0, 329.0], [171.0, 345.0], [589.0, 527.0], [591.0, 468.0], [299.0, 363.0], [306.0, 317.0], [406.0, 288.0]])
return([arr1, arr2])
def gaussian_blob(n_pixels: int, r: float):
'''
Generates a closure which, given a 2D location *mu=(x,y)*, generates a white blob
with [normalized] radius 0 < r <= 1 in a (n_pixels x n_pixels) image.
If *mu* is in [0,1] x [0,1], the center of the white blob should be visible
If *mu* has as both of its coordinates outside of [0,1]x[0,1], the blob may be partially visible
If *mu* has both of its coordinates outside of [-r, 1+r]x[-r, 1+r], then image should be essentially black
The returned closure completely autograd's numpy wrapper to do the image generation. Thus, the resulting
function can be differentiated (w.r.t *mu*) using the reverse-mode differentiation process that *autograd* provides.
This function also returns the global normalizing constant needed normalize the pixel intensities in [0,1],
for plotting or other purposes.
Return: (blob, c) where
- blob := differentiable closure which, given a vector (x,y), generates the blob image a flat vector.
- c := maximum value of the intensity of any given pixel for any choice of *mu*.
'''
import autograd.numpy as auto_np
sd = r/3.090232
sigma = sd**2
sigma_inv = 1.0/sigma
denom = np.sqrt(((2*auto_np.pi)**2) * (sigma**2))
def blob(mu): # mu can be anywhere; center of image is [0.5, 0.5]
loc = auto_np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels)
x,y = auto_np.meshgrid(loc, loc)
grid = auto_np.exp(-0.5*(sigma_inv * ((x-mu[0])**2 + (y-mu[1])**2)))/denom
return(auto_np.ravel(grid).flatten())
return(blob, auto_np.exp(0)/denom)
def plot_image(P, figsize=(8,8), max_val = "default"):
if max_val == "default": max_val = np.max(P)
import matplotlib.pyplot as plt
fig = plt.figure(figsize=figsize)
plt.imshow(P, cmap='gray', vmin=0, vmax=max_val)
fig.gca().axes.get_xaxis().set_visible(False)
fig.gca().axes.get_yaxis().set_visible(False)
def plot_images(P, shape, max_val = "default", figsize=(8,8), layout = None):
'''
P := numpy array where each row is a grayscale image
shape := the shape to reshape each row of P prior to plotting
'''
import matplotlib.pyplot as plt
if max_val == "default":
max_val = np.max(P)
if P.ndim == 1:
fig = plt.figure(figsize=figsize)
plt.imshow(P.reshape(shape), cmap='gray', vmin=0, vmax=max_val)
fig.gca().axes.get_xaxis().set_visible(False)
fig.gca().axes.get_yaxis().set_visible(False)
return(fig, ax)
else:
assert layout is not None, "missing layout"
fig, axs = plt.subplots(*layout, figsize=figsize)
axs = axs.flatten()
for i, (img, ax) in enumerate(zip(P, axs)):
#fig.add_subplot(layout[0], layout[1], i+1)
plt.axis("off")
ax.imshow(P[i,:].reshape(shape), cmap='gray', vmin=0, vmax=max_val, aspect='auto')
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)
plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.1, hspace=0.1)
return(fig, axs)
def scatter2D(P, layout = None, figsize=(8,8), **kwargs):
import matplotlib.pyplot as plt
if isinstance(P, np.ndarray):
if "fig" in kwargs.keys() and "ax" in kwargs.keys():
fig, ax = kwargs["fig"], kwargs["ax"]
kwargs.pop('fig', None)
kwargs.pop('ax', None)
else:
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot()
ax.scatter(*P.T, **kwargs)
return(fig, ax)
elif isinstance(P, Iterable):
assert layout is not None, "missing layout"
assert len(P) == np.prod(layout)
if "fig" in kwargs.keys() and "ax" in kwargs.keys():
fig, ax = kwargs["fig"], kwargs["ax"]
kwargs.pop('fig', None)
else:
fig = plt.figure(figsize=figsize)
for i, p in enumerate(P):
ax = fig.add_subplot(layout[0], layout[1], i+1)
ax.scatter(*p.T, **kwargs)
return(fig, ax)
def scatter3D(P, angles = None, layout = None, figsize=(8,8), **kwargs):
import matplotlib.pyplot as plt
if isinstance(P, np.ndarray):
import numbers
if angles is not None:
if isinstance(angles, numbers.Integral):
angles = np.linspace(0, 360, angles, endpoint=False)
assert len(angles) == np.prod(layout)
if "fig" in kwargs.keys() and "ax" in kwargs.keys():
fig, ax = kwargs["fig"], kwargs["ax"]
kwargs.pop('fig', None)
kwargs.pop('ax', None)
else:
fig, ax = plt.subplots(*layout, figsize=figsize)
for i, theta in enumerate(angles):
ax = fig.add_subplot(layout[0], layout[1], i+1, projection='3d')
ax.scatter3D(*P.T, **kwargs)
ax.view_init(30, theta)
else:
if "fig" in kwargs.keys() and "ax" in kwargs.keys():
fig, ax = kwargs["fig"], kwargs["ax"]
kwargs.pop('fig', None)
kwargs.pop('ax', None)
else:
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(projection='3d')
ax.scatter3D(*P.T, **kwargs)
elif isinstance(P, Iterable):
import numbers
assert layout is not None, "missing layout"
if angles is None:
angles = np.repeat(60, len(P))
elif isinstance(angles, numbers.Integral):
angles = np.linspace(0, 2*np.pi, len(P), endpoint=False)
assert len(angles) == np.prod(layout)
if "fig" in kwargs.keys() and "ax" in kwargs.keys():
fig, ax = kwargs["fig"], kwargs["ax"]
kwargs.pop('fig', None)
kwargs.pop('ax', None)
else:
fig, ax = plt.subplots(*layout, figsize=figsize)
for i, p in enumerate(P):
ax = fig.add_subplot(layout[0], layout[1], i+1, projection='3d')
ax.scatter3D(*p.T, **kwargs)
ax.view_init(30, angles[i])
plt.setp(plt.gcf().get_axes(), xticks=[], yticks=[]);
return(fig, ax)
def rotating_disk(n_pixels: int, r: float, sigma: float = 1.0):
from scipy.ndimage import gaussian_filter
import numpy as np
I = np.zeros(shape=(n_pixels, n_pixels))
p = np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels) # center locations of pixels, in normalized space
z = np.array([r, 0.0]).reshape((2,1))
d = np.array([0.5, 0.5]).reshape((2,1))
x,y = np.meshgrid(p, p)
def disk_image(theta: float):
R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
c = (R @ z) + d # center of disk in [0,1]^2
D = np.flipud(np.sqrt((x - c[0])**2 + (y - c[1])**2))
D[D <= r] = -1.0
D[D > r] = 0.0
D[D == -1.0] = 1.0
return(np.ravel(gaussian_filter(D, sigma=1.0)).flatten())
return(disk_image, 1.0)
# D = np.zeros(np.prod(x.shape))
# for i, (xi,yi) in enumerate(zip(x.flatten(),y.flatten())):
# p = np.array([xi,yi])
# D[i] = np.dot(p-b, u)# np.linalg.norm(z-v)
def white_bars(n_pixels: int, r: float, sigma: float = 1.0):
'''
Returns a parameterization that yields a white vertical bar at various orientations in an image.
Fixed parameters:
n_pixels := number of pixels to make square image
r := constant between [0,1] indicating how wide to make the bar
sigma := kernel parameter for gaussian blur
Returns:
bar := closure w/ parameters y_offset in [0, 1] and theta in [0, pi]
c := normalizing constant for plotting
'''
from scipy.ndimage import gaussian_filter
import numpy as np
w = r
p = np.linspace(0, 1, n_pixels, False) + 1/(2*n_pixels) # center locations of pixels, in normalized space
x,y = np.meshgrid(p,p)
c = np.array([0.5, 0.5]) # center of image
def bar(theta: float, d: float):
assert np.all(np.bitwise_and(d >= -1.0, d <= 1.0)), "d must be in the range [-1, 1]"
assert np.all(np.bitwise_and(theta >= 0.0, theta <= np.pi)), "theta must be in the range [0, pi]"
u = np.array([ 1.0, np.tan(theta) ])
u = u / np.linalg.norm(u)
c = np.array([0.5, 0.5]) # center of image
d = d * (np.sqrt(2) / 2) # scale where to place center of bar
if theta > np.pi/2:
d = -d
b = c + d*u # center of bar
D = np.zeros(np.prod(x.shape))
for i, (xi,yi) in enumerate(zip(x.flatten(),y.flatten())):
p = | np.array([xi,yi]) | numpy.array |
#!/usr/bin/env python
import os
import numpy as np
import matplotlib.pyplot as plt
from astropy.constants import pc
from astropy import units as u
from astropy.table import Table,join
from astropy.stats import sigma_clip
from .sqbase import datadir
trlines_qsfit = {
'CIVb':'BR_CIV_1549__EW',
'MgIIb':'BR_MGII_2798__EW',
'Hbeta':'BR_HB__EW',
'HAb':'BR_HA__EW',
}
trlines_shen07 = {
'CIVb':'EW_CIV',
'MgIIb':'EW_MGII',
'Hbeta':'EW_BROAD_HB',
'HAb':'EW_BROAD_HA',
}
def get_qsfit_M1450(qsfit,alpha_nu=-0.4):
cwave = np.zeros(len(qsfit))
qsfitCont = np.zeros(len(qsfit))
for wv in ['1450','2245','3000','4210','5100']:
contk = 'CONT%s__LUM' % wv
contwk = 'CONT%s__WAVE' % wv
ii = np.where((cwave==0) & ~np.isnan(qsfit[contk]))[0]
if len(ii) > 0:
cwave[ii] = qsfit[contwk][ii]
qsfitCont[ii] = qsfit[contk][ii]
cnu = (cwave*u.Angstrom).to(u.Hz,equivalencies=u.spectral())
cnu1450 = (1450.*u.Angstrom).to(u.Hz,equivalencies=u.spectral())
qsfitLnu1450 = (qsfitCont*1e42/cnu)*(cnu1450/cnu)**alpha_nu
fourpidsqr = 4*np.pi*(10*pc.to('cm').value)**2
qsfitM1450 = -2.5*np.log10(qsfitLnu1450.value/fourpidsqr) - 48.6
return qsfitM1450
def compare_qsfit_shen07(line,qsfit,shen07,minEw=10,**kwargs):
trendFn = kwargs.get('EmissionLineTrendFilename','emlinetrends_v6')
lineCatalog = Table.read(os.path.join(datadir,trendFn+'.fits'))
line_i = np.where(lineCatalog['name']==line)[0][0]
#
qsfitEw = qsfit[trlines_qsfit[line]]
qsfitM1450 = get_qsfit_M1450(qsfit)
ii1 = np.where(~np.isnan(qsfitEw) & ~np.isnan(qsfitM1450) &
(qsfitM1450<-19) & (qsfitM1450>-30) &
(qsfitEw>minEw))[0]
x = sigma_clip(np.log10(qsfitEw[ii1]),sigma=3)
qsfit_mn,qsfit_std = x.mean(),x.std()
qsfitstr = 'QSFIT: {0:.2f} +/- {1:.2f}'.format(qsfit_mn,qsfit_std)
ii1 = ii1[~x.mask]
qsfitEw = np.array(qsfitEw[ii1])
qsfitM1450 = qsfitM1450[ii1]
#
shenEw = shen07[trlines_shen07[line]]
ii2 = np.where(shenEw>minEw)[0]
x = sigma_clip( | np.log10(shenEw[ii2]) | numpy.log10 |
import numpy
import scipy.special
class SimpleNeuralNetwork:
def __init__(self, inputnodes=None, hiddennodes=None, outputnodes=None, learningrate=None):
self.inputnodes = inputnodes
self.hiddennodes = hiddennodes
self.outputnodes = outputnodes
self.learningrate = learningrate
self.activation_function = lambda x: scipy.special.expit(x)
if inputnodes is not None and hiddennodes is not None and outputnodes is not None:
self.weights_input_hidden = numpy.random.rand(self.hiddennodes, self.inputnodes) - 0.5
self.weights_hidden_output = numpy.random.rand(self.outputnodes, self.hiddennodes) - 0.5
@staticmethod
def load():
snn = SimpleNeuralNetwork()
snn.weights_input_hidden = numpy.load("../data/snn-ih.npy")
snn.weights_hidden_output = numpy.load("../data/snn-ho.npy")
return snn
def train(self, inputs, targets):
targets = | numpy.array(targets, ndmin=2) | numpy.array |
import neuroglancer
import numpy as np
import networkx as nx
import random
class SkeletonSource(neuroglancer.skeleton.SkeletonSource):
def __init__(self, cc, dimensions, voxel_size, node_attrs=None, edge_attrs=None):
super(SkeletonSource, self).__init__(dimensions)
self.vertex_attributes["distance"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes["node_edge"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes["edge_len"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes["component"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes[
"connected_component"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes[
"component_size"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.cc = cc
self.voxel_size = voxel_size
for node, attrs in self.cc.nodes.items():
assert "location" in attrs
self.component_ids = {}
self.connected_component_ids = {}
for i, component in enumerate(nx.connected_components(self.cc)):
for node in component:
self.cc.nodes[node]["connected_component_id"] = i
def get_skeleton(self, i):
edges = []
distances = []
vertex_positions = []
node_edge = []
edge_len = []
component = []
component_size = []
connected_component = []
print(
f"rendering nodes and edges with {len(self.cc.nodes)} nodes and {len(self.cc.edges)} edges"
)
for i, n in enumerate(self.cc.nodes):
vertex_positions.append(
self.cc.nodes[n]["location"] / self.voxel_size
)
vertex_positions.append(
self.cc.nodes[n]["location"] / self.voxel_size
)
distances.append(0.1)
distances.append(0.1)
edges.append(2 * i)
edges.append(2 * i + 1)
node_edge.append(1)
node_edge.append(1)
edge_len.append(0)
edge_len.append(0)
component.append(
self.component_ids.setdefault(
self.cc.nodes[n].get("component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
component.append(
self.component_ids.setdefault(
self.cc.nodes[n].get("component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
connected_component.append(
self.component_ids.setdefault(
self.cc.nodes[n].get("component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
connected_component.append(
self.connected_component_ids.setdefault(
self.cc.nodes[n].get("connected_component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
component_size.append(self.cc.nodes[n].get("component_size", 0))
component_size.append(self.cc.nodes[n].get("component_size", 0))
i += 1
for j, (u, v) in enumerate(self.cc.edges):
vertex_positions.append(
self.cc.nodes[u]["location"] / self.voxel_size
)
vertex_positions.append(
self.cc.nodes[v]["location"] / self.voxel_size
)
distances.append(self.cc.edges[(u, v)].get("distance", 0.5))
distances.append(self.cc.edges[(u, v)].get("distance", 0.5))
edges.append((2 * i) + 2 * j)
edges.append((2 * i) + 2 * j + 1)
node_edge.append(0)
node_edge.append(0)
edge_len.append(np.linalg.norm(vertex_positions[-1] - vertex_positions[-2]))
edge_len.append(np.linalg.norm(vertex_positions[-1] - vertex_positions[-2]))
component.append(
self.component_ids.setdefault(
self.cc.nodes[u].get("component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
component.append(
self.component_ids.setdefault(
self.cc.nodes[v].get("component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
connected_component.append(
self.connected_component_ids.setdefault(
self.cc.nodes[u].get("connected_component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
connected_component.append(
self.connected_component_ids.setdefault(
self.cc.nodes[v].get("connected_component_id", 0),
(
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
random.randint(0, 255) / 256,
),
)
)
component_size.append(self.cc.nodes[u].get("component_size", 0))
component_size.append(self.cc.nodes[v].get("component_size", 0))
return neuroglancer.skeleton.Skeleton(
vertex_positions=vertex_positions,
edges=edges,
vertex_attributes=dict(
distance=np.array(distances),
node_edge=node_edge,
edge_len=edge_len,
component=component,
component_size=component_size,
connected_component=connected_component,
),
# edge_attribues=dict(distances=distances),
)
class MatchSource(neuroglancer.skeleton.SkeletonSource):
def __init__(self, graph, dimensions, voxel_size):
super(MatchSource, self).__init__(dimensions)
self.vertex_attributes["source"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes["gt_edge"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes[
"success_edge"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes[
"false_match"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes[
"false_match_edge"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes["merge"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes[
"merge_edge"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes["split"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes[
"split_edge"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes["node_edge"] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes[
"selected_edge"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=1
)
self.vertex_attributes[
"component_matchings"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.vertex_attributes[
"all_colors"
] = neuroglancer.skeleton.VertexAttributeInfo(
data_type=np.float32, num_components=3
)
self.graph = graph
self.voxel_size = voxel_size
self.init_colors()
def init_colors(self):
red = np.array((255, 128, 128)) / 256
green = np.array((128, 255, 128)) / 256
blue = np.array((128, 128, 255)) / 256
yellow = np.array((255, 255, 128)) / 256
purple = np.array((255, 128, 255)) / 256
grey = np.array((125, 125, 125)) / 256
cyan = np.array((0, 255, 255)) / 256
self.error_vis_colors = {
"split": red,
"merge": blue,
"true_pos": green,
"false_neg": red,
"false_pos": blue,
"filtered": grey,
"other": cyan,
}
self.error_vis_type = {
(1, 0, 0, 0, 0, 0): "filtered",
(0, 1, 0, 0, 0, 0): "true_pos",
(0, 0, 1, 0, 0, 0): "false_pos",
(0, 0, 0, 1, 0, 0): "false_neg",
(0, 0, 0, 0, 1, 0): "merge",
(0, 0, 0, 0, 0, 1): "split",
}
self.source_colors = np.array([(255, 128, 128), (128, 128, 255)]) / 256
self.distance_color_range = np.array([(255, 128, 128), (128, 128, 255)]) / 256
self.matching_colors = | np.array([(255, 128, 128), (128, 128, 255)]) | numpy.array |
"""
Camera Calibration, including monocular, stereo and hand-eye.
Author: <NAME>
Reference: https://github.com/bvnayak/stereo_calibraion
Date: 2022/03/21
"""
import numpy as np
import cv2
import glob
import argparse
import yaml
import matplotlib.pyplot as plt
from tqdm import trange
class Calibration(object):
def __init__(self, filepath):
self.criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
self.criteria_cal = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-5)
self.criteria_stereo = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 100, 1e-5)
self.objp = np.zeros((11*8, 3), np.float32)
self.objp[:, :2] = np.mgrid[0:11, 0:8].T.reshape(-1, 2) * 9.55 # distance between corners is 9.55mm
self.objpoints = [] # 3d point in real world space
self.imgpoints_l = [] # 2d points in image plane.
self.imgpoints_r = [] # 2d points in image plane.
self.cal_path = filepath
# self.test_path = rebuildpath
def show(self, img):
cv2.namedWindow('img', 0)
cv2.resizeWindow('img', 600, 500)
cv2.imshow('img', img)
cv2.waitKey(1000)
cv2.destroyWindow('img')
def monocular_calibrate(self, cal_path, display):
images_left = glob.glob(cal_path + 'l*.bmp')
images_right = glob.glob(cal_path + 'r*.bmp')
images_left.sort()
images_right.sort()
self.img_left = images_left
self.img_right = images_right
for i in trange(len(images_left)):
img_l = cv2.imread(images_left[i])
img_r = cv2.imread(images_right[i])
gray_l = cv2.cvtColor(img_l, cv2.COLOR_BGR2GRAY)
gray_r = cv2.cvtColor(img_r, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret_l, corners_l = cv2.findChessboardCorners(gray_l, (11, 8), None)
ret_r, corners_r = cv2.findChessboardCorners(gray_r, (11, 8), None)
# If found, add object points, image points (after refining them)
self.objpoints.append(self.objp)
if ret_l is True:
rt = cv2.cornerSubPix(gray_l, corners_l, (11, 11), (-1, -1), self.criteria)
self.imgpoints_l.append(corners_l)
# Draw and display the corners
ret_l = cv2.drawChessboardCorners(img_l, (11, 8), corners_l, ret_l)
if display:
self.show(img_l)
if ret_r is True:
rt = cv2.cornerSubPix(gray_r, corners_r, (11, 11), (-1, -1), self.criteria)
self.imgpoints_r.append(corners_r)
# Draw and display the corners
ret_r = cv2.drawChessboardCorners(img_r, (11, 8), corners_r, ret_r)
if display:
self.show(img_r)
self.img_shape = gray_l.shape[::-1]
rt, self.M1, self.d1, self.r1, self.t1 = cv2.calibrateCamera(
self.objpoints, self.imgpoints_l, self.img_shape, None, None)
rt, self.M2, self.d2, self.r2, self.t2 = cv2.calibrateCamera(
self.objpoints, self.imgpoints_r, self.img_shape, None, None)
def stereo_calibrate(self, dims):
flags = 0
flags |= cv2.CALIB_FIX_INTRINSIC
flags |= cv2.CALIB_USE_INTRINSIC_GUESS
flags |= cv2.CALIB_FIX_FOCAL_LENGTH
flags |= cv2.CALIB_ZERO_TANGENT_DIST
ret, M1, d1, M2, d2, R, T, E, F = cv2.stereoCalibrate(
self.objpoints, self.imgpoints_l,
self.imgpoints_r, self.M1, self.d1, self.M2,
self.d2, dims, criteria=self.criteria_stereo, flags=flags)
self.R = R
self.T = T
self.M1 = M1
self.d1 = d1
self.M2 = M2
self.d2 = d2
camera_model = dict([('M1', np.asarray(M1).tolist()),
('M2', np.asarray(M2).tolist()),
('dist1', np.asarray(d1).tolist()),
('dist2', np.asarray(d2).tolist()),
('r1', np.asarray(self.r1).tolist()),
('r2', np.asarray(self.r2).tolist()),
('t1', np.asarray(self.t1).tolist()),
('t2', np.asarray(self.t2).tolist()),
('R', np.asarray(R).tolist()),
('T', np.asarray(T).tolist()),
('E', np.asarray(E).tolist()),
('F', np.asarray(F).tolist())])
with open("./summary/calibration_matrix.yaml", "w") as f:
yaml.dump(camera_model, f)
cv2.destroyAllWindows()
return camera_model
def _read_gripper2base(self):
t = []
R = []
with open('ur.txt', 'r') as f:
for i in range(20):
line = f.readline().strip('\n')
data = np.asarray(line.split(' ')).astype(np.float32)
t.append(data[:3])
R.append(cv2.Rodrigues(data[3:])[0]) # vector to matrix
t = np.asarray(t).reshape((20, 3, 1))
R = np.asarray(R).reshape((20, 3, 3))
return t, R
def hand_eye_calibrate(self):
self.t_gripper2base, self.R_gripper2base = self._read_gripper2base()
self.R_cam2gripper_l, self.t_cam2gripper_l = cv2.calibrateHandEye(self.R_gripper2base, self.t_gripper2base, self.r1, self.t1)
self.R_cam2gripper_r, self.t_cam2gripper_r = cv2.calibrateHandEye(self.R_gripper2base, self.t_gripper2base, self.r2, self.t2)
def undistortion(self, seed, display):
if seed < 0 or seed > len(self.img_left):
print("Input seed error! Choose another one.")
return;
instance_img = cv2.imread(self.img_right[seed])
h = self.img_shape[0]
w = self.img_shape[1]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.M1, self.d1, (w, h), 0, (w, h))
result = cv2.undistort(instance_img, self.M1, self.d1, None, newcameramtx)
if display:
plt.subplot(121)
plt.imshow(instance_img, cmap='gray')
plt.title('Input Image')
plt.subplot(122)
plt.imshow(result, cmap='gray')
plt.title('After Undistortion')
plt.show()
def getRectifyTransformation(self):
h = self.img_shape[1]
w = self.img_shape[0]
R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(
self.M1, self.d1, self.M2, self.d2, (w, h), self.R, self.T, alpha=0)
map1x, map1y = cv2.initUndistortRectifyMap(self.M1, self.d1, R1, P1, (w, h), cv2.CV_32FC1)
map2x, map2y = cv2.initUndistortRectifyMap(self.M2, self.d2, R2, P2, (w, h), cv2.CV_32FC1)
return map1x, map1y, map2x, map2y, Q
def rectify(self, test_path, display):
image_test = glob.glob(test_path + '*.jpg') # images waited to be rectified
image1 = cv2.imread(image_test[0])
image2 = cv2.imread(image_test[1])
map1x, map1y, map2x, map2y, Q = self.getRectifyTransformation()
rectified_img1 = cv2.remap(image1, map1x, map1y, cv2.INTER_AREA)
rectified_img2 = cv2.remap(image2, map2x, map2y, cv2.INTER_AREA)
self.image1 = rectified_img1
self.image2 = rectified_img2
if display:
plt.subplot(121)
plt.imshow(image1)
plt.title('Left image (after rectify)')
plt.subplot(122)
plt.imshow(image2)
plt.title('Right image (after rectify)')
plt.show()
if display:
plt.subplot(121)
plt.imshow(rectified_img1)
plt.title('Left image (after rectify)')
plt.subplot(122)
plt.imshow(rectified_img2)
plt.title('Right image (after rectify)')
plt.show()
return rectified_img1, rectified_img2
def test_monocular(self):
# reconstruct from 3D to 2D
total_error_l = 0
total_error_r = 0
for i in range(len(self.objpoints)):
imgpoints_l_re, _ = cv2.projectPoints(self.objpoints[i], self.r1[i], self.t1[i], self.M1, self.d1)
imgpoints_r_re, _ = cv2.projectPoints(self.objpoints[i], self.r2[i], self.t2[i], self.M2, self.d2)
error_l = cv2.norm(self.imgpoints_l[i], imgpoints_l_re, cv2.NORM_L2) / len(imgpoints_l_re)
error_r = cv2.norm(self.imgpoints_r[i], imgpoints_r_re, cv2.NORM_L2) / len(imgpoints_r_re)
total_error_l += error_l
total_error_r += error_r
print("---------- Monocular projection error ----------")
print("total error left: ", total_error_l / len(self.objpoints))
print("total error right: ", total_error_r / len(self.objpoints))
def update(self, val=0):
# Updating the parameters based on the trackbar positions
numDisparities = cv2.getTrackbarPos('numDisparities','disp')
blockSize = cv2.getTrackbarPos('blockSize','disp')
preFilterCap = cv2.getTrackbarPos('preFilterCap','disp')
uniquenessRatio = cv2.getTrackbarPos('uniquenessRatio','disp')
speckleRange = cv2.getTrackbarPos('speckleRange','disp')
speckleWindowSize = cv2.getTrackbarPos('speckleWindowSize','disp')
disp12MaxDiff = cv2.getTrackbarPos('disp12MaxDiff','disp')
minDisparity = cv2.getTrackbarPos('minDisparity','disp')
self.stereo.setNumDisparities(numDisparities)
self.stereo.setBlockSize(blockSize)
self.stereo.setPreFilterCap(preFilterCap)
self.stereo.setUniquenessRatio(uniquenessRatio)
self.stereo.setSpeckleRange(speckleRange)
self.stereo.setSpeckleWindowSize(speckleWindowSize)
self.stereo.setDisp12MaxDiff(disp12MaxDiff)
self.stereo.setMinDisparity(minDisparity)
disparity = self.stereo.compute(self.image1, self.image2)
disparity = disparity.astype(np.float32)
disparity = (disparity/16.0 - minDisparity)/numDisparities
cv2.imshow("disp",disparity)
def sgbm(self):
cv2.namedWindow('disp')
cv2.createTrackbar('numDisparities','disp',100,400,self.update)
cv2.createTrackbar('blockSize','disp',1,50,self.update)
cv2.createTrackbar('preFilterCap','disp',5,62,self.update)
cv2.createTrackbar('uniquenessRatio','disp',0,40,self.update)
cv2.createTrackbar('speckleRange','disp',0,30,self.update)
cv2.createTrackbar('speckleWindowSize','disp',0,30,self.update)
cv2.createTrackbar('disp12MaxDiff','disp',0,100,self.update)
cv2.createTrackbar('minDisparity','disp',0,25,self.update)
self.stereo = cv2.StereoSGBM_create()
self.update()
cv2.waitKey(0)
def test_stereo(self):
# project from 3D to 2D
total_dist_h = 0
total_dist_v = 0
for seed in range(20):
r1_matrix, _ = cv2.Rodrigues(self.r1[seed])
r1 = np.asarray(r1_matrix)
t1 = np.asarray(self.t1[seed])
r2_matrix, _ = cv2.Rodrigues(self.r2[seed])
r2 = np.asarray(r2_matrix)
t2 = np.asarray(self.t2[seed])
projection_matrix_l = np.matmul(self.M1, np.concatenate((r1, t1), axis=1))
projection_matrix_r = np.matmul(self.M2, np.concatenate((r2, t2), axis=1))
proj_points_l = np.asarray(self.imgpoints_l[seed]).reshape(-1, 2).T
proj_points_r = np.asarray(self.imgpoints_r[seed]).reshape(-1, 2).T
points = cv2.triangulatePoints(projection_matrix_l, projection_matrix_r, proj_points_l, proj_points_r)
points_world = cv2.convertPointsFromHomogeneous(points.T)
points = points_world.reshape(8, 11, 3)
for i in range(8):
for j in range(10):
dist_h = np.linalg.norm(points[i][j+1] - points[i][j])
total_dist_h += dist_h
for i in range(7):
for j in range(11):
dist_v = np.linalg.norm(points[i+1][j] - points[i][j])
total_dist_v += dist_v
print("---------- Stereo projection error ----------")
print("Ground truth distance: 9.55mm")
print("Average distance between corner points (horizontal): ", total_dist_h / (80*20), 'mm')
print("Average distance between corner points (vertical): ", total_dist_v / (77*20), 'mm')
print("Error: ", 0.5*((total_dist_h/(80*20)-9.55)/9.55*100 + (total_dist_v / (77*20)-9.55)/9.55*100), "%")
def _homo(self, M, t):
M = np.array(M).reshape((3,3))
t = np.array(t).reshape((3,1))
new_m = np.concatenate((M, t), axis=1)
h = np.array([[0, 0, 0, 1]])
homo = np.concatenate((new_m, h), axis=0)
return homo
def test_hand_eye(self):
# origin of chess board in robot base (only for left camera)
points_base = []
for i in range(20):
origin = np.concatenate((self.objpoints[0][0], [1]), axis=0) # in WCS
M1 = self._homo(self.R_gripper2base[i], self.t_gripper2base[i])
M2 = self._homo(self.R_cam2gripper_l, self.t_cam2gripper_l)
M3 = self._homo(cv2.Rodrigues(self.r1[i])[0], self.t1[i])
point = np.matmul(np.matmul(M1, np.matmul(M2, M3)), origin)
points_base.append(point[:3])
print("---------- Hand-eye recovery variation ----------")
print("Origin of chessboard in robot base coordinate system: ")
print(np.array(points_base))
print("Variation: ", | np.var(points_base, axis=0) | numpy.var |
import reader
import loader
import svm_model
import numpy as np
"""
Unit test each module
"""
# loader returns standardized training/test dataset
size = 10
imgs, labels = loader.load(data_size=size)
assert len(imgs) == size and len(labels) == size, \
"loader can't load correct size of data"
for i in range(size):
img, label = imgs[i], labels[i]
assert len(img) == 28*28, "Wrong image shape, {} != {}".format(len(img), 28*28)
assert abs( | np.mean(img) | numpy.mean |
#!/usr/bin/env python
import numpy as np
from time import time
import pyfftw
from numpy.fft import fft, ifft, fftshift, ifftshift, fft2, ifft2
from scipy.special import jv as besselj
import finufftpy
def translations_brute_force(Shathat, Mhat, cmul_trans):
# Shathat: (q, te, k)
# Mhat: (im, k × γ)
# cmul_trans: (tr, k × γ)
n_trans = cmul_trans.shape[-2]
n_images = Mhat.shape[-2]
Shathat = Shathat.transpose((2, 0, 1))
# Shathat: (q, te, k)
n_templates = Shathat.shape[-2]
ngridr = Shathat.shape[-1]
n_gamma = Shathat.shape[-3]
Mhat = Mhat.reshape((n_images, ngridr, n_gamma))
cmul_trans = cmul_trans.reshape((n_trans, ngridr, n_gamma))
# Mhat: (im, k, γ)
# cmul_trans: (tr, k, γ)
Mhat = Mhat[:, np.newaxis, :, :]
cmul_trans = cmul_trans[np.newaxis, :, :, :]
# Mhat: (im, 1, k, γ)
# cmul_trans: (1, tr, k, γ)
Mhat = Mhat.transpose((3, 2, 0, 1)).copy()
cmul_trans = cmul_trans.transpose((3, 2, 0, 1)).copy()
# Mhat: (γ, k, im, 1)
# cmul_trans: (γ, k, 1, tr)
Mhat_trans = pyfftw.empty_aligned((n_gamma, ngridr, n_images, n_trans),
dtype='complex128')
# Mhat_trans: (γ, k, im × tr)
plan = pyfftw.FFTW(Mhat_trans, Mhat_trans, axes=(0,),
direction='FFTW_FORWARD', flags=('FFTW_ESTIMATE',), threads=12)
tmr_start = time()
np.multiply(Mhat, cmul_trans, out=Mhat_trans)
plan()
Mhathat_trans = Mhat_trans.reshape((n_gamma, ngridr, n_images * n_trans))
# Mhathat_trans: (q, k, im × tr)
ptm = time() - tmr_start
tmr_start = time()
c_n2 = np.zeros((n_gamma, n_templates, n_images*n_trans),
dtype=np.complex128)
# c_n2: (q, te, im × tr)
for k1 in range(n_gamma):
k1p = (k1 + n_gamma // 2) % n_gamma
c_n2[k1, :, :] = np.matmul(np.conj(Shathat[k1p, :, :]), Mhathat_trans[k1, :, :])
c_n2 = 2 * np.pi * c_n2
c_n2 = ifft(c_n2, axis=0)
# c_n2: (γ, te, im × tr)
c_n2 = c_n2.reshape((n_gamma, n_templates, n_images, n_trans))
c_n2 = np.real(c_n2)
# c_n2: (γ, te, im, tr)
tm = time() - tmr_start
return c_n2, ptm, tm
def translations_brute_force_batch(Shathat, Mhat, pf_grid, tr_grid, n_psi,
n_batch_im=None, n_batch_trans=500):
n_templates = Shathat.shape[0]
n_images = Mhat.shape[0]
trans = tr_grid['trans']
n_trans = tr_grid['n_trans']
if n_batch_im is None:
n_batch_im = n_images
n_batch_trans = min(n_batch_trans, n_trans)
zprods1 = np.zeros((n_psi, n_templates, n_images, n_trans))
# zprods1: (γ, te, im, tr)
tm1 = 0
precomp1 = 0
for cn in range(0, n_images, n_batch_im):
idx_im = range(cn, min(cn + n_batch_im, n_images))
for ttt in range(0, n_trans, n_batch_trans):
idx_trans = range(ttt, min(ttt + n_batch_trans, n_trans))
cmul_trans = pft_phase_shift(-trans[idx_trans, :], pf_grid)
# cmul_trans: (tr, k × γ)
tmp, ptm, tm = translations_brute_force(
Shathat, Mhat[idx_im, :], cmul_trans)
zprods1[np.ix_(range(n_psi),
range(n_templates),
idx_im,
idx_trans)] = tmp
precomp1 += ptm
tm1 += tm
zprods1 = zprods1.transpose((2, 1, 0, 3))
return zprods1, precomp1, tm1
def svd_decomposition_alignment(SSS, Mhat, n_bessel, all_rnks, BigMul_left):
ngridr = SSS.shape[-1]
n_templates = SSS.shape[-2]
n_gamma = SSS.shape[-3]
n_images = Mhat.shape[-2]
n_trans = BigMul_left.shape[-1]
tmr_start = time()
Mhathat = Mhat.reshape((n_images, ngridr, n_gamma))
Mhathat = fftshift(fft(Mhathat, axis=-1), axes=-1) / n_gamma
MMM = np.zeros((n_images, 2 * n_bessel + 1, ngridr, n_gamma),
dtype=np.complex128)
for im in range(n_images):
for qp in range(-n_bessel, n_bessel + 1):
tmp = Mhathat[im, :, :]
MMM[im, qp + n_bessel, :, :] = np.roll(tmp, -qp, axis=-1)
MMM = MMM.transpose((1, 3, 2, 0)).copy()
precomp2 = time() - tmr_start
tmr_start = time()
BigMul_right = np.zeros((sum(all_rnks), n_gamma, n_templates, n_images),
dtype=np.complex128)
for qp in range(-n_bessel, n_bessel + 1):
rnk = all_rnks[qp + n_bessel]
ofst = sum(all_rnks[:qp + n_bessel])
for ll in range(rnk):
for q in range(n_gamma):
tmp = np.matmul(SSS[ofst + ll, q, :, :],
MMM[qp + n_bessel, q, :, :])
BigMul_right[ofst + ll, q, :, :] = tmp
BigMul_right = BigMul_right.transpose((3, 2, 1, 0)).copy()
c_n = np.zeros((n_images, n_templates, n_gamma, n_trans),
dtype=np.complex128)
for im in range(n_images):
for tt in range(n_templates):
c_n[im, tt, :, :] = np.matmul(BigMul_right[im, tt, :, :],
BigMul_left)
c_n = 2 * np.pi * c_n
zprods = ifft(ifftshift(c_n, axes=-2), axis=-2) * n_gamma
tm2 = time() - tmr_start
return zprods, precomp2, tm2
def cartesian_to_pft(templates, T, pf_grid):
xnodesr = pf_grid['xnodesr']
n_psi = pf_grid['n_psi']
ngridr = xnodesr.shape[0]
n_templates = templates.shape[0]
N = templates.shape[1]
dx = T / N
dy = T / N
wx = pf_grid['wx']
wy = pf_grid['wy']
Shat = np.zeros((n_templates, ngridr * n_psi), dtype=np.complex128)
upsampfac = 1.25
fcc = np.empty(len(wx), dtype=np.complex128)
for k in range(n_templates):
template = templates[k, :, :]
# Need to force Fortran ordering because that's what the FINUFFT
# interface expects.
gg = np.asfortranarray(template.transpose((1, 0)))
isign = -1
eps = 1e-6
# Note: Crashes if gg is a 1D vector (raveled). Why?
finufftpy.nufft2d2(wx * dx, wy * dy, fcc,
isign, eps, gg, upsampfac=upsampfac)
Shat[k, :] = fcc
return Shat
def pft_to_cartesian(Shat, T, N, pf_grid):
xnodesr = pf_grid['xnodesr']
n_psi = pf_grid['n_psi']
quad_wts = pf_grid['quad_wts']
ngridr = xnodesr.shape[0]
n_templates = Shat.shape[0]
dx = T / N
dy = T / N
wx = pf_grid['wx']
wy = pf_grid['wy']
templates1 = np.zeros((n_templates, N, N))
# Again, Fortran ordering is necessary for FINUFFT.
gxx = np.empty((N, N), dtype=np.complex128, order='F')
upsampfac = 1.25
for k in range(n_templates):
fcc1 = Shat[k, :] * quad_wts
isign = 1
eps = 1e-6
finufftpy.nufft2d1(wx * dx, wy * dy, fcc1, isign, eps, N, N, gxx,
upsampfac=upsampfac)
gxx = gxx*dx*dy/(4*np.pi**2)
templates1[k, :, :] = np.real(gxx.transpose((1, 0)))
return templates1
def rotate_pft(fcc, rgamma, pf_grid):
xnodesr = pf_grid['xnodesr']
n_psi = pf_grid['n_psi']
ngridr = xnodesr.shape[0]
ngridc = n_psi * np.ones(ngridr, dtype=np.int32)
fcc_rot = np.zeros(fcc.shape, dtype=np.complex128)
cnt = 0
for rr in range(ngridr):
tmp = fcc[:, cnt:cnt + ngridc[rr]]
ffcc = fft(tmp)
n_theta = ngridc[rr]
wth = ifftshift(np.arange(-n_theta/2, n_theta/2))
mul = np.exp(-1j * wth * rgamma[:, np.newaxis])
ffcc_rot = ffcc * mul
tmp = ifft(ffcc_rot)
fcc_rot[:, cnt:cnt + ngridc[rr]] = tmp
cnt += ngridc[rr]
return fcc_rot
def pft_phase_shift(sh, pf_grid):
all_psi = pf_grid['all_psi']
quad_xnodesr = pf_grid['all_r']
phase = (np.cos(all_psi) * sh[:, np.newaxis, 0]
+ np.sin(all_psi) * sh[:, np.newaxis, 1])
cmul = np.exp(-1j * quad_xnodesr * phase)
return cmul
def translate_pft(fcc, sh, pf_grid):
cmul = pft_phase_shift(sh, pf_grid)
return fcc * cmul
def pft_norm(Mhat, pf_grid):
quad_wts = pf_grid['quad_wts']
return np.sqrt(np.sum((np.abs(Mhat) ** 2) * quad_wts, axis=-1))
def pft_to_fb(Shat, pf_grid):
ngridr = pf_grid['ngridr']
n_psi = pf_grid['n_psi']
quad_wts = pf_grid['quad_wts']
n_templates = Shat.shape[0]
quad_wts_sq = quad_wts.reshape((ngridr, n_psi))
Shathat = Shat.reshape((n_templates, ngridr, n_psi))
# Shathat: (te, k, γ)
Shathat = np.fft.fftshift(np.fft.fft(Shathat, axis=-1), axes=-1)
Shathat = Shathat * quad_wts_sq[np.newaxis, :, :]
# Shathat: (te, k, q)
# There was a 2π factor missing before. Let's remove it.
Shathat = Shathat / (2 * np.pi)
return Shathat
def make_tensor_grid(rmax, ngridr, n_psi):
dr = rmax/ngridr
xnodesr = dr*np.arange(1, ngridr+1)
weights = dr*np.ones(ngridr)
psi = 2 * np.pi / n_psi * np.arange(n_psi)
all_psi = np.repeat(psi[np.newaxis, :], ngridr, axis=0)
all_psi = np.ravel(all_psi)
all_r = np.repeat(xnodesr[:, np.newaxis], n_psi, axis=1)
all_r = np.ravel(all_r)
wts_theta = 2 * np.pi / n_psi
quad_wts = wts_theta * xnodesr * weights
quad_wts = np.repeat(quad_wts[:, np.newaxis], n_psi, axis=-1)
quad_wts = np.ravel(quad_wts)
wx = np.zeros(n_psi * ngridr)
wy = np.zeros(n_psi * ngridr)
cnt = 0
for rr in range(ngridr):
dd = xnodesr[rr]
theta = 2 * np.pi / n_psi * np.arange(n_psi)
wx[cnt:cnt + n_psi] = dd * | np.cos(theta) | numpy.cos |
# This is a script that analyses the multimode simulation results.
# This simulates a RZ multimode periodic plasma wave.
# The electric field from the simulation is compared to the analytic value
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from pywarpx import picmi
constants = picmi.constants
##########################
# physics parameters
##########################
density = 2.e24
epsilon0 = 0.001*constants.c
epsilon1 = 0.001*constants.c
epsilon2 = 0.001*constants.c
w0 = 5.e-6
n_osc_z = 3
# Plasma frequency
wp = np.sqrt((density*constants.q_e**2)/(constants.m_e*constants.ep0))
kp = wp/constants.c
##########################
# numerics parameters
##########################
nr = 64
nz = 200
rmin = 0.e0
zmin = 0.e0
rmax = +20.e-6
zmax = +40.e-6
# Wave vector of the wave
k0 = 2.*np.pi*n_osc_z/(zmax - zmin)
diagnostic_intervals = 40
##########################
# physics components
##########################
uniform_plasma = picmi.UniformDistribution(density = density,
upper_bound = [+18e-6, +18e-6, None],
directed_velocity = [0., 0., 0.])
momentum_expressions = ["""+ epsilon0/kp*2*x/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
- epsilon1/kp*2/w0*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
+ epsilon1/kp*4*x**2/w0**3*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
- epsilon2/kp*8*x/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
+ epsilon2/kp*8*x*(x**2-y**2)/w0**4*exp(-(x**2+y**2)/w0**2)*sin(k0*z)""",
"""+ epsilon0/kp*2*y/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
+ epsilon1/kp*4*x*y/w0**3*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
+ epsilon2/kp*8*y/w0**2*exp(-(x**2+y**2)/w0**2)*sin(k0*z)
+ epsilon2/kp*8*y*(x**2-y**2)/w0**4*exp(-(x**2+y**2)/w0**2)*sin(k0*z)""",
"""- epsilon0/kp*k0*exp(-(x**2+y**2)/w0**2)*cos(k0*z)
- epsilon1/kp*k0*2*x/w0*exp(-(x**2+y**2)/w0**2)*cos(k0*z)
- epsilon2/kp*k0*4*(x**2-y**2)/w0**2*exp(-(x**2+y**2)/w0**2)*cos(k0*z)"""]
analytic_plasma = picmi.AnalyticDistribution(density_expression = density,
upper_bound = [+18e-6, +18e-6, None],
epsilon0 = epsilon0,
epsilon1 = epsilon1,
epsilon2 = epsilon2,
kp = kp,
k0 = k0,
w0 = w0,
momentum_expressions = momentum_expressions)
electrons = picmi.Species(particle_type='electron', name='electrons', initial_distribution=analytic_plasma)
protons = picmi.Species(particle_type='proton', name='protons', initial_distribution=uniform_plasma)
##########################
# numerics components
##########################
grid = picmi.CylindricalGrid(number_of_cells = [nr, nz],
n_azimuthal_modes = 3,
lower_bound = [rmin, zmin],
upper_bound = [rmax, zmax],
lower_boundary_conditions = ['none', 'periodic'],
upper_boundary_conditions = ['none', 'periodic'],
lower_boundary_conditions_particles = ['absorbing', 'periodic'],
upper_boundary_conditions_particles = ['absorbing', 'periodic'],
moving_window_zvelocity = 0.,
warpx_max_grid_size=64)
solver = picmi.ElectromagneticSolver(grid=grid, cfl=1., warpx_do_pml=False)
##########################
# diagnostics
##########################
field_diag1 = picmi.FieldDiagnostic(name = 'diag1',
grid = grid,
period = diagnostic_intervals,
data_list = ['Ex', 'Ez', 'By', 'Jx', 'Jz', 'part_per_cell'],
write_dir = '.',
warpx_file_prefix = 'Python_Langmuir_rz_multimode_plt')
part_diag1 = picmi.ParticleDiagnostic(name = 'diag1',
period = diagnostic_intervals,
species = [electrons],
data_list = ['weighting', 'momentum'])
##########################
# simulation setup
##########################
sim = picmi.Simulation(solver = solver,
max_steps = 40,
verbose = 1,
warpx_current_deposition_algo = 'esirkepov',
warpx_field_gathering_algo = 'energy-conserving',
warpx_particle_pusher_algo = 'boris',
warpx_use_filter = 0)
sim.add_species(electrons, layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2,16,2], grid=grid))
sim.add_species(protons, layout=picmi.GriddedLayout(n_macroparticle_per_cell=[2,16,2], grid=grid))
sim.add_diagnostic(field_diag1)
sim.add_diagnostic(part_diag1)
##########################
# simulation run
##########################
# write_inputs will create an inputs file that can be used to run
# with the compiled version.
#sim.write_input_file(file_name='inputsrz_from_PICMI')
# Alternatively, sim.step will run WarpX, controlling it from Python
sim.step()
# Below is WarpX specific code to check the results.
import pywarpx
from pywarpx.fields import *
def calcEr( z, r, k0, w0, wp, t, epsilons) :
"""
Return the radial electric field as an array
of the same length as z and r, in the half-plane theta=0
"""
Er_array = (
epsilons[0] * constants.m_e*constants.c/constants.q_e * 2*r/w0**2 *
np.exp( -r**2/w0**2 ) * np.sin( k0*z ) * np.sin( wp*t )
- epsilons[1] * constants.m_e*constants.c/constants.q_e * 2/w0 *
np.exp( -r**2/w0**2 ) * np.sin( k0*z ) * np.sin( wp*t )
+ epsilons[1] * constants.m_e*constants.c/constants.q_e * 4*r**2/w0**3 *
np.exp( -r**2/w0**2 ) * np.sin( k0*z ) * np.sin( wp*t )
- epsilons[2] * constants.m_e*constants.c/constants.q_e * 8*r/w0**2 *
np.exp( -r**2/w0**2 ) * np.sin( k0*z ) * np.sin( wp*t )
+ epsilons[2] * constants.m_e*constants.c/constants.q_e * 8*r**3/w0**4 *
| np.exp( -r**2/w0**2 ) | numpy.exp |
from os.path import basename, exists
from shutil import copyfileobj
from copy import deepcopy
from numbers import Number
import warnings
import numpy as np
import f90nml
from f90nml.namelist import Namelist
import pandas as pd
import re
from six import StringIO
from pymagicc.utils import apply_string_substitutions
from .definitions import (
DATTYPE_REGIONMODE_REGIONS,
PART_OF_SCENFILE_WITH_EMISSIONS_CODE_0,
PART_OF_SCENFILE_WITH_EMISSIONS_CODE_1,
PART_OF_PRNFILE,
convert_magicc_to_openscm_regions,
convert_magicc7_to_openscm_variables,
convert_magicc6_to_magicc7_variables,
convert_pint_to_fortran_safe_units,
DATA_HIERARCHY_SEPARATOR,
)
UNSUPPORTED_OUT_FILES = [
r".*CARBONCYCLE.*OUT",
r".*SUBANN.*BINOUT",
r".*DAT_VOLCANIC_RF\.BINOUT",
r".*PF\_.*OUT",
r".*DATBASKET_.*",
r".*INVERSE.*EMIS.*OUT",
r".*PRECIPINPUT.*OUT",
r".*TEMP_OCEANLAYERS.*\.BINOUT",
r".*TIMESERIESMIX.*OUT",
r".*SUMMARY_INDICATORS.OUT",
]
"""list: List of regular expressions which define output files we cannot read.
These files are nasty to read and not that useful hence are unsupported. The solution
for these files is to fix the output format rather than hacking the readers. Obviously
that doesn't help for the released MAGICC6 binary but there is nothing we can do
there. For MAGICC7, we should have a much nicer set.
Some more details about why these files are not supported:
- ``CARBONCYCLE.OUT`` has no units and we don't want to hardcode them
- Sub annual binary files (including volcanic RF) are asking for trouble
- Permafrost output files don't make any sense right now
- Output baskets have inconsistent variable names from other outputs
- Inverse emissions files have no units and we don't want to hardcode them
- We have no idea what the precipitation input is
- Temp ocean layers is hard to predict because it has many layers
- Time series mix output files don't have units or regions
- Summary indicator files are a brand new format for little gain
"""
def _unsupported_file(filepath):
for outfile in UNSUPPORTED_OUT_FILES:
if re.match(outfile, filepath):
return True
return False
class NoReaderWriterError(ValueError):
"""Exception raised when a valid Reader or Writer could not be found for the file
"""
pass
class InvalidTemporalResError(ValueError):
"""Exception raised when a file has a temporal resolution which cannot be processed
"""
pass
class _InputReader(object):
header_tags = [
"compiled by",
"contact",
"data",
"date",
"description",
"gas",
"source",
"unit",
"magicc-version",
"run",
"run_id",
]
_newline_char = "\n"
_variable_line_keyword = "VARIABLE"
_regexp_capture_variable = None
_default_todo_fill_value = "SET"
def __init__(self, filepath):
self.filepath = filepath
def _set_lines(self):
# TODO document this choice
# We have to make a choice about special characters e.g. names with
# umlauts. The standard seems to be utf-8 hence we set things up to
# only work if the encoding is utf-8.
with open(
self.filepath, "r", encoding="utf-8", newline=self._newline_char
) as f:
self.lines = f.readlines()
def read(self):
self._set_lines()
nml_end, nml_start = self._find_nml()
nml_values = self.process_metadata(self.lines[nml_start : nml_end + 1])
# ignore all nml_values except units
metadata = {key: value for key, value in nml_values.items() if key == "units"}
metadata["header"] = "".join(self.lines[:nml_start])
header_metadata = self.process_header(metadata["header"])
metadata.update(header_metadata)
# Create a stream from the remaining lines, ignoring any blank lines
stream = StringIO()
cleaned_lines = [l.strip() for l in self.lines[nml_end + 1 :] if l.strip()]
stream.write("\n".join(cleaned_lines))
stream.seek(0)
df, metadata = self.process_data(stream, metadata)
return metadata, df
def _find_nml(self):
"""
Find the start and end of the embedded namelist.
Returns
-------
(int, int)
start and end index for the namelist
"""
nml_start = None
nml_end = None
for i in range(len(self.lines)):
if self.lines[i].strip().startswith("&"):
nml_start = i
if self.lines[i].strip().startswith("/"):
nml_end = i
assert (
nml_start is not None and nml_end is not None
), "Could not find namelist within {}".format(self.filepath)
return nml_end, nml_start
def process_metadata(self, lines):
def preprocess_edge_cases(lines, inverse=False):
replacements = {"W/m": "Wperm", "^": "superscript"}
return apply_string_substitutions(lines, replacements, inverse=inverse)
def postprocess_edge_cases(value):
return preprocess_edge_cases(value, inverse=True)
# TODO: replace with f90nml.reads when released (>1.0.2)
parser = f90nml.Parser()
lines = preprocess_edge_cases(lines)
nml = parser._readstream(lines, {})
metadata = {}
for k in nml["THISFILE_SPECIFICATIONS"]:
metadata_key = k.split("_")[1]
try:
# have to do this type coercion as nml reads things like
# 10superscript22 J into a threepart list, [10,
# 'superscript22', 'J'] where the first part is an int
metadata[metadata_key] = "".join(
[str(v) for v in nml["THISFILE_SPECIFICATIONS"][k]]
)
metadata[metadata_key] = postprocess_edge_cases(metadata[metadata_key])
except TypeError:
metadata[metadata_key] = nml["THISFILE_SPECIFICATIONS"][k]
return metadata
def process_data(self, stream, metadata):
"""
Extract the tabulated data from the input file.
Parameters
----------
stream : Streamlike object
A Streamlike object (nominally StringIO)
containing the table to be extracted
metadata : dict
Metadata read in from the header and the namelist
Returns
-------
(pandas.DataFrame, dict)
The first element contains the data, processed to the standard
MAGICCData format.
The second element is th updated metadata based on the processing performed.
"""
ch, metadata = self._get_column_headers_and_update_metadata(stream, metadata)
df = self._convert_data_block_and_headers_to_df(stream, ch)
return df, metadata
def _convert_data_block_and_headers_to_df(self, stream, column_headers):
"""
stream : Streamlike object
A Streamlike object (nominally StringIO) containing the data to be
extracted
ch : dict
Column headers to use for the output pd.DataFrame
Returns
-------
:obj:`pd.DataFrame`
Dataframe with processed datablock
"""
df = pd.read_csv(
stream,
skip_blank_lines=True,
delim_whitespace=True,
header=None,
index_col=0,
)
if isinstance(df.index, pd.core.indexes.numeric.Float64Index):
df.index = df.index.to_series().round(3)
df.index.name = "time"
df.columns = self._get_columns_multiindex_from_column_headers(column_headers)
df = pd.DataFrame(df.T.stack(), columns=["value"]).reset_index()
self._convert_to_categorical_columns(df)
return df
def _convert_to_categorical_columns(self, df):
for categorical_column in ["variable", "todo", "unit", "region"]:
df[categorical_column] = df[categorical_column].astype("category")
return df
def _get_columns_multiindex_from_column_headers(self, ch):
return pd.MultiIndex.from_arrays(
[ch["variables"], ch["todos"], ch["units"], ch["regions"]],
names=("variable", "todo", "unit", "region"),
)
def _get_column_headers_and_update_metadata(self, stream, metadata):
if self._magicc7_style_header():
column_headers, metadata = self._read_magicc7_style_header(stream, metadata)
else:
column_headers, metadata = self._read_magicc6_style_header(stream, metadata)
column_headers["variables"] = convert_magicc7_to_openscm_variables(
column_headers["variables"]
)
column_headers["regions"] = convert_magicc_to_openscm_regions(
column_headers["regions"]
)
return column_headers, metadata
def _magicc7_style_header(self):
return any(["TODO" in line for line in self.lines]) and any(
["UNITS" in line for line in self.lines]
)
def _read_magicc7_style_header(self, stream, metadata):
# Note that regions header line is assumed to start with 'YEARS'
# instead of 'REGIONS'
column_headers = {
"variables": self._read_data_header_line(
stream, self._variable_line_keyword
),
"todos": self._read_data_header_line(stream, "TODO"),
"units": self._read_data_header_line(stream, "UNITS"),
"regions": self._read_data_header_line(stream, "YEARS"),
}
metadata.pop("units")
return column_headers, metadata
def _read_magicc6_style_header(self, stream, metadata):
# File written in MAGICC6 style with only one header line rest of
# data must be inferred.
# Note that regions header line is assumed to start with 'COLCODE'
# or 'YEARS' instead of 'REGIONS'
try:
pos_regions = stream.tell()
regions = self._read_data_header_line(stream, "COLCODE")
except AssertionError:
stream.seek(pos_regions)
regions = self._read_data_header_line(stream, "YEARS")
try:
unit = metadata["unit"]
metadata.pop("unit")
except KeyError:
unit = metadata["units"]
metadata.pop("units")
if "(" in unit:
regexp_capture_unit = re.compile(r".*\((.*)\)\s*$")
unit = regexp_capture_unit.search(unit).group(1)
variable = convert_magicc6_to_magicc7_variables(
self._get_variable_from_filepath()
)
column_headers = {
"variables": [variable] * len(regions),
"todos": [self._default_todo_fill_value] * len(regions),
"units": [unit] * len(regions),
"regions": regions,
}
for k in ["unit", "units", "gas"]:
try:
metadata.pop(k)
except KeyError:
pass
return column_headers, metadata
def _get_variable_from_filepath(self):
"""
Determine the file variable from the filepath.
Returns
-------
str
Best guess of variable name from the filepath
"""
try:
return self.regexp_capture_variable.search(self.filepath).group(1)
except AttributeError:
self._raise_cannot_determine_variable_from_filepath_error()
@property
def regexp_capture_variable(self):
if self._regexp_capture_variable is None:
raise NotImplementedError()
return self._regexp_capture_variable
def _raise_cannot_determine_variable_from_filepath_error(self):
error_msg = "Cannot determine variable from filepath: {}".format(self.filepath)
raise ValueError(error_msg)
def process_header(self, header):
"""
Parse the header for additional metadata.
Parameters
----------
header : str
All the lines in the header.
Returns
-------
dict
The metadata in the header.
"""
metadata = {}
for line in header.split("\n"):
line = line.strip()
for tag in self.header_tags:
tag_text = "{}:".format(tag)
if line.lower().startswith(tag_text):
metadata[tag] = line[len(tag_text) + 1 :].strip()
return metadata
def _read_data_header_line(self, stream, expected_header):
tokens = stream.readline().split()
assert (
tokens[0] == expected_header
), "Expected a header token of {}, got {}".format(expected_header, tokens[0])
return tokens[1:]
def _unify_magicc_regions(self, regions):
region_mapping = {
"GLOBAL": "GLOBAL",
"NO": "NHOCEAN",
"SO": "SHOCEAN",
"NL": "NHLAND",
"SL": "SHLAND",
"NH-OCEAN": "NHOCEAN",
"SH-OCEAN": "SHOCEAN",
"NH-LAND": "NHLAND",
"SH-LAND": "SHLAND",
}
return [region_mapping[r] for r in regions]
def _read_units(self, column_headers):
column_headers["units"] = convert_pint_to_fortran_safe_units(
column_headers["units"], inverse=True
)
for i, unit in enumerate(column_headers["units"]):
if unit in ("W/m2", "W/m^2"):
column_headers["units"][i] = "W / m^2"
return column_headers
class _FourBoxReader(_InputReader):
def _read_magicc6_style_header(self, stream, metadata):
column_headers, metadata = super()._read_magicc6_style_header(stream, metadata)
column_headers["regions"] = self._unify_magicc_regions(
column_headers["regions"]
)
assert (
len(set(column_headers["units"])) == 1
), "Only one unit should be found for a MAGICC6 style file"
return column_headers, metadata
class _ConcInReader(_FourBoxReader):
_regexp_capture_variable = re.compile(r".*\_(\w*\-?\w*\_CONC)\.IN$")
def _get_variable_from_filepath(self):
variable = super()._get_variable_from_filepath()
return convert_magicc6_to_magicc7_variables(variable)
def _read_data_header_line(self, stream, expected_header):
tokens = super()._read_data_header_line(stream, expected_header)
return [t.replace("_MIXINGRATIO", "") for t in tokens]
class _OpticalThicknessInReader(_FourBoxReader):
_regexp_capture_variable = re.compile(r".*\_(\w*\_OT)\.IN$")
def _read_magicc6_style_header(self, stream, metadata):
column_headers, metadata = super()._read_magicc6_style_header(stream, metadata)
metadata["unit normalisation"] = column_headers["units"][0]
column_headers["units"] = ["dimensionless"] * len(column_headers["units"])
return column_headers, metadata
def _read_data_header_line(self, stream, expected_header):
tokens = super()._read_data_header_line(stream, expected_header)
return [t.replace("OT-", "") for t in tokens]
class _RadiativeForcingInReader(_FourBoxReader):
_regexp_capture_variable = re.compile(r".*\_(\w*\_RF)\.(IN|MON)$")
def _read_data_header_line(self, stream, expected_header):
tokens = super()._read_data_header_line(stream, expected_header)
return [t.replace("FORC-", "") for t in tokens]
# TODO: delete this in another PR
def _read_magicc6_style_header(self, stream, metadata):
column_headers, metadata = super()._read_magicc6_style_header(stream, metadata)
return column_headers, metadata
def _get_column_headers_and_update_metadata(self, stream, metadata):
column_headers, metadata = super()._get_column_headers_and_update_metadata(
stream, metadata
)
column_headers = self._read_units(column_headers)
return column_headers, metadata
class _EmisInReader(_InputReader):
def _read_units(self, column_headers):
column_headers = super()._read_units(column_headers)
units = column_headers["units"]
variables = column_headers["variables"]
for i, (unit, variable) in enumerate(zip(units, variables)):
unit = unit.replace("-", "")
if unit.startswith("Gt"):
mass = "Gt"
elif unit.startswith("Mt"):
mass = "Mt"
elif unit.startswith("kt"):
mass = "kt"
elif unit.startswith("t"):
mass = "t"
else:
raise ValueError("Unexpected emissions unit")
emissions_unit = unit.replace(mass, "")
if not emissions_unit:
emissions_unit = variable.split(DATA_HIERARCHY_SEPARATOR)[1]
if "/" not in emissions_unit:
# TODO: think of a way to not have to assume years...
emissions_unit = "{} / yr".format(emissions_unit)
else:
emissions_unit = re.sub(r"(\S)\s?/\s?yr", r"\1 / yr", emissions_unit)
units[i] = "{} {}".format(mass, emissions_unit)
variables[i] = variable
column_headers["units"] = units
column_headers["variables"] = variables
return column_headers
class _StandardEmisInReader(_EmisInReader):
_regexp_capture_variable = re.compile(r".*\_(\w*\_EMIS)\.IN$")
_variable_line_keyword = "GAS"
def _read_data_header_line(self, stream, expected_header):
tokens = super()._read_data_header_line(stream, expected_header)
return [t.replace("EMIS-", "") for t in tokens]
def _get_column_headers_and_update_metadata(self, stream, metadata):
column_headers, metadata = super()._get_column_headers_and_update_metadata(
stream, metadata
)
tmp_vars = []
for v in column_headers["variables"]:
# TODO: work out a way to avoid this fragile check and calling the
# conversion once in the superclass method and again below
if v.endswith("_EMIS") or v.startswith("Emissions"):
tmp_vars.append(v)
else:
tmp_vars.append(v + "_EMIS")
column_headers["variables"] = convert_magicc7_to_openscm_variables(tmp_vars)
column_headers = self._read_units(column_headers)
return column_headers, metadata
class _HistEmisInReader(_StandardEmisInReader):
pass
class _Scen7Reader(_StandardEmisInReader):
pass
class _NonStandardEmisInReader(_EmisInReader):
def read(self):
self._set_lines()
self._stream = self._get_stream()
header_notes_lines = self._read_header()
df = self.read_data_block()
header_notes_lines += self._read_notes()
metadata = {"header": "".join(header_notes_lines)}
metadata.update(self.process_header(metadata["header"]))
return metadata, df
def _get_stream(self):
# Create a stream to work with, ignoring any blank lines
stream = StringIO()
cleaned_lines = [l.strip() for l in self.lines if l.strip()]
stream.write("\n".join(cleaned_lines))
stream.seek(0)
return stream
def _read_header(self):
raise NotImplementedError()
def read_data_block(self):
raise NotImplementedError()
def _read_notes(self):
raise NotImplementedError()
class _ScenReader(_NonStandardEmisInReader):
def _read_header(self):
# I don't know how to do this without these nasty while True statements
header_notes_lines = []
end_of_notes_key = "WORLD"
while True:
prev_pos = self._stream.tell()
line = self._stream.readline()
if not line:
raise ValueError(
"Reached end of file without finding {} which should "
"always be the first region in a SCEN file".format(end_of_notes_key)
)
if line.startswith(end_of_notes_key):
self._stream.seek(prev_pos)
break
header_notes_lines.append(line)
return header_notes_lines
def read_data_block(self):
no_years = int(self.lines[0].strip())
# go through datablocks until there are none left
while True:
ch = {}
pos_block = self._stream.tell()
region = convert_magicc_to_openscm_regions(self._stream.readline().strip())
try:
variables = convert_magicc6_to_magicc7_variables(
self._read_data_header_line(self._stream, "YEARS")
)
except IndexError: # tried to get variables from empty string
break
except AssertionError: # tried to get variables from a notes line
break
ch["variables"] = convert_magicc7_to_openscm_variables(
[v + "_EMIS" for v in variables]
)
try:
pos_units = self._stream.tell()
ch["units"] = self._read_data_header_line(self._stream, "Yrs")
except AssertionError:
# for SRES SCEN files
self._stream.seek(pos_units)
ch["units"] = self._read_data_header_line(self._stream, "YEARS")
ch = self._read_units(ch)
ch["todos"] = ["SET"] * len(variables)
ch["regions"] = [region] * len(variables)
region_block = StringIO()
for i in range(no_years):
region_block.write(self._stream.readline())
region_block.seek(0)
region_df = self._convert_data_block_and_headers_to_df(region_block, ch)
try:
df = pd.concat([region_df, df], axis="rows")
except NameError:
df = region_df
self._stream.seek(pos_block)
return self._convert_to_categorical_columns(df)
def _read_notes(self):
notes = []
while True:
line = self._stream.readline()
if not line:
break
notes.append(line)
return notes
class _PrnReader(_NonStandardEmisInReader):
def read(self):
metadata, df = super().read()
# now fix labelling, have to copy index :(
variables = df.columns.get_level_values("VARIABLE").tolist()
variables = convert_magicc6_to_magicc7_variables(variables)
todos = ["SET"] * len(variables)
region = convert_magicc_to_openscm_regions("WORLD")
concs = False
emms = False
if "unit" in metadata:
if metadata["unit"] == "ppt":
concs = True
elif metadata["unit"] == "metric tons":
emms = True
else:
error_msg = "I do not recognise the unit, {}, in file{}".format(
metadata["unit"], self.filepath
)
raise ValueError(error_msg)
else:
# just have to assume global emissions in tons
emms = True
if concs:
unit = "ppt"
variables = [v + "_CONC" for v in variables]
elif emms:
unit = "t"
variables = [v + "_EMIS" for v in variables]
column_headers = {
"variables": convert_magicc7_to_openscm_variables(variables),
"todos": todos,
"units": [unit] * len(variables),
"regions": [region] * len(variables),
}
if emms:
column_headers = self._read_units(column_headers)
df.columns = self._get_columns_multiindex_from_column_headers(column_headers)
df = pd.DataFrame(df.T.stack(), columns=["value"]).reset_index()
df = self._convert_to_categorical_columns(df)
for k in ["gas", "unit"]:
try:
metadata.pop(k)
except KeyError:
pass
return metadata, df
def _read_header(self):
# ignore first line, not useful for read
self._stream.readline()
# I don't know how to do this without these nasty while True statements
header_notes_lines = []
end_of_notes_keys = ("CFC11", "CFC-11", "Years")
while True:
prev_pos = self._stream.tell()
line = self._stream.readline()
if not line:
raise ValueError(
"Reached end of file without finding {} which should "
"always be the start of the data header line in a .prn file".format(
end_of_notes_keys
)
)
if line.startswith((end_of_notes_keys)):
self._stream.seek(prev_pos)
break
header_notes_lines.append(line)
return header_notes_lines
def read_data_block(self):
data_block_stream = StringIO()
# read out the header
data_block_header_line = self._stream.readline()
variables = []
col_width = 10
for n in np.arange(0, len(data_block_header_line), col_width):
pos = int(n)
variable = data_block_header_line[pos : pos + col_width].strip()
if variable != "Years":
variables.append(variable)
# update in read method using metadata
todos = ["unknown"] * len(variables)
units = ["unknown"] * len(variables)
regions = ["unknown"] * len(variables)
while True:
prev_pos = self._stream.tell()
line = self._stream.readline()
if not line:
# reached end of file
break
if not re.match(r"^\d{4}\s", line):
break
data_block_stream.write(line)
yr_col_width = 4
col_widths = [yr_col_width] + [10] * len(variables)
data_block_stream.seek(0)
df = pd.read_fwf(data_block_stream, widths=col_widths, header=None, index_col=0)
df.index.name = "time"
df.columns = pd.MultiIndex.from_arrays(
[variables, todos, units, regions],
names=("VARIABLE", "TODO", "UNITS", "REGION"),
)
# put stream back for notes reading
self._stream.seek(prev_pos)
return df
def _read_notes(self):
notes = []
while True:
line = self._stream.readline()
if not line:
break
notes.append(line)
return notes
class _OutReader(_FourBoxReader):
_regexp_capture_variable = re.compile(r"DAT\_(\w*)\.OUT$")
_default_todo_fill_value = "N/A"
def _get_column_headers_and_update_metadata(self, stream, metadata):
column_headers, metadata = super()._get_column_headers_and_update_metadata(
stream, metadata
)
column_headers = self._read_units(column_headers)
return column_headers, metadata
class _TempOceanLayersOutReader(_InputReader):
_regexp_capture_variable = re.compile(r"(TEMP\_OCEANLAYERS\_?\w*)\.OUT$")
_default_todo_fill_value = "N/A"
def _read_magicc6_style_header(self, stream, metadata):
column_headers, metadata = super()._read_magicc6_style_header(stream, metadata)
if set(column_headers["variables"]) == {"TEMP_OCEANLAYERS"}:
region = "GLOBAL"
elif set(column_headers["variables"]) == {"TEMP_OCEANLAYERS_NH"}:
region = "NHOCEAN"
elif set(column_headers["variables"]) == {"TEMP_OCEANLAYERS_SH"}:
region = "SHOCEAN"
else:
self._raise_cannot_determine_variable_from_filepath_error()
column_headers["variables"] = [
"OCEAN_TEMP_" + l for l in column_headers["regions"]
]
column_headers["regions"] = [region] * len(column_headers["regions"])
return column_headers, metadata
class _BinData(object):
def __init__(self, filepath):
# read the entire file into memory
self.data = open(filepath, "rb").read()
self.data = memoryview(self.data)
self.pos = 0
def read_chunk(self, t):
"""
Read out the next chunk of memory
Values in fortran binary streams begin and end with the number of bytes
:param t: Data type (same format as used by struct).
:return: Numpy array if the variable is an array, otherwise a scalar.
"""
size = self.data[self.pos : self.pos + 4].cast("i")[0]
d = self.data[self.pos + 4 : self.pos + 4 + size]
assert (
self.data[self.pos + 4 + size : self.pos + 4 + size + 4].cast("i")[0]
== size
)
self.pos = self.pos + 4 + size + 4
res = np.array(d.cast(t))
# Return as a scalar or a numpy array if it is an array
if res.size == 1:
return res[0]
return res
class _BinaryOutReader(_InputReader):
_regexp_capture_variable = re.compile(r"DAT\_(.*)\.BINOUT$")
_default_todo_fill_value = "N/A"
def read(self):
# Read the entire file into memory
data = _BinData(self.filepath)
metadata = self.process_header(data)
df, metadata = self.process_data(data, metadata)
return metadata, df
def process_data(self, stream, metadata):
"""
Extract the tabulated data from the input file
# Arguments
stream (Streamlike object): A Streamlike object (nominally StringIO)
containing the table to be extracted
metadata (dict): metadata read in from the header and the namelist
# Returns
df (pandas.DataFrame): contains the data, processed to the standard
MAGICCData format
metadata (dict): updated metadata based on the processing performed
"""
index = np.arange(metadata["firstyear"], metadata["lastyear"] + 1)
# The first variable is the global values
globe = stream.read_chunk("d")
assert len(globe) == len(index)
regions = stream.read_chunk("d")
num_regions = int(len(regions) / len(index))
regions = regions.reshape((-1, num_regions), order="F")
data = | np.concatenate((globe[:, np.newaxis], regions), axis=1) | numpy.concatenate |
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Helper module for dealing with datasets loaded from TFDS."""
import copy
import enum
from typing import List, Dict, Optional, Text, Any, Tuple, Callable
import attr
import cv2
import numpy as np
import tensorflow.compat.v1 as tf
import tensorflow_datasets as tfds
def tfds_load_dataset(dataset_name, *args, **kwargs):
"""Helper function used to bridge internal google, and the external world."""
data_dir = kwargs.pop("data_dir", None)
return tfds.load(
dataset_name, *args, data_dir=data_dir, download=True, **kwargs)
class Split(enum.Enum):
"""Enum representing different splits of data for cross validation.
Two validation sets are needed for meta-learning optimizers.
"""
TRAIN = "TRAIN"
VALID_INNER = "VALID_INNER"
VALID_OUTER = "VALID_OUTER"
TEST = "TEST"
def split_dataset(
dataset,
num_per_split,
num_splits = 3,
):
"""Helper to split a dataset for cross validaton.
The first num_splits-1 datasets contain num_per_split examples.
The last dataset contains the remaining number of examples.
This often used to split a training set into more validation sets:
e.g. train_old --> [valid_inner, valid_outer, train]
Args:
dataset: name of tfds dataset
num_per_split: number of examples to have for each of the split off dataset.
num_splits: number of splits to create.
Returns:
A list of the requested datasets.
"""
new_datasets = []
# make the first n_split-1 splits containing num_per_split examples
for i in range(num_splits - 1):
new_datasets.append(dataset.skip(num_per_split * i).take(num_per_split))
# The remainder of the dataset
new_datasets.append(dataset.skip(num_per_split * (num_splits - 1)))
return new_datasets
def _add_onehot_label_to_dict(d,
num_label):
"""Returns a new dictionary with a label_onehot key."""
d = copy.copy(d)
d["label_onehot"] = tf.one_hot(d["label"], num_label)
return d
def _process_image_in_dict(d):
"""Returns a new dict with a uint8 image converted to 0-1 scaled image."""
d = copy.copy(d)
image = d["image"]
if image.dtype != tf.uint8:
raise ValueError("Only supports uint8 images")
d["image"] = tf.cast(image, tf.float32) / 255.
return d
@attr.s
class Datasets(object):
train = attr.ib(Any)
valid_inner = attr.ib(Any)
valid_outer = attr.ib(Any)
test = attr.ib(Any)
def get_image_datasets(
dataset_name,
batch_size,
num_per_valid = 3000,
num_train = None,
cache_dataset = True,
shuffle_buffer = None,
data_dir = None,
augmentation_fn = None,
):
"""Get an image `Datasets` instance that is ready to train with.
This includes caching for speed, repeating, shuffling, preprocessing, and
batching for each of the 4 splits.
Args:
dataset_name: Name of tfds dataset.
batch_size: Batch size to use.
num_per_valid: Number of validation images.
num_train: Number of training examples to use. If None, use all.
cache_dataset: Optionally cache the dataset for speed.
shuffle_buffer: Size of shuffle buffer. If none, use the full train set
size.
data_dir: Location of tfds data_dir.
augmentation_fn: Function to apply before batching for augmentation.
Returns:
`Datasets` ready to train with.
"""
# TODO(lmetz) pin all versions of datasets so they are consistent in time.
splits, info = tfds_load_dataset(
dataset_name, with_info=True, data_dir=data_dir)
num_classes = info.features["label"].num_classes
# Some datasets have different splits defined. For meta-learning we need 4
# splits. The following takes the splits that are defined, and tries to use
# them when possible. For missing splits, examples are taken off of the train
# dataset.
if set(splits.keys()) == set(["train", "validation", "test"]):
train = splits["train"]
test = splits["test"]
valid_outer = splits["validation"]
# pylint: disable=unbalanced-tuple-unpacking
valid_inner, train = split_dataset(
train, num_per_split=num_per_valid, num_splits=2)
num_test = info.splits["test"].num_examples
total_num_train = info.splits["train"].num_examples
num_valid = info.splits["validation"].num_examples
elif (set(splits.keys()) == set(["train", "test"]) or
set(splits.keys()) == set(["train", "validation"])):
train = splits["train"]
# pylint: disable=unbalanced-tuple-unpacking
valid_inner, valid_outer, train = split_dataset(
train, num_per_split=num_per_valid, num_splits=3)
if "test" in info.splits:
heldout_split = info.splits["test"]
else:
heldout_split = info.splits["validation"]
num_test = heldout_split.num_examples
test = splits["test"] if "test" in splits else splits["validation"]
total_num_train = info.splits["train"].num_examples - num_per_valid * 2
num_valid = num_per_valid
elif set(splits.keys()) == set(["train"]):
train = splits["train"]
# pylint: disable=unbalanced-tuple-unpacking
valid_inner, valid_outer, test, train = split_dataset(
train, num_per_split=num_per_valid, num_splits=4)
total_num_train = info.splits["train"].num_examples - num_per_valid * 3
num_test = num_per_valid
num_valid = num_per_valid
else:
raise ValueError("Unsure how to manage the following splits: %s" %
str(list(splits.keys())))
if num_train:
train = train.take(num_train)
else:
num_train = total_num_train
datasets = Datasets(
train=train, valid_inner=valid_inner, valid_outer=valid_outer, test=test)
if cache_dataset:
datasets = tf.nest.map_structure(lambda ds: ds.cache(), datasets)
datasets = tf.nest.map_structure(lambda ds: ds.repeat(), datasets)
train_shuffle = shuffle_buffer if shuffle_buffer else num_train
valid_shuffle = shuffle_buffer if shuffle_buffer else num_valid
test_shuffle = shuffle_buffer if shuffle_buffer else num_test
datasets = Datasets(
train=datasets.train.shuffle(train_shuffle),
valid_inner=datasets.valid_inner.shuffle(valid_shuffle),
valid_outer=datasets.valid_outer.shuffle(valid_shuffle),
test=datasets.test.shuffle(test_shuffle))
def pre_process(example):
example = _add_onehot_label_to_dict(example, num_classes)
return _process_image_in_dict(example)
datasets = tf.nest.map_structure(lambda ds: ds.map(pre_process), datasets)
if augmentation_fn:
datasets = tf.nest.map_structure(lambda ds: ds.map(augmentation_fn),
datasets)
return tf.nest.map_structure(
lambda ds: ds.batch(batch_size, drop_remainder=True), datasets)
def _random_slice(example,
length):
"""Extract a random slice or pad to make all sequences a fixed length.
For example -- if one passes in [1,2,3,4] with length=2, this would return
one of the following: [1,2], [2,3], [3,4].
If the input is [1, 2] with length=4, this would return [1, 2, 0, 0].
Args:
example: Dictionary containing a single example with the "text" key. This
"text" key should be a vector with an integer type.
length: Length of the slice.
Returns:
An example containing only a fixed slice of text.
"""
input_length = tf.shape(example["text"])[0]
max_idx = input_length - length
# pylint: disable=g-long-lambda
start_idx = tf.cond(
tf.greater(max_idx, 0), lambda: tf.random_uniform(
[], tf.to_int32(0), tf.cast(max_idx, tf.int32), dtype=tf.int32),
lambda: 0)
# pylint: enable=g-long-lambda
to_pad = tf.maximum(length - input_length, 0)
pad_input = tf.pad(example["text"], [[0, to_pad]])
# copy to prevent a mutation of inputs.
example = copy.copy(example)
example["text"] = pad_input[start_idx:start_idx + length]
example["text"].set_shape([length])
pad_mask = tf.pad(tf.ones([input_length]), [[0, to_pad]])
example["mask"] = pad_mask[start_idx:start_idx + length]
example["mask"].set_shape([length])
return example
def random_slice_text_data(
dataset_name,
batch_size,
num_train = None,
patch_length = 128,
num_per_valid = 3000,
cache_dataset = False,
shuffle_buffer = None,
):
"""Gets a text dataset ready to train on.
This splits the dataset into 4 cross validation splits, takes a random slice
to make all entries the same length, and batches the examples.
Args:
dataset_name: tensorflow_dataset's dataset name.
batch_size: batch size.
num_train: number of training examples. If None use all examples.
patch_length: length of patch to extract.
num_per_valid: number of images for each validation set.
cache_dataset: Cache the dataset or not.
shuffle_buffer: Shuffle buffer size. If None, use dataset size.
Returns:
Datasets object containing tf.Dataset.
"""
train, info = tfds_load_dataset(
dataset_name, split="train", with_info=True, shuffle_files=True)
total_num_train = info.splits["train"].num_examples
num_test = info.splits["test"].num_examples
# pylint: disable=unbalanced-tuple-unpacking
valid_inner, valid_outer, train = split_dataset(
train, num_per_split=num_per_valid)
# pylint: enable=unbalanced-tuple-unpacking
if num_train:
train = train.take(num_train)
test = tfds_load_dataset(dataset_name, split="test", shuffle_files=True)
datasets = Datasets(
train=train, valid_inner=valid_inner, valid_outer=valid_outer, test=test)
if cache_dataset:
datasets = tf.nest.map_structure(lambda ds: ds.cache(), datasets)
datasets = tf.nest.map_structure(lambda ds: ds.repeat(), datasets)
train_shuffle = shuffle_buffer if shuffle_buffer else total_num_train - num_per_valid * 2
valid_shuffle = shuffle_buffer if shuffle_buffer else num_per_valid
test_shuffle = shuffle_buffer if shuffle_buffer else num_test
datasets = Datasets(
train=datasets.train.shuffle(train_shuffle),
valid_inner=datasets.valid_inner.shuffle(valid_shuffle),
valid_outer=datasets.valid_outer.shuffle(valid_shuffle),
test=datasets.test.shuffle(test_shuffle))
def pre_process(example):
"""Preprocess example by adding onehot label, and taking a random slice."""
if "label" in info.features:
num_classes = info.features["label"].num_classes
example = _add_onehot_label_to_dict(example, num_classes)
return _random_slice(example, patch_length)
datasets = tf.nest.map_structure(lambda ds: ds.map(pre_process), datasets)
return tf.nest.map_structure(
lambda ds: ds.batch(batch_size, drop_remainder=True), datasets)
class ResizedDataset(tfds.core.GeneratorBasedBuilder):
"""Base class for a resized image tensorflow dataset."""
def __init__(self, parent_builder,
size, *args, **kwargs):
"""Initialize the resized image dataset builder.
Args:
parent_builder: The builder to build the resized image dataset from.
size: size to resize each example to.
*args: args passed super class.
**kwargs: kwargs passed super class.
"""
parent_builder.download_and_prepare()
self._builder = parent_builder
self._size = size
super(ResizedDataset, self).__init__(*args, **kwargs)
def _info(self):
info = self._builder.info
description = "\n This dataset has been resized to %dx%d!" % (self._size[0],
self._size[1])
new_feature_dict = {k: v for k, v in info.features.items()}
new_feature_dict["image"] = tfds.features.Image(
shape=list(self._size) + [3])
return tfds.core.DatasetInfo(
builder=self,
description=info.description + description,
homepage=info.homepage,
features=tfds.features.FeaturesDict(new_feature_dict),
supervised_keys=info.supervised_keys,
citation=info.citation)
def _split_generators(self, dl_manager):
return [
tfds.core.SplitGenerator(
name=split, num_shards=4, gen_kwargs=dict(split=split))
for split in self._builder.info.splits.keys()
]
def _generate_examples(self, split):
for exi, ex in enumerate(
tfds.as_numpy(self._builder.as_dataset(split=split))):
ex = self._process_example(ex)
yield exi, ex
def _process_example(self, example):
# As of now, this simply converts the image to the passed in size.
# TODO(lmetz) It might also make sense to resize then crop out the center.
example["image"] = cv2.resize(
example["image"], dsize=self._size, interpolation=cv2.INTER_CUBIC)
return example
class Food101_32x32(ResizedDataset): # pylint: disable=invalid-name
"""The Food101 dataset resized to be 32x32."""
VERSION = "1.0.0"
def __init__(self, *args, **kwargs):
parent_builder = tfds.builder("food101", version="1.0.0")
super(Food101_32x32, self).__init__(
*args, parent_builder=parent_builder, size=(32, 32), **kwargs)
class Food101_64x64(ResizedDataset): # pylint: disable=invalid-name
"""The Food101 dataset resized to be 64x64."""
VERSION = "1.0.0"
def __init__(self, *args, **kwargs):
parent_builder = tfds.builder("food101", version="1.0.0")
super(Food101_64x64, self).__init__(
*args, parent_builder=parent_builder, size=(64, 64), **kwargs)
class Coil100_32x32(ResizedDataset): # pylint: disable=invalid-name
"""The coil100 dataset resized to be 32x32."""
VERSION = "1.0.0"
def __init__(self, *args, **kwargs):
parent_builder = tfds.builder("coil100", version="1.0.0")
super(Coil100_32x32, self).__init__(
*args, parent_builder=parent_builder, size=(32, 32), **kwargs)
class ColorectalHistology_32x32(ResizedDataset): # pylint: disable=invalid-name
"""The colorectal_histology dataset resized to be 32x32."""
VERSION = "1.0.0"
def __init__(self, *args, **kwargs):
parent_builder = tfds.builder("colorectal_histology", version="2.*.*")
super(ColorectalHistology_32x32, self).__init__(
*args, parent_builder=parent_builder, size=(32, 32), **kwargs)
class DeepWeeds_32x32(ResizedDataset): # pylint: disable=invalid-name
"""The deep_weeds dataset resized to be 32x32."""
VERSION = "1.0.0"
def __init__(self, *args, **kwargs):
parent_builder = tfds.builder("deep_weeds", version="1.0.0")
super(DeepWeeds_32x32, self).__init__(
*args, parent_builder=parent_builder, size=(32, 32), **kwargs)
class Sun397_32x32(ResizedDataset): # pylint: disable=invalid-name
"""The sun397/tfds dataset resized to be 32x32."""
VERSION = "1.0.0"
def __init__(self, *args, **kwargs):
parent_builder = tfds.builder("sun397/tfds", version="4.0.0")
super(Sun397_32x32, self).__init__(
*args, parent_builder=parent_builder, size=(32, 32), **kwargs)
class TokenizedConfig(tfds.core.BuilderConfig):
"""BuilderConfig for tokenized text datasets."""
def __init__(self, version=None, text_encoder_config=None, **kwargs):
"""BuilderConfig for tokenized text datasets.
Args:
version (string): version as string.
text_encoder_config: `tfds.features.text.TextEncoderConfig`, configuration
for the `tfds.features.text.TextEncoder` used for the `"text"` feature.
**kwargs: keyword arguments forwarded to super.
"""
super(TokenizedConfig, self).__init__(
version=tfds.core.Version(version), **kwargs)
self.text_encoder_config = (
text_encoder_config or tfds.features.text.TextEncoderConfig())
# This is an arbitrarily chosen subset of languages.
WIKIPEDIA_PREFIX = [
"20190301.zh", "20190301.ru", "20190301.ja", "20190301.hsb", "20190301.en"
]
def _get_builder_configs(base_configs):
"""Get the builder configs for tokenized datasets."""
configs = []
for prefix in base_configs:
configs.append(
TokenizedConfig(
name="%s_bytes" % prefix,
version="0.0.1",
description=("Uses byte-level text encoding with "
"`tfds.features.text.ByteTextEncoder`"),
text_encoder_config=tfds.features.text.TextEncoderConfig(
encoder=tfds.features.text.ByteTextEncoder()),
))
configs.append(
TokenizedConfig(
name="%s_subwords8k" % prefix,
version="0.0.1",
description=("Uses `tfds.features.text.SubwordTextEncoder` with 8k "
"vocab size"),
text_encoder_config=tfds.features.text.TextEncoderConfig(
encoder_cls=tfds.features.text.SubwordTextEncoder,
vocab_size=8192),
))
return configs
class TokenizedWikipedia(tfds.core.GeneratorBasedBuilder):
"""Builder which tokenizes the tfds wikipedia datasets.
This dataset returns 1 paragraph (split via new line) per example
extracted from the articles. We additionally filter examples to have more than
5 bytes. Encoding is either bytes, or subwords. The vocab is constructed out
of the first 200k examples. While this is likely not perfect this should be
sufficient for meta-learning optimizers.
Additionally, we make a train and test split by hashing the article seed.
Finally, for computational reasons we only use 1 millon articles. For the size
of the models we are training here this should be plenty.
"""
BUILDER_CONFIGS = _get_builder_configs(WIKIPEDIA_PREFIX)
def __init__(self, config=None, **kwargs):
"""Initialize the resized image dataset builder.
Args:
config: str Config string specified to build dataset with.
**kwargs: kwargs passed super class.
"""
# extract the base dataset.
base, _ = config.split("_")
self._builder = tfds.builder("wikipedia/%s" % base)
super(TokenizedWikipedia, self).__init__(config=config, **kwargs)
self._perc_train = 0.7
self._max_num_articles = 1000000
# Number of examples used to build the tokenizer.
self._examples_for_tokenizer = 200000
def _info(self):
info = self._builder.info
description = "\n This dataset has been tokenized!"
return tfds.core.DatasetInfo(
builder=self,
description=info.description + description,
features=tfds.features.FeaturesDict({
"title":
tfds.features.Text(),
"text":
tfds.features.Text(
encoder_config=self.builder_config.text_encoder_config),
}),
supervised_keys=("text", "text"),
homepage=info.homepage,
citation=info.citation)
def _split_generators(self, dl_manager):
self.info.features["text"].maybe_build_from_corpus(self._vocab_text_gen())
return [
tfds.core.SplitGenerator(
name=split, num_shards=10, gen_kwargs=dict(split=split))
for split in ["train", "test"]
]
def _split_article(self, ex):
for i, split in enumerate(ex["text"].split("\n")):
if len(split.strip()) > 5:
yield i, {"title": ex["title"], "text": split}
def _generate_examples(self, split):
hasher = tfds.core.hashing.Hasher("token_wikipedia_salt")
for exi, example in enumerate(
tfds.as_numpy(self._builder.as_dataset(split="train"))):
if exi > self._max_num_articles:
return
# To make a train test split we first hash the key and convert it to a
# floating point value between 0-1. Depending on this value we either
# yield the example or not depending on the split.
p = hasher.hash_key(exi) % 100000 / 100000.
if split == "train" and p < self._perc_train:
for i, sub_example in self._split_article(example):
key = (exi, i)
yield key, sub_example
elif split == "test" and p >= self._perc_train:
for i, sub_example in self._split_article(example):
key = (exi, i)
yield key, sub_example
def _vocab_text_gen(self):
for i, (_, ex) in enumerate(self._generate_examples("train")):
# Only yield a subset of the data used for tokenization for
# performance reasons.
if self._examples_for_tokenizer > i:
yield ex["text"]
else:
return
# Arbitrary subset of datasets.
AMAZON_PRODUCTS = ["Books_v1_02", "Camera_v1_00", "Home_v1_00", "Video_v1_00"]
class TokenizedAmazonReviews(tfds.core.GeneratorBasedBuilder):
"""Builder which tokenizes the tfds amazon reviews datasets.
For compute reasons we only tokenize with 200000 examples.
We make a train and test split by hashing the example index.
"""
BUILDER_CONFIGS = _get_builder_configs(AMAZON_PRODUCTS)
def __init__(self, config=None, **kwargs):
"""Initialize the resized image dataset builder.
Args:
config: str Config string specified to build dataset with.
**kwargs: kwargs passed super class.
"""
# extract the base dataset.
base = "_".join(config.split("_")[0:-1])
self._builder = tfds.builder("amazon_us_reviews/%s" % base)
super(TokenizedAmazonReviews, self).__init__(config=config, **kwargs)
self._perc_train = 0.7
self._examples_for_tokenizer = 200000
def _info(self):
info = self._builder.info
description = "\n This dataset has been tokenized!"
return tfds.core.DatasetInfo(
builder=self,
description=info.description + description,
features=tfds.features.FeaturesDict({
# 1-5 stars are the labels.
"label":
tfds.features.ClassLabel(num_classes=5),
"text":
tfds.features.Text(
encoder_config=self.builder_config.text_encoder_config),
}),
supervised_keys=("text", "label"),
homepage=info.homepage,
citation=info.citation)
def _split_generators(self, dl_manager):
self.info.features["text"].maybe_build_from_corpus(self._vocab_text_gen())
return [
tfds.core.SplitGenerator(
name=split, num_shards=10, gen_kwargs=dict(split=split))
for split in ["train", "test"]
]
def _generate_examples(self, split):
hasher = tfds.core.hashing.Hasher("token_wikipedia_salt")
for exi, example in enumerate(
tfds.as_numpy(self._builder.as_dataset(split="train"))):
p = hasher.hash_key(exi) % 1000 / 1000.
example = {
"text": example["data"]["review_body"],
# subtract one to zero index.
"label": example["data"]["star_rating"] - 1
}
if split == "train" and p < self._perc_train:
yield exi, example
elif split == "test" and p > self._perc_train:
yield exi, example
def _vocab_text_gen(self):
for i, (_, ex) in enumerate(self._generate_examples("train")):
if self._examples_for_tokenizer > i:
yield ex["text"]
else:
return
def _single_associative_retrieval(batch_size=128, num_pairs=5, num_tokens=10):
"""See associative_retrieval."""
def _onehot_pack(inp, out, loss_mask):
inp_seq, outputs, loss_mask = (tf.one_hot(inp, num_tokens + 2),
tf.one_hot(out, num_tokens + 2), loss_mask)
return {"input": inp_seq, "output": outputs, "loss_mask": loss_mask}
def _py_make_example():
"""Iterator that makes single examples in python."""
while True:
keys = np.random.choice(num_tokens, size=num_pairs, replace=False)
values = np.random.choice(num_tokens, size=num_pairs, replace=True)
empty_token_idx = num_tokens
query_token_idx = num_tokens + 1
input_seq = []
output_seq = []
for k, v in zip(keys, values):
input_seq.extend([k, v])
output_seq.extend([empty_token_idx, empty_token_idx])
input_seq.append(query_token_idx)
output_seq.append(empty_token_idx)
query_key = np.random.randint(0, num_pairs)
input_seq.append(keys[query_key])
output_seq.append(values[query_key])
loss_mask = | np.zeros(2 * num_pairs + 2, dtype=np.float32) | numpy.zeros |
import numpy as np
import pytest
import tifffile
from lxml import etree # nosec
from PartSegImage.image import Image
from PartSegImage.image_reader import TiffImageReader
from PartSegImage.image_writer import IMAGEJImageWriter, ImageWriter
@pytest.fixture(scope="module")
def ome_xml(bundle_test_dir):
return etree.XMLSchema(file=str(bundle_test_dir / "ome.xsd.xml"))
def test_scaling(tmp_path):
image = Image(np.zeros((10, 50, 50), dtype=np.uint8), (30, 0.1, 0.1), axes_order="ZYX")
ImageWriter.save(image, tmp_path / "image.tif")
read_image = TiffImageReader.read_image(tmp_path / "image.tif")
assert np.all(np.isclose(image.spacing, read_image.spacing))
def test_save_mask(tmp_path):
data = np.zeros((10, 40, 40), dtype=np.uint8)
data[1:-1, 1:-1, 1:-1] = 1
data[2:-3, 4:-4, 4:-4] = 2
mask = np.array(data > 0).astype(np.uint8)
image = Image(data, (0.4, 0.1, 0.1), mask=mask, axes_order="ZYX")
ImageWriter.save_mask(image, tmp_path / "mask.tif")
read_mask = TiffImageReader.read_image(tmp_path / "mask.tif")
assert np.all(np.isclose(read_mask.spacing, image.spacing))
@pytest.mark.parametrize("z_size", (1, 10))
def test_ome_save(tmp_path, bundle_test_dir, ome_xml, z_size):
data = np.zeros((z_size, 20, 20, 2), dtype=np.uint8)
image = Image(
data,
image_spacing=(27 * 10 ** -6, 6 * 10 ** -6, 6 * 10 ** -6),
axes_order="ZYXC",
channel_names=["a", "b"],
shift=(10, 9, 8),
name="Test",
)
ImageWriter.save(image, tmp_path / "test.tif")
with tifffile.TiffFile(tmp_path / "test.tif") as tiff:
assert tiff.is_ome
assert isinstance(tiff.ome_metadata, str)
meta_data = tifffile.xml2dict(tiff.ome_metadata)["OME"]["Image"]
assert "PhysicalSizeX" in meta_data["Pixels"]
assert meta_data["Pixels"]["PhysicalSizeX"] == 6
assert "PhysicalSizeXUnit" in meta_data["Pixels"]
assert meta_data["Pixels"]["PhysicalSizeXUnit"] == "µm"
assert len(meta_data["Pixels"]["Channel"]) == 2
assert meta_data["Pixels"]["Channel"][0]["Name"] == "a"
assert meta_data["Pixels"]["Channel"][1]["Name"] == "b"
assert meta_data["Name"] == "Test"
xml_file = etree.fromstring(tiff.ome_metadata.encode("utf8")) # nosec
ome_xml.assert_(xml_file)
read_image = TiffImageReader.read_image(tmp_path / "test.tif")
assert np.allclose(read_image.spacing, image.spacing)
assert np.allclose(read_image.shift, image.shift)
assert read_image.channel_names == ["a", "b"]
assert read_image.name == "Test"
def test_scaling_imagej(tmp_path):
image = Image(np.zeros((10, 50, 50), dtype=np.uint8), (30, 0.1, 0.1), axes_order="ZYX")
IMAGEJImageWriter.save(image, tmp_path / "image.tif")
read_image = TiffImageReader.read_image(tmp_path / "image.tif")
assert np.all(np.isclose(image.spacing, read_image.spacing))
def test_save_mask_imagej(tmp_path):
data = | np.zeros((10, 40, 40), dtype=np.uint8) | numpy.zeros |
import json
import pickle
import time
from copy import deepcopy
from pathlib import Path
import numpy as np
import torch
import tqdm
from PIL import Image
from nuscenes.eval.common.config import config_factory
from nuscenes.eval.detection.data_classes import DetectionBox
from nuscenes.eval.tracking.data_classes import TrackingBox
from nuscenes.eval.detection.evaluate import DetectionEval
from nuscenes.eval.tracking.evaluate import TrackingEval
from nuscenes.nuscenes import NuScenes
from nuscenes.utils import splits, geometry_utils
from nuscenes.utils.data_classes import LidarPointCloud, Box
from pyquaternion.quaternion import Quaternion
from .nuscenes_utils import map_name_from_general_to_detection
from ..dataset import DatasetTemplate
class NuScenesIDTrackingDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
"""
Args:
root_path:
dataset_cfg:
class_names:
training:
logger:
"""
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.camera_list = dataset_cfg.CAM_LIST
pk_path = Path(dataset_cfg.INFO_PATH)
pk_path.mkdir(parents=True, exist_ok=True)
pk_file = pk_path / f'{dataset_cfg.VERSION}_{"train" if training else "val"}_{"_".join(self.class_names)}.pkl'
if pk_file.is_file():
with open(pk_file, 'rb') as f:
self.sample_info_dict = pickle.load(f)
self.id_dict = self.sample_info_dict.pop('id_dict')
self.sample_token_list = self.sample_info_dict.pop('token_list')
else:
start_time = time.time()
self.create_sample_info_dict()
print('time cost:', time.time() - start_time)
self.sample_info_dict['id_dict'] = self.id_dict
self.sample_info_dict['token_list'] = self.sample_token_list
with open(pk_file, 'wb') as f:
pickle.dump(self.sample_info_dict, f)
self.sample_info_dict.pop('id_dict')
self.sample_info_dict.pop('token_list')
def create_sample_info_dict(self):
nusc = NuScenes(version=self.dataset_cfg.VERSION, dataroot=str(self.root_path), verbose=True)
self.sample_token_list = []
self.sample_info_dict = {}
self.id_dict = {}
split_scene_names = splits.train if self.training else splits.val
instances = set()
print(f'Create {"train" if self.training else "val"} info dict')
for scene in tqdm.tqdm(nusc.scene):
if scene['name'] in split_scene_names:
cur_sample_token = scene['first_sample_token']
while True:
self.sample_token_list.append((scene['name'], cur_sample_token))
cur_sample_info_dict = {}
sample = nusc.get('sample', cur_sample_token)
lidar_token = sample['data']['LIDAR_TOP']
lidar = nusc.get('sample_data', lidar_token)
cur_sample_info_dict['lidar'] = lidar['filename']
calib_dict = {}
cs_record = nusc.get('calibrated_sensor', lidar['calibrated_sensor_token'])
calib_dict['LIDAR_TOP'] = (cs_record['translation'], cs_record['rotation'])
ego_dict = {}
ego_record = nusc.get('ego_pose', lidar['ego_pose_token'])
ego_dict['LIDAR_TOP'] = (ego_record['translation'], ego_record['rotation'])
camera_dict = {}
intrinsic_dict = {}
imsize_dict = {}
for camera_name in self.camera_list:
camera_token = sample['data'][camera_name]
sd_record = nusc.get('sample_data', camera_token)
camera_dict[camera_name] = sd_record['filename']
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
calib_dict[camera_name] = (cs_record['translation'], cs_record['rotation'])
ego_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
ego_dict[camera_name] = (ego_record['translation'], ego_record['rotation'])
intrinsic_dict[camera_name] = np.array(cs_record['camera_intrinsic'])
imsize_dict[camera_name] = (sd_record['width'], sd_record['height'])
cur_sample_info_dict['camera'] = camera_dict
cur_sample_info_dict['calib'] = calib_dict
cur_sample_info_dict['ego'] = ego_dict
cur_sample_info_dict['intrinsic'] = intrinsic_dict
box_list = {camera_name: [] for camera_name in self.camera_list}
id_list = {camera_name: [] for camera_name in self.camera_list}
name_list = {camera_name: [] for camera_name in self.camera_list}
anno_tokens = sample['anns']
for anno_token in anno_tokens:
anno = nusc.get('sample_annotation', anno_token)
if map_name_from_general_to_detection[anno['category_name']] in self.class_names \
and anno['num_lidar_pts'] > 0:
box = Box(anno['translation'], anno['size'], Quaternion(anno['rotation']))
box_name = map_name_from_general_to_detection[anno['category_name']]
tracking_id = anno['instance_token']
instances.add(tracking_id)
lidar_box = deepcopy(box)
# Move box to ego vehicle coord system.
translation, rotation = ego_dict['LIDAR_TOP']
lidar_box.translate(-np.array(translation))
lidar_box.rotate(Quaternion(rotation).inverse)
# Move box to lidar coord system.
translation, rotation = calib_dict['LIDAR_TOP']
lidar_box.translate(-np.array(translation))
lidar_box.rotate(Quaternion(rotation).inverse)
xyz = lidar_box.center
dxdydz = (lidar_box.wlh[1], lidar_box.wlh[0], lidar_box.wlh[2]) # lwh
v = np.dot(lidar_box.orientation.rotation_matrix, | np.array([1, 0, 0]) | numpy.array |
import numpy as np
import SimpleITK as sitk
from src.utils.image import get_ct_range, normalize_image
def to_np(x):
return np.squeeze(np.transpose(sitk.GetArrayFromImage(x), (2, 1, 0)))
def get_bb_image(image):
origin = image.GetOrigin()
max_position = origin + np.array(
[image.GetWidth(),
image.GetHeight(),
image.GetDepth()]) * image.GetSpacing()
return | np.concatenate([origin, max_position], axis=0) | numpy.concatenate |
import math
import random
import numpy as np
from util import rot_matrix
# Frequency at which animations are updated
UPDATE_RATE = 30
# Time between each update (in seconds)
UPDATE_TIME = 1 / UPDATE_RATE
# Colors
GREEN = np.array([0,1,0])
BLUE = np.array([0,0,1])
RED = np.array([1,0,0])
YELLOW = np.array([1,1,0])
CYAN = np.array([0,1,1])
MAGENTA = np.array([1,0,1])
class Animation:
"""
Base class for all animations
"""
def __init__(self, struct):
# 3D structure on which the animation will be mapped
self.struct = struct
def pulse(self, t):
"""
Called when a beat or notable audio change occurs
Note: some animations may choose not to implement this method
"""
pass
def update(self, t):
"""
Called at a regular interval to update the animation
"""
raise NotImplementedError
class TestSequence(Animation):
"""
Test sequence. This is used to help us connect the
LED strips in the correct order on the physical cube.
"""
def __init__(self, struct):
super().__init__(struct)
self.edge_idx = 0
self.led_idx = 0
def update(self, t):
# TODO: flash on first segment
# We can add this later
edge = self.struct.edges[self.edge_idx]
self.led_idx += 1
if self.led_idx >= edge.num_leds:
self.edge_idx = (self.edge_idx + 1) % len(self.struct.edges)
self.led_idx = 0
self.struct.pixels[:, :] = 0
self.struct.pixels[self.edge_idx, self.led_idx, 0] = 1
class BasicStrobe(Animation):
"""
Basic strobe light that pulses to the beat
"""
def __init__(self, struct):
super().__init__(struct)
self.pulse_time = 0
def pulse(self, t):
self.pulse_time = t
def update(self, t):
dt = t - self.pulse_time
brightness = math.pow(0.94, 100 * dt)
color = np.array([1, 1, 1]) * brightness
self.struct.pixels[:, :] = color
class PosiStrobe(Animation):
"""
Simple positional strobe effect
"""
def __init__(self, struct):
super().__init__(struct)
self.pulse_time = 0
self.pos = np.array([0, 0, 0])
def pulse(self, t):
self.pulse_time = t
# TODO: method to compute min/max cube extents or
# sample point around structure
self.pos = np.random.uniform(
np.array([-0.5, -0.5, -0.5]),
np.array([0.5, 0.5, 0.5])
)
def update(self, t):
dist = self.struct.poss - self.pos
dist = np.linalg.norm(dist, axis=-1)
dist = | np.expand_dims(dist, -1) | numpy.expand_dims |
# --------------
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import sys
import csv
#from io import StringIO
#with StringIO(file_content) as f:
# data = np.loadtxt(f, skiprows=1, dtype=int)
#Code Starts here
# Command to display all the columns of a numpy array
np.set_printoptions(threshold=sys.maxsize)
X=[]
# Load the data. Data is already given to you in variable `path`
with open(path,'r') as f:
csv_data=csv.reader(f)
next(csv_data)
for row in csv_data:
X.append(row)
data= | np.asarray(X) | numpy.asarray |
from ..SqueezeNet.squeezenet import SqueezeNet
from ..ResNet.resnet50 import ResNet50
from ..InceptionV3.inceptionv3 import InceptionV3
from ..DenseNet.densenet import DenseNetImageNet121
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.callbacks import LearningRateScheduler
from tensorflow.python.keras.layers import Flatten, Dense, Input, Conv2D, GlobalAvgPool2D, Activation
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.preprocessing import image
from tensorflow.python.keras.models import load_model, save_model
import tensorflow as tf
from tensorflow.python.keras import backend as K
from PIL import Image
import os
from tensorflow.python.keras.callbacks import ModelCheckpoint
from io import open
import json
import numpy as np
import warnings
class ModelTraining:
"""
This is the Model training class, that allows you to define a deep learning network
from the 4 available networks types supported by ImageAI which are SqueezeNet, ResNet50,
InceptionV3 and DenseNet121. Once you instantiate this class, you must call:
*
"""
def __init__(self):
self.__modelType = ""
self.__use_pretrained_model = False
self.__data_dir = ""
self.__train_dir = ""
self.__test_dir = ""
self.__num_epochs = 10
self.__trained_model_dir = ""
self.__model_class_dir = ""
self.__initial_learning_rate = 1e-3
self.__model_collection = []
def setModelTypeAsSqueezeNet(self):
"""
'setModelTypeAsSqueezeNet()' is used to set the model type to the SqueezeNet model
for the training instance object .
:return:
"""
self.__modelType = "squeezenet"
def setModelTypeAsResNet(self):
"""
'setModelTypeAsResNet()' is used to set the model type to the ResNet model
for the training instance object .
:return:
"""
self.__modelType = "resnet"
def setModelTypeAsDenseNet(self):
"""
'setModelTypeAsDenseNet()' is used to set the model type to the DenseNet model
for the training instance object .
:return:
"""
self.__modelType = "densenet"
def setModelTypeAsInceptionV3(self):
"""
'setModelTypeAsInceptionV3()' is used to set the model type to the InceptionV3 model
for the training instance object .
:return:
"""
self.__modelType = "inceptionv3"
def setDataDirectory(self, data_directory=""):
"""
'setDataDirectory()' is required to set the path to which the data/dataset to be used for
training is kept. The directory can have any name, but it must have 'train' and 'test'
sub-directory. In the 'train' and 'test' sub-directories, there must be sub-directories
with each having it's name corresponds to the name/label of the object whose images are
to be kept. The structure of the 'test' and 'train' folder must be as follows:
>> train >> class1 >> class1_train_images
>> class2 >> class2_train_images
>> class3 >> class3_train_images
>> class4 >> class4_train_images
>> class5 >> class5_train_images
>> test >> class1 >> class1_test_images
>> class2 >> class2_test_images
>> class3 >> class3_test_images
>> class4 >> class4_test_images
>> class5 >> class5_test_images
:param data_directory:
:return:
"""
self.__data_dir = data_directory
self.__train_dir = os.path.join(self.__data_dir, "train")
self.__test_dir = os.path.join(self.__data_dir, "test")
self.__trained_model_dir = os.path.join(self.__data_dir, "models")
self.__model_class_dir = os.path.join(self.__data_dir, "json")
def lr_schedule(self, epoch):
# Learning Rate Schedule
lr = self.__initial_learning_rate
total_epochs = self.__num_epochs
check_1 = int(total_epochs * 0.9)
check_2 = int(total_epochs * 0.8)
check_3 = int(total_epochs * 0.6)
check_4 = int(total_epochs * 0.4)
if epoch > check_1:
lr *= 1e-4
elif epoch > check_2:
lr *= 1e-3
elif epoch > check_3:
lr *= 1e-2
elif epoch > check_4:
lr *= 1e-1
return lr
def trainModel(self, num_objects, num_experiments=200, enhance_data=False, batch_size = 32, initial_learning_rate=1e-3, show_network_summary=False, training_image_size = 224, continue_from_model=None, transfer_from_model=None, transfer_with_full_training=True, initial_num_objects = None, save_full_model = False):
"""
'trainModel()' function starts the model actual training. It accepts the following values:
- num_objects , which is the number of classes present in the dataset that is to be used for training
- num_experiments , also known as epochs, it is the number of times the network will train on all the training dataset
- enhance_data (optional) , this is used to modify the dataset and create more instance of the training set to enhance the training result
- batch_size (optional) , due to memory constraints, the network trains on a batch at once, until all the training set is exhausted. The value is set to 32 by default, but can be increased or decreased depending on the meormory of the compute used for training. The batch_size is conventionally set to 16, 32, 64, 128.
- initial_learning_rate(optional) , this value is used to adjust the weights generated in the network. You rae advised to keep this value as it is if you don't have deep understanding of this concept.
- show_network_summary(optional) , this value is used to show the structure of the network should you desire to see it. It is set to False by default
- training_image_size(optional) , this value is used to define the image size on which the model will be trained. The value is 224 by default and is kept at a minimum of 100.
- continue_from_model (optional) , this is used to set the path to a model file trained on the same dataset. It is primarily for continuos training from a previously saved model.
- transfer_from_model (optional) , this is used to set the path to a model file trained on another dataset. It is primarily used to perform tramsfer learning.
- transfer_with_full_training (optional) , this is used to set the pre-trained model to be re-trained across all the layers or only at the top layers.
- initial_num_objects (required if 'transfer_from_model' is set ), this is used to set the number of objects the model used for transfer learning is trained on. If 'transfer_from_model' is set, this must be set as well.
- save_full_model ( optional ), this is used to save the trained models with their network types. Any model saved by this specification can be loaded without specifying the network type.
*
:param num_objects:
:param num_experiments:
:param enhance_data:
:param batch_size:
:param initial_learning_rate:
:param show_network_summary:
:param training_image_size:
:param continue_from_model:
:param transfer_from_model:
:param initial_num_objects:
:param save_full_model:
:return:
"""
self.__num_epochs = num_experiments
self.__initial_learning_rate = initial_learning_rate
lr_scheduler = LearningRateScheduler(self.lr_schedule)
num_classes = num_objects
if(training_image_size < 100):
warnings.warn("The specified training_image_size {} is less than 100. Hence the training_image_size will default to 100.".format(training_image_size))
training_image_size = 100
image_input = Input(shape=(training_image_size, training_image_size, 3))
if (self.__modelType == "squeezenet"):
if (continue_from_model != None):
model = SqueezeNet(weights="continued", num_classes=num_classes, model_input=image_input, model_path=continue_from_model)
if (show_network_summary == True):
print("Resuming training with weights loaded from a previous model")
elif (transfer_from_model != None):
model = SqueezeNet(weights="transfer", num_classes=num_classes, model_input=image_input,
model_path=transfer_from_model, initial_num_classes=initial_num_objects,transfer_with_full_training=transfer_with_full_training)
if (show_network_summary == True):
print("Training using weights from a pre-trained model")
else:
model = SqueezeNet(weights="custom", num_classes=num_classes, model_input=image_input)
elif (self.__modelType == "resnet"):
if(continue_from_model != None):
model = ResNet50(weights="continued", num_classes=num_classes, model_input=image_input, model_path=continue_from_model)
if (show_network_summary == True):
print("Resuming training with weights loaded from a previous model")
elif(transfer_from_model != None):
model = ResNet50(weights="transfer", num_classes=num_classes, model_input=image_input, model_path=transfer_from_model, initial_num_classes=initial_num_objects, transfer_with_full_training=transfer_with_full_training)
if (show_network_summary == True):
print("Training using weights from a pre-trained model")
else:
model = ResNet50(weights="custom", num_classes=num_classes, model_input=image_input)
elif (self.__modelType == "inceptionv3"):
if (continue_from_model != None):
model = InceptionV3(weights="continued", classes=num_classes, model_input=image_input, model_path=continue_from_model)
if (show_network_summary == True):
print("Resuming training with weights loaded from a previous model")
elif (transfer_from_model != None):
model = InceptionV3(weights="transfer", classes=num_classes, model_input=image_input,
model_path=transfer_from_model, initial_classes=initial_num_objects,
transfer_with_full_training=transfer_with_full_training)
if (show_network_summary == True):
print("Training using weights from a pre-trained model")
else:
model = InceptionV3(weights="custom", classes=num_classes, model_input=image_input)
elif (self.__modelType == "densenet"):
if (continue_from_model != None):
model = DenseNetImageNet121(weights="continued", classes=num_classes, model_input=image_input, model_path=continue_from_model)
if (show_network_summary == True):
print("Resuming training with weights loaded from a previous model")
elif (transfer_from_model != None):
model = DenseNetImageNet121(weights="transfer", classes=num_classes, model_input=image_input,
model_path=transfer_from_model, initial_num_classes=initial_num_objects,
transfer_with_full_training=transfer_with_full_training)
if (show_network_summary == True):
print("Training using weights from a pre-trained model")
else:
model = DenseNetImageNet121(weights="custom", classes=num_classes, model_input=image_input)
optimizer = Adam(lr=self.__initial_learning_rate, decay=1e-4)
model.compile(loss="categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"])
if (show_network_summary == True):
model.summary()
model_name = 'model_ex-{epoch:03d}_acc-{val_acc:03f}.h5'
if not os.path.isdir(self.__trained_model_dir):
os.makedirs(self.__trained_model_dir)
if not os.path.isdir(self.__model_class_dir):
os.makedirs(self.__model_class_dir)
model_path = os.path.join(self.__trained_model_dir, model_name)
save_weights_condition = True
if(save_full_model == True ):
save_weights_condition = False
elif(save_full_model == False):
save_weights_condition = True
checkpoint = ModelCheckpoint(filepath=model_path,
monitor='val_acc',
verbose=1,
save_weights_only=save_weights_condition,
save_best_only=True,
period=1)
if (enhance_data == True):
print("Using Enhanced Data Generation")
height_shift = 0
width_shift = 0
if (enhance_data == True):
height_shift = 0.1
width_shift = 0.1
train_datagen = ImageDataGenerator(
rescale=1. / 255,
horizontal_flip=enhance_data, height_shift_range=height_shift, width_shift_range=width_shift)
test_datagen = ImageDataGenerator(
rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(self.__train_dir, target_size=(training_image_size, training_image_size),
batch_size=batch_size,
class_mode="categorical")
test_generator = test_datagen.flow_from_directory(self.__test_dir, target_size=(training_image_size, training_image_size),
batch_size=batch_size,
class_mode="categorical")
class_indices = train_generator.class_indices
class_json = {}
for eachClass in class_indices:
class_json[str(class_indices[eachClass])] = eachClass
with open(os.path.join(self.__model_class_dir, "model_class.json"), "w+") as json_file:
json.dump(class_json, json_file, indent=4, separators=(",", " : "),
ensure_ascii=True)
json_file.close()
print("JSON Mapping for the model classes saved to ", os.path.join(self.__model_class_dir, "model_class.json"))
num_train = len(train_generator.filenames)
num_test = len(test_generator.filenames)
print("Number of experiments (Epochs) : ", self.__num_epochs)
#
model.fit_generator(train_generator, steps_per_epoch=int(num_train / batch_size), epochs=self.__num_epochs,
validation_data=test_generator,
validation_steps=int(num_test / batch_size), callbacks=[checkpoint, lr_scheduler])
class CustomImagePrediction:
"""
This is the image prediction class for custom models trained with the 'ModelTraining' class. It provides support for 4 different models which are:
ResNet50, SqueezeNet, DenseNet121 and Inception V3. After instantiating this class, you can set it's properties and
make image predictions using it's pre-defined functions.
The following functions are required to be called before a prediction can be made
* setModelPath() , path to your custom model
* setJsonPath , , path to your custom model's corresponding JSON file
* At least of of the following and it must correspond to the model set in the setModelPath()
[setModelTypeAsSqueezeNet(), setModelTypeAsResNet(), setModelTypeAsDenseNet, setModelTypeAsInceptionV3]
* loadModel() [This must be called once only before making a prediction]
Once the above functions have been called, you can call the predictImage() function of the prediction instance
object at anytime to predict an image.
"""
def __init__(self):
self.__modelType = ""
self.modelPath = ""
self.jsonPath = ""
self.numObjects = 10
self.__modelLoaded = False
self.__model_collection = []
self.__input_image_size = 224
def setModelPath(self, model_path):
"""
'setModelPath()' function is required and is used to set the file path to the model adopted from the list of the
available 4 model types. The model path must correspond to the model type set for the prediction instance object.
:param model_path:
:return:
"""
self.modelPath = model_path
def setJsonPath(self, model_json):
"""
'setJsonPath()'
:param model_path:
:return:
"""
self.jsonPath = model_json
def setModelTypeAsSqueezeNet(self):
"""
'setModelTypeAsSqueezeNet()' is used to set the model type to the SqueezeNet model
for the prediction instance object .
:return:
"""
self.__modelType = "squeezenet"
def setModelTypeAsResNet(self):
"""
'setModelTypeAsResNet()' is used to set the model type to the ResNet model
for the prediction instance object .
:return:
"""
self.__modelType = "resnet"
def setModelTypeAsDenseNet(self):
"""
'setModelTypeAsDenseNet()' is used to set the model type to the DenseNet model
for the prediction instance object .
:return:
"""
self.__modelType = "densenet"
def setModelTypeAsInceptionV3(self):
"""
'setModelTypeAsInceptionV3()' is used to set the model type to the InceptionV3 model
for the prediction instance object .
:return:
"""
self.__modelType = "inceptionv3"
def loadModel(self, prediction_speed="normal", num_objects=10):
"""
'loadModel()' function is used to load the model structure into the program from the file path defined
in the setModelPath() function. This function receives an optional value which is "prediction_speed".
The value is used to reduce the time it takes to predict an image, down to about 50% of the normal time,
with just slight changes or drop in prediction accuracy, depending on the nature of the image.
- prediction_speed (optional), acceptable values are "normal", "fast", "faster" and "fastest"
- num_objects (required), the number of objects the model is trained to recognize
:param prediction_speed:
:param num_objects:
:return:
"""
self.numObjects = num_objects
if (prediction_speed == "normal"):
self.__input_image_size = 224
elif (prediction_speed == "fast"):
self.__input_image_size = 160
elif (prediction_speed == "faster"):
self.__input_image_size = 120
elif (prediction_speed == "fastest"):
self.__input_image_size = 100
if (self.__modelLoaded == False):
image_input = Input(shape=(self.__input_image_size, self.__input_image_size, 3))
if (self.__modelType == ""):
raise ValueError("You must set a valid model type before loading the model.")
elif (self.__modelType == "squeezenet"):
import numpy as np
from tensorflow.python.keras.preprocessing import image
from ..SqueezeNet.squeezenet import SqueezeNet
from .custom_utils import preprocess_input
from .custom_utils import decode_predictions
model = SqueezeNet(model_path=self.modelPath, weights="trained", model_input=image_input,
num_classes=self.numObjects)
self.__model_collection.append(model)
self.__modelLoaded = True
try:
None
except:
raise ("You have specified an incorrect path to the SqueezeNet model file.")
elif (self.__modelType == "resnet"):
import numpy as np
from tensorflow.python.keras.preprocessing import image
from ..ResNet.resnet50 import ResNet50
from .custom_utils import preprocess_input
from .custom_utils import decode_predictions
try:
model = ResNet50(model_path=self.modelPath, weights="trained", model_input=image_input, num_classes=self.numObjects)
self.__model_collection.append(model)
self.__modelLoaded = True
except:
raise ValueError("You have specified an incorrect path to the ResNet model file.")
elif (self.__modelType == "densenet"):
from tensorflow.python.keras.preprocessing import image
from ..DenseNet.densenet import DenseNetImageNet121
from .custom_utils import decode_predictions, preprocess_input
import numpy as np
try:
model = DenseNetImageNet121(model_path=self.modelPath, weights="trained", model_input=image_input, classes=self.numObjects)
self.__model_collection.append(model)
self.__modelLoaded = True
except:
raise ValueError("You have specified an incorrect path to the DenseNet model file.")
elif (self.__modelType == "inceptionv3"):
import numpy as np
from tensorflow.python.keras.preprocessing import image
from imageai.Prediction.InceptionV3.inceptionv3 import InceptionV3
from .custom_utils import decode_predictions, preprocess_input
try:
model = InceptionV3(include_top=True, weights="trained", model_path=self.modelPath,
model_input=image_input, classes=self.numObjects)
self.__model_collection.append(model)
self.__modelLoaded = True
except:
raise ValueError("You have specified an incorrect path to the InceptionV3 model file.")
def loadFullModel(self, prediction_speed="normal", num_objects=10):
"""
'loadFullModel()' function is used to load the model structure into the program from the file path defined
in the setModelPath() function. As opposed to the 'loadModel()' function, you don't need to specify the model type. This means you can load any Keras model trained with or without ImageAI and perform image prediction.
- prediction_speed (optional), Acceptable values are "normal", "fast", "faster" and "fastest"
- num_objects (required), the number of objects the model is trained to recognize
:param prediction_speed:
:param num_objects:
:return:
"""
self.numObjects = num_objects
if (prediction_speed == "normal"):
self.__input_image_size = 224
elif (prediction_speed == "fast"):
self.__input_image_size = 160
elif (prediction_speed == "faster"):
self.__input_image_size = 120
elif (prediction_speed == "fastest"):
self.__input_image_size = 100
if (self.__modelLoaded == False):
image_input = Input(shape=(self.__input_image_size, self.__input_image_size, 3))
model = load_model(filepath=self.modelPath)
self.__model_collection.append(model)
self.__modelLoaded = True
self.__modelType = "full"
def save_model_to_tensorflow(self, new_model_folder, new_model_name=""):
"""
'save_model_to_tensorflow' function allows you to save your loaded Keras (.h5) model and save it to the Tensorflow (.pb) model format.
- new_model_folder (required), the path to the folder you want the converted Tensorflow model to be saved
- new_model_name (required), the desired filename for your converted Tensorflow model e.g 'my_new_model.pb'
:param new_model_folder:
:param new_model_name:
:return:
"""
if(self.__modelLoaded == True):
out_prefix = "output_"
output_dir = new_model_folder
if os.path.exists(output_dir) == False:
os.mkdir(output_dir)
model_name = os.path.join(output_dir, new_model_name)
keras_model = self.__model_collection[0]
out_nodes = []
for i in range(len(keras_model.outputs)):
out_nodes.append(out_prefix + str(i + 1))
tf.identity(keras_model.output[i], out_prefix + str(i + 1))
sess = K.get_session()
from tensorflow.python.framework import graph_util, graph_io
init_graph = sess.graph.as_graph_def()
main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)
graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)
print("Tensorflow Model Saved")
def save_model_for_deepstack(self, new_model_folder, new_model_name=""):
"""
'save_model_for_deepstack' function allows you to save your loaded Keras (.h5) model and save it to the deployment format of DeepStack custom API. This function will save the model and the JSON file you need for the deployment.
- new_model_folder (required), the path to the folder you want the model to be saved
- new_model_name (required), the desired filename for your model e.g 'my_new_model.h5'
:param new_model_folder:
:param new_model_name:
:return:
"""
if(self.__modelLoaded == True):
print(self.jsonPath)
with open(self.jsonPath) as inputFile:
model_json = json.load(inputFile)
deepstack_json = {"sys-version": "1.0", "framework":"KERAS","mean":0.5,"std":255}
deepstack_json["width"] = self.__input_image_size
deepstack_json["height"] = self.__input_image_size
deepstack_classes_map = {}
for eachClass in model_json:
deepstack_classes_map[eachClass] = model_json[eachClass]
deepstack_json["map"] = deepstack_classes_map
output_dir = new_model_folder
if os.path.exists(output_dir) == False:
os.mkdir(output_dir)
with open(os.path.join(output_dir,"config.json"), "w+") as json_file:
json.dump(deepstack_json, json_file, indent=4, separators=(",", " : "),
ensure_ascii=True)
json_file.close()
print("JSON Config file saved for DeepStack format in ",
os.path.join(output_dir, "config.json"))
keras_model = self.__model_collection[0]
save_model(keras_model, os.path.join(new_model_folder, new_model_name))
print("Model saved for DeepStack format in",
os.path.join(os.path.join(new_model_folder, new_model_name)))
def predictImage(self, image_input, result_count=1, input_type="file"):
"""
'predictImage()' function is used to predict a given image by receiving the following arguments:
* input_type (optional) , the type of input to be parsed. Acceptable values are "file", "array" and "stream"
* image_input , file path/numpy array/image file stream of the image.
* result_count (optional) , the number of predictions to be sent which must be whole numbers between
1 and the number of classes present in the model
This function returns 2 arrays namely 'prediction_results' and 'prediction_probabilities'. The 'prediction_results'
contains possible objects classes arranged in descending of their percentage probabilities. The 'prediction_probabilities'
contains the percentage probability of each object class. The position of each object class in the 'prediction_results'
array corresponds with the positions of the percentage possibilities in the 'prediction_probabilities' array.
:param input_type:
:param image_input:
:param result_count:
:return prediction_results, prediction_probabilities:
"""
prediction_results = []
prediction_probabilities = []
if (self.__modelLoaded == False):
raise ValueError("You must call the loadModel() function before making predictions.")
else:
if (self.__modelType == "squeezenet"):
from .custom_utils import preprocess_input
from .custom_utils import decode_predictions
if (input_type == "file"):
try:
image_to_predict = image.load_img(image_input, target_size=(
self.__input_image_size, self.__input_image_size))
image_to_predict = image.img_to_array(image_to_predict, data_format="channels_last")
image_to_predict = np.expand_dims(image_to_predict, axis=0)
image_to_predict = preprocess_input(image_to_predict)
except:
raise ValueError("You have set a path to an invalid image file.")
elif (input_type == "array"):
try:
image_input = Image.fromarray(np.uint8(image_input))
image_input = image_input.resize((self.__input_image_size, self.__input_image_size))
image_input = np.expand_dims(image_input, axis=0)
image_to_predict = image_input.copy()
image_to_predict = | np.asarray(image_to_predict, dtype=np.float64) | numpy.asarray |
import os,sys
import tensorflow as tf
import numpy as np
sys.path.insert(0, './scripts')
sys.path.insert(0, './models')
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
def accuracy(predictions, labels):
pred_class = np.argmax(predictions, 1)
true_class = | np.argmax(labels, 1) | numpy.argmax |
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 8 21:43:54 2021
@author: oiseth
"""
#%% import necessary modules and packages
import numpy as np
from scipy import linalg
from matplotlib import pyplot as plt
import time_integration as ti
import time_simulation as ts
#%% Create signal in time domain
plt.close('all')
# Establish system
L=3.5
I=180e-6
E=210e9
k=12*E*I/L**3
m=12e3
M=np.diag([m,m])
K=np.array([ [4,-2] , [-2, 2] ])*k
C=3e-1*M+5e-4*K
(lambd,phi)=linalg.eigh(K,M)
phi=np.array(phi)
lambd=np.array(lambd)
omega_n=np.sqrt(lambd)
#%% Create time vector and load
dt=0.01
T=100
t=np.arange(0,T,dt)
X1=500*np.random.randn(len(t))
X2=600*np.random.randn(len(t))
# Plot time series
plt.figure()
plt.plot(t,X1)
plt.plot(t,X2)
plt.show()
plt.xlabel('Time [s]')
plt.ylabel('Load [N]')
plt.grid()
#%% Solve system response by time integration
plt.close('all')
f=np.vstack((X1,X2))
u0=np.zeros((2,1))
udot0=np.zeros((2,1))
gamma=0.5
beta=0.25
(u,udot,uddot)=ti.linear_newmark_krenk(M,C,K,f,u0,udot0,dt,gamma,beta)
(y,ydot,yddot)=ti.linear_newmark_chopra(M,C,K,f,u0,udot0,dt,gamma,beta)
plt.figure()
plt.plot(t,u[0,:])
plt.plot(t,y[0,:])
plt.show()
plt.xlabel('Time [s]')
plt.ylabel('Response [m]')
plt.title('DOF 1')
plt.grid()
plt.figure()
plt.plot(t,u[1,:])
plt.plot(t,y[1,:])
plt.show()
plt.xlabel('Time [s]')
plt.ylabel('Response [m]')
plt.title('DOF 2')
plt.grid()
#%% Statistics: the difference should be almost zero
delta_u=u-y
delta_udot=udot-ydot
delta_uddot=uddot-yddot
ratio_u=np.divide( np.std(delta_u,1) , np.std(u,1) )
ratio_udot=np.divide( np.std(delta_udot,1) , | np.std(udot,1) | numpy.std |
import numpy as np
from util.stats import *
# ====================================================================
# util.stats
# ====================================================================
def _test_mpca(display=False):
if display:
print()
print("-"*70)
print("Begin tests for 'mpca'")
GENERATE_APPROXIMATIONS = True
BIG_PLOTS = False
SHOW_2D_POINTS = False
import random
# Generate some points for testing.
np.random.seed(4) # 4
random.seed(0) # 0
rgen = np.random.RandomState(1) # 10
n = 100
points = (rgen.rand(n,2) - .5) * 2
# points *= np.array([.5, 1.])
# Create some testing functions (for learning different behaviors)
funcs = [
lambda x: x[1] , # Linear on y
lambda x: abs(x[0] + x[1]) , # "V" function on 1:1 diagonal
lambda x: abs(2*x[0] + x[1]) , # "V" function on 2:1 diagonal
lambda x: x[0]**2 , # Quadratic on x
lambda x: (x[0] + x[1])**2 , # Quadratic on 1:1 diagonal
lambda x: (2*x[0] + x[1])**3 , # Cubic on 2:1 diagonal
lambda x: (x[0]**3) , # Cubic on x
lambda x: rgen.rand() , # Random function
]
# Calculate the response values associated with each function.
responses = np.vstack(tuple(tuple(map(f, points)) for f in funcs)).T
# Reduce to just the first function
choice = 3
func = funcs[choice]
response = responses[:,choice]
# Run the princinple response analysis function.
components, values = mpca(points, response)
values /= np.sum(values)
conditioner = np.matmul(components, np.diag(values))
if display:
print()
print("Components")
print(components)
print()
print("Values")
print(values)
print()
print("Conditioner")
print(conditioner)
print()
components = np.array([[1.0, 0.], [0., 1.]])
values = normalize_error(np.matmul(points, components.T), response, abs_diff)
values /= np.sum(values)
if display:
print()
print()
print("True Components")
print(components)
print()
print("True Values")
print(values)
print()
# Generate a plot of the response surfaces.
from util.plot import Plot, multiplot
if display: print("Generating plots of source function..")
# Add function 1
p1 = Plot()
p1.add("Points", *(points.T), response, opacity=.8)
p1.add_func("Surface", func, [-1,1], [-1,1], plot_points=100)
if GENERATE_APPROXIMATIONS:
from util.approximate import NearestNeighbor, Delaunay, condition
p = Plot()
# Add the source points and a Delaunay fit.
p.add("Points", *(points.T), response, opacity=.8)
p.add_func("Truth", func, [-1,1], [-1,1])
# Add an unconditioned nearest neighbor fit.
model = NearestNeighbor()
model.fit(points, response)
p.add_func("Unconditioned Approximation", model, [-1,1], [-1,1],
mode="markers", opacity=.8)
# Generate a conditioned approximation
model = condition(NearestNeighbor, method="MPCA")()
model.fit(points, response)
p.add_func("Best Approximation", model, [-1,1], [-1,1],
mode="markers", opacity=.8)
if display: p.plot(show=False, height=400, width=650)
if display: print("Generating metric principle components..")
# Return the between vectors and the differences between those points.
def between(x, y, unique=True):
vecs = []
diffs = []
for i1 in range(x.shape[0]):
start = i1+1 if unique else 0
for i2 in range(start, x.shape[0]):
if (i1 == i2): continue
vecs.append(x[i2] - x[i1])
diffs.append(y[i2] - y[i1])
return np.array(vecs), np.array(diffs)
# Plot the between slopes to verify they are working.
# Calculate the between slopes
vecs, diffs = between(points, response)
vec_lengths = np.sqrt(np.sum(vecs**2, axis=1))
between_slopes = diffs / vec_lengths
bs = ((vecs.T / vec_lengths) * between_slopes).T
# Extrac a random subset for display
size = 100
random_subset = np.arange(len(bs))
rgen.shuffle(random_subset)
bs = bs[random_subset[:size],:]
# Normalize the between slopes so they fit on the plot
max_bs_len = np.max(np.sqrt(np.sum(bs**2, axis=1)))
bs /= max_bs_len
# Get a random subset of the between slopes and plot them.
p2 = Plot("","Metric PCA on Z","")
p2.add("Between Slopes", *(bs.T), color=p2.color(4, alpha=.4))
if SHOW_2D_POINTS:
# Add the points and transformed points for demonstration.
new_pts = np.matmul(np.matmul(conditioner, points), np.linalg.inv(components))
p2.add("Original Points", *(points.T))
p2.add("Transformed Points", *(new_pts.T), color=p2.color(6, alpha=.7))
# Add the principle response components
for i,(vec,m) in enumerate(zip(components, values)):
vec = vec * m
p2.add(f"PC {i+1}", [0,vec[0]], [0,vec[1]], mode="lines")
ax, ay = (vec / sum(vec**2)**.5) * 3
p2.add_annotation(f"{m:.2f}", vec[0], vec[1])
p3 = Plot("", "PCA on X", "")
p3.add("Points", *(points.T), color=p3.color(4, alpha=.4))
# Add the normal principle components
components, values = pca(points)
values /= np.sum(values)
for i,(vec,m) in enumerate(zip(components, values)):
vec = vec * m
p3.add(f"PC {i+1}", [0,vec[0]], [0,vec[1]], mode="lines")
ax, ay = (vec / sum(vec**2)**.5) * 3
p3.add_annotation(f"{m:.2f}", vec[0], vec[1])
if BIG_PLOTS:
if display: p1.plot(file_name="source_func.html", show=False)
if display: p2.plot(append=True, x_range=[-8,8], y_range=[-5,5])
else:
# Make the plots (with manual ranges)
p1 = p1.plot(html=False, show_legend=False)
p2 = p2.plot(html=False, x_range=[-1,1], y_range=[-1,1], show_legend=False)
p3 = p3.plot(html=False, x_range=[-1,1], y_range=[-1,1], show_legend=False)
# Generate the multiplot of the two side-by-side figures
if display: multiplot([p1,p2,p3], height=126, width=650, append=True)
if display: print("-"*70)
def _test_effect(display=False):
if display:
print()
print("-"*70)
print("Begin tests for 'effect'")
a = {"a":.4, "b":.1, "c":.5, "d":.0}
b = {"a":.1, "b":.3, "c":.5, "d":.1}
c = {"a":.0, "b":.0, "c":.0, "d":1.}
assert(.3 == categorical_diff(a, b))
assert(1. == categorical_diff(a, c))
assert(.9 == categorical_diff(b, c))
a = ['a','a','a','a','b','b','b','b']
b = ['a','a','b','b','b','a','a','b']
c = ['a','a','a','b','b','a','a','a']
assert(0. == effect(a,b))
assert(0. == effect(a,c))
# assert((4/6 + 3/6 + 0/6 + 0/6)/4 == effect(b, c))
a = list(range(1000))
b = list(range(1000))
assert(effect(a,b) == 1.0)
b = np.random.random(size=(1000,))
assert(effect(a,b) < .1)
a = ['a', 'a', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'b', 'a', 'a', 'a', 'c', 'a', 'c', 'a', 'c', 'a', 'c']
b = [890.79, 1048.97, 658.43, 659.39, 722.0, 723.34, 1040.76, 1058.02, 1177.0, 1170.94, 415.56, 462.03, 389.09, 676.82, 688.49, 735.56, 552.58, 1127.29, 1146.42, 1251.12]
assert(0.0 == effect(a,b) - 0.5264043528589452)
if display: print("-"*70)
def _test_epdf_diff(display=False):
if display:
print()
print("-"*70)
print("Begin tests for 'epdf_diff'")
# ----------------------------------------------------------------
def demo(seq):
if display:
print('~'*70)
print(len(seq), seq)
print()
total = 0
for vals in edf_pair_gen(seq):
total += vals[-1]
if display: print("[% 4s, % 3s] (%.2f) --"%vals, round(total,3))
if display:
print('~'*70)
print()
demo( [0] + list(range(9)) )
demo( sorted(np.random.random(size=(10,))) )
demo( list(range(9)) + [8] )
# ----------------------------------------------------------------
# a = [1, 1, 3, 3, 5, 6]
# b = [0, 1, 2, 3, 4]
#
n = 100
if display:
print(f"a = [0,100] ({n} samples)")
print(f"b = [v + d for v in a]")
print()
for d in (.0, .01, .1, .5, .55, .9, 1., 1.5):
a = [v / n for v in list(range(n+1))]
b = [v+d for v in a]
if display: print(f"d = {d:.2f} a~b = {epdf_diff(a,b):.2f} b~a = {epdf_diff(b,a):.2f} a~a = {epdf_diff(a,a):.2f} b~b = {epdf_diff(b,b):.2f}")
if display: print()
for d in (.0, .01, .1, .5, .55, .9, 1., 1.5):
# Generate a random sequence.
a = sorted((np.random.random(size=(10,))))
b = sorted((np.random.random(size=(1000,)) + d))
diff = epdf_diff(a, b)
if display:
print(f"d = {d:.2f}","",
"[%.2f, %.2f]"%(min(a),max(a)), "[%.2f, %.2f]"%(min(b),max(b)),"",
diff
)
if display: print()
# ----------------------------------------------------------------
from util.plot import Plot
# Generate a random sequence.
a = sorted((np.random.random(size=(2000,))))
b = sorted((np.random.random(size=(2000,))))
p = Plot("Empirical PDF Diff Test")
p1 = pdf_fit(a, smooth=0.00001)
p2 = pdf_fit(b, smooth=0.00001)
p.add_func("a", p1, p1()) #(-.5,2))
p.add_func("b", p2, p2()) #(-.5,2))
if display: p.show(show=False, y_range=[-.5,1.5])
p = Plot("Empirical CDF Diff Test")
p1 = cdf_fit(a)
p2 = cdf_fit(b)
p.add_func("a", p1, p1()) #(-.5,2))
p.add_func("b", p2, p2()) #(-.5,2))
if display: p.show(append=True)
# ----------------------------------------------------------------
if display: print("-"*70)
def _test_fit_funcs(display=False):
if display:
print()
print("-"*70)
print("Begin tests for 'fit_funcs'")
from util.plot import Plot
# ==============================================
# Test the fit functions and smoothing
# ==============================================
# Make data
smooth = .1
data = np.random.normal(size=(1000,))
# data[:len(data)//2] += 2
min_max = (min(data) - .1, max(data) + .1)
if display:
print()
print("(min, max) : (%.2f, %.2f)"%(min_max))
print("Normal confidence: %.2f%%"%(100*normal_confidence(data)))
print()
# Make PDF fits
pfit = pdf_fit(data)
smooth_pfit = pdf_fit(data, smooth=smooth)
# Make CDF fits
cfit = cdf_fit(data)
stdev = .05 * (cfit.max - cfit.min)
smooth_cfit = gauss_smooth(cfit, stdev)
stdev = smooth * (cfit.max - cfit.min)
smoother_cfit = gauss_smooth(cfit, stdev)
# Make PDF plots
p = Plot()
p.add_func("PDF", pfit, min_max)
# Make smooth PDF
p.add_func("Smooth PDF", smooth_pfit, min_max)
if display: p.show(show=False)
# Make CDF plots
p = Plot()
p.add_func("CDF", cfit, min_max)
# Make CDF whose derivative is the default PDF.
p.add_func("CDF for default PDF", smooth_cfit, min_max)
# Make smoother cdf.
p.add_func("Smooth CDF", smoother_cfit, min_max)
if display: p.show(append=True)
# Make an animation transitioning between two normal distributions.
np.random.seed(0)
d1 = np.random.normal(0, .5, size=(500,))
d2 = np.random.normal(3, 1, size=(500,))
f1 = cdf_fit(d1, smooth=.1)
f2 = cdf_fit(d2, smooth=.1)
p = Plot()
for w in np.linspace(0,1,21):
w = round(w,2)
f3 = w*f1 + (1-w)*f2
p.add_func("0, 1/2", f1, f1(), frame=w)
p.add_func("3, 1", f2, f2(), frame=w)
p.add_func("weighted sum", f3, f3(), frame=w)
if display: p.show(bounce=True, append=True)
if display: print()
if display: print("-"*70)
def _test_samples(display=True, test_correctness=False):
from util.math import Fraction
from util.plot import Plot
if display:
for size in tuple(range(2,43,5))+(128, 129, 256, 257):
p = Plot(f"Error at x with {size} samples")
for confidence in (Fraction(9,10), Fraction(185,200),
Fraction(95,100), Fraction(97,100),
Fraction(99,100)):
f = lambda x: samples(size=size, confidence=confidence, at=x)
p.add_func(f"{confidence} confidence", f, [0, 1])
p.show(append=True, show=(size==2))
exit()
if display:
print()
print("-"*70)
print("Begin tests for 'samples'")
print()
key_values = [
(11, Fraction(3,10), Fraction(95,100)),
(25, Fraction(2,10), Fraction(95,100)),
(97, Fraction(1,10), Fraction(95,100)),
(385, Fraction(5,100), Fraction(95,100)),
(9604, Fraction(1,100), Fraction(95,100)),
(19, Fraction(3,10), Fraction(99,100)),
(42, Fraction(2,10), Fraction(99,100)),
(166, Fraction(1,10), Fraction(99,100)),
(664, Fraction(5,100), Fraction(99,100)),
(16588, Fraction(1,100), Fraction(99,100)),
(33733, Fraction(1,10), Fraction(999,1000)),
(134930, Fraction(5,100), Fraction(999,1000)),
(3373242, Fraction(1,100), Fraction(999,1000)),
]
if display: print("samples (max error, confidence)")
for (s, e,c) in key_values[:-3]:
needed = samples(error=e, confidence=c)
if display:
print("needed: ",needed)
print("%6d (%2.0f%%, %2.0f%%)"%(needed,100*e,100*c))
# if (s != None): assert(needed == s)
if display:
print()
for n in (10, 25, 90, 350, 9000):
print(f"With {n:4d} samples we are 95% confident in max CDF error <=",
round(samples(n, confidence=.95), 1 if n < 350 else 2))
print()
for n in (20, 40, 160, 660, 16000):
print(f"With {n:5d} samples we are 99% confident in max CDF error <=",
round(samples(n, confidence=.99), 1 if n < 600 else 2))
print("-"*70)
if test_correctness:
# Generate a random CDF
from util import random
from util.plot import Plot
TESTS = 10000
DIFFS = 100
N = 100
fit = "linear"
truth = random.cdf(nodes=5, fit=fit)
max_error = samples(N, confidence=.99)
if display: print("Largest expected error:", max_error)
mid_error = []
errors = {(1/100):[], (1/4):[], (1/3):[], (1/2):[]}
max_errors = []
mean_failed = []
for i in range(TESTS):
sample = truth.inverse(np.random.random((N,)))
guess = cdf_fit(sample, fit=fit)
diff = truth - guess
diff_func = lambda x: abs(truth(x) - guess(x))
diffs = diff_func(np.linspace(0,1,DIFFS))
mean_failed += [sum(diffs > max_error)]
if display: print(f"Failed: {mean_failed[-1]:4d} {sum(mean_failed)/len(mean_failed):.0f}")
max_errors.append(diff)
for v in errors: errors[v].append(truth(v) - guess(v))
# if (diff > max_error):
# print(i, N, diff, max_error)
# p = Plot()
# p.add_func("Truth", truth, truth())
# p.add_func("Guess", guess, guess())
# p.add_func("Error", diff_func, truth())
# p.show(show=False)
# p = Plot()
# p.add_func("Truth Inverse", truth.inverse, (0.,1.))
# p.add_func("Guess Inverse", guess.inverse, (0.,1.))
# p.show(show=False, append=True)
# break
total_failed = sum(e > max_error for e in max_errors)
if display or (total_failed > 0):
print(f"Failed {total_failed} out of {TESTS}, or {100*total_failed/TESTS:.1f}%.")
p = Plot()
# Add the distribution of maximum errors.
f = cdf_fit(max_errors)
p.add_func(f"{len(max_errors)} max errors", f, f())
# Add the distribution of errors at different values.
for v in sorted(errors)[::-1]:
mean = np.mean(errors[v])
std = | np.std(errors[v]) | numpy.std |
# Author: <NAME>
# Date: 20 July 2019
# Project: RoadBuddy
import json
import oauth2
import threading
import datetime
import cherrypy
import warnings
import webbrowser
import numpy as np
from math import factorial
from fitbit.api import Fitbit
def golay_smoothing(y, window_size, order=2, deriv=0, rate=1):
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
order_range = range(order+1)
half_window = (window_size -1) // 2
# Precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# Pad the signal at the extremes with values taken from the signal itself
firstvals = y[0] - | np.abs( y[1:half_window+1][::-1] - y[0]) | numpy.abs |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
'''
:py:mod:`k2.py` - Main mission routines
---------------------------------------
Implements several routines specific to the `K2` mission.
'''
from __future__ import division, print_function, absolute_import, \
unicode_literals
from . import sysrem
from .utils import *
from ...config import EVEREST_SRC, EVEREST_DAT, EVEREST_DEV, MAST_ROOT, \
EVEREST_MAJOR_MINOR
from ...utils import DataContainer, sort_like, AP_COLLAPSED_PIXEL, \
AP_SATURATED_PIXEL
from ...mathutils import SavGol, Interpolate, Scatter, Downbin
try:
import pyfits
except ImportError:
try:
import astropy.io.fits as pyfits
except ImportError:
raise Exception('Please install the `pyfits` package.')
import matplotlib.pyplot as pl
from matplotlib.ticker import ScalarFormatter, MaxNLocator
import k2plr as kplr
kplr_client = kplr.API()
from k2plr.config import KPLR_ROOT
import numpy as np
import george
from tempfile import NamedTemporaryFile
import random
import os
import sys
import shutil
import time
import logging
log = logging.getLogger(__name__)
__all__ = ['Setup', 'Season', 'Breakpoints', 'GetData', 'GetNeighbors',
'Statistics', 'TargetDirectory', 'HasShortCadence', 'DVSFile',
'InjectionStatistics', 'HDUCards', 'CSVFile', 'FITSFile', 'FITSUrl',
'CDPP', 'GetTargetCBVs', 'FitCBVs', 'PlanetStatistics',
'StatsToCSV']
def Setup():
'''
Called when the code is installed. Sets up directories and downloads
the K2 catalog.
'''
if not os.path.exists(os.path.join(EVEREST_DAT, 'k2', 'cbv')):
os.makedirs(os.path.join(EVEREST_DAT, 'k2', 'cbv'))
GetK2Stars(clobber=False)
def Season(EPIC, **kwargs):
'''
Returns the campaign number for a given EPIC target.
'''
return Campaign(EPIC, **kwargs)
def Breakpoints(EPIC, season=None, cadence='lc', **kwargs):
'''
Returns the location of the breakpoints for a given target.
:param int EPIC: The EPIC ID number
:param str cadence: The light curve cadence. Default `lc`
.. note :: The number corresponding to a given breakpoint is the number \
of cadences *since the beginning of the campaign*.
'''
# Get the campaign number
if season is None:
campaign = Season(EPIC)
if hasattr(campaign, '__len__'):
raise AttributeError(
"Please choose a campaign/season for this target: %s."
% campaign)
else:
campaign = season
# Select LC or SC
if cadence == 'lc':
breakpoints = {
0: [665], # OK
1: [2210], # OK
2: [2042], # OK
3: [2140], # OK
4: [520, 2153], # OK
5: [1774], # OK
6: [2143], # OK
7: [1192, 2319], # OK
8: [1950], # OK
91: [],
92: [],
101: [], # NO DATA
102: [], # NO BREAKPOINT
111: [],
112: [],
12: [1900], # OK
13: [2157], # OK
14: [1950], # OK
15: [2150], # OK
16: [1945], # OK
17: [1640], # OK
18: [] # Short campaign
}
elif cadence == 'sc':
breakpoints = {
0: np.array([3753, 11259, 15012, 18765, 60048, # OK
63801, 67554, 71307, 75060, 78815,
82566, 86319, 90072, 93825, 97578,
101331, 105084, 108837]),
1: np.array([8044, 12066, 16088, 20135, 24132, 28154, # OK
32176, 36198, 40220, 44242, 48264, 52286,
56308, 60330, 64352, 68374, 72396, 76418,
80440, 84462, 88509, 92506, 96528, 100550,
104572, 108594, 112616, 116638]),
2: np.array(np.linspace(0, 115680, 31)[1:-1], dtype=int), # OK
3: np.array([3316, 6772, 10158, 13694, 16930, 20316, # OK
23702, 27088, 30474, 33860, 37246, 40632,
44018, 47404, 50790, 54176, 57562, 60948,
64334, 67720, 71106, 74492, 77878, 81264,
84650, 88036, 91422, 94808, 98194]),
4: np.array(np.linspace(0, 101580, 31)[1:-1], dtype=int), # OK
5: np.array([3663, 7326, 10989, 14652, 18315, 21978, # OK
25641, 29304, 32967, 36630, 40293, 43956,
47619, 51282, 54945, 58608, 62271, 65934,
69597, 73260, 76923, 80646, 84249, 87912,
91575, 95238, 98901, 102564, 106227]),
6: np.array(np.linspace(0, 115890, 31)[1:-1], dtype=int), # OK
7: np.array(np.linspace(0, 121290, 31)[1:-1], dtype=int), # OK
# Unclear
8: np.array(np.linspace(0, 115590, 31)[1:-1], dtype=int),
91: [],
92: [],
101: [],
102: [],
111: [],
112: [],
12: [],
13: [],
14: [],
15: [],
16: [],
17: [],
18: []
}
else:
raise ValueError("Invalid value for the cadence.")
# Return
if campaign in breakpoints:
return breakpoints[campaign]
else:
return None
def CDPP(flux, mask=[], cadence='lc'):
'''
Compute the proxy 6-hr CDPP metric.
:param array_like flux: The flux array to compute the CDPP for
:param array_like mask: The indices to be masked
:param str cadence: The light curve cadence. Default `lc`
'''
# 13 cadences is 6.5 hours
rmswin = 13
# Smooth the data on a 2 day timescale
svgwin = 49
# If short cadence, need to downbin
if cadence == 'sc':
newsize = len(flux) // 30
flux = Downbin(flux, newsize, operation='mean')
flux_savgol = SavGol(np.delete(flux, mask), win=svgwin)
if len(flux_savgol):
return Scatter(flux_savgol / np.nanmedian(flux_savgol),
remove_outliers=True, win=rmswin)
else:
return np.nan
def GetData(EPIC, season=None, cadence='lc', clobber=False, delete_raw=False,
aperture_name='k2sff_15', saturated_aperture_name='k2sff_19',
max_pixels=75, download_only=False, saturation_tolerance=-0.1,
bad_bits=[1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17],
get_hires=True,
get_nearby=True, **kwargs):
'''
Returns a :py:obj:`DataContainer` instance with the
raw data for the target.
:param int EPIC: The EPIC ID number
:param int season: The observing season (campaign). Default :py:obj:`None`
:param str cadence: The light curve cadence. Default `lc`
:param bool clobber: Overwrite existing files? Default :py:obj:`False`
:param bool delete_raw: Delete the FITS TPF after processing it? \
Default :py:obj:`False`
:param str aperture_name: The name of the aperture to use. Select \
`custom` to call :py:func:`GetCustomAperture`. Default `k2sff_15`
:param str saturated_aperture_name: The name of the aperture to use if \
the target is saturated. Default `k2sff_19`
:param int max_pixels: Maximum number of pixels in the TPF. Default 75
:param bool download_only: Download raw TPF and return? Default \
:py:obj:`False`
:param float saturation_tolerance: Target is considered saturated \
if flux is within this fraction of the pixel well depth. \
Default -0.1
:param array_like bad_bits: Flagged :py:obj`QUALITY` bits to consider \
outliers when computing the model. \
Default `[1,2,3,4,5,6,7,8,9,11,12,13,14,16,17]`
:param bool get_hires: Download a high resolution image of the target? \
Default :py:obj:`True`
:param bool get_nearby: Retrieve location of nearby sources? \
Default :py:obj:`True`
'''
# Campaign no.
if season is None:
campaign = Season(EPIC)
if hasattr(campaign, '__len__'):
raise AttributeError(
"Please choose a campaign/season for this target: %s."
% campaign)
else:
campaign = season
# Is there short cadence data available for this target?
# DEBUG: Disabling short cadence for now!
short_cadence = False #HasShortCadence(EPIC, season=campaign)
if cadence == 'sc' and not short_cadence:
raise ValueError("Short cadence data not available for this target.")
# Local file name
filename = os.path.join(EVEREST_DAT, 'k2', 'c%02d' % campaign,
('%09d' % EPIC)[:4] + '00000', ('%09d' % EPIC)[4:],
'data.npz')
# Download?
if clobber or not os.path.exists(filename):
# Get the TPF
tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files',
str(EPIC), 'ktwo%09d-c%02d_lpd-targ.fits.gz'
% (EPIC, campaign))
sc_tpf = os.path.join(KPLR_ROOT, 'data', 'k2', 'target_pixel_files',
str(EPIC), 'ktwo%09d-c%02d_spd-targ.fits.gz'
% (EPIC, campaign))
if clobber or not os.path.exists(tpf):
# DEBUG: Disabling short cadence for now!
kplr_client.k2_star(EPIC).get_target_pixel_files(fetch=True,
short_cadence=False)
with pyfits.open(tpf) as f:
qdata = f[1].data
# Get the TPF aperture
tpf_aperture = (f[2].data & 2) // 2
# Get the enlarged TPF aperture
tpf_big_aperture = np.array(tpf_aperture)
for i in range(tpf_big_aperture.shape[0]):
for j in range(tpf_big_aperture.shape[1]):
if f[2].data[i][j] == 1:
for n in [(i - 1, j), (i + 1, j),
(i, j - 1), (i, j + 1)]:
if n[0] >= 0 and n[0] < tpf_big_aperture.shape[0]:
if n[1] >= 0 and n[1] < \
tpf_big_aperture.shape[1]:
if tpf_aperture[n[0]][n[1]] == 1:
tpf_big_aperture[i][j] = 1
# Is there short cadence data?
if short_cadence:
with pyfits.open(sc_tpf) as f:
sc_qdata = f[1].data
# Get K2SFF apertures
try:
k2sff = kplr.K2SFF(EPIC, sci_campaign=campaign)
k2sff_apertures = k2sff.apertures
if delete_raw:
os.remove(k2sff._file)
except:
k2sff_apertures = [None for i in range(20)]
# Make a dict of all our apertures
# We're not getting K2SFF apertures 0-9 any more
apertures = {'tpf': tpf_aperture, 'tpf_big': tpf_big_aperture}
for i in range(10, 20):
apertures.update({'k2sff_%02d' % i: k2sff_apertures[i]})
# Get the header info
fitsheader = [pyfits.getheader(tpf, 0).cards,
pyfits.getheader(tpf, 1).cards,
pyfits.getheader(tpf, 2).cards]
if short_cadence:
sc_fitsheader = [pyfits.getheader(sc_tpf, 0).cards,
pyfits.getheader(sc_tpf, 1).cards,
pyfits.getheader(sc_tpf, 2).cards]
else:
sc_fitsheader = None
# Get a hi res image of the target
if get_hires:
hires = GetHiResImage(EPIC)
else:
hires = None
# Get nearby sources
if get_nearby:
nearby = GetSources(EPIC)
else:
nearby = []
# Delete?
if delete_raw:
os.remove(tpf)
if short_cadence:
os.remove(sc_tpf)
# Get the arrays
cadn = np.array(qdata.field('CADENCENO'), dtype='int32')
time = np.array(qdata.field('TIME'), dtype='float64')
fpix = np.array(qdata.field('FLUX'), dtype='float64')
fpix_err = np.array(qdata.field('FLUX_ERR'), dtype='float64')
qual = np.array(qdata.field('QUALITY'), dtype=int)
# Get rid of NaNs in the time array by interpolating
naninds = np.where(np.isnan(time))
time = Interpolate(np.arange(0, len(time)), naninds, time)
# Get the motion vectors (if available!)
pc1 = np.array(qdata.field('POS_CORR1'), dtype='float64')
pc2 = np.array(qdata.field('POS_CORR2'), dtype='float64')
if not np.all(np.isnan(pc1)) and not np.all(np.isnan(pc2)):
pc1 = Interpolate(time, np.where(np.isnan(pc1)), pc1)
pc2 = Interpolate(time, np.where( | np.isnan(pc2) | numpy.isnan |
import pandas as pd
import random
from sklearn import preprocessing
from sklearn import decomposition
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import svm
from sklearn import feature_selection
from sklearn import model_selection
from sklearn import metrics
from sklearn import tree
from sklearn import linear_model
import numpy as np
def tradaboost(trans_S, trans_A, label_S, label_A, test, N):
trans_data = np.concatenate((trans_A, trans_S), axis=0)
trans_label = np.concatenate((label_A, label_S), axis=0)
row_A = trans_A.shape[0]
row_S = trans_S.shape[0]
row_T = test.shape[0]
test_data = np.concatenate((trans_data, test), axis=0)
weights_A = np.ones([row_A, 1]) / row_A
weights_S = np.ones([row_S, 1]) / row_S
weights = np.concatenate((weights_A, weights_S), axis=0)
bata = 1 / (1 + np.sqrt(2 * np.log(row_A / N)))
bata_T = np.zeros([1, N])
result_label = np.ones([row_A + row_S + row_T, N])
predict = np.zeros([row_T])
print('params initial finished.')
trans_data = np.asarray(trans_data, order='C')
trans_label = np.asarray(trans_label, order='C')
test_data = np.asarray(test_data, order='C')
print(trans_data.shape, trans_label.shape)
for i in range(N):
P = calculate_P(weights, trans_label)
result_label[:, i] = train_classify(trans_data, trans_label, test_data, P)
print('result:', result_label[:, i], row_A, row_S, i, result_label.shape)
error_rate = calculate_error_rate(label_S, result_label[row_A:row_A + row_S, i],weights[row_A:row_A + row_S, :])
print('Error rate:', error_rate)
if error_rate > 0.5:
error_rate = 0.5
if error_rate == 0:
N = i
break
bata_T[0, i] = error_rate / (1 - error_rate)
print(bata_T)
for j in range(row_S):
weights[row_A + j] = weights[row_A + j] * np.power(bata_T[0, i],(-np.abs(result_label[row_A + j, i] - label_S[j])))
for j in range(row_A):
weights[j] = weights[j] * np.power(bata, np.abs(result_label[j, i] - label_A[j]))
for i in range(row_T):
left = np.sum(result_label[row_A + row_S + i, int(np.ceil(N / 2)):N] * np.log(1 / bata_T[0, int(np.ceil(N / 2)):N]))
right = 0.5 * np.sum(np.log(1 / bata_T[0, int(np.ceil(N / 2)):N]))
if left >= right:
predict[i] = 1
else:
predict[i] = 0
return predict
def calculate_P(weights, label):
total = np.sum(weights)
return np.asarray(weights / total, order='C')
def train_classify(trans_data, trans_label, test_data, P):
clf = linear_model.SGDClassifier()
# print(trans_label)
clf.fit(trans_data, trans_label, sample_weight=P[:, 0])
pred = clf.predict(test_data)
# for i in range(len(pred)):
# if(abs(pred[i]-101)>=abs(pred[i]-112)):
# pred[i] = 1
# else:
# pred[i] = 0
return pred
def calculate_error_rate(label_R, label_H, weight):
total = np.sum(weight)
# print(weight[:] / total)
# print(np.abs(label_R - label_H))
return np.sum(weight[:, 0] / total * | np.abs(label_R - label_H) | numpy.abs |
import argparse
import numpy as np
from elmoformanylangs import Embedder
import keras
from keras import optimizers
from keras.callbacks import EarlyStopping, ModelCheckpoint
from keras.preprocessing.sequence import pad_sequences
from keras.models import Model
from keras.layers import LSTM, Dense, Embedding, Bidirectional, TimeDistributed
from keras.layers import Bidirectional, concatenate, SpatialDropout1D, GlobalMaxPooling1D, Input, add
from seqeval.metrics import precision_score, recall_score, f1_score, classification_report
from sklearn.metrics import classification_report as classrep
# Defining arguments
parser = argparse.ArgumentParser(description='Train and evaluate a named entity model e.g. for de-identification. Clinical DeID.')
parser.add_argument('--path_train', type=str,
help='Path to the CoNLL formated training file.')
parser.add_argument('--path_test', type=str,
help='Path to the CoNLL formated test file.')
parser.add_argument('--mode', type=str,
help='Select if you want to perform a -multiclass- or -binary- entity recognition task.')
args = parser.parse_args()
path_train = args.path_train
path_test = args.path_test
mode = args.mode
# Defining the training and test data
#path_train = 'data/deid_surrogate_train_all_version2.conll'
#path_test = 'data/deid_surrogate_test_all_groundtruth_version2.conll'
# Create data set
def create_dataset(path, max_len=0):
letters = []
letter = []
labels = []
label = []
tags = []
words = []
print('Extracting the text...')
with open(path, 'r') as f:
for line in f:
line = line.split('\t')
if len(line) > 1:
if mode == 'binary':
if line[1].strip() == 'O':
label.append('O')
tags.append('O')
else:
label.append('PHI')
tags.append('PHI')
else:
label.append(line[1].strip())
tags.append(line[1].strip())
letter.append(line[0].strip())
words.append(line[0].strip())
else:
letters.append(letter)
labels.append(label)
label = []
letter = []
print("Amount of words:")
print(len(words))
words = list(set(words))
tags = list(set(tags))
if max_len != 0:
max_len = max_len
else:
max_len = max([len(s) for s in letters])
word2idx = {w: i + 2 for i, w in enumerate(words)}
word2idx["UNK"] = 1
word2idx["PAD"] = 0
tag2idx = {t: i for i, t in enumerate(tags)}
print(tag2idx)
y = [[tag2idx[w] for w in s] for s in labels]
y = pad_sequences(maxlen=max_len, sequences=y, padding="post", value=tag2idx["O"])
new_X = []
for seq in letters:
new_seq = []
for i in range(max_len):
try:
new_seq.append(seq[i])
except:
new_seq.append("__PAD__")
new_X.append(new_seq)
X = new_X
print("Lenght of X:")
print(len(X))
return X, y, letters, words, max_len, tag2idx, tags
X_train, y_tr, letters_train, words_train, max_len, tag2idx, tags = create_dataset(path_train)
X_test, y_te, letters_test, _, _, _, _ = create_dataset(path_test, max_len=max_len)
print('Generating train ELMo embeddings...')
e = Embedder('configs/elmo')
elmos_tr = e.sents2elmo(X_train)
X_tr = np.array(elmos_tr)
np.save('embeddings/elmo_train',X_tr)
X_tr = np.load('embeddings/elmo_train.npy')
print('Generating test ELMo embeddings...')
elmos_te = e.sents2elmo(X_test)
X_te = np.array(elmos_te)
np.save('embeddings/elmo_test',X_te)
X_te = np.load('embeddings/elmo_test.npy')
# Creating character data set
def create_char_dataset(data, words, max_len):
max_len_char = 15
print('Generating character embeddings...')
chars = set([w_i for w in words for w_i in w])
n_chars = len(chars)
char2idx = {c: i + 2 for i, c in enumerate(chars)}
char2idx["UNK"] = 1
char2idx["PAD"] = 0
X_char = []
for letter in data:
sent_seq = []
for i in range(max_len):
word_seq = []
for j in range(max_len_char):
try:
word_seq.append(char2idx.get(letter[i][j]))
except:
word_seq.append(char2idx.get("PAD"))
sent_seq.append(word_seq)
X_char.append(np.array(sent_seq))
return X_char, max_len_char, n_chars
X_char_tr, max_len_char, n_chars = create_char_dataset(letters_train, words_train, max_len)
X_char_te, _, _ = create_char_dataset(letters_test, words_train, max_len)
idx2tag = {i: w for w, i in tag2idx.items()}
print('Training the model')
data_dim = 1024
timesteps = max_len
num_classes = len(tags)
batch_size = 128
epochs = 100
print(f"timesteps: {timesteps}")
print(f"num_classes: {num_classes}")
print(f"batch_size: {batch_size}")
print(f"X_char_tr.shape: {np.array(X_char_tr).shape}")
print(f"max_len_char: {max_len_char}")
print(f"len(y_tr): {len(y_tr)}")
print(f"max_len: {max_len}")
print(f"X_tr.shape: {X_tr.shape}")
word_in = Input(shape=(max_len,))
# Input and embedding for words
word_input = Input(shape=(timesteps,data_dim))
# input and embeddings for characters
char_in = Input(shape=(max_len, max_len_char,))
emb_char = TimeDistributed(Embedding(input_dim=n_chars + 2, output_dim=24,
input_length=max_len_char, mask_zero=True))(char_in)
# character LSTM to get word encodings by characters
char_enc = TimeDistributed(LSTM(units=64, return_sequences=False,
recurrent_dropout=0.5))(emb_char)
# main LSTM
x = concatenate([word_input, char_enc])
x = SpatialDropout1D(0.3)(x)
x = Bidirectional(LSTM(units=50, return_sequences=True,
recurrent_dropout=0.1))(x)
out = TimeDistributed(Dense(num_classes, activation="softmax"))(x)
model = Model([word_input, char_in], out)
model.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy", metrics=["acc"])
# Set callback functions to early stop training and save the best model so far
callbacks = [EarlyStopping(monitor='val_loss', patience=10),
ModelCheckpoint(filepath='models/best_model_lstm_elmo.h5', monitor='val_loss', save_best_only=True)]
print(model.summary())
history = model.fit([X_tr,
| np.array(X_char_tr) | numpy.array |
import numpy as np
import matplotlib.pyplot as plt
def volt(dBm):
return np.sqrt(50*1e-3*(10**(dBm/10)))
path = r'D:\data\20190718\155221_Qubit smart_two_tone2'
cavity_path = r'D:\data\20190718\155221_cavity smart_two_tone2'
data_name = path+path[16:]+r'.dat'
cavity_data_name = cavity_path+cavity_path[16:]+r'.dat'
data = np.loadtxt(data_name, unpack=True)
cavity_data = np.loadtxt(cavity_data_name, unpack=True)
n = 5
power= np.array_split(data[0],n)
freq = np.array_split(data[1],n)[0]
absol = np.array_split(data[4],n)
cavity_absol = np.array_split(cavity_data[2],n)
cavity_freq = | np.array_split(cavity_data[1],n) | numpy.array_split |
# Project: AttractionRepulsionModel
# Filename: arm.py
# Authors: <NAME> (<EMAIL>).
"""
arm: An agent-based model of ideological polarization utilizing both attractive
and repulsive interactions.
"""
import math
import numpy as np
from tqdm import trange
def arm(N=100, D=1, E=[0.1], T=0.25, R=0.25, K=math.inf, S=500000, P=0, \
shock=(None, None), init='norm', seed=None, silent=False):
"""
Execute a simulation of the Attraction-Repulsion Model.
Inputs:
N (int): number of agents
D (int): number of ideological dimensions
E ([float]): list of exposures
T (float): tolerance
R (float): responsiveness
K (float): steepness of stochastic attraction-repulsion
S (int): number of steps to simulate
P (float): self-interest probability
shock ((float, float)): external shock step and strength
init (str): 'norm' for Gaussian normal initialization, 'emp' for empirical
seed (int): random seed
silent (bool): True if progress should be shown on command line
Returns (init_config, config, history):
init_config: N x D array of initial agent ideological positions
config: N x D array of agent ideological positions after S steps
history: S x (D + 2) array detailing interaction history
"""
# Initialize the random number generation.
rng = np.random.default_rng(seed)
# Initialize the agent population and their initial ideological positions.
if init == 'norm':
if D == 1:
config = np.zeros(N)
for i in np.arange(N):
while True:
config[i] = rng.normal(0.5, 0.2)
if 0 <= config[i] and config[i] <= 1:
break
config = config.reshape(-1, 1)
else: # Higher dimensions.
means, covs = 0.5 + | np.zeros(D) | numpy.zeros |
import os
import pickle
import numpy as np
import matplotlib.pyplot as plt
from training_flags import FLAGS
import tensorflow as tf
from data_readers.bair_predictions_data_reader import BairPredictionsDataReader
from action_inference.action_inference_model import action_inference_model
from training_flags import FLAGS
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input
from tensorflow.python.keras import backend as K
from data_readers.bair_data_reader import BairDataReader
from sklearn.metrics import r2_score
SMALL_SIZE = 20
MEDIUM_SIZE =24
BIGGER_SIZE = 40
LINEWIDTH = 4.0
color_mean = ['orangered', 'mediumvioletred', 'teal', 'gold', 'mediumblue']
color_shading = ['lightpink', 'thistle', 'paleturquoise', 'lemonchiffon', 'azure']
def plot_mean_and_CI(mean, standard_deviation, n_samples, color_mean=None, color_shading=None, labels=None,
start=2, end=30, step=1, linestyle='solid', linewidth=4.0):
z = 1.96 # for 95% confidence interval
ub = z * (standard_deviation / np.sqrt(n_samples)) # + mean
lb = z * (standard_deviation / np.sqrt(n_samples)) # + mean
# plt.fill_between(range(start, end, step), ub, lb, color=color_shading, alpha=.5)
# plt.plot(range(start, end, step), mean, color_mean, label=labels, linestyle=linestyle, linewidth=linewidth)
plt.errorbar(x=range(start, end, step),
y=mean,
yerr=[lb, ub],
color=color_mean,
label=labels,
linestyle=linestyle,
linewidth=linewidth)
def configure_plt():
plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
def make_plots_action_inference(model_list, results_dir, n_samples=256, vertical_sub_plots=False):
configure_plt()
if not os.path.isdir(results_dir + '/plots'):
os.makedirs(results_dir + '/plots', exist_ok=True)
avg_r2_list = np.zeros(len(model_list))
avg_l1_list = np.zeros(len(model_list))
if vertical_sub_plots:
v_plots = 2
h_plots = 1
figsize = (12, 16)
bbox = (0.5, -0.4)
ncol = 3
else:
v_plots = 1
h_plots = 2
figsize = (34, 8)
bbox = (-0.1, -0.3)
ncol = 7
r2_fig, r2_ax = plt.subplots(v_plots, h_plots, figsize=figsize)
l1_fig, l1_ax = plt.subplots(v_plots, h_plots, figsize=figsize)
for i, model_name in enumerate(model_list):
if model_name == 'ours_savp':
labels = 'savp'
elif model_name == 'ours_vae':
labels = 'savp_vae'
else:
labels = model_name
inference_metrics_dir = os.path.join(results_dir, labels, 'inference_metrics.pickle')
if model_name == 'svg':
labels = 'svg-lp'
labels = labels.replace("_", "-")
# == R2
with open(inference_metrics_dir, 'rb') as f:
abs_diff_by_step_mean, abs_diff_by_step_std, avg_r2_by_step_x, avg_r2_by_step_y, avg_r2, avg_l1 = pickle.load(
f)
avg_r2_list[i] = avg_r2
avg_l1_list[i] = avg_l1
plt.sca(r2_ax[0])
plt.plot(range(3, 27 + 3 - 1, 2), avg_r2_by_step_x[1::2], label=labels.upper(), color=color_mean[i],
linewidth=LINEWIDTH)
plt.scatter(range(3, 27 + 3 - 1, 2), avg_r2_by_step_x[1::2], color=color_mean[i], s=60)
plt.plot(range(2, 27 + 2, 2), avg_r2_by_step_x[::2], linestyle='dashed', color=color_mean[i],
linewidth=LINEWIDTH)
plt.scatter(range(2, 27 + 2, 2), avg_r2_by_step_x[::2], color=color_mean[i], s=60)
plt.sca(r2_ax[1])
plt.plot(range(3, 27 + 3 - 1, 2), avg_r2_by_step_y[1::2], label=labels.upper(), color=color_mean[i],
linewidth=LINEWIDTH)
plt.scatter(range(3, 27 + 3 - 1, 2), avg_r2_by_step_y[1::2], color=color_mean[i], s=60)
plt.plot(range(2, 27 + 2, 2), avg_r2_by_step_y[::2], linestyle='dashed', color=color_mean[i],
linewidth=LINEWIDTH)
plt.scatter(range(2, 27 + 2, 2), avg_r2_by_step_y[::2], color=color_mean[i], s=60)
# == L1
plt.sca(l1_ax[0])
plot_mean_and_CI(abs_diff_by_step_mean[1::2, 0],
abs_diff_by_step_std[1::2, 0],
n_samples, color_mean[i], color_shading[i], labels.upper(), start=3, end=29, step=2)
plot_mean_and_CI(abs_diff_by_step_mean[::2, 0],
abs_diff_by_step_std[::2, 0],
n_samples, color_mean[i], color_shading[i], start=2, end=29, step=2, linestyle='dashed')
plt.sca(l1_ax[1])
plot_mean_and_CI(abs_diff_by_step_mean[1::2, 1],
abs_diff_by_step_std[1::2, 1],
n_samples, color_mean[i], color_shading[i], labels.upper(), start=3, end=29, step=2)
plot_mean_and_CI(abs_diff_by_step_mean[::2, 1],
abs_diff_by_step_std[::2, 1],
n_samples, color_mean[i], color_shading[i], start=2, end=29, step=2, linestyle='dashed')
# ===== R2 L1 table
r2_string = [str(avg_r2_list[i]) for i in range(len(model_list))]
l1_string = [str(avg_l1_list[i]) for i in range(len(model_list))]
table_fig = plt.figure(figsize=(10, 15))
plt.figure(table_fig.number)
collabel = ['Model', 'R2 score', 'L1 score']
plt.axis('tight')
plt.axis('off')
names = model_list
names = names[:len(model_list)] # assuming model_list has the order above
the_table = plt.table(
cellText=np.stack([np.array(names), np.array(r2_string), np.array(l1_string)], axis=0).transpose(),
colLabels=collabel,
loc='center',
cellLoc='center',
colWidths=[0.5, 0.5, 0.5])
plt.savefig(os.path.join(results_dir, 'plots', 'r2_l1.eps'), format='eps')
plt.savefig(os.path.join(results_dir, 'plots', 'r2_l1.png'), format='png')
# ===== R2
plt.sca(r2_ax[0])
plt.title(r'Average $R^{2}$ on the x axis')
plt.xlabel('Time Step')
plt.ylabel('Average $R^{2}$')
plt.ylim(-0.2, 1)
plt.xticks(range(0, 31, 2))
plt.yticks(np.arange(-0.2, 1.0, 0.2))
plt.axvline(x=12, zorder=-1, color='darkblue')
plt.axhline(y=0, zorder=-1, color='black', linewidth=0.7)
plt.grid()
plt.sca(r2_ax[1])
plt.title(r'Average $R^{2}$ on the y axis')
plt.xlabel('Time Step')
plt.ylabel('Average $R^{2}$')
plt.ylim(-0.2, 1)
plt.xticks(range(0, 31, 2))
plt.yticks(np.arange(-0.2, 1.0, 0.2))
plt.axvline(x=12, zorder=-1, color='darkblue')
plt.axhline(y=0, zorder=-1, color='black', linewidth=0.7)
plt.plot(range(1), -10, color='black', linestyle='solid', label='odd time steps', linewidth=LINEWIDTH)
plt.plot(range(1), -10, color='black', linestyle='dashed', label='even time steps', linewidth=LINEWIDTH)
plt.grid()
plt.figure(r2_fig.number)
lgd = plt.legend(shadow=True, fancybox=True, loc='lower center',
bbox_to_anchor=bbox, ncol=ncol)
plt.subplots_adjust(hspace=0.25)
plt.savefig(os.path.join(results_dir, 'plots', 'r2.eps'), format='eps',
bbox_extra_artists=(lgd,), bbox_inches='tight')
plt.savefig(os.path.join(results_dir, 'plots', 'r2.png'), format='png',
bbox_extra_artists=(lgd,), bbox_inches='tight')
# ===== L1
plt.sca(l1_ax[0])
plt.title(r'Average MAE on the x axis')
plt.xlabel('Time Step')
plt.ylabel('Average MAE')
plt.xticks(range(0, 31, 2))
plt.axvline(x=12, zorder=-1, color='darkblue')
plt.grid()
plt.ylim(0.0, None)
plt.sca(l1_ax[1])
plt.title(r'Average MAE on the y axis')
plt.xlabel('Time Step')
plt.ylabel('Average MAE')
plt.xticks(range(0, 31, 2))
plt.axvline(x=12, zorder=-1, color='darkblue')
plt.grid()
plt.ylim(0.0, None)
plt.plot(range(1), -10, color='black', linestyle='solid', label='odd time steps', linewidth=LINEWIDTH)
plt.plot(range(1), -10, color='black', linestyle='dashed', label='even time steps', linewidth=LINEWIDTH)
plt.figure(l1_fig.number)
lgd = plt.legend(shadow=True, fancybox=True, loc='lower center',
bbox_to_anchor=bbox, ncol=ncol)
plt.subplots_adjust(hspace=0.25)
plt.savefig(os.path.join(results_dir, 'plots', 'l1.eps'), format='eps',
bbox_extra_artists=(lgd,), bbox_inches='tight')
plt.savefig(os.path.join(results_dir, 'plots', 'l1.png'), format='png',
bbox_extra_artists=(lgd,), bbox_inches='tight')
def make_plots_vp_metrics(model_list, results_dir, n_samples=256, vertical_sub_plots=False):
configure_plt()
if not os.path.isdir(results_dir + '/plots'):
os.makedirs(results_dir + '/plots', exist_ok=True)
if vertical_sub_plots:
v_plots = 2
h_plots = 1
figsize = (12, 12)
bbox = (0.5, -0.4)
ncol = 3
else:
v_plots = 1
h_plots = 2
figsize = (34, 8)
bbox = (-0.1, -0.3)
ncol = 7
fvd_list = np.zeros(len(model_list))
psnr_ssim_fig, psnr_ssim_ax = plt.subplots(v_plots, h_plots, figsize=figsize)
for i, model_name in enumerate(model_list):
if model_name == 'ours_savp':
labels = 'savp'
elif model_name == 'ours_vae':
labels = 'savp_vae'
else:
labels = model_name
metrics_dir = os.path.join(results_dir, labels, 'metrics.pickle')
if model_name == 'svg':
labels = 'svg-lp'
labels = labels.replace("_", "-")
# ===== existing metrics
with open(metrics_dir, 'rb') as f:
psnr_mean, psnr_standard_dev, ssim_mean, ssim_standard_dev, fvd_val = pickle.load(f)
# plot PSNR the data
plt.sca(psnr_ssim_ax[0])
plot_mean_and_CI(psnr_mean, psnr_standard_dev, n_samples, color_mean[i], color_shading[i], labels.upper())
# plot SSIM the data
plt.sca(psnr_ssim_ax[1])
plot_mean_and_CI(ssim_mean, ssim_standard_dev, n_samples, color_mean[i], color_shading[i], labels.upper())
fvd_list[i] = fvd_val
# ===== FVD table
fvd_string = [str(fvd_list[i]) for i in range(len(model_list))]
table_fig = plt.figure(figsize=(10, 15))
plt.figure(table_fig.number)
collabel = ['Model', 'FVD Score']
plt.axis('tight')
plt.axis('off')
names = model_list
names = names[:len(model_list)] # assuming model_list has the order above
the_table = plt.table(cellText=np.stack([np.array(names), np.array(fvd_string)], axis=0).transpose(),
colLabels=collabel,
loc='center',
cellLoc='center',
colWidths=[0.5, 0.5])
plt.savefig(os.path.join(results_dir, 'plots', 'fvd.eps'), format='eps')
plt.savefig(os.path.join(results_dir, 'plots', 'fvd.png'), format='png')
# ===== PSNR & SSIM
plt.sca(psnr_ssim_ax[0])
plt.title('Average PSNR by prediction step')
plt.xlabel('Time Step')
plt.ylabel('Average PSNR')
plt.xticks(range(0, 31, 2))
plt.grid()
plt.axvline(x=12, zorder=-1, color='darkblue')
plt.sca(psnr_ssim_ax[1])
plt.title('Average SSIM by prediction step')
plt.xlabel('Time Step')
plt.ylabel('Average SSIM')
plt.xticks(range(0, 31, 2))
plt.grid()
lgd = plt.legend(shadow=True, fancybox=True, loc='lower center',
bbox_to_anchor=bbox, ncol=ncol)
plt.axvline(x=12, zorder=-1, color='darkblue')
plt.figure(psnr_ssim_fig.number)
plt.subplots_adjust(hspace=0.35)
plt.savefig(os.path.join(results_dir, 'plots', 'psnr_ssim.eps'), format='eps',
bbox_extra_artists=(lgd,), bbox_inches='tight')
plt.savefig(os.path.join(results_dir, 'plots', 'psnr_ssim.png'), format='png',
bbox_extra_artists=(lgd,), bbox_inches='tight')
def make_plots_regressions(model_list, results_dir, inference_models_dir, n_samples=256, vertical_sub_plots=False):
FLAGS.batch_size = 1
FLAGS.train_val_split = 0.0
FLAGS.sequence_length_test = 28
sequence_length = FLAGS.sequence_length_test
if vertical_sub_plots:
v_plots = 2
h_plots = 1
figsize = (12, 12)
bbox = (0.5, -0.4)
ncol = 3
else:
v_plots = 1
h_plots = 2
figsize = (34, 8)
bbox = (-0.1, -0.3)
ncol = 7
configure_plt()
all_pred_seq = {name: | np.zeros([n_samples, sequence_length - 1, 2]) | numpy.zeros |
#-*- codeing=utf-8 -*-
#@time: 2020/7/13 20:21
#@Author: <NAME>
import numpy as np # deal with data
import pandas as pd # deal with data
import re # regular expression
from bs4 import BeautifulSoup # resolver review
from nltk.corpus import stopwords # Import the stop word list
from gensim.models import word2vec# use word2Vec(skip-gram model) making wordfeature vetor
from sklearn.model_selection import train_test_split # use trian data split train and test data
import torch
from torch.utils.data import Dataset,TensorDataset
import torch.nn as nn
from tqdm import tqdm
from run_model.classifier import model
from collections import Counter
from imblearn.over_sampling import SMOTE
from sklearn import metrics
def review_to_wordlist(review,remove_stop_words=False):
#1.remove HIML
reivew_text=BeautifulSoup(review,'lxml').get_text()
#2.Remove non-latters
latters_only=re.sub("[^a-zA-Z]",' ',reivew_text)
#3.Convert to lower case,split into individual words
words=latters_only.lower().split()
#4.Remove stop words
if remove_stop_words:
stop=set(stopwords.words('english'))
words=[w for w in words if not w in stop]
#5. reutrn a list of words
return words
# make features vector by each words
def makeFeatureVec(words,model,num_features):
featureVec = np.zeros((num_features,), dtype="float32")
nwords=0
index2word_set = set(model.wv.index2word) #get name
for word in words:
if word in index2word_set: # if word in index2word and get it's feature
nwords+=1
featureVec=np.add(featureVec,model[word])
if nwords == 0:
pass
else:
featureVec= | np.divide(featureVec,nwords) | numpy.divide |
# Utility Functions
# Authors: <NAME>
# Edited by: <NAME>
'''
Used by the user to define channels that are hard coded for analysis.
'''
# Imports necessary for this function
import numpy as np
import re
from itertools import combinations
def splitpatient(patient):
stringtest = patient.find('seiz')
if stringtest == -1:
stringtest = patient.find('sz')
if stringtest == -1:
stringtest = patient.find('aw')
if stringtest == -1:
stringtest = patient.find('aslp')
if stringtest == -1:
stringtest = patient.find('_')
if stringtest == -1:
print("Not sz, seiz, aslp, or aw! Please add additional naming possibilities, or tell data gatherers to rename datasets.")
else:
pat_id = patient[0:stringtest]
seiz_id = patient[stringtest:]
# remove any underscores
pat_id = re.sub('_', '', pat_id)
seiz_id = re.sub('_', '', seiz_id)
return pat_id, seiz_id
def returnindices(pat_id, seiz_id=None):
included_indices, onsetelecs, clinresult = returnnihindices(
pat_id, seiz_id)
if included_indices.size == 0:
included_indices, onsetelecs, clinresult = returnlaindices(
pat_id, seiz_id)
if included_indices.size == 0:
included_indices, onsetelecs, clinresult = returnummcindices(
pat_id, seiz_id)
if included_indices.size == 0:
included_indices, onsetelecs, clinresult = returnjhuindices(
pat_id, seiz_id)
if included_indices.size == 0:
included_indices, onsetelecs, clinresult = returntngindices(
pat_id, seiz_id)
return included_indices, onsetelecs, clinresult
def returntngindices(pat_id, seiz_id):
included_indices = np.array([])
onsetelecs = None
clinresult = -1
if pat_id == 'id001ac':
# included_indices = np.concatenate((np.arange(0,4), np.arange(5,55),
# np.arange(56,77), np.arange(78,80)))
included_indices = np.array([0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13,
15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48,
49, 50, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68,
69, 70, 71, 72, 73, 74, 75, 76, 78, 79])
elif pat_id == 'id002cj':
# included_indices = np.array(np.arange(0,184))
included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
30, 31, 32, 33, 34, 35, 36, 37, 38,
45, 46, 47, 48, 49, 50, 51, 52, 53,
60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89,
90, 91, 92, 93, 100, 101, 102, 103, 104, 105,
106, 107, 108, 115, 116, 117, 118, 119,
120, 121, 122, 123, 129, 130, 131, 132, 133,
134, 135, 136, 137,
# np.arange(143, 156)
143, 144, 145, 146, 147,
148, 149, 150, 151, 157, 158, 159, 160, 161,
162, 163, 164, 165, 171, 172, 173, 174, 175,
176, 177, 178, 179, 180, 181, 182])
elif pat_id == 'id003cm':
included_indices = np.concatenate((np.arange(0,13), np.arange(25,37),
np.arange(40,50), np.arange(55,69), np.arange(70,79)))
elif pat_id == 'id004cv':
# removed OC'10, SC'5, CC'14/15
included_indices = np.concatenate((np.arange(0,23), np.arange(25,39),
np.arange(40,59), np.arange(60,110)))
elif pat_id == 'id005et':
included_indices = np.concatenate((np.arange(0,39), np.arange(39,47),
np.arange(52,62), np.arange(62,87)))
elif pat_id == 'id006fb':
included_indices = np.concatenate((np.arange(10,19), np.arange(40,50),
np.arange(115,123)))
elif pat_id == 'id008gc':
included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93,
94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111])
elif pat_id == 'id009il':
included_indices = np.concatenate((np.arange(0,10), np.arange(10,152)))
elif pat_id == 'id010js':
included_indices = np.concatenate((np.arange(0,14),
np.arange(15,29), np.arange(30,42), np.arange(43,52),
np.arange(53,65), np.arange(66,75), np.arange(76,80),
np.arange(81,85), np.arange(86,94), np.arange(95,98),
np.arange(99,111),
np.arange(112,124)))
elif pat_id == 'id011ml':
included_indices = np.concatenate((np.arange(0,18), np.arange(21,68),
np.arange(69,82), np.arange(82,125)))
elif pat_id == 'id012pc':
included_indices = np.concatenate((np.arange(0,4), np.arange(9,17),
np.arange(18,28), np.arange(31,41), np.arange(44,56),
np.arange(57,69), np.arange(70,82), np.arange(83,96),
np.arange(97,153)))
elif pat_id == 'id013pg':
included_indices = np.array([2, 3, 4, 5, 15, 18, 19, 20, 21, 23, 24,
25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 50, 51, 52, 53, 54, 55, 56,
57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75,
76, 77, 78])
elif pat_id == 'id014rb':
included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129,
130, 131, 132, 133, 135, 136, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164])
elif pat_id == 'id015sf':
included_indices = np.concatenate((np.arange(0,37), np.arange(38,77),
np.arange(78,121)))
return included_indices, onsetelecs, clinresult
def returnnihindices(pat_id, seiz_id):
included_indices = np.array([])
onsetelecs = None
clinresult = -1
if pat_id == 'pt1':
included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43),
np.arange(45, 69), np.arange(71, 95)))
onsetelecs = set(['ATT1', 'ATT2', 'AD1', 'AD2', 'AD3', 'AD4',
'PD1', 'PD2', 'PD3', 'PD4'])
resectelecs = set(['ATT1', 'ATT2', 'ATT3', 'ATT4', 'ATT5', 'ATT6', 'ATT7', 'ATT8',
'AST1', 'AST2', 'AST3', 'AST4',
'PST1', 'PST2', 'PST3', 'PST4',
'AD1', 'AD2', 'AD3', 'AD4',
'PD1', 'PD2', 'PD3', 'PD4',
'PLT5', 'PLT6', 'SLT1'])
clinresult = 1
elif pat_id == 'pt2':
# [1:14 16:19 21:25 27:37 43 44 47:74]
included_indices = np.concatenate((np.arange(0, 14), np.arange(15, 19),
np.arange(
20, 25), np.arange(
26, 37), np.arange(
42, 44),
np.arange(46, 74)))
onsetelecs = set(['MST1', 'PST1', 'AST1', 'TT1'])
resectelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT6', 'TT6',
'G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G12', 'G18', 'G19',
'G20', 'G26', 'G27',
'AST1', 'AST2', 'AST3', 'AST4',
'MST1', 'MST2', 'MST3', 'MST4'])
clinresult = 1
elif pat_id == 'pt3':
# [1:19 21:37 42:43 46:69 71:107]
included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37),
np.arange(41, 43), np.arange(45, 69), np.arange(70, 107)))
onsetelecs = set(['SFP1', 'SFP2', 'SFP3',
'IFP1', 'IFP2', 'IFP3',
'MFP2', 'MFP3',
'OF1', 'OF2', 'OF3', 'OF4'])
resectelecs = set(['FG1', 'FG2', 'FG9', 'FG10', 'FG17', 'FG18', 'FG25',
'SFP1', 'SFP2', 'SFP3', 'SFP4', 'SFP5', 'SFP6', 'SFP7', 'SFP8',
'MFP1', 'MFP2', 'MFP3', 'MFP4', 'MFP5', 'MFP6',
'IFP1', 'IFP2', 'IFP3', 'IFP4',
'OF3', 'OF4'])
clinresult = 1
elif pat_id == 'pt4':
# [1:19 21:37 42:43 46:69 71:107]
included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26),
np.arange(28, 36)))
onsetelecs = set([])
resectelecs = set([])
clinresult = -1
elif pat_id == 'pt5':
included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26),
np.arange(28, 36)))
onsetelecs = set([])
resectelecs = set([])
clinresult = -1
elif pat_id == 'pt6':
# [1:36 42:43 46 52:56 58:71 73:95]
included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43),
np.arange(45, 46), np.arange(51, 56), np.arange(57, 71), np.arange(72, 95)))
onsetelecs = set(['LA1', 'LA2', 'LA3', 'LA4',
'LAH1', 'LAH2', 'LAH3', 'LAH4',
'LPH1', 'LPH2', 'LPH3', 'LPH4'])
resectelecs = set(['LALT1', 'LALT2', 'LALT3', 'LALT4', 'LALT5', 'LALT6',
'LAST1', 'LAST2', 'LAST3', 'LAST4',
'LA1', 'LA2', 'LA3', 'LA4', 'LPST4',
'LAH1', 'LAH2', 'LAH3', 'LAH4',
'LPH1', 'LPH2'])
clinresult = 2
elif pat_id == 'pt7':
# [1:17 19:35 37:38 41:62 67:109]
included_indices = np.concatenate((np.arange(0, 17), np.arange(18, 35),
np.arange(36, 38), np.arange(40, 62), np.arange(66, 109)))
onsetelecs = set(['MFP1', 'LFP3',
'PT2', 'PT3', 'PT4', 'PT5',
'MT2', 'MT3',
'AT3', 'AT4',
'G29', 'G30', 'G39', 'G40', 'G45', 'G46'])
resectelecs = set(['G28', 'G29', 'G30', 'G36', 'G37', 'G38', 'G39',
'G41', 'G44', 'G45', 'G46',
'LFP1', 'LFP2', 'LSF3', 'LSF4'])
clinresult = 3
elif pat_id == 'pt8':
# [1:19 21 23 30:37 39:40 43:64 71:76]
included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 21),
np.arange(
22, 23), np.arange(
29, 37), np.arange(
38, 40),
np.arange(42, 64), np.arange(70, 76)))
onsetelecs = set(['G19', 'G23', 'G29', 'G30', 'G31',
'TO6', 'TO5',
'MST3', 'MST4',
'O8', 'O9'])
resectelecs = set(['G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31',
'MST2', 'MST3', 'MST4', 'PST2', 'PST3', 'PST4'])
clinresult = 1
elif pat_id == 'pt10':
# [1:3 5:19 21:35 48:69]
included_indices = np.concatenate((np.arange(0, 3), np.arange(4, 19),
np.arange(20, 35), | np.arange(47, 69) | numpy.arange |
#-*- coding: utf-8 -*-
import numpy as n, random, os, sys, time
from scipy.io import wavfile as w
tfoo=time.time()
H=n.hstack
V=n.vstack
f_a = 44100. # Hz, frequência de amostragem
############## 2.2.1 Tabela de busca (LUT)
Lambda_tilde=Lt=1024.*16
# Senoide
fooXY=n.linspace(0,2*n.pi,Lt,endpoint=False)
S_i=n.sin(fooXY) # um período da senóide com T amostras
# Quadrada:
Q_i=n.hstack( ( n.ones(Lt/2)*-1 , n.ones(Lt/2) ) )
# Triangular:
foo=n.linspace(-1,1,Lt/2,endpoint=False)
Tr_i=n.hstack( ( foo , foo*-1 ) )
# Dente de Serra:
D_i=n.linspace(-1,1,Lt)
def v(f=220,d=2.,tab=S_i,fv=2.,nu=2.,tabv=S_i):
if nu==13.789987:
return n.zeros(int(fa*d))
Lambda=n.floor(f_a*d)
ii=n.arange(Lambda)
Lv=float(len(tabv))
Gammav_i=n.floor((ii*fv*Lv)/f_a) # índices para a LUT
Gammav_i=n.array(Gammav_i,n.int)
# padrão de variação do vibrato para cada amostra
Tv_i=tabv[Gammav_i%int(Lv)]
# frequência em Hz em cada amostra
F_i=f*( 2.**( Tv_i*nu/12. ) )
# a movimentação na tabela por amostra
D_gamma_i=F_i*(Lt/float(f_a))
Gamma_i=n.cumsum(D_gamma_i) # a movimentação na tabela total
Gamma_i=n.floor( Gamma_i) # já os índices
Gamma_i=n.array( Gamma_i, dtype=n.int) # já os índices
return tab[Gamma_i%int(Lt)] # busca dos índices na tabela
def A(fa=2.,V_dB=10.,d=2.,taba=S_i):
# Use com: v(d=XXX)*A(d=XXX)
Lambda=n.floor(f_a*d)
ii=n.arange(Lambda)
Lt=float(len(taba))
Gammaa_i=n.floor(ii*fa*Lt/f_a) # índices para a LUT
Gammaa_i=n.array(Gammaa_i,n.int)
# variação da amplitude em cada amostra
A_i=taba[Gammaa_i%int(Lt)]
A_i=1+A_i*(1- 10.**(V_dB/20.))
return A_i
def adsr(som,A=10.,D=20.,S=-20.,R=100.,xi=1e-2):
"""Envelope ADSR com
A ataque em milissegundos,
D decay em milissegundos
S sustain, com número de decibéis a menos
R Release em milisegundos
Atenção para que a duração total é dada pelo som em si
e que a duração do trecho em sustain é a diferença
entre a duração total e as durações das partes ADR."""
a_S=10**(S/20.)
Lambda=len(som)
Lambda_A=int(A*f_a*0.001)
Lambda_D=int(D*f_a*0.001)
Lambda_R=int(R*f_a*0.001)
Lambda_S=Lambda - Lambda_A - Lambda_D - Lambda_R
ii=n.arange(Lambda_A,dtype=n.float)
A=ii/(Lambda_A-1)
A_i=A # ok
ii=n.arange(Lambda_A,Lambda_D+Lambda_A,dtype=n.float)
D=1-(1-a_S)*( ( ii-Lambda_A )/( Lambda_D-1) )
A_i=n.hstack( (A_i, D ) )
S=n.ones(Lambda-Lambda_R-(Lambda_A+Lambda_D),dtype=n.float)*a_S
A_i=n.hstack( ( A_i, S ) )
ii=n.arange(Lambda-Lambda_R,Lambda,dtype=n.float)
R=a_S-a_S*((ii-(Lambda-Lambda_R))/(Lambda_R-1))
A_i=n.hstack( (A_i,R) )
return som*A_i
triadeM=[0.,4.,7.]
def ac(f=220.,notas=[0.,4.,7.,12.],tab=Q_i,d=2.,nu=0,fv=2.):
acorde=adsr(v(tab=tab,d=d,f=f*2.**(notas[-1]/12.),nu=nu,fv=fv))
for na in notas[:-1]:
acorde+=adsr(v(tab=tab,d=d,f=f*2**(na/12.),nu=nu,fv=fv))
return acorde*10
def N(arr,xx=1.):
r=arr
r = (((r-r.min())/(r.max()-r.min()))*2-1)*xx
return n.int16(r * float(2**15-1))
def NN(arr):
return 2*((arr-arr.min())/(arr.max()-arr.min()))-1
vozes="f3,f2,f1,f5,m5,m1,m3".split(",")
def fala(frase="Semicondutor livre",ss=160):
arq=frase.split()[0]
#os.system("espeak -vpt-pt+%s -w%s.wav -g110 -p99 -s110 -b=1 '%s'"%(random.sample(vozes,1)[0],arq,frase))
os.system(u"espeak -vpt-pt+%s -w%s.wav -p99 -b=1 '%s' -s%i"%(random.sample(vozes,1)[0],arq,frase,ss))
#os.system(u"espeak "+ frase +(u" -vpt-pt+%s -w%s.wav -p99 -b=1 -s%i"%(random.sample(vozes,1)[0],arq,ss)))
#os.system("espeak -vpt-pt+%s -w%s.wav -g110 -p99 -s130 -b=1 '%s'"%(random.sample(vozes,1)[0],arq,frase))
ff=w.read("%s.wav"%(arq,))[1]
ff_=n.fft.fft(ff)
s=ff2=n.fft.ifft( n.hstack((ff_,n.zeros(len(ff_)) )) ).real
sc_aud=((s-s.min())/(s.max()-s.min()))*2.-1.
return sc_aud*10
####
# ruidos
Lambda = 100000 # Lambda sempre par
# diferença das frequências entre coeficiêntes vizinhos:
df = f_a/float(Lambda)
coefs = n.exp(1j*n.random.uniform(0, 2*n.pi, Lambda))
# real par, imaginaria impar
coefs[Lambda/2+1:] = n.real(coefs[1:Lambda/2])[::-1] - 1j * \
n.imag(coefs[1:Lambda/2])[::-1]
coefs[0] = 0. # sem bias
coefs[Lambda/2] = 1. # freq max eh real simplesmente
# as frequências relativas a cada coeficiente
# acima de Lambda/2 nao vale
fi = n.arange(coefs.shape[0])*df
f0 = 15. # iniciamos o ruido em 15 Hz
i0 = n.floor(f0/df) # primeiro coef a valer
coefs[:i0] = n.zeros(i0)
f0 = fi[i0]
# obtenção do ruído em suas amostras temporais
ruido = n.fft.ifft(coefs)
r = n.real(ruido)
r = ((r-r.min())/(r.max()-r.min()))*2-1
rb=r
r = n.int16(r * float(2**15-1))
w.write('branco.wav', f_a, r)
fator = 10.**(-6/20.)
alphai = fator**(n.log2(fi[i0:]/f0))
c = n.copy(coefs)
c[i0:] = c[i0:]*alphai
# real par, imaginaria impar
c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * \
n.imag(c[1:Lambda/2])[::-1]
# realizando amostras temporais do ruído marrom
ruido = n.fft.ifft(c)
r = n.real(ruido)
r = ((r-r.min())/(r.max()-r.min()))*2-1
rm=r
r = n.int16(r * float(2**15-1))
w.write('marrom.wav', f_a, r)
### 2.53 Ruído azul
# para cada oitava, ganhamos 3dB
fator = 10.**(3/20.)
alphai = fator**(n.log2(fi[i0:]/f0))
c = n.copy(coefs)
c[i0:] = c[i0:]*alphai
# real par, imaginaria impar
c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * \
n.imag(c[1:Lambda/2])[::-1]
# realizando amostras temporais do ruído azul
ruido = n.fft.ifft(c)
r = n.real(ruido)
r = ((r-r.min())/(r.max()-r.min()))*2-1
ra=r
r = n.int16(r * float(2**15-1))
w.write('azul.wav', f_a, r)
### 2.54 Ruido violeta
# a cada oitava, ganhamos 6dB
fator = 10.**(6/20.)
alphai = fator**(n.log2(fi[i0:]/f0))
c = n.copy(coefs)
c[i0:] = c[i0:]*alphai
# real par, imaginaria impar
c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * \
n.imag(c[1:Lambda/2])[::-1]
ruido = n.fft.ifft(c)
r = n.real(ruido)
r = ((r-r.min())/(r.max()-r.min()))*2-1
rv=r
r = n.int16(r * float(2**15-1))
w.write('violeta.wav', f_a, r)
### 2.51 Ruído rosa
# a cada oitava, perde-se 3dB
fator = 10.**(-3/20.)
alphai = fator**(n.log2(fi[i0:]/f0))
c = n.copy(coefs)
c[i0:] = coefs[i0:]*alphai
# real par, imaginaria impar
c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * \
n.imag(c[1:Lambda/2])[::-1]
ruido = n.fft.ifft(c)
r = n.real(ruido)
r = ((r-r.min())/(r.max()-r.min()))*2-1
rr=r
r = n.int16(r * float(2**15-1))
w.write('rosa.wav', f_a, r)
fator = 10.**(-9/20.)
alphai = fator**(n.log2(fi[i0:]/f0))
c = n.copy(coefs)
c[i0:] = c[i0:]*alphai
# real par, imaginaria impar
c[Lambda/2+1:] = n.real(c[1:Lambda/2])[::-1] - 1j * \
n.imag(c[1:Lambda/2])[::-1]
# realizando amostras temporais do ruído marrom
ruido = n.fft.ifft(c)
r = n.real(ruido)
r = ((r-r.min())/(r.max()-r.min()))*2-1
rp=r
r = n.int16(r * float(2**15-1))
w.write('preto.wav', f_a, r)
#w.write('respira.wav', f_a, N(H((
# rr[:int(f_a*.5)],
# rm[:int(f_a*.5)],
# rr[:int(f_a*.5)],
# rm[:int(f_a*.5)],
# rr[:int(f_a*.5)],
# rm[:int(f_a*.5)],
# ))))
#
#w.write('respira2.wav', f_a, N(H((
# rp[:int(f_a*.5)],
# rm[:int(f_a*.5)],
# rp[:int(f_a*.5)],
# rm[:int(f_a*.5)],
# rp[:int(f_a*.5)],
# rm[:int(f_a*.5)],
# ))))
#
#
#w.write('respira3.wav', f_a, N(H((
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# 5.*adsr(rm[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# 5.*adsr(rm[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# 5.*adsr(rm[:int(f_a*.5)],S=-.5,A=360.),
# ))))
#
#
#w.write('respira4.wav', f_a, N(H((
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rb[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rb[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rb[:int(f_a*.5)],S=-.5,A=360.),
# ))))
#
#
#w.write('respira5.wav', f_a, N(H((
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rv[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rv[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rr[:int(f_a*.5)],S=-.5,A=360.),
# adsr(rv[:int(f_a*.5)],S=-.5,A=360.),
# ))))
#
#
#w.write('respira6.wav', f_a, N(H((
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rr[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# adsr(rv[:int(f_a*.2)],S=-.5,A=160.,R=10.),
# ))))
#
#
#f0=110.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=v(f=ff,d=4.,nu=0.)*a_
#
#w.write('pisca.wav', f_a, N(H((
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# ))))
#
#
#
#f0=1100.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=v(f=ff,d=4.,nu=0.)*a_
#
#w.write('pisca2.wav', f_a, N(H((
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# ))))
#
#
#
#f0=11000.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=v(f=ff,d=4.,nu=0.)*a_
#
#w.write('pisca3.wav', f_a, N(H((
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# ))))
#
#
#
#f0=410.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=adsr(v(f=ff,d=4.,nu=0.)*a_,S=-5.)
#
#w.write('pisca4.wav', f_a, N(H((
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# s[:f_a/2], n.zeros(f_a/2),
# ))))
##### PISCA TTMPPC
#f0=110.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=v(f=ff,d=4.,nu=0.)*a_
#
#w.write('pisca_.wav', f_a, N(H((
# s[:f_a/8], n.zeros(f_a/2),
# ))))
#
#
#
#f0=1100.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=v(f=ff,d=4.,nu=0.)*a_
#
#w.write('pisca2_.wav', f_a, N(H((
# s[:f_a/8], n.zeros(f_a/2),
# ))))
#
#
#
#f0=11000.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=v(f=ff,d=4.,nu=0.)*a_
#
#w.write('pisca3_.wav', f_a, N(H((
# s[:f_a/8], n.zeros(f_a/2),
# ))))
#
#
#
#f0=410.
#s=n.zeros(4*f_a)
#kk=(2*n.pi/10)*2. # uma volta
#aa=20. # 10. dB
#for i in xrange(10): # 10 harmonicas
# ff=f0*(1+i)
# n_oitavas=n.log2(ff/f0)
# a_=10.**((n_oitavas*(-25.+aa*n.cos(kk*i))/20.))
# s+=adsr(v(f=ff,d=4.,nu=0.)*a_,S=-5.)
#
#w.write('pisca4_.wav', f_a, N(H((
# s[:f_a/8], n.zeros(f_a/2),
# ))))
#
##### END TTMPPC
w.write('comendo6.wav', f_a, N(fala("O melhor que voce faz com a sua boca, eh servir de toca, para outra cabessa. Nao que voce meressa, esta oportunidade, que vem com a idade, de se curtir em mim.",ss=3500)))
w.write('comendo7.wav', f_a, N(fala("Diga aonde voce vai, que eu vou varrendo, diga aonda voce vai, que eu vou varrendo. Vou varrendo, vou varrendo vou varrendo. Vou varrendo, vou varrendo, vou varrendo.",ss=3500)))
#
#
#w.write('comendo.wav', f_a, N(fala("mahnamnahamhahamnahamhanhamnanhnahamha")))
#w.write('comendo2.wav', f_a, N(fala("manamnaamaamnaamanamnannaama")))
#w.write('comendo3.wav', f_a, N(fala("mnmnmmnmnmnnnm")))
#w.write('comendo4.wav', f_a, N(fala("mnmnmm nmnm nn nmnmnmn")))
#w.write('comendo5.wav', f_a, N(fala("mnhmnhmm nhmhnm nn nhmhnmhnhmn")))
#
#
#w.write('chorando_.wav', f_a, N(fala("bbbbuaaa bbbbbuaaa bbbbuaaa bbbuaaa")))
#
#
#w.write('chorando_2.wav', f_a, N(fala("buaaa bbuaaa buaaa buaaa")))
#
#
#
#w.write('chorando_3.wav', f_a, N(fala("buaaa nheee ee ee nheeee e eeeee bbuaaa buaaa nheeeee eee eeeee buaaa")))
#
#
#w.write('chorando_4.wav', f_a, N(fala("buaaa nheee ee hhh hhh hhh ee nheeehhhh h hh hhe e eeeee bbuhhh h hh haaa buaaa nhhhh hhh eeeee eee hhhhhh h heeeee buaaa")))
#
w.write('coma.wav', f_a, N(H((
v(f=1000.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
v(f=1000.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
v(f=1000.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
v(f=1000.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
)),.3))
w.write('coma2.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.5), n.zeros(int(f_a*0.5)),
)),.3))
w.write('coma3.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=0.,d=0.1), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
)),.3))
w.write('coma4.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*0.1)), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*0.1)), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*0.1)), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*0.1)), v(f=1000.*2.*(3./2),nu=0.,d=0.3), n.zeros(int(f_a*1.5)),
)),.3))
w.write('coma5.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*1.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*1.5)),
)),.3))
w.write('coma6.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*2.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*2.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*2.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*2.5)),
)),.3))
w.write('coma7.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*3.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*3.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*3.5)),
v(f=1000.*2.*(3./2),nu=0.,d=0.1), n.zeros(int(f_a*3.5)),
)),.3))
w.write('coma8.wav', f_a, N(H((
v(f=1000.*2.*(3./2),nu=2.,d=0.1,tab=Tr_i), n.zeros(int(f_a*3.5)),
v(f=1000.*2.*(3./2),nu=2.,d=0.1,tab=Tr_i), n.zeros(int(f_a*3.5)),
v(f=1000.*2.*(3./2),nu=2.,d=0.1,tab=Tr_i), n.zeros(int(f_a*3.5)),
v(f=1000.*2.*(3./2),nu=2.,d=0.1,tab=Tr_i), n.zeros(int(f_a*3.5)),
)),.3))
w.write('respira7.wav', f_a, N(H((
adsr(rr[ :int(f_a*1.5)],S=-.5,A=360.),
5.*adsr(rm[:int(f_a*1.5)],S=-.5,A=360.),
adsr(rr[ :int(f_a*1.5)],S=-.5,A=360.),
5.*adsr(rm[:int(f_a*1.5)],S=-.5,A=360.),
adsr(rr[ :int(f_a*1.5)],S=-.5,A=360.),
5.*adsr(rm[:int(f_a*1.5)],S=-.5,A=360.),
))))
w.write('respira8.wav', f_a, N(H((
adsr(rr[ :int(f_a*2.5)],S=-.5,A=360.),
5.*adsr(rm[:int(f_a*2.5)],S=-.5,A=360.),
adsr(rr[ :int(f_a*2.5)],S=-.5,A=360.),
5.*adsr(rm[:int(f_a*2.5)],S=-.5,A=360.),
adsr(rr[ :int(f_a*2.5)],S=-.5,A=360.),
5.*adsr(rm[:int(f_a*2.5)],S=-.5,A=360.),
))))
w.write('respira9.wav', f_a, N(H((
adsr(rr[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rb[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(rr[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rb[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(rr[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rb[:int(f_a*2.5)],S=-.5,A=1160.),
))))
w.write('respira91.wav', f_a, N(H((
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rb[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rb[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rb[:int(f_a*2.5)],S=-.5,A=1160.),
))))
w.write('respira92.wav', f_a, N(H((
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rv[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rv[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rv[:int(f_a*2.5)],S=-.5,A=1160.),
))))
w.write('dormindo.wav', f_a, N(H((
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rv[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rv[:int(f_a*2.5)],S=-.5,A=1160.),
adsr(ra[ :int(f_a*2.5)],S=-.5,A=1160.),
adsr(rv[:int(f_a*2.5)],S=-.5,A=1160.),
))))
# arroto3 arroto6 arroto 9 92
w.write('dormindo2.wav', f_a, N(H((
adsr(ra,S=-.5,A=1760.),
adsr(rv,S=-.5,A=1760.),
adsr(ra,S=-.5,A=1760.),
adsr(rv,S=-.5,A=1760.),
adsr(ra,S=-.5,A=1760.),
adsr(rv,S=-.5,A=1760.),
))))
w.write('dormindo2.wav', f_a, N(H((
adsr(ra,S=-.5,A=1760.),
adsr(rv,S=-.5,A=1760.),
adsr(ra,S=-.5,A=1760.),
adsr(rv,S=-.5,A=1760.),
adsr(ra,S=-.5,A=1760.),
adsr(rv,S=-.5,A=1760.),
))))
ronco=H((
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
adsr(rp[:int(f_a*0.040)],A=3.,S=-3.,R=10.),
))
w.write('dormindo3.wav', f_a, N(H((
ronco,n.zeros(f_a),
ronco,n.zeros(f_a),
ronco,n.zeros(f_a),
ronco,n.zeros(f_a),
ronco,n.zeros(f_a),
))))
w.write('dormindo4.wav', f_a, N(H((
adsr(ra,S=-.5,A=1760.),ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),ronco,n.zeros(f_a),
adsr(ra,S=-.5,A=1760.),ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),ronco,n.zeros(f_a),
adsr(ra,S=-.5,A=1760.),ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),ronco,n.zeros(f_a),
))))
w.write('dormindo5.wav', f_a, N(H((
adsr(ra,S=-.5,A=1760.),10*ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),10*ronco,n.zeros(f_a),
adsr(ra,S=-.5,A=1760.),10*ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),10*ronco,n.zeros(f_a),
adsr(ra,S=-.5,A=1760.),10*ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),10*ronco,n.zeros(f_a),
))))
w.write('dormindo6.wav', f_a, N(H((
adsr(ra,S=-.5,A=1760.),5*ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),5*ronco,n.zeros(f_a),
adsr(ra,S=-.5,A=1760.),5*ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),5*ronco,n.zeros(f_a),
adsr(ra,S=-.5,A=1760.),5*ronco,n.zeros(f_a),
adsr(rv,S=-.5,A=1760.),5*ronco,n.zeros(f_a),
))))
w.write('dormindo7.wav', f_a, N(H((
adsr(ra,S=-.5,A=1760.)+H((n.zeros(len(ra)-len(ronco)),5*ronco)),n.zeros(f_a),
adsr(rv,S=-.5,A=1760.)+H((n.zeros(len(ra)-len(ronco)),5*ronco)),n.zeros(f_a),
adsr(ra,S=-.5,A=1760.)+H((n.zeros(len(ra)-len(ronco)),5*ronco)), | n.zeros(f_a) | numpy.zeros |
import time
import numpy as np
from openmdao.test.mpiunittest import MPITestCase
from openmdao.util.testutil import assert_rel_error
from openmdao.main.api import Assembly, Component, set_as_top
from openmdao.main.datatypes.api import Float, Array
from openmdao.main.mpiwrap import MPI, mpiprint, set_print_rank
from openmdao.lib.drivers.iterate import FixedPointIterator
from openmdao.lib.optproblems import sellar
class ABCDArrayComp(Component):
delay = Float(0.01, iotype='in')
def __init__(self, arr_size=9):
super(ABCDArrayComp, self).__init__()
self.add_trait('a', Array( | np.ones(arr_size, float) | numpy.ones |
""" Test functions for linalg module
"""
import os
import sys
import itertools
import traceback
import textwrap
import subprocess
import pytest
import numpy as np
from numpy import array, single, double, csingle, cdouble, dot, identity, matmul
from numpy import multiply, atleast_2d, inf, asarray
from numpy import linalg
from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_array_equal,
assert_almost_equal, assert_allclose, suppress_warnings,
assert_raises_regex, HAS_LAPACK64,
)
from numpy.testing._private.utils import requires_memory
def consistent_subclass(out, in_):
# For ndarray subclass input, our output should have the same subclass
# (non-ndarray input gets converted to ndarray).
return type(out) is (type(in_) if isinstance(in_, np.ndarray)
else np.ndarray)
old_assert_almost_equal = assert_almost_equal
def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
if asarray(a).dtype.type in (single, csingle):
decimal = single_decimal
else:
decimal = double_decimal
old_assert_almost_equal(a, b, decimal=decimal, **kw)
def get_real_dtype(dtype):
return {single: single, double: double,
csingle: single, cdouble: double}[dtype]
def get_complex_dtype(dtype):
return {single: csingle, double: cdouble,
csingle: csingle, cdouble: cdouble}[dtype]
def get_rtol(dtype):
# Choose a safe rtol
if dtype in (single, csingle):
return 1e-5
else:
return 1e-11
# used to categorize tests
all_tags = {
'square', 'nonsquare', 'hermitian', # mutually exclusive
'generalized', 'size-0', 'strided' # optional additions
}
class LinalgCase:
def __init__(self, name, a, b, tags=set()):
"""
A bundle of arguments to be passed to a test case, with an identifying
name, the operands a and b, and a set of tags to filter the tests
"""
assert_(isinstance(name, str))
self.name = name
self.a = a
self.b = b
self.tags = frozenset(tags) # prevent shared tags
def check(self, do):
"""
Run the function `do` on this test case, expanding arguments
"""
do(self.a, self.b, tags=self.tags)
def __repr__(self):
return f'<LinalgCase: {self.name}>'
def apply_tag(tag, cases):
"""
Add the given tag (a string) to each of the cases (a list of LinalgCase
objects)
"""
assert tag in all_tags, "Invalid tag"
for case in cases:
case.tags = case.tags | {tag}
return cases
#
# Base test cases
#
np.random.seed(1234)
CASES = []
# square test cases
CASES += apply_tag('square', [
LinalgCase("single",
array([[1., 2.], [3., 4.]], dtype=single),
array([2., 1.], dtype=single)),
LinalgCase("double",
array([[1., 2.], [3., 4.]], dtype=double),
array([2., 1.], dtype=double)),
LinalgCase("double_2",
array([[1., 2.], [3., 4.]], dtype=double),
array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
LinalgCase("csingle",
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
array([2. + 1j, 1. + 2j], dtype=csingle)),
LinalgCase("cdouble",
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
array([2. + 1j, 1. + 2j], dtype=cdouble)),
LinalgCase("cdouble_2",
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
LinalgCase("0x0",
np.empty((0, 0), dtype=double),
np.empty((0,), dtype=double),
tags={'size-0'}),
LinalgCase("8x8",
np.random.rand(8, 8),
np.random.rand(8)),
LinalgCase("1x1",
np.random.rand(1, 1),
np.random.rand(1)),
LinalgCase("nonarray",
[[1, 2], [3, 4]],
[2, 1]),
])
# non-square test-cases
CASES += apply_tag('nonsquare', [
LinalgCase("single_nsq_1",
array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
array([2., 1.], dtype=single)),
LinalgCase("single_nsq_2",
array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
array([2., 1., 3.], dtype=single)),
LinalgCase("double_nsq_1",
array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
array([2., 1.], dtype=double)),
LinalgCase("double_nsq_2",
array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
array([2., 1., 3.], dtype=double)),
LinalgCase("csingle_nsq_1",
array(
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
array([2. + 1j, 1. + 2j], dtype=csingle)),
LinalgCase("csingle_nsq_2",
array(
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
LinalgCase("cdouble_nsq_1",
array(
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
array([2. + 1j, 1. + 2j], dtype=cdouble)),
LinalgCase("cdouble_nsq_2",
array(
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
LinalgCase("cdouble_nsq_1_2",
array(
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
LinalgCase("cdouble_nsq_2_2",
array(
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
LinalgCase("8x11",
np.random.rand(8, 11),
np.random.rand(8)),
LinalgCase("1x5",
np.random.rand(1, 5),
np.random.rand(1)),
LinalgCase("5x1",
np.random.rand(5, 1),
np.random.rand(5)),
LinalgCase("0x4",
np.random.rand(0, 4),
np.random.rand(0),
tags={'size-0'}),
LinalgCase("4x0",
np.random.rand(4, 0),
np.random.rand(4),
tags={'size-0'}),
])
# hermitian test-cases
CASES += apply_tag('hermitian', [
LinalgCase("hsingle",
array([[1., 2.], [2., 1.]], dtype=single),
None),
LinalgCase("hdouble",
array([[1., 2.], [2., 1.]], dtype=double),
None),
LinalgCase("hcsingle",
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
None),
LinalgCase("hcdouble",
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
None),
LinalgCase("hempty",
np.empty((0, 0), dtype=double),
None,
tags={'size-0'}),
LinalgCase("hnonarray",
[[1, 2], [2, 1]],
None),
LinalgCase("matrix_b_only",
array([[1., 2.], [2., 1.]]),
None),
LinalgCase("hmatrix_1x1",
np.random.rand(1, 1),
None),
])
#
# Gufunc test cases
#
def _make_generalized_cases():
new_cases = []
for case in CASES:
if not isinstance(case.a, np.ndarray):
continue
a = np.array([case.a, 2 * case.a, 3 * case.a])
if case.b is None:
b = None
else:
b = np.array([case.b, 7 * case.b, 6 * case.b])
new_case = LinalgCase(case.name + "_tile3", a, b,
tags=case.tags | {'generalized'})
new_cases.append(new_case)
a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
if case.b is None:
b = None
else:
b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
new_case = LinalgCase(case.name + "_tile213", a, b,
tags=case.tags | {'generalized'})
new_cases.append(new_case)
return new_cases
CASES += _make_generalized_cases()
#
# Generate stride combination variations of the above
#
def _stride_comb_iter(x):
"""
Generate cartesian product of strides for all axes
"""
if not isinstance(x, np.ndarray):
yield x, "nop"
return
stride_set = [(1,)] * x.ndim
stride_set[-1] = (1, 3, -4)
if x.ndim > 1:
stride_set[-2] = (1, 3, -4)
if x.ndim > 2:
stride_set[-3] = (1, -4)
for repeats in itertools.product(*tuple(stride_set)):
new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
slices = tuple([slice(None, None, repeat) for repeat in repeats])
# new array with different strides, but same data
xi = np.empty(new_shape, dtype=x.dtype)
xi.view(np.uint32).fill(0xdeadbeef)
xi = xi[slices]
xi[...] = x
xi = xi.view(x.__class__)
assert_(np.all(xi == x))
yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
# generate also zero strides if possible
if x.ndim >= 1 and x.shape[-1] == 1:
s = list(x.strides)
s[-1] = 0
xi = np.lib.stride_tricks.as_strided(x, strides=s)
yield xi, "stride_xxx_0"
if x.ndim >= 2 and x.shape[-2] == 1:
s = list(x.strides)
s[-2] = 0
xi = np.lib.stride_tricks.as_strided(x, strides=s)
yield xi, "stride_xxx_0_x"
if x.ndim >= 2 and x.shape[:-2] == (1, 1):
s = list(x.strides)
s[-1] = 0
s[-2] = 0
xi = np.lib.stride_tricks.as_strided(x, strides=s)
yield xi, "stride_xxx_0_0"
def _make_strided_cases():
new_cases = []
for case in CASES:
for a, a_label in _stride_comb_iter(case.a):
for b, b_label in _stride_comb_iter(case.b):
new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
tags=case.tags | {'strided'})
new_cases.append(new_case)
return new_cases
CASES += _make_strided_cases()
#
# Test different routines against the above cases
#
class LinalgTestCase:
TEST_CASES = CASES
def check_cases(self, require=set(), exclude=set()):
"""
Run func on each of the cases with all of the tags in require, and none
of the tags in exclude
"""
for case in self.TEST_CASES:
# filter by require and exclude
if case.tags & require != require:
continue
if case.tags & exclude:
continue
try:
case.check(self.do)
except Exception as e:
msg = f'In test case: {case!r}\n\n'
msg += traceback.format_exc()
raise AssertionError(msg) from e
class LinalgSquareTestCase(LinalgTestCase):
def test_sq_cases(self):
self.check_cases(require={'square'},
exclude={'generalized', 'size-0'})
def test_empty_sq_cases(self):
self.check_cases(require={'square', 'size-0'},
exclude={'generalized'})
class LinalgNonsquareTestCase(LinalgTestCase):
def test_nonsq_cases(self):
self.check_cases(require={'nonsquare'},
exclude={'generalized', 'size-0'})
def test_empty_nonsq_cases(self):
self.check_cases(require={'nonsquare', 'size-0'},
exclude={'generalized'})
class HermitianTestCase(LinalgTestCase):
def test_herm_cases(self):
self.check_cases(require={'hermitian'},
exclude={'generalized', 'size-0'})
def test_empty_herm_cases(self):
self.check_cases(require={'hermitian', 'size-0'},
exclude={'generalized'})
class LinalgGeneralizedSquareTestCase(LinalgTestCase):
@pytest.mark.slow
def test_generalized_sq_cases(self):
self.check_cases(require={'generalized', 'square'},
exclude={'size-0'})
@pytest.mark.slow
def test_generalized_empty_sq_cases(self):
self.check_cases(require={'generalized', 'square', 'size-0'})
class LinalgGeneralizedNonsquareTestCase(LinalgTestCase):
@pytest.mark.slow
def test_generalized_nonsq_cases(self):
self.check_cases(require={'generalized', 'nonsquare'},
exclude={'size-0'})
@pytest.mark.slow
def test_generalized_empty_nonsq_cases(self):
self.check_cases(require={'generalized', 'nonsquare', 'size-0'})
class HermitianGeneralizedTestCase(LinalgTestCase):
@pytest.mark.slow
def test_generalized_herm_cases(self):
self.check_cases(require={'generalized', 'hermitian'},
exclude={'size-0'})
@pytest.mark.slow
def test_generalized_empty_herm_cases(self):
self.check_cases(require={'generalized', 'hermitian', 'size-0'},
exclude={'none'})
def dot_generalized(a, b):
a = asarray(a)
if a.ndim >= 3:
if a.ndim == b.ndim:
# matrix x matrix
new_shape = a.shape[:-1] + b.shape[-1:]
elif a.ndim == b.ndim + 1:
# matrix x vector
new_shape = a.shape[:-1]
else:
raise ValueError("Not implemented...")
r = np.empty(new_shape, dtype=np.common_type(a, b))
for c in itertools.product(*map(range, a.shape[:-2])):
r[c] = dot(a[c], b[c])
return r
else:
return dot(a, b)
def identity_like_generalized(a):
a = asarray(a)
if a.ndim >= 3:
r = np.empty(a.shape, dtype=a.dtype)
r[...] = identity(a.shape[-2])
return r
else:
return identity(a.shape[0])
class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
# kept apart from TestSolve for use for testing with matrices.
def do(self, a, b, tags):
x = linalg.solve(a, b)
assert_almost_equal(b, dot_generalized(a, x))
assert_(consistent_subclass(x, b))
class TestSolve(SolveCases):
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.solve(x, x).dtype, dtype)
def test_0_size(self):
class ArraySubclass(np.ndarray):
pass
# Test system of 0x0 matrices
a = np.arange(8).reshape(2, 2, 2)
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
expected = linalg.solve(a, b)[:, 0:0, :]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# Test errors for non-square and only b's dimension being 0
assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
# Test broadcasting error
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
# Test zero "single equations" with 0x0 matrices.
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
expected = linalg.solve(a, b)[:, 0:0]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
b = np.arange(3).reshape(1, 3)
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
def test_0_size_k(self):
# test zero multiple equation (K=0) case.
class ArraySubclass(np.ndarray):
pass
a = np.arange(4).reshape(1, 2, 2)
b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
expected = linalg.solve(a, b)[:, :, 0:0]
result = linalg.solve(a, b[:, :, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# test both zero.
expected = linalg.solve(a, b)[:, 0:0, 0:0]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
class InvCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
a_inv = linalg.inv(a)
assert_almost_equal(dot_generalized(a, a_inv),
identity_like_generalized(a))
assert_(consistent_subclass(a_inv, a))
class TestInv(InvCases):
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.inv(x).dtype, dtype)
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res.shape)
assert_(isinstance(res, ArraySubclass))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res.shape)
assert_(isinstance(res, ArraySubclass))
class EigvalsCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
ev = linalg.eigvals(a)
evalues, evectors = linalg.eig(a)
assert_almost_equal(ev, evalues)
class TestEigvals(EigvalsCases):
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.complex64)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
class EigCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
evalues, evectors = linalg.eig(a)
assert_allclose(dot_generalized(a, evectors),
np.asarray(evectors) * np.asarray(evalues)[..., None, :],
rtol=get_rtol(evalues.dtype))
assert_(consistent_subclass(evectors, a))
class TestEig(EigCases):
@pytest.mark.parametrize('dtype', [single, double, csingle, cdouble])
def test_types(self, dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, dtype)
assert_equal(v.dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, get_complex_dtype(dtype))
assert_equal(v.dtype, get_complex_dtype(dtype))
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res, res_v = linalg.eig(a)
assert_(res_v.dtype.type is np.float64)
| assert_(res.dtype.type is np.float64) | numpy.testing.assert_ |
# deafrica_classificationtools.py
'''
Description: This file contains a set of python functions for conducting
machine learning classification on remote sensing data from Digital Earth
Africa's Open Data Cube
License: The code in this notebook is licensed under the Apache License,
Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0). Digital Earth
Africa data is licensed under the Creative Commons by Attribution 4.0
license (https://creativecommons.org/licenses/by/4.0/).
Contact: If you need assistance, please post a question on the Open Data
Cube Slack channel (http://slack.opendatacube.org/) or on the GIS Stack
Exchange (https://gis.stackexchange.com/questions/ask?tags=open-data-cube)
using the `open-data-cube` tag (you can view previously asked questions
here: https://gis.stackexchange.com/questions/tagged/open-data-cube).
If you would like to report an issue with this script, you can file one on
Github https://github.com/digitalearthafrica/deafrica-sandbox-notebooks/issues
Last modified: September 2020
'''
import os
import sys
import joblib
import datacube
import rasterio
import numpy as np
import xarray as xr
from tqdm import tqdm
import dask.array as da
import geopandas as gpd
from copy import deepcopy
import multiprocessing as mp
import dask.distributed as dd
import matplotlib.pyplot as plt
from matplotlib.patches import Patch
from sklearn.cluster import KMeans
from sklearn.base import clone
from datacube.utils import masking
from sklearn.base import BaseEstimator
from sklearn.utils import check_random_state
from abc import ABCMeta, abstractmethod
from datacube.utils import geometry
from sklearn.base import ClusterMixin
from dask.diagnostics import ProgressBar
from rasterio.features import rasterize
from sklearn.impute import SimpleImputer
from rasterio.features import geometry_mask
from dask_ml.wrappers import ParallelPostFit
from sklearn.mixture import GaussianMixture
from datacube.utils.geometry import assign_crs
from datacube_stats.statistics import GeoMedian
from sklearn.cluster import AgglomerativeClustering
from sklearn.model_selection import KFold, ShuffleSplit
from sklearn.model_selection import BaseCrossValidator
import warnings
from dea_tools.spatial import xr_rasterize
from dea_tools.bandindices import calculate_indices
from dea_tools.datahandling import load_ard, mostcommon_crs
def sklearn_flatten(input_xr):
"""
Reshape a DataArray or Dataset with spatial (and optionally
temporal) structure into an np.array with the spatial and temporal
dimensions flattened into one dimension.
This flattening procedure enables DataArrays and Datasets to be used
to train and predict
with sklearn models.
Last modified: September 2019
Parameters
----------
input_xr : xarray.DataArray or xarray.Dataset
Must have dimensions 'x' and 'y', may have dimension 'time'.
Dimensions other than 'x', 'y' and 'time' are unaffected by the
flattening.
Returns
----------
input_np : numpy.array
A numpy array corresponding to input_xr.data (or
input_xr.to_array().data), with dimensions 'x','y' and 'time'
flattened into a single dimension, which is the first axis of
the returned array. input_np contains no NaNs.
"""
# cast input Datasets to DataArray
if isinstance(input_xr, xr.Dataset):
input_xr = input_xr.to_array()
# stack across pixel dimensions, handling timeseries if necessary
if 'time' in input_xr.dims:
stacked = input_xr.stack(z=['x', 'y', 'time'])
else:
stacked = input_xr.stack(z=['x', 'y'])
# finding 'bands' dimensions in each pixel - these will not be
# flattened as their context is important for sklearn
pxdims = []
for dim in stacked.dims:
if dim != 'z':
pxdims.append(dim)
# mask NaNs - we mask pixels with NaNs in *any* band, because
# sklearn cannot accept NaNs as input
mask = np.isnan(stacked)
if len(pxdims) != 0:
mask = mask.any(dim=pxdims)
# turn the mask into a numpy array (boolean indexing with xarrays
# acts weird)
mask = mask.data
# the dimension we are masking along ('z') needs to be the first
# dimension in the underlying np array for the boolean indexing to work
stacked = stacked.transpose('z', *pxdims)
input_np = stacked.data[~mask]
return input_np
def sklearn_unflatten(output_np, input_xr):
"""
Reshape a numpy array with no 'missing' elements (NaNs) and
'flattened' spatiotemporal structure into a DataArray matching the
spatiotemporal structure of the DataArray
This enables an sklearn model's prediction to be remapped to the
correct pixels in the input DataArray or Dataset.
Last modified: September 2019
Parameters
----------
output_np : numpy.array
The first dimension's length should correspond to the number of
valid (non-NaN) pixels in input_xr.
input_xr : xarray.DataArray or xarray.Dataset
Must have dimensions 'x' and 'y', may have dimension 'time'.
Dimensions other than 'x', 'y' and 'time' are unaffected by the
flattening.
Returns
----------
output_xr : xarray.DataArray
An xarray.DataArray with the same dimensions 'x', 'y' and 'time'
as input_xr, and the same valid (non-NaN) pixels. These pixels
are set to match the data in output_np.
"""
# the output of a sklearn model prediction should just be a numpy array
# with size matching x*y*time for the input DataArray/Dataset.
# cast input Datasets to DataArray
if isinstance(input_xr, xr.Dataset):
input_xr = input_xr.to_array()
# generate the same mask we used to create the input to the sklearn model
if 'time' in input_xr.dims:
stacked = input_xr.stack(z=['x', 'y', 'time'])
else:
stacked = input_xr.stack(z=['x', 'y'])
pxdims = []
for dim in stacked.dims:
if dim != 'z':
pxdims.append(dim)
mask = np.isnan(stacked)
if len(pxdims) != 0:
mask = mask.any(dim=pxdims)
# handle multivariable output
output_px_shape = ()
if len(output_np.shape[1:]):
output_px_shape = output_np.shape[1:]
# use the mask to put the data in all the right places
output_ma = np.ma.empty((len(stacked.z), *output_px_shape))
output_ma[~mask] = output_np
output_ma[mask] = np.ma.masked
# set the stacked coordinate to match the input
output_xr = xr.DataArray(
output_ma,
coords={'z': stacked['z']},
dims=[
'z',
*['output_dim_' + str(idx) for idx in range(len(output_px_shape))]
])
output_xr = output_xr.unstack()
return output_xr
def fit_xr(model, input_xr):
"""
Utilise our wrappers to fit a vanilla sklearn model.
Last modified: September 2019
Parameters
----------
model : scikit-learn model or compatible object
Must have a fit() method that takes numpy arrays.
input_xr : xarray.DataArray or xarray.Dataset.
Must have dimensions 'x' and 'y', may have dimension 'time'.
Returns
----------
model : a scikit-learn model which has been fitted to the data in
the pixels of input_xr.
"""
model = model.fit(sklearn_flatten(input_xr))
return model
def predict_xr(model,
input_xr,
chunk_size=None,
persist=False,
proba=False,
clean=False,
return_input=False):
"""
Using dask-ml ParallelPostfit(), runs the parallel
predict and predict_proba methods of sklearn
estimators. Useful for running predictions
on a larger-than-RAM datasets.
Last modified: September 2020
Parameters
----------
model : scikit-learn model or compatible object
Must have a .predict() method that takes numpy arrays.
input_xr : xarray.DataArray or xarray.Dataset.
Must have dimensions 'x' and 'y'
chunk_size : int
The dask chunk size to use on the flattened array. If this
is left as None, then the chunks size is inferred from the
.chunks method on the `input_xr`
persist : bool
If True, and proba=True, then 'input_xr' data will be
loaded into distributed memory. This will ensure data
is not loaded twice for the prediction of probabilities,
but this will only work if the data is not larger than
distributed RAM.
proba : bool
If True, predict probabilities
clean : bool
If True, remove Infs and NaNs from input and output arrays
return_input : bool
If True, then the data variables in the 'input_xr' dataset will
be appended to the output xarray dataset.
Returns
----------
output_xr : xarray.Dataset
An xarray.Dataset containing the prediction output from model.
if proba=True then dataset will also contain probabilites, and
if return_input=True then dataset will have the input feature layers.
Has the same spatiotemporal structure as input_xr.
"""
# if input_xr isn't dask, coerce it
dask = True
if not bool(input_xr.chunks):
dask = False
input_xr = input_xr.chunk({'x': len(input_xr.x), 'y': len(input_xr.y)})
#set chunk size if not supplied
if chunk_size is None:
chunk_size = int(input_xr.chunks['x'][0]) * \
int(input_xr.chunks['y'][0])
def _predict_func(model, input_xr, persist, proba, clean, return_input):
x, y, crs = input_xr.x, input_xr.y, input_xr.geobox.crs
input_data = []
for var_name in input_xr.data_vars:
input_data.append(input_xr[var_name])
input_data_flattened = []
for arr in input_data:
data = arr.data.flatten().rechunk(chunk_size)
input_data_flattened.append(data)
# reshape for prediction
input_data_flattened = da.array(input_data_flattened).transpose()
if clean == True:
input_data_flattened = da.where(da.isfinite(input_data_flattened),
input_data_flattened, 0)
if (proba == True) & (persist == True):
# persisting data so we don't require loading all the data twice
input_data_flattened = input_data_flattened.persist()
# apply the classification
print('predicting...')
out_class = model.predict(input_data_flattened)
# Mask out NaN or Inf values in results
if clean == True:
out_class = da.where(da.isfinite(out_class), out_class, 0)
# Reshape when writing out
out_class = out_class.reshape(len(y), len(x))
# stack back into xarray
output_xr = xr.DataArray(out_class,
coords={
"x": x,
"y": y
},
dims=["y", "x"])
output_xr = output_xr.to_dataset(name='Predictions')
if proba == True:
print(" probabilities...")
out_proba = model.predict_proba(input_data_flattened)
# convert to %
out_proba = da.max(out_proba, axis=1) * 100.0
if clean == True:
out_proba = da.where(da.isfinite(out_proba), out_proba, 0)
out_proba = out_proba.reshape(len(y), len(x))
out_proba = xr.DataArray(out_proba,
coords={
"x": x,
"y": y
},
dims=["y", "x"])
output_xr['Probabilities'] = out_proba
if return_input == True:
print(" input features...")
# unflatten the input_data_flattened array and append
# to the output_xr containin the predictions
arr = input_xr.to_array()
stacked = arr.stack(z=['y', 'x'])
# handle multivariable output
output_px_shape = ()
if len(input_data_flattened.shape[1:]):
output_px_shape = input_data_flattened.shape[1:]
output_features = input_data_flattened.reshape(
(len(stacked.z), *output_px_shape))
# set the stacked coordinate to match the input
output_features = xr.DataArray(
output_features,
coords={
'z': stacked['z']
},
dims=[
'z', *[
'output_dim_' + str(idx)
for idx in range(len(output_px_shape))
]
]).unstack()
# convert to dataset and rename arrays
output_features = output_features.to_dataset(dim='output_dim_0')
data_vars = list(input_xr.data_vars)
output_features = output_features.rename(
{i: j for i, j in zip(output_features.data_vars, data_vars)})
# merge with predictions
output_xr = xr.merge([output_xr, output_features],
compat='override')
return assign_crs(output_xr, str(crs))
if dask == True:
# convert model to dask predict
model = ParallelPostFit(model)
with joblib.parallel_backend('dask'):
output_xr = _predict_func(model, input_xr, persist, proba, clean,
return_input)
else:
output_xr = _predict_func(model, input_xr, persist, proba, clean,
return_input).compute()
return output_xr
class HiddenPrints:
"""
For concealing unwanted print statements called by other functions
"""
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
def _get_training_data_for_shp(gdf,
index,
row,
out_arrs,
out_vars,
products,
dc_query,
return_coords,
custom_func=None,
field=None,
calc_indices=None,
reduce_func=None,
drop=True,
zonal_stats=None):
"""
This is the core function that is triggered by `collect_training_data`.
The `collect_training_data` function loops through geometries in a geopandas
geodataframe and runs the code within `_get_training_data_for_shp`.
Parameters are inherited from `collect_training_data`.
See that function for information on the other params not listed below.
Parameters
----------
index, row : iterables inherited from geopandas object
out_arrs : list
An empty list into which the training data arrays are stored.
out_vars : list
An empty list into which the data varaible names are stored.
Returns
--------
Two lists, a list of numpy.arrays containing classes and extracted data for
each pixel or polygon, and another containing the data variable names.
"""
# prevent function altering dictionary kwargs
dc_query = deepcopy(dc_query)
# remove dask chunks if supplied as using
# mulitprocessing for parallization
if 'dask_chunks' in dc_query.keys():
dc_query.pop('dask_chunks', None)
# connect to datacube
dc = datacube.Datacube(app='training_data')
# set up query based on polygon
geom = geometry.Geometry(geom=gdf.iloc[index].geometry, crs=gdf.crs)
q = {"geopolygon": geom}
# merge polygon query with user supplied query params
dc_query.update(q)
# load_ard doesn't handle derivative products, so check
# products aren't one of those below
others = [
'ls5_nbart_geomedian_annual', 'ls7_nbart_geomedian_annual',
'ls8_nbart_geomedian_annual', 'ls5_nbart_tmad_annual',
'ls7_nbart_tmad_annual', 'ls8_nbart_tmad_annual',
'landsat_barest_earth', 'ls8_barest_earth_albers'
]
if products[0] in others:
ds = dc.load(product=products[0], **dc_query)
ds = ds.where(ds != 0, np.nan)
else:
# load data
with HiddenPrints():
ds = load_ard(dc=dc, products=products, **dc_query)
# create polygon mask
with HiddenPrints():
mask = xr_rasterize(gdf.iloc[[index]], ds)
# Use custom function for training data if it exists
if custom_func is not None:
with HiddenPrints():
data = custom_func(ds)
data = data.where(mask)
else:
# mask dataset
ds = ds.where(mask)
# first check enough variables are set to run functions
if (len(ds.time.values) > 1) and (reduce_func == None):
raise ValueError(
"You're dataset has " + str(len(ds.time.values)) +
" time-steps, please provide a time reduction function," +
" e.g. reduce_func='mean'")
if calc_indices is not None:
# determine which collection is being loaded
if products[0] in others:
collection = 'ga_ls_2'
elif '3' in products[0]:
collection = 'ga_ls_3'
elif 's2' in products[0]:
collection = 'ga_s2_1'
if len(ds.time.values) > 1:
if reduce_func in ['mean', 'median', 'std', 'max', 'min']:
with HiddenPrints():
data = calculate_indices(ds,
index=calc_indices,
drop=drop,
collection=collection)
# getattr is equivalent to calling data.reduce_func
method_to_call = getattr(data, reduce_func)
data = method_to_call(dim='time')
elif reduce_func == 'geomedian':
data = GeoMedian().compute(ds)
with HiddenPrints():
data = calculate_indices(data,
index=calc_indices,
drop=drop,
collection=collection)
else:
raise Exception(
reduce_func + " is not one of the supported" +
" reduce functions ('mean','median','std','max','min', 'geomedian')"
)
else:
with HiddenPrints():
data = calculate_indices(ds,
index=calc_indices,
drop=drop,
collection=collection)
# when band indices are not required, reduce the
# dataset to a 2d array through means or (geo)medians
if calc_indices is None:
if len(ds.time.values) > 1:
if reduce_func == 'geomedian':
data = GeoMedian().compute(ds)
elif reduce_func in ['mean', 'median', 'std', 'max', 'min']:
method_to_call = getattr(ds, reduce_func)
data = method_to_call('time')
else:
data = ds.squeeze()
if return_coords == True:
# turn coords into a variable in the ds
data['x_coord'] = ds.x + 0 * ds.y
data['y_coord'] = ds.y + 0 * ds.x
if zonal_stats is None:
# If no zonal stats were requested then extract all pixel values
flat_train = sklearn_flatten(data)
flat_val = np.repeat(row[field], flat_train.shape[0])
stacked = np.hstack((np.expand_dims(flat_val, axis=1), flat_train))
elif zonal_stats in ['mean', 'median', 'std', 'max', 'min']:
method_to_call = getattr(data, zonal_stats)
flat_train = method_to_call()
flat_train = flat_train.to_array()
stacked = np.hstack((row[field], flat_train))
else:
raise Exception(zonal_stats + " is not one of the supported" +
" reduce functions ('mean','median','std','max','min')")
#return unique-id so we can index if load failed silently
_id = gdf.iloc[index]['id']
# Append training data and labels to list
out_arrs.append(np.append(stacked, _id))
out_vars.append([field] + list(data.data_vars) + ['id'])
def _get_training_data_parallel(gdf,
products,
dc_query,
ncpus,
return_coords,
custom_func=None,
field=None,
calc_indices=None,
reduce_func=None,
drop=True,
zonal_stats=None):
"""
Function passing the '_get_training_data_for_shp' function
to a mulitprocessing.Pool.
Inherits variables from 'collect_training_data()'.
"""
# Check if dask-client is running
try:
zx = None
zx = dd.get_client()
except:
pass
if zx is not None:
raise ValueError(
"You have a Dask Client running, which prevents \n"
"this function from multiprocessing. Close the client.")
# instantiate lists that can be shared across processes
manager = mp.Manager()
results = manager.list()
column_names = manager.list()
# progress bar
pbar = tqdm(total=len(gdf))
def update(*a):
pbar.update()
with mp.Pool(ncpus) as pool:
for index, row in gdf.iterrows():
pool.apply_async(_get_training_data_for_shp, [
gdf, index, row, results, column_names, products, dc_query,
return_coords, custom_func, field, calc_indices, reduce_func,
drop, zonal_stats
],
callback=update)
pool.close()
pool.join()
pbar.close()
return column_names, results
def collect_training_data(gdf,
products,
dc_query,
ncpus=1,
return_coords=False,
custom_func=None,
field=None,
calc_indices=None,
reduce_func=None,
drop=True,
zonal_stats=None,
clean=True,
fail_threshold=0.02,
max_retries=3):
"""
This function executes the training data functions and tidies the results
into a 'model_input' object containing stacked training data arrays
with all NaNs & Infs removed. In the instance where ncpus > 1, a parallel version of the
function will be run (functions are passed to a mp.Pool())
This function provides a number of pre-defined feature layer methods,
including calculating band indices, reducing time series using several summary statistics,
and/or generating zonal statistics across polygons. The 'custom_func' parameter provides
a method for the user to supply a custom function for generating features rather than using the
pre-defined methods.
Parameters
----------
gdf : geopandas geodataframe
geometry data in the form of a geopandas geodataframe
products : list
a list of products to load from the datacube.
e.g. ['ls8_usgs_sr_scene', 'ls7_usgs_sr_scene']
dc_query : dictionary
Datacube query object, should not contain lat and long (x or y)
variables as these are supplied by the 'gdf' variable
ncpus : int
The number of cpus/processes over which to parallelize the gathering
of training data (only if ncpus is > 1). Use 'mp.cpu_count()' to determine the number of
cpus available on a machine. Defaults to 1.
return_coords : bool
If True, then the training data will contain two extra columns 'x_coord' and
'y_coord' corresponding to the x,y coordinate of each sample. This variable can
be useful for handling spatial autocorrelation between samples later in the ML workflow.
custom_func : function, optional
A custom function for generating feature layers. If this parameter
is set, all other options (excluding 'zonal_stats'), will be ignored.
The result of the 'custom_func' must be a single xarray dataset
containing 2D coordinates (i.e x, y - no time dimension). The custom function
has access to the datacube dataset extracted using the 'dc_query' params. To load
other datasets, you can use the 'like=ds.geobox' parameter in dc.load
field : str
Name of the column in the gdf that contains the class labels
calc_indices: list, optional
If not using a custom func, then this parameter provides a method for
calculating a number of remote sensing indices (e.g. `['NDWI', 'NDVI']`).
reduce_func : string, optional
Function to reduce the data from multiple time steps to
a single timestep. Options are 'mean', 'median', 'std',
'max', 'min', 'geomedian'. Ignored if 'custom_func' is provided.
drop : boolean, optional ,
If this variable is set to True, and 'calc_indices' are supplied, the
spectral bands will be dropped from the dataset leaving only the
band indices as data variables in the dataset. Default is True.
zonal_stats : string, optional
An optional string giving the names of zonal statistics to calculate
for each polygon. Default is None (all pixel values are returned). Supported
values are 'mean', 'median', 'max', 'min', and 'std'. Will work in
conjuction with a 'custom_func'.
clean : bool
Whether or not to remove missing values in the training dataset. If True,
training labels with any NaNs or Infs in the feature layers will be dropped
from the dataset.
fail_threshold : float, default 0.05
Silent read fails on S3 during multiprocessing can result in some rows of the
returned data containing all NaN values. Set the 'fail_threshold' fraction to
specify a minimum number of acceptable fails e.g. setting 'fail_threshold' to 0.05
means 5 % no-data in the returned dataset is acceptable. Above this fraction the
function will attempt to recollect the samples that have failed.
A sample is defined as having failed if it returns > 50 % NaN values.
max_retries: int, default 3
Number of times to retry collecting a sample. This number is invoked if the 'fail_threshold' is
not reached.
Returns
--------
Two lists, a list of numpy.arrays containing classes and extracted data for
each pixel or polygon, and another containing the data variable names.
"""
# check the dtype of the class field
if (gdf[field].dtype != np.int):
raise ValueError(
'The "field" column of the input vector must contain integer dtypes'
)
# set up some print statements
if custom_func is not None:
print("Reducing data using user supplied custom function")
if calc_indices is not None and custom_func is None:
print("Calculating indices: " + str(calc_indices))
if reduce_func is not None and custom_func is None:
print("Reducing data using: " + reduce_func)
if zonal_stats is not None:
print("Taking zonal statistic: " + zonal_stats)
#add unique id to gdf to help later with indexing failed rows
#during muliprocessing
gdf['id'] = range(0, len(gdf))
if ncpus == 1:
# progress indicator
print('Collecting training data in serial mode')
i = 0
# list to store results
results = []
column_names = []
# loop through polys and extract training data
for index, row in gdf.iterrows():
print(" Feature {:04}/{:04}\r".format(i + 1, len(gdf)), end='')
_get_training_data_for_shp(gdf, index, row, results, column_names,
products, dc_query, return_coords,
custom_func, field, calc_indices,
reduce_func, drop, zonal_stats)
i += 1
else:
print('Collecting training data in parallel mode')
column_names, results = _get_training_data_parallel(
gdf=gdf,
products=products,
dc_query=dc_query,
ncpus=ncpus,
return_coords=return_coords,
custom_func=custom_func,
field=field,
calc_indices=calc_indices,
reduce_func=reduce_func,
drop=drop,
zonal_stats=zonal_stats)
# column names are appeneded during each iteration
# but they are identical, grab only the first instance
column_names = column_names[0]
# Stack the extracted training data for each feature into a single array
model_input = np.vstack(results)
# this code block iteratively retries failed rows
# up to max_retries or until fail_threshold is
# reached - whichever occurs first
if ncpus > 1:
i = 1
while (i <= max_retries):
# Count number of fails
num = np.count_nonzero(np.isnan(model_input), axis=1) > int(
model_input.shape[1] * 0.5)
num = num.sum()
fail_rate = num / len(gdf)
print('Percentage of possible fails after run ' + str(i) + ' = ' +
str(round(fail_rate * 100, 2)) + ' %')
if fail_rate > fail_threshold:
print('Recollecting samples that failed')
#find rows where NaNs account for more than half the values
nans = model_input[np.count_nonzero(
np.isnan(model_input), axis=1) > int(model_input.shape[1] *
0.5)]
#remove nan rows from model_input object
model_input = model_input[np.count_nonzero(
np.isnan(model_input), axis=1) <= int(model_input.shape[1] *
0.5)]
#get id of NaN rows and index original gdf
idx_nans = nans[:, [-1]].flatten()
gdf_rerun = gdf.loc[gdf['id'].isin(idx_nans)]
gdf_rerun = gdf_rerun.reset_index(drop=True)
time.sleep(60) #sleep for 60 sec to rest api
column_names_again, results_again = _get_training_data_parallel(
gdf=gdf_rerun,
products=products,
dc_query=dc_query,
ncpus=ncpus,
return_coords=return_coords,
custom_func=custom_func,
field=field,
calc_indices=calc_indices,
reduce_func=reduce_func,
drop=drop,
zonal_stats=zonal_stats)
# Stack the extracted training data for each feature into a single array
model_input_again = np.vstack(results_again)
#merge results of the re-run with original run
model_input = np.vstack((model_input, model_input_again))
i += 1
else:
break
if clean == True:
num = np.count_nonzero(np.isnan(model_input).any(axis=1))
model_input = model_input[~np.isnan(model_input).any(axis=1)]
model_input = model_input[~np.isinf(model_input).any(axis=1)]
print("Removed " + str(num) + " rows wth NaNs &/or Infs")
print('Output shape: ', model_input.shape)
else:
print('Returning data without cleaning')
print('Output shape: ', model_input.shape)
# remove id column
idx_var = column_names[0:-1]
model_col_indices = [column_names.index(var_name) for var_name in idx_var]
model_input = model_input[:, model_col_indices]
return column_names[0:-1], model_input
class KMeans_tree(ClusterMixin):
"""
A hierarchical KMeans unsupervised clustering model. This class is
a clustering model, so it inherits scikit-learn's ClusterMixin
base class.
Parameters
----------
n_levels : integer, default 2
number of levels in the tree of clustering models.
n_clusters : integer, default 3
Number of clusters in each of the constituent KMeans models in
the tree.
**kwargs : optional
Other keyword arguments to be passed directly to the KMeans
initialiser.
"""
def __init__(self, n_levels=2, n_clusters=3, **kwargs):
assert (n_levels >= 1)
self.base_model = KMeans(n_clusters=3, **kwargs)
self.n_levels = n_levels
self.n_clusters = n_clusters
# make child models
if n_levels > 1:
self.branches = [
KMeans_tree(n_levels=n_levels - 1,
n_clusters=n_clusters,
**kwargs) for _ in range(n_clusters)
]
def fit(self, X, y=None, sample_weight=None):
"""
Fit the tree of KMeans models. All parameters mimic those
of KMeans.fit().
Parameters
----------
X : array-like or sparse matrix, shape=(n_samples, n_features)
Training instances to cluster. It must be noted that the
data will be converted to C ordering, which will cause a
memory copy if the given data is not C-contiguous.
y : Ignored
not used, present here for API consistency by convention.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all
observations are assigned equal weight (default: None)
"""
self.labels_ = self.base_model.fit(X,
sample_weight=sample_weight).labels_
if self.n_levels > 1:
labels_old = np.copy(self.labels_)
# make room to add the sub-cluster labels
self.labels_ *= (self.n_clusters)**(self.n_levels - 1)
for clu in range(self.n_clusters):
# fit child models on their corresponding partition of the training set
self.branches[clu].fit(
X[labels_old == clu],
sample_weight=(sample_weight[labels_old == clu]
if sample_weight is not None else None))
self.labels_[labels_old == clu] += self.branches[clu].labels_
return self
def predict(self, X, sample_weight=None):
"""
Send X through the KMeans tree and predict the resultant
cluster. Compatible with KMeans.predict().
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all
observations are assigned equal weight (default: None)
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
result = self.base_model.predict(X, sample_weight=sample_weight)
if self.n_levels > 1:
rescpy = np.copy(result)
# make room to add the sub-cluster labels
result *= (self.n_clusters)**(self.n_levels - 1)
for clu in range(self.n_clusters):
result[rescpy == clu] += self.branches[clu].predict(
X[rescpy == clu],
sample_weight=(sample_weight[rescpy == clu]
if sample_weight is not None else None))
return result
def spatial_clusters(coordinates,
method='Hierarchical',
max_distance=None,
n_groups=None,
verbose=False,
**kwargs):
"""
Create spatial groups on coorindate data using either KMeans clustering
or a Gaussian Mixture model
Last modified: September 2020
Parameters
----------
n_groups : int
The number of groups to create. This is passed as 'n_clusters=n_groups'
for the KMeans algo, and 'n_components=n_groups' for the GMM. If using
method='Hierarchical' then this paramter is ignored.
coordinates : np.array
A numpy array of coordinate values e.g.
np.array([[3337270., 262400.],
[3441390., -273060.], ...])
method : str
Which algorithm to use to seperate data points. Either 'KMeans', 'GMM', or
'Hierarchical'. If using 'Hierarchical' then must set max_distance.
max_distance : int
If method is set to 'hierarchical' then maximum distance describes the
maximum euclidean distances between all observations in a cluster. 'n_groups'
is ignored in this case.
**kwargs : optional,
Additional keyword arguments to pass to sklearn.cluster.Kmeans or
sklearn.mixture.GuassianMixture depending on the 'method' argument.
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
if method not in ['Hierarchical', 'KMeans', 'GMM']:
raise ValueError(
"method must be one of: 'Hierarchical','KMeans' or 'GMM'")
if (method in ['GMM', 'KMeans']) & (n_groups is None):
raise ValueError(
"The 'GMM' and 'KMeans' methods requires explicitly setting 'n_groups'"
)
if (method == 'Hierarchical') & (max_distance is None):
raise ValueError(
"The 'Hierarchical' method requires setting max_distance")
if method == 'Hierarchical':
cluster_label = AgglomerativeClustering(
n_clusters=None,
linkage='complete',
distance_threshold=max_distance,
**kwargs).fit_predict(coordinates)
if method == 'KMeans':
cluster_label = KMeans(n_clusters=n_groups,
**kwargs).fit_predict(coordinates)
if method == 'GMM':
cluster_label = GaussianMixture(n_components=n_groups,
**kwargs).fit_predict(coordinates)
if verbose:
print("n clusters = " + str(len(np.unique(cluster_label))))
return cluster_label
def SKCV(coordinates,
n_splits,
cluster_method,
kfold_method,
test_size,
balance,
n_groups=None,
max_distance=None,
train_size=None,
random_state=None,
**kwargs):
"""
Generate spatial k-fold cross validation indices using coordinate data.
This function wraps the 'SpatialShuffleSplit' and 'SpatialKFold' classes.
These classes ingest coordinate data in the form of an
np.array([[Eastings, northings]]) and assign samples to a spatial cluster
using either a KMeans, Gaussain Mixture, or Agglomerative Clustering algorithm.
This cross-validator is preferred over other sklearn.model_selection methods
for spatial data to avoid overestimating cross-validation scores.
This can happen because of the inherent spatial autocorrelation that is usually
associated with this type of data.
Last modified: Dec 2020
Parameters
----------
coordinates : np.array
A numpy array of coordinate values e.g.
np.array([[3337270., 262400.],
[3441390., -273060.], ...])
n_splits : int
The number of test-train cross validation splits to generate.
cluster_method : str
Which algorithm to use to seperate data points. Either 'KMeans', 'GMM', or
'Hierarchical'
kfold_method : str
One of either 'SpatialShuffleSplit' or 'SpatialKFold'. See the docs
under class:_SpatialShuffleSplit and class: _SpatialKFold for more
information on these options.
test_size : float, int, None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.15.
balance : int or bool
if setting kfold_method to 'SpatialShuffleSplit': int
The number of splits generated per iteration to try to balance the
amount of data in each set so that *test_size* and *train_size* are
respected. If 1, then no extra splits are generated (essentially
disabling the balacing). Must be >= 1.
if setting kfold_method to 'SpatialKFold': bool
Whether or not to split clusters into fold with approximately equal
number of data points. If False, each fold will have the same number of
clusters (which can have different number of data points in them).
n_groups : int
The number of groups to create. This is passed as 'n_clusters=n_groups'
for the KMeans algo, and 'n_components=n_groups' for the GMM. If using
cluster_method='Hierarchical' then this parameter is ignored.
max_distance : int
If method is set to 'hierarchical' then maximum distance describes the
maximum euclidean distances between all observations in a cluster. 'n_groups'
is ignored in this case.
train_size : float, int, or None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
**kwargs : optional,
Additional keyword arguments to pass to sklearn.cluster.Kmeans or
sklearn.mixture.GuassianMixture depending on the cluster_method argument.
Returns
--------
generator object _BaseSpatialCrossValidator.split
"""
# intiate a method
if kfold_method == 'SpatialShuffleSplit':
splitter = _SpatialShuffleSplit(n_groups=n_groups,
method=cluster_method,
coordinates=coordinates,
max_distance=max_distance,
test_size=test_size,
train_size=train_size,
n_splits=n_splits,
random_state=random_state,
balance=balance,
**kwargs)
if kfold_method == 'SpatialKFold':
splitter = _SpatialKFold(n_groups=n_groups,
coordinates=coordinates,
max_distance=max_distance,
method=cluster_method,
test_size=test_size,
n_splits=n_splits,
random_state=random_state,
balance=balance,
**kwargs)
return splitter
def spatial_train_test_split(X,
y,
coordinates,
cluster_method,
kfold_method,
balance,
test_size=None,
n_splits=None,
n_groups=None,
max_distance=None,
train_size=None,
random_state=None,
**kwargs):
"""
Split arrays into random train and test subsets. Similar to
`sklearn.model_selection.train_test_split` but instead works on
spatial coordinate data. Coordinate data is grouped according
to either a KMeans, Gaussain Mixture, or Agglomerative Clustering algorthim.
Grouping by spatial clusters is preferred over plain random splits for
spatial data to avoid overestimating validation scores due to spatial
autocorrelation.
Parameters
----------
X : np.array
Training data features
y : np.array
Training data labels
coordinates : np.array
A numpy array of coordinate values e.g.
np.array([[3337270., 262400.],
[3441390., -273060.], ...])
cluster_method : str
Which algorithm to use to seperate data points. Either 'KMeans', 'GMM', or
'Hierarchical'
kfold_method : str
One of either 'SpatialShuffleSplit' or 'SpatialKFold'. See the docs
under class:_SpatialShuffleSplit and class: _SpatialKFold for more
information on these options.
balance : int or bool
if setting kfold_method to 'SpatialShuffleSplit': int
The number of splits generated per iteration to try to balance the
amount of data in each set so that *test_size* and *train_size* are
respected. If 1, then no extra splits are generated (essentially
disabling the balacing). Must be >= 1.
if setting kfold_method to 'SpatialKFold': bool
Whether or not to split clusters into fold with approximately equal
number of data points. If False, each fold will have the same number of
clusters (which can have different number of data points in them).
test_size : float, int, None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.15.
n_splits : int
This parameter is invoked for the 'SpatialKFold' folding method, use this
number to satisfy the train-test size ratio desired, as the 'test_size'
parameter for the KFold method often fails to get the ratio right.
n_groups : int
The number of groups to create. This is passed as 'n_clusters=n_groups'
for the KMeans algo, and 'n_components=n_groups' for the GMM. If using
cluster_method='Hierarchical' then this parameter is ignored.
max_distance : int
If method is set to 'hierarchical' then maximum distance describes the
maximum euclidean distances between all observations in a cluster. 'n_groups'
is ignored in this case.
train_size : float, int, or None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int,
RandomState instance or None, optional
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
**kwargs : optional,
Additional keyword arguments to pass to sklearn.cluster.Kmeans or
sklearn.mixture.GuassianMixture depending on the cluster_method argument.
Returns
-------
Tuple :
Contains four arrays in the following order:
X_train, X_test, y_train, y_test
"""
if kfold_method == 'SpatialShuffleSplit':
splitter = _SpatialShuffleSplit(
n_groups=n_groups,
method=cluster_method,
coordinates=coordinates,
max_distance=max_distance,
test_size=test_size,
train_size=train_size,
n_splits=1 if n_splits is None else n_splits,
random_state=random_state,
balance=balance,
**kwargs)
if kfold_method == 'SpatialKFold':
if n_splits is None:
raise ValueError(
"n_splits parameter requires an integer value, eg. 'n_splits=5'"
)
if (test_size is not None) or (train_size is not None):
warnings.warn(
"With the 'SpatialKFold' method, controlling the test/train ratio "
"is better achieved using the 'n_splits' parameter"
)
splitter = _SpatialKFold(n_groups=n_groups,
coordinates=coordinates,
max_distance=max_distance,
method=cluster_method,
n_splits=n_splits,
random_state=random_state,
balance=balance,
**kwargs)
lst = []
for train, test in splitter.split(coordinates):
X_tr, X_tt = X[train, :], X[test, :]
y_tr, y_tt = y[train], y[test]
lst.extend([X_tr, X_tt, y_tr, y_tt])
return (lst[0], lst[1], lst[2], lst[3])
def _partition_by_sum(array, parts):
"""
Partition an array into parts of approximately equal sum.
Does not change the order of the array elements.
Produces the partition indices on the array. Use :func:`numpy.split` to
divide the array along these indices.
Parameters
----------
array : array or array-like
The 1D array that will be partitioned. The array will be raveled before
computations.
parts : int
Number of parts to split the array. Can be at most the number of
elements in the array.
Returns
-------
indices : array
The indices in which the array should be split.
Notes
-----
Solution from https://stackoverflow.com/a/54024280
"""
array = np.atleast_1d(array).ravel()
if parts > array.size:
raise ValueError(
"Cannot partition an array of size {} into {} parts of equal sum.".
format(array.size, parts))
cumulative_sum = array.cumsum()
# Ideally, we want each part to have the same number of points (total /
# parts).
ideal_sum = cumulative_sum[-1] // parts
# If the parts are ideal, the cumulative sum of each part will be this
ideal_cumsum = np.arange(1, parts) * ideal_sum
indices = np.searchsorted(cumulative_sum, ideal_cumsum, side="right")
# Check for repeated split points, which indicates that there is no way to
# split the array.
if np.unique(indices).size != indices.size:
raise ValueError(
"Could not find partition points to split the array into {} parts "
"of equal sum.".format(parts))
return indices
class _BaseSpatialCrossValidator(BaseCrossValidator, metaclass=ABCMeta):
"""
Base class for spatial cross-validators.
Parameters
----------
n_groups : int
The number of groups to create. This is passed as 'n_clusters=n_groups'
for the KMeans algo, and 'n_components=n_groups' for the GMM.
coordinates : np.array
A numpy array of coordinate values e.g.
np.array([[3337270., 262400.],
[3441390., -273060.], ...,
method : str
Which algorithm to use to seperate data points. Either 'KMeans' or 'GMM'
n_splits : int
Number of splitting iterations.
"""
def __init__(self,
n_groups=None,
coordinates=None,
method=None,
max_distance=None,
n_splits=None):
self.n_groups = n_groups
self.coordinates = coordinates
self.method = method
self.max_distance = max_distance
self.n_splits = n_splits
def split(self, X, y=None, groups=None):
"""
Generate indices to split data into training and test set.
Parameters
----------
X : array-like, shape (n_samples, 2)
Columns should be the easting and northing coordinates of data
points, respectively.
y : array-like, shape (n_samples,)
The target variable for supervised learning problems. Always
ignored.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set. Always ignored.
Yields
------
train : ndarray
The training set indices for that split.
test : ndarray
The testing set indices for that split.
"""
if X.shape[1] != 2:
raise ValueError(
"X (the coordinate data) must have exactly 2 columns ({} given)."
.format(X.shape[1]))
for train, test in super().split(X, y, groups):
yield train, test
def get_n_splits(self, X=None, y=None, groups=None):
"""
Returns the number of splitting iterations in the cross-validator
Parameters
----------
X : object
Always ignored, exists for compatibility.
y : object
Always ignored, exists for compatibility.
groups : object
Always ignored, exists for compatibility.
Returns
-------
n_splits : int
Returns the number of splitting iterations in the cross-validator.
"""
return self.n_splits
@abstractmethod
def _iter_test_indices(self, X=None, y=None, groups=None):
"""
Generates integer indices corresponding to test sets.
MUST BE IMPLEMENTED BY DERIVED CLASSES.
Parameters
----------
X : array-like, shape (n_samples, 2)
Columns should be the easting and northing coordinates of data
points, respectively.
y : array-like, shape (n_samples,)
The target variable for supervised learning problems. Always
ignored.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set. Always ignored.
Yields
------
test : ndarray
The testing set indices for that split.
"""
class _SpatialShuffleSplit(_BaseSpatialCrossValidator):
"""
Random permutation of spatial cross-validator.
Yields indices to split data into training and test sets. Data are first
grouped into clusters using either a KMeans or GMM algorithm
and are then split into testing and training sets randomly.
The proportion of clusters assigned to each set is controlled by *test_size*
and/or *train_size*. However, the total amount of actual data points in
each set could be different from these values since clusters can have
a different number of data points inside them. To guarantee that the
proportion of actual data is as close as possible to the proportion of
clusters, this cross-validator generates an extra number of splits and
selects the one with proportion of data points in each set closer to the
desired amount. The number of balance splits per
iteration is controlled by the *balance* argument.
This cross-validator is preferred over `sklearn.model_selection.ShuffleSplit`
for spatial data to avoid overestimating cross-validation scores.
This can happen because of the inherent spatial autocorrelation.
Parameters
----------
n_groups : int
The number of groups to create. This is passed as 'n_clusters=n_groups'
for the KMeans algo, and 'n_components=n_groups' for the GMM. If using
cluster_method='Hierarchical' then this parameter is ignored.
coordinates : np.array
A numpy array of coordinate values e.g.
np.array([[3337270., 262400.],
[3441390., -273060.], ...])
cluster_method : str
Which algorithm to use to seperate data points. Either 'KMeans', 'GMM', or
'Hierarchical'
max_distance : int
If method is set to 'hierarchical' then maximum distance describes the
maximum euclidean distances between all observations in a cluster. 'n_groups'
is ignored in this case.
n_splits : int,
Number of re-shuffling & splitting iterations.
test_size : float, int, None
If float, should be between 0.0 and 1.0 and represent the proportion
of the dataset to include in the test split. If int, represents the
absolute number of test samples. If None, the value is set to the
complement of the train size. If ``train_size`` is also None, it will
be set to 0.1.
train_size : float, int, or None
If float, should be between 0.0 and 1.0 and represent the
proportion of the dataset to include in the train split. If
int, represents the absolute number of train samples. If None,
the value is automatically set to the complement of the test size.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
balance : int
The number of splits generated per iteration to try to balance the
amount of data in each set so that *test_size* and *train_size* are
respected. If 1, then no extra splits are generated (essentially
disabling the balacing). Must be >= 1.
**kwargs : optional,
Additional keyword arguments to pass to sklearn.cluster.Kmeans or
sklearn.mixture.GuassianMixture depending on the cluster_method argument.
Returns
--------
generator
containing indices to split data into training and test sets
"""
def __init__(self,
n_groups=None,
coordinates=None,
method='Heirachical',
max_distance=None,
n_splits=None,
test_size=0.15,
train_size=None,
random_state=None,
balance=10,
**kwargs):
super().__init__(n_groups=n_groups,
coordinates=coordinates,
method=method,
max_distance=max_distance,
n_splits=n_splits,
**kwargs)
if balance < 1:
raise ValueError(
"The *balance* argument must be >= 1. To disable balance, use 1."
)
self.test_size = test_size
self.train_size = train_size
self.random_state = random_state
self.balance = balance
self.kwargs = kwargs
def _iter_test_indices(self, X=None, y=None, groups=None):
"""
Generates integer indices corresponding to test sets.
Runs several iterations until a split is found that yields clusters with
the right amount of data points in it.
Parameters
----------
X : array-like, shape (n_samples, 2)
Columns should be the easting and northing coordinates of data
points, respectively.
y : array-like, shape (n_samples,)
The target variable for supervised learning problems. Always
ignored.
groups : array-like, with shape (n_samples,), optional
Group labels for the samples used while splitting the dataset into
train/test set. Always ignored.
Yields
------
test : ndarray
The testing set indices for that split.
"""
labels = spatial_clusters(n_groups=self.n_groups,
coordinates=self.coordinates,
method=self.method,
max_distance=self.max_distance,
**self.kwargs)
cluster_ids = np.unique(labels)
# Generate many more splits so that we can pick and choose the ones
# that have the right balance of training and testing data.
shuffle = ShuffleSplit(
n_splits=self.n_splits * self.balance,
test_size=self.test_size,
train_size=self.train_size,
random_state=self.random_state,
).split(cluster_ids)
for _ in range(self.n_splits):
test_sets, balance = [], []
for _ in range(self.balance):
# This is a false positive in pylint which is why the warning
# is disabled at the top of this file:
# https://github.com/PyCQA/pylint/issues/1830
# pylint: disable=stop-iteration-return
train_clusters, test_clusters = next(shuffle)
# pylint: enable=stop-iteration-return
train_points = np.where(
np.isin(labels, cluster_ids[train_clusters]))[0]
test_points = np.where(
np.isin(labels, cluster_ids[test_clusters]))[0]
# The proportion of data points assigned to each group should
# be close the proportion of clusters assigned to each group.
balance.append(
abs(train_points.size / test_points.size -
train_clusters.size / test_clusters.size))
test_sets.append(test_points)
best = | np.argmin(balance) | numpy.argmin |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = | N.array([2,1,1]) | numpy.array |
#Author: <NAME>. Email: <EMAIL>
#Packaged by: <NAME>, Email: <EMAIL>
#This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
#To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons,
#PO Box 1866, Mountain View, CA 94042, USA.
# Use as example script to learn the parameters of the gmm and to visualize the bout types and their kinematics
# Datasets of each condition should be of size nbouts x nfeatures
# In addition storing the features, the tail angles can be useful in order to visualize the bout types found
# Recfactoring analyze_kinematics() to suit specific datasets can help with the visualization of the bout types
import argparse
import sys
sys.path.append('./BASS/')
sys.path.append('./Utils/')
import os
import time
#data format library
#numpy and scipy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#data processing functions
from GMM import GMM_model
def train(args, datasets, n_cluster):
"""
Learn a GMM on datasets with a set number of clusters and save the parameters:
Parameters:
args: Argparse object containing general arguments
datasets: A list of datasets over which to learn GMM. Size of list should be number of conditions/experiments
Each dataset in the list should be num_bouts x n_features..
n_cluster: Chosen number of clusters. default type - int
"""
model_fit = GMM_model(n_cluster)
if args.Load == False:
length_min = np.min([len(data) for data in datasets])
split_size = int((2/3)*length_min) # 60% train/val split
datasets_train = np.zeros((len(datasets),split_size,datasets[0].shape[1])) # 3d array for subsampled dataset
for s in range(len(datasets)):
subsample = np.random.choice(len(datasets[s]),split_size)
datasets_train[s] = datasets[s][subsample]
model_fit.solve(datasets_train)
model_fit._save_params(args.PathGMM + args.GMMName)
return model_fit
elif args.Load == True:
if os.path.exists(args.PathGMM) is not True:
print('Path to GMM ' + args.PathData + ' does not exist, folders created')
exit()
means_ = np.load(args.PathGMM + args.GMMName + "_means.npy")
covars_ = np.load(args.PathGMM + args.GMMName + "_covars.npy")
weights_ = np.load(args.PathGMM + args.GMMName + "_weights.npy")
model_fit._read_params(means_,covars_,weights_)
return model_fit
def val(args, datasets,clusters,n_reps):
"""
Train a Gaussian Mixture models and plot the log likelihood for selected range of clusters in order to select the number of clusters
Parameters:
args: Argparse object containing general arguments
datasets: A list of datasets over which to learn GMM. Size of list should be number of conditions/experiments
Each dataset in the list should be num_bouts x n_features.
clusters: a list/numpy array of the range of clusters to test upon
n_reps: Number of repititions to perform for error bars
"""
np.random.seed(args.Seed)
LLs = []
for i in clusters:
print('clusters = ',i)
LLs += [[]]
for j in range(n_reps):
print('iter = ', j)
model_fit = GMM_model(i)
length_min = np.min([len(data) for data in datasets])
split_size = int((2/3)*length_min) # 60% train/val split
datasets_train = np.zeros((len(datasets),split_size,datasets[0].shape[1])) # 3d array for subsampled dataset
datasets_test = np.zeros((len(datasets),length_min - split_size,datasets[0].shape[1]))
for s in range(len(datasets)):
subsample = np.random.choice(len(datasets[s]),split_size)
datasets_train[s] = datasets[s][subsample]
datasets_test[s] = | np.delete(datasets[s],subsample,axis=0) | numpy.delete |
import numpy as np
from numpy.testing import run_module_suite, assert_almost_equal
import scipy.sparse.linalg as spla
def test_gmres_basic():
A = np.vander( | np.arange(10) | numpy.arange |
import numpy as np
import numpy.testing as npt
import pytest
from copy import deepcopy
from collections import OrderedDict as ODict
from pulse2percept.stimuli import Stimulus, PulseTrain
def test_Stimulus():
# One electrode:
stim = Stimulus(3)
npt.assert_equal(stim.shape, (1, 1))
npt.assert_equal(stim.electrodes, [0])
npt.assert_equal(stim.time, None)
# One electrode with a name:
stim = Stimulus(3, electrodes='AA001')
npt.assert_equal(stim.shape, (1, 1))
npt.assert_equal(stim.electrodes, ['AA001'])
npt.assert_equal(stim.time, None)
# Ten electrodes, one will be trimmed:
stim = Stimulus(np.arange(10), compress=True)
npt.assert_equal(stim.shape, (9, 1))
npt.assert_equal(stim.electrodes, np.arange(1, 10))
npt.assert_equal(stim.time, None)
# Electrodes + specific time, time will be trimmed:
stim = Stimulus(np.ones((4, 3)), time=[-3, -2, -1], compress=True)
npt.assert_equal(stim.shape, (4, 2))
npt.assert_equal(stim.time, [-3, -1])
# Electrodes + specific time, but don't trim:
stim = Stimulus(np.ones((4, 3)), time=[-3, -2, -1], compress=False)
npt.assert_equal(stim.shape, (4, 3))
npt.assert_equal(stim.time, [-3, -2, -1])
# Specific names:
stim = Stimulus({'A1': 3, 'C5': 8})
npt.assert_equal(stim.shape, (2, 1))
npt.assert_equal(np.sort(stim.electrodes), np.sort(['A1', 'C5']))
npt.assert_equal(stim.time, None)
# Specific names, renamed:
stim = Stimulus({'A1': 3, 'C5': 8}, electrodes=['B7', 'B8'])
npt.assert_equal(stim.shape, (2, 1))
npt.assert_equal(np.sort(stim.electrodes), np.sort(['B7', 'B8']))
npt.assert_equal(stim.time, None)
# Electrodes x time, time will be trimmed:
stim = Stimulus(np.ones((6, 100)), compress=True)
npt.assert_equal(stim.shape, (6, 2))
# Single electrode in time:
stim = Stimulus(PulseTrain(0.01 / 1000, dur=0.005), compress=False)
npt.assert_equal(stim.electrodes, [0])
npt.assert_equal(stim.shape, (1, 500))
stim = Stimulus(PulseTrain(0.01 / 1000, dur=0.005), compress=True)
npt.assert_equal(stim.electrodes, [0])
npt.assert_equal(stim.shape, (1, 8))
# Specific electrode in time:
stim = Stimulus({'C3': PulseTrain(0.01 / 1000, dur=0.004)}, compress=False)
npt.assert_equal(stim.electrodes, ['C3'])
npt.assert_equal(stim.shape, (1, 400))
stim = Stimulus({'C3': PulseTrain(0.01 / 1000, dur=0.004)}, compress=True)
npt.assert_equal(stim.electrodes, ['C3'])
npt.assert_equal(stim.shape, (1, 8))
# Multiple specific electrodes in time:
stim = Stimulus({'C3': PulseTrain(0.01 / 1000, dur=0.004),
'F4': PulseTrain(0.01 / 1000, delay=0.0001, dur=0.004)},
compress=True)
# Stimulus from a Stimulus (might happen in ProsthesisSystem):
stim = Stimulus(Stimulus(4), electrodes='B3')
npt.assert_equal(stim.shape, (1, 1))
npt.assert_equal(stim.electrodes, ['B3'])
npt.assert_equal(stim.time, None)
# Saves metadata:
metadata = {'a': 0, 'b': 1}
stim = Stimulus(3, metadata=metadata)
npt.assert_equal(stim.metadata, metadata)
# List of lists instead of 2D NumPy array:
stim = Stimulus([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1]], compress=True)
npt.assert_equal(stim.shape, (2, 2))
npt.assert_equal(stim.electrodes, [0, 1])
npt.assert_equal(stim.time, [0, 4])
# Tuple of tuples instead of 2D NumPy array:
stim = Stimulus(((1, 1, 1, 1, 1), (1, 1, 1, 1, 1)), compress=True)
npt.assert_equal(stim.shape, (2, 2))
npt.assert_equal(stim.electrodes, [0, 1])
npt.assert_equal(stim.time, [0, 4])
# Zero activation:
source = np.zeros((2, 4))
stim = Stimulus(source, compress=True)
npt.assert_equal(stim.shape, (0, 2))
npt.assert_equal(stim.time, [0, source.shape[1] - 1])
stim = Stimulus(source, compress=False)
npt.assert_equal(stim.shape, source.shape)
npt.assert_equal(stim.time, np.arange(source.shape[1]))
# Annoying but possible:
stim = Stimulus([])
npt.assert_equal(stim.time, None)
npt.assert_equal(len(stim.data), 0)
npt.assert_equal(len(stim.electrodes), 0)
npt.assert_equal(stim.shape, (0,))
# Rename electrodes:
stim = Stimulus(np.ones((2, 5)), compress=True)
npt.assert_equal(stim.electrodes, [0, 1])
stim = Stimulus(stim, electrodes=['A3', 'B8'])
npt.assert_equal(stim.electrodes, ['A3', 'B8'])
npt.assert_equal(stim.time, [0, 4])
# Specify new time points:
stim = Stimulus(np.ones((2, 5)), compress=True)
npt.assert_equal(stim.time, [0, 4])
stim = Stimulus(stim, time=np.array(stim.time) / 10.0)
npt.assert_equal(stim.electrodes, [0, 1])
npt.assert_equal(stim.time, [0, 0.4])
# Not allowed:
with pytest.raises(ValueError):
# Multiple electrodes in time, different time stamps:
stim = Stimulus([PulseTrain(0.01 / 1000, dur=0.004),
PulseTrain(0.005 / 1000, dur=0.002)])
with pytest.raises(ValueError):
# First one doesn't have time:
stim = Stimulus({'A2': 1, 'C3': PulseTrain(0.01 / 1000, dur=0.004)})
with pytest.raises(ValueError):
# Invalid source type:
stim = Stimulus(np.ones((3, 4, 5, 6)))
with pytest.raises(TypeError):
# Invalid source type:
stim = Stimulus("invalid")
with pytest.raises(ValueError):
# Wrong number of electrodes:
stim = Stimulus([3, 4], electrodes='A1')
with pytest.raises(ValueError):
# Wrong number of time points:
stim = Stimulus(np.ones((3, 5)), time=[0, 1, 2])
with pytest.raises(ValueError):
# Can't force time:
stim = Stimulus(3, time=[0.4])
@pytest.mark.parametrize('tsample', (5e-6, 1e-7))
def test_Stimulus_compress(tsample):
# Single pulse train:
pdur = 0.00045
pt = PulseTrain(tsample, pulse_dur=pdur, dur=0.005)
idata = pt.data.reshape((1, -1))
ielec = np.array([0])
itime = np.arange(idata.shape[-1]) * pt.tsample
stim = Stimulus(idata, electrodes=ielec, time=itime, compress=False)
# Compress the data. The original `tsample` shouldn't matter as long as the
# resolution is fine enough to capture all of the pulse train:
stim.compress()
npt.assert_equal(stim.shape, (1, 8))
# Electrodes are unchanged:
npt.assert_equal(ielec, stim.electrodes)
# First and last time step are always preserved:
npt.assert_almost_equal(itime[0], stim.time[0])
npt.assert_almost_equal(itime[-1], stim.time[-1])
# The first rising edge happens at t=`pdur`:
npt.assert_almost_equal(stim.time[1], pdur - tsample)
npt.assert_almost_equal(stim.data[0, 1], -20)
npt.assert_almost_equal(stim.time[2], pdur)
npt.assert_almost_equal(stim.data[0, 2], 0)
# Two pulse trains with slight delay/offset, and a third that's all 0:
delay = 0.0001
pt = PulseTrain(tsample, delay=0, dur=0.005)
pt2 = PulseTrain(tsample, delay=delay, dur=0.005)
pt3 = PulseTrain(tsample, amp=0, dur=0.005)
idata = np.vstack((pt.data, pt2.data, pt3.data))
ielec = np.array([0, 1, 2])
itime = np.arange(idata.shape[-1]) * pt.tsample
stim = Stimulus(idata, electrodes=ielec, time=itime, compress=False)
# Compress the data:
stim.compress()
npt.assert_equal(stim.shape, (2, 16))
# Zero electrodes should be deselected:
npt.assert_equal(stim.electrodes, np.array([0, 1]))
# First and last time step are always preserved:
npt.assert_almost_equal(itime[0], stim.time[0])
npt.assert_almost_equal(itime[-1], stim.time[-1])
# The first rising edge happens at t=`delay`:
npt.assert_almost_equal(stim.time[1], delay - tsample)
npt.assert_almost_equal(stim.data[0, 1], -20)
npt.assert_almost_equal(stim.data[1, 1], 0)
npt.assert_almost_equal(stim.time[2], delay)
npt.assert_almost_equal(stim.data[0, 2], -20)
npt.assert_almost_equal(stim.data[1, 2], -20)
# Repeated calls to compress won't change the result:
idata = stim.data
ielec = stim.electrodes
itime = stim.time
stim.compress()
npt.assert_equal(idata, stim.data)
npt.assert_equal(ielec, stim.electrodes)
npt.assert_equal(itime, stim.time)
def test_Stimulus__stim():
stim = Stimulus(3)
# User could try and motify the data container after the constructor, which
# would lead to inconsistencies between data, electrodes, time. The new
# property setting mechanism prevents that.
# Requires dict:
with pytest.raises(TypeError):
stim._stim = np.array([0, 1])
# Dict must have all required fields:
fields = ['data', 'electrodes', 'time']
for field in fields:
_fields = deepcopy(fields)
_fields.remove(field)
with pytest.raises(AttributeError):
stim._stim = {f: None for f in _fields}
# Data must be a 2-D NumPy array:
data = {f: None for f in fields}
with pytest.raises(TypeError):
data['data'] = [1, 2]
stim._stim = data
with pytest.raises(ValueError):
data['data'] = np.ones(3)
stim._stim = data
# Data rows must match electrodes:
with pytest.raises(ValueError):
data['data'] = np.ones((3, 4))
data['time'] = np.arange(4)
data['electrodes'] = np.arange(2)
stim._stim = data
# Data columns must match time:
with pytest.raises(ValueError):
data['data'] = np.ones((3, 4))
data['electrodes'] = np.arange(3)
data['time'] = np.arange(7)
stim._stim = data
# But if you do all the things right, you can reset the stimulus by hand:
data['data'] = np.ones((3, 1))
data['electrodes'] = np.arange(3)
data['time'] = None
stim._stim = data
data['data'] = np.ones((3, 1))
data['electrodes'] = np.arange(3)
data['time'] = np.arange(1)
stim._stim = data
data['data'] = np.ones((3, 7))
data['electrodes'] = np.arange(3)
data['time'] = np.ones(7)
stim._stim = data
def test_Stimulus___eq__():
# Two Stimulus objects created from the same source data are considered
# equal:
for source in [3, [], np.ones(3), [3, 4, 5], np.ones((3, 6))]:
npt.assert_equal(Stimulus(source) == Stimulus(source), True)
stim = Stimulus(np.ones((2, 3)), compress=True)
# Compressed vs uncompressed:
npt.assert_equal(stim == Stimulus(np.ones((2, 3)), compress=False), False)
npt.assert_equal(stim != Stimulus(np.ones((2, 3)), compress=False), True)
# Different electrode names:
npt.assert_equal(stim == Stimulus(stim, electrodes=[0, 'A2']), False)
# Different time points:
npt.assert_equal(stim == Stimulus(stim, time=[0, 3], compress=True), False)
# Different data shape:
npt.assert_equal(stim == Stimulus(np.ones((2, 4))), False)
npt.assert_equal(stim == Stimulus(np.ones(2)), False)
# Different data points:
npt.assert_equal(stim == Stimulus(np.ones((2, 3)) * 1.1), False)
# Different type:
npt.assert_equal(stim == np.ones((2, 3)), False)
npt.assert_equal(stim != np.ones((2, 3)), True)
# Annoying but possible:
npt.assert_equal(Stimulus([]), Stimulus(()))
def test_Stimulus___getitem__():
stim = Stimulus(np.arange(12).reshape((3, 4)))
# Slicing:
npt.assert_equal(stim[:], stim.data)
npt.assert_equal(stim[...], stim.data)
npt.assert_equal(stim[:, :], stim.data)
npt.assert_equal(stim[:2], stim.data[:2])
npt.assert_equal(stim[:, 0], stim.data[:, 0])
npt.assert_equal(stim[0, :], stim.data[0, :])
npt.assert_equal(stim[0, ...], stim.data[0, ...])
npt.assert_equal(stim[..., 0], stim.data[..., 0])
# Single element:
npt.assert_equal(stim[0, 0], stim.data[0, 0])
# Interpolating time:
npt.assert_almost_equal(stim[0, 2.6], 2.6)
npt.assert_almost_equal(stim[..., 2.3], np.array([[2.3], [6.3], [10.3]]))
# "Valid" index errors:
with pytest.raises(IndexError):
stim[10, :]
with pytest.raises(TypeError):
stim[3.3, 0]
# Extrapolating should be disabled by default:
with pytest.raises(ValueError):
stim[0, 9.9]
# But you can enable it:
stim = Stimulus(np.arange(12).reshape((3, 4)), extrapolate=True)
npt.assert_almost_equal(stim[0, 9.9], 9.9)
# If time=None, you cannot interpolate/extrapolate:
stim = Stimulus([3, 4, 5], extrapolate=True)
npt.assert_almost_equal(stim[0], stim.data[0, 0])
with pytest.raises(ValueError):
stim[0, 0.2]
# With a single time point, interpolate is still possible:
stim = Stimulus(np.arange(3).reshape((-1, 1)), extrapolate=False)
npt.assert_almost_equal(stim[0], stim.data[0, 0])
npt.assert_almost_equal(stim[0, 0], stim.data[0, 0])
with pytest.raises(ValueError):
stim[0, 3.33]
stim = Stimulus(np.arange(3).reshape((-1, 1)), extrapolate=True)
| npt.assert_almost_equal(stim[0, 3.33], stim.data[0, 0]) | numpy.testing.assert_almost_equal |
################################################################################
# Copyright (C) 2013-2014 <NAME>
#
# This file is licensed under the MIT License.
################################################################################
"""
Unit tests for `dot` module.
"""
import unittest
import numpy as np
import scipy
from numpy import testing
from ..dot import Dot, SumMultiply
from ..gaussian import Gaussian, GaussianARD
from bayespy.nodes import GaussianGamma
from ...vmp import VB
from bayespy.utils import misc
from bayespy.utils import linalg
from bayespy.utils import random
from bayespy.utils.misc import TestCase
class TestSumMultiply(TestCase):
def test_parent_validity(self):
"""
Test that the parent nodes are validated properly in SumMultiply
"""
V = GaussianARD(1, 1)
X = Gaussian(np.ones(1), np.identity(1))
Y = Gaussian(np.ones(3), np.identity(3))
Z = Gaussian(np.ones(5), | np.identity(5) | numpy.identity |
"""ageo - active geolocation library: core.
"""
__all__ = ('Location', 'Map', 'Observation')
import bisect
import functools
import itertools
import numpy as np
import pyproj
from scipy import sparse
from shapely.geometry import Point, MultiPoint, Polygon, box as Box
from shapely.ops import transform as sh_transform
import tables
import math
import sys
# scipy.sparse.find() materializes vectors which, in several cases
# below, can be enormous. This is slower, but more memory-efficient.
# Code from https://stackoverflow.com/a/31244368/388520 with minor
# modifications.
def iter_csr_nonzero(matrix):
irepeat = itertools.repeat
return zip(
# reconstruct the row indices
itertools.chain.from_iterable(
irepeat(i, r)
for (i,r) in enumerate(matrix.indptr[1:] - matrix.indptr[:-1])
),
# matrix.indices gives the column indices as-is
matrix.indices,
matrix.data
)
def Disk(x, y, radius):
return Point(x, y).buffer(radius)
# Important note: pyproj consistently takes coordinates in lon/lat
# order and distances in meters. lon/lat order makes sense for
# probability matrices, because longitudes are horizontal = columns,
# latitudes are vertical = rows, and scipy matrices are column-major
# (blech). Therefore, this library also consistently uses lon/lat
# order and meters.
# Coordinate transformations used by Location.centroid()
wgs_proj = pyproj.Proj("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
gcen_proj = pyproj.Proj("+proj=geocent +datum=WGS84 +units=m +no_defs")
wgs_to_gcen = functools.partial(pyproj.transform, wgs_proj, gcen_proj)
gcen_to_wgs = functools.partial(pyproj.transform, gcen_proj, wgs_proj)
# ... and Location.area()
cea_proj = pyproj.Proj(proj='cea', ellps='WGS84', lon_0=0, lat_ts=0)
wgs_to_cea = functools.partial(pyproj.transform, wgs_proj, cea_proj)
# Smooth over warts in pyproj.Geod.inv(), which is vectorized
# internally, but does not support numpy-style broadcasting, and
# returns things we don't need. The prebound _Inv and _Bcast are
# strictly performance hacks.
_WGS84geod = pyproj.Geod(ellps='WGS84')
def WGS84dist(lon1, lat1, lon2, lat2, *,
_Inv = _WGS84geod.inv, _Bcast = np.broadcast_arrays):
_, _, dist = _Inv(*_Bcast(lon1, lat1, lon2, lat2))
return dist
def cartesian2(a, b):
"""Cartesian product of two 1D vectors A and B."""
return np.tile(a, len(b)), np.repeat(b, len(a))
def mask_ij(bounds, longitudes, latitudes):
"""Given a rectangle-tuple BOUNDS (west, south, east, north; as
returned by shapely .bounds properties), and sorted grid index
vectors LONGITUDES, LATITUDES, return vectors I, J which give the
x- and y-indices of every grid point within the rectangle.
LATITUDES and LONGITUDES must be sorted.
"""
try:
(west, south, east, north) = bounds
except ValueError as e:
raise ValueError("invalid bounds argument {!r}".format(bounds)) from e
min_i = bisect.bisect_left(longitudes, west)
max_i = bisect.bisect_right(longitudes, east)
min_j = bisect.bisect_left(latitudes, south)
max_j = bisect.bisect_right(latitudes, north)
I = np.array(range(min_i, max_i))
J = np.array(range(min_j, max_j))
return cartesian2(I, J)
def mask_matrix(bounds, longitudes, latitudes):
"""Construct a sparse matrix which is 1 at all latitude+longitude
grid points inside the rectangle BOUNDS, 0 outside.
LATITUDES and LONGITUDES must be sorted.
"""
I, J = mask_ij(bounds, longitudes, latitudes)
return sparse.csr_matrix((np.ones_like(I), (I, J)),
shape=(len(longitudes), len(latitudes)))
class LocationRowOnDisk(tables.IsDescription):
"""The row format of the pytables table used to save Location objects
on disk. See Location.save and Location.load."""
grid_x = tables.UInt32Col()
grid_y = tables.UInt32Col()
longitude = tables.Float64Col()
latitude = tables.Float64Col()
prob_mass = tables.Float32Col()
class Location:
"""An estimated location for a host. This is represented by a
probability mass function over the surface of the Earth, quantized
to a cell grid, and stored as a sparse matrix.
Properties:
resolution - Grid resolution, in meters at the equator
lon_spacing - East-west (longitude) grid resolution, in decimal degrees
lat_spacing - North-south (latitude) grid resolution, in decimal degrees
fuzz - Coastline uncertainty factor, in meters at the equator
north - Northernmost latitude covered by the grid
south - Southernmost latitude ditto
east - Easternmost longitude ditto
west - Westernmost longitude ditto
latitudes - Vector of latitude values corresponding to grid points
longitudes - Vector of longitude values ditto
probability - Probability mass matrix (may be lazily computed)
bounds - Bounding region of the nonzero portion of the
probability mass matrix (may be lazily computed)
centroid - Centroid of the nonzero &c
area - Weighted area of the nonzero &c
covariance - Covariance matrix of the nonzero &c
(relative to the centroid)
rep_pt - "Representative point" of the nonzero &c; see docstring
for exactly what this means
annotations - Dictionary of arbitrary additional metadata; saved and
loaded but not otherwise inspected by this code
You will normally not construct bare Location objects directly, only
Map and Observation objects (these are subclasses). However, any two
Locations can be _intersected_ to produce a new one.
A Location is _vacuous_ if it has no nonzero entries in its
probability matrix.
"""
def __init__(self, *,
resolution, fuzz, lon_spacing, lat_spacing,
north, south, east, west,
longitudes, latitudes,
probability=None, vacuity=None, bounds=None,
centroid=None, covariance=None, rep_pt=None,
loaded_from=None, annotations=None
):
self.resolution = resolution
self.fuzz = fuzz
self.north = north
self.south = south
self.east = east
self.west = west
self.lon_spacing = lon_spacing
self.lat_spacing = lat_spacing
self.longitudes = longitudes
self.latitudes = latitudes
self._probability = probability
self._vacuous = vacuity
self._bounds = bounds
self._centroid = centroid
self._covariance = covariance
self._rep_pt = rep_pt
self._loaded_from = loaded_from
self._area = None
self.annotations = annotations if annotations is not None else {}
@property
def probability(self):
if self._probability is None:
self.compute_probability_matrix_now()
return self._probability
@property
def vacuous(self):
if self._vacuous is None:
self.compute_probability_matrix_now()
return self._vacuous
@property
def centroid(self):
if self._centroid is None:
self.compute_centroid_now()
return self._centroid
@property
def covariance(self):
if self._covariance is None:
self.compute_centroid_now()
return self._covariance
@property
def area(self):
"""Weighted area of the nonzero region of the probability matrix."""
if self._area is None:
# Notionally, each grid point should be treated as a
# rectangle of parallels and meridians _centered_ on the
# point. The area of such a rectangle, however, only
# depends on its latitude and its breadth; the actual
# longitude values don't matter. Since the grid is
# equally spaced, we can use [0],[1] always, and then we
# do not have to worry about crossing the discontinuity at ±180.
west = self.longitudes[0]
east = self.longitudes[1]
# For latitude, the actual values do matter, but the map
# never goes all the way to the poles, and the grid is
# equally spaced, so we can precompute the north-south
# delta from any pair of latitudes and not have to worry
# about running off the ends of the array.
d_lat = (self.latitudes[1] - self.latitudes[0]) / 2
# We don't need X, so throw it away immediately. (We
# don't use iter_csr_nonzero here because we need to
# modify V.)
X, Y, V = sparse.find(self.probability); X = None
# The value vector is supposed to be normalized, but make
# sure it is, and then adjust from 1-overall to 1-per-cell
# normalization.
assert len(V.shape) == 1
S = V.sum()
if S == 0:
return 0
if S != 1:
V /= S
V *= V.shape[0]
area = 0
for y, v in zip(Y, V):
north = self.latitudes[y] + d_lat
south = self.latitudes[y] - d_lat
if not (-90 <= south < north <= 90):
raise AssertionError("expected -90 <= {} < {} <= 90"
.format(south, north))
tile = sh_transform(wgs_to_cea, Box(west, south, east, north))
area += v * tile.area
self._area = area
return self._area
@property
def rep_pt(self, epsilon=1e-8):
"""Representative point of the nonzero region of the probability
matrix. This is, of all points with the greatest probability,
the one closest to the centroid.
"""
if self._rep_pt is None:
lons = self.longitudes
lats = self.latitudes
cen = self.centroid
aeqd_cen = pyproj.Proj(proj='aeqd', ellps='WGS84', datum='WGS84',
lon_0=cen[0], lat_0=cen[1])
wgs_to_aeqd = functools.partial(pyproj.transform,
wgs_proj, aeqd_cen)
# mathematically, wgs_to_aeqd(Point(lon, lat)) == Point(0, 0);
# the latter is faster and more precise
cen_pt = Point(0,0)
# It is unacceptably costly to construct a shapely MultiPoint
# out of some locations with large regions (can require more than
# 32GB of scratch memory). Instead, iterate over the points
# one at a time.
max_prob = 0
min_dist = math.inf
rep_pt = None
for x, y, v in iter_csr_nonzero(self.probability):
lon = lons[x]
lat = lats[y]
if rep_pt is None or v > max_prob - epsilon:
dist = WGS84dist(cen[0], cen[1], lon, lat)
# v < max_prob has already been excluded
if (rep_pt is None or v > max_prob or
(v > max_prob - epsilon and dist < min_dist)):
rep_pt = [lon, lat]
max_prob = max(max_prob, v)
min_dist = dist
if rep_pt is None:
rep_pt = cen
else:
rep_pt = | np.array(rep_pt) | numpy.array |
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 31 15:15:12 2019
@author: bwc
"""
# standard imports
import numpy as np
import matplotlib.pyplot as plt
# custom imports
import apt_fileio
import peak_param_determination as ppd
from histogram_functions import bin_dat
import scipy.interpolate
import image_registration.register_images
#import sel_align_m2q_log_xcorr
import scaling_correction
import time
import m2q_calib
from voltage_and_bowl import do_voltage_and_bowl
import voltage_and_bowl
import colorcet as cc
import matplotlib._color_data as mcd
import matplotlib
FIGURE_SCALE_FACTOR = 2
def colorbar():
fig = plt.gcf()
ax = fig.gca()
#
# norm = matplotlib.colors.Normalize(vmin=0, vmax=1, clip=False)
#
fig.colorbar()
return None
def extents(f):
delta = f[1] - f[0]
return [f[0] - delta/2, f[-1] + delta/2]
def create_histogram(ys,cts_per_slice=2**10,y_roi=None,delta_y=0.1):
# even number
num_y = int(np.ceil(np.abs(np.diff(y_roi))/delta_y/2)*2)
num_x = int(ys.size/cts_per_slice)
xs = np.arange(ys.size)
N,x_edges,y_edges = np.histogram2d(xs,ys,bins=[num_x,num_y],range=[[1,ys.size],y_roi],density=False)
return (N,x_edges,y_edges)
def edges_to_centers(*edges):
centers = []
for es in edges:
centers.append((es[0:-1]+es[1:])/2)
if len(centers)==1:
centers = centers[0]
return centers
def plot_2d_histo(ax,N,x_edges,y_edges):
pos1 = ax.imshow(np.log10(1+1*np.transpose(N)), aspect='auto',
extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8,
interpolation='bicubic')
ax.set_xticks([0,100000,200000,300000,400000])# ax.set_xticklabels(["\n".join(x) for x in data.index])
return pos1
def steel():
# Load and subsample data (for easier processing)
fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R44_02203-v01.epos"
epos = apt_fileio.read_epos_numpy(fn)
epos = epos[100000::10]
# Voltage and bowl correct ToF data
p_volt = np.array([])
p_bowl = np.array([])
t_i = time.time()
tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl)
print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds")
# Only apply bowl correction
tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det'])
# Plot histogram for steel
fig = plt.figure(figsize=(FIGURE_SCALE_FACTOR*3.14961,FIGURE_SCALE_FACTOR*3.14961),num=1,dpi=100)
plt.clf()
ax1, ax2 = fig.subplots(2,1,sharex=True)
N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[400,600],cts_per_slice=2**9,delta_y=0.25)
im = plot_2d_histo(ax1,N,x_edges,y_edges)
# plt.colorbar(im)
ax1.set(ylabel='flight time (ns)')
ax1twin = ax1.twinx()
ax1twin.plot(epos['v_dc'],'-',
linewidth=2,
color=mcd.XKCD_COLORS['xkcd:white'])
ax1twin.set(ylabel='applied voltage (volts)',ylim=[0, 6000],xlim=[0, 400000])
N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[425,475],cts_per_slice=2**9,delta_y=0.25)
im = plot_2d_histo(ax2,N,x_edges,y_edges)
# plt.colorbar(im)
ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)')
fig.tight_layout()
fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\metal_not_wandering.pdf', format='pdf', dpi=600)
return 0
def sio2_R45():
fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_04472-v02_allVfromAnn.epos"
epos = apt_fileio.read_epos_numpy(fn)
epos = epos[25000:]
# Voltage and bowl correct ToF data
p_volt = np.array([])
p_bowl = np.array([])
t_i = time.time()
tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl)
print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds")
# Only apply bowl correction
tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det'])
# Plot histogram for sio2
fig = plt.figure(figsize=(FIGURE_SCALE_FACTOR*3.14961,FIGURE_SCALE_FACTOR*3.14961),num=2,dpi=100)
plt.clf()
ax1, ax2 = fig.subplots(2,1,sharex=True)
N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[280,360],cts_per_slice=2**9,delta_y=.25)
im = plot_2d_histo(ax1,N,x_edges,y_edges)
plt.colorbar(im)
ax1.set(ylabel='flight time (ns)')
ax1twin = ax1.twinx()
ax1twin.plot(epos['v_dc'],'-',
linewidth=2,
color=mcd.XKCD_COLORS['xkcd:white'])
ax1twin.set(ylabel='applied voltage (volts)',ylim=[0000, 8000],xlim=[0, 400000])
N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[280,360],cts_per_slice=2**9,delta_y=.25)
im = plot_2d_histo(ax2,N,x_edges,y_edges)
plt.colorbar(im)
ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)')
fig.tight_layout()
fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\SiO2_NUV_wandering.pdf', format='pdf', dpi=600)
return 0
def sio2_R44():
fn = r"C:\Users\bwc\Documents\NetBeansProjects\R44_03200\recons\recon-v02\default\R44_03200-v02.epos"
epos = apt_fileio.read_epos_numpy(fn)
# Voltage and bowl correct ToF data
p_volt = np.array([])
p_bowl = np.array([])
t_i = time.time()
tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl)
print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds")
# Only apply bowl correction
tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det'])
# Plot histogram for sio2
fig = plt.figure(figsize=(FIGURE_SCALE_FACTOR*3.14961,FIGURE_SCALE_FACTOR*3.14961),num=3,dpi=100)
plt.clf()
ax1, ax2 = fig.subplots(2,1,sharex=True)
roi = [1400000,1800000]
N,x_edges,y_edges = create_histogram(tof_bcorr[roi[0]:roi[1]],y_roi=[300,310],cts_per_slice=2**7,delta_y=.2)
im = plot_2d_histo(ax1,N,x_edges,y_edges)
plt.colorbar(im)
ax1.set(ylabel='flight time (ns)')
ax1twin = ax1.twinx()
ax1twin.plot(epos['v_dc'][roi[0]:roi[1]],'-',
linewidth=2,
color=mcd.XKCD_COLORS['xkcd:white'])
ax1twin.set(ylabel='applied voltage (volts)',ylim=[0000, 7000],xlim=[0,None])
N,x_edges,y_edges = create_histogram(tof_corr[roi[0]:roi[1]],y_roi=[300,310],cts_per_slice=2**7,delta_y=0.2)
im = plot_2d_histo(ax2,N,x_edges,y_edges)
plt.colorbar(im)
ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)')
ax2.set_xlim(0,roi[1]-roi[0])
fig.tight_layout()
fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\Figure_R44NUV.pdf', format='pdf', dpi=600)
return 0
def sio2_R20():
fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R20_07080-v01.epos"
epos = apt_fileio.read_epos_numpy(fn)
#epos = epos[165000:582000]
# Voltage and bowl correct ToF data
p_volt = np.array([])
p_bowl = np.array([])
t_i = time.time()
tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl)
print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds")
# Only apply bowl correction
tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det'])
# Plot histogram for sio2
fig = plt.figure(figsize=(FIGURE_SCALE_FACTOR*3.14961,FIGURE_SCALE_FACTOR*3.14961),num=4,dpi=100)
plt.clf()
ax1, ax2 = fig.subplots(2,1,sharex=True)
N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[320,380],cts_per_slice=2**9,delta_y=.25)
plot_2d_histo(ax1,N,x_edges,y_edges)
ax1.set(ylabel='flight time (ns)')
ax1twin = ax1.twinx()
ax1twin.plot(epos['v_dc'],'-',
linewidth=2,
color=mcd.XKCD_COLORS['xkcd:white'])
ax1twin.set(ylabel='applied voltage (volts)',ylim=[0000, 5000],xlim=[0, 400000])
N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[320,380],cts_per_slice=2**9,delta_y=.25)
plot_2d_histo(ax2,N,x_edges,y_edges)
ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)')
fig.tight_layout()
fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\SiO2_EUV_wandering.pdf', format='pdf', dpi=600)
return 0
def corr_idea():
fig = plt.figure(num=5)
plt.close(fig)
fig = plt.figure(constrained_layout=True,figsize=(FIGURE_SCALE_FACTOR*3.14961,FIGURE_SCALE_FACTOR*1.5*3.14961),num=5,dpi=100)
gs = fig.add_gridspec(3, 1)
ax2 = fig.add_subplot(gs[:2, :])
ax1 = fig.add_subplot(gs[2, :])
def shaded_plot(ax,x,y,idx,col_idx=None):
if col_idx is None:
col_idx = idx
sc = 50
cols = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']
xlim = ax.get_xlim()
idxs = np.nonzero((x>=xlim[0]) & (x<=xlim[1]))
ax.fill_between(x[idxs], y[idxs]+idx*sc, (idx-0.005)*sc, color=cols[col_idx])
# ax.plot(x,y+idx*sc, color='k')
return
fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_04472-v02_allVfromAnn.epos"
epos = apt_fileio.read_epos_numpy(fn)
epos = epos[25000:]
# Voltage and bowl correct ToF data
p_volt = np.array([])
p_bowl = np.array([])
t_i = time.time()
tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl)
print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds")
# Plot histogram for sio2
# fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=654321,dpi=100)
# plt.clf()
# ax2 = fig.subplots(1,1)
N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[80,400],cts_per_slice=2**10,delta_y=0.0625)
#ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto',
# extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8,
# interpolation='bilinear')
event_idx_range_ref = [0, 0+1024]
event_idx_range_mov = [124000, 124000+1024]
x_centers = edges_to_centers(x_edges)
idxs_ref = (x_centers>=event_idx_range_ref[0]) & (x_centers<=event_idx_range_ref[1])
idxs_mov = (x_centers>=event_idx_range_mov[0]) & (x_centers<=event_idx_range_mov[1])
ref_hist = | np.sum(N[idxs_ref,:],axis=0) | numpy.sum |
# @Author: yican, yelanlan
# @Date: 2020-05-27 22:58:45
# @Last Modified by: yican
# @Last Modified time: 2020-05-27 22:58:45
# Standard libraries
import os
from time import time
import sys
sys.path.append('./')
import pytorch_lightning as pl
# Third party libraries
import cv2
import numpy as np
import pandas as pd
from sklearn.model_selection import KFold
import torch
import albumentations
from albumentations import (Compose, GaussianBlur, HorizontalFlip, MedianBlur,
MotionBlur, Normalize, OneOf, RandomBrightness,
RandomContrast, RandomBrightnessContrast, Resize,
ShiftScaleRotate, VerticalFlip, LongestMaxSize,
PadIfNeeded)
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from PIL import Image
# User defined libraries
from utils import *
from torchvision.utils import save_image
from os.path import basename as bsn
from os.path import dirname
from torch.utils.data.distributed import DistributedSampler
# for fast read data
# from utils import NPY_FOLDER
class MySampler(DistributedSampler):
def __init__(self,
dataset: Dataset,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
seed: int = 0,
drop_last: bool = False) -> None:
super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last)
def __len__(self) -> int:
# print(f'Pid {os.getpid()}, {super().__len__()}')
return super().__len__()
class OpticalCandlingDataset(Dataset):
""" Do normal training
"""
def __init__(self,
hparams,
data,
soft_labels_filename=None,
transforms=None):
self.hparams = hparams
self.data_folder = self.hparams.data_folder
# self.data = data[-8:]
self.data = data
self.transforms = transforms
if soft_labels_filename == "":
self.soft_labels = None
else:
self.soft_labels = pd.read_csv(soft_labels_filename)
def __getitem__(self, index):
start_time = time()
# Read image
# solution-1: read from raw image
filename = self.data.iloc[index, 0]
path = os.path.join(self.data_folder, filename)
# image = cv2.cvtColor(cv2.imread(path),cv2.COLOR_BGR2RGB)
image = Image.open(path).convert("RGB")
# solution-2: read from npy file which can speed the data load time.
# image = np.load(os.path.join(NPY_FO21LDER, "raw", self.data.iloc[index, 0] + ".npy"))
if image is None:
raise Exception('')
# Convert if not the right shape
# if image.shape != IMG_SHAPE:
# image = image.transpose(1, 0, 2)
# print(image.shape)
# Do data augmentation
if self.transforms is not None and isinstance(self.transforms,
albumentations.Compose):
image = np.array(image)
image = self.transforms(image=image)["image"].transpose(2, 0, 1)
elif self.transforms is not None and isinstance(
self.transforms, transforms.Compose):
image = self.transforms(image)
# Soft label
if self.soft_labels is not None:
label = torch.FloatTensor(
(self.data.iloc[index, 1:].values * 0.7).astype(np.float) +
(self.soft_labels.iloc[index, 1:].values *
0.3).astype(np.float))
else:
label = torch.FloatTensor(self.data.iloc[index, 1:].values.astype(
np.int64))
return image, [], [], label, time() - start_time, filename
def __len__(self):
return len(self.data)
# class AnchorSet(OpticalCandlingDataset):
# def __init__(self,
# hparams,
# data,
# soft_labels_filename=None,
# transforms=None,
# sample_num=10):
# super().__init__(hparams, data, soft_labels_filename, transforms)
# # filename = self.data.iloc[index,0]
# self.data = pd.concat([
# self.data.loc[self.data['filename'].str.startswith(
# class_name)].head(sample_num) for class_name in CLASS_NAMES
# ])
class OpticalCandingWithMaskSet(OpticalCandlingDataset):
def __init__(self,
hparams,
data,
soft_labels_filename=None,
transforms=None,
sample_num=10):
super().__init__(hparams, data, soft_labels_filename, transforms)
self.data_mask = self.hparams.data_mask
# filename = self.data.iloc[index,0]
def __getitem__(self, index):
start_time = time()
# Read image
# solution-1: read from raw image
filename = self.data.iloc[index, 0]
path = os.path.join(self.data_folder, filename)
roi_mask_path = os.path.join(self.data_mask, bsn(dirname(filename)),
'egg_mask', bsn(filename))
ar_mask_path = os.path.join(self.data_mask, bsn(dirname(filename)),
'ar_mask', bsn(filename))
# image = cv2.cvtColor(cv2.imread(path),cv2.COLOR_BGR2RGB)
image = Image.open(path).convert("RGB")
roi_mask = Image.open(roi_mask_path)
ar_mask = Image.open(ar_mask_path)
# solution-2: read from npy file which can speed the data load time.
# image = np.load(os.path.join(NPY_FO21LDER, "raw", self.data.iloc[index, 0] + ".npy"))
if image is None:
raise Exception('')
# Convert if not the right shape
# if image.shape != IMG_SHAPE:
# image = image.transpose(1, 0, 2)
# print(image.shape)
# Do data augmentation
if self.transforms is not None and isinstance(self.transforms,
albumentations.Compose):
image = | np.array(image) | numpy.array |
import cv2
import fitz
import numpy as np
import os
from api.document_helpers.field_helper_geometry import detect_fillable_boxes, filter_non_lines, define_line_objects, find_closest
from api.classes.Geometry import Point
import glob
def pix2np(pix):
im = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.h, pix.w, pix.n)
im = | np.ascontiguousarray(im[..., [2, 1, 0]]) | numpy.ascontiguousarray |
import os, subprocess
import click
import glob
import numpy as np, pandas as pd
#import impyute
from functools import reduce
import pickle
from pymethylprocess.PreProcessDataTypes import *
from pymethylprocess.MethylationDataTypes import *
CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'], max_content_width=90)
@click.group(context_settings= CONTEXT_SETTINGS)
@click.version_option(version='0.1')
def preprocess():
pass
#### COMMANDS ####
## Download ##
@preprocess.command()
@click.option('-o', '--output_dir', default='./tcga_idats/', help='Output directory for exported idats.', type=click.Path(exists=False), show_default=True)
def download_tcga(output_dir):
"""Download all tcga 450k data."""
os.makedirs(output_dir, exist_ok=True)
downloader = TCGADownloader()
downloader.download_tcga(output_dir)
@preprocess.command()
@click.option('-o', '--output_dir', default='./tcga_idats/', help='Output directory for exported idats.', type=click.Path(exists=False), show_default=True)
def download_clinical(output_dir):
"""Download all TCGA 450k clinical info."""
os.makedirs(output_dir, exist_ok=True)
downloader = TCGADownloader()
downloader.download_clinical(output_dir)
@preprocess.command()
@click.option('-g', '--geo_query', default='', help='GEO study to query.', type=click.Path(exists=False), show_default=True)
@click.option('-o', '--output_dir', default='./geo_idats/', help='Output directory for exported idats.', type=click.Path(exists=False), show_default=True)
def download_geo(geo_query,output_dir):
"""Download geo methylation study idats and clinical info."""
os.makedirs(output_dir, exist_ok=True)
downloader = TCGADownloader()
downloader.download_geo(geo_query,output_dir)
## prepare
@preprocess.command()
@click.option('-is', '--input_sample_sheet', default='./tcga_idats/clinical_info.csv', help='Clinical information downloaded from tcga/geo/custom.', type=click.Path(exists=False), show_default=True)
@click.option('-s', '--source_type', default='tcga', help='Source type of data.', type=click.Choice(['tcga','geo','custom']), show_default=True)
@click.option('-i', '--idat_dir', default='./tcga_idats/', help='Idat directory.', type=click.Path(exists=False), show_default=True)
@click.option('-os', '--output_sample_sheet', default='./tcga_idats/minfiSheet.csv', help='CSV for minfi input.', type=click.Path(exists=False), show_default=True)
@click.option('-m', '--mapping_file', default='./idat_filename_case.txt', help='Mapping file from uuid to TCGA barcode. Downloaded using download_tcga.', type=click.Path(exists=False), show_default=True)
@click.option('-l', '--header_line', default=0, help='Line to begin reading csv/xlsx.', show_default=True)
@click.option('-d', '--disease_class_column', default="methylation class:ch1", help='Disease classification column, for custom and geo datasets.', type=click.Path(exists=False), show_default=True)
@click.option('-b', '--basename_col', default="Sentrix ID (.idat)", help='Basename classification column, for custom datasets.', type=click.Path(exists=False), show_default=True)
@click.option('-c', '--include_columns_file', default="", help='Custom columns file containing columns to keep, separated by \\n. Add a tab for each line if you wish to rename columns: original_name \\t new_column_name', type=click.Path(exists=False), show_default=True)
def create_sample_sheet(input_sample_sheet, source_type, idat_dir, output_sample_sheet, mapping_file, header_line, disease_class_column, basename_col, include_columns_file):
"""Create sample sheet for input to minfi, meffil, or enmix."""
os.makedirs(output_sample_sheet[:output_sample_sheet.rfind('/')], exist_ok=True)
pheno_sheet = PreProcessPhenoData(input_sample_sheet, idat_dir, header_line= (0 if source_type != 'custom' else header_line))
if include_columns_file:
include_columns=np.loadtxt(include_columns_file,dtype=str,delimiter='\t')
if '\t' in open(include_columns_file).read() and len(include_columns.shape)<2:
include_columns=dict(include_columns[np.newaxis,:].tolist())
elif len(include_columns.shape)<2:
include_columns=dict(zip(include_columns,include_columns))
else:
include_columns=dict(include_columns.tolist())
else:
include_columns={}
if source_type == 'tcga':
pheno_sheet.format_tcga(mapping_file)
elif source_type == 'geo':
pheno_sheet.format_geo(disease_class_column, include_columns)
else:
pheno_sheet.format_custom(basename_col, disease_class_column, include_columns)
pheno_sheet.export(output_sample_sheet)
print("Please remove {} from {}, if it exists in that directory.".format(input_sample_sheet, idat_dir))
@preprocess.command()
@click.option('-is', '--input_sample_sheet', default='./tcga_idats/minfiSheet.csv', help='CSV for minfi input.', type=click.Path(exists=False), show_default=True)
@click.option('-os', '--output_sample_sheet', default='./tcga_idats/minfiSheet.csv', help='CSV for minfi input.', type=click.Path(exists=False), show_default=True)
def meffil_encode(input_sample_sheet,output_sample_sheet):
"""Reformat file for meffil input."""
from collections import defaultdict
pheno=pd.read_csv(input_sample_sheet)
sex_dict=defaultdict(lambda:'NA')
sex_dict.update({'m':'M','f':'F','M':'M','F':'F','male':'M','female':'F','nan':'NA',np.nan:'NA'})
k='Sex' if 'Sex' in list(pheno) else 'sex'
if k in list(pheno):
pheno.loc[:,k] = pheno[k].map(lambda x: sex_dict[str(x).lower()])
pheno = pheno[[col for col in list(pheno) if not col.startswith('Unnamed:')]].rename(columns={'sex':'Sex'})
if 'Sex' in list(pheno):
d=defaultdict(lambda:'NA')
d.update({'M':'M','F':'F'})
pheno.loc[:,'Sex'] = pheno['Sex'].map(d)
if (pheno['Sex']==pheno['Sex'].mode().values[0][0]).all():
pheno=pheno.rename(columns={'Sex':'gender'})
pheno.to_csv(output_sample_sheet)
@preprocess.command()
@click.option('-s1', '--sample_sheet1', default='./tcga_idats/clinical_info1.csv', help='Clinical information downloaded from tcga/geo/custom, formatted using create_sample_sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-s2', '--sample_sheet2', default='./tcga_idats/clinical_info2.csv', help='Clinical information downloaded from tcga/geo/custom, formatted using create_sample_sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-os', '--output_sample_sheet', default='./tcga_idats/minfiSheet.csv', help='CSV for minfi input.', type=click.Path(exists=False), show_default=True)
@click.option('-d', '--second_sheet_disease', is_flag=True, help='Use second sheet\'s disease column.')
@click.option('-nd', '--no_disease_merge', is_flag=True, help='Don\'t merge disease columns.')
def merge_sample_sheets(sample_sheet1, sample_sheet2, output_sample_sheet, second_sheet_disease,no_disease_merge):
"""Merge two sample files for more fields for minfi+ input."""
s1 = PreProcessPhenoData(sample_sheet1, idat_dir='', header_line=0)
s2 = PreProcessPhenoData(sample_sheet2, idat_dir='', header_line=0)
s1.merge(s2,second_sheet_disease, no_disease_merge=no_disease_merge)
s1.export(output_sample_sheet)
@preprocess.command()
@click.option('-s1', '--sample_sheet1', default='./tcga_idats/clinical_info1.csv', help='Clinical information downloaded from tcga/geo/custom, formatted using create_sample_sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-s2', '--sample_sheet2', default='./tcga_idats/clinical_info2.csv', help='Clinical information downloaded from tcga/geo/custom, formatted using create_sample_sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-os', '--output_sample_sheet', default='./tcga_idats/minfiSheet.csv', help='CSV for minfi input.', type=click.Path(exists=False), show_default=True)
def concat_sample_sheets(sample_sheet1, sample_sheet2, output_sample_sheet):
"""Concat two sample files for more fields for minfi+ input, adds more samples."""
# FIXME add ability to concat more sample sheets; dump to sql!!!
s1 = PreProcessPhenoData(sample_sheet1, idat_dir='', header_line=0)
s2 = PreProcessPhenoData(sample_sheet2, idat_dir='', header_line=0)
s1.concat(s2)
s1.export(output_sample_sheet)
@preprocess.command()
@click.option('-is', '--formatted_sample_sheet', default='./tcga_idats/minfiSheet.csv', help='Clinical information downloaded from tcga/geo/custom, formatted using create_sample_sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-k', '--key', multiple=True, default=['disease'], help='Column of csv to print statistics for.', type=click.Path(exists=False), show_default=True)
@click.option('-d', '--disease_only', is_flag=True, help='Only look at disease, or text before subtype_delimiter.')
@click.option('-sd', '--subtype_delimiter', default=',', help='Delimiter for disease extraction.', type=click.Path(exists=False), show_default=True)
def get_categorical_distribution(formatted_sample_sheet,key,disease_only=False,subtype_delimiter=','):
"""Get categorical distribution of columns of sample sheet."""
if len(key) == 1:
key=key[0]
print('\n'.join('{}:{}'.format(k,v) for k,v in PreProcessPhenoData(formatted_sample_sheet, idat_dir='', header_line=0).get_categorical_distribution(key,disease_only,subtype_delimiter).items()))
@preprocess.command()
@click.option('-is', '--formatted_sample_sheet', default='./tcga_idats/clinical_info.csv', help='Clinical information downloaded from tcga/geo/custom, formatted using create_sample_sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-e', '--exclude_disease_list', default='', help='List of conditions to exclude, from disease column, comma delimited.', type=click.Path(exists=False), show_default=True)
@click.option('-os', '--output_sheet_name', default='./tcga_idats/minfiSheet.csv', help='CSV for minfi input.', type=click.Path(exists=False), show_default=True)
@click.option('-l', '--low_count', default=0, help='Remove diseases if they are below a certain count, default this is not used.', type=click.Path(exists=False), show_default=True)
@click.option('-d', '--disease_only', is_flag=True, help='Only look at disease, or text before subtype_delimiter.')
@click.option('-sd', '--subtype_delimiter', default=',', help='Delimiter for disease extraction.', type=click.Path(exists=False), show_default=True)
def remove_diseases(formatted_sample_sheet, exclude_disease_list, output_sheet_name, low_count, disease_only=False,subtype_delimiter=','):
"""Exclude diseases from study by count number or exclusion list."""
exclude_disease_list = exclude_disease_list.split(',')
pData = PreProcessPhenoData(formatted_sample_sheet, idat_dir='', header_line=0)
pData.remove_diseases(exclude_disease_list,low_count, disease_only,subtype_delimiter)
pData.export(output_sheet_name)
print("Please remove {} from idat directory, if it exists in that directory.".format(formatted_sample_sheet))
## preprocess ##
@preprocess.command()
@click.option('-i', '--idat_csv', default='./tcga_idats/minfiSheet.csv', help='Idat csv for one sample sheet, alternatively can be your phenotype sample sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-d', '--disease_only', is_flag=True, help='Only look at disease, or text before subtype_delimiter.')
@click.option('-sd', '--subtype_delimiter', default=',', help='Delimiter for disease extraction.', type=click.Path(exists=False), show_default=True)
@click.option('-o', '--subtype_output_dir', default='./preprocess_outputs/', help='Output subtypes pheno csv.', type=click.Path(exists=False), show_default=True)
def split_preprocess_input_by_subtype(idat_csv,disease_only,subtype_delimiter, subtype_output_dir):
"""Split preprocess input samplesheet by disease subtype."""
from collections import defaultdict
subtype_delimiter=subtype_delimiter.replace('"','').replace("'","")
os.makedirs(subtype_output_dir,exist_ok=True)
pData=PreProcessPhenoData(idat_csv,'')
idat_csv_basename = idat_csv.split('/')[-1]
group_by_key = (pData.split_key('disease',subtype_delimiter) if disease_only else 'disease')
pData_grouped = pData.pheno_sheet.groupby(group_by_key)
default_qc_df=[]
for name, group in pData_grouped:
name=name.replace(' ','')
new_sheet = idat_csv_basename.replace('.csv','_{}.csv'.format(name))
new_out_dir = '{}/{}/'.format(subtype_output_dir,name)
os.makedirs(new_out_dir, exist_ok=True)
print(new_out_dir)
if 'Sex' in list(group):
d=defaultdict(lambda:'NA')
d.update({'M':'M','F':'F'})
group.loc[:,'Sex'] = group['Sex'].map(d)
if (group['Sex']==group['Sex'].mode().values[0][0]).all():
group=group.rename(columns={'Sex':'gender'})
group.to_csv('{}/{}'.format(new_out_dir,new_sheet))
default_qc_df.append([name,-1,0.05,0.05,0.05,0.05,5,-2])
pd.DataFrame(default_qc_df,columns=['subtype','n_pcs','p_beadnum_samples','p_detection_samples','p_beadnum_cpgs','p_detection_cpgs','sex_sd','sex_cutoff']).to_csv(os.path.join(subtype_output_dir,'pc_qc_parameters.csv'))
@preprocess.command()
@click.option('-n', '--n_cores', default=6, help='Number cores to use for preprocessing.', show_default=True)
@click.option('-i', '--subtype_output_dir', default='./preprocess_outputs/', help='Output subtypes pheno csv.', type=click.Path(exists=False), show_default=True)
@click.option('-m', '--meffil', is_flag=True, help='Preprocess using meffil.')
@click.option('-t', '--torque', is_flag=True, help='Job submission torque.')
@click.option('-r', '--run', is_flag=True, help='Actually run local job or just print out command.')
@click.option('-s', '--series', is_flag=True, help='Run commands in series.')
@click.option('-p', '--pc_qc_parameters_csv', default='./preprocess_outputs/pc_qc_parameters.csv', show_default=True, help='For meffil, qc parameters and pcs for final qc and functional normalization.')
@click.option('-u', '--use_cache', is_flag=True, help='If this is selected, loads qc results rather than running qc again. Only works for meffil selection.')
@click.option('-qc', '--qc_only', is_flag=True, help='Only perform QC for meffil pipeline, caches results into rds file for loading again, only works if use_cache is false.')
@click.option('-c', '--chunk_size', default=-1, help='If not series, chunk up and run these number of commands at once.. -1 means all commands at once.')
def batch_deploy_preprocess(n_cores,subtype_output_dir,meffil,torque,run,series, pc_qc_parameters_csv, use_cache, qc_only, chunk_size):
"""Deploy multiple preprocessing jobs in series or parallel."""
pheno_csvs = glob.glob(os.path.join(subtype_output_dir,'*','*.csv'))
opts = {'-n':n_cores}
try:
pc_qc_parameters = pd.read_csv(pc_qc_parameters).drop_duplicates().set_index('subtype')
except:
pc_qc_parameters = pd.DataFrame([[name,-1,0.05,0.05,0.05,0.05,5,-2] for name in np.vectorize(lambda x: x.split('/')[-2])(pheno_csvs)],
columns=['subtype','n_pcs','p_beadnum_samples','p_detection_samples','p_beadnum_cpgs','p_detection_cpgs','sex_sd','sex_cutoff']).drop_duplicates().set_index('subtype')
if meffil:
opts['-m']=''
if use_cache:
opts['-u']=''
if qc_only:
opts['-qc']=''
commands=[]
for pheno_csv in pheno_csvs:
pheno_path = os.path.abspath(pheno_csv)
subtype=pheno_path.split('/')[-2]
opts['-pc'] = int(pc_qc_parameters.loc[subtype,'n_pcs'])
opts['-bns'] = pc_qc_parameters.loc[subtype,'p_beadnum_samples']
opts['-pds'] = pc_qc_parameters.loc[subtype,'p_detection_samples']
opts['-bnc'] = pc_qc_parameters.loc[subtype,'p_beadnum_cpgs']
opts['-pdc'] = pc_qc_parameters.loc[subtype,'p_detection_cpgs']
opts['-sc'] = pc_qc_parameters.loc[subtype,'sex_cutoff']
opts['-sd'] = pc_qc_parameters.loc[subtype,'sex_sd']
opts['-i']=pheno_path[:pheno_path.rfind('/')+1]
opts['-o']=pheno_path[:pheno_path.rfind('/')+1]+'methyl_array.pkl'
command='pymethyl-preprocess preprocess_pipeline {}'.format(' '.join('{} {}'.format(k,v) for k,v in opts.items()))
commands.append(command)
if not torque:
if not series and chunk_size != -1:
#commands = np.array_split(commands,len(commands)//chunk_size)
print(commands)
with open('commands.txt','w') as f:
f.write('\n'.join(commands))
subprocess.call('cat commands.txt | xargs -L 1 -I CMD -P {} bash -c CMD'.format(chunk_size),shell=True) # https://www.gnu.org/software/parallel/sem.html
"""for command_list in commands:
subprocess.call('run_parallel {}'.format(' '.join(['"{}"'.format(command) for command in command_list])),shell=True)"""
else:
for command in commands:
if not series:
command="nohup {} &".format(command)
if not run:
click.echo(command)
else:
subprocess.call(command,shell=True)
else:
run_command = lambda command: subprocess.call('module load cuda && module load python/3-Anaconda && source activate py36 && {}'.format(command),shell=True)
from pyina.schedulers import Torque
from pyina.launchers import Mpi
config = {'nodes':'1:ppn=6', 'queue':'default', 'timelimit':'01:00:00'}
torque = Torque(**config)
pool = Mpi(scheduler=torque)
pool.map(run_command, commands)
@preprocess.command()
@click.option('-i', '--idat_dir', default='./tcga_idats/', help='Idat dir for one sample sheet, alternatively can be your phenotype sample sheet.', type=click.Path(exists=False), show_default=True)
@click.option('-n', '--n_cores', default=6, help='Number cores to use for preprocessing.', show_default=True)
@click.option('-o', '--output_pkl', default='./preprocess_outputs/methyl_array.pkl', help='Output database for beta and phenotype data.', type=click.Path(exists=False), show_default=True)
@click.option('-m', '--meffil', is_flag=True, help='Preprocess using meffil.')
@click.option('-pc', '--n_pcs', default=-1, show_default=True, help='For meffil, number of principal components for functional normalization. If set to -1, then PCs are selected using elbow method.')
@click.option('-p', '--pipeline', default='enmix', show_default=True, help='If not meffil, preprocess using minfi or enmix.', type=click.Choice(['minfi','enmix']))
@click.option('-noob', '--noob_norm', is_flag=True, help='Run noob normalization of minfi selected.')
@click.option('-u', '--use_cache', is_flag=True, help='If this is selected, loads qc results rather than running qc again and update with new qc parameters. Only works for meffil selection. Minfi and enmix just loads RG Set.')
@click.option('-qc', '--qc_only', is_flag=True, help='Only perform QC for meffil pipeline, caches results into rds file for loading again, only works if use_cache is false. Minfi and enmix just saves the RGSet before preprocessing.')
@click.option('-bns', '--p_beadnum_samples', default=0.05, show_default=True, help='From meffil documentation, "fraction of probes that failed the threshold of 3 beads".')
@click.option('-pds', '--p_detection_samples', default=0.05, show_default=True, help='From meffil documentation, "fraction of probes that failed a detection.pvalue threshold of 0.01".')
@click.option('-bnc', '--p_beadnum_cpgs', default=0.05, show_default=True, help='From meffil documentation, "fraction of samples that failed the threshold of 3 beads".')
@click.option('-pdc', '--p_detection_cpgs', default=0.05, show_default=True, help='From meffil documentation, "fraction of samples that failed a detection.pvalue threshold of 0.01".')
@click.option('-sc', '--sex_cutoff', default=-2, show_default=True, help='From meffil documentation, "difference of total median intensity for Y chromosome probes and X chromosome probes".')
@click.option('-sd', '--sex_sd', default=5, show_default=True, help='From meffil documentation, "sex detection outliers if outside this range".')
def preprocess_pipeline(idat_dir, n_cores, output_pkl, meffil, n_pcs, pipeline, noob_norm, use_cache, qc_only, p_beadnum_samples, p_detection_samples, p_beadnum_cpgs, p_detection_cpgs, sex_cutoff, sex_sd):
"""Perform preprocessing of idats using enmix or meffil."""
output_dir = output_pkl[:output_pkl.rfind('/')]
os.makedirs(output_dir,exist_ok=True)
preprocesser = PreProcessIDAT(idat_dir)
if meffil:
qc_parameters={'p.beadnum.samples':p_beadnum_samples,'p.detection.samples':p_detection_samples,'p.detection.cpgs':p_detection_cpgs,'p.beadnum.cpgs':p_beadnum_cpgs,'sex.cutoff':sex_cutoff, 'sex.outlier.sd':sex_sd}
preprocesser.preprocessMeffil(n_cores=n_cores,n_pcs=n_pcs,qc_report_fname=os.path.join(output_dir,'qc.report.html'), normalization_report_fname=os.path.join(output_dir,'norm.report.html'), pc_plot_fname=os.path.join(output_dir,'pc.plot.pdf'), useCache=use_cache, qc_only=qc_only, qc_parameters=qc_parameters)
else:
preprocesser.preprocess_enmix_pipeline(n_cores=n_cores, pipeline=pipeline, noob=noob_norm, use_cache=use_cache, qc_only=qc_only)
try:
preprocesser.plot_qc_metrics(output_dir)
except:
pass
preprocesser.output_pheno_beta(meffil=meffil)
preprocesser.to_methyl_array('').write_pickle(output_pkl)
@preprocess.command()
@click.option('-i', '--input_pkls', default=['./preprocess_outputs/methyl_array.pkl'], multiple=True, help='Input pickles for beta and phenotype data.', type=click.Path(exists=False), show_default=True)
@click.option('-d', '--optional_input_pkl_dir', default='', help='Auto grab input pkls.', type=click.Path(exists=False), show_default=True)
@click.option('-o', '--output_pkl', default='./combined_outputs/methyl_array.pkl', help='Output database for beta and phenotype data.', type=click.Path(exists=False), show_default=True)
@click.option('-e', '--exclude', default=[], multiple=True, help='If -d selected, these diseases will be excluded from study.', show_default=True)
def combine_methylation_arrays(input_pkls, optional_input_pkl_dir, output_pkl, exclude):
"""If split MethylationArrays by subtype for either preprocessing or imputation, can use to recombine data for downstream step."""
os.makedirs(output_pkl[:output_pkl.rfind('/')],exist_ok=True)
if optional_input_pkl_dir:
input_pkls=glob.glob(os.path.join(optional_input_pkl_dir,'*','methyl_array.pkl'))
if exclude:
input_pkls=( | np.array(input_pkls) | numpy.array |
import numpy as np
from pyquil.simulation.matrices import (
QUANTUM_GATES,
relaxation_operators,
dephasing_operators,
depolarizing_operators,
bit_flip_operators,
phase_flip_operators,
bitphase_flip_operators,
)
def test_singleq():
assert np.isclose(QUANTUM_GATES["I"], np.eye(2)).all()
assert np.isclose(QUANTUM_GATES["X"], np.array([[0, 1], [1, 0]])).all()
assert np.isclose(QUANTUM_GATES["Y"], np.array([[0, -1j], [1j, 0]])).all()
assert np.isclose(QUANTUM_GATES["Z"], np.array([[1, 0], [0, -1]])).all()
assert np.isclose(QUANTUM_GATES["H"], (1.0 / np.sqrt(2)) * np.array([[1, 1], [1, -1]])).all()
assert np.isclose(QUANTUM_GATES["S"], np.array([[1.0, 0], [0, 1j]])).all()
assert np.isclose(QUANTUM_GATES["T"], np.array([[1.0, 0.0], [0.0, np.exp(1.0j * np.pi / 4.0)]])).all()
def test_parametric():
phi_range = np.linspace(0, 2 * np.pi, 120)
for phi in phi_range:
assert np.isclose(QUANTUM_GATES["PHASE"](phi), np.array([[1.0, 0.0], [0.0, np.exp(1j * phi)]])).all()
assert np.isclose(
QUANTUM_GATES["RX"](phi),
np.array(
[
[np.cos(phi / 2.0), -1j * np.sin(phi / 2.0)],
[-1j * np.sin(phi / 2.0), np.cos(phi / 2.0)],
]
),
).all()
assert np.isclose(
QUANTUM_GATES["RY"](phi),
np.array([[np.cos(phi / 2.0), -np.sin(phi / 2.0)], [np.sin(phi / 2.0), np.cos(phi / 2.0)]]),
).all()
assert np.isclose(
QUANTUM_GATES["RZ"](phi),
np.array(
[
[np.cos(phi / 2.0) - 1j * | np.sin(phi / 2.0) | numpy.sin |
# -*- coding: utf-8 -*-
"""
Created on Thu Oct 4 13:30:06 2018
@author: gregz
"""
import time
import numpy as np
import os.path as op
import glob
import warnings
from astropy.io import fits
from utils import biweight_location
from scipy.signal import savgol_filter, medfilt2d
from scipy.interpolate import interp1d, interp2d
from input_utils import setup_logging
from astrometry import Astrometry
dither_pattern = np.array([[0., 0.], [1.27, -0.73], [1.27, 0.73]])
virus_amps = ['LL', 'LU', 'RU', 'RL']
lrs2_amps = [['LL', 'LU'], ['RL', 'RU']]
fplane_file = '/work/03730/gregz/maverick/fplane.txt'
flt_obs = '%07d' % 15
twi_obs = '%07d' % 1
sci_obs = '%07d' % 13
twi_date = '20170205'
sci_date = twi_date
flt_date = twi_date
# FOR LRS2
instrument = 'lrs2'
AMPS = lrs2_amps[0]
dither_pattern = np.zeros((10, 2))
log = setup_logging('panacea_quicklook')
basered = '/work/03730/gregz/maverick'
baseraw = '/work/03946/hetdex/maverick'
twi_path = op.join(basered, 'reductions', twi_date, '%s', '%s%s', 'exp01',
'%s', 'multi_*_%s_*_LL.fits')
sci_path = op.join(baseraw, sci_date, '%s', '%s%s', 'exp%s',
'%s', '2*_%sLL*.fits')
flt_path = op.join(baseraw, flt_date, '%s', '%s%s', 'exp*',
'%s', '2*_%sLL*.fits')
sciflt_path = op.join(baseraw, twi_date, '%s', '%s%s', 'exp*',
'%s', '2*_%sLL_twi.fits')
bias_path = op.join(baseraw, twi_date, '%s', '%s%s', 'exp*',
'%s', '2*_%sLL_zro.fits')
def get_cal_info(twi_path, amp):
F = fits.open(glob.glob(twi_path.replace('LL', amp))[0])
return (np.array(F['ifupos'].data, dtype=float),
np.array(F['trace'].data, dtype=float),
np.array(F['wavelength'].data, dtype=float))
def orient_image(image, amp, ampname):
'''
Orient the images from blue to red (left to right)
Fibers are oriented to match configuration files
'''
if amp == "LU":
image[:] = image[::-1, ::-1]
if amp == "RL":
image[:] = image[::-1, ::-1]
if ampname is not None:
if ampname == 'LR' or ampname == 'UL':
image[:] = image[:, ::-1]
return image
def make_avg_spec(wave, spec, binsize=35, per=50):
ind = np.argsort(wave.ravel())
T = 1
for p in wave.shape:
T *= p
wchunks = np.array_split(wave.ravel()[ind],
T / binsize)
schunks = np.array_split(spec.ravel()[ind],
T / binsize)
nwave = np.array([np.mean(chunk) for chunk in wchunks])
nspec = np.array([np.percentile(chunk, per) for chunk in schunks])
nwave, nind = np.unique(nwave, return_index=True)
return nwave, nspec[nind]
def base_reduction(filename):
a = fits.open(filename)
image = np.array(a[0].data, dtype=float)
# overscan sub
overscan_length = 32 * (image.shape[1] / 1064)
O = biweight_location(image[:, -(overscan_length-2):])
image[:] = image - O
# trim image
image = image[:, :-overscan_length]
try:
ampname = a[0].header['AMPNAME']
except:
ampname = None
a = orient_image(image, amp, ampname)
return a
def get_sciflat_field(flt_path, amp, array_wave, array_trace, common_wave,
masterbias, log):
files = glob.glob(flt_path.replace('LL', amp))
listflat = []
array_flt = base_reduction(files[0])
bigW = np.zeros(array_flt.shape)
Y, X = np.indices(array_wave.shape)
YY, XX = np.indices(array_flt.shape)
for x, at, aw, xx, yy in zip(np.array_split(X, 2, axis=0),
np.array_split(array_trace, 2, axis=0),
np.array_split(array_wave, 2, axis=0),
np.array_split(XX, 2, axis=0),
np.array_split(YY, 2, axis=0)):
for j in np.arange(at.shape[1]):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
p0 = np.polyfit(at[:, j], aw[:, j], 7)
bigW[yy[:, j], j] = np.polyval(p0, yy[:, j])
listspec = []
for filename in files:
log.info('Working on sciflat %s' % filename)
array_flt = base_reduction(filename) - masterbias
x = np.arange(array_wave.shape[1])
spectrum = array_trace * 0.
for fiber in np.arange(array_wave.shape[0]):
indl = np.floor(array_trace[fiber]).astype(int)
indh = np.ceil(array_trace[fiber]).astype(int)
spectrum[fiber] = array_flt[indl, x] / 2. + array_flt[indh, x] / 2.
smooth = savgol_filter(spectrum, 315, 1, axis=1)
avg = biweight_location(smooth, axis=(0,))
norm = biweight_location(smooth / avg, axis=(1,))
nw, ns = make_avg_spec(array_wave, spectrum / norm[:, np.newaxis],
binsize=41, per=95)
I = interp1d(nw, ns, kind='linear', fill_value='extrapolate')
ftf = spectrum * 0.
for fiber in np.arange(array_wave.shape[0]):
model = I(array_wave[fiber])
ftf[fiber] = savgol_filter(spectrum[fiber] / model, 151, 1)
nw1, ns1 = make_avg_spec(array_wave, spectrum / ftf, binsize=41,
per=95)
I = interp1d(nw1, ns1, kind='quadratic', fill_value='extrapolate')
modelimage = I(bigW)
flat = array_flt / modelimage
listflat.append(flat)
listspec.append(I(common_wave))
flat = np.median(listflat, axis=(0,))
flat[~np.isfinite(flat)] = 0.0
flat[flat < 0.0] = 0.0
return flat, bigW, np.nanmedian(listspec, axis=0)
def safe_division(num, denom, eps=1e-8, fillval=0.0):
good = np.isfinite(denom) * (np.abs(denom) > eps)
div = num * 0.
if num.ndim == denom.ndim:
div[good] = num[good] / denom[good]
div[~good] = fillval
else:
div[:, good] = num[:, good] / denom[good]
div[:, ~good] = fillval
return div
def find_cosmics(Y, E, thresh=8.):
A = medfilt2d(Y, (5, 1))
S = safe_division((Y - A), E)
P = S - medfilt2d(S, (1, 15))
x, y = np.where(P > thresh)
xx, yy = ([], [])
for i in np.arange(-1, 2):
for j in np.arange(-1, 2):
sel = ((x + i) >= 0) * ((x + i) < Y.shape[0])
sel2 = ((y + j) >= 0) * ((y + j) < Y.shape[1])
sel = sel * sel2
xx.append((x + i)[sel])
yy.append((y + j)[sel])
xx = np.hstack(xx)
yy = np.hstack(yy)
inds = np.ravel_multi_index([xx, yy], Y.shape)
inds = np.unique(inds)
C = np.zeros(Y.shape, dtype=bool).ravel()
C[inds] = True
C = C.reshape(Y.shape)
log.info('Number of pixels affected by cosmics: %i' % len(x))
log.info('Fraction of pixels affected by cosmics: %0.5f' %
(1.*len(inds)/Y.shape[0]/Y.shape[1]))
return C
def weighted_extraction(image, flat, trace):
gain = 0.83
rdnoise = 3.
I = image * 1.
I[I < 0.] = 0.
E = np.sqrt(rdnoise**2 + gain * I) / gain
E = safe_division(E, flat)
E[E < 1e-8] = 1e9
Y = safe_division(image, flat)
cosmics = find_cosmics(Y, E)
x = np.arange(trace.shape[1])
spectrum = 0. * trace
TT = np.zeros((trace.shape[0], 3, trace.shape[1], 4))
for fiber in np.arange(trace.shape[0]):
T = np.zeros((3, trace.shape[1], 4))
indl = np.floor(trace[fiber]).astype(int)
flag = False
for ss, k in enumerate(np.arange(-1, 3)):
try:
T[0, :, ss] = Y[indl+k, x]
T[1, :, ss] = 1. / E[indl+k, x]**2
T[2, :, ss] = ~cosmics[indl+k, x]
except:
v = indl+k
sel = np.where((v >= 0) * (v < Y.shape[0]))[0]
T[0, sel, ss] = Y[v[sel], x[sel]]
T[1, sel, ss] = 1. / E[v[sel], x[sel]]**2
T[2, sel, ss] = ~cosmics[v[sel], x[sel]]
flag = True
if flag:
if np.mean(indl) > (Y.shape[0]/2.):
k = 2
else:
k = -1
v = indl+k
sel = np.where((v >= 0) * (v < len(x)))[0]
a = np.sum(T[0, sel] * T[1, sel] * T[2, sel], axis=1)
b = np.sum(T[1, sel] * T[2, sel], axis=1)
spectrum[fiber, sel] = safe_division(a, b)
else:
a = np.sum(T[0] * T[1] * T[2], axis=1)
b = np.sum(T[1] * T[2], axis=1)
spectrum[fiber] = safe_division(a, b)
TT[fiber] = T
fits.PrimaryHDU(TT).writeto('wtf2.fits', overwrite=True)
return spectrum
def get_trace_shift(sci_array, flat, array_trace, Yx):
YM, XM = np.indices(flat.shape)
inds = np.zeros((3, array_trace.shape[0], array_trace.shape[1]))
XN = np.round(array_trace)
inds[0] = XN - 1.
inds[1] = XN + 0.
inds[2] = XN + 1.
inds = np.array(inds, dtype=int)
Trace = array_trace * 0.
FlatTrace = array_trace * 0.
N = YM.max()
x = np.arange(array_trace.shape[1])
for i in np.arange(Trace.shape[0]):
sel = YM[inds[0, i, :], x] >= 0.
sel = sel * (YM[inds[2, i, :], x] < N)
xmax = (YM[inds[1, i, sel], x[sel]] -
(sci_array[inds[2, i, sel], x[sel]] -
sci_array[inds[0, i, sel], x[sel]]) /
(2. * (sci_array[inds[2, i, sel], x[sel]] -
2. * sci_array[inds[1, i, sel], x[sel]] +
sci_array[inds[0, i, sel], x[sel]])))
Trace[i, sel] = xmax
xmax = (YM[inds[1, i, sel], x[sel]] - (flat[inds[2, i, sel], x[sel]] -
flat[inds[0, i, sel], x[sel]]) /
(2. * (flat[inds[2, i, sel], x[sel]] - 2. *
flat[inds[1, i, sel], x[sel]] +
flat[inds[0, i, sel], x[sel]])))
FlatTrace[i, sel] = xmax
shifts = np.nanmedian(FlatTrace - Trace, axis=1)
shifts = np.polyval(np.polyfit(np.nanmedian(FlatTrace, axis=1), shifts, 1),
Yx)
fits.HDUList([fits.PrimaryHDU(FlatTrace),
fits.ImageHDU(Trace)]).writeto('test_trace.fits',
overwrite=True)
return shifts
def subtract_sci(sci_path, flat, array_trace, array_wave, bigW, masterbias):
files = sorted(glob.glob(sci_path.replace('LL', amp)))
array_list = []
for filename in files:
log.info('Skysubtracting sci %s' % filename)
array_flt = base_reduction(filename) - masterbias
array_list.append(array_flt)
sci_array = np.sum(array_list, axis=0)
Xx = np.arange(flat.shape[1])
Yx = | np.arange(flat.shape[0]) | numpy.arange |
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.3.1
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# # Optimization benchmarking
# Plotting benchmark result.
# +
import sys
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import copy
sys.path.append('../')
from qwopt.compiler import composer
from qwopt.benchmark import fidelity as fid
from numpy import pi
from qiskit import transpile
from qiskit import QuantumRegister, QuantumCircuit, ClassicalRegister
from qiskit import Aer, execute
from qiskit.providers.aer.noise import NoiseModel
from qiskit.providers.aer.noise.errors import depolarizing_error
from tqdm import tqdm, trange
from mpl_toolkits.mplot3d import Axes3D
import warnings
warnings.simplefilter('ignore')
# -
# ## 1. Multi step of 4 node graph with one partition
# ## Target graph and probability transition matrix
# +
alpha = 0.85
target_graph = np.array([[0, 1, 0, 1],
[0, 0, 1, 0],
[0, 1, 0, 1],
[0, 0, 1, 0]])
E = np.array([[1/4, 1/2, 0, 1/2],
[1/4, 0, 1/2, 0],
[1/4, 1/2, 0, 1/2],
[1/4, 0, 1/2, 0]])
# use google matrix
prob_dist = alpha*E + ((1-alpha)/4)*np.ones((4, 4))
init_state = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(4) for j in range(4)])
# -
# ### Check points
# - How to decrease the fidelity over the number of steps
# - The number of operations
# ### Count operations
# #### Without any optimizations
# +
# Circuit
def four_node(opt, step):
rotation = np.radians(31.788)
cq = QuantumRegister(2, 'control')
tq = QuantumRegister(2, 'target')
c = ClassicalRegister(2, 'classical')
if opt:
anc = QuantumRegister(2, 'ancilla')
qc = QuantumCircuit(cq, tq, anc, c)
else:
qc = QuantumCircuit(cq, tq, c)
# initialize with probability distribution matrix
initial = 1/2*np.array([np.sqrt(prob_dist[j][i]) for i in range(4) for j in range(4)])
qc.initialize(initial, [*cq, *tq])
for t in range(step):
# Ti operation
qc.x(cq[1])
qc.ccx(cq[0], cq[1], tq[1])
qc.x(cq[1])
qc.barrier()
# Kdg operation
if opt:
qc.x(cq)
qc.rccx(cq[0], cq[1], anc[0])
qc.barrier()
qc.ch(anc[0], tq[0])
qc.ch(anc[0], tq[1])
qc.x(anc[0])
qc.cry(-rotation, anc[0], tq[1])
qc.ch(anc[0], tq[0])
qc.barrier()
else:
qc.x(cq)
qc.mcry(-pi/2, cq, tq[0], None)
qc.mcry(-pi/2, cq, tq[1], None)
qc.x(cq)
qc.barrier()
# qc.x(cq[1])
# qc.mcry(-pi/2, cq, tq[0], None)
# qc.mcry(-rotation, cq, tq[1], None)
# qc.x(cq[1])
# qc.barrier()
qc.x(cq[0])
qc.mcry(-pi/2, cq, tq[0], None)
qc.mcry(-rotation, cq, tq[1], None)
qc.x(cq[0])
qc.barrier()
qc.cry(-pi/2, cq[0], tq[0])
qc.cry(-rotation, cq[0], tq[1])
qc.barrier()
# qc.mcry(-pi/2, cq, tq[0], None)
# qc.mcry(-rotation, cq, tq[1], None)
# qc.barrier()
# D operation
qc.x(tq)
qc.cz(tq[0], tq[1])
qc.x(tq)
qc.barrier()
# K operation
if opt:
qc.ch(anc[0], tq[0])
qc.cry(rotation, anc[0], tq[1])
qc.x(anc[0])
qc.ch(anc[0], tq[1])
qc.ch(anc[0], tq[0])
qc.rccx(cq[0], cq[1], anc[0])
qc.x(cq)
qc.barrier()
else:
# previous, and naive imple
# qc.mcry(pi/2, cq, tq[0], None)
# qc.mcry(rotation, cq, tq[1], None)
# qc.barrier()
qc.cry(pi/2, cq[0], tq[0])
qc.cry(rotation, cq[0], tq[1])
qc.barrier()
qc.x(cq[0])
qc.mcry(pi/2, cq, tq[0], None)
qc.mcry(rotation, cq, tq[1], None)
qc.x(cq[0])
qc.barrier()
# qc.x(cq[1])
# qc.mcry(pi/2, cq, tq[0], None)
# qc.mcry(rotation, cq, tq[1], None)
# qc.x(cq[1])
# qc.barrier()
qc.x(cq)
qc.mcry(pi/2, cq, tq[0], None)
qc.mcry(pi/2, cq, tq[1], None)
qc.x(cq)
qc.barrier()
# Tidg operation
qc.x(cq[1])
qc.ccx(cq[0], cq[1], tq[1])
qc.x(cq[1])
qc.barrier()
# swap
qc.swap(tq[0], cq[0])
qc.swap(tq[1], cq[1])
qc.measure(tq, c)
return qc
# -
qc = four_node(True, 1)
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend=backend, shots=10000)
count = job.result().get_counts(qc)
print(count)
qc.draw(output='mpl')
# ### The number of operations in steps
# +
ex1_cx = []
ex1_u3 = []
ex2_cx = []
ex2_u3 = []
ex3_cx = []
ex3_u3 = []
ex4_cx = []
ex4_u3 = []
for step in trange(1, 11):
opt_qc = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=0)
ncx = opt_qc.count_ops().get('cx', 0)
nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0)
ex1_cx.append(ncx)
ex1_u3.append(nu3)
# ex2
opt_qc = transpile(four_node(True, step), basis_gates=['cx', 'u3'], optimization_level=3)
ncx = opt_qc.count_ops().get('cx', 0)
nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0)
ex2_cx.append(ncx)
ex2_u3.append(nu3)
# ex3
opt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=3)
ncx = opt_qc.count_ops().get('cx', 0)
nu3 = opt_qc.count_ops().get('u3', 0) + opt_qc.count_ops().get('u2', 0) + opt_qc.count_ops().get('u1', 0)
ex3_cx.append(ncx)
ex3_u3.append(nu3)
# ex4
nopt_qc = transpile(four_node(False, step), basis_gates=['cx', 'u3'], optimization_level=0)
ncx = nopt_qc.count_ops().get('cx', 0)
nu3 = nopt_qc.count_ops().get('u3', 0) + nopt_qc.count_ops().get('u2', 0) + nopt_qc.count_ops().get('u1', 0)
ex4_cx.append(ncx)
ex4_u3.append(nu3)
# -
cx = [ex1_cx, ex2_cx, ex3_cx, ex4_cx]
u3 = [ex1_u3, ex2_u3, ex3_u3, ex4_u3]
# color = ['#C23685', '#E38692', '#6BBED5', '#3EBA2B']
# labels = ['with my optimizations', 'with my and qiskit optimizations', 'with qiskit optimizations', 'without optimizations']
steps = range(1, 11)
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
sns.set()
plt.xlabel('the number of steps', fontsize=30)
plt.xticks([i for i in range(11)])
plt.ylabel('the number of operations', fontsize=30)
plt.title('the nuber of operations over steps', fontsize=30)
plt.tick_params(labelsize=20)
plt.plot(steps, ex4_cx, color='#3EBA2B', label='# of CX without optimizations', linewidth=3)
plt.plot(steps, ex4_u3, color='#6BBED5', label='# of single qubit operations without optimizations', linewidth=3)
plt.legend(fontsize=25)
cx = [ex1_cx, ex2_cx, ex3_cx, ex4_cx]
u3 = [ex1_u3, ex2_u3, ex3_u3, ex4_u3]
color = ['#C23685', '#E38692', '#6BBED5', '#3EBA2B']
labels = ['with my optimizations', 'with my and qiskit optimizations', 'with qiskit optimizations', 'without optimizations']
steps = range(1, 11)
fig = plt.figure(figsize=(20, 10))
ax = fig.add_subplot(111)
sns.set()
plt.xlabel('the number of steps', fontsize=30)
plt.xticks([i for i in range(11)])
plt.ylabel('the number of cx', fontsize=30)
plt.title('the nuber of operations over steps', fontsize=30)
plt.tick_params(labelsize=20)
print(list(steps))
for cs, col, lab in zip(cx, color, labels):
plt.plot(steps, cs, color=col, label=lab, linewidth=3)
plt.legend(fontsize=25)
# ## Error rate transition
import warnings
warnings.simplefilter('ignore')
# +
qasm_sim = Aer.get_backend('qasm_simulator')
def KL_divergence(p, q, torelance=10e-9):
'''
p: np.array or list
q: np.array or list
'''
parray = | np.array(p) | numpy.array |
import os.path
import numpy as np
import itertools
import Tools
from scipy import signal
#from pylab import figure, clf, plot, xlabel, ylabel, xlim, ylim, title, grid, axes, show,semilogx, semilogy
import math
# Those patterns are used for tests and benchmarks.
# For tests, there is the need to add tests for saturation
def cartesian(*somelists):
r=[]
for element in itertools.product(*somelists):
r.append(element)
return(r)
def writeBenchmarks(config):
NBSAMPLES=512 # 512 for stereo
NUMSTAGES = 4
samples=np.random.randn(NBSAMPLES)
coefs=np.random.randn(NUMSTAGES*5)
samples = Tools.normalize(samples)
coefs = Tools.normalize(coefs)
# Used for benchmarks
config.writeInput(1, samples,"Samples")
config.writeInput(1, coefs,"Coefs")
def getCoefs(n,sos,format):
if format==15:
coefs=np.reshape(np.hstack((np.insert(sos[:,:3],1,0.0,axis=1),-sos[:,4:])),n*6)
else:
coefs=np.reshape(np.hstack((sos[:,:3],-sos[:,4:])),n*5)
if format==31:
# Postshift must be 2 in the tests
coefs = coefs / 4.0
if format==15:
# Postshift must be 2 in the tests
coefs = coefs / 4.0
return(coefs)
def genSos(numTaps):
zeros=[]
poles=[]
for i in range(0,numTaps):
phase = np.random.rand()*2.0 * math.pi
z = np.exp(1j*phase)
phase = np.random.rand()*2.0 * math.pi
amplitude = np.random.rand()*0.7
p = np.exp(1j*phase) * amplitude
zeros += [z,np.conj(z)]
poles += [p,np.conj(p)]
g = 0.02
sos = signal.zpk2sos(zeros,poles,g)
return(sos)
def writeTests(config,format):
# Write test with fixed and known patterns
NB = 100
t = np.linspace(0, 1,NB)
sig = Tools.normalize(np.sin(2*np.pi*5*t)+np.random.randn(len(t)) * 0.2 + 0.4*np.sin(2*np.pi*20*t))
if format==31:
sig = 1.0*sig / (1 << 2)
#if format==15:
# sig = 1.0*sig / 2.0
p0 = np.exp(1j*0.05) * 0.98
p1 = np.exp(1j*0.25) * 0.9
p2 = np.exp(1j*0.45) * 0.97
z0 = np.exp(1j*0.02)
z1 = np.exp(1j*0.65)
z2 = np.exp(1j*1.0)
g = 0.02
sos = signal.zpk2sos(
[z0,np.conj(z0),z1,np.conj(z1),z2,np.conj(z2)]
,[p0, np.conj(p0),p1, np.conj(p1),p2, np.conj(p2)]
,g)
coefs=getCoefs(3,sos,format)
res=signal.sosfilt(sos,sig)
config.writeInput(1, sig,"BiquadInput")
config.writeInput(1, res,"BiquadOutput")
config.writeInput(1, coefs,"BiquadCoefs")
#if format==0:
# figure()
# plot(sig)
# figure()
# plot(res)
# show()
# Now random patterns to test different tail sizes
# and number of loops
numStages = [Tools.loopnb(format,Tools.TAILONLY),
Tools.loopnb(format,Tools.BODYONLY),
Tools.loopnb(format,Tools.BODYANDTAIL)
]
blockSize=[Tools.loopnb(format,Tools.TAILONLY),
Tools.loopnb(format,Tools.BODYONLY),
Tools.loopnb(format,Tools.BODYANDTAIL)
]
allConfigs = cartesian(numStages, blockSize)
allconf=[]
allcoefs=[]
allsamples=[]
allStereo=[]
alloutputs=[]
allStereoOutputs=[]
for (n,b) in allConfigs:
samples= | np.random.randn(b) | numpy.random.randn |
from .ldft_model import LdftModel
import numpy as np
import scipy.optimize as op
import matplotlib.pyplot as plt
from functools import reduce
class LG2dAOHighl(LdftModel):
"""This class describes a single component lattice gas in 2d with
sticky next neighbour attractions on a simple cubic lattice. The
description is done within the framework of lattice density
functional theory (ldft). The free energy functional was constructed
by translating the model to the Asakura-Oosawa (AO) model and then
setting up the functional of the resulting colloid-polymer
dispersion by the Highlander version of dft. Therefor this class
works with three species instead of one, namely the species of the
extended AO-model (colloid, polymer clusters species accounting for
attraction in x-direction and polymer for the attraction in
y-direction). The free energy functional is the one for the three
species. It differs from the free energy functional of the AO-model
just by a correction term accounting for the zero- and one-body
interaction of the polymers. If one wants the free energy of the
lattice gas, one would have to calculate the semi-grand potential of
the previous free energy, where the polymer clusters are treated
grand-canonically and the colloids canonically. In this class extra
functions are supported for this. The colloids correspond to the
species in the lattice gas.
Parameters
----------
size : `tuple` of `int`
Shape of the systems simulation box. Expects a `Tuple` of two
integers, each for one dimensional axis.
epsi : `float`
Attraction strength of the lattice gas particles (multiplied
with the inverse temperature to make it's dimension 1). From
this the value of the chemical potential of the polymer clusters
is calculated.
mu_fix_c : `bool`, optional: default = False
Determines whether or not the system is treated canonical or
grand canonical. Meant is the lattice gas system. This parameter
therefore only steers the colloid-species. The others are set
`True` by default. `False` for canonical.
mu_c : `float`, optional: default = `None`
The chemical potential for the colloid species (multiplied with
the inverse temperature to make it's dimension 1). Just required
when ``mu_fix==True``. The chemical potential of the polymer
clusters is determined by the value of ``epsi``.
dens_c : `float`, optional: default = `None`
The average density of the colloids. Just required when
``mu_fix``==`False`. The average density of the polymer clusters
is not required, as for those ``mu_fix`` is set `True`.
v_ext_c : `numpy.ndarray`, optional: default=`None`
An external potential for the colloids. Shape must be of the
same shape as chosen in ``size``. This class does not consider
the possibility of sticky walls. Therefore the external
potential of polymers is set zero by default.
bound_cond : `string`, optional: default='periodic'
The boundary condition. Supports 'periodic' for periodic
boundary conditions and '11_if' for a 45° tilted system with
respect to the lattice. The latter is for creating slab
interface with (11) orientation. If '11_if' is chosen then one
dimension has to be chosen twice as the other dimension in the
``size`` parameter e.g. (64, 128). Default value is 'periodic'.
r : `List` of `np.array`; Optional: default = `None`
Density profile for all three species arranged in a `List`. Choose
`None` in case you hand over the ``r_hist``-parameter or in case
you do not want to set the variable yet.
r_hist : `List` of `List` of `np.array`; Optional: default = `None`
Picard-history of a density profile. It contains the density
profiles for certain picard-steps of a system which has already
been evolved through picard iteration. Caution! Every entry is
of the format of the ``_r``-instance variable, which is a list
itself containing the profile for each species. Therefore in our
case the list is of length one. Use `None` if the system has no
history yet.
err_hist : `List` of `Tuple` of `Float`; Optional: default = `None`
Contains the error at the picard-steps corresponding to the
entries of `r_hist`. The entries are tuples containing an error
for every species. Use `None` if no history available.
it_hist : `List`; Optional: default = `None`
List of the picard-steps corresponding to the density profiles at
the ``r_hist``-parameter. Use `None` if no history available.
Note: if ``r_hist`` is given then also this argument should be
assigned with an appropriate list.
"""
def __init__(self, size, epsi, mu_fix_c=False, mu_c=None,\
dens_c=None, v_ext_c=None, bound_cond='periodic', r=None,\
r_hist=None, err_hist=None, it_hist=None):
mu_pc=self.translate_epsi_to_mu_pc(epsi)
v_ext_pc = np.zeros(size)
v_ext_c = v_ext_pc if type(v_ext_c)==type(None) else v_ext_c
super().__init__(size=size, mu_fix=[mu_fix_c, True, True],
mu=[mu_c, mu_pc, mu_pc], dens=[dens_c, None, None],
v_ext=[v_ext_c, v_ext_pc, v_ext_pc], r=r, r_hist=r_hist,
err_hist=err_hist, it_hist=it_hist,
bound_cond=bound_cond)
def __str__(self):
descrLG2dHighl = 'This is a Lattice gas described with lattice'\
+' DFT. It was translated to the AO-model and the'\
+' functional was constructed by the Highlander method'\
+' It is an object of the Type \'LG2dAOHighl\' and has'\
+' the following properties:'
epsiStr='{0:<40s}: {1}\n'.format('Attr. strength \'epsi\'',\
self.epsi)
motherClass = 'It inherits from \'LdftModel\', with the'\
+' following properties:'
descrLdftModel=super().__str__()
return descrLG2dHighl+'\n\n'+epsiStr+'\n'+motherClass+\
'\n\n'+descrLdftModel
####################################################################
#Protected descriptors for internal use. These are for a more
#convenient addressing of the species specific instance variables.
#Important to notice: do not override the protected variables of the
#super class LdftModel. Otherwise the functionality of the instance
#methods in LdftModel can not be secured.
####################################################################
@property
def _mu_c(self):
"""The chemical potential of the colloid species (times the
inverse temperature to make its dimension 1)
(`float`, read-only).
"""
return self._mu[0]
@property
def _mu_pc1(self):
"""The chemical potential of the polymer species in x-direction
(times the inverse temperature to make its dimension 1).
(`float`, read-only)
"""
return self._mu[1]
@property
def _mu_pc2(self):
"""The chemical potential of the polymer species in y-direction
(times the inverse temperature to make its dimension 1).
(`float`, read-only)
"""
return self._mu[2]
@property
def _dens_c(self):
"""The average density of the colloid species (`float`,
read-only).
"""
return self._dens[0]
@property
def _dens_pc1(self):
"""The average density of the polymer species in x-direction
(`float`, read-only).
"""
return self._dens[1]
@property
def _dens_pc2(self):
"""The average density of the polymer species in x-direction
(`float`, read-only).
"""
return self._dens[2]
@property
def _v_ext_c(self):
"""The external potential acting on the colloids (`np.array`,
read-only)
"""
return self._v_ext[0]
@property
def _v_ext_pc1(self):
"""The external potential acting on the polymer clusters in
x-direction. (`np.array`, read-only)
"""
return self._v_ext[1]
@property
def _v_ext_pc2(self):
"""The external potential acting on the polymer clusters in
y-direction. (`np.array`, read-only)
"""
return self._v_ext[2]
@property
def _r_c(self):
"""The density profile of the colloid species. (`numpy.ndarray`,
read-only)
"""
return self._r[0]
@property
def _r_pc1(self):
"""The density profile of the polymer species in x-direction.
(`numpy.ndarray`, read-only)
"""
return self._r[1]
@property
def _r_pc2(self):
"""The density profile of the polymer species in y-direction.
(`numpy.ndarray`, read-only)
"""
return self._r[2]
####################################################################
#Public descriptors. These are for the user to access the variables
#of interest. Some are already defined in the super class. Some of
#them are reused, but others are overwritten.
####################################################################
@property
def epsi(self):
"""The attraction strength between the lattice-particles of the
lattice gas. (`Float`, read-only)
"""
return self.translate_mu_pc_to_epsi(self._mu_pc1)
@property
def mu_c(self):
"""The chemical potential of the colloids (times the inverse
temperature to make its dimension 1). It is equals the chemical
potential of the particles of the lattice gas. (`float`)
"""
return self._mu[0]
@mu_c.setter
def mu_c(self, mu_c):
self._mu[0]=mu_c
mu_pc1=_mu_pc1
"""The chemical potential of the polymer-cluster in x-direction
(times the inverse temperature to make its dimension 1).
(`float`, read-only)
"""
mu_pc2=_mu_pc2
"""The chemical potential of the polymer-cluster in y-direction
(times the inverse temperature to make its dimension 1).
(`float`, read-only)
"""
@LdftModel.mu.setter
def mu(self, mu):
print('This setter has been deactivated in favour for \`mu_c\`')
@property
def dens_c(self):
"""The average density of the colloids. It is equals the average
density in the lattice gas. (`float`)
"""
return self._dens[0]
dens_pc1=_dens_pc1
"""The average density of the polymer clusters in x-direction.
(`float`, read-only)
"""
dens_pc2=_dens_pc2
"""The average density of the polymer clusters in x-direction.
(`float`, read-only)
"""
@LdftModel.dens.setter
def dens(self, dens):
print('This setter has been deactivated in favour for \
\`dens_c\`')
@property
def mu_fix_c(self):
"""Flag which determines Wether the colloids (a.k. the particles
of the lattice gas) are treated canonical (`False`) or grand
canonical (`True`). (`Bool`)
"""
return self._mu_fix[0]
@mu_fix_c.setter
def mu_fix_c(self, mu_fix_c):
self._mu_fix[0]=mu_fix_c
@LdftModel.mu_fix.setter
def mu_fix(self, mu_fix):
print('This setter has been deactivated in favour for \
\`mu_fix_c\`')
@property
def v_ext_c(self):
"""External potential acting on the colloids (a.k. the particles
of the lattice gas). (`np.array`)
"""
return self._v_ext[0]
@v_ext_c.setter
def v_ext_c(self, v_ext_c):
self._v_ext[0]=v_ext_c
@LdftModel.v_ext.setter
def v_ext(self, v_ext):
print('This setter has been deactivated in favour for \
\`v_ext_c\`')
@property
def r_c(self):
"""The density profile of the colloids (a.k. the particles of
the lattice gas). (`np.array`, read-only)
"""
return self._r[0]
r_pc1=_r_pc1
"""The density profile of the polymer clusters in x-direction.
(`np.array`, read-only)
"""
r_pc2=_r_pc2
"""The density profile of the polymer clusters in y-direction.
(`np.array`, read-only)
"""
@property
def r_c_hist(self):
"""Iteration history of the density profile of the colloids
(a.k. the particles of the lattice gas). (`List`, read-only)
"""
r_c_hist = [r[0] for r in self._r_hist]
return r_c_hist
@property
def err_c_hist(self):
"""Iteration history of the picard-error at the colloidal
density profile. (`List`, read-only)
"""
err_hist =[err[0] for err in self._err_hist]
return err_hist
####################################################################
#Map the lattice gas to the AO-model:
####################################################################
@staticmethod
def translate_epsi_to_mu_pc(epsi):
"""Maps the attraction strength of the lattice gas ``epsi`` to
the corresponding polymer cluster chemical potential.
Parameters
----------
epsi : `float`
The attraction strength (multiplied with the inverse
temperature to make the quantity dimensionless).
Returns
-------
mu_pc : The chemical potential (multiplied with the inverse
temperature to make the quantity dimensionless). (`float`)
"""
mu_pc=np.log(np.exp(epsi)-1)
return mu_pc
@staticmethod
def translate_mu_pc_to_epsi(mu_pc):
"""Maps the polymer cluster chemical potential to the attraction
strength of the lattice gas ``epsi``.
Parameters
----------
mu_pc : `float`
The polymer chemical potential (multiplied with the inverse
temperature to make the quantity dimensionless).
Returns
-------
epsi : The attraction strength (multiplied with the inverse
temperature to make the quantity dimensionless). (`float`)
"""
epsi=np.log(np.exp(mu_pc)+1)
return epsi
####################################################################
#The inhomogeneous functional:
#In this section all the functions concerning the model specific
#free energy functional are defined.
####################################################################
def _cal_n(self):
"""Calculates the weighted densities necessary for the
calculation of the free energy and the excess chemical
potential.
Returns
-------
Result : `tuple` of `numpy.ndaray`
"""
n1 = self._r_c + self._r_pc1
n2 = self._boundary_roll(self._r_c, -1, axis=1) + self._r_pc1
n3 = self._r_c + self._r_pc2
n4 = self._boundary_roll(self._r_c, -1, axis=0) + self._r_pc2
n5 = self._r_pc1
n6 = self._r_pc2
n7 = self._r_c
return n1, n2, n3, n4, n5, n6, n7
def _cal_Phi_ex_AO(self):
"""Calculates the excess free energy of the AO-model.
Returns
-------
Result : `np.array`
Free energy density of the AO-model.
"""
n=self._cal_n()
n1=n[0]
n2=n[1]
n3=n[2]
n4=n[3]
n5=n[4]
n6=n[5]
n7=n[6]
Phi0=self._cal_Phi_0
Phi_ex = Phi0(n1)+Phi0(n2)+Phi0(n3)+Phi0(n4)-Phi0(n5)-Phi0(n6)\
-3*Phi0(n7)
return Phi_ex
def cal_F(self):
"""Calculates the free energy of the three component system. It
differs from the free energy functional of the AO-model just by
a correction term accounting for the zero- and one-body
interaction of the polymers (see description of the class). For
getting the free energy of the lattice gas use ``cal_F_lg``,
which is the semi-grand potential, where the polymer clusters are
treated grand canonically and the colloids canonically.
Returns
-------
Result : `float`
Free energy of the three component system (times the inverse
temperature to make the results dimension 1).
"""
z_pc1 = np.exp(self._mu_pc1)
z_pc2 = np.exp(self._mu_pc2)
r_c = self._r_c
r_pc1 = self._r_pc1
r_pc2 = self._r_pc2
Phi_id = self._cal_Phi_id()
Phi_ex = self._cal_Phi_ex_AO()
F_id = np.sum(Phi_id)
F_ex_AO = np.sum(Phi_ex)
F = (F_id + F_ex_AO
- np.log(z_pc1+1)
*np.sum(-1+r_c+self._boundary_roll(r_c, -1, axis=1))
- np.log(z_pc2+1)
*np.sum(-1+r_c+self._boundary_roll(r_c, -1, axis=0)))
return F
def cal_F_lg(self):
"""Calculates the free energy of the lattice gas. If
``self.mu_fix==False`` this should give the same result as the
``cal_semi_Om``-function.
Returns
-------
Result : `float`
Free energy of the lattice gas.
"""
F_lg = self.cal_F()
mu_pc1 = self._mu_pc1
mu_pc2 = self._mu_pc2
r_pc1 = self._r_pc1
r_pc2 = self._r_pc2
F_lg -= (mu_pc1*np.sum(r_pc1)+mu_pc2*np.sum(r_pc2))
return F_lg
@LdftModel._RespectBoundaryCondition()
def cal_mu_ex(self):
n = self._cal_n()
n1=n[0]
n2=n[1]
n3=n[2]
n4=n[3]
n5=n[4]
n6=n[5]
n7=n[6]
z_pc = np.exp(self._mu_pc1)
mu_c_ex = np.log((1-n1)*(1-self._boundary_roll(n2, 1, axis=1))\
*(1-n3)*(1-self._boundary_roll(n4, 1, axis=0))\
/(1-n7)**3) + 4*np.log(z_pc+1)
mu_pc1_ex = np.log((1-n1)*(1-n2)/(1-n5))
mu_pc2_ex = np.log((1-n3)*(1-n4)/(1-n6))
return mu_c_ex, mu_pc1_ex, mu_pc2_ex
####################################################################
#The homogeneous methods:
#The following section contains all the methods concerning the bulk
#properties of the system.
####################################################################
@classmethod
def _cal_bulk_r_pc(cls, r_c, epsi):
"""Calculates the bulk polymer cluster density in dependence of
the colloid density and the chosen attraction strength
Parameters
----------
r_c : `float` or `np.ndarray`
The colloid density.
epsi : `float`
Attraction strength (times inverse temperature).
Returns
-------
r_pc : `float` or `np.ndarray`
The polymer cluster density.
"""
mu_pc = cls.translate_epsi_to_mu_pc(epsi)
z_pc = np.exp(mu_pc)
r_pc = ((1+2*z_pc*(1-r_c))/(2*(z_pc+1))
- 1/(2*(z_pc+1))*np.sqrt((1+2*z_pc*(1-r_c))**2 -
4*z_pc*(z_pc+1)*(1-r_c)**2))
return r_pc
@classmethod
def _cal_bulk_dr_pc(cls, r_c, epsi):
"""Calculates the derivative of the bulk polymer cluster density
with respect to the colloidal density in dependence of
the colloid density and the chosen attraction strength
Parameters
----------
r_c : `float` or `np.ndarray`
The colloid density.
epsi : `float`
Attraction strength (times inverse temperature).
Returns
-------
dr_pc : `float` or `np.ndarray`
The derivative of the polymer cluster density.
"""
mu_pc = cls.translate_epsi_to_mu_pc(epsi)
z_pc = np.exp(mu_pc)
dr_pc = -z_pc/(z_pc+1)\
*(1+(1-2*r_c)/np.sqrt(4*z_pc*(1-r_c)*r_c+1))
return dr_pc
@classmethod
def cal_bulk_mu_lg(cls, r_c, epsi):
"""Calculates the chemical potential for a bulk lattice gas.
Parameters
----------
r_c : `Float` or `np.ndarray`
The colloidal density.
epsi : `Float`
Attraction strength
Returns
-------
mu : `Float` or `np.ndarray`
The chemical potential for the lattice gas.
"""
r_pc = cls._cal_bulk_r_pc(r_c, epsi)
mu_pc = cls.translate_epsi_to_mu_pc(epsi)
z_pc = np.exp(mu_pc)
mu_c = (np.log(r_c) +4*cls._cal_dPhi_0(r_c+r_pc)
-3*cls._cal_dPhi_0(r_c)-4*np.log(z_pc+1))
return mu_c
@classmethod
def cal_bulk_dmu_lg(cls, r_c, epsi):
"""Calculates the derivative of the chemical potential from the
bulk lattice gas with respect to the colloidal density.
Parameters
----------
r_c : `Float` or `np.ndarray`
The colloidal density.
epsi : `Float`
Attraction strength
Returns
-------
dmu : `Float` or `np.ndarray`
The derivative of the chemical potential from the lattice
gas.
"""
r_pc = cls._cal_bulk_r_pc(r_c, epsi)
dr_pc = cls._cal_bulk_dr_pc(r_c, epsi)
mu_pc = cls.translate_epsi_to_mu_pc(epsi)
z_pc = np.exp(mu_pc)
dmu = 1/r_c + 4*cls._cal_d2Phi_0(r_c+r_pc)*(1+dr_pc)\
-3*cls._cal_d2Phi_0(r_c)
return dmu
@classmethod
def _cal_bulk_f_AO_id(cls, r_c, r_pc):
"""Calculates the ideal gas part of the free energy density of
a bulk AO-system under given colloid and polymer cluster
density.
Parameters
----------
r_c : `float`
Colloid density
r_pc : `float`
Polymer cluster density
Returns
-------
f_id : `float`
The idea gas part of the free energy density.
"""
f_id = r_c*(np.log(r_c)-1) +2*r_pc*(np.log(r_pc)-1)
return f_id
@classmethod
def _cal_bulk_f_AO_ex(cls, r_c, r_pc):
"""Calculates the excess part of the free energy density of a
bulk AO-system under given colloid and polymer cluster density.
Parameters
----------
r_c : `float`
Colloid density
r_pc : `float`
Polymer cluster density
Returns
-------
f_ex : `float`
The excess part of the free energy density.
"""
n1 = n2 = n3 = n4= r_c+r_pc
n5 = n6 = r_pc
n7 = r_c
f_ex = (cls._cal_Phi_0(n1)+cls._cal_Phi_0(n2)+cls._cal_Phi_0(n3)
+cls._cal_Phi_0(n4)-3*cls._cal_Phi_0(n7)
-cls._cal_Phi_0(n5)-cls._cal_Phi_0(n6))
return f_ex
@classmethod
def cal_bulk_f_lg(cls, r_c, epsi):
"""Calculates the free energy density of the bulk lattice gas
under given density. (The function is the same as in
``cal_F_lg`` but simplified for bulk systems.)
Parameters
----------
r_c: `float` or `np.ndarray`
Density
epsi: `float`
Attraction strength (times inverse temperature)
Returns
-------
f : `float` or `np.ndarray`
The free energy density of a bulk lattice gas.
"""
r_pc = cls._cal_bulk_r_pc(r_c, epsi)
f_AO_id = cls._cal_bulk_f_AO_id(r_c, r_pc)
f_AO_ex = cls._cal_bulk_f_AO_ex(r_c, r_pc)
mu_pc = cls.translate_epsi_to_mu_pc(epsi)
z_pc = np.exp(mu_pc)
f_tilde = f_AO_id+f_AO_ex-2*np.log(z_pc+1)*(2*r_c-1)
f_eff = f_tilde-2*r_pc*np.log(z_pc)
return f_eff
@classmethod
def cal_bulk_om_lg(cls, r, epsi):
"""Calculates the grand potential density for a bulk lattice gas
under given densities.
Parameters
----------
r : `float` or `np.ndarray`
The density.
epsi : `float`
The attraction strength (times inverse temperature).
Returns
-------
om : `Float`
The grand potential density
"""
f = cls.cal_bulk_f_lg(r, epsi)
mu = cls.cal_bulk_mu_lg(r, epsi)
om = f-mu*r
return om
@classmethod
def cal_bulk_p(cls, r, epsi):
"""Calculates the pressure of a bulk lattice gas under given
density.
Parameters
----------
r : `float` or `np.ndarray`
The density.
epsi : `float`
The attraction strength (times inverse temperature).
Returns
-------
The pressure : `Float`
"""
p = -cls.cal_bulk_om_lg(r, epsi)
return p
@classmethod
def _cal_difMu(cls, r_c, *args):
"""Calculates the difference between a certain chemical
potential of the lattice gas and the chemical potential
belonging to a certain density. This is a help-function for the
function ``cal_bulk_coex_dens``.
Parameters
----------
r_c : `float`
The colloid density of the system
*args:
First argument: Attraction strength (times inverse
temperature). (`float`)
Second argument: The reference chemical potential which the
chemical potential for at density r_c should be compared to.
(`float`)
Returns
-------
difMu : `float`
The difference between the two colloidal chem. pot.
"""
epsi = args[0]
mu_c = args[1]
mu = cls.cal_bulk_mu_lg(r_c, epsi)
return mu-mu_c
@classmethod
def cal_bulk_coex_dens(cls, mu, epsi, init_min=0.01, init_max=0.99):
"""Calculates the coexisting densities of a bulk system lattice
gas system under given chemical potential.
Parameters
----------
mu : `Float`
The chemical potential of the lattice gas.
epsi : `Float`
The attraction strength (times inverse temperature).
Returns
-------
r_coex : `Tuple`
The coexisting densities arranged in a tuple of the shape
(vapour_dens, liquid_dens)
"""
def dmu(rc, *args):
epsi = args[0]
mu_c = args[1]
return np.diag(cls.cal_bulk_dmu_lg(rc, epsi))
if (init_max-init_min < 0.5 or init_min<=0 or init_max>=1 or
abs(init_max+init_min-1)>0.01):
init_min=0.01
init_max=0.99
r_coex = op.fsolve(cls._cal_difMu,
np.array([init_min, init_max]),
args=(epsi, mu), fprime=dmu)
r_coex = tuple(r_coex)
if (cls._cal_difMu(r_coex[0], epsi, mu)>10**-7 or
cls._cal_difMu(r_coex[1], epsi, mu)>10**-7):
init_min = init_min/2
init_max = (init_max+1)/2
r_coex = cls.cal_bulk_coex_dens(mu, epsi, init_min=init_min,
init_max=init_max)
return r_coex
####################################################################
#In the following section the abc-methods concerning the surface
#properties of the mother class are overridden.
####################################################################
def _cal_p(self, dens):
epsi = self.epsi
r = dens[0]
p = self.cal_bulk_p(r, epsi)
return p
def _cal_coex_dens(self):
mu = self._mu[0]
epsi = self.epsi
if self._r:
init_min = np.min(self._r[0])
init_max = np.max(self._r[0])
r_c_coex = self.cal_bulk_coex_dens(mu, epsi, init_min=init_min,
init_max=init_max)
else:
r_c_coex = self.cal_bulk_coex_dens(mu, epsi)
r_pc_coex = self._cal_bulk_r_pc(np.array(r_c_coex), epsi)
r_pc_coex = tuple(r_pc_coex)
return [r_c_coex, r_pc_coex, r_pc_coex]
class _CorrectIftAtPaddedBoundary():
"""This is a decorator class. In order to fulfill the Gibbs-Adsorption
equation, additional terms need to be added to the definition of the
surface tension, at the Highlander functional. This decorator takes
care of them. Please decorate the functions, which calculate the
surface tension with it.
"""
def __init__(self):
pass
def __call__(self, func):
def funcWraper(self, arg=None):
if self._bound_cond == 'pad':
Phi_id = lambda r: r*( | np.log(r) | numpy.log |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 10 14:15:37 2020
@author: <NAME>
"""
import numpy as np
import matplotlib.pyplot as plt
import scipy.io as sio
import sklearn
from sklearn.model_selection import train_test_split, StratifiedKFold
import seaborn as sns
# from tabulate import tabulate
# from imblearn import under_sampling, over_sampling
def normalize(pressure):
"""
Scales each array of the given array of arrays to the range [0, 1]
Only considers values in the same tactile frame
"""
normalized_p = np.copy(pressure)
for i in range(pressure.shape[0]):
min_p = np.min(pressure[i])
normalized_p[i] = (pressure[i] - min_p) / np.max(pressure[i] - min_p)
return normalized_p
def normalize_per_pixel(pressure):
"""
Scales each element of the given array of arrays to the range [0, 1]
Considers values in all tactile frames
"""
normalized_p = np.copy(pressure)
# First scale values to [0, 1]
min_p = np.min(pressure)
normalized_p = (pressure - min_p) / np.max(pressure - min_p)
# Then subtract the mean for each pixel
pixel_mean = np.mean(normalized_p, axis=0)
# pixel_mean should be shaped like normalized_p
normalized_p = normalized_p - pixel_mean
return normalized_p
seed = 333
n_classes = 17
split = 'session'
plot = True
filename = '../../Data_Collection/3kOhm_FB/data_MT_FabianGeiger_5sess.mat'
split = 'session'
data = sio.loadmat(filename, squeeze_me=True)
# Use only frames in which objects were touched
valid_mask = data['valid_flag'] == 1
pressure = data['tactile_data'][valid_mask]
# Scale data to the range [0, 1]
pressure = np.clip((pressure.astype(np.float32)-1510)/(3000-1510), 0.0, 1.0)
object_id = data['object_id'][valid_mask]
if split == 'random':
# Only use valid and balanced data
train_data, test_data,\
train_labels, test_labels = train_test_split(pressure,
object_id,
test_size=0.306,
random_state=seed,
shuffle=True,
stratify=object_id)
mean_train = []
mean_test = []
for i in range(n_classes):
mask = train_labels == i
samples = train_data[mask]
if(len(samples) != 0):
mean_train.append(np.mean(samples, axis=0).reshape((32,32)))
mask = test_labels == i
samples = test_data[mask]
if(len(samples) != 0):
mean_test.append(np.mean(samples, axis=0).reshape((32,32)))
if plot:
# Plot the mean pressure frames for a random data split
#fname = '/home/fabian/Documents/Master_thesis/Python_Code/results/stag/compare_sessions_realData/random_'
fname = '../results/stag/compare_sessions_realData/random_'
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6), sharey=True)
cbar_ax = fig.add_axes([.91, .15, .03, .7])
for j in range(n_classes):
vmax = np.max([mean_train[j], mean_test[j]])
sns.heatmap(mean_train[j], vmax=vmax, square=True, ax=ax1, cbar=False)
ax1.title.set_text('Training')
sns.heatmap(mean_test[j], vmax=vmax, square=True, ax=ax2, cbar_ax=cbar_ax)
ax2.title.set_text('Test')
fig.suptitle('Random split Class {:d}'.format(j), fontsize=16)
plt.savefig(fname=(fname + 'class' + str(j)))
elif split == 'session':
num_sessions = len(np.unique(data['session_id']))
x = []
y = []
valid_sessions = data['session_id'][valid_mask]
for i in range(num_sessions):
session_mask = valid_sessions == i
x.append(pressure[session_mask])
y.append(object_id[session_mask])
mean_1 = []
mean_2 = []
mean_3 = []
mean_4 = []
mean_5 = []
for i in range(n_classes):
mask = y[0] == i
samples = x[0][mask]
if(len(samples) != 0):
mean_1.append(np.mean(samples, axis=0).reshape((32,32)))
else:
mean_1.append(np.zeros((32,32)))
mask = y[1] == i
samples = x[1][mask]
if(len(samples) != 0):
mean_2.append( | np.mean(samples, axis=0) | numpy.mean |
# -*- coding: utf-8 -*-
"""Developer convenience functions for ibs (detections).
TODO: need to split up into sub modules:
consistency_checks
feasibility_fixes
move the export stuff to dbio
then there are also convineience functions that need to be ordered at least
within this file
"""
import logging
from os.path import exists, expanduser, join, abspath
import numpy as np
import utool as ut
import cv2
from wbia.control import controller_inject
from wbia.other.detectfuncs import (
general_parse_gt,
general_get_imageset_gids,
localizer_parse_pred,
general_overlap,
)
from wbia.other.detectcore import (
nms,
classifier_visualize_training_localizations,
_bootstrap_mine,
)
# Inject utool functions
(print, rrr, profile) = ut.inject2(__name__, '[other.detectgrave]')
logger = logging.getLogger('wbia')
CLASS_INJECT_KEY, register_ibs_method = controller_inject.make_ibs_register_decorator(
__name__
)
@register_ibs_method
def bootstrap_pca_train(
ibs, dims=64, pca_limit=500000, ann_batch=50, output_path=None, **kwargs
):
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import IncrementalPCA
from annoy import AnnoyIndex
import numpy as np
import random
def _get_data(depc, gid_list, limit=None, shuffle=False):
gid_list_ = gid_list[:]
if shuffle:
random.shuffle(gid_list_)
config = {
'algo': '_COMBINED',
'features': True,
'feature2_algo': 'resnet',
}
total = 0
features_list = []
index_list = []
gid_iter = ut.ProgIter(gid_list_, lbl='collect feature vectors', bs=True)
for gid in gid_iter:
if limit is not None and total >= limit:
break
feature_list = depc.get_property(
'localizations_features', gid, 'vector', config=config
)
total += len(feature_list)
index_list += [(gid, offset) for offset in range(len(feature_list))]
features_list.append(feature_list)
logger.info('\nUsed %d images to mine %d features' % (len(features_list), total))
data_list = np.vstack(features_list)
if len(data_list) > limit:
data_list = data_list[:limit]
index_list = index_list[:limit]
assert len(data_list) == len(index_list)
features_list = None
return total, data_list, index_list
# gid_list = ibs.get_valid_gids()
gid_list = general_get_imageset_gids(ibs, 'TRAIN_SET', **kwargs)
# gid_list = gid_list[:200]
# Get data
depc = ibs.depc_image
total, data_list, index_list = _get_data(depc, gid_list, pca_limit, True)
logger.info(data_list.shape)
# Normalize data
logger.info('Fit Scaler')
scaler = StandardScaler()
scaler.fit(data_list)
data_list = scaler.transform(data_list)
# Fit PCA
logger.info('Fit PCA')
pca_model = IncrementalPCA(n_components=dims)
pca_model.fit(data_list)
pca_quality = pca_model.explained_variance_ratio_.sum() * 100.0
logger.info('PCA Variance Quality: %0.04f %%' % (pca_quality,))
# Fit ANN for PCA's vectors
index = 0
ann_model = AnnoyIndex(dims) # Length of item vector that will be indexed
ann_rounds = int(np.ceil(float(len(gid_list)) / ann_batch))
manifest_dict = {}
for ann_round in range(ann_rounds):
start_index = ann_round * ann_batch
stop_index = (ann_round + 1) * ann_batch
assert start_index < len(gid_list)
stop_index = min(stop_index, len(gid_list))
logger.info('Slicing index range: [%r, %r)' % (start_index, stop_index))
# Slice gids and get feature data
gid_list_ = gid_list[start_index:stop_index]
total, data_list, index_list = _get_data(depc, gid_list_)
# Scaler
data_list = scaler.transform(data_list)
# Transform data to smaller vectors
data_list_ = pca_model.transform(data_list)
zipped = zip(index_list, data_list_)
data_iter = ut.ProgIter(zipped, lbl='add vectors to ANN model', bs=True)
for (gid, offset), feature in data_iter:
ann_model.add_item(index, feature)
manifest_dict[index] = (
gid,
offset,
)
index += 1
# Build forest
trees = index // 100000
logger.info('Build ANN model using %d feature vectors and %d trees' % (index, trees))
ann_model.build(trees)
# Save forest
if output_path is None:
output_path = abspath(expanduser(join('~', 'code', 'wbia', 'models')))
scaler_filename = 'forest.pca'
scaler_filepath = join(output_path, scaler_filename)
logger.info('Saving scaler model to: %r' % (scaler_filepath,))
model_tup = (
pca_model,
scaler,
manifest_dict,
)
ut.save_cPkl(scaler_filepath, model_tup)
forest_filename = 'forest.ann'
forest_filepath = join(output_path, forest_filename)
logger.info('Saving ANN model to: %r' % (forest_filepath,))
ann_model.save(forest_filepath)
# ibs.bootstrap_pca_test(model_path=output_path)
return output_path
@register_ibs_method
def bootstrap_pca_test(
ibs,
dims=64,
pca_limit=500000,
ann_batch=50,
model_path=None,
output_path=None,
neighbors=1000,
nms_thresh=0.5,
min_confidence=0.3,
**kwargs,
):
from annoy import AnnoyIndex
import random
if output_path is None:
output_path = abspath(expanduser(join('~', 'Desktop', 'output-ann')))
ut.ensuredir(output_path)
# gid_list = ibs.get_valid_gids()
gid_list = general_get_imageset_gids(ibs, 'TRAIN_SET', **kwargs)
random.shuffle(gid_list)
# gid_list = gid_list[:100]
# Load forest
if model_path is None:
model_path = abspath(expanduser(join('~', 'code', 'wbia', 'models')))
scaler_filename = 'forest.pca'
scaler_filepath = join(model_path, scaler_filename)
logger.info('Loading scaler model from: %r' % (scaler_filepath,))
model_tup = ut.load_cPkl(scaler_filepath)
pca_model, scaler, manifest_dict = model_tup
forest_filename = 'forest.ann'
forest_filepath = join(model_path, forest_filename)
logger.info('Loading ANN model from: %r' % (forest_filepath,))
ann_model = AnnoyIndex(dims)
ann_model.load(forest_filepath)
config = {
'algo': '_COMBINED',
'features': True,
'feature2_algo': 'resnet',
'classify': True,
'classifier_algo': 'svm',
'classifier_weight_filepath': '/home/jason/code/wbia/models-bootstrap/classifier.svm.image.zebra.pkl',
}
logger.info('\tGather Ground-Truth')
gt_dict = general_parse_gt(ibs, test_gid_list=gid_list, **config)
logger.info('\tGather Predictions')
pred_dict = localizer_parse_pred(ibs, test_gid_list=gid_list, **config)
for image_uuid in gt_dict:
# Get the gt and prediction list
gt_list = gt_dict[image_uuid]
pred_list = pred_dict[image_uuid]
# Calculate overlap
overlap = general_overlap(gt_list, pred_list)
num_gt, num_pred = overlap.shape
max_overlap = np.max(overlap, axis=0)
index_list = np.argsort(max_overlap)
example_limit = 1
worst_idx_list = index_list[:example_limit]
best_idx_list = index_list[-1 * example_limit :]
logger.info('Worst ovelap: %r' % (overlap[:, worst_idx_list],))
logger.info('Best ovelap: %r' % (overlap[:, best_idx_list],))
for idx_list in [best_idx_list, worst_idx_list]:
example_list = ut.take(pred_list, idx_list)
interpolation = cv2.INTER_LANCZOS4
warpkw = dict(interpolation=interpolation)
for example, offset in zip(example_list, idx_list):
gid = example['gid']
feature_list = np.array([example['feature']])
data_list = scaler.transform(feature_list)
data_list_ = pca_model.transform(data_list)[0]
neighbor_index_list = ann_model.get_nns_by_vector(data_list_, neighbors)
neighbor_manifest_list = list(
set(
[
manifest_dict[neighbor_index]
for neighbor_index in neighbor_index_list
]
)
)
neighbor_gid_list_ = ut.take_column(neighbor_manifest_list, 0)
neighbor_gid_list_ = [gid] + neighbor_gid_list_
neighbor_uuid_list_ = ibs.get_image_uuids(neighbor_gid_list_)
neighbor_offset_list_ = ut.take_column(neighbor_manifest_list, 1)
neighbor_offset_list_ = [offset] + neighbor_offset_list_
neighbor_gid_set_ = list(set(neighbor_gid_list_))
neighbor_image_list = ibs.get_images(neighbor_gid_set_)
neighbor_image_dict = {
gid: image
for gid, image in zip(neighbor_gid_set_, neighbor_image_list)
}
neighbor_pred_dict = localizer_parse_pred(
ibs, test_gid_list=neighbor_gid_set_, **config
)
neighbor_dict = {}
zipped = zip(
neighbor_gid_list_, neighbor_uuid_list_, neighbor_offset_list_
)
for neighbor_gid, neighbor_uuid, neighbor_offset in zipped:
if neighbor_gid not in neighbor_dict:
neighbor_dict[neighbor_gid] = []
neighbor_pred = neighbor_pred_dict[neighbor_uuid][neighbor_offset]
neighbor_dict[neighbor_gid].append(neighbor_pred)
# Perform NMS
chip_list = []
query_image = ibs.get_images(gid)
xbr = example['xbr']
ybr = example['ybr']
xtl = example['xtl']
ytl = example['ytl']
height, width = query_image.shape[:2]
xbr = int(xbr * width)
ybr = int(ybr * height)
xtl = int(xtl * width)
ytl = int(ytl * height)
# Get chips
try:
chip = query_image[ytl:ybr, xtl:xbr, :]
chip = cv2.resize(chip, (192, 192), **warpkw)
chip_list.append(chip)
except Exception:
pass
chip_list.append(np.zeros((192, 10, 3)))
for neighbor_gid in neighbor_dict:
neighbor_list = neighbor_dict[neighbor_gid]
# Compile coordinate list of (xtl, ytl, xbr, ybr) instead of (xtl, ytl, w, h)
coord_list = []
confs_list = []
for neighbor in neighbor_list:
xbr = neighbor['xbr']
ybr = neighbor['ybr']
xtl = neighbor['xtl']
ytl = neighbor['ytl']
conf = neighbor['confidence']
coord_list.append([xtl, ytl, xbr, ybr])
confs_list.append(conf)
coord_list = np.vstack(coord_list)
confs_list = np.array(confs_list)
# Perform NMS
keep_indices_list = nms(coord_list, confs_list, nms_thresh)
keep_indices_set = set(keep_indices_list)
neighbor_list_ = [
neighbor
for index, neighbor in enumerate(neighbor_list)
if index in keep_indices_set
]
neighbor_image = neighbor_image_dict[neighbor_gid]
for neightbor_ in neighbor_list_:
xbr = neightbor_['xbr']
ybr = neightbor_['ybr']
xtl = neightbor_['xtl']
ytl = neightbor_['ytl']
conf = neighbor['confidence']
height, width = neighbor_image.shape[:2]
xbr = int(xbr * width)
ybr = int(ybr * height)
xtl = int(xtl * width)
ytl = int(ytl * height)
# Get chips
try:
chip = neighbor_image[ytl:ybr, xtl:xbr, :]
chip = cv2.resize(chip, (192, 192), **warpkw)
color = (0, 255, 0) if conf >= min_confidence else (0, 0, 255)
cv2.rectangle(chip, (0, 0), (192, 192), color, 10)
chip_list.append(chip)
except Exception:
pass
min_chips = 16
if len(chip_list) < min_chips:
continue
chip_list = chip_list[:min_chips]
canvas = np.hstack(chip_list)
output_filename = 'neighbors_%d_%d.png' % (gid, offset)
output_filepath = join(output_path, output_filename)
cv2.imwrite(output_filepath, canvas)
@register_ibs_method
def bootstrap(
ibs,
species_list=['zebra'],
N=10,
rounds=20,
scheme=2,
ensemble=9,
output_path=None,
precompute=True,
precompute_test=True,
recompute=False,
visualize=True,
C=1.0,
kernel='rbf',
**kwargs,
):
from sklearn import svm, preprocessing
# Establish variables
kernel = str(kernel.lower())
species_list = [species.lower() for species in species_list]
species_list_str = '.'.join(species_list)
assert scheme in [1, 2], 'Invalid scheme'
if output_path is None:
# species_list_str = '+'.join(species_list)
# args = (N, rounds, scheme, species_list_str, )
# output_path_ = 'models-bootstrap-%s-%s-%s-%s' % args
output_path_ = 'models-bootstrap'
output_path = abspath(expanduser(join('~', 'code', 'wbia', output_path_)))
logger.info('Using output_path = %r' % (output_path,))
if recompute:
ut.delete(output_path)
ut.ensuredir(output_path)
# Get the test images for later
depc = ibs.depc_image
test_gid_list = general_get_imageset_gids(ibs, 'TEST_SET', **kwargs)
wic_model_filepath = ibs.classifier_train_image_svm(
species_list, output_path=output_path, dryrun=True
)
is_wic_model_trained = exists(wic_model_filepath)
######################################################################################
# Step 1: train whole-image classifier
# this will compute and cache any ResNet features that
# haven't been computed
if not is_wic_model_trained:
wic_model_filepath = ibs.classifier_train_image_svm(
species_list, output_path=output_path
)
# Load model pickle
model_tup = ut.load_cPkl(wic_model_filepath)
model, scaler = model_tup
######################################################################################
# Step 2: sort all test images based on whole image classifier
# establish a review ordering based on classification probability
# Get scores
vals = get_classifier_svm_data_labels(ibs, 'TRAIN_SET', species_list)
train_gid_set, data_list, label_list = vals
# Normalize data
data_list = scaler.transform(data_list)
# score_list_ = model.decision_function(data_list) # NOQA
score_list_ = model.predict_proba(data_list)
score_list_ = score_list_[:, 1]
# Sort gids by scores (initial ranking)
comb_list = sorted(list(zip(score_list_, train_gid_set)), reverse=True)
sorted_gid_list = [comb[1] for comb in comb_list]
config = {
'algo': '_COMBINED',
'species_set': set(species_list),
'features': True,
'feature2_algo': 'resnet',
'classify': True,
'classifier_algo': 'svm',
'classifier_weight_filepath': wic_model_filepath,
'nms': True,
'nms_thresh': 0.50,
# 'thresh' : True,
# 'index_thresh' : 0.25,
}
config_list = [config.copy()]
######################################################################################
# Step 2.5: pre-compute localizations and ResNet features (without loading to memory)
#
if precompute:
needed = N * rounds
needed = min(needed, len(sorted_gid_list))
sorted_gid_list_ = sorted_gid_list[:needed]
depc.get_rowids('localizations_features', sorted_gid_list_, config=config)
# Precompute test features
if precompute and precompute_test:
# depc.get_rowids('localizations_features', test_gid_list, config=config)
if not is_wic_model_trained:
depc.delete_property('localizations_classifier', test_gid_list, config=config)
depc.get_rowids('localizations_classifier', test_gid_list, config=config)
# return
######################################################################################
# Step 3: for each bootstrapping round, ask user for input
# The initial classifier is the whole image classifier
reviewed_gid_dict = {}
for current_round in range(rounds):
logger.info('------------------------------------------------------')
logger.info('Current Round %r' % (current_round,))
##################################################################################
# Step 4: gather the (unreviewed) images to review for this round
round_gid_list = []
temp_index = 0
while len(round_gid_list) < N and temp_index < len(sorted_gid_list):
temp_gid = sorted_gid_list[temp_index]
if temp_gid not in reviewed_gid_dict:
round_gid_list.append(temp_gid)
temp_index += 1
args = (
len(round_gid_list),
round_gid_list,
)
logger.info('Found %d unreviewed gids: %r' % args)
##################################################################################
# Step 5: add any images reviewed from a previous round
reviewed_gid_list = reviewed_gid_dict.keys()
args = (
len(reviewed_gid_list),
reviewed_gid_list,
)
logger.info('Adding %d previously reviewed gids: %r' % args)
# All gids that have been reviewed
round_gid_list = reviewed_gid_list + round_gid_list
# Get model ensemble path
limit = len(round_gid_list)
args = (
species_list_str,
limit,
kernel,
C,
)
output_filename = 'classifier.svm.localization.%s.%d.%s.%s' % args
svm_model_path = join(output_path, output_filename)
is_svm_model_trained = exists(svm_model_path)
ut.ensuredir(svm_model_path)
##################################################################################
# Step 6: gather gt (simulate user interaction)
logger.info('\tGather Ground-Truth')
gt_dict = general_parse_gt(ibs, test_gid_list=round_gid_list, **config)
##################################################################################
# Step 7: gather predictions from all algorithms combined
if not is_svm_model_trained:
logger.info('\tDelete Old Classifications')
depc.delete_property(
'localizations_classifier', round_gid_list, config=config
)
logger.info('\tGather Predictions')
pred_dict = localizer_parse_pred(ibs, test_gid_list=round_gid_list, **config)
##################################################################################
# Step 8: train SVM ensemble using fresh mined data for each ensemble
# Train models, one-by-one
for current_ensemble in range(1, ensemble + 1):
# Mine for a new set of (static) positives and (random) negatives
values = _bootstrap_mine(
ibs, gt_dict, pred_dict, scheme, reviewed_gid_dict, **kwargs
)
mined_gid_list, mined_gt_list, mined_pos_list, mined_neg_list = values
if visualize:
output_visualize_path = join(svm_model_path, 'visualize')
ut.ensuredir(output_visualize_path)
output_visualize_path = join(
output_visualize_path, '%s' % (current_ensemble,)
)
ut.ensuredir(output_visualize_path)
classifier_visualize_training_localizations(
ibs, None, output_path=output_visualize_path, values=values
)
# Get the confidences of the selected positives and negatives
pos_conf_list = []
neg_conf_list = []
for pos in mined_pos_list:
pos_conf_list.append(pos['confidence'])
for neg in mined_neg_list:
neg_conf_list.append(neg['confidence'])
pos_conf_list = np.array(pos_conf_list)
args = (
np.min(pos_conf_list),
np.mean(pos_conf_list),
np.std(pos_conf_list),
np.max(pos_conf_list),
)
logger.info(
'Positive Confidences: %0.02f min, %0.02f avg, %0.02f std, %0.02f max'
% args
)
neg_conf_list = np.array(neg_conf_list)
args = (
np.min(neg_conf_list),
np.mean(neg_conf_list),
| np.std(neg_conf_list) | numpy.std |
import unittest
import qteasy as qt
import pandas as pd
from pandas import Timestamp
import numpy as np
import math
from numpy import int64
import itertools
import datetime
from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list
from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day
from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict
from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list
from qteasy.space import Space, Axis, space_around_centre, ResultPool
from qteasy.core import apply_loop
from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX
from qteasy.tsfuncs import income, indicators, name_change, get_bar
from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index
from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite
from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily
from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company
from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv
from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp
from qteasy.evaluate import eval_volatility
from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point
from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr
from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc
from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm
from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi
from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange
from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod
from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows
from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside
from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby
from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu
from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover
from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing
from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite
from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami
from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod
from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck
from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength
from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu
from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar
from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods
from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop
from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap
from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows
from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle
from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos
from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh
from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax
from qteasy.tafuncs import minmaxindex, mult, sub, sum
from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data
from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel
from qteasy.database import DataSource
from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting
from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs
from qteasy.blender import _exp_to_token, blender_parser, signal_blend
class TestCost(unittest.TestCase):
def setUp(self):
self.amounts = np.array([10000., 20000., 10000.])
self.op = np.array([0., 1., -0.33333333])
self.amounts_to_sell = np.array([0., 0., -3333.3333])
self.cash_to_spend = np.array([0., 20000., 0.])
self.prices = np.array([10., 20., 10.])
self.r = qt.Cost(0.0)
def test_rate_creation(self):
"""测试对象生成"""
print('testing rates objects\n')
self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate')
self.assertEqual(self.r.buy_fix, 0)
self.assertEqual(self.r.sell_fix, 0)
def test_rate_operations(self):
"""测试交易费率对象"""
self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect')
self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong')
self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect')
self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect')
self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect')
self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect')
self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect')
self.assertEqual(np.allclose(self.r.calculate(self.amounts),
[0.003, 0.003, 0.003]),
True,
'fee calculation wrong')
def test_rate_fee(self):
"""测试买卖交易费率"""
self.r.buy_rate = 0.003
self.r.sell_rate = 0.001
self.r.buy_fix = 0.
self.r.sell_fix = 0.
self.r.buy_min = 0.
self.r.sell_min = 0.
self.r.slipage = 0.
print('\nSell result with fixed rate = 0.001 and moq = 0:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell))
test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell)
self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect')
self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect')
print('\nSell result with fixed rate = 0.001 and moq = 1:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.))
test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)
self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect')
self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect')
print('\nSell result with fixed rate = 0.001 and moq = 100:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100))
test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)
self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect')
self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect')
print('\nPurchase result with fixed rate = 0.003 and moq = 0:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0))
test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)
self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect')
self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect')
print('\nPurchase result with fixed rate = 0.003 and moq = 1:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1))
test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)
self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect')
self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect')
print('\nPurchase result with fixed rate = 0.003 and moq = 100:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100))
test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)
self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect')
self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect')
def test_min_fee(self):
"""测试最低交易费用"""
self.r.buy_rate = 0.
self.r.sell_rate = 0.
self.r.buy_fix = 0.
self.r.sell_fix = 0.
self.r.buy_min = 300
self.r.sell_min = 300
self.r.slipage = 0.
print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0))
test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)
self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect')
self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect')
print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10))
test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)
self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect')
self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect')
print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100))
test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)
self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect')
self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect')
print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell))
test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell)
self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect')
self.assertAlmostEqual(test_min_fee_result[1], 33033.333)
self.assertAlmostEqual(test_min_fee_result[2], 300.0)
print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1))
test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)
self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect')
self.assertAlmostEqual(test_min_fee_result[1], 33030)
self.assertAlmostEqual(test_min_fee_result[2], 300.0)
print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100))
test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)
self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect')
self.assertAlmostEqual(test_min_fee_result[1], 32700)
self.assertAlmostEqual(test_min_fee_result[2], 300.0)
def test_rate_with_min(self):
"""测试最低交易费用对其他交易费率参数的影响"""
self.r.buy_rate = 0.0153
self.r.sell_rate = 0.01
self.r.buy_fix = 0.
self.r.sell_fix = 0.
self.r.buy_min = 300
self.r.sell_min = 333
self.r.slipage = 0.
print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0))
test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)
self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect')
print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10))
test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)
self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect')
print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100))
test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)
self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect')
print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell))
test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell)
self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967)
self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333)
print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1))
test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)
self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7)
self.assertAlmostEqual(test_rate_with_min_result[2], 333.3)
print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100))
test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)
self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect')
self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0)
self.assertAlmostEqual(test_rate_with_min_result[2], 333.0)
def test_fixed_fee(self):
"""测试固定交易费用"""
self.r.buy_rate = 0.
self.r.sell_rate = 0.
self.r.buy_fix = 200
self.r.sell_fix = 150
self.r.buy_min = 0
self.r.sell_min = 0
self.r.slipage = 0
print('\nselling result of fixed cost with fixed fee = 150 and moq=0:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0))
test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect')
print('\nselling result of fixed cost with fixed fee = 150 and moq=100:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100))
test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True,
f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]')
self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect')
print('\npurchase result of fixed cost with fixed fee = 200:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0))
test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect')
print('\npurchase result of fixed cost with fixed fee = 200:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100))
test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect')
def test_slipage(self):
"""测试交易滑点"""
self.r.buy_fix = 0
self.r.sell_fix = 0
self.r.buy_min = 0
self.r.sell_min = 0
self.r.buy_rate = 0.003
self.r.sell_rate = 0.001
self.r.slipage = 1E-9
print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0))
print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:')
print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100))
print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:')
print(self.r.get_selling_result(self.prices, self.amounts_to_sell))
test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True,
f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]')
self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591,
msg=f'{test_fixed_fee_result[1]} does not equal to 99890.')
self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409,
msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.')
test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect')
test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)
self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect')
self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect')
class TestSpace(unittest.TestCase):
def test_creation(self):
"""
test if creation of space object is fine
"""
# first group of inputs, output Space with two discr axis from [0,10]
print('testing space objects\n')
# pars_list = [[(0, 10), (0, 10)],
# [[0, 10], [0, 10]]]
#
# types_list = ['discr',
# ['discr', 'discr']]
#
# input_pars = itertools.product(pars_list, types_list)
# for p in input_pars:
# # print(p)
# s = qt.Space(*p)
# b = s.boes
# t = s.types
# # print(s, t)
# self.assertIsInstance(s, qt.Space)
# self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!')
# self.assertEqual(t, ['discr', 'discr'], 'types incorrect')
#
pars_list = [[(0, 10), (0, 10)],
[[0, 10], [0, 10]]]
types_list = ['foo, bar',
['foo', 'bar']]
input_pars = itertools.product(pars_list, types_list)
for p in input_pars:
# print(p)
s = Space(*p)
b = s.boes
t = s.types
# print(s, t)
self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!')
self.assertEqual(t, ['enum', 'enum'], 'types incorrect')
pars_list = [[(0, 10), (0, 10)],
[[0, 10], [0, 10]]]
types_list = [['discr', 'foobar']]
input_pars = itertools.product(pars_list, types_list)
for p in input_pars:
# print(p)
s = Space(*p)
b = s.boes
t = s.types
# print(s, t)
self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!')
self.assertEqual(t, ['discr', 'enum'], 'types incorrect')
pars_list = [(0., 10), (0, 10)]
s = Space(pars=pars_list, par_types=None)
self.assertEqual(s.types, ['conti', 'discr'])
self.assertEqual(s.dim, 2)
self.assertEqual(s.size, (10.0, 11))
self.assertEqual(s.shape, (np.inf, 11))
self.assertEqual(s.count, np.inf)
self.assertEqual(s.boes, [(0., 10), (0, 10)])
pars_list = [(0., 10), (0, 10)]
s = Space(pars=pars_list, par_types='conti, enum')
self.assertEqual(s.types, ['conti', 'enum'])
self.assertEqual(s.dim, 2)
self.assertEqual(s.size, (10.0, 2))
self.assertEqual(s.shape, (np.inf, 2))
self.assertEqual(s.count, np.inf)
self.assertEqual(s.boes, [(0., 10), (0, 10)])
pars_list = [(1, 2), (2, 3), (3, 4)]
s = Space(pars=pars_list)
self.assertEqual(s.types, ['discr', 'discr', 'discr'])
self.assertEqual(s.dim, 3)
self.assertEqual(s.size, (2, 2, 2))
self.assertEqual(s.shape, (2, 2, 2))
self.assertEqual(s.count, 8)
self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)])
pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)]
s = Space(pars=pars_list)
self.assertEqual(s.types, ['enum', 'enum', 'enum'])
self.assertEqual(s.dim, 3)
self.assertEqual(s.size, (3, 3, 3))
self.assertEqual(s.shape, (3, 3, 3))
self.assertEqual(s.count, 27)
self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)])
pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))]
s = Space(pars=pars_list)
self.assertEqual(s.types, ['enum'])
self.assertEqual(s.dim, 1)
self.assertEqual(s.size, (3,))
self.assertEqual(s.shape, (3,))
self.assertEqual(s.count, 3)
pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5))
s = Space(pars=pars_list)
self.assertEqual(s.types, ['enum', 'enum', 'enum'])
self.assertEqual(s.dim, 3)
self.assertEqual(s.size, (3, 3, 3))
self.assertEqual(s.shape, (3, 3, 3))
self.assertEqual(s.count, 27)
self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)])
def test_extract(self):
"""
:return:
"""
pars_list = [(0, 10), (0, 10)]
types_list = ['discr', 'discr']
s = Space(pars=pars_list, par_types=types_list)
extracted_int, count = s.extract(3, 'interval')
extracted_int_list = list(extracted_int)
print('extracted int\n', extracted_int_list)
self.assertEqual(count, 16, 'extraction count wrong!')
self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3),
(3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9),
(9, 0), (9, 3), (9, 6), (9, 9)],
'space extraction wrong!')
extracted_rand, count = s.extract(10, 'rand')
extracted_rand_list = list(extracted_rand)
self.assertEqual(count, 10, 'extraction count wrong!')
print('extracted rand\n', extracted_rand_list)
for point in list(extracted_rand_list):
self.assertEqual(len(point), 2)
self.assertLessEqual(point[0], 10)
self.assertGreaterEqual(point[0], 0)
self.assertLessEqual(point[1], 10)
self.assertGreaterEqual(point[1], 0)
pars_list = [(0., 10), (0, 10)]
s = Space(pars=pars_list, par_types=None)
extracted_int2, count = s.extract(3, 'interval')
self.assertEqual(count, 16, 'extraction count wrong!')
extracted_int_list2 = list(extracted_int2)
self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3),
(3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9),
(9, 0), (9, 3), (9, 6), (9, 9)],
'space extraction wrong!')
print('extracted int list 2\n', extracted_int_list2)
self.assertIsInstance(extracted_int_list2[0][0], float)
self.assertIsInstance(extracted_int_list2[0][1], (int, int64))
extracted_rand2, count = s.extract(10, 'rand')
self.assertEqual(count, 10, 'extraction count wrong!')
extracted_rand_list2 = list(extracted_rand2)
print('extracted rand list 2:\n', extracted_rand_list2)
for point in extracted_rand_list2:
self.assertEqual(len(point), 2)
self.assertIsInstance(point[0], float)
self.assertLessEqual(point[0], 10)
self.assertGreaterEqual(point[0], 0)
self.assertIsInstance(point[1], (int, int64))
self.assertLessEqual(point[1], 10)
self.assertGreaterEqual(point[1], 0)
pars_list = [(0., 10), ('a', 'b')]
s = Space(pars=pars_list, par_types='enum, enum')
extracted_int3, count = s.extract(1, 'interval')
self.assertEqual(count, 4, 'extraction count wrong!')
extracted_int_list3 = list(extracted_int3)
self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')],
'space extraction wrong!')
print('extracted int list 3\n', extracted_int_list3)
self.assertIsInstance(extracted_int_list3[0][0], float)
self.assertIsInstance(extracted_int_list3[0][1], str)
extracted_rand3, count = s.extract(3, 'rand')
self.assertEqual(count, 3, 'extraction count wrong!')
extracted_rand_list3 = list(extracted_rand3)
print('extracted rand list 3:\n', extracted_rand_list3)
for point in extracted_rand_list3:
self.assertEqual(len(point), 2)
self.assertIsInstance(point[0], (float, int))
self.assertLessEqual(point[0], 10)
self.assertGreaterEqual(point[0], 0)
self.assertIsInstance(point[1], str)
self.assertIn(point[1], ['a', 'b'])
pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))]
s = Space(pars=pars_list, par_types='enum')
extracted_int4, count = s.extract(1, 'interval')
self.assertEqual(count, 4, 'extraction count wrong!')
extracted_int_list4 = list(extracted_int4)
it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)])
for item, item2 in it:
print(item, item2)
self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it]))
print('extracted int list 4\n', extracted_int_list4)
self.assertIsInstance(extracted_int_list4[0], tuple)
extracted_rand4, count = s.extract(3, 'rand')
self.assertEqual(count, 3, 'extraction count wrong!')
extracted_rand_list4 = list(extracted_rand4)
print('extracted rand list 4:\n', extracted_rand_list4)
for point in extracted_rand_list4:
self.assertEqual(len(point), 2)
self.assertIsInstance(point[0], (int, str))
self.assertIn(point[0], [0, 1, 'a'])
self.assertIsInstance(point[1], (int, str))
self.assertIn(point[1], [10, 14, 'b', 'c'])
self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)])
pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)]
s = Space(pars=pars_list, par_types='enum, discr')
extracted_int5, count = s.extract(1, 'interval')
self.assertEqual(count, 16, 'extraction count wrong!')
extracted_int_list5 = list(extracted_int5)
for item, item2 in extracted_int_list5:
print(item, item2)
self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it]))
print('extracted int list 5\n', extracted_int_list5)
self.assertIsInstance(extracted_int_list5[0], tuple)
extracted_rand5, count = s.extract(5, 'rand')
self.assertEqual(count, 5, 'extraction count wrong!')
extracted_rand_list5 = list(extracted_rand5)
print('extracted rand list 5:\n', extracted_rand_list5)
for point in extracted_rand_list5:
self.assertEqual(len(point), 2)
self.assertIsInstance(point[0], tuple)
print(f'type of point[1] is {type(point[1])}')
self.assertIsInstance(point[1], (int, np.int64))
self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)])
print(f'test incremental extraction')
pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]
s = Space(pars_list)
ext, count = s.extract(64, 'interval')
self.assertEqual(count, 4096)
points = list(ext)
# 已经取出所有的点,围绕其中10个点生成十个subspaces
# 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确
for point in points[1000:1010]:
subspace = s.from_point(point, 64)
self.assertIsInstance(subspace, Space)
self.assertTrue(subspace in s)
self.assertEqual(subspace.dim, 6)
self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti'])
ext, count = subspace.extract(32)
points = list(ext)
self.assertGreaterEqual(count, 512)
self.assertLessEqual(count, 4096)
print(f'\n---------------------------------'
f'\nthe space created around point <{point}> is'
f'\n{subspace.boes}'
f'\nand extracted {count} points, the first 5 are:'
f'\n{points[:5]}')
def test_axis_extract(self):
# test axis object with conti type
axis = Axis((0., 5))
self.assertIsInstance(axis, Axis)
self.assertEqual(axis.axis_type, 'conti')
self.assertEqual(axis.axis_boe, (0., 5.))
self.assertEqual(axis.count, np.inf)
self.assertEqual(axis.size, 5.0)
self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.]))
self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5]))
extracted = axis.extract(8, 'rand')
self.assertEqual(len(extracted), 8)
self.assertTrue(all([(0 <= item <= 5) for item in extracted]))
# test axis object with discrete type
axis = Axis((1, 5))
self.assertIsInstance(axis, Axis)
self.assertEqual(axis.axis_type, 'discr')
self.assertEqual(axis.axis_boe, (1, 5))
self.assertEqual(axis.count, 5)
self.assertEqual(axis.size, 5)
self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5]))
self.assertRaises(ValueError, axis.extract, 0.5, 'int')
extracted = axis.extract(8, 'rand')
self.assertEqual(len(extracted), 8)
self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted]))
# test axis object with enumerate type
axis = Axis((1, 5, 7, 10, 'A', 'F'))
self.assertIsInstance(axis, Axis)
self.assertEqual(axis.axis_type, 'enum')
self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F'))
self.assertEqual(axis.count, 6)
self.assertEqual(axis.size, 6)
self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F'])
self.assertRaises(ValueError, axis.extract, 0.5, 'int')
extracted = axis.extract(8, 'rand')
self.assertEqual(len(extracted), 8)
self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted]))
def test_from_point(self):
"""测试从一个点生成一个space"""
# 生成一个space,指定space中的一个点以及distance,生成一个sub-space
pars_list = [(0., 10), (0, 10)]
s = Space(pars=pars_list, par_types=None)
self.assertEqual(s.types, ['conti', 'discr'])
self.assertEqual(s.dim, 2)
self.assertEqual(s.size, (10., 11))
self.assertEqual(s.shape, (np.inf, 11))
self.assertEqual(s.count, np.inf)
self.assertEqual(s.boes, [(0., 10), (0, 10)])
print('create subspace from a point in space')
p = (3, 3)
distance = 2
subspace = s.from_point(p, distance)
self.assertIsInstance(subspace, Space)
self.assertEqual(subspace.types, ['conti', 'discr'])
self.assertEqual(subspace.dim, 2)
self.assertEqual(subspace.size, (4.0, 5))
self.assertEqual(subspace.shape, (np.inf, 5))
self.assertEqual(subspace.count, np.inf)
self.assertEqual(subspace.boes, [(1, 5), (1, 5)])
print('create subspace from a 6 dimensional discrete space')
s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)])
p = (15, 200, 150, 150, 150, 150)
d = 10
subspace = s.from_point(p, d)
self.assertIsInstance(subspace, Space)
self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr'])
self.assertEqual(subspace.dim, 6)
self.assertEqual(subspace.volume, 65345616)
self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21))
self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21))
self.assertEqual(subspace.count, 65345616)
self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)])
print('create subspace from a 6 dimensional continuous space')
s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)])
p = (15, 200, 150, 150, 150, 150)
d = 10
subspace = s.from_point(p, d)
self.assertIsInstance(subspace, Space)
self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti'])
self.assertEqual(subspace.dim, 6)
self.assertEqual(subspace.volume, 48000000)
self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0))
self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf))
self.assertEqual(subspace.count, np.inf)
self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)])
print('create subspace with different distances on each dimension')
s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)])
p = (15, 200, 150, 150, 150, 150)
d = [10, 5, 5, 10, 10, 5]
subspace = s.from_point(p, d)
self.assertIsInstance(subspace, Space)
self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti'])
self.assertEqual(subspace.dim, 6)
self.assertEqual(subspace.volume, 6000000)
self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0))
self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf))
self.assertEqual(subspace.count, np.inf)
self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)])
class TestCashPlan(unittest.TestCase):
def setUp(self):
self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1)
self.cp1.info()
self.cp2 = qt.CashPlan(['20100501'], 10000)
self.cp2.info()
self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01',
freq='Y',
periods=12),
[i * 1000 + 10000 for i in range(12)],
0.035)
self.cp3.info()
def test_creation(self):
self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong')
self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong')
self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong')
# test __repr__()
print(self.cp1)
print(self.cp2)
print(self.cp3)
# test __str__()
self.cp1.info()
self.cp2.info()
self.cp3.info()
# test assersion errors
self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000])
self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000)
def test_properties(self):
self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong')
self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01'))
self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01'))
self.assertEqual(self.cp1.investment_count, 2)
self.assertEqual(self.cp1.period, 730)
self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')])
self.assertEqual(self.cp1.ir, 0.1)
self.assertAlmostEqual(self.cp1.closing_value, 34200)
self.assertAlmostEqual(self.cp2.closing_value, 10000)
self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685)
self.assertIsInstance(self.cp1.plan, pd.DataFrame)
self.assertIsInstance(self.cp2.plan, pd.DataFrame)
self.assertIsInstance(self.cp3.plan, pd.DataFrame)
def test_operation(self):
cp_self_add = self.cp1 + self.cp1
cp_add = self.cp1 + self.cp2
cp_add_int = self.cp1 + 10000
cp_mul_int = self.cp1 * 2
cp_mul_float = self.cp2 * 1.5
cp_mul_time = 3 * self.cp2
cp_mul_time2 = 2 * self.cp1
cp_mul_time3 = 2 * self.cp3
cp_mul_float2 = 2. * self.cp3
self.assertIsInstance(cp_self_add, qt.CashPlan)
self.assertEqual(cp_self_add.amounts, [40000, 20000])
self.assertEqual(cp_add.amounts, [20000, 10000, 10000])
self.assertEqual(cp_add_int.amounts, [30000, 20000])
self.assertEqual(cp_mul_int.amounts, [40000, 20000])
self.assertEqual(cp_mul_float.amounts, [15000])
self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')])
self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000])
self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'),
Timestamp('2011-05-01'),
Timestamp('2012-04-30')])
self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000])
self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'),
Timestamp('2012-01-01'),
Timestamp('2014-01-01'),
Timestamp('2016-01-01')])
self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'),
Timestamp('2020-12-31'),
Timestamp('2021-12-31'),
Timestamp('2022-12-31'),
Timestamp('2023-12-31'),
Timestamp('2024-12-31'),
Timestamp('2025-12-31'),
Timestamp('2026-12-31'),
Timestamp('2027-12-31'),
Timestamp('2028-12-31'),
Timestamp('2029-12-31'),
Timestamp('2030-12-31'),
Timestamp('2031-12-29'),
Timestamp('2032-12-29'),
Timestamp('2033-12-29'),
Timestamp('2034-12-29'),
Timestamp('2035-12-29'),
Timestamp('2036-12-29'),
Timestamp('2037-12-29'),
Timestamp('2038-12-29'),
Timestamp('2039-12-29'),
Timestamp('2040-12-29'),
Timestamp('2041-12-29'),
Timestamp('2042-12-29')])
self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'),
Timestamp('2020-12-31'),
Timestamp('2021-12-31'),
Timestamp('2022-12-31'),
Timestamp('2023-12-31'),
Timestamp('2024-12-31'),
Timestamp('2025-12-31'),
Timestamp('2026-12-31'),
Timestamp('2027-12-31'),
Timestamp('2028-12-31'),
Timestamp('2029-12-31'),
Timestamp('2030-12-31')])
self.assertEqual(cp_mul_float2.amounts, [20000.0,
22000.0,
24000.0,
26000.0,
28000.0,
30000.0,
32000.0,
34000.0,
36000.0,
38000.0,
40000.0,
42000.0])
class TestPool(unittest.TestCase):
def setUp(self):
self.p = ResultPool(5)
self.items = ['first', 'second', (1, 2, 3), 'this', 24]
self.perfs = [1, 2, 3, 4, 5]
self.additional_result1 = ('abc', 12)
self.additional_result2 = ([1, 2], -1)
self.additional_result3 = (12, 5)
def test_create(self):
self.assertIsInstance(self.p, ResultPool)
def test_operation(self):
self.p.in_pool(self.additional_result1[0], self.additional_result1[1])
self.p.cut()
self.assertEqual(self.p.item_count, 1)
self.assertEqual(self.p.items, ['abc'])
for item, perf in zip(self.items, self.perfs):
self.p.in_pool(item, perf)
self.assertEqual(self.p.item_count, 6)
self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24])
self.p.cut()
self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc'])
self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12])
self.p.in_pool(self.additional_result2[0], self.additional_result2[1])
self.p.in_pool(self.additional_result3[0], self.additional_result3[1])
self.assertEqual(self.p.item_count, 7)
self.p.cut(keep_largest=False)
self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24])
self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5])
class TestCoreSubFuncs(unittest.TestCase):
"""Test all functions in core.py"""
def setUp(self):
pass
def test_input_to_list(self):
print('Testing input_to_list() function')
input_str = 'first'
self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first'])
self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first'])
self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first'])
input_list = ['first', 'second']
self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None])
self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder'])
self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second'])
self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second'])
def test_point_in_space(self):
sp = Space([(0., 10.), (0., 10.), (0., 10.)])
p1 = (5.5, 3.2, 7)
p2 = (-1, 3, 10)
self.assertTrue(p1 in sp)
print(f'point {p1} is in space {sp}')
self.assertFalse(p2 in sp)
print(f'point {p2} is not in space {sp}')
sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum')
p1 = (5.5, 3.2, 8)
self.assertTrue(p1 in sp)
print(f'point {p1} is in space {sp}')
def test_space_in_space(self):
print('test if a space is in another space')
sp = Space([(0., 10.), (0., 10.), (0., 10.)])
sp2 = Space([(0., 10.), (0., 10.), (0., 10.)])
self.assertTrue(sp2 in sp)
self.assertTrue(sp in sp2)
print(f'space {sp2} is in space {sp}\n'
f'and space {sp} is in space {sp2}\n'
f'they are equal to each other\n')
sp2 = Space([(0, 5.), (2, 7.), (3., 9.)])
self.assertTrue(sp2 in sp)
self.assertFalse(sp in sp2)
print(f'space {sp2} is in space {sp}\n'
f'and space {sp} is not in space {sp2}\n'
f'{sp2} is a sub space of {sp}\n')
sp2 = Space([(0, 5), (2, 7), (3., 9)])
self.assertFalse(sp2 in sp)
self.assertFalse(sp in sp2)
print(f'space {sp2} is not in space {sp}\n'
f'and space {sp} is not in space {sp2}\n'
f'they have different types of axes\n')
sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)])
self.assertFalse(sp in sp2)
self.assertFalse(sp2 in sp)
print(f'space {sp2} is not in space {sp}\n'
f'and space {sp} is not in space {sp2}\n'
f'they have different types of axes\n')
def test_space_around_centre(self):
sp = Space([(0., 10.), (0., 10.), (0., 10.)])
p1 = (5.5, 3.2, 7)
ssp = space_around_centre(space=sp, centre=p1, radius=1.2)
print(ssp.boes)
print('\ntest multiple diameters:')
self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)])
ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1])
print(ssp.boes)
self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)])
print('\ntest points on edge:')
p2 = (5.5, 3.2, 10)
ssp = space_around_centre(space=sp, centre=p1, radius=3.9)
print(ssp.boes)
self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)])
print('\ntest enum spaces')
sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum')
p1 = [34, 12]
ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False)
self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)])
print(ssp.boes)
print('\ntest enum space and ignore enum axis')
ssp = space_around_centre(space=sp, centre=p1, radius=5)
self.assertEqual(ssp.boes, [(29, 39),
(40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)])
print(sp.boes)
def test_get_stock_pool(self):
print(f'start test building stock pool function\n')
share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange')
print(f'\nselect all stocks by area')
stock_pool = qt.get_stock_pool(area='上海')
print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all stock areas are "上海"\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all())
print(f'\nselect all stocks by multiple areas')
stock_pool = qt.get_stock_pool(area='贵州,北京,天津')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州',
'北京',
'天津']).all())
print(f'\nselect all stocks by area and industry')
stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all())
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all())
print(f'\nselect all stocks by industry')
stock_pool = qt.get_stock_pool(industry='银行, 金融')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all stocks industry in ["银行", "金融"]\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all())
print(f'\nselect all stocks by market')
stock_pool = qt.get_stock_pool(market='主板')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all stock market is "主板"\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all())
print(f'\nselect all stocks by market and list date')
stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all stock market is "主板", and list date after "2000-01-01"\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all())
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all())
print(f'\nselect all stocks by list date')
stock_pool = qt.get_stock_pool(date='1997-01-01')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all list date after "1997-01-01"\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all())
print(f'\nselect all stocks by exchange')
stock_pool = qt.get_stock_pool(exchange='SSE')
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all exchanges are "SSE"\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all())
print(f'\nselect all stocks by industry, area and list date')
industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产',
'酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃',
'家用电器', '文教休闲', '其他商业', '元器件', 'IT设备',
'其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件',
'广告包装', '轻工机械', '新型电力', '多元金融', '饲料']
area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东',
'安徽', '四川', '浙江', '湖南', '河北', '新疆',
'山东', '河南', '山西', '江西', '青海', '湖北',
'内蒙', '海南', '重庆', '陕西', '福建', '广西',
'上海']
stock_pool = qt.get_stock_pool(date='19980101',
industry=industry_list,
area=area_list)
print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n'
f'check if all exchanges are "SSE"\n'
f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}')
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all())
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all())
self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all())
self.assertRaises(KeyError, qt.get_stock_pool, industry=25)
self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH')
self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE')
class TestEvaluations(unittest.TestCase):
"""Test all evaluation functions in core.py"""
# 以下手动计算结果在Excel文件中
def setUp(self):
"""用np.random生成测试用数据,使用cumsum()模拟股票走势"""
self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632,
6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665,
5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353,
5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677,
6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763,
6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003,
6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674,
6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109,
6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144,
6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523,
7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968,
7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015,
6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645,
6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041,
7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393,
6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693,
6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466,
6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206,
7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462,
7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474],
columns=['value'])
self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451,
4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551,
3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935,
4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529,
5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168,
5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151,
6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831,
5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697,
5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713,
6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168,
6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113,
7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161,
7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005,
7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395,
8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815,
9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222,
8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021,
10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045,
10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092,
10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375],
columns=['value'])
self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371,
5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247,
4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319,
5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386,
5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695,
5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783,
6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396,
6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263,
7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014,
8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943,
7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287,
7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519,
7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632,
6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015,
7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434,
7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561,
7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528,
8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364,
9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389,
7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113],
columns=['value'])
self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553,
5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749,
5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618,
6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379,
5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611,
5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266,
5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379,
5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577,
5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352,
5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863,
4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182,
6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794,
8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649,
8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245,
8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745,
8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872,
7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188,
7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091,
8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692,
8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591],
columns=['value'])
self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985,
3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051,
4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605,
3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158,
5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314,
5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908,
4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813,
4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576,
4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319,
4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746,
4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855,
3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401,
2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161,
3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979,
4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663,
4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156,
4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156,
5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017,
5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567,
4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048],
columns=['value'])
self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183,
4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482,
3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346,
3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872,
2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475,
2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111,
2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127,
2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959,
2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542,
2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246,
2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177,
1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791,
2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206,
1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998,
1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648,
1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546,
2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031,
3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406,
2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045,
3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795],
columns=['value'])
self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892,
4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953,
3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557,
4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126,
4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498,
4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741,
2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962,
1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663,
1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681,
1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759,
1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655,
1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128,
2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182,
3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017,
3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012,
3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199,
3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838,
3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759,
2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191,
3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313],
columns=['value'])
# 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程
self.long_data = pd.DataFrame([9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288,
10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4, 10.87,
11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423,
12.19, 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239,
11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97,
12.178, 11.95, 12.438, 12.612, 12.804, 12.952, 12.612, 12.867,
12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64,
12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871,
12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649,
12.252, 12.579, 12.3, 11.988, 12.177, 12.312, 12.744, 12.599,
12.524, 12.82, 12.67, 12.876, 12.986, 13.271, 13.606, 13.82,
14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759,
12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655,
13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391,
12.923, 12.555, 12.503, 12.292, 11.877, 12.34, 12.141, 11.687,
11.992, 12.458, 12.131, 11.75, 11.739, 11.263, 11.762, 11.976,
11.578, 11.854, 12.136, 12.422, 12.311, 12.56, 12.879, 12.861,
12.973, 13.235, 13.53, 13.531, 13.137, 13.166, 13.31, 13.103,
13.007, 12.643, 12.69, 12.216, 12.385, 12.046, 12.321, 11.9,
11.772, 11.816, 11.871, 11.59, 11.518, 11.94, 11.803, 11.924,
12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388,
11.874, 12.184, 12.002, 12.16, 11.741, 11.26, 11.123, 11.534,
11.777, 11.407, 11.275, 11.679, 11.62, 11.218, 11.235, 11.352,
11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475,
11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89,
10.728, 11.191, 11.646, 11.62, 11.195, 11.178, 11.18, 10.956,
11.205, 10.87, 11.098, 10.639, 10.487, 10.507, 10.92, 10.558,
10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726,
10.116, 10.452, 10.77, 11.225, 10.92, 10.824, 11.096, 11.542,
11.06, 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285,
10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239,
9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55, 9.008,
9.138, 9.088, 9.434, 9.156, 9.65, 9.431, 9.654, 10.079,
10.411, 10.865, 10.51, 10.205, 10.519, 10.367, 10.855, 10.642,
10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597,
9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332,
10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72, 12.158,
12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11, 13.53,
13.123, 13.138, 13.57, 13.389, 13.511, 13.759, 13.698, 13.744,
13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073,
12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811,
12.163, 11.86, 11.935, 11.809, 12.145, 12.624, 12.768, 12.321,
12.277, 11.889, 12.11, 12.606, 12.943, 12.945, 13.112, 13.199,
13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086,
15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215,
16.096, 16.089, 16.32, 16.59, 16.657, 16.752, 16.583, 16.743,
16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225,
17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588,
17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148,
17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729,
17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493,
18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391,
17.988, 17.986, 17.653, 17.249, 17.298, 17.06, 17.36, 17.108,
17.348, 17.596, 17.46, 17.635, 17.275, 17.291, 16.933, 17.337,
17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64,
16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67, 15.911,
16.077, 16.17, 15.722, 15.258, 14.877, 15.138, 15., 14.811,
14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453,
15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698,
16.365, 16.493, 16.973, 16.71, 16.327, 16.605, 16.486, 16.846,
16.935, 17.21, 17.389, 17.546, 17.773, 17.641, 17.485, 17.794,
17.354, 16.904, 16.675, 16.43, 16.898, 16.819, 16.921, 17.201,
17.617, 17.368, 17.864, 17.484],
columns=['value'])
self.long_bench = pd.DataFrame([9.7, 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662,
10.59, 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252,
10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55,
10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379,
11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034,
12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91,
13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97, 14.228,
13.84, 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987,
13.611, 14.028, 14.229, 14.41, 14.74, 15.03, 14.915, 15.207,
15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893,
14.86, 15.097, 15.178, 15.293, 15.238, 15., 15.283, 14.994,
14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802,
14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978,
15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465,
16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292,
16.551, 16.724, 16.817, 16.81, 17.192, 16.86, 16.745, 16.707,
16.552, 16.133, 16.301, 16.08, 15.81, 15.75, 15.909, 16.127,
16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831,
16.653, 16.791, 16.57, 16.778, 16.928, 16.932, 17.22, 16.876,
17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669,
17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412,
17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95,
16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781,
15.583, 15.36, 15.558, 16.046, 15.968, 15.905, 16.358, 16.783,
17.048, 16.762, 17.224, 17.363, 17.246, 16.79, 16.608, 16.423,
15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046,
15.429, 14.999, 15.407, 15.124, 14.72, 14.713, 15.022, 15.092,
14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483,
15.472, 15.277, 15.503, 15.116, 15.12, 15.442, 15.476, 15.789,
15.36, 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645,
16.336, 16.511, 16.2, 15.994, 15.86, 15.929, 16.316, 16.416,
16.746, 17.173, 17.531, 17.627, 17.407, 17.49, 17.768, 17.509,
17.795, 18.147, 18.63, 18.945, 19.021, 19.518, 19.6, 19.744,
19.63, 19.32, 18.933, 19.297, 19.598, 19.446, 19.236, 19.198,
19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3,
17.894, 17.744, 17.5, 17.083, 17.092, 16.864, 16.453, 16.31,
16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673,
16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162,
15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039,
13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93, 14.104,
14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019,
14.265, 14.67, 14.797, 14.42, 14.681, 15.16, 14.715, 14.292,
14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294,
13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32,
13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362,
13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404,
13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649,
12.425, 11.967, 12.062, 11.71, 11.645, 12.058, 12.136, 11.749,
11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244,
10.864, 11.207, 11.135, 11.39, 11.723, 12.084, 11.8, 11.471,
11.33, 11.504, 11.295, 11.3, 10.901, 10.494, 10.825, 11.054,
10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94,
10.521, 10.36, 10.411, 10.792, 10.472, 10.305, 10.525, 10.853,
10.556, 10.72, 10.54, 10.583, 10.299, 10.061, 10.004, 9.903,
9.796, 9.472, 9.246, 9.54, 9.456, 9.177, 9.484, 9.557,
9.493, 9.968, 9.536, 9.39, 8.922, 8.423, 8.518, 8.686,
8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996,
9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4,
9.332, 9.34, 9.284, 8.844, 8.722, 8.376, 8.775, 8.293,
8.144, 8.63, 8.831, 8.957, 9.18, 9.601, 9.695, 10.018,
9.841, 9.743, 9.292, 8.85, 9.316, 9.288, 9.519, 9.738,
9.289, 9.785, 9.804, 10.06, 10.188, 10.095, 9.739, 9.881,
9.7, 9.991, 10.391, 10.002],
columns=['value'])
def test_performance_stats(self):
"""test the function performance_statistics()
"""
pass
def test_fv(self):
print(f'test with test data and empty DataFrame')
self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474)
self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375)
self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113)
self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591)
self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048)
self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795)
self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313)
self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf)
print(f'Error testing')
self.assertRaises(AssertionError, eval_fv, 15)
self.assertRaises(KeyError,
eval_fv,
pd.DataFrame([1, 2, 3], columns=['non_value']))
def test_max_drawdown(self):
print(f'test with test data and empty DataFrame')
self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308)
self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53)
self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86)
self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3]))
self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849)
self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0)
self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10)
self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19)
self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899)
self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90)
self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99)
self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3]))
self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684)
self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14)
self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50)
self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54)
self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456)
self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21)
self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60)
self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3]))
self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689)
self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0)
self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70)
self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3]))
self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449)
self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17)
self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51)
self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3]))
self.assertEqual(eval_max_drawdown(pd.DataFrame()), -np.inf)
print(f'Error testing')
self.assertRaises(AssertionError, eval_fv, 15)
self.assertRaises(KeyError,
eval_fv,
pd.DataFrame([1, 2, 3], columns=['non_value']))
# test max drawdown == 0:
# TODO: investigate: how does divide by zero change?
self.assertAlmostEqual(eval_max_drawdown(self.test_data4 - 5)[0], 1.0770474121951792)
self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[1], 14)
self.assertEqual(eval_max_drawdown(self.test_data4 - 5)[2], 50)
def test_info_ratio(self):
reference = self.test_data1
self.assertAlmostEqual(eval_info_ratio(self.test_data2, reference, 'value'), 0.075553316)
self.assertAlmostEqual(eval_info_ratio(self.test_data3, reference, 'value'), 0.018949457)
self.assertAlmostEqual(eval_info_ratio(self.test_data4, reference, 'value'), 0.056328143)
self.assertAlmostEqual(eval_info_ratio(self.test_data5, reference, 'value'), -0.004270068)
self.assertAlmostEqual(eval_info_ratio(self.test_data6, reference, 'value'), 0.009198027)
self.assertAlmostEqual(eval_info_ratio(self.test_data7, reference, 'value'), -0.000890283)
def test_volatility(self):
self.assertAlmostEqual(eval_volatility(self.test_data1), 0.748646166)
self.assertAlmostEqual(eval_volatility(self.test_data2), 0.75527442)
self.assertAlmostEqual(eval_volatility(self.test_data3), 0.654188853)
self.assertAlmostEqual(eval_volatility(self.test_data4), 0.688375814)
self.assertAlmostEqual(eval_volatility(self.test_data5), 1.089989522)
self.assertAlmostEqual(eval_volatility(self.test_data6), 1.775419308)
self.assertAlmostEqual(eval_volatility(self.test_data7), 1.962758406)
self.assertAlmostEqual(eval_volatility(self.test_data1, logarithm=False), 0.750993311)
self.assertAlmostEqual(eval_volatility(self.test_data2, logarithm=False), 0.75571473)
self.assertAlmostEqual(eval_volatility(self.test_data3, logarithm=False), 0.655331424)
self.assertAlmostEqual(eval_volatility(self.test_data4, logarithm=False), 0.692683021)
self.assertAlmostEqual(eval_volatility(self.test_data5, logarithm=False), 1.09602969)
self.assertAlmostEqual(eval_volatility(self.test_data6, logarithm=False), 1.774789504)
self.assertAlmostEqual(eval_volatility(self.test_data7, logarithm=False), 2.003329156)
self.assertEqual(eval_volatility(pd.DataFrame()), -np.inf)
self.assertRaises(AssertionError, eval_volatility, [1, 2, 3])
# 测试长数据的Volatility计算
expected_volatility = np.array([np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
0.39955371, 0.39974258, 0.40309866, 0.40486593, 0.4055514,
0.40710639, 0.40708157, 0.40609006, 0.4073625, 0.40835305,
0.41155304, 0.41218193, 0.41207489, 0.41300276, 0.41308415,
0.41292392, 0.41207645, 0.41238397, 0.41229291, 0.41164056,
0.41316317, 0.41348842, 0.41462249, 0.41474574, 0.41652625,
0.41649176, 0.41701556, 0.4166593, 0.41684221, 0.41491689,
0.41435209, 0.41549087, 0.41849338, 0.41998049, 0.41959106,
0.41907311, 0.41916103, 0.42120773, 0.42052391, 0.42111225,
0.42124589, 0.42356445, 0.42214672, 0.42324022, 0.42476639,
0.42621689, 0.42549439, 0.42533678, 0.42539414, 0.42545038,
0.42593637, 0.42652095, 0.42665489, 0.42699563, 0.42798159,
0.42784512, 0.42898006, 0.42868781, 0.42874188, 0.42789631,
0.4277768, 0.42776827, 0.42685216, 0.42660989, 0.42563155,
0.42618281, 0.42606281, 0.42505222, 0.42653242, 0.42555378,
0.42500842, 0.42561939, 0.42442059, 0.42395414, 0.42384356,
0.42319135, 0.42397497, 0.42488579, 0.42449729, 0.42508766,
0.42509878, 0.42456616, 0.42535577, 0.42681884, 0.42688552,
0.42779918, 0.42706058, 0.42792887, 0.42762114, 0.42894045,
0.42977398, 0.42919859, 0.42829041, 0.42780946, 0.42825318,
0.42858952, 0.42858315, 0.42805601, 0.42764751, 0.42744107,
0.42775518, 0.42707283, 0.4258592, 0.42615335, 0.42526286,
0.4248906, 0.42368986, 0.4232565, 0.42265079, 0.42263954,
0.42153046, 0.42132051, 0.41995353, 0.41916605, 0.41914271,
0.41876945, 0.41740175, 0.41583884, 0.41614026, 0.41457908,
0.41472411, 0.41310876, 0.41261041, 0.41212369, 0.41211677,
0.4100645, 0.40852504, 0.40860297, 0.40745338, 0.40698661,
0.40644546, 0.40591375, 0.40640744, 0.40620663, 0.40656649,
0.40727154, 0.40797605, 0.40807137, 0.40808913, 0.40809676,
0.40711767, 0.40724628, 0.40713077, 0.40772698, 0.40765157,
0.40658297, 0.4065991, 0.405011, 0.40537645, 0.40432626,
0.40390177, 0.40237701, 0.40291623, 0.40301797, 0.40324145,
0.40312864, 0.40328316, 0.40190955, 0.40246506, 0.40237663,
0.40198407, 0.401969, 0.40185623, 0.40198313, 0.40005643,
0.39940743, 0.39850438, 0.39845398, 0.39695093, 0.39697295,
0.39663201, 0.39675444, 0.39538699, 0.39331959, 0.39326074,
0.39193287, 0.39157266, 0.39021327, 0.39062591, 0.38917591,
0.38976991, 0.38864187, 0.38872158, 0.38868096, 0.38868377,
0.38842057, 0.38654784, 0.38649517, 0.38600464, 0.38408115,
0.38323049, 0.38260215, 0.38207663, 0.38142669, 0.38003262,
0.37969367, 0.37768092, 0.37732108, 0.37741991, 0.37617779,
0.37698504, 0.37606784, 0.37499276, 0.37533731, 0.37350437,
0.37375172, 0.37385382, 0.37384003, 0.37338938, 0.37212288,
0.37273075, 0.370559, 0.37038506, 0.37062153, 0.36964661,
0.36818564, 0.3656634, 0.36539259, 0.36428672, 0.36502487,
0.3647148, 0.36551435, 0.36409919, 0.36348181, 0.36254383,
0.36166601, 0.36142665, 0.35954942, 0.35846915, 0.35886759,
0.35813867, 0.35642888, 0.35375231, 0.35061783, 0.35078463,
0.34995508, 0.34688918, 0.34548257, 0.34633158, 0.34622833,
0.34652111, 0.34622774, 0.34540951, 0.34418809, 0.34276593,
0.34160916, 0.33811193, 0.33822709, 0.3391685, 0.33883381])
test_volatility = eval_volatility(self.long_data)
test_volatility_roll = self.long_data['volatility'].values
self.assertAlmostEqual(test_volatility, np.nanmean(expected_volatility))
self.assertTrue(np.allclose(expected_volatility, test_volatility_roll, equal_nan=True))
def test_sharp(self):
self.assertAlmostEqual(eval_sharp(self.test_data1, 5, 0), 0.06135557)
self.assertAlmostEqual(eval_sharp(self.test_data2, 5, 0), 0.167858667)
self.assertAlmostEqual(eval_sharp(self.test_data3, 5, 0), 0.09950547)
self.assertAlmostEqual(eval_sharp(self.test_data4, 5, 0), 0.154928241)
self.assertAlmostEqual(eval_sharp(self.test_data5, 5, 0.002), 0.007868673)
self.assertAlmostEqual(eval_sharp(self.test_data6, 5, 0.002), 0.018306537)
self.assertAlmostEqual(eval_sharp(self.test_data7, 5, 0.002), 0.006259971)
# 测试长数据的sharp率计算
expected_sharp = np.array([np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
-0.02346815, -0.02618783, -0.03763912, -0.03296276, -0.03085698,
-0.02851101, -0.02375842, -0.02016746, -0.01107885, -0.01426613,
-0.00787204, -0.01135784, -0.01164232, -0.01003481, -0.00022512,
-0.00046792, -0.01209378, -0.01278892, -0.01298135, -0.01938214,
-0.01671044, -0.02120509, -0.0244281, -0.02416067, -0.02763238,
-0.027579, -0.02372774, -0.02215294, -0.02467094, -0.02091266,
-0.02590194, -0.03049876, -0.02077131, -0.01483653, -0.02488144,
-0.02671638, -0.02561547, -0.01957986, -0.02479803, -0.02703162,
-0.02658087, -0.01641755, -0.01946472, -0.01647757, -0.01280889,
-0.00893643, -0.00643275, -0.00698457, -0.00549962, -0.00654677,
-0.00494757, -0.0035633, -0.00109037, 0.00750654, 0.00451208,
0.00625502, 0.01221367, 0.01326454, 0.01535037, 0.02269538,
0.02028715, 0.02127712, 0.02333264, 0.02273159, 0.01670643,
0.01376513, 0.01265342, 0.02211647, 0.01612449, 0.00856706,
-0.00077147, -0.00268848, 0.00210993, -0.00443934, -0.00411912,
-0.0018756, -0.00867461, -0.00581601, -0.00660835, -0.00861137,
-0.00678614, -0.01188408, -0.00589617, -0.00244323, -0.00201891,
-0.01042846, -0.01471016, -0.02167034, -0.02258554, -0.01306809,
-0.00909086, -0.01233746, -0.00595166, -0.00184208, 0.00750497,
0.01481886, 0.01761972, 0.01562886, 0.01446414, 0.01285826,
0.01357719, 0.00967613, 0.01636272, 0.01458437, 0.02280183,
0.02151903, 0.01700276, 0.01597368, 0.02114336, 0.02233297,
0.02585631, 0.02768459, 0.03519235, 0.04204535, 0.04328161,
0.04672855, 0.05046191, 0.04619848, 0.04525853, 0.05381529,
0.04598861, 0.03947394, 0.04665006, 0.05586077, 0.05617728,
0.06495018, 0.06205172, 0.05665466, 0.06500615, 0.0632062,
0.06084328, 0.05851466, 0.05659229, 0.05159347, 0.0432977,
0.0474047, 0.04231723, 0.03613176, 0.03618391, 0.03591012,
0.03885674, 0.0402686, 0.03846423, 0.04534014, 0.04721458,
0.05130912, 0.05026281, 0.05394312, 0.05529349, 0.05949243,
0.05463304, 0.06195165, 0.06767606, 0.06880985, 0.07048996,
0.07078815, 0.07420767, 0.06773439, 0.0658441, 0.06470875,
0.06302349, 0.06456876, 0.06411282, 0.06216669, 0.067094,
0.07055075, 0.07254976, 0.07119253, 0.06173308, 0.05393352,
0.05681246, 0.05250643, 0.06099845, 0.0655544, 0.06977334,
0.06636514, 0.06177949, 0.06869908, 0.06719767, 0.06178738,
0.05915714, 0.06882277, 0.06756821, 0.06507994, 0.06489791,
0.06553941, 0.073123, 0.07576757, 0.06805446, 0.06063571,
0.05033801, 0.05206971, 0.05540306, 0.05249118, 0.05755587,
0.0586174, 0.05051288, 0.0564852, 0.05757284, 0.06358355,
0.06130082, 0.04925482, 0.03834472, 0.04163981, 0.04648316,
0.04457858, 0.04324626, 0.04328791, 0.04156207, 0.04818652,
0.04972634, 0.06024123, 0.06489556, 0.06255485, 0.06069815,
0.06466389, 0.07081163, 0.07895358, 0.0881782, 0.09374151,
0.08336506, 0.08764795, 0.09080174, 0.08808926, 0.08641158,
0.07811943, 0.06885318, 0.06479503, 0.06851185, 0.07382819,
0.07047903, 0.06658251, 0.07638379, 0.08667974, 0.08867918,
0.08245323, 0.08961866, 0.09905298, 0.0961908, 0.08562706,
0.0839014, 0.0849072, 0.08338395, 0.08783487, 0.09463609,
0.10332336, 0.11806497, 0.11220297, 0.11589097, 0.11678405])
test_sharp = eval_sharp(self.long_data, 5, 0.00035)
self.assertAlmostEqual(np.nanmean(expected_sharp), test_sharp)
self.assertTrue(np.allclose(self.long_data['sharp'].values, expected_sharp, equal_nan=True))
def test_beta(self):
reference = self.test_data1
self.assertAlmostEqual(eval_beta(self.test_data2, reference, 'value'), -0.017148939)
self.assertAlmostEqual(eval_beta(self.test_data3, reference, 'value'), -0.042204233)
self.assertAlmostEqual(eval_beta(self.test_data4, reference, 'value'), -0.15652986)
self.assertAlmostEqual(eval_beta(self.test_data5, reference, 'value'), -0.049195532)
self.assertAlmostEqual(eval_beta(self.test_data6, reference, 'value'), -0.026995082)
self.assertAlmostEqual(eval_beta(self.test_data7, reference, 'value'), -0.01147809)
self.assertRaises(TypeError, eval_beta, [1, 2, 3], reference, 'value')
self.assertRaises(TypeError, eval_beta, self.test_data3, [1, 2, 3], 'value')
self.assertRaises(KeyError, eval_beta, self.test_data3, reference, 'not_found_value')
# 测试长数据的beta计算
expected_beta = np.array([np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
-0.04988841, -0.05127618, -0.04692104, -0.04272652, -0.04080598,
-0.0493347, -0.0460858, -0.0416761, -0.03691527, -0.03724924,
-0.03678865, -0.03987324, -0.03488321, -0.02567672, -0.02690303,
-0.03010128, -0.02437967, -0.02571932, -0.02455681, -0.02839811,
-0.03358653, -0.03396697, -0.03466321, -0.03050966, -0.0247583,
-0.01629325, -0.01880895, -0.01480403, -0.01348783, -0.00544294,
-0.00648176, -0.00467036, -0.01135331, -0.0156841, -0.02340763,
-0.02615705, -0.02730771, -0.02906174, -0.02860664, -0.02412914,
-0.02066416, -0.01744816, -0.02185133, -0.02145285, -0.02681765,
-0.02827694, -0.02394581, -0.02744096, -0.02778825, -0.02703065,
-0.03160023, -0.03615371, -0.03681072, -0.04265126, -0.04344738,
-0.04232421, -0.04705272, -0.04533344, -0.04605934, -0.05272737,
-0.05156463, -0.05134196, -0.04730733, -0.04425352, -0.03869831,
-0.04159571, -0.04223998, -0.04346747, -0.04229844, -0.04740093,
-0.04992507, -0.04621232, -0.04477644, -0.0486915, -0.04598224,
-0.04943463, -0.05006391, -0.05362256, -0.04994067, -0.05464769,
-0.05443275, -0.05513493, -0.05173594, -0.04500994, -0.04662891,
-0.03903505, -0.0419592, -0.04307773, -0.03925718, -0.03711574,
-0.03992631, -0.0433058, -0.04533641, -0.0461183, -0.05600344,
-0.05758377, -0.05959874, -0.05605942, -0.06002859, -0.06253002,
-0.06747014, -0.06427915, -0.05931947, -0.05769974, -0.04791515,
-0.05175088, -0.05748039, -0.05385232, -0.05072975, -0.05052637,
-0.05125567, -0.05005785, -0.05325104, -0.04977727, -0.04947867,
-0.05148544, -0.05739156, -0.05742069, -0.06047279, -0.0558414,
-0.06086126, -0.06265151, -0.06411129, -0.06828052, -0.06781762,
-0.07083409, -0.07211207, -0.06799162, -0.06913295, -0.06775162,
-0.0696265, -0.06678248, -0.06867502, -0.06581961, -0.07055823,
-0.06448184, -0.06097973, -0.05795587, -0.0618383, -0.06130145,
-0.06050652, -0.05936661, -0.05749424, -0.0499, -0.05050495,
-0.04962687, -0.05033439, -0.05070116, -0.05422009, -0.05369759,
-0.05548943, -0.05907353, -0.05933035, -0.05927918, -0.06227663,
-0.06011455, -0.05650432, -0.05828134, -0.05620949, -0.05715323,
-0.05482478, -0.05387113, -0.05095559, -0.05377999, -0.05334267,
-0.05220438, -0.04001521, -0.03892434, -0.03660782, -0.04282708,
-0.04324623, -0.04127048, -0.04227559, -0.04275226, -0.04347049,
-0.04125853, -0.03806295, -0.0330632, -0.03155531, -0.03277152,
-0.03304518, -0.03878731, -0.03830672, -0.03727434, -0.0370571,
-0.04509224, -0.04207632, -0.04116198, -0.04545179, -0.04584584,
-0.05287341, -0.05417433, -0.05175836, -0.05005509, -0.04268674,
-0.03442321, -0.03457309, -0.03613426, -0.03524391, -0.03629479,
-0.04361312, -0.02626705, -0.02406115, -0.03046384, -0.03181044,
-0.03375164, -0.03661673, -0.04520779, -0.04926951, -0.05726738,
-0.0584486, -0.06220608, -0.06800563, -0.06797431, -0.07562211,
-0.07481996, -0.07731229, -0.08413381, -0.09031826, -0.09691925,
-0.11018071, -0.11952675, -0.10826026, -0.11173895, -0.10756359,
-0.10775916, -0.11664559, -0.10505051, -0.10606547, -0.09855355,
-0.10004159, -0.10857084, -0.12209301, -0.11605758, -0.11105113,
-0.1155195, -0.11569505, -0.10513348, -0.09611072, -0.10719791,
-0.10843965, -0.11025856, -0.10247839, -0.10554044, -0.10927647,
-0.10645088, -0.09982498, -0.10542734, -0.09631372, -0.08229695])
test_beta_mean = eval_beta(self.long_data, self.long_bench, 'value')
test_beta_roll = self.long_data['beta'].values
self.assertAlmostEqual(test_beta_mean, np.nanmean(expected_beta))
self.assertTrue(np.allclose(test_beta_roll, expected_beta, equal_nan=True))
def test_alpha(self):
reference = self.test_data1
self.assertAlmostEqual(eval_alpha(self.test_data2, 5, reference, 'value', 0.5), 11.63072977)
self.assertAlmostEqual(eval_alpha(self.test_data3, 5, reference, 'value', 0.5), 1.886590071)
self.assertAlmostEqual(eval_alpha(self.test_data4, 5, reference, 'value', 0.5), 6.827021872)
self.assertAlmostEqual(eval_alpha(self.test_data5, 5, reference, 'value', 0.92), -1.192265168)
self.assertAlmostEqual(eval_alpha(self.test_data6, 5, reference, 'value', 0.92), -1.437142359)
self.assertAlmostEqual(eval_alpha(self.test_data7, 5, reference, 'value', 0.92), -1.781311545)
# 测试长数据的alpha计算
expected_alpha = np.array([np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
np.nan, np.nan, np.nan, np.nan, np.nan,
-0.09418119, -0.11188463, -0.17938358, -0.15588172, -0.1462678,
-0.13089586, -0.10780125, -0.09102891, -0.03987585, -0.06075686,
-0.02459503, -0.04104284, -0.0444565, -0.04074585, 0.02191275,
0.02255955, -0.05583375, -0.05875539, -0.06055551, -0.09648245,
-0.07913737, -0.10627829, -0.12320965, -0.12368335, -0.1506743,
-0.15768033, -0.13638829, -0.13065298, -0.14537834, -0.127428,
-0.15504529, -0.18184636, -0.12652146, -0.09190138, -0.14847221,
-0.15840648, -0.1525789, -0.11859418, -0.14700954, -0.16295761,
-0.16051645, -0.10364859, -0.11961134, -0.10258267, -0.08090148,
-0.05727746, -0.0429945, -0.04672356, -0.03581408, -0.0439215,
-0.03429495, -0.0260362, -0.01075022, 0.04931808, 0.02779388,
0.03984083, 0.08311951, 0.08995566, 0.10522428, 0.16159058,
0.14238174, 0.14759783, 0.16257712, 0.158908, 0.11302115,
0.0909566, 0.08272888, 0.15261884, 0.10546376, 0.04990313,
-0.01284111, -0.02720704, 0.00454725, -0.03965491, -0.03818265,
-0.02186992, -0.06574751, -0.04846454, -0.05204211, -0.06316498,
-0.05095099, -0.08502656, -0.04681162, -0.02362027, -0.02205091,
-0.07706374, -0.10371841, -0.14434688, -0.14797935, -0.09055402,
-0.06739549, -0.08824959, -0.04855888, -0.02291244, 0.04027138,
0.09370505, 0.11472939, 0.10243593, 0.0921445, 0.07662648,
0.07946651, 0.05450718, 0.10497677, 0.09068334, 0.15462924,
0.14231034, 0.10544952, 0.09980256, 0.14035223, 0.14942974,
0.17624102, 0.19035477, 0.2500807, 0.30724652, 0.31768915,
0.35007521, 0.38412975, 0.34356521, 0.33614463, 0.41206165,
0.33999177, 0.28045963, 0.34076789, 0.42220356, 0.42314636,
0.50790423, 0.47713348, 0.42520169, 0.50488411, 0.48705211,
0.46252601, 0.44325578, 0.42640573, 0.37986783, 0.30652822,
0.34503393, 0.2999069, 0.24928617, 0.24730218, 0.24326897,
0.26657905, 0.27861168, 0.26392824, 0.32552649, 0.34177792,
0.37837011, 0.37025267, 0.4030612, 0.41339361, 0.45076809,
0.40383354, 0.47093422, 0.52505036, 0.53614256, 0.5500943,
0.55319293, 0.59021451, 0.52358459, 0.50605947, 0.49359168,
0.47895956, 0.49320243, 0.4908336, 0.47310767, 0.51821564,
0.55105932, 0.57291504, 0.5599809, 0.46868842, 0.39620087,
0.42086934, 0.38317217, 0.45934108, 0.50048866, 0.53941991,
0.50676751, 0.46500915, 0.52993663, 0.51668366, 0.46405428,
0.44100603, 0.52726147, 0.51565458, 0.49186248, 0.49001081,
0.49367648, 0.56422294, 0.58882785, 0.51334664, 0.44386256,
0.35056709, 0.36490029, 0.39205071, 0.3677061, 0.41134736,
0.42315067, 0.35356394, 0.40324562, 0.41340007, 0.46503322,
0.44355762, 0.34854314, 0.26412842, 0.28633753, 0.32335224,
0.30761141, 0.29709569, 0.29570487, 0.28000063, 0.32802547,
0.33967726, 0.42511212, 0.46252357, 0.44244974, 0.42152907,
0.45436727, 0.50482359, 0.57339198, 0.6573356, 0.70912003,
0.60328917, 0.6395092, 0.67015805, 0.64241557, 0.62779142,
0.55028063, 0.46448736, 0.43709245, 0.46777983, 0.51789439,
0.48594916, 0.4456216, 0.52008189, 0.60548684, 0.62792473,
0.56645031, 0.62766439, 0.71829315, 0.69481356, 0.59550329,
0.58133754, 0.59014148, 0.58026655, 0.61719273, 0.67373203,
0.75573056, 0.89501633, 0.8347253, 0.87964685, 0.89015835])
test_alpha_mean = eval_alpha(self.long_data, 100, self.long_bench, 'value')
test_alpha_roll = self.long_data['alpha'].values
self.assertAlmostEqual(test_alpha_mean, np.nanmean(expected_alpha))
self.assertTrue(np.allclose(test_alpha_roll, expected_alpha, equal_nan=True))
def test_calmar(self):
"""test evaluate function eval_calmar()"""
pass
def test_benchmark(self):
reference = self.test_data1
tr, yr = eval_benchmark(self.test_data2, reference, 'value')
self.assertAlmostEqual(tr, 0.19509091)
self.assertAlmostEqual(yr, 0.929154957)
tr, yr = eval_benchmark(self.test_data3, reference, 'value')
self.assertAlmostEqual(tr, 0.19509091)
self.assertAlmostEqual(yr, 0.929154957)
tr, yr = eval_benchmark(self.test_data4, reference, 'value')
self.assertAlmostEqual(tr, 0.19509091)
self.assertAlmostEqual(yr, 0.929154957)
tr, yr = eval_benchmark(self.test_data5, reference, 'value')
self.assertAlmostEqual(tr, 0.19509091)
self.assertAlmostEqual(yr, 0.929154957)
tr, yr = eval_benchmark(self.test_data6, reference, 'value')
self.assertAlmostEqual(tr, 0.19509091)
self.assertAlmostEqual(yr, 0.929154957)
tr, yr = eval_benchmark(self.test_data7, reference, 'value')
self.assertAlmostEqual(tr, 0.19509091)
self.assertAlmostEqual(yr, 0.929154957)
def test_evaluate(self):
pass
class TestLoop(unittest.TestCase):
"""通过一个假设但精心设计的例子来测试loop_step以及loop方法的正确性"""
def setUp(self):
# 精心设计的模拟股票名称、交易日期、以及股票价格
self.shares = ['share1', 'share2', 'share3', 'share4', 'share5', 'share6', 'share7']
self.dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07',
'2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14',
'2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21',
'2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28',
'2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04',
'2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11',
'2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18',
'2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25',
'2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01',
'2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08',
'2016/09/09', '2016/09/12', '2016/09/13', '2016/09/14', '2016/09/15',
'2016/09/16', '2016/09/19', '2016/09/20', '2016/09/21', '2016/09/22',
'2016/09/23', '2016/09/26', '2016/09/27', '2016/09/28', '2016/09/29',
'2016/09/30', '2016/10/10', '2016/10/11', '2016/10/12', '2016/10/13',
'2016/10/14', '2016/10/17', '2016/10/18', '2016/10/19', '2016/10/20',
'2016/10/21', '2016/10/23', '2016/10/24', '2016/10/25', '2016/10/26',
'2016/10/27', '2016/10/29', '2016/10/30', '2016/10/31', '2016/11/01',
'2016/11/02', '2016/11/05', '2016/11/06', '2016/11/07', '2016/11/08',
'2016/11/09', '2016/11/12', '2016/11/13', '2016/11/14', '2016/11/15',
'2016/11/16', '2016/11/19', '2016/11/20', '2016/11/21', '2016/11/22']
self.dates = [pd.Timestamp(date_text) for date_text in self.dates]
self.prices = np.array([[5.35, 5.09, 5.03, 4.98, 4.50, 5.09, 4.75],
[5.66, 4.84, 5.21, 5.44, 4.35, 5.06, 4.48],
[5.79, 4.60, 5.02, 5.45, 4.07, 4.76, 4.56],
[5.56, 4.63, 5.50, 5.74, 3.88, 4.62, 4.62],
[5.88, 4.64, 5.07, 5.46, 3.74, 4.63, 4.62],
[6.25, 4.51, 5.11, 5.45, 3.98, 4.25, 4.59],
[5.93, 4.96, 5.15, 5.24, 4.08, 4.13, 4.33],
[6.39, 4.65, 5.02, 5.47, 4.00, 3.91, 3.88],
[6.31, 4.26, 5.10, 5.58, 4.28, 3.77, 3.47],
[5.86, 3.77, 5.24, 5.36, 4.01, 3.43, 3.51],
[5.61, 3.39, 4.93, 5.38, 4.14, 3.68, 3.83],
[5.31, 3.76, 4.96, 5.30, 4.49, 3.63, 3.67],
[5.40, 4.06, 5.40, 5.77, 4.49, 3.94, 3.79],
[5.03, 3.87, 5.74, 5.75, 4.46, 4.40, 4.18],
[5.38, 3.91, 5.53, 6.15, 4.13, 4.03, 4.02],
[5.79, 4.13, 5.79, 6.04, 3.79, 3.93, 4.41],
[6.27, 4.27, 5.68, 6.01, 4.23, 3.50, 4.65],
[6.59, 4.57, 5.90, 5.71, 4.57, 3.39, 4.89],
[6.91, 5.04, 5.75, 5.23, 4.92, 3.30, 4.41],
[6.71, 5.31, 6.11, 5.47, 5.28, 3.25, 4.66],
[6.33, 5.40, 5.77, 5.79, 5.67, 2.94, 4.37],
[6.07, 5.21, 5.85, 5.82, 6.00, 2.71, 4.58],
[5.98, 5.06, 5.61, 5.61, 5.89, 2.55, 4.76],
[6.46, 4.69, 5.75, 5.31, 5.55, 2.21, 4.37],
[6.95, 5.12, 5.50, 5.24, 5.39, 2.29, 4.16],
[6.77, 5.27, 5.14, 5.41, 5.26, 2.21, 4.02],
[6.70, 5.72, 5.31, 5.60, 5.31, 2.04, 3.77],
[6.28, 6.10, 5.68, 5.28, 5.22, 2.39, 3.38],
[6.61, 6.27, 5.73, 4.99, 4.90, 2.30, 3.07],
[6.25, 6.49, 6.04, 5.09, 4.57, 2.41, 2.90],
[6.47, 6.16, 6.27, 5.39, 4.96, 2.40, 2.50],
[6.45, 6.26, 6.60, 5.58, 4.82, 2.79, 2.76],
[6.88, 6.39, 6.10, 5.33, 4.39, 2.67, 2.29],
[7.00, 6.58, 6.25, 5.48, 4.63, 2.27, 2.17],
[6.59, 6.20, 6.73, 5.10, 5.05, 2.09, 1.84],
[6.59, 5.70, 6.91, 5.39, 4.68, 2.55, 1.83],
[6.64, 5.20, 7.01, 5.30, 5.02, 2.22, 2.21],
[6.38, 5.37, 7.36, 5.04, 4.84, 2.59, 2.00],
[6.10, 5.40, 7.72, 5.51, 4.60, 2.59, 1.76],
[6.35, 5.22, 7.68, 5.43, 4.66, 2.95, 1.27],
[6.52, 5.38, 7.62, 5.23, 4.41, 2.69, 1.40],
[6.87, 5.53, 7.74, 4.99, 4.87, 2.20, 1.11],
[6.84, 6.03, 7.53, 5.43, 4.42, 2.69, 1.60],
[7.09, 5.77, 7.46, 5.40, 4.08, 2.65, 1.23],
[6.88, 5.66, 7.84, 5.60, 4.16, 2.63, 1.59],
[6.84, 6.08, 8.11, 5.66, 4.10, 2.14, 1.50],
[6.98, 5.62, 8.04, 6.01, 4.43, 2.39, 1.80],
[7.02, 5.63, 7.65, 5.64, 4.07, 1.95, 1.55],
[7.13, 6.11, 7.52, 5.67, 3.97, 2.32, 1.35],
[7.59, 6.03, 7.67, 5.30, 4.16, 2.69, 1.51],
[7.61, 6.27, 7.47, 4.91, 4.12, 2.51, 1.08],
[7.21, 6.28, 7.44, 5.37, 4.04, 2.62, 1.06],
[7.48, 6.52, 7.59, 5.75, 3.84, 2.16, 1.43],
[7.66, 7.00, 7.94, 6.08, 3.46, 2.35, 1.43],
[7.51, 7.34, 8.25, 6.58, 3.18, 2.31, 1.74],
[7.12, 7.34, 7.77, 6.78, 3.10, 1.96, 1.44],
[6.97, 7.68, 8.03, 7.20, 3.55, 2.35, 1.83],
[6.67, 8.09, 7.87, 7.65, 3.66, 2.58, 1.71],
[6.20, 7.68, 7.58, 8.00, 3.66, 2.40, 2.12],
[6.34, 7.58, 7.33, 7.92, 3.29, 2.20, 2.45],
[6.22, 7.46, 7.22, 8.30, 2.80, 2.31, 2.85],
[5.98, 7.59, 6.86, 8.46, 2.88, 2.16, 2.79],
[6.37, 7.19, 7.18, 7.99, 3.04, 2.16, 2.91],
[6.56, 7.40, 7.54, 8.19, 3.45, 2.20, 3.26],
[6.26, 7.48, 7.24, 8.61, 3.88, 1.73, 3.14],
[6.69, 7.93, 6.85, 8.66, 3.58, 1.93, 3.53],
[7.13, 8.23, 6.60, 8.91, 3.60, 2.25, 3.65],
[6.83, 8.35, 6.65, 9.08, 3.97, 2.69, 3.69],
[7.31, 8.44, 6.74, 9.34, 4.05, 2.59, 3.50],
[7.43, 8.35, 7.19, 8.96, 4.40, 2.14, 3.25],
[7.54, 8.58, 7.14, 8.98, 4.06, 1.68, 3.64],
[7.18, 8.82, 6.88, 8.50, 3.60, 1.98, 4.00],
[7.21, 9.09, 7.14, 8.65, 3.61, 2.14, 3.63],
[7.45, 9.02, 7.30, 8.94, 4.10, 1.89, 3.78],
[7.37, 8.87, 6.95, 8.63, 3.74, 1.97, 3.42],
[6.88, 9.22, 7.02, 8.65, 4.02, 1.99, 3.76],
[7.08, 9.04, 7.38, 8.40, 3.95, 2.37, 3.62],
[6.75, 8.60, 7.50, 8.38, 3.81, 2.14, 3.67],
[6.60, 8.48, 7.60, 8.23, 3.71, 2.35, 3.61],
[6.21, 8.71, 7.15, 8.04, 3.94, 1.86, 3.39],
[6.36, 8.79, 7.30, 7.91, 4.43, 2.14, 3.43],
[6.82, 8.93, 7.80, 7.57, 4.07, 2.39, 3.33],
[6.45, 9.36, 8.15, 7.73, 4.04, 2.53, 3.03],
[6.85, 9.68, 8.40, 7.74, 4.34, 2.47, 3.28],
[6.48, 10.16, 8.87, 8.07, 4.80, 2.93, 3.46],
[6.10, 10.56, 8.53, 7.99, 5.18, 3.09, 3.25],
[5.64, 10.63, 8.94, 7.92, 4.90, 2.93, 2.95],
[6.01, 10.55, 8.52, 8.40, 5.40, 3.22, 2.87],
[6.21, 10.65, 8.80, 8.80, 5.73, 3.06, 2.63],
[6.61, 10.55, 8.92, 8.47, 5.62, 2.90, 2.40],
[7.02, 10.19, 9.20, 8.07, 5.20, 2.68, 2.53],
[7.04, 10.48, 8.71, 7.87, 4.85, 2.46, 2.96],
[6.77, 10.36, 8.25, 8.02, 5.18, 2.41, 3.26],
[7.09, 10.03, 8.19, 8.39, 4.72, 2.74, 2.97],
[6.65, 10.24, 7.80, 8.69, 4.62, 3.15, 3.16],
[7.07, 10.01, 7.69, 8.81, 4.55, 3.40, 3.58],
[6.80, 10.14, 7.23, 8.99, 4.37, 3.82, 3.23],
[6.79, 10.31, 6.98, 9.10, 4.26, 4.02, 3.62],
[6.48, 9.88, 7.07, 8.90, 4.25, 3.76, 3.13],
[6.39, 10.05, 6.95, 8.87, 4.59, 4.10, 2.93]])
# 精心设计的模拟PT持股仓位目标信号:
self.pt_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.250, 0.100, 0.150],
[0.200, 0.200, 0.000, 0.000, 0.250, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.250, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.200, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.100, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.150],
[0.133, 0.200, 0.050, 0.000, 0.062, 0.100, 0.000],
[0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000],
[0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000],
[0.133, 0.200, 0.050, 0.000, 0.262, 0.100, 0.000],
[0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000],
[0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000],
[0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000],
[0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000],
[0.066, 0.200, 0.050, 0.150, 0.262, 0.100, 0.000],
[0.066, 0.200, 0.250, 0.150, 0.000, 0.300, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.386, 0.136, 0.170, 0.102, 0.000, 0.204, 0.000],
[0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000],
[0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000],
[0.460, 0.119, 0.149, 0.089, 0.000, 0.179, 0.000],
[0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116],
[0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116],
[0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116],
[0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116],
[0.446, 0.116, 0.145, 0.087, 0.000, 0.087, 0.116],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.400, 0.208, 0.130, 0.078, 0.000, 0.078, 0.104],
[0.370, 0.193, 0.120, 0.072, 0.072, 0.072, 0.096],
[0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111],
[0.000, 0.222, 0.138, 0.222, 0.083, 0.222, 0.111],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.121, 0.195, 0.121, 0.195, 0.073, 0.195, 0.097],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.200, 0.320, 0.200, 0.000, 0.120, 0.000, 0.160],
[0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190],
[0.047, 0.380, 0.238, 0.000, 0.142, 0.000, 0.190],
[0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173],
[0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173],
[0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173],
[0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173],
[0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173],
[0.043, 0.434, 0.217, 0.000, 0.130, 0.000, 0.173],
[0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272],
[0.045, 0.454, 0.227, 0.000, 0.000, 0.000, 0.272],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.050, 0.000, 0.250, 0.000, 0.000, 0.000, 0.300],
[0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300],
[0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300],
[0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.300]])
# 精心设计的模拟PS比例交易信号,与模拟PT信号高度相似
self.ps_signals = np.array([[0.000, 0.000, 0.000, 0.000, 0.250, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.100, 0.150],
[0.200, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.100, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, -0.750, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[-0.333, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, -0.500, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, -1.000],
[0.000, 0.000, 0.000, 0.000, 0.200, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[-0.500, 0.000, 0.000, 0.150, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.200, 0.000, -1.000, 0.200, 0.000],
[0.500, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.200, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, -0.500, 0.200],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.200, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.150, 0.000, 0.000],
[-1.000, 0.000, 0.000, 0.250, 0.000, 0.250, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.250, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, -1.000, 0.000, -1.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[-0.800, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, -1.000, 0.000, 0.100],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, -1.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[-1.000, 0.000, 0.150, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000],
[0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000]])
# 精心设计的模拟VS股票交易信号,与模拟PS信号类似
self.vs_signals = np.array([[000, 000, 000, 000, 500, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 300, 300],
[400, 400, 000, 000, 000, 000, 000],
[000, 000, 250, 000, 000, 000, 000],
[000, 000, 000, 000, -400, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[-200, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, -200, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, -300],
[000, 000, 000, 000, 500, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[-200, 000, 000, 300, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 400, 000, -300, 600, 000],
[500, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[600, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, -400, 600],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 500, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 300, 000, 000],
[-500, 000, 000, 500, 000, 200, 000],
[000, 000, 000, 000, 000, 000, 000],
[500, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, -700, 000, -600, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[-400, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 300, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, -600, 000, 300],
[000, 000, 000, 000, 000, 000, 000],
[000, -300, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[-200, 000, 700, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000],
[000, 000, 000, 000, 000, 000, 000]])
# 精心设计的模拟多价格交易信号,模拟50个交易日对三只股票的操作
self.multi_shares = ['000010', '000030', '000039']
self.multi_dates = ['2016/07/01', '2016/07/04', '2016/07/05', '2016/07/06', '2016/07/07',
'2016/07/08', '2016/07/11', '2016/07/12', '2016/07/13', '2016/07/14',
'2016/07/15', '2016/07/18', '2016/07/19', '2016/07/20', '2016/07/21',
'2016/07/22', '2016/07/25', '2016/07/26', '2016/07/27', '2016/07/28',
'2016/07/29', '2016/08/01', '2016/08/02', '2016/08/03', '2016/08/04',
'2016/08/05', '2016/08/08', '2016/08/09', '2016/08/10', '2016/08/11',
'2016/08/12', '2016/08/15', '2016/08/16', '2016/08/17', '2016/08/18',
'2016/08/19', '2016/08/22', '2016/08/23', '2016/08/24', '2016/08/25',
'2016/08/26', '2016/08/29', '2016/08/30', '2016/08/31', '2016/09/01',
'2016/09/02', '2016/09/05', '2016/09/06', '2016/09/07', '2016/09/08']
self.multi_dates = [pd.Timestamp(date_text) for date_text in self.multi_dates]
# 操作的交易价格包括开盘价、最高价和收盘价
self.multi_prices_open = np.array([[10.02, 9.88, 7.26],
[10.00, 9.88, 7.00],
[9.98, 9.89, 6.88],
[9.97, 9.75, 6.91],
[9.99, 9.74, np.nan],
[10.01, 9.80, 6.81],
[10.04, 9.62, 6.63],
[10.06, 9.65, 6.45],
[10.06, 9.58, 6.16],
[10.11, 9.67, 6.24],
[10.11, 9.81, 5.96],
[10.07, 9.80, 5.97],
[10.06, 10.00, 5.96],
[10.09, 9.95, 6.20],
[10.03, 10.10, 6.35],
[10.02, 10.06, 6.11],
[10.06, 10.14, 6.37],
[10.08, 9.90, 5.58],
[9.99, 10.20, 5.65],
[10.00, 10.29, 5.65],
[10.03, 9.86, 5.19],
[10.02, 9.48, 5.42],
[10.06, 10.01, 6.30],
[10.03, 10.24, 6.15],
[9.97, 10.26, 6.05],
[9.94, 10.24, 5.89],
[9.83, 10.12, 5.22],
[9.78, 10.65, 5.20],
[9.77, 10.64, 5.07],
[9.91, 10.56, 6.04],
[9.92, 10.42, 6.12],
[9.97, 10.43, 5.85],
[9.91, 10.29, 5.67],
[9.90, 10.30, 6.02],
[9.88, 10.44, 6.04],
[9.91, 10.60, 7.07],
[9.63, 10.67, 7.64],
[9.64, 10.46, 7.99],
[9.57, 10.39, 7.59],
[9.55, 10.90, 8.73],
[9.58, 11.01, 8.72],
[9.61, 11.01, 8.97],
[9.62, np.nan, 8.58],
[9.55, np.nan, 8.71],
[9.57, 10.82, 8.77],
[9.61, 11.02, 8.40],
[9.63, 10.96, 7.95],
[9.64, 11.55, 7.76],
[9.61, 11.74, 8.25],
[9.56, 11.80, 7.51]])
self.multi_prices_high = np.array([[10.07, 9.91, 7.41],
[10.00, 10.04, 7.31],
[10.00, 9.93, 7.14],
[10.00, 10.04, 7.00],
[10.03, 9.84, np.nan],
[10.03, 9.88, 6.82],
[10.04, 9.99, 6.96],
[10.09, 9.70, 6.85],
[10.10, 9.67, 6.50],
[10.14, 9.71, 6.34],
[10.11, 9.85, 6.04],
[10.10, 9.90, 6.02],
[10.09, 10.00, 6.12],
[10.09, 10.20, 6.38],
[10.10, 10.11, 6.43],
[10.05, 10.18, 6.46],
[10.07, 10.21, 6.43],
[10.09, 10.26, 6.27],
[10.10, 10.38, 5.77],
[10.00, 10.47, 6.01],
[10.04, 10.42, 5.67],
[10.04, 10.07, 5.67],
[10.06, 10.24, 6.35],
[10.09, 10.27, 6.32],
[10.05, 10.38, 6.43],
[9.97, 10.43, 6.36],
[9.96, 10.39, 5.79],
[9.86, 10.65, 5.47],
[9.77, 10.84, 5.65],
[9.92, 10.65, 6.04],
[9.94, 10.73, 6.14],
[9.97, 10.63, 6.23],
[9.97, 10.51, 5.83],
[9.92, 10.35, 6.25],
[9.92, 10.46, 6.27],
[9.92, 10.63, 7.12],
[9.93, 10.74, 7.82],
[9.64, 10.76, 8.14],
[9.58, 10.54, 8.27],
[9.60, 11.02, 8.92],
[9.58, 11.12, 8.76],
[9.62, 11.17, 9.15],
[9.62, np.nan, 8.90],
[9.64, np.nan, 9.01],
[9.59, 10.92, 9.16],
[9.62, 11.15, 9.00],
[9.63, 11.11, 8.27],
[9.70, 11.55, 7.99],
[9.66, 11.95, 8.33],
[9.64, 11.93, 8.25]])
self.multi_prices_close = np.array([[10.04, 9.68, 6.64],
[10.00, 9.87, 7.26],
[10.00, 9.86, 7.03],
[9.99, 9.87, 6.87],
[9.97, 9.79, np.nan],
[9.99, 9.82, 6.64],
[10.03, 9.80, 6.85],
[10.03, 9.66, 6.70],
[10.06, 9.62, 6.39],
[10.06, 9.58, 6.22],
[10.11, 9.69, 5.92],
[10.09, 9.78, 5.91],
[10.07, 9.75, 6.11],
[10.06, 9.96, 5.91],
[10.09, 9.90, 6.23],
[10.03, 10.04, 6.28],
[10.03, 10.06, 6.28],
[10.06, 10.08, 6.27],
[10.08, 10.24, 5.70],
[10.00, 10.24, 5.56],
[9.99, 10.24, 5.67],
[10.03, 9.86, 5.16],
[10.03, 10.13, 5.69],
[10.06, 10.12, 6.32],
[10.03, 10.10, 6.14],
[9.97, 10.25, 6.25],
[9.94, 10.24, 5.79],
[9.83, 10.22, 5.26],
[9.77, 10.75, 5.05],
[9.84, 10.64, 5.45],
[9.91, 10.56, 6.06],
[9.93, 10.60, 6.21],
[9.96, 10.42, 5.69],
[9.91, 10.25, 5.46],
[9.91, 10.24, 6.02],
[9.88, 10.49, 6.69],
[9.91, 10.57, 7.43],
[9.64, 10.63, 7.72],
[9.56, 10.48, 8.16],
[9.57, 10.37, 7.83],
[9.55, 10.96, 8.70],
[9.57, 11.02, 8.71],
[9.61, np.nan, 8.88],
[9.61, np.nan, 8.54],
[9.55, 10.88, 8.87],
[9.57, 10.87, 8.87],
[9.63, 11.01, 8.18],
[9.64, 11.01, 7.80],
[9.65, 11.58, 7.97],
[9.62, 11.80, 8.25]])
# 交易信号包括三组,分别作用与开盘价、最高价和收盘价
# 此时的关键是股票交割期的处理,交割期不为0时,以交易日为单位交割
self.multi_signals = []
# multisignal的第一组信号为开盘价信号
self.multi_signals.append(
pd.DataFrame(np.array([[0.000, 0.000, 0.000],
[0.000, -0.500, 0.000],
[0.000, -0.500, 0.000],
[0.000, 0.000, 0.000],
[0.150, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.300, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.300],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.350, 0.250],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.100, 0.000, 0.350],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.200, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.050, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000]]),
columns=self.multi_shares,
index=self.multi_dates
)
)
# 第二组信号为最高价信号
self.multi_signals.append(
pd.DataFrame(np.array([[0.000, 0.150, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, -0.200, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.200],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000]]),
columns=self.multi_shares,
index=self.multi_dates
)
)
# 第三组信号为收盘价信号
self.multi_signals.append(
pd.DataFrame(np.array([[0.000, 0.200, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[-0.500, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, -0.800],
[0.000, 0.000, 0.000],
[0.000, -1.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[-0.750, 0.000, 0.000],
[0.000, 0.000, -0.850],
[0.000, 0.000, 0.000],
[0.000, -0.700, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, -1.000],
[0.000, 0.000, 0.000],
[0.000, 0.000, 0.000],
[-1.000, 0.000, 0.000],
[0.000, -1.000, 0.000],
[0.000, 0.000, 0.000]]),
columns=self.multi_shares,
index=self.multi_dates
)
)
# 交易回测所需的价格也有三组,分别是开盘价、最高价和收盘价
self.multi_histories = []
# multisignal的第一组信号为开盘价信号
self.multi_histories.append(
pd.DataFrame(self.multi_prices_open,
columns=self.multi_shares,
index=self.multi_dates
)
)
# 第二组信号为最高价信号
self.multi_histories.append(
pd.DataFrame(self.multi_prices_high,
columns=self.multi_shares,
index=self.multi_dates
)
)
# 第三组信号为收盘价信号
self.multi_histories.append(
pd.DataFrame(self.multi_prices_close,
columns=self.multi_shares,
index=self.multi_dates
)
)
# 设置回测参数
self.cash = qt.CashPlan(['2016/07/01', '2016/08/12', '2016/09/23'], [10000, 10000, 10000])
self.rate = qt.Cost(buy_fix=0,
sell_fix=0,
buy_rate=0,
sell_rate=0,
buy_min=0,
sell_min=0,
slipage=0)
self.rate2 = qt.Cost(buy_fix=0,
sell_fix=0,
buy_rate=0,
sell_rate=0,
buy_min=10,
sell_min=5,
slipage=0)
self.pt_signal_hp = dataframe_to_hp(
pd.DataFrame(self.pt_signals, index=self.dates, columns=self.shares),
htypes='close'
)
self.ps_signal_hp = dataframe_to_hp(
pd.DataFrame(self.ps_signals, index=self.dates, columns=self.shares),
htypes='close'
)
self.vs_signal_hp = dataframe_to_hp(
pd.DataFrame(self.vs_signals, index=self.dates, columns=self.shares),
htypes='close'
)
self.multi_signal_hp = stack_dataframes(
self.multi_signals,
stack_along='htypes',
htypes='open, high, close'
)
self.history_list = dataframe_to_hp(
pd.DataFrame(self.prices, index=self.dates, columns=self.shares),
htypes='close'
)
self.multi_history_list = stack_dataframes(
self.multi_histories,
stack_along='htypes',
htypes='open, high, close'
)
# 模拟PT信号回测结果
# PT信号,先卖后买,交割期为0
self.pt_res_sb00 = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111],
[348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209],
[348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776],
[348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857],
[348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474],
[348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614],
[101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270],
[1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21979.4972],
[1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21880.9628],
[1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21630.0454],
[1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20968.0007],
[1216.3282, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21729.9339],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21107.6400],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21561.1745],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21553.0916],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22316.9366],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22084.2862],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 21777.3543],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22756.8225],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22843.4697],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 0.0000, 2172.0393, 0.0000, 22762.1766],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22257.0973],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23136.5259],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 21813.7852],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22395.3204],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 23717.6858],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 1607.1030, 1448.0262, 0.0000, 0.0000, 22715.4263],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 22498.3254],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23341.1733],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24162.3941],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24847.1508],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 23515.9755],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24555.8997],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24390.6372],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24073.3309],
[1216.3282, 417.9188, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 2455.7405, 0.0000, 24394.6500],
[2076.3314, 903.0334, 511.8829, 288.6672, 0.0000, 669.7975, 1448.0262, 3487.5655, 0.0000, 34904.8150],
[0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 34198.4475],
[0.0000, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 4608.8037, 0.0000, 33753.0190],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 34953.8178],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 33230.2498],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35026.7819],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36976.2649],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38673.8147],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 38717.3429],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 36659.0854],
[644.7274, 903.0334, 511.8829, 897.4061, 0.0000, 3514.8404, 1448.0262, 379.3918, 0.0000, 35877.9607],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36874.4840],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37010.2695],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 38062.3510],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36471.1357],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37534.9927],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 37520.2569],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36747.7952],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36387.9409],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 35925.9715],
[644.7274, 1337.8498, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 2853.5665, 0.0000, 36950.7028],
[644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37383.2463],
[644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 37761.2724],
[644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 39548.2653],
[644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41435.1291],
[644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41651.6261],
[644.7274, 1657.3981, 1071.9327, 0.0000, 1229.1495, 0.0000, 1448.0262, 0.0000, 0.0000, 41131.9920],
[644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 41286.4702],
[644.7274, 1657.3981, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 0.0000, 0.0000, 40978.7259],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 40334.5453],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41387.9172],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42492.6707],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42953.7188],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42005.1092],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 42017.9106],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 43750.2824],
[644.7274, 0.0000, 1071.9327, 0.0000, 0.0000, 0.0000, 3760.7116, 17485.5497, 0.0000, 41766.8679],
[0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 42959.1150],
[0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 41337.9320],
[0.0000, 0.0000, 2461.8404, 0.0000, 0.0000, 0.0000, 3760.7116, 12161.6930, 0.0000, 40290.3688]])
# PT信号,先买后卖,交割期为0
self.pt_res_bs00 = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 6035.8333, 0.0000, 9761.1111],
[348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9674.8209],
[348.0151, 417.9188, 0.0000, 0.0000, 555.5556, 0.0000, 321.0892, 2165.9050, 0.0000, 9712.5872],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9910.7240],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9919.3782],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9793.0692],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9513.8217],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9123.5935],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9000.5995],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9053.4865],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9248.7142],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9161.1372],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9197.3369],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9504.6981],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 9875.2461],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10241.5400],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10449.2398],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10628.3269],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 321.0892, 3762.5512, 0.0000, 10500.7893],
[348.0151, 417.9188, 0.0000, 0.0000, 154.3882, 0.0000, 0.0000, 5233.1396, 0.0000, 10449.2776],
[348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10338.2857],
[348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10194.3474],
[348.0151, 417.9188, 0.0000, 0.0000, 459.8694, 0.0000, 0.0000, 3433.8551, 0.0000, 10471.0008],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10411.2629],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10670.0618],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10652.4799],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10526.1488],
[101.4983, 417.9188, 0.0000, 288.6672, 459.8694, 0.0000, 0.0000, 3541.0848, 0.0000, 10458.6614],
[101.4983, 417.9188, 821.7315, 288.6672, 0.0000, 2576.1284, 0.0000, 4487.0722, 0.0000, 20609.0270],
[797.1684, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 2703.5808, 0.0000, 21979.4972],
[1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21700.7241],
[1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21446.6630],
[1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 20795.3593],
[1190.1307, 417.9188, 821.7315, 288.6672, 0.0000, 1607.1030, 0.0000, 0.0000, 0.0000, 21557.2924],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 20933.6887],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21392.5581],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21390.2918],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22147.7562],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21910.9053],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 21594.2980],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22575.4380],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22655.8312],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 0.0000, 2201.6110, 0.0000, 22578.4365],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22073.2661],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22955.2367],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 21628.1647],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 22203.4237],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 1607.1030, 1467.7407, 0.0000, 0.0000, 23516.2598],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22505.8428],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 22199.1042],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23027.9302],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23848.5806],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24540.8871],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23205.6838],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24267.6685],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24115.3796],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 23814.3667],
[1190.1307, 417.9188, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 2278.3728, 0.0000, 24133.6611],
[2061.6837, 896.6628, 507.6643, 288.6672, 0.0000, 699.3848, 1467.7407, 3285.8830, 0.0000, 34658.5742],
[0.0000, 896.6628, 507.6643, 466.6033, 0.0000, 1523.7106, 1467.7407, 12328.8684, 0.0000, 33950.7917],
[0.0000, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 4380.3797, 0.0000, 33711.4045],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 34922.0959],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 33237.1081],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35031.8071],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36976.3376],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38658.5245],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 38712.2854],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 36655.3125],
[644.1423, 896.6628, 507.6643, 936.6623, 0.0000, 3464.7832, 1467.7407, 154.8061, 0.0000, 35904.3692],
[644.1423, 902.2617, 514.8253, 0.0000, 15.5990, 0.0000, 1467.7407, 14821.9004, 0.0000, 36873.9080],
[644.1423, 902.2617, 514.8253, 0.0000, 1220.8683, 0.0000, 1467.7407, 10470.8781, 0.0000, 36727.7895],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37719.9840],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36138.1277],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37204.0760],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 37173.1201],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36398.2298],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36034.2178],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 35583.6399],
[644.1423, 1338.1812, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 2753.1120, 0.0000, 36599.2645],
[644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37013.3408],
[644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 37367.7449],
[644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 39143.8273],
[644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41007.3074],
[644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 41225.4657],
[644.1423, 1646.4805, 1033.4242, 0.0000, 1220.8683, 0.0000, 1467.7407, 0.0000, 0.0000, 40685.9525],
[644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 1467.7407, 6592.6891, 0.0000, 40851.5435],
[644.1423, 1646.4805, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 0.0000, 0.0000, 41082.1210],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 40385.0135],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 41455.1513],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42670.6769],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 43213.7233],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42205.2480],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42273.9386],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 44100.0777],
[644.1423, 0.0000, 1033.4242, 0.0000, 0.0000, 0.0000, 3974.4666, 17370.3689, 0.0000, 42059.7208],
[0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 43344.9653],
[0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 41621.0324],
[0.0000, 0.0000, 2483.9522, 0.0000, 0.0000, 0.0000, 3974.4666, 11619.4102, 0.0000, 40528.0648]])
# PT信号,先卖后买,交割期为2天(股票)0天(现金)以便利用先卖的现金继续买入
self.pt_res_sb20 = np.array(
[[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000],
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667],
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111],
[348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821],
[348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278],
[348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286],
[348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347],
[348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661],
[101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027],
[797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497],
[1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21584.441],
[1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21309.576],
[1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20664.323],
[1156.912, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21445.597],
[1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 20806.458],
[1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21288.441],
[1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21294.365],
[1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 22058.784],
[1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21805.540],
[1156.912, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 2223.240, 0.000, 21456.333],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22459.720],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22611.602],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22470.912],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21932.634],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22425.864],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21460.103],
[1481.947, 417.919, 504.579, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22376.968],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23604.295],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22704.826],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 22286.293],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23204.755],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24089.017],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24768.185],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23265.196],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24350.540],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24112.706],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 23709.076],
[1481.947, 417.919, 504.579, 288.667, 0.000, 763.410, 1577.904, 0.000, 0.000, 24093.545],
[2060.275, 896.050, 504.579, 288.667, 0.000, 763.410, 1577.904, 2835.944, 0.000, 34634.888],
[578.327, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 732.036, 0.000, 33912.261],
[0.000, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 4415.981, 0.000, 33711.951],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 34951.433],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 33224.596],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35065.209],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 37018.699],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38706.035],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 38724.569],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 36647.268],
[644.683, 896.050, 504.579, 889.896, 0.000, 3485.427, 1577.904, 186.858, 0.000, 35928.930],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36967.229],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37056.598],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 38129.862],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36489.333],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37599.602],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 37566.823],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36799.280],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36431.196],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 35940.942],
[644.683, 1341.215, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 2367.759, 0.000, 36973.050],
[644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37393.292],
[644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 37711.276],
[644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 39515.991],
[644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41404.440],
[644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41573.523],
[644.683, 1606.361, 1074.629, 0.000, 1232.241, 0.000, 1577.904, 0.000, 0.000, 41011.613],
[644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 41160.181],
[644.683, 1606.361, 1074.629, 0.000, 0.000, 0.000, 3896.406, 0.000, 0.000, 40815.512],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 40145.531],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41217.281],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42379.061],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 42879.589],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41891.452],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41929.003],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 43718.052],
[644.683, 0.000, 1074.629, 0.000, 0.000, 0.000, 3896.406, 16947.110, 0.000, 41685.916],
[0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 42930.410],
[0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 41242.589],
[0.000, 0.000, 2460.195, 0.000, 0.000, 0.000, 3896.406, 11653.255, 0.000, 40168.084]])
# PT信号,先买后卖,交割期为2天(股票)1天(现金)
self.pt_res_bs21 = np.array([
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000],
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667],
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 321.089, 6035.833, 0.000, 9761.111],
[348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9674.821],
[348.015, 417.919, 0.000, 0.000, 555.556, 0.000, 321.089, 2165.905, 0.000, 9712.587],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9910.724],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9919.378],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9793.069],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9513.822],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9123.593],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9000.600],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9053.487],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9248.714],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9161.137],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9197.337],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9504.698],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 9875.246],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10241.540],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10449.240],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10628.327],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 321.089, 3762.551, 0.000, 10500.789],
[348.015, 417.919, 0.000, 0.000, 154.388, 0.000, 0.000, 5233.140, 0.000, 10449.278],
[348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10338.286],
[348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10194.347],
[348.015, 417.919, 0.000, 0.000, 459.869, 0.000, 0.000, 3433.855, 0.000, 10471.001],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10411.263],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10670.062],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10652.480],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10526.149],
[101.498, 417.919, 0.000, 288.667, 459.869, 0.000, 0.000, 3541.085, 0.000, 10458.661],
[101.498, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 4487.072, 0.000, 20609.027],
[797.168, 417.919, 821.732, 288.667, 0.000, 2576.128, 0.000, 0.000, 0.000, 21979.497],
[797.168, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 2475.037, 0.000, 21584.441],
[1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21266.406],
[1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 20623.683],
[1150.745, 417.919, 821.732, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21404.957],
[1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 20765.509],
[1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21248.748],
[1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21256.041],
[1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 22018.958],
[1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21764.725],
[1150.745, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 2230.202, 0.000, 21413.241],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22417.021],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22567.685],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22427.699],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21889.359],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22381.938],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 21416.358],
[1476.798, 417.919, 503.586, 288.667, 0.000, 1649.148, 0.000, 0.000, 0.000, 22332.786],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 0.000, 2386.698, 0.000, 23557.595],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 23336.992],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 22907.742],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24059.201],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24941.902],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25817.514],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 24127.939],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25459.688],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25147.370],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 2209.906, 0.000, 0.000, 25005.842],
[1476.798, 417.919, 503.586, 288.667, 0.000, 761.900, 1086.639, 2752.004, 0.000, 25598.700],
[2138.154, 929.921, 503.586, 288.667, 0.000, 761.900, 1086.639, 4818.835, 0.000, 35944.098],
[661.356, 929.921, 503.586, 553.843, 0.000, 1954.237, 1086.639, 8831.252, 0.000, 35237.243],
[0.000, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 9460.955, 0.000, 35154.442],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36166.632],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 34293.883],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 35976.901],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37848.552],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39512.574],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 39538.024],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 37652.984],
[667.098, 929.921, 503.586, 553.843, 0.000, 3613.095, 1086.639, 5084.792, 0.000, 36687.909],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37749.277],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37865.518],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38481.190],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37425.087],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38051.341],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 38065.478],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37429.495],
[667.098, 1108.871, 745.260, 0.000, 512.148, 0.000, 1086.639, 11861.593, 0.000, 37154.479],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 36692.717],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37327.055],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 37937.630],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 38298.645],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 39689.369],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40992.397],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 41092.265],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 1086.639, 7576.628, 0.000, 40733.622],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40708.515],
[667.098, 1600.830, 745.260, 0.000, 512.148, 0.000, 3726.579, 0.000, 0.000, 40485.321],
[667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 39768.059],
[667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 40519.595],
[667.098, 0.000, 745.260, 0.000, 512.148, 0.000, 3726.579, 16888.760, 0.000, 41590.937],
[667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42354.983],
[667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41175.149],
[667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 41037.902],
[667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 42706.213],
[667.098, 0.000, 1283.484, 0.000, 512.148, 0.000, 3726.579, 12448.413, 0.000, 40539.205],
[0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 41608.692],
[0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39992.148],
[0.000, 0.000, 2384.452, 0.000, 512.148, 0.000, 3726.579, 9293.252, 0.000, 39134.828]])
# 模拟PS信号回测结果
# PS信号,先卖后买,交割期为0
self.ps_res_sb00 = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111],
[346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118],
[346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571],
[231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133],
[231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463],
[231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621],
[115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21389.4018],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22027.4535],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 20939.9992],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21250.0636],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22282.7812],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21407.0658],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21160.2373],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 21826.7682],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22744.9403],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23466.1185],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22017.8821],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23191.4662],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 23099.0822],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22684.7671],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 1339.2073, 0.0000, 0.0000, 22842.1346],
[1073.8232, 416.6787, 735.6442, 269.8496, 1785.2055, 938.6967, 1339.2073, 5001.4246, 0.0000,
33323.8359],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32820.2901],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 32891.2308],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34776.5296],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 33909.0325],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 34560.1906],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 36080.4552],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38618.4454],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 38497.9230],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 37110.0991],
[0.0000, 416.6787, 735.6442, 944.9611, 1785.2055, 3582.8836, 1339.2073, 0.0000, 0.0000, 35455.2467],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35646.1860],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35472.3020],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36636.4694],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35191.7035],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36344.2242],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36221.6005],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35943.5708],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35708.2608],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 35589.0286],
[0.0000, 416.6787, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 15126.2788, 0.0000, 36661.0285],
[0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36310.5909],
[0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 36466.7637],
[0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 37784.4918],
[0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39587.6766],
[0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 40064.0191],
[0.0000, 823.2923, 735.6442, 0.0000, 1785.2055, 0.0000, 1339.2073, 11495.2197, 0.0000, 39521.6439],
[0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39932.2761],
[0.0000, 823.2923, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 17142.1018, 0.0000, 39565.2475],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 38943.1632],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39504.1184],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40317.8004],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40798.5768],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39962.5711],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 40194.4793],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 41260.4003],
[0.0000, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 2730.5758, 25827.8351, 0.0000, 39966.3024],
[0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 40847.3160],
[0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 39654.5445],
[0.0000, 0.0000, 1613.4518, 0.0000, 0.0000, 0.0000, 2730.5758, 19700.7377, 0.0000, 38914.8151]])
# PS信号,先买后卖,交割期为0
self.ps_res_bs00 = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 10000.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 0.0000, 0.0000, 7500.0000, 0.0000, 9916.6667],
[0.0000, 0.0000, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 5059.7222, 0.0000, 9761.1111],
[346.9824, 416.6787, 0.0000, 0.0000, 555.5556, 205.0654, 321.0892, 1201.2775, 0.0000, 9646.1118],
[346.9824, 416.6787, 191.0372, 0.0000, 555.5556, 205.0654, 321.0892, 232.7189, 0.0000, 9685.5858],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9813.2184],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9803.1288],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9608.0198],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9311.5727],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8883.6246],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8751.3900],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 8794.1811],
[346.9824, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 1891.0523, 0.0000, 9136.5704],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9209.3588],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9093.8294],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9387.5537],
[231.4373, 416.6787, 191.0372, 0.0000, 138.8889, 205.0654, 321.0892, 2472.2444, 0.0000, 9585.9589],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 9928.7771],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10060.3806],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10281.0021],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 321.0892, 3035.8041, 0.0000, 10095.5613],
[231.4373, 416.6787, 95.5186, 0.0000, 138.8889, 205.0654, 0.0000, 4506.3926, 0.0000, 10029.9571],
[231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9875.6133],
[231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9614.9463],
[231.4373, 416.6787, 95.5186, 0.0000, 474.2238, 205.0654, 0.0000, 2531.2699, 0.0000, 9824.1722],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9732.5743],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9968.3391],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 10056.1579],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9921.4925],
[115.7186, 416.6787, 95.5186, 269.8496, 474.2238, 205.0654, 0.0000, 1854.7990, 0.0000, 9894.1621],
[115.7186, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 6179.7742, 0.0000, 20067.9370],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21133.5080],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20988.8485],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20596.7429],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 19910.7730],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20776.7070],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20051.7969],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20725.3884],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20828.8795],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21647.1811],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21310.1687],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 20852.0993],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21912.3952],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21937.8282],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 1877.3934, 0.0000, 0.0000, 0.0000, 21962.4576],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21389.4018],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21625.6913],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 20873.0389],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 21450.9447],
[1073.8232, 416.6787, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 2008.8110, 0.0000, 22269.3892],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21969.5329],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21752.6924],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22000.6088],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23072.5655],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23487.5201],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22441.0460],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23201.2700],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 23400.9485],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 22306.2008],
[1073.8232, 737.0632, 735.6442, 269.8496, 0.0000, 938.6967, 0.0000, 0.0000, 0.0000, 21989.5913],
[1073.8232, 737.0632, 735.6442, 269.8496, 1708.7766, 938.6967, 0.0000, 5215.4255, 0.0000, 31897.1636],
[0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31509.5059],
[0.0000, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 6421.4626, 0.0000, 31451.7888],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32773.4592],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32287.0318],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 32698.1938],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34031.5183],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 35537.8336],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36212.6487],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 36007.5294],
[978.8815, 737.0632, 735.6442, 578.0898, 1708.7766, 2145.9711, 0.0000, 0.0000, 0.0000, 34691.3797],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33904.8810],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34341.6098],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 35479.9505],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34418.4455],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34726.7182],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34935.0407],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 34136.7505],
[978.8815, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 9162.7865, 0.0000, 33804.1575],
[195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 33653.8970],
[195.7763, 737.0632, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 14025.8697, 0.0000, 34689.8757],
[195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 34635.7841],
[195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 35253.2755],
[195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 36388.1051],
[195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 37987.4204],
[195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38762.2103],
[195.7763, 1124.9219, 735.6442, 0.0000, 1708.7766, 0.0000, 0.0000, 10562.2913, 0.0000, 38574.0544],
[195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39101.9156],
[195.7763, 1124.9219, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 15879.4935, 0.0000, 39132.5587],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38873.2941],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39336.6594],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39565.9568],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39583.4317],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39206.8350],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39092.6551],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 39666.1834],
[195.7763, 0.0000, 735.6442, 0.0000, 0.0000, 0.0000, 1362.4361, 27747.4200, 0.0000, 38798.0749],
[0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 39143.5561],
[0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38617.8779],
[0.0000, 0.0000, 1576.8381, 0.0000, 0.0000, 0.0000, 1362.4361, 23205.2077, 0.0000, 38156.1701]])
# PS信号,先卖后买,交割期为2天(股票)1天(现金)
self.ps_res_sb20 = np.array(
[[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000],
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667],
[0.000, 0.000, 0.000, 0.000, 555.556, 205.065, 321.089, 5059.722, 0.000, 9761.111],
[346.982, 416.679, 0.000, 0.000, 555.556, 205.065, 321.089, 1201.278, 0.000, 9646.112],
[346.982, 416.679, 191.037, 0.000, 555.556, 205.065, 321.089, 232.719, 0.000, 9685.586],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9813.218],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9803.129],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9608.020],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9311.573],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8883.625],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8751.390],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 8794.181],
[346.982, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 1891.052, 0.000, 9136.570],
[231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9209.359],
[231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9093.829],
[231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9387.554],
[231.437, 416.679, 191.037, 0.000, 138.889, 205.065, 321.089, 2472.244, 0.000, 9585.959],
[231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 9928.777],
[231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10060.381],
[231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10281.002],
[231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 321.089, 3035.804, 0.000, 10095.561],
[231.437, 416.679, 95.519, 0.000, 138.889, 205.065, 0.000, 4506.393, 0.000, 10029.957],
[231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9875.613],
[231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9614.946],
[231.437, 416.679, 95.519, 0.000, 474.224, 205.065, 0.000, 2531.270, 0.000, 9824.172],
[115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9732.574],
[115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9968.339],
[115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 10056.158],
[115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9921.492],
[115.719, 416.679, 95.519, 269.850, 474.224, 205.065, 0.000, 1854.799, 0.000, 9894.162],
[115.719, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 6179.774, 0.000, 20067.937],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21133.508],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20988.848],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20596.743],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 19910.773],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20776.707],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20051.797],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20725.388],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20828.880],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21647.181],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21310.169],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 20852.099],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21912.395],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21937.828],
[1073.823, 416.679, 735.644, 269.850, 0.000, 1877.393, 0.000, 0.000, 0.000, 21962.458],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21389.402],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22027.453],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 20939.999],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21250.064],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22282.781],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21407.066],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21160.237],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 21826.768],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22744.940],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23466.118],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22017.882],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23191.466],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 23099.082],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22684.767],
[1073.823, 416.679, 735.644, 269.850, 0.000, 938.697, 1339.207, 0.000, 0.000, 22842.135],
[1073.823, 416.679, 735.644, 269.850, 1785.205, 938.697, 1339.207, 5001.425, 0.000, 33323.836],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32820.290],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 32891.231],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34776.530],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 33909.032],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 34560.191],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 36080.455],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38618.445],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 38497.923],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 37110.099],
[0.000, 416.679, 735.644, 944.961, 1785.205, 3582.884, 1339.207, 0.000, 0.000, 35455.247],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35646.186],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35472.302],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36636.469],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35191.704],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36344.224],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36221.601],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35943.571],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35708.261],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 35589.029],
[0.000, 416.679, 735.644, 0.000, 1785.205, 0.000, 1339.207, 15126.279, 0.000, 36661.029],
[0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36310.591],
[0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 36466.764],
[0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 37784.492],
[0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39587.677],
[0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 40064.019],
[0.000, 823.292, 735.644, 0.000, 1785.205, 0.000, 1339.207, 11495.220, 0.000, 39521.644],
[0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39932.276],
[0.000, 823.292, 735.644, 0.000, 0.000, 0.000, 2730.576, 17142.102, 0.000, 39565.248],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 38943.163],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39504.118],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40317.800],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40798.577],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39962.571],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 40194.479],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 41260.400],
[0.000, 0.000, 735.644, 0.000, 0.000, 0.000, 2730.576, 25827.835, 0.000, 39966.302],
[0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 40847.316],
[0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 39654.544],
[0.000, 0.000, 1613.452, 0.000, 0.000, 0.000, 2730.576, 19700.738, 0.000, 38914.815]])
# PS信号,先买后卖,交割期为2天(股票)1天(现金)
self.ps_res_bs21 = np.array(
[[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 10000.000],
[0.000, 0.000, 0.000, 0.000, 555.556, 0.000, 0.000, 7500.000, 0.000, 9916.667],
[0.000, 0.000, 0.000, 0.000, 555.556, 208.333, 326.206, 5020.833, 0.000, 9761.111],
[351.119, 421.646, 0.000, 0.000, 555.556, 208.333, 326.206, 1116.389, 0.000, 9645.961],
[351.119, 421.646, 190.256, 0.000, 555.556, 208.333, 326.206, 151.793, 0.000, 9686.841],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9813.932],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9803.000],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9605.334],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9304.001],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8870.741],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8738.282],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 8780.664],
[351.119, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 1810.126, 0.000, 9126.199],
[234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9199.746],
[234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9083.518],
[234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9380.932],
[234.196, 421.646, 190.256, 0.000, 138.889, 208.333, 326.206, 2398.247, 0.000, 9581.266],
[234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 9927.154],
[234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10059.283],
[234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10281.669],
[234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 326.206, 2959.501, 0.000, 10093.263],
[234.196, 421.646, 95.128, 0.000, 138.889, 208.333, 0.000, 4453.525, 0.000, 10026.289],
[234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9870.523],
[234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9606.437],
[234.196, 421.646, 95.128, 0.000, 479.340, 208.333, 0.000, 2448.268, 0.000, 9818.691],
[117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9726.556],
[117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9964.547],
[117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 10053.449],
[117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9917.440],
[117.098, 421.646, 95.128, 272.237, 479.340, 208.333, 0.000, 1768.219, 0.000, 9889.495],
[117.098, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 6189.948, 0.000, 20064.523],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21124.484],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20827.077],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20396.124],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19856.445],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20714.156],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 19971.485],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20733.948],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20938.903],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21660.772],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 21265.298],
[708.171, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 2377.527, 0.000, 20684.378],
[1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21754.770],
[1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21775.215],
[1055.763, 421.646, 729.561, 272.237, 0.000, 1865.791, 0.000, 0.000, 0.000, 21801.488],
[1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21235.427],
[1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21466.714],
[1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 20717.431],
[1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 21294.450],
[1055.763, 421.646, 729.561, 272.237, 0.000, 932.896, 0.000, 1996.397, 0.000, 22100.247],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21802.552],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21593.608],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21840.028],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22907.725],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23325.945],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22291.942],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23053.050],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 23260.084],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 22176.244],
[1055.763, 740.051, 729.561, 272.237, 0.000, 932.896, 0.000, 0.000, 0.000, 21859.297],
[1055.763, 740.051, 729.561, 272.237, 1706.748, 932.896, 0.000, 5221.105, 0.000, 31769.617],
[0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31389.961],
[0.000, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 6313.462, 0.000, 31327.498],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32647.140],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32170.095],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 32577.742],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 33905.444],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35414.492],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 36082.120],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 35872.293],
[962.418, 740.051, 729.561, 580.813, 1706.748, 2141.485, 0.000, 0.000, 0.000, 34558.132],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33778.138],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34213.578],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 35345.791],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34288.014],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34604.406],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34806.850],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 34012.232],
[962.418, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 9177.053, 0.000, 33681.345],
[192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 33540.463],
[192.484, 740.051, 729.561, 0.000, 1706.748, 0.000, 0.000, 13958.345, 0.000, 34574.280],
[192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 34516.781],
[192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 35134.412],
[192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 36266.530],
[192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 37864.376],
[192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38642.633],
[192.484, 1127.221, 729.561, 0.000, 1706.748, 0.000, 0.000, 10500.917, 0.000, 38454.227],
[192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 38982.227],
[192.484, 1127.221, 729.561, 0.000, 0.000, 0.000, 1339.869, 15871.934, 0.000, 39016.154],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38759.803],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39217.182],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39439.690],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39454.081],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39083.341],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38968.694],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 39532.030],
[192.484, 0.000, 729.561, 0.000, 0.000, 0.000, 1339.869, 27764.114, 0.000, 38675.507],
[0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 39013.741],
[0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38497.668],
[0.000, 0.000, 1560.697, 0.000, 0.000, 0.000, 1339.869, 23269.751, 0.000, 38042.410]])
# 模拟VS信号回测结果
# VS信号,先卖后买,交割期为0
self.vs_res_sb00 = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 10000.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750.0000, 0.0000, 9925.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954.0000, 0.0000, 9785.0000],
[400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878.0000, 0.0000, 9666.0000],
[400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0.0000, 0.0000, 9731.0000],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9830.9270],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9785.8540],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9614.3412],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9303.1953],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8834.4398],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8712.7554],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 8717.9507],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592.0000, 0.0000, 9079.1479],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9166.0276],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9023.6607],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9291.6864],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598.0000, 0.0000, 9411.6371],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357],
[0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20425.7357],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20137.8405],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20711.3567],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21470.3891],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21902.9538],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 20962.9538],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21833.5184],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21941.8169],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21278.5184],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0.0000, 0.0000, 21224.4700],
[1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160.0000, 0.0000, 31225.2119],
[600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30894.5748],
[600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488.0000, 0.0000, 30764.3811],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31815.5828],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 31615.4215],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 32486.1394],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 33591.2847],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34056.5428],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34756.4863],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34445.5428],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208.0000, 0.0000, 34433.9541],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
33870.4703],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
34014.3010],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
34680.5671],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
33890.9945],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
34004.6640],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
34127.7768],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
33421.1638],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346.0000, 0.0000,
33120.9057],
[700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 32613.3171],
[700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830.0000, 0.0000, 33168.1558],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000,
33504.6236],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000,
33652.1318],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000,
34680.4867],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000,
35557.5191],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000,
35669.7128],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151.0000, 0.0000,
35211.4466],
[700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35550.6079],
[700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530.0000, 0.0000, 35711.6563],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35682.6079],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35880.8336],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36249.8740],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36071.6159],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35846.1562],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35773.3578],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 36274.9465],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695.0000, 0.0000, 35739.3094],
[500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 36135.0917],
[500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35286.5835],
[500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167.0000, 0.0000, 35081.3658]])
# VS信号,先买后卖,交割期为0
self.vs_res_bs00 = np.array(
[[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 10000],
[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 0.0000, 0.0000, 7750, 0.0000, 9925],
[0.0000, 0.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 4954, 0.0000, 9785],
[400.0000, 400.0000, 0.0000, 0.0000, 500.0000, 300.0000, 300.0000, 878, 0.0000, 9666],
[400.0000, 400.0000, 173.1755, 0.0000, 500.0000, 300.0000, 300.0000, 0, 0.0000, 9731],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9830.927022],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9785.854043],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9614.341223],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9303.195266],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8834.439842],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8712.755424],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 8717.95069],
[400.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 1592, 0.0000, 9079.147929],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9166.027613],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9023.66075],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9291.686391],
[200.0000, 400.0000, 173.1755, 0.0000, 100.0000, 300.0000, 300.0000, 2598, 0.0000, 9411.637081],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9706.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9822.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9986.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 300.0000, 3619.7357, 0.0000, 9805.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 100.0000, 300.0000, 0.0000, 4993.7357, 0.0000, 9704.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9567.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9209.7357],
[200.0000, 400.0000, 0.0000, 0.0000, 600.0000, 300.0000, 0.0000, 2048.7357, 0.0000, 9407.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9329.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9545.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9652.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9414.7357],
[0.0000, 400.0000, 0.0000, 300.0000, 600.0000, 300.0000, 0.0000, 1779.7357, 0.0000, 9367.7357],
[0.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 9319.7357, 0.0000, 19556.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20094.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19849.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19802.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19487.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19749.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19392.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19671.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19756.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 20111.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19867.7357],
[500.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 6094.7357, 0.0000, 19775.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20314.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20310.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 900.0000, 0.0000, 1990.7357, 0.0000, 20253.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20044.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20495.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 19798.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20103.7357],
[1100.0000, 400.0000, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 1946.7357, 0.0000, 20864.7357],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20425.7357],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20137.84054],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20711.35674],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21470.38914],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21902.95375],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 20962.95375],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21833.51837],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21941.81688],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21278.51837],
[1100.0000, 710.4842, 400.0000, 300.0000, 300.0000, 500.0000, 600.0000, 0, 0.0000, 21224.46995],
[1100.0000, 710.4842, 400.0000, 300.0000, 600.0000, 500.0000, 600.0000, 9160, 0.0000, 31225.21185],
[600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30894.57479],
[600.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 7488, 0.0000, 30764.38113],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31815.5828],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 31615.42154],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 32486.13941],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 33591.28466],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34056.54276],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34756.48633],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34445.54276],
[1100.0000, 710.4842, 400.0000, 800.0000, 600.0000, 700.0000, 600.0000, 4208, 0.0000, 34433.95412],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33870.47032],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34014.30104],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34680.56715],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33890.99452],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34004.66398],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 34127.77683],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33421.1638],
[1100.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11346, 0.0000, 33120.9057],
[700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 32613.31706],
[700.0000, 710.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 13830, 0.0000, 33168.15579],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33504.62357],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 33652.13176],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 34680.4867],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35557.51909],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35669.71276],
[700.0000, 1010.4842, 400.0000, 100.0000, 600.0000, 100.0000, 600.0000, 11151, 0.0000, 35211.44665],
[700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35550.60792],
[700.0000, 1010.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13530, 0.0000, 35711.65633],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35682.60792],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35880.83362],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36249.87403],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36071.61593],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35846.15615],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35773.35783],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 36274.94647],
[700.0000, 710.4842, 400.0000, 100.0000, 0.0000, 100.0000, 900.0000, 16695, 0.0000, 35739.30941],
[500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 36135.09172],
[500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35286.58353],
[500.0000, 710.4842, 1100.0000, 100.0000, 0.0000, 100.0000, 900.0000, 13167, 0.0000, 35081.36584]])
# VS信号,先卖后买,交割期为2天(股票)1天(现金)
self.vs_res_sb20 = np.array(
[[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000],
[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000],
[0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000],
[400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000],
[400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736],
[200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736],
[200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736],
[200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736],
[0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470],
[1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212],
[600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575],
[600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906],
[700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317],
[700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447],
[700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608],
[700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309],
[500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092],
[500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584],
[500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]])
# VS信号,先买后卖,交割期为2天(股票)1天(现金)
self.vs_res_bs21 = np.array(
[[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 10000.000],
[0.000, 0.000, 0.000, 0.000, 500.000, 0.000, 0.000, 7750.000, 0.000, 9925.000],
[0.000, 0.000, 0.000, 0.000, 500.000, 300.000, 300.000, 4954.000, 0.000, 9785.000],
[400.000, 400.000, 0.000, 0.000, 500.000, 300.000, 300.000, 878.000, 0.000, 9666.000],
[400.000, 400.000, 173.176, 0.000, 500.000, 300.000, 300.000, 0.000, 0.000, 9731.000],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9830.927],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9785.854],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9614.341],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9303.195],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8834.440],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8712.755],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 8717.951],
[400.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 1592.000, 0.000, 9079.148],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9166.028],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9023.661],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9291.686],
[200.000, 400.000, 173.176, 0.000, 100.000, 300.000, 300.000, 2598.000, 0.000, 9411.637],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9706.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9822.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9986.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 300.000, 3619.736, 0.000, 9805.736],
[200.000, 400.000, 0.000, 0.000, 100.000, 300.000, 0.000, 4993.736, 0.000, 9704.736],
[200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9567.736],
[200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9209.736],
[200.000, 400.000, 0.000, 0.000, 600.000, 300.000, 0.000, 2048.736, 0.000, 9407.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9329.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9545.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9652.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9414.736],
[0.000, 400.000, 0.000, 300.000, 600.000, 300.000, 0.000, 1779.736, 0.000, 9367.736],
[0.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 9319.736, 0.000, 19556.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20094.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19849.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19802.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19487.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19749.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19392.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19671.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19756.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 20111.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19867.736],
[500.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 6094.736, 0.000, 19775.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20314.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20310.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 900.000, 0.000, 1990.736, 0.000, 20253.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20044.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20495.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 19798.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20103.736],
[1100.000, 400.000, 400.000, 300.000, 300.000, 500.000, 600.000, 1946.736, 0.000, 20864.736],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20425.736],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20137.841],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20711.357],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21470.389],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21902.954],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 20962.954],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21833.518],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21941.817],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21278.518],
[1100.000, 710.484, 400.000, 300.000, 300.000, 500.000, 600.000, 0.000, 0.000, 21224.470],
[1100.000, 710.484, 400.000, 300.000, 600.000, 500.000, 600.000, 9160.000, 0.000, 31225.212],
[600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30894.575],
[600.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 7488.000, 0.000, 30764.381],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31815.583],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 31615.422],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 32486.139],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 33591.285],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34056.543],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34756.486],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34445.543],
[1100.000, 710.484, 400.000, 800.000, 600.000, 700.000, 600.000, 4208.000, 0.000, 34433.954],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33870.470],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34014.301],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34680.567],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33890.995],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34004.664],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 34127.777],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33421.164],
[1100.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11346.000, 0.000, 33120.906],
[700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 32613.317],
[700.000, 710.484, 400.000, 100.000, 600.000, 100.000, 600.000, 13830.000, 0.000, 33168.156],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33504.624],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 33652.132],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 34680.487],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35557.519],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35669.713],
[700.000, 1010.484, 400.000, 100.000, 600.000, 100.000, 600.000, 11151.000, 0.000, 35211.447],
[700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35550.608],
[700.000, 1010.484, 400.000, 100.000, 0.000, 100.000, 900.000, 13530.000, 0.000, 35711.656],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35682.608],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35880.834],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36249.874],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36071.616],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35846.156],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35773.358],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 36274.946],
[700.000, 710.484, 400.000, 100.000, 0.000, 100.000, 900.000, 16695.000, 0.000, 35739.309],
[500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 36135.092],
[500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35286.584],
[500.000, 710.484, 1100.000, 100.000, 0.000, 100.000, 900.000, 13167.000, 0.000, 35081.366]])
# Multi信号处理结果,先卖后买,使用卖出的现金买进,交割期为2天(股票)0天(现金)
self.multi_res = np.array(
[[0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 9965.1867],
[0.0000, 357.2545, 0.0000, 6506.9627, 0.0000, 10033.0650],
[0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10034.8513],
[0.0000, 178.6273, 0.0000, 8273.5864, 0.0000, 10036.6376],
[150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10019.3404],
[150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10027.7062],
[150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10030.1477],
[150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10005.1399],
[150.3516, 178.6273, 0.0000, 6771.5740, 0.0000, 10002.5054],
[150.3516, 489.4532, 0.0000, 3765.8877, 0.0000, 9967.3860],
[75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10044.4059],
[75.1758, 391.5625, 0.0000, 5490.1377, 0.0000, 10078.1430],
[75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10138.2709],
[75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10050.4768],
[75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10300.0711],
[75.1758, 391.5625, 846.3525, 392.3025, 0.0000, 10392.6970],
[75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10400.5282],
[75.1758, 391.5625, 169.2705, 4644.3773, 0.0000, 10408.9220],
[75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10376.5914],
[75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10346.8794],
[75.1758, 0.0000, 169.2705, 8653.9776, 0.0000, 10364.7474],
[75.1758, 381.1856, 645.5014, 2459.1665, 0.0000, 10302.4570],
[18.7939, 381.1856, 645.5014, 3024.6764, 0.0000, 10747.4929],
[18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11150.9107],
[18.7939, 381.1856, 96.8252, 6492.3097, 0.0000, 11125.2946],
[18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11191.9956],
[18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11145.7486],
[18.7939, 114.3557, 96.8252, 9227.3166, 0.0000, 11090.0768],
[132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11113.8733],
[132.5972, 114.3557, 864.3802, 4223.9548, 0.0000, 11456.3281],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21983.7333],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22120.6165],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21654.5327],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21429.6550],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 21912.5643],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 22516.3100],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23169.0777],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23390.8080],
[132.5972, 114.3557, 864.3802, 14223.9548, 0.0000, 23743.3742],
[132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 23210.7311],
[132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24290.4375],
[132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 24335.3279],
[132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18317.3553],
[132.5972, 559.9112, 864.3802, 9367.3999, 0.0000, 18023.4660],
[259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24390.0527],
[259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24389.6421],
[259.4270, 559.9112, 0.0000, 15820.6915, 0.0000, 24483.5953],
[0.0000, 559.9112, 0.0000, 18321.5674, 0.0000, 24486.1895],
[0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389],
[0.0000, 0.0000, 0.0000, 24805.3389, 0.0000, 24805.3389]])
def test_loop_step_pt_sb00(self):
""" test loop step PT-signal, sell first"""
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=10000,
own_amounts=np.zeros(7, dtype='float'),
available_cash=10000,
available_amounts=np.zeros(7, dtype='float'),
op=self.pt_signals[0],
prices=self.prices[0],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 1 result in complete looping: \n'
f'cash_change: +{c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = 10000 + c_g + c_s
amounts = np.zeros(7, dtype='float') + a_p + a_s
self.assertAlmostEqual(cash, 7500)
self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0])))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_sb00[2][7],
own_amounts=self.pt_res_sb00[2][0:7],
available_cash=self.pt_res_sb00[2][7],
available_amounts=self.pt_res_sb00[2][0:7],
op=self.pt_signals[3],
prices=self.prices[3],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 4 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_sb00[2][7] + c_g + c_s
amounts = self.pt_res_sb00[2][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_sb00[3][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_sb00[3][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_sb00[30][7],
own_amounts=self.pt_res_sb00[30][0:7],
available_cash=self.pt_res_sb00[30][7],
available_amounts=self.pt_res_sb00[30][0:7],
op=self.pt_signals[31],
prices=self.prices[31],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 32 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_sb00[30][7] + c_g + c_s
amounts = self.pt_res_sb00[30][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_sb00[31][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_sb00[31][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_sb00[59][7] + 10000,
own_amounts=self.pt_res_sb00[59][0:7],
available_cash=self.pt_res_sb00[59][7] + 10000,
available_amounts=self.pt_res_sb00[59][0:7],
op=self.pt_signals[60],
prices=self.prices[60],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 61 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_sb00[59][7] + c_g + c_s + 10000
amounts = self.pt_res_sb00[59][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_sb00[60][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_sb00[60][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.pt_signals[61],
prices=self.prices[61],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 62 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_sb00[61][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_sb00[61][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_sb00[95][7],
own_amounts=self.pt_res_sb00[95][0:7],
available_cash=self.pt_res_sb00[95][7],
available_amounts=self.pt_res_sb00[95][0:7],
op=self.pt_signals[96],
prices=self.prices[96],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 97 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_sb00[96][7] + c_g + c_s
amounts = self.pt_res_sb00[96][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_sb00[96][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_sb00[96][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.pt_signals[97],
prices=self.prices[97],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 98 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_sb00[97][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_sb00[97][0:7]))
def test_loop_step_pt_bs00(self):
""" test loop step PT-signal, buy first"""
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=10000,
own_amounts=np.zeros(7, dtype='float'),
available_cash=10000,
available_amounts=np.zeros(7, dtype='float'),
op=self.pt_signals[0],
prices=self.prices[0],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 1 result in complete looping: \n'
f'cash_change: +{c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = 10000 + c_g + c_s
amounts = np.zeros(7, dtype='float') + a_p + a_s
self.assertAlmostEqual(cash, 7500)
self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0])))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_bs00[2][7],
own_amounts=self.pt_res_bs00[2][0:7],
available_cash=self.pt_res_bs00[2][7],
available_amounts=self.pt_res_bs00[2][0:7],
op=self.pt_signals[3],
prices=self.prices[3],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 4 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_bs00[2][7] + c_g + c_s
amounts = self.pt_res_bs00[2][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_bs00[3][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_bs00[3][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_bs00[30][7],
own_amounts=self.pt_res_bs00[30][0:7],
available_cash=self.pt_res_bs00[30][7],
available_amounts=self.pt_res_bs00[30][0:7],
op=self.pt_signals[31],
prices=self.prices[31],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 32 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_bs00[30][7] + c_g + c_s
amounts = self.pt_res_bs00[30][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_bs00[31][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_bs00[31][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_bs00[59][7] + 10000,
own_amounts=self.pt_res_bs00[59][0:7],
available_cash=self.pt_res_bs00[59][7] + 10000,
available_amounts=self.pt_res_bs00[59][0:7],
op=self.pt_signals[60],
prices=self.prices[60],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 61 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_bs00[59][7] + c_g + c_s + 10000
amounts = self.pt_res_bs00[59][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_bs00[60][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_bs00[60][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.pt_signals[61],
prices=self.prices[61],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 62 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_bs00[61][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_bs00[61][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=self.pt_res_bs00[95][7],
own_amounts=self.pt_res_bs00[95][0:7],
available_cash=self.pt_res_bs00[95][7],
available_amounts=self.pt_res_bs00[95][0:7],
op=self.pt_signals[96],
prices=self.prices[96],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 97 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.pt_res_bs00[96][7] + c_g + c_s
amounts = self.pt_res_bs00[96][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_bs00[96][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_bs00[96][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=0,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.pt_signals[97],
prices=self.prices[97],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 98 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.pt_res_bs00[97][7], 2)
self.assertTrue(np.allclose(amounts, self.pt_res_bs00[97][0:7]))
def test_loop_step_ps_sb00(self):
""" test loop step PS-signal, sell first"""
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=10000,
own_amounts=np.zeros(7, dtype='float'),
available_cash=10000,
available_amounts=np.zeros(7, dtype='float'),
op=self.ps_signals[0],
prices=self.prices[0],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 1 result in complete looping: \n'
f'cash_change: +{c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = 10000 + c_g + c_s
amounts = np.zeros(7, dtype='float') + a_p + a_s
self.assertAlmostEqual(cash, 7500)
self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0])))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_sb00[2][7],
own_amounts=self.ps_res_sb00[2][0:7],
available_cash=self.ps_res_sb00[2][7],
available_amounts=self.ps_res_sb00[2][0:7],
op=self.ps_signals[3],
prices=self.prices[3],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 4 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_sb00[2][7] + c_g + c_s
amounts = self.ps_res_sb00[2][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_sb00[3][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_sb00[3][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_sb00[30][7],
own_amounts=self.ps_res_sb00[30][0:7],
available_cash=self.ps_res_sb00[30][7],
available_amounts=self.ps_res_sb00[30][0:7],
op=self.ps_signals[31],
prices=self.prices[31],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 32 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_sb00[30][7] + c_g + c_s
amounts = self.ps_res_sb00[30][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_sb00[31][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_sb00[31][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_sb00[59][7] + 10000,
own_amounts=self.ps_res_sb00[59][0:7],
available_cash=self.ps_res_sb00[59][7] + 10000,
available_amounts=self.ps_res_sb00[59][0:7],
op=self.ps_signals[60],
prices=self.prices[60],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 61 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_sb00[59][7] + c_g + c_s + 10000
amounts = self.ps_res_sb00[59][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_sb00[60][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_sb00[60][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.ps_signals[61],
prices=self.prices[61],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 62 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_sb00[61][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_sb00[61][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_sb00[95][7],
own_amounts=self.ps_res_sb00[95][0:7],
available_cash=self.ps_res_sb00[95][7],
available_amounts=self.ps_res_sb00[95][0:7],
op=self.ps_signals[96],
prices=self.prices[96],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 97 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_sb00[96][7] + c_g + c_s
amounts = self.ps_res_sb00[96][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_sb00[96][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_sb00[96][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.ps_signals[97],
prices=self.prices[97],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 98 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_sb00[97][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_sb00[97][0:7]))
def test_loop_step_ps_bs00(self):
""" test loop step PS-signal, buy first"""
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=10000,
own_amounts=np.zeros(7, dtype='float'),
available_cash=10000,
available_amounts=np.zeros(7, dtype='float'),
op=self.ps_signals[0],
prices=self.prices[0],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 1 result in complete looping: \n'
f'cash_change: +{c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = 10000 + c_g + c_s
amounts = np.zeros(7, dtype='float') + a_p + a_s
self.assertAlmostEqual(cash, 7500)
self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 555.5555556, 0, 0])))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_bs00[2][7],
own_amounts=self.ps_res_sb00[2][0:7],
available_cash=self.ps_res_bs00[2][7],
available_amounts=self.ps_res_bs00[2][0:7],
op=self.ps_signals[3],
prices=self.prices[3],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 4 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_bs00[2][7] + c_g + c_s
amounts = self.ps_res_bs00[2][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_bs00[3][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_bs00[3][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_bs00[30][7],
own_amounts=self.ps_res_sb00[30][0:7],
available_cash=self.ps_res_bs00[30][7],
available_amounts=self.ps_res_bs00[30][0:7],
op=self.ps_signals[31],
prices=self.prices[31],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 32 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_bs00[30][7] + c_g + c_s
amounts = self.ps_res_bs00[30][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_bs00[31][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_bs00[31][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_bs00[59][7] + 10000,
own_amounts=self.ps_res_bs00[59][0:7],
available_cash=self.ps_res_bs00[59][7] + 10000,
available_amounts=self.ps_res_bs00[59][0:7],
op=self.ps_signals[60],
prices=self.prices[60],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 61 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_bs00[59][7] + c_g + c_s + 10000
amounts = self.ps_res_bs00[59][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_bs00[60][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_bs00[60][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.ps_signals[61],
prices=self.prices[61],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 62 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_bs00[61][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_bs00[61][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=self.ps_res_bs00[95][7],
own_amounts=self.ps_res_bs00[95][0:7],
available_cash=self.ps_res_bs00[95][7],
available_amounts=self.ps_res_bs00[95][0:7],
op=self.ps_signals[96],
prices=self.prices[96],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 97 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.ps_res_bs00[96][7] + c_g + c_s
amounts = self.ps_res_bs00[96][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_bs00[96][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_bs00[96][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=1,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.ps_signals[97],
prices=self.prices[97],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 98 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.ps_res_bs00[97][7], 2)
self.assertTrue(np.allclose(amounts, self.ps_res_bs00[97][0:7]))
def test_loop_step_vs_sb00(self):
"""test loop step of Volume Signal type of signals"""
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=10000,
own_amounts=np.zeros(7, dtype='float'),
available_cash=10000,
available_amounts=np.zeros(7, dtype='float'),
op=self.vs_signals[0],
prices=self.prices[0],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 1 result in complete looping: \n'
f'cash_change: +{c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = 10000 + c_g + c_s
amounts = np.zeros(7, dtype='float') + a_p + a_s
self.assertAlmostEqual(cash, 7750)
self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0])))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_sb00[2][7],
own_amounts=self.vs_res_sb00[2][0:7],
available_cash=self.vs_res_sb00[2][7],
available_amounts=self.vs_res_sb00[2][0:7],
op=self.vs_signals[3],
prices=self.prices[3],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 4 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_sb00[2][7] + c_g + c_s
amounts = self.vs_res_sb00[2][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_sb00[3][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_sb00[3][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_sb00[30][7],
own_amounts=self.vs_res_sb00[30][0:7],
available_cash=self.vs_res_sb00[30][7],
available_amounts=self.vs_res_sb00[30][0:7],
op=self.vs_signals[31],
prices=self.prices[31],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 32 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_sb00[30][7] + c_g + c_s
amounts = self.vs_res_sb00[30][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_sb00[31][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_sb00[31][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_sb00[59][7] + 10000,
own_amounts=self.vs_res_sb00[59][0:7],
available_cash=self.vs_res_sb00[59][7] + 10000,
available_amounts=self.vs_res_sb00[59][0:7],
op=self.vs_signals[60],
prices=self.prices[60],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 61 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_sb00[59][7] + c_g + c_s + 10000
amounts = self.vs_res_sb00[59][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_sb00[60][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_sb00[60][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.vs_signals[61],
prices=self.prices[61],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 62 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_sb00[61][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_sb00[61][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_sb00[95][7],
own_amounts=self.vs_res_sb00[95][0:7],
available_cash=self.vs_res_sb00[95][7],
available_amounts=self.vs_res_sb00[95][0:7],
op=self.vs_signals[96],
prices=self.prices[96],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 97 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_sb00[96][7] + c_g + c_s
amounts = self.vs_res_sb00[96][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_sb00[96][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_sb00[96][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.vs_signals[97],
prices=self.prices[97],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=True,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 98 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_sb00[97][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_sb00[97][0:7]))
def test_loop_step_vs_bs00(self):
"""test loop step of Volume Signal type of signals"""
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=10000,
own_amounts=np.zeros(7, dtype='float'),
available_cash=10000,
available_amounts=np.zeros(7, dtype='float'),
op=self.vs_signals[0],
prices=self.prices[0],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 1 result in complete looping: \n'
f'cash_change: +{c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = 10000 + c_g + c_s
amounts = np.zeros(7, dtype='float') + a_p + a_s
self.assertAlmostEqual(cash, 7750)
self.assertTrue(np.allclose(amounts, np.array([0, 0, 0, 0, 500., 0, 0])))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_bs00[2][7],
own_amounts=self.vs_res_bs00[2][0:7],
available_cash=self.vs_res_bs00[2][7],
available_amounts=self.vs_res_bs00[2][0:7],
op=self.vs_signals[3],
prices=self.prices[3],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 4 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_bs00[2][7] + c_g + c_s
amounts = self.vs_res_bs00[2][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_bs00[3][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_bs00[3][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_bs00[30][7],
own_amounts=self.vs_res_bs00[30][0:7],
available_cash=self.vs_res_bs00[30][7],
available_amounts=self.vs_res_bs00[30][0:7],
op=self.vs_signals[31],
prices=self.prices[31],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 32 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_bs00[30][7] + c_g + c_s
amounts = self.vs_res_bs00[30][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_bs00[31][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_bs00[31][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_bs00[59][7] + 10000,
own_amounts=self.vs_res_bs00[59][0:7],
available_cash=self.vs_res_bs00[59][7] + 10000,
available_amounts=self.vs_res_bs00[59][0:7],
op=self.vs_signals[60],
prices=self.prices[60],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 61 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_bs00[59][7] + c_g + c_s + 10000
amounts = self.vs_res_bs00[59][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_bs00[60][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_bs00[60][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.vs_signals[61],
prices=self.prices[61],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 62 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_bs00[61][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_bs00[61][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=self.vs_res_bs00[95][7],
own_amounts=self.vs_res_bs00[95][0:7],
available_cash=self.vs_res_bs00[95][7],
available_amounts=self.vs_res_bs00[95][0:7],
op=self.vs_signals[96],
prices=self.prices[96],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 97 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = self.vs_res_bs00[96][7] + c_g + c_s
amounts = self.vs_res_bs00[96][0:7] + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_bs00[96][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_bs00[96][0:7]))
c_g, c_s, a_p, a_s, fee = qt.core._loop_step(signal_type=2,
own_cash=cash,
own_amounts=amounts,
available_cash=cash,
available_amounts=amounts,
op=self.vs_signals[97],
prices=self.prices[97],
rate=self.rate,
pt_buy_threshold=0.1,
pt_sell_threshold=0.1,
maximize_cash_usage=False,
allow_sell_short=False,
moq_buy=0,
moq_sell=0,
print_log=True)
print(f'day 98 result in complete looping: \n'
f'cash_change: + {c_g:.2f} / {c_s:.2f}\n'
f'amount_changed: \npurchased: {np.round(a_p, 2)}\nsold:{np.round(a_s, 2)}\n'
f'----------------------------------\n')
cash = cash + c_g + c_s
amounts = amounts + a_p + a_s
self.assertAlmostEqual(cash, self.vs_res_bs00[97][7], 2)
self.assertTrue(np.allclose(amounts, self.vs_res_bs00[97][0:7]))
def test_loop_pt(self):
""" Test looping of PT proportion target signals, with
stock delivery delay = 0 days
cash delivery delay = 0 day
buy-sell sequence = sell first
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 0 days \n'
'cash delivery delay = 0 day \n'
'buy-sell sequence = sell first')
res = apply_loop(op_type=0,
op_list=self.pt_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
# print(f'in test_loop:\nresult of loop test is \n{res}')
self.assertTrue(np.allclose(res, self.pt_res_bs00, 2))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(op_type=0,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
# print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_pt_with_delay(self):
""" Test looping of PT proportion target signals, with:
stock delivery delay = 2 days
cash delivery delay = 1 day
use_sell_cash = False
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 2 days \n'
'cash delivery delay = 1 day \n'
'maximize_cash = False (buy and sell at the same time)')
res = apply_loop(
op_type=0,
op_list=self.pt_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
inflation_rate=0,
cash_delivery_period=1,
stock_delivery_period=2,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.pt_res_bs21[i]))
print()
self.assertTrue(np.allclose(res, self.pt_res_bs21, 3))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(
op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_pt_with_delay_use_cash(self):
""" Test looping of PT proportion target signals, with:
stock delivery delay = 2 days
cash delivery delay = 0 day
use sell cash = True (sell stock first to use cash when possible
(not possible when cash delivery period != 0))
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 2 days \n'
'cash delivery delay = 1 day \n'
'maximize cash usage = True \n'
'but not applicable because cash delivery period == 1')
res = apply_loop(
op_type=0,
op_list=self.pt_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
cash_delivery_period=0,
stock_delivery_period=2,
inflation_rate=0,
max_cash_usage=True,
print_log=True)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.pt_res_sb20[i]))
print()
self.assertTrue(np.allclose(res, self.pt_res_sb20, 3))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(
op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
cash_delivery_period=1,
stock_delivery_period=2,
inflation_rate=0,
print_log=True)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_ps(self):
""" Test looping of PS Proportion Signal type of signals
"""
res = apply_loop(op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
self.assertTrue(np.allclose(res, self.ps_res_bs00, 5))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_ps_with_delay(self):
""" Test looping of PT proportion target signals, with:
stock delivery delay = 2 days
cash delivery delay = 1 day
use_sell_cash = False
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 2 days \n'
'cash delivery delay = 1 day \n'
'maximize_cash = False (buy and sell at the same time)')
res = apply_loop(
op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
inflation_rate=0,
cash_delivery_period=1,
stock_delivery_period=2,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.ps_res_bs21[i]))
print()
self.assertTrue(np.allclose(res, self.ps_res_bs21, 3))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(
op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_ps_with_delay_use_cash(self):
""" Test looping of PT proportion target signals, with:
stock delivery delay = 2 days
cash delivery delay = 0 day
use sell cash = True (sell stock first to use cash when possible
(not possible when cash delivery period != 0))
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 2 days \n'
'cash delivery delay = 1 day \n'
'maximize cash usage = True \n'
'but not applicable because cash delivery period == 1')
res = apply_loop(
op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
cash_delivery_period=0,
stock_delivery_period=2,
inflation_rate=0,
max_cash_usage=True,
print_log=True)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.ps_res_sb20[i]))
print()
self.assertTrue(np.allclose(res, self.ps_res_sb20, 3))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(
op_type=1,
op_list=self.ps_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
cash_delivery_period=1,
stock_delivery_period=2,
inflation_rate=0,
print_log=True)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_vs(self):
""" Test looping of VS Volume Signal type of signals
"""
res = apply_loop(op_type=2,
op_list=self.vs_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
self.assertTrue(np.allclose(res, self.vs_res_bs00, 5))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(op_type=2,
op_list=self.vs_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_vs_with_delay(self):
""" Test looping of PT proportion target signals, with:
stock delivery delay = 2 days
cash delivery delay = 1 day
use_sell_cash = False
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 2 days \n'
'cash delivery delay = 1 day \n'
'maximize_cash = False (buy and sell at the same time)')
res = apply_loop(
op_type=2,
op_list=self.vs_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
inflation_rate=0,
cash_delivery_period=1,
stock_delivery_period=2,
print_log=True)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.vs_res_bs21[i]))
print()
self.assertTrue(np.allclose(res, self.vs_res_bs21, 3))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.vs_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.vs_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(
op_type=1,
op_list=self.vs_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_vs_with_delay_use_cash(self):
""" Test looping of PT proportion target signals, with:
stock delivery delay = 2 days
cash delivery delay = 0 day
use sell cash = True (sell stock first to use cash when possible
(not possible when cash delivery period != 0))
"""
print('Test looping of PT proportion target signals, with:\n'
'stock delivery delay = 2 days \n'
'cash delivery delay = 1 day \n'
'maximize cash usage = True \n'
'but not applicable because cash delivery period == 1')
res = apply_loop(
op_type=2,
op_list=self.vs_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
cash_delivery_period=0,
stock_delivery_period=2,
inflation_rate=0,
max_cash_usage=True,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.vs_res_sb20[i]))
print()
self.assertTrue(np.allclose(res, self.vs_res_sb20, 3))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.vs_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.vs_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(
op_type=1,
op_list=self.vs_signal_hp,
history_list=self.history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
cash_delivery_period=1,
stock_delivery_period=2,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
def test_loop_multiple_signal(self):
""" Test looping of PS Proportion Signal type of signals
"""
res = apply_loop(op_type=1,
op_list=self.multi_signal_hp,
history_list=self.multi_history_list,
cash_plan=self.cash,
cost_rate=self.rate,
moq_buy=0,
moq_sell=0,
cash_delivery_period=0,
stock_delivery_period=2,
max_cash_usage=True,
inflation_rate=0,
print_log=False)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}\n'
f'result comparison line by line:')
for i in range(len(res)):
print(np.around(res.values[i]))
print(np.around(self.multi_res[i]))
print()
self.assertTrue(np.allclose(res, self.multi_res, 5))
print(f'test assertion errors in apply_loop: detect moqs that are not compatible')
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
0, 1,
0,
False)
self.assertRaises(AssertionError,
apply_loop,
0,
self.ps_signal_hp,
self.history_list,
self.cash,
self.rate,
1, 5,
0,
False)
print(f'test loop results with moq equal to 100')
res = apply_loop(op_type=1,
op_list=self.multi_signal_hp,
history_list=self.multi_history_list,
cash_plan=self.cash,
cost_rate=self.rate2,
moq_buy=100,
moq_sell=1,
cash_delivery_period=0,
stock_delivery_period=2,
max_cash_usage=False,
inflation_rate=0,
print_log=True)
self.assertIsInstance(res, pd.DataFrame)
print(f'in test_loop:\nresult of loop test is \n{res}')
class TestStrategy(unittest.TestCase):
""" test all properties and methods of strategy base class"""
def setUp(self) -> None:
pass
class TestLSStrategy(RollingTiming):
"""用于test测试的简单多空蒙板生成策略。基于RollingTiming滚动择时方法生成
该策略有两个参数,N与Price
N用于计算OHLC价格平均值的N日简单移动平均,判断,当移动平均值大于等于Price时,状态为看多,否则为看空
"""
def __init__(self):
super().__init__(stg_name='test_LS',
stg_text='test long/short strategy',
par_count=2,
par_types='discr, conti',
par_bounds_or_enums=([1, 5], [2, 10]),
data_types='close, open, high, low',
data_freq='d',
window_length=5)
pass
def _realize(self, hist_data: np.ndarray, params: tuple):
n, price = params
h = hist_data.T
avg = (h[0] + h[1] + h[2] + h[3]) / 4
ma = sma(avg, n)
if ma[-1] < price:
return 0
else:
return 1
class TestSelStrategy(SimpleSelecting):
"""用于Test测试的简单选股策略,基于Selecting策略生成
策略没有参数,选股周期为5D
在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。
选股比例为平均分配
"""
def __init__(self):
super().__init__(stg_name='test_SEL',
stg_text='test portfolio selection strategy',
par_count=0,
par_types='',
par_bounds_or_enums=(),
data_types='high, low, close',
data_freq='d',
sample_freq='10d',
window_length=5)
pass
def _realize(self, hist_data: np.ndarray, params: tuple):
avg = np.nanmean(hist_data, axis=(1, 2))
dif = (hist_data[:, :, 2] - np.roll(hist_data[:, :, 2], 1, 1))
dif_no_nan = np.array([arr[~np.isnan(arr)][-1] for arr in dif])
difper = dif_no_nan / avg
large2 = difper.argsort()[1:]
chosen = np.zeros_like(avg)
chosen[large2] = 0.5
return chosen
class TestSelStrategyDiffTime(SimpleSelecting):
"""用于Test测试的简单选股策略,基于Selecting策略生成
策略没有参数,选股周期为5D
在每个选股周期内,从股票池的三只股票中选出今日变化率 = (今收-昨收)/平均股价(OHLC平均股价)最高的两支,放入中选池,否则落选。
选股比例为平均分配
"""
# TODO: This strategy is not working, find out why and improve
def __init__(self):
super().__init__(stg_name='test_SEL',
stg_text='test portfolio selection strategy',
par_count=0,
par_types='',
par_bounds_or_enums=(),
data_types='close, low, open',
data_freq='d',
sample_freq='w',
window_length=2)
pass
def _realize(self, hist_data: np.ndarray, params: tuple):
avg = hist_data.mean(axis=1).squeeze()
difper = (hist_data[:, :, 0] - np.roll(hist_data[:, :, 0], 1))[:, -1] / avg
large2 = difper.argsort()[0:2]
chosen = np.zeros_like(avg)
chosen[large2] = 0.5
return chosen
class TestSigStrategy(SimpleTiming):
"""用于Test测试的简单信号生成策略,基于SimpleTiming策略生成
策略有三个参数,第一个参数为ratio,另外两个参数为price1以及price2
ratio是k线形状比例的阈值,定义为abs((C-O)/(H-L))。当这个比值小于ratio阈值时,判断该K线为十字交叉(其实还有丁字等多种情形,但这里做了
简化处理。
信号生成的规则如下:
1,当某个K线出现十字交叉,且昨收与今收之差大于price1时,买入信号
2,当某个K线出现十字交叉,且昨收与今收之差小于price2时,卖出信号
"""
def __init__(self):
super().__init__(stg_name='test_SIG',
stg_text='test signal creation strategy',
par_count=3,
par_types='conti, conti, conti',
par_bounds_or_enums=([2, 10], [0, 3], [0, 3]),
data_types='close, open, high, low',
window_length=2)
pass
def _realize(self, hist_data: np.ndarray, params: tuple):
r, price1, price2 = params
h = hist_data.T
ratio = np.abs((h[0] - h[1]) / (h[3] - h[2]))
diff = h[0] - np.roll(h[0], 1)
sig = np.where((ratio < r) & (diff > price1),
1,
np.where((ratio < r) & (diff < price2), -1, 0))
return sig
class MyStg(qt.RollingTiming):
"""自定义双均线择时策略策略"""
def __init__(self):
"""这个均线择时策略只有三个参数:
- SMA 慢速均线,所选择的股票
- FMA 快速均线
- M 边界值
策略的其他说明
"""
"""
必须初始化的关键策略参数清单:
"""
super().__init__(
pars=(20, 100, 0.01),
par_count=3,
par_types=['discr', 'discr', 'conti'],
par_bounds_or_enums=[(10, 250), (10, 250), (0.0, 0.5)],
stg_name='CUSTOM ROLLING TIMING STRATEGY',
stg_text='Customized Rolling Timing Strategy for Testing',
data_types='close',
window_length=100,
)
print(f'=====================\n====================\n'
f'custom strategy initialized, \npars: {self.pars}\npar_count:{self.par_count}\npar_types:'
f'{self.par_types}\n'
f'{self.info()}')
# 策略的具体实现代码写在策略的_realize()函数中
# 这个函数固定接受两个参数: hist_price代表特定组合的历史数据, params代表具体的策略参数
def _realize(self, hist_price, params):
"""策略的具体实现代码:
s:短均线计算日期;l:长均线计算日期;m:均线边界宽度;hesitate:均线跨越类型"""
f, s, m = params
# 临时处理措施,在策略实现层对传入的数据切片,后续应该在策略实现层以外事先对数据切片,保证传入的数据符合data_types参数即可
h = hist_price.T
# 计算长短均线的当前值
s_ma = qt.sma(h[0], s)[-1]
f_ma = qt.sma(h[0], f)[-1]
# 计算慢均线的停止边界,当快均线在停止边界范围内时,平仓,不发出买卖信号
s_ma_u = s_ma * (1 + m)
s_ma_l = s_ma * (1 - m)
# 根据观望模式在不同的点位产生Long/short/empty标记
if f_ma > s_ma_u: # 当快均线在慢均线停止范围以上时,持有多头头寸
return 1
elif s_ma_l < f_ma < s_ma_u: # 当均线在停止边界以内时,平仓
return 0
else: # f_ma < s_ma_l 当快均线在慢均线停止范围以下时,持有空头头寸
return -1
class TestOperator(unittest.TestCase):
"""全面测试Operator对象的所有功能。包括:
1, Strategy 参数的设置
2, 历史数据的获取与分配提取
3, 策略优化参数的批量设置和优化空间的获取
4, 策略输出值的正确性验证
5, 策略结果的混合结果确认
"""
def setUp(self):
"""prepare data for Operator test"""
print('start testing HistoryPanel object\n')
# build up test data: a 4-type, 3-share, 50-day matrix of prices that contains nan values in some days
# for some share_pool
# for share1:
data_rows = 50
share1_close = [10.04, 10, 10, 9.99, 9.97, 9.99, 10.03, 10.03, 10.06, 10.06, 10.11,
10.09, 10.07, 10.06, 10.09, 10.03, 10.03, 10.06, 10.08, 10, 9.99,
10.03, 10.03, 10.06, 10.03, 9.97, 9.94, 9.83, 9.77, 9.84, 9.91, 9.93,
9.96, 9.91, 9.91, 9.88, 9.91, 9.64, 9.56, 9.57, 9.55, 9.57, 9.61, 9.61,
9.55, 9.57, 9.63, 9.64, 9.65, 9.62]
share1_open = [10.02, 10, 9.98, 9.97, 9.99, 10.01, 10.04, 10.06, 10.06, 10.11,
10.11, 10.07, 10.06, 10.09, 10.03, 10.02, 10.06, 10.08, 9.99, 10,
10.03, 10.02, 10.06, 10.03, 9.97, 9.94, 9.83, 9.78, 9.77, 9.91, 9.92,
9.97, 9.91, 9.9, 9.88, 9.91, 9.63, 9.64, 9.57, 9.55, 9.58, 9.61, 9.62,
9.55, 9.57, 9.61, 9.63, 9.64, 9.61, 9.56]
share1_high = [10.07, 10, 10, 10, 10.03, 10.03, 10.04, 10.09, 10.1, 10.14, 10.11, 10.1,
10.09, 10.09, 10.1, 10.05, 10.07, 10.09, 10.1, 10, 10.04, 10.04, 10.06,
10.09, 10.05, 9.97, 9.96, 9.86, 9.77, 9.92, 9.94, 9.97, 9.97, 9.92, 9.92,
9.92, 9.93, 9.64, 9.58, 9.6, 9.58, 9.62, 9.62, 9.64, 9.59, 9.62, 9.63,
9.7, 9.66, 9.64]
share1_low = [9.99, 10, 9.97, 9.97, 9.97, 9.98, 9.99, 10.03, 10.03, 10.04, 10.11, 10.07,
10.05, 10.03, 10.03, 10.01, 9.99, 10.03, 9.95, 10, 9.95, 10, 10.01, 9.99,
9.96, 9.89, 9.83, 9.77, 9.77, 9.8, 9.9, 9.91, 9.89, 9.89, 9.87, 9.85, 9.6,
9.64, 9.53, 9.55, 9.54, 9.55, 9.58, 9.54, 9.53, 9.53, 9.63, 9.64, 9.59, 9.56]
# for share2:
share2_close = [9.68, 9.87, 9.86, 9.87, 9.79, 9.82, 9.8, 9.66, 9.62, 9.58, 9.69, 9.78, 9.75,
9.96, 9.9, 10.04, 10.06, 10.08, 10.24, 10.24, 10.24, 9.86, 10.13, 10.12,
10.1, 10.25, 10.24, 10.22, 10.75, 10.64, 10.56, 10.6, 10.42, 10.25, 10.24,
10.49, 10.57, 10.63, 10.48, 10.37, 10.96, 11.02, np.nan, np.nan, 10.88, 10.87, 11.01,
11.01, 11.58, 11.8]
share2_open = [9.88, 9.88, 9.89, 9.75, 9.74, 9.8, 9.62, 9.65, 9.58, 9.67, 9.81, 9.8, 10,
9.95, 10.1, 10.06, 10.14, 9.9, 10.2, 10.29, 9.86, 9.48, 10.01, 10.24, 10.26,
10.24, 10.12, 10.65, 10.64, 10.56, 10.42, 10.43, 10.29, 10.3, 10.44, 10.6,
10.67, 10.46, 10.39, 10.9, 11.01, 11.01, np.nan, np.nan, 10.82, 11.02, 10.96,
11.55, 11.74, 11.8]
share2_high = [9.91, 10.04, 9.93, 10.04, 9.84, 9.88, 9.99, 9.7, 9.67, 9.71, 9.85, 9.9, 10,
10.2, 10.11, 10.18, 10.21, 10.26, 10.38, 10.47, 10.42, 10.07, 10.24, 10.27,
10.38, 10.43, 10.39, 10.65, 10.84, 10.65, 10.73, 10.63, 10.51, 10.35, 10.46,
10.63, 10.74, 10.76, 10.54, 11.02, 11.12, 11.17, np.nan, np.nan, 10.92, 11.15,
11.11, 11.55, 11.95, 11.93]
share2_low = [9.63, 9.84, 9.81, 9.74, 9.67, 9.72, 9.57, 9.54, 9.51, 9.47, 9.68, 9.63, 9.75,
9.65, 9.9, 9.93, 10.03, 9.8, 10.14, 10.09, 9.78, 9.21, 9.11, 9.68, 10.05,
10.12, 9.89, 9.89, 10.59, 10.43, 10.34, 10.32, 10.21, 10.2, 10.18, 10.36,
10.51, 10.41, 10.32, 10.37, 10.87, 10.95, np.nan, np.nan, 10.65, 10.71, 10.75,
10.91, 11.31, 11.58]
# for share3:
share3_close = [6.64, 7.26, 7.03, 6.87, np.nan, 6.64, 6.85, 6.7, 6.39, 6.22, 5.92, 5.91, 6.11,
5.91, 6.23, 6.28, 6.28, 6.27, np.nan, 5.56, 5.67, 5.16, 5.69, 6.32, 6.14, 6.25,
5.79, 5.26, 5.05, 5.45, 6.06, 6.21, 5.69, 5.46, 6.02, 6.69, 7.43, 7.72, 8.16,
7.83, 8.7, 8.71, 8.88, 8.54, 8.87, 8.87, 8.18, 7.8, 7.97, 8.25]
share3_open = [7.26, 7, 6.88, 6.91, np.nan, 6.81, 6.63, 6.45, 6.16, 6.24, 5.96, 5.97, 5.96,
6.2, 6.35, 6.11, 6.37, 5.58, np.nan, 5.65, 5.19, 5.42, 6.3, 6.15, 6.05, 5.89,
5.22, 5.2, 5.07, 6.04, 6.12, 5.85, 5.67, 6.02, 6.04, 7.07, 7.64, 7.99, 7.59,
8.73, 8.72, 8.97, 8.58, 8.71, 8.77, 8.4, 7.95, 7.76, 8.25, 7.51]
share3_high = [7.41, 7.31, 7.14, 7, np.nan, 6.82, 6.96, 6.85, 6.5, 6.34, 6.04, 6.02, 6.12, 6.38,
6.43, 6.46, 6.43, 6.27, np.nan, 6.01, 5.67, 5.67, 6.35, 6.32, 6.43, 6.36, 5.79,
5.47, 5.65, 6.04, 6.14, 6.23, 5.83, 6.25, 6.27, 7.12, 7.82, 8.14, 8.27, 8.92,
8.76, 9.15, 8.9, 9.01, 9.16, 9, 8.27, 7.99, 8.33, 8.25]
share3_low = [6.53, 6.87, 6.83, 6.7, np.nan, 6.63, 6.57, 6.41, 6.15, 6.07, 5.89, 5.82, 5.73, 5.81,
6.1, 6.06, 6.16, 5.57, np.nan, 5.51, 5.19, 5.12, 5.69, 6.01, 5.97, 5.86, 5.18, 5.19,
4.96, 5.45, 5.84, 5.85, 5.28, 5.42, 6.02, 6.69, 7.28, 7.64, 7.25, 7.83, 8.41, 8.66,
8.53, 8.54, 8.73, 8.27, 7.95, 7.67, 7.8, 7.51]
# for sel_finance test
shares_eps = np.array([[np.nan, np.nan, np.nan],
[0.1, np.nan, np.nan],
[np.nan, 0.2, np.nan],
[np.nan, np.nan, 0.3],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 0.2],
[0.1, np.nan, np.nan],
[np.nan, 0.3, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[0.3, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, 0.3, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 0.3],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, 0, 0.2],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[0.1, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 0.2],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[0.15, np.nan, np.nan],
[np.nan, 0.1, np.nan],
[np.nan, np.nan, np.nan],
[0.1, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 0.3],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan],
[0.2, np.nan, np.nan],
[np.nan, 0.5, np.nan],
[0.4, np.nan, 0.3],
[np.nan, np.nan, np.nan],
[np.nan, 0.3, np.nan],
[0.9, np.nan, np.nan],
[np.nan, np.nan, 0.1]])
self.date_indices = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06',
'2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12',
'2016-07-13', '2016-07-14', '2016-07-15', '2016-07-18',
'2016-07-19', '2016-07-20', '2016-07-21', '2016-07-22',
'2016-07-25', '2016-07-26', '2016-07-27', '2016-07-28',
'2016-07-29', '2016-08-01', '2016-08-02', '2016-08-03',
'2016-08-04', '2016-08-05', '2016-08-08', '2016-08-09',
'2016-08-10', '2016-08-11', '2016-08-12', '2016-08-15',
'2016-08-16', '2016-08-17', '2016-08-18', '2016-08-19',
'2016-08-22', '2016-08-23', '2016-08-24', '2016-08-25',
'2016-08-26', '2016-08-29', '2016-08-30', '2016-08-31',
'2016-09-01', '2016-09-02', '2016-09-05', '2016-09-06',
'2016-09-07', '2016-09-08']
self.shares = ['000010', '000030', '000039']
self.types = ['close', 'open', 'high', 'low']
self.sel_finance_tyeps = ['eps']
self.test_data_3D = np.zeros((3, data_rows, 4))
self.test_data_2D = np.zeros((data_rows, 3))
self.test_data_2D2 = np.zeros((data_rows, 4))
self.test_data_sel_finance = np.empty((3, data_rows, 1))
# Build up 3D data
self.test_data_3D[0, :, 0] = share1_close
self.test_data_3D[0, :, 1] = share1_open
self.test_data_3D[0, :, 2] = share1_high
self.test_data_3D[0, :, 3] = share1_low
self.test_data_3D[1, :, 0] = share2_close
self.test_data_3D[1, :, 1] = share2_open
self.test_data_3D[1, :, 2] = share2_high
self.test_data_3D[1, :, 3] = share2_low
self.test_data_3D[2, :, 0] = share3_close
self.test_data_3D[2, :, 1] = share3_open
self.test_data_3D[2, :, 2] = share3_high
self.test_data_3D[2, :, 3] = share3_low
self.test_data_sel_finance[:, :, 0] = shares_eps.T
self.hp1 = qt.HistoryPanel(values=self.test_data_3D,
levels=self.shares,
columns=self.types,
rows=self.date_indices)
print(f'in test Operator, history panel is created for timing test')
self.hp1.info()
self.hp2 = qt.HistoryPanel(values=self.test_data_sel_finance,
levels=self.shares,
columns=self.sel_finance_tyeps,
rows=self.date_indices)
print(f'in test_Operator, history panel is created for selection finance test:')
self.hp2.info()
self.op = qt.Operator(strategies='dma', signal_type='PS')
self.op2 = qt.Operator(strategies='dma, macd, trix')
def test_init(self):
""" test initialization of Operator class"""
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.signal_type, 'pt')
self.assertIsInstance(op.strategies, list)
self.assertEqual(len(op.strategies), 0)
op = qt.Operator('dma')
self.assertIsInstance(op, qt.Operator)
self.assertIsInstance(op.strategies, list)
self.assertIsInstance(op.strategies[0], TimingDMA)
op = qt.Operator('dma, macd')
self.assertIsInstance(op, qt.Operator)
op = qt.Operator(['dma', 'macd'])
self.assertIsInstance(op, qt.Operator)
def test_repr(self):
""" test basic representation of Opeartor class"""
op = qt.Operator()
self.assertEqual(op.__repr__(), 'Operator()')
op = qt.Operator('macd, dma, trix, random, avg_low')
self.assertEqual(op.__repr__(), 'Operator(macd, dma, trix, random, avg_low)')
self.assertEqual(op['dma'].__repr__(), 'Q-TIMING(DMA)')
self.assertEqual(op['macd'].__repr__(), 'R-TIMING(MACD)')
self.assertEqual(op['trix'].__repr__(), 'R-TIMING(TRIX)')
self.assertEqual(op['random'].__repr__(), 'SELECT(RANDOM)')
self.assertEqual(op['avg_low'].__repr__(), 'FACTOR(AVG LOW)')
def test_info(self):
"""Test information output of Operator"""
print(f'test printing information of operator object')
self.op.info()
def test_get_strategy_by_id(self):
""" test get_strategy_by_id()"""
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op = qt.Operator('macd, dma, trix')
self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix'])
self.assertIs(op.get_strategy_by_id('macd'), op.strategies[0])
self.assertIs(op.get_strategy_by_id(1), op.strategies[1])
self.assertIs(op.get_strategy_by_id('trix'), op.strategies[2])
def test_get_items(self):
""" test method __getitem__(), it should be the same as geting strategies by id"""
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op = qt.Operator('macd, dma, trix')
self.assertEqual(op.strategy_ids, ['macd', 'dma', 'trix'])
self.assertIs(op['macd'], op.strategies[0])
self.assertIs(op['trix'], op.strategies[2])
self.assertIs(op[1], op.strategies[1])
self.assertIs(op[3], op.strategies[2])
def test_get_strategies_by_price_type(self):
""" test get_strategies_by_price_type"""
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op = qt.Operator('macd, dma, trix')
op.set_parameter('macd', price_type='open')
op.set_parameter('dma', price_type='close')
op.set_parameter('trix', price_type='open')
stg_close = op.get_strategies_by_price_type('close')
stg_open = op.get_strategies_by_price_type('open')
stg_high = op.get_strategies_by_price_type('high')
self.assertIsInstance(stg_close, list)
self.assertIsInstance(stg_open, list)
self.assertIsInstance(stg_high, list)
self.assertEqual(stg_close, [op.strategies[1]])
self.assertEqual(stg_open, [op.strategies[0], op.strategies[2]])
self.assertEqual(stg_high, [])
stg_wrong = op.get_strategies_by_price_type(123)
self.assertIsInstance(stg_wrong, list)
self.assertEqual(stg_wrong, [])
def test_get_strategy_count_by_price_type(self):
""" test get_strategy_count_by_price_type"""
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op = qt.Operator('macd, dma, trix')
op.set_parameter('macd', price_type='open')
op.set_parameter('dma', price_type='close')
op.set_parameter('trix', price_type='open')
stg_close = op.get_strategy_count_by_price_type('close')
stg_open = op.get_strategy_count_by_price_type('open')
stg_high = op.get_strategy_count_by_price_type('high')
self.assertIsInstance(stg_close, int)
self.assertIsInstance(stg_open, int)
self.assertIsInstance(stg_high, int)
self.assertEqual(stg_close, 1)
self.assertEqual(stg_open, 2)
self.assertEqual(stg_high, 0)
stg_wrong = op.get_strategy_count_by_price_type(123)
self.assertIsInstance(stg_wrong, int)
self.assertEqual(stg_wrong, 0)
def test_get_strategy_names_by_price_type(self):
""" test get_strategy_names_by_price_type"""
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op = qt.Operator('macd, dma, trix')
op.set_parameter('macd', price_type='open')
op.set_parameter('dma', price_type='close')
op.set_parameter('trix', price_type='open')
stg_close = op.get_strategy_names_by_price_type('close')
stg_open = op.get_strategy_names_by_price_type('open')
stg_high = op.get_strategy_names_by_price_type('high')
self.assertIsInstance(stg_close, list)
self.assertIsInstance(stg_open, list)
self.assertIsInstance(stg_high, list)
self.assertEqual(stg_close, ['DMA'])
self.assertEqual(stg_open, ['MACD', 'TRIX'])
self.assertEqual(stg_high, [])
stg_wrong = op.get_strategy_names_by_price_type(123)
self.assertIsInstance(stg_wrong, list)
self.assertEqual(stg_wrong, [])
def test_get_strategy_id_by_price_type(self):
""" test get_strategy_IDs_by_price_type"""
print('-----Test get strategy IDs by price type------\n')
op = qt.Operator()
self.assertIsInstance(op, qt.Operator)
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op = qt.Operator('macd, dma, trix')
op.set_parameter('macd', price_type='open')
op.set_parameter('dma', price_type='close')
op.set_parameter('trix', price_type='open')
stg_close = op.get_strategy_id_by_price_type('close')
stg_open = op.get_strategy_id_by_price_type('open')
stg_high = op.get_strategy_id_by_price_type('high')
self.assertIsInstance(stg_close, list)
self.assertIsInstance(stg_open, list)
self.assertIsInstance(stg_high, list)
self.assertEqual(stg_close, ['dma'])
self.assertEqual(stg_open, ['macd', 'trix'])
self.assertEqual(stg_high, [])
op.add_strategies('dma, macd')
op.set_parameter('dma_1', price_type='open')
op.set_parameter('macd', price_type='open')
op.set_parameter('macd_1', price_type='high')
op.set_parameter('trix', price_type='close')
print(f'Operator strategy id:\n'
f'{op.strategies} on memory pos:\n'
f'{[id(stg) for stg in op.strategies]}')
stg_close = op.get_strategy_id_by_price_type('close')
stg_open = op.get_strategy_id_by_price_type('open')
stg_high = op.get_strategy_id_by_price_type('high')
stg_all = op.get_strategy_id_by_price_type()
print(f'All IDs of strategies:\n'
f'{stg_all}\n'
f'All price types of strategies:\n'
f'{[stg.price_type for stg in op.strategies]}')
self.assertEqual(stg_close, ['dma', 'trix'])
self.assertEqual(stg_open, ['macd', 'dma_1'])
self.assertEqual(stg_high, ['macd_1'])
stg_wrong = op.get_strategy_id_by_price_type(123)
self.assertIsInstance(stg_wrong, list)
self.assertEqual(stg_wrong, [])
def test_property_strategies(self):
""" test property strategies"""
print(f'created a new simple Operator with only one strategy: DMA')
op = qt.Operator('dma')
strategies = op.strategies
self.assertIsInstance(strategies, list)
op.info()
print(f'created the second simple Operator with three strategies')
self.assertIsInstance(strategies[0], TimingDMA)
op = qt.Operator('dma, macd, cdl')
strategies = op.strategies
op.info()
self.assertIsInstance(strategies, list)
self.assertIsInstance(strategies[0], TimingDMA)
self.assertIsInstance(strategies[1], TimingMACD)
self.assertIsInstance(strategies[2], TimingCDL)
def test_property_strategy_count(self):
""" test Property strategy_count, and the method get_strategy_count_by_price_type()"""
self.assertEqual(self.op.strategy_count, 1)
self.assertEqual(self.op2.strategy_count, 3)
self.assertEqual(self.op.get_strategy_count_by_price_type(), 1)
self.assertEqual(self.op2.get_strategy_count_by_price_type(), 3)
self.assertEqual(self.op.get_strategy_count_by_price_type('close'), 1)
self.assertEqual(self.op.get_strategy_count_by_price_type('high'), 0)
self.assertEqual(self.op2.get_strategy_count_by_price_type('close'), 3)
self.assertEqual(self.op2.get_strategy_count_by_price_type('open'), 0)
def test_property_strategy_names(self):
""" test property strategy_ids"""
op = qt.Operator('dma')
self.assertIsInstance(op.strategy_ids, list)
names = op.strategy_ids[0]
print(f'names are {names}')
self.assertEqual(names, 'dma')
op = qt.Operator('dma, macd, trix, cdl')
self.assertIsInstance(op.strategy_ids, list)
self.assertEqual(op.strategy_ids[0], 'dma')
self.assertEqual(op.strategy_ids[1], 'macd')
self.assertEqual(op.strategy_ids[2], 'trix')
self.assertEqual(op.strategy_ids[3], 'cdl')
op = qt.Operator('dma, macd, trix, dma, dma')
self.assertIsInstance(op.strategy_ids, list)
self.assertEqual(op.strategy_ids[0], 'dma')
self.assertEqual(op.strategy_ids[1], 'macd')
self.assertEqual(op.strategy_ids[2], 'trix')
self.assertEqual(op.strategy_ids[3], 'dma_1')
self.assertEqual(op.strategy_ids[4], 'dma_2')
def test_property_strategy_blenders(self):
""" test property strategy blenders including property setter,
and test the method get_blender()"""
print(f'------- Test property strategy blenders ---------')
op = qt.Operator()
self.assertIsInstance(op.strategy_blenders, dict)
self.assertIsInstance(op.signal_type, str)
self.assertEqual(op.strategy_blenders, {})
self.assertEqual(op.signal_type, 'pt')
# test adding blender to empty operator
op.strategy_blenders = '1 + 2'
op.signal_type = 'proportion signal'
self.assertEqual(op.strategy_blenders, {})
self.assertEqual(op.signal_type, 'ps')
op.add_strategy('dma')
op.strategy_blenders = '1+2'
self.assertEqual(op.strategy_blenders, {'close': ['+', '2', '1']})
op.clear_strategies()
self.assertEqual(op.strategy_blenders, {})
op.add_strategies('dma, trix, macd, dma')
op.set_parameter('dma', price_type='open')
op.set_parameter('trix', price_type='high')
op.set_blender('open', '1+2')
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, ['+', '2', '1'])
self.assertEqual(blender_close, None)
self.assertEqual(blender_high, None)
op.set_blender('open', '1+2+3')
op.set_blender('abc', '1+2+3')
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
blender_abc = op.get_blender('abc')
self.assertEqual(op.strategy_blenders, {'open': ['+', '3', '+', '2', '1']})
self.assertEqual(blender_open, ['+', '3', '+', '2', '1'])
self.assertEqual(blender_close, None)
self.assertEqual(blender_high, None)
self.assertEqual(blender_abc, None)
op.set_blender('open', 123)
blender_open = op.get_blender('open')
self.assertEqual(blender_open, [])
op.set_blender(None, '1+1')
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(op.bt_price_types, ['close', 'high', 'open'])
self.assertEqual(op.get_blender(), {'close': ['+', '1', '1'],
'open': ['+', '1', '1'],
'high': ['+', '1', '1']})
self.assertEqual(blender_open, ['+', '1', '1'])
self.assertEqual(blender_close, ['+', '1', '1'])
self.assertEqual(blender_high, ['+', '1', '1'])
op.set_blender(None, ['1+1', '3+4'])
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, ['+', '4', '3'])
self.assertEqual(blender_close, ['+', '1', '1'])
self.assertEqual(blender_high, ['+', '4', '3'])
self.assertEqual(op.view_blender('open'), '3+4')
self.assertEqual(op.view_blender('close'), '1+1')
self.assertEqual(op.view_blender('high'), '3+4')
op.strategy_blenders = (['1+2', '2*3', '1+4'])
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, ['+', '4', '1'])
self.assertEqual(blender_close, ['+', '2', '1'])
self.assertEqual(blender_high, ['*', '3', '2'])
self.assertEqual(op.view_blender('open'), '1+4')
self.assertEqual(op.view_blender('close'), '1+2')
self.assertEqual(op.view_blender('high'), '2*3')
# test error inputs:
# wrong type of price_type
self.assertRaises(TypeError, op.set_blender, 1, '1+3')
# price_type not found, no change is made
op.set_blender('volume', '1+3')
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, ['+', '4', '1'])
self.assertEqual(blender_close, ['+', '2', '1'])
self.assertEqual(blender_high, ['*', '3', '2'])
# price_type not valid, no change is made
op.set_blender('closee', '1+2')
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, ['+', '4', '1'])
self.assertEqual(blender_close, ['+', '2', '1'])
self.assertEqual(blender_high, ['*', '3', '2'])
# wrong type of blender, set to empty list
op.set_blender('open', 55)
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, [])
self.assertEqual(blender_close, ['+', '2', '1'])
self.assertEqual(blender_high, ['*', '3', '2'])
# wrong type of blender, set to empty list
op.set_blender('close', ['1+2'])
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, [])
self.assertEqual(blender_close, [])
self.assertEqual(blender_high, ['*', '3', '2'])
# can't parse blender, set to empty list
op.set_blender('high', 'a+bc')
blender_open = op.get_blender('open')
blender_close = op.get_blender('close')
blender_high = op.get_blender('high')
self.assertEqual(blender_open, [])
self.assertEqual(blender_close, [])
self.assertEqual(blender_high, [])
def test_property_singal_type(self):
""" test property signal_type"""
op = qt.Operator()
self.assertIsInstance(op.signal_type, str)
self.assertEqual(op.signal_type, 'pt')
op = qt.Operator(signal_type='ps')
self.assertIsInstance(op.signal_type, str)
self.assertEqual(op.signal_type, 'ps')
op = qt.Operator(signal_type='PS')
self.assertEqual(op.signal_type, 'ps')
op = qt.Operator(signal_type='proportion signal')
self.assertEqual(op.signal_type, 'ps')
print(f'"pt" will be the default type if wrong value is given')
op = qt.Operator(signal_type='wrong value')
self.assertEqual(op.signal_type, 'pt')
print(f'test signal_type.setter')
op.signal_type = 'ps'
self.assertEqual(op.signal_type, 'ps')
print(f'test error raising')
self.assertRaises(TypeError, setattr, op, 'signal_type', 123)
self.assertRaises(ValueError, setattr, op, 'signal_type', 'wrong value')
def test_property_op_data_types(self):
""" test property op_data_types"""
op = qt.Operator()
self.assertIsInstance(op.op_data_types, list)
self.assertEqual(op.op_data_types, [])
op = qt.Operator('macd, dma, trix')
dt = op.op_data_types
self.assertEqual(dt[0], 'close')
op = qt.Operator('macd, cdl')
dt = op.op_data_types
self.assertEqual(dt[0], 'close')
self.assertEqual(dt[1], 'high')
self.assertEqual(dt[2], 'low')
self.assertEqual(dt[3], 'open')
self.assertEqual(dt, ['close', 'high', 'low', 'open'])
op.add_strategy('dma')
dt = op.op_data_types
self.assertEqual(dt[0], 'close')
self.assertEqual(dt[1], 'high')
self.assertEqual(dt[2], 'low')
self.assertEqual(dt[3], 'open')
self.assertEqual(dt, ['close', 'high', 'low', 'open'])
def test_property_op_data_type_count(self):
""" test property op_data_type_count"""
op = qt.Operator()
self.assertIsInstance(op.op_data_type_count, int)
self.assertEqual(op.op_data_type_count, 0)
op = qt.Operator('macd, dma, trix')
dtn = op.op_data_type_count
self.assertEqual(dtn, 1)
op = qt.Operator('macd, cdl')
dtn = op.op_data_type_count
self.assertEqual(dtn, 4)
op.add_strategy('dma')
dtn = op.op_data_type_count
self.assertEqual(dtn, 4)
def test_property_op_data_freq(self):
""" test property op_data_freq"""
op = qt.Operator()
self.assertIsInstance(op.op_data_freq, str)
self.assertEqual(len(op.op_data_freq), 0)
self.assertEqual(op.op_data_freq, '')
op = qt.Operator('macd, dma, trix')
dtf = op.op_data_freq
self.assertIsInstance(dtf, str)
self.assertEqual(dtf[0], 'd')
op.set_parameter('macd', data_freq='m')
dtf = op.op_data_freq
self.assertIsInstance(dtf, list)
self.assertEqual(len(dtf), 2)
self.assertEqual(dtf[0], 'd')
self.assertEqual(dtf[1], 'm')
def test_property_bt_price_types(self):
""" test property bt_price_types"""
print('------test property bt_price_tyeps-------')
op = qt.Operator()
self.assertIsInstance(op.bt_price_types, list)
self.assertEqual(len(op.bt_price_types), 0)
self.assertEqual(op.bt_price_types, [])
op = qt.Operator('macd, dma, trix')
btp = op.bt_price_types
self.assertIsInstance(btp, list)
self.assertEqual(btp[0], 'close')
op.set_parameter('macd', price_type='open')
btp = op.bt_price_types
btpc = op.bt_price_type_count
print(f'price_types are \n{btp}')
self.assertIsInstance(btp, list)
self.assertEqual(len(btp), 2)
self.assertEqual(btp[0], 'close')
self.assertEqual(btp[1], 'open')
self.assertEqual(btpc, 2)
op.add_strategies(['dma', 'macd'])
op.set_parameter('dma_1', price_type='high')
btp = op.bt_price_types
btpc = op.bt_price_type_count
self.assertEqual(btp[0], 'close')
self.assertEqual(btp[1], 'high')
self.assertEqual(btp[2], 'open')
self.assertEqual(btpc, 3)
op.remove_strategy('dma_1')
btp = op.bt_price_types
btpc = op.bt_price_type_count
self.assertEqual(btp[0], 'close')
self.assertEqual(btp[1], 'open')
self.assertEqual(btpc, 2)
op.remove_strategy('macd_1')
btp = op.bt_price_types
btpc = op.bt_price_type_count
self.assertEqual(btp[0], 'close')
self.assertEqual(btp[1], 'open')
self.assertEqual(btpc, 2)
def test_property_op_data_type_list(self):
""" test property op_data_type_list"""
op = qt.Operator()
self.assertIsInstance(op.op_data_type_list, list)
self.assertEqual(len(op.op_data_type_list), 0)
self.assertEqual(op.op_data_type_list, [])
op = qt.Operator('macd, dma, trix, cdl')
ohd = op.op_data_type_list
print(f'ohd is {ohd}')
self.assertIsInstance(ohd, list)
self.assertEqual(ohd[0], ['close'])
op.set_parameter('macd', data_types='open, close')
ohd = op.op_data_type_list
print(f'ohd is {ohd}')
self.assertIsInstance(ohd, list)
self.assertEqual(len(ohd), 4)
self.assertEqual(ohd[0], ['open', 'close'])
self.assertEqual(ohd[1], ['close'])
self.assertEqual(ohd[2], ['close'])
self.assertEqual(ohd[3], ['open', 'high', 'low', 'close'])
def test_property_op_history_data(self):
""" Test this important function to get operation history data that shall be used in
signal generation
these data are stored in list of nd-arrays, each ndarray represents the data
that is needed for each and every strategy
"""
print(f'------- Test getting operation history data ---------')
op = qt.Operator()
self.assertIsInstance(op.strategy_blenders, dict)
self.assertIsInstance(op.signal_type, str)
self.assertEqual(op.strategy_blenders, {})
self.assertEqual(op.op_history_data, {})
self.assertEqual(op.signal_type, 'pt')
def test_property_opt_space_par(self):
""" test property opt_space_par"""
print(f'-----test property opt_space_par--------:\n')
op = qt.Operator()
self.assertIsInstance(op.opt_space_par, tuple)
self.assertIsInstance(op.opt_space_par[0], list)
self.assertIsInstance(op.opt_space_par[1], list)
self.assertEqual(len(op.opt_space_par), 2)
self.assertEqual(op.opt_space_par, ([], []))
op = qt.Operator('macd, dma, trix, cdl')
osp = op.opt_space_par
print(f'before setting opt_tags opt_space_par is empty:\n'
f'osp is {osp}\n')
self.assertIsInstance(osp, tuple)
self.assertEqual(osp[0], [])
self.assertEqual(osp[1], [])
op.set_parameter('macd', opt_tag=1)
op.set_parameter('dma', opt_tag=1)
osp = op.opt_space_par
print(f'after setting opt_tags opt_space_par is not empty:\n'
f'osp is {osp}\n')
self.assertIsInstance(osp, tuple)
self.assertEqual(len(osp), 2)
self.assertIsInstance(osp[0], list)
self.assertIsInstance(osp[1], list)
self.assertEqual(len(osp[0]), 6)
self.assertEqual(len(osp[1]), 6)
self.assertEqual(osp[0], [(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)])
self.assertEqual(osp[1], ['discr', 'discr', 'discr', 'discr', 'discr', 'discr'])
def test_property_opt_types(self):
""" test property opt_tags"""
print(f'-----test property opt_tags--------:\n')
op = qt.Operator()
self.assertIsInstance(op.opt_tags, list)
self.assertEqual(len(op.opt_tags), 0)
self.assertEqual(op.opt_tags, [])
op = qt.Operator('macd, dma, trix, cdl')
otp = op.opt_tags
print(f'before setting opt_tags opt_space_par is empty:\n'
f'otp is {otp}\n')
self.assertIsInstance(otp, list)
self.assertEqual(otp, [0, 0, 0, 0])
op.set_parameter('macd', opt_tag=1)
op.set_parameter('dma', opt_tag=1)
otp = op.opt_tags
print(f'after setting opt_tags opt_space_par is not empty:\n'
f'otp is {otp}\n')
self.assertIsInstance(otp, list)
self.assertEqual(len(otp), 4)
self.assertEqual(otp, [1, 1, 0, 0])
def test_property_max_window_length(self):
""" test property max_window_length"""
print(f'-----test property max window length--------:\n')
op = qt.Operator()
self.assertIsInstance(op.max_window_length, int)
self.assertEqual(op.max_window_length, 0)
op = qt.Operator('macd, dma, trix, cdl')
mwl = op.max_window_length
print(f'before setting window_length the value is 270:\n'
f'mwl is {mwl}\n')
self.assertIsInstance(mwl, int)
self.assertEqual(mwl, 270)
op.set_parameter('macd', window_length=300)
op.set_parameter('dma', window_length=350)
mwl = op.max_window_length
print(f'after setting window_length the value is new set value:\n'
f'mwl is {mwl}\n')
self.assertIsInstance(mwl, int)
self.assertEqual(mwl, 350)
def test_property_bt_price_type_count(self):
""" test property bt_price_type_count"""
print(f'-----test property bt_price_type_count--------:\n')
op = qt.Operator()
self.assertIsInstance(op.bt_price_type_count, int)
self.assertEqual(op.bt_price_type_count, 0)
op = qt.Operator('macd, dma, trix, cdl')
otp = op.bt_price_type_count
print(f'before setting price_type the price count is 1:\n'
f'otp is {otp}\n')
self.assertIsInstance(otp, int)
self.assertEqual(otp, 1)
op.set_parameter('macd', price_type='open')
op.set_parameter('dma', price_type='open')
otp = op.bt_price_type_count
print(f'after setting price_type the price type count is 2:\n'
f'otp is {otp}\n')
self.assertIsInstance(otp, int)
self.assertEqual(otp, 2)
def test_property_set(self):
""" test all property setters:
setting following properties:
- strategy_blenders
- signal_type
other properties can not be set"""
print(f'------- Test setting properties ---------')
op = qt.Operator()
self.assertIsInstance(op.strategy_blenders, dict)
self.assertIsInstance(op.signal_type, str)
self.assertEqual(op.strategy_blenders, {})
self.assertEqual(op.signal_type, 'pt')
op.strategy_blenders = '1 + 2'
op.signal_type = 'proportion signal'
self.assertEqual(op.strategy_blenders, {})
self.assertEqual(op.signal_type, 'ps')
op = qt.Operator('macd, dma, trix, cdl')
# TODO: 修改set_parameter(),使下面的用法成立
# a_to_sell.set_parameter('dma, cdl', price_type='open')
op.set_parameter('dma', price_type='open')
op.set_parameter('cdl', price_type='open')
sb = op.strategy_blenders
st = op.signal_type
self.assertIsInstance(sb, dict)
print(f'before setting: strategy_blenders={sb}')
self.assertEqual(sb, {})
op.strategy_blenders = '1+2 * 3'
sb = op.strategy_blenders
print(f'after setting strategy_blender={sb}')
self.assertEqual(sb, {'close': ['+', '*', '3', '2', '1'],
'open': ['+', '*', '3', '2', '1']})
op.strategy_blenders = ['1+2', '3-4']
sb = op.strategy_blenders
print(f'after setting strategy_blender={sb}')
self.assertEqual(sb, {'close': ['+', '2', '1'],
'open': ['-', '4', '3']})
def test_operator_ready(self):
"""test the method ready of Operator"""
op = qt.Operator()
print(f'operator is ready? "{op.ready}"')
def test_operator_add_strategy(self):
"""test adding strategies to Operator"""
op = qt.Operator('dma, all, urgent')
self.assertIsInstance(op, qt.Operator)
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[1], qt.SelectingAll)
self.assertIsInstance(op.strategies[2], qt.RiconUrgent)
self.assertIsInstance(op[0], qt.TimingDMA)
self.assertIsInstance(op[1], qt.SelectingAll)
self.assertIsInstance(op[2], qt.RiconUrgent)
self.assertIsInstance(op['dma'], qt.TimingDMA)
self.assertIsInstance(op['all'], qt.SelectingAll)
self.assertIsInstance(op['urgent'], qt.RiconUrgent)
self.assertEqual(op.strategy_count, 3)
print(f'test adding strategies into existing op')
print('test adding strategy by string')
op.add_strategy('macd')
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[3], qt.TimingMACD)
self.assertEqual(op.strategy_count, 4)
op.add_strategy('random')
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[4], qt.SelectingRandom)
self.assertEqual(op.strategy_count, 5)
test_ls = TestLSStrategy()
op.add_strategy(test_ls)
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[5], TestLSStrategy)
self.assertEqual(op.strategy_count, 6)
print(f'Test different instance of objects are added to operator')
op.add_strategy('dma')
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[6], qt.TimingDMA)
self.assertIsNot(op.strategies[0], op.strategies[6])
def test_operator_add_strategies(self):
""" etst adding multiple strategies to Operator"""
op = qt.Operator('dma, all, urgent')
self.assertEqual(op.strategy_count, 3)
print('test adding multiple strategies -- adding strategy by list of strings')
op.add_strategies(['dma', 'macd'])
self.assertEqual(op.strategy_count, 5)
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[3], qt.TimingDMA)
self.assertIsInstance(op.strategies[4], qt.TimingMACD)
print('test adding multiple strategies -- adding strategy by comma separated strings')
op.add_strategies('dma, macd')
self.assertEqual(op.strategy_count, 7)
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[5], qt.TimingDMA)
self.assertIsInstance(op.strategies[6], qt.TimingMACD)
print('test adding multiple strategies -- adding strategy by list of strategies')
op.add_strategies([qt.TimingDMA(), qt.TimingMACD()])
self.assertEqual(op.strategy_count, 9)
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[7], qt.TimingDMA)
self.assertIsInstance(op.strategies[8], qt.TimingMACD)
print('test adding multiple strategies -- adding strategy by list of strategy and str')
op.add_strategies(['DMA', qt.TimingMACD()])
self.assertEqual(op.strategy_count, 11)
self.assertIsInstance(op.strategies[0], qt.TimingDMA)
self.assertIsInstance(op.strategies[9], qt.TimingDMA)
self.assertIsInstance(op.strategies[10], qt.TimingMACD)
self.assertIsNot(op.strategies[0], op.strategies[9])
self.assertIs(type(op.strategies[0]), type(op.strategies[9]))
print('test adding fault data')
self.assertRaises(AssertionError, op.add_strategies, 123)
self.assertRaises(AssertionError, op.add_strategies, None)
def test_opeartor_remove_strategy(self):
""" test method remove strategy"""
op = qt.Operator('dma, all, urgent')
op.add_strategies(['dma', 'macd'])
op.add_strategies(['DMA', TestLSStrategy()])
self.assertEqual(op.strategy_count, 7)
print('test removing strategies from Operator')
op.remove_strategy('dma')
self.assertEqual(op.strategy_count, 6)
self.assertEqual(op.strategy_ids, ['all', 'urgent', 'dma_1', 'macd', 'dma_2', 'custom'])
self.assertEqual(op.strategies[0], op['all'])
self.assertEqual(op.strategies[1], op['urgent'])
self.assertEqual(op.strategies[2], op['dma_1'])
self.assertEqual(op.strategies[3], op['macd'])
self.assertEqual(op.strategies[4], op['dma_2'])
self.assertEqual(op.strategies[5], op['custom'])
op.remove_strategy('dma_1')
self.assertEqual(op.strategy_count, 5)
self.assertEqual(op.strategy_ids, ['all', 'urgent', 'macd', 'dma_2', 'custom'])
self.assertEqual(op.strategies[0], op['all'])
self.assertEqual(op.strategies[1], op['urgent'])
self.assertEqual(op.strategies[2], op['macd'])
self.assertEqual(op.strategies[3], op['dma_2'])
self.assertEqual(op.strategies[4], op['custom'])
def test_opeartor_clear_strategies(self):
""" test operator clear strategies"""
op = qt.Operator('dma, all, urgent')
op.add_strategies(['dma', 'macd'])
op.add_strategies(['DMA', TestLSStrategy()])
self.assertEqual(op.strategy_count, 7)
print('test removing strategies from Operator')
op.clear_strategies()
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
op.add_strategy('dma', pars=(12, 123, 25))
self.assertEqual(op.strategy_count, 1)
self.assertEqual(op.strategy_ids, ['dma'])
self.assertEqual(type(op.strategies[0]), TimingDMA)
self.assertEqual(op.strategies[0].pars, (12, 123, 25))
op.clear_strategies()
self.assertEqual(op.strategy_count, 0)
self.assertEqual(op.strategy_ids, [])
def test_operator_prepare_data(self):
"""test processes that related to prepare data"""
test_ls = TestLSStrategy()
test_sel = TestSelStrategy()
test_sig = TestSigStrategy()
self.op = qt.Operator(strategies=[test_ls, test_sel, test_sig])
too_early_cash = qt.CashPlan(dates='2016-01-01', amounts=10000)
early_cash = qt.CashPlan(dates='2016-07-01', amounts=10000)
on_spot_cash = qt.CashPlan(dates='2016-07-08', amounts=10000)
no_trade_cash = qt.CashPlan(dates='2016-07-08, 2016-07-30, 2016-08-11, 2016-09-03',
amounts=[10000, 10000, 10000, 10000])
# 在所有策略的参数都设置好之前调用prepare_data会发生assertion Error
self.assertRaises(AssertionError,
self.op.prepare_data,
hist_data=self.hp1,
cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000))
late_cash = qt.CashPlan(dates='2016-12-31', amounts=10000)
multi_cash = qt.CashPlan(dates='2016-07-08, 2016-08-08', amounts=[10000, 10000])
self.op.set_parameter(stg_id='custom',
pars={'000300': (5, 10.),
'000400': (5, 10.),
'000500': (5, 6.)})
self.assertEqual(self.op.strategies[0].pars, {'000300': (5, 10.),
'000400': (5, 10.),
'000500': (5, 6.)})
self.op.set_parameter(stg_id='custom_1',
pars=())
self.assertEqual(self.op.strategies[1].pars, ()),
self.op.set_parameter(stg_id='custom_2',
pars=(0.2, 0.02, -0.02))
self.assertEqual(self.op.strategies[2].pars, (0.2, 0.02, -0.02)),
self.op.prepare_data(hist_data=self.hp1,
cash_plan=on_spot_cash)
self.assertIsInstance(self.op._op_history_data, dict)
self.assertEqual(len(self.op._op_history_data), 3)
# test if automatic strategy blenders are set
self.assertEqual(self.op.strategy_blenders,
{'close': ['+', '2', '+', '1', '0']})
tim_hist_data = self.op._op_history_data['custom']
sel_hist_data = self.op._op_history_data['custom_1']
ric_hist_data = self.op._op_history_data['custom_2']
print(f'in test_prepare_data in TestOperator:')
print('selecting history data:\n', sel_hist_data)
print('originally passed data in correct sequence:\n', self.test_data_3D[:, 3:, [2, 3, 0]])
print('difference is \n', sel_hist_data - self.test_data_3D[:, :, [2, 3, 0]])
self.assertTrue(np.allclose(sel_hist_data, self.test_data_3D[:, :, [2, 3, 0]], equal_nan=True))
self.assertTrue(np.allclose(tim_hist_data, self.test_data_3D, equal_nan=True))
self.assertTrue(np.allclose(ric_hist_data, self.test_data_3D[:, 3:, :], equal_nan=True))
# raises Value Error if empty history panel is given
empty_hp = qt.HistoryPanel()
correct_hp = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 4)),
columns=self.types,
levels=self.shares,
rows=self.date_indices)
too_many_shares = qt.HistoryPanel(values=np.random.randint(10, size=(5, 50, 4)))
too_many_types = qt.HistoryPanel(values=np.random.randint(10, size=(3, 50, 5)))
# raises Error when history panel is empty
self.assertRaises(ValueError,
self.op.prepare_data,
empty_hp,
on_spot_cash)
# raises Error when first investment date is too early
self.assertRaises(AssertionError,
self.op.prepare_data,
correct_hp,
early_cash)
# raises Error when last investment date is too late
self.assertRaises(AssertionError,
self.op.prepare_data,
correct_hp,
late_cash)
# raises Error when some of the investment dates are on no-trade-days
self.assertRaises(ValueError,
self.op.prepare_data,
correct_hp,
no_trade_cash)
# raises Error when number of shares in history data does not fit
self.assertRaises(AssertionError,
self.op.prepare_data,
too_many_shares,
on_spot_cash)
# raises Error when too early cash investment date
self.assertRaises(AssertionError,
self.op.prepare_data,
correct_hp,
too_early_cash)
# raises Error when number of d_types in history data does not fit
self.assertRaises(AssertionError,
self.op.prepare_data,
too_many_types,
on_spot_cash)
# test the effect of data type sequence in strategy definition
def test_operator_generate(self):
""" Test signal generation process of operator objects
:return:
"""
# 使用test模块的自定义策略生成三种交易策略
test_ls = TestLSStrategy()
test_sel = TestSelStrategy()
test_sel2 = TestSelStrategyDiffTime()
test_sig = TestSigStrategy()
print('--Test PT type signal generation--')
# 测试PT类型的信号生成:
# 创建一个Operator对象,信号类型为PT(比例目标信号)
# 这个Operator对象包含两个策略,分别为LS-Strategy以及Sel-Strategy,代表择时和选股策略
# 两个策略分别生成PT信号后混合成一个信号输出
self.op = qt.Operator(strategies=[test_ls, test_sel])
self.op.set_parameter(stg_id='custom',
pars={'000010': (5, 10.),
'000030': (5, 10.),
'000039': (5, 6.)})
self.op.set_parameter(stg_id=1,
pars=())
# self.a_to_sell.set_blender(blender='0+1+2')
self.op.prepare_data(hist_data=self.hp1,
cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000))
print('--test operator information in normal mode--')
self.op.info()
self.assertEqual(self.op.strategy_blenders,
{'close': ['+', '1', '0']})
self.op.set_blender(None, '0*1')
self.assertEqual(self.op.strategy_blenders,
{'close': ['*', '1', '0']})
print('--test operation signal created in Proportional Target (PT) Mode--')
op_list = self.op.create_signal(hist_data=self.hp1)
self.assertTrue(isinstance(op_list, HistoryPanel))
backtest_price_types = op_list.htypes
self.assertEqual(backtest_price_types[0], 'close')
self.assertEqual(op_list.shape, (3, 45, 1))
reduced_op_list = op_list.values.squeeze().T
print(f'op_list created, it is a 3 share/45 days/1 htype array, to make comparison happen, \n'
f'it will be squeezed to a 2-d array to compare on share-wise:\n'
f'{reduced_op_list}')
target_op_values = np.array([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0]])
self.assertTrue(np.allclose(target_op_values, reduced_op_list, equal_nan=True))
print('--Test two separate signal generation for different price types--')
# 测试两组PT类型的信号生成:
# 在Operator对象中增加两个SigStrategy策略,策略类型相同但是策略的参数不同,回测价格类型为"OPEN"
# Opeartor应该生成两组交易信号,分别用于"close"和"open"两中不同的价格类型
# 这里需要重新生成两个新的交易策略对象,否则在op的strategies列表中产生重复的对象引用,从而引起错误
test_ls = TestLSStrategy()
test_sel = TestSelStrategy()
self.op.add_strategies([test_ls, test_sel])
self.op.set_parameter(stg_id='custom_2',
price_type='open')
self.op.set_parameter(stg_id='custom_3',
price_type='open')
self.assertEqual(self.op['custom'].price_type, 'close')
self.assertEqual(self.op['custom_2'].price_type, 'open')
self.op.set_parameter(stg_id='custom_2',
pars={'000010': (5, 10.),
'000030': (5, 10.),
'000039': (5, 6.)})
self.op.set_parameter(stg_id='custom_3',
pars=())
self.op.set_blender(blender='0 or 1', price_type='open')
self.op.prepare_data(hist_data=self.hp1,
cash_plan=qt.CashPlan(dates='2016-07-08', amounts=10000))
print('--test how operator information is printed out--')
self.op.info()
self.assertEqual(self.op.strategy_blenders,
{'close': ['*', '1', '0'],
'open': ['or', '1', '0']})
print('--test opeartion signal created in Proportional Target (PT) Mode--')
op_list = self.op.create_signal(hist_data=self.hp1)
self.assertTrue(isinstance(op_list, HistoryPanel))
signal_close = op_list['close'].squeeze().T
signal_open = op_list['open'].squeeze().T
self.assertEqual(signal_close.shape, (45, 3))
self.assertEqual(signal_open.shape, (45, 3))
target_op_close = np.array([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.0, 0.0],
[0.5, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0],
[0.0, 0.5, 0.0]])
target_op_open = np.array([[0.5, 0.5, 1.0],
[0.5, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 0.5, 1.0],
[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 1.0, 1.0],
[1.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[1.0, 1.0, 0.0],
[1.0, 0.5, 0.0],
[1.0, 0.5, 0.0],
[1.0, 1.0, 0.0],
[0.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
[0.0, 1.0, 0.5],
[0.5, 1.0, 0.0],
[0.5, 1.0, 0.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
[0.0, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0],
[0.5, 1.0, 1.0]])
signal_pairs = [[list(sig1), list(sig2), sig1 == sig2]
for sig1, sig2
in zip(list(target_op_close), list(signal_close))]
print(f'signals side by side:\n'
f'{signal_pairs}')
self.assertTrue(np.allclose(target_op_close, signal_close, equal_nan=True))
signal_pairs = [[list(sig1), list(sig2), sig1 == sig2]
for sig1, sig2
in zip(list(target_op_open), list(signal_open))]
print(f'signals side by side:\n'
f'{signal_pairs}')
self.assertTrue(np.allclose(target_op_open, signal_open, equal_nan=True))
print('--Test two separate signal generation for different price types--')
# 更多测试集合
def test_stg_parameter_setting(self):
""" test setting parameters of strategies
test the method set_parameters
:return:
"""
op = qt.Operator(strategies='dma, all, urgent')
print(op.strategies, '\n', [qt.TimingDMA, qt.SelectingAll, qt.RiconUrgent])
print(f'info of Timing strategy in new op: \n{op.strategies[0].info()}')
# TODO: allow set_parameters to a list of strategies or str-listed strategies
# TODO: allow set_parameters to all strategies of specific bt price type
print(f'Set up strategy parameters by strategy id')
op.set_parameter('dma',
pars=(5, 10, 5),
opt_tag=1,
par_boes=((5, 10), (5, 15), (10, 15)),
window_length=10,
data_types=['close', 'open', 'high'])
op.set_parameter('all',
window_length=20)
op.set_parameter('all', price_type='high')
print(f'Can also set up strategy parameters by strategy index')
op.set_parameter(2, price_type='open')
op.set_parameter(2,
opt_tag=1,
pars=(9, -0.09),
window_length=10)
self.assertEqual(op.strategies[0].pars, (5, 10, 5))
self.assertEqual(op.strategies[0].par_boes, ((5, 10), (5, 15), (10, 15)))
self.assertEqual(op.strategies[2].pars, (9, -0.09))
self.assertEqual(op.op_data_freq, 'd')
self.assertEqual(op.op_data_types, ['close', 'high', 'open'])
self.assertEqual(op.opt_space_par,
([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)],
['discr', 'discr', 'discr', 'discr', 'conti']))
self.assertEqual(op.max_window_length, 20)
print(f'KeyError will be raised if wrong strategy id is given')
self.assertRaises(KeyError, op.set_parameter, stg_id='t-1', pars=(1, 2))
self.assertRaises(KeyError, op.set_parameter, stg_id='wrong_input', pars=(1, 2))
print(f'ValueError will be raised if parameter can be set')
self.assertRaises(ValueError, op.set_parameter, stg_id=0, pars=('wrong input', 'wrong input'))
# test blenders of different price types
# test setting blenders to different price types
# TODO: to allow operands like "and", "or", "not", "xor"
# a_to_sell.set_blender('close', '0 and 1 or 2')
# self.assertEqual(a_to_sell.get_blender('close'), 'str-1.2')
self.assertEqual(op.bt_price_types, ['close', 'high', 'open'])
op.set_blender('open', '0 & 1 | 2')
self.assertEqual(op.get_blender('open'), ['|', '2', '&', '1', '0'])
op.set_blender('high', '(0|1) & 2')
self.assertEqual(op.get_blender('high'), ['&', '2', '|', '1', '0'])
op.set_blender('close', '0 & 1 | 2')
self.assertEqual(op.get_blender(), {'close': ['|', '2', '&', '1', '0'],
'high': ['&', '2', '|', '1', '0'],
'open': ['|', '2', '&', '1', '0']})
self.assertEqual(op.opt_space_par,
([(5, 10), (5, 15), (10, 15), (1, 40), (-0.5, 0.5)],
['discr', 'discr', 'discr', 'discr', 'conti']))
self.assertEqual(op.opt_tags, [1, 0, 1])
def test_signal_blend(self):
self.assertEqual(blender_parser('0 & 1'), ['&', '1', '0'])
self.assertEqual(blender_parser('0 or 1'), ['or', '1', '0'])
self.assertEqual(blender_parser('0 & 1 | 2'), ['|', '2', '&', '1', '0'])
blender = blender_parser('0 & 1 | 2')
self.assertEqual(signal_blend([1, 1, 1], blender), 1)
self.assertEqual(signal_blend([1, 0, 1], blender), 1)
self.assertEqual(signal_blend([1, 1, 0], blender), 1)
self.assertEqual(signal_blend([0, 1, 1], blender), 1)
self.assertEqual(signal_blend([0, 0, 1], blender), 1)
self.assertEqual(signal_blend([1, 0, 0], blender), 0)
self.assertEqual(signal_blend([0, 1, 0], blender), 0)
self.assertEqual(signal_blend([0, 0, 0], blender), 0)
# parse: '0 & ( 1 | 2 )'
self.assertEqual(blender_parser('0 & ( 1 | 2 )'), ['&', '|', '2', '1', '0'])
blender = blender_parser('0 & ( 1 | 2 )')
self.assertEqual(signal_blend([1, 1, 1], blender), 1)
self.assertEqual(signal_blend([1, 0, 1], blender), 1)
self.assertEqual(signal_blend([1, 1, 0], blender), 1)
self.assertEqual(signal_blend([0, 1, 1], blender), 0)
self.assertEqual(signal_blend([0, 0, 1], blender), 0)
self.assertEqual(signal_blend([1, 0, 0], blender), 0)
self.assertEqual(signal_blend([0, 1, 0], blender), 0)
self.assertEqual(signal_blend([0, 0, 0], blender), 0)
# parse: '(1-2)/3 + 0'
self.assertEqual(blender_parser('(1-2)/3 + 0'), ['+', '0', '/', '3', '-', '2', '1'])
blender = blender_parser('(1-2)/3 + 0')
self.assertEqual(signal_blend([5, 9, 1, 4], blender), 7)
# pars: '(0*1/2*(3+4))+5*(6+7)-8'
self.assertEqual(blender_parser('(0*1/2*(3+4))+5*(6+7)-8'), ['-', '8', '+', '*', '+', '7', '6', '5', '*',
'+', '4', '3', '/', '2', '*', '1', '0'])
blender = blender_parser('(0*1/2*(3+4))+5*(6+7)-8')
self.assertEqual(signal_blend([1, 1, 1, 1, 1, 1, 1, 1, 1], blender), 3)
self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 14)
# parse: '0/max(2,1,3 + 5)+4'
self.assertEqual(blender_parser('0/max(2,1,3 + 5)+4'), ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0'])
blender = blender_parser('0/max(2,1,3 + 5)+4')
self.assertEqual(signal_blend([8.0, 4, 3, 5.0, 0.125, 5], blender), 0.925)
self.assertEqual(signal_blend([2, 1, 4, 3, 5, 5, 2, 2, 10], blender), 5.25)
print('speed test')
import time
st = time.time()
blender = blender_parser('0+max(1,2,(3+4)*5, max(6, (7+8)*9), 10-11) * (12+13)')
res = []
for i in range(10000):
res = signal_blend([1, 1, 2, 3, 4, 5, 3, 4, 5, 6, 7, 8, 2, 3], blender)
et = time.time()
print(f'total time for RPN processing: {et - st}, got result: {res}')
blender = blender_parser("0 + 1 * 2")
self.assertEqual(signal_blend([1, 2, 3], blender), 7)
blender = blender_parser("(0 + 1) * 2")
self.assertEqual(signal_blend([1, 2, 3], blender), 9)
blender = blender_parser("(0+1) * 2")
self.assertEqual(signal_blend([1, 2, 3], blender), 9)
blender = blender_parser("(0 + 1) * 2")
self.assertEqual(signal_blend([1, 2, 3], blender), 9)
# TODO: 目前对于-(1+2)这样的表达式还无法处理
# self.a_to_sell.set_blender('selecting', "-(0 + 1) * 2")
# self.assertEqual(self.a_to_sell.signal_blend([1, 2, 3]), -9)
blender = blender_parser("(0-1)/2 + 3")
print(f'RPN of notation: "(0-1)/2 + 3" is:\n'
f'{" ".join(blender[::-1])}')
self.assertAlmostEqual(signal_blend([1, 2, 3, 0.0], blender), -0.33333333)
blender = blender_parser("0 + 1 / 2")
print(f'RPN of notation: "0 + 1 / 2" is:\n'
f'{" ".join(blender[::-1])}')
self.assertAlmostEqual(signal_blend([1, math.pi, 4], blender), 1.78539816)
blender = blender_parser("(0 + 1) / 2")
print(f'RPN of notation: "(0 + 1) / 2" is:\n'
f'{" ".join(blender[::-1])}')
self.assertEqual(signal_blend([1, 2, 3], blender), 1)
blender = blender_parser("(0 + 1 * 2) / 3")
print(f'RPN of notation: "(0 + 1 * 2) / 3" is:\n'
f'{" ".join(blender[::-1])}')
self.assertAlmostEqual(signal_blend([3, math.e, 10, 10], blender), 3.0182818284590454)
blender = blender_parser("0 / 1 * 2")
print(f'RPN of notation: "0 / 1 * 2" is:\n'
f'{" ".join(blender[::-1])}')
self.assertEqual(signal_blend([1, 3, 6], blender), 2)
blender = blender_parser("(0 - 1 + 2) * 4")
print(f'RPN of notation: "(0 - 1 + 2) * 4" is:\n'
f'{" ".join(blender[::-1])}')
self.assertAlmostEqual(signal_blend([1, 1, -1, np.nan, math.pi], blender), -3.141592653589793)
blender = blender_parser("0 * 1")
print(f'RPN of notation: "0 * 1" is:\n'
f'{" ".join(blender[::-1])}')
self.assertAlmostEqual(signal_blend([math.pi, math.e], blender), 8.539734222673566)
blender = blender_parser('abs(3-sqrt(2) / cos(1))')
print(f'RPN of notation: "abs(3-sqrt(2) / cos(1))" is:\n'
f'{" ".join(blender[::-1])}')
self.assertEqual(blender, ['abs(1)', '-', '/', 'cos(1)', '1', 'sqrt(1)', '2', '3'])
blender = blender_parser('0/max(2,1,3 + 5)+4')
print(f'RPN of notation: "0/max(2,1,3 + 5)+4" is:\n'
f'{" ".join(blender[::-1])}')
self.assertEqual(blender, ['+', '4', '/', 'max(3)', '+', '5', '3', '1', '2', '0'])
blender = blender_parser('1 + sum(1,2,3+3, sum(1, 2) + 3) *5')
print(f'RPN of notation: "1 + sum(1,2,3+3, sum(1, 2) + 3) *5" is:\n'
f'{" ".join(blender[::-1])}')
self.assertEqual(blender, ['+', '*', '5', 'sum(4)', '+', '3', 'sum(2)', '2', '1',
'+', '3', '3', '2', '1', '1'])
blender = blender_parser('1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)')
print(f'RPN of notation: "1+sum(1,2,(3+5)*4, sum(3, (4+5)*6), 7-8) * (2+3)" is:\n'
f'{" ".join(blender[::-1])}')
self.assertEqual(blender, ['+', '*', '+', '3', '2', 'sum(5)', '-', '8', '7',
'sum(2)', '*', '6', '+', '5', '4', '3', '*', '4',
'+', '5', '3', '2', '1', '1'])
# TODO: ndarray type of signals to be tested:
def test_set_opt_par(self):
""" test setting opt pars in batch"""
print(f'--------- Testing setting Opt Pars: set_opt_par -------')
op = qt.Operator('dma, random, crossline')
op.set_parameter('dma',
pars=(5, 10, 5),
opt_tag=1,
par_boes=((5, 10), (5, 15), (10, 15)),
window_length=10,
data_types=['close', 'open', 'high'])
self.assertEqual(op.strategies[0].pars, (5, 10, 5))
self.assertEqual(op.strategies[1].pars, (0.5,))
self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy'))
self.assertEqual(op.opt_tags, [1, 0, 0])
op.set_opt_par((5, 12, 9))
self.assertEqual(op.strategies[0].pars, (5, 12, 9))
self.assertEqual(op.strategies[1].pars, (0.5,))
self.assertEqual(op.strategies[2].pars, (35, 120, 10, 'buy'))
op.set_parameter('crossline',
pars=(5, 10, 5, 'sell'),
opt_tag=1,
par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')),
window_length=10,
data_types=['close', 'open', 'high'])
self.assertEqual(op.opt_tags, [1, 0, 1])
op.set_opt_par((5, 12, 9, 8, 26, 9, 'buy'))
self.assertEqual(op.strategies[0].pars, (5, 12, 9))
self.assertEqual(op.strategies[1].pars, (0.5,))
self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy'))
op.set_opt_par((9, 200, 155, 8, 26, 9, 'buy', 5, 12, 9))
self.assertEqual(op.strategies[0].pars, (9, 200, 155))
self.assertEqual(op.strategies[1].pars, (0.5,))
self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy'))
# test set_opt_par when opt_tag is set to be 2 (enumerate type of parameters)
op.set_parameter('crossline',
pars=(5, 10, 5, 'sell'),
opt_tag=2,
par_boes=((5, 10), (5, 15), (10, 15), ('buy', 'sell', 'none')),
window_length=10,
data_types=['close', 'open', 'high'])
self.assertEqual(op.opt_tags, [1, 0, 2])
self.assertEqual(op.strategies[0].pars, (9, 200, 155))
self.assertEqual(op.strategies[1].pars, (0.5,))
self.assertEqual(op.strategies[2].pars, (5, 10, 5, 'sell'))
op.set_opt_par((5, 12, 9, (8, 26, 9, 'buy')))
self.assertEqual(op.strategies[0].pars, (5, 12, 9))
self.assertEqual(op.strategies[1].pars, (0.5,))
self.assertEqual(op.strategies[2].pars, (8, 26, 9, 'buy'))
# Test Errors
# Not enough values for parameter
op.set_parameter('crossline', opt_tag=1)
self.assertRaises(ValueError, op.set_opt_par, (5, 12, 9, 8))
# wrong type of input
self.assertRaises(AssertionError, op.set_opt_par, [5, 12, 9, 7, 15, 12, 'sell'])
def test_stg_attribute_get_and_set(self):
self.stg = qt.TimingCrossline()
self.stg_type = 'R-TIMING'
self.stg_name = "CROSSLINE"
self.stg_text = 'Moving average crossline strategy, determine long/short position according to the cross ' \
'point' \
' of long and short term moving average prices '
self.pars = (35, 120, 10, 'buy')
self.par_boes = [(10, 250), (10, 250), (1, 100), ('buy', 'sell', 'none')]
self.par_count = 4
self.par_types = ['discr', 'discr', 'conti', 'enum']
self.opt_tag = 0
self.data_types = ['close']
self.data_freq = 'd'
self.sample_freq = 'd'
self.window_length = 270
self.assertEqual(self.stg.stg_type, self.stg_type)
self.assertEqual(self.stg.stg_name, self.stg_name)
self.assertEqual(self.stg.stg_text, self.stg_text)
self.assertEqual(self.stg.pars, self.pars)
self.assertEqual(self.stg.par_types, self.par_types)
self.assertEqual(self.stg.par_boes, self.par_boes)
self.assertEqual(self.stg.par_count, self.par_count)
self.assertEqual(self.stg.opt_tag, self.opt_tag)
self.assertEqual(self.stg.data_freq, self.data_freq)
self.assertEqual(self.stg.sample_freq, self.sample_freq)
self.assertEqual(self.stg.data_types, self.data_types)
self.assertEqual(self.stg.window_length, self.window_length)
self.stg.stg_name = 'NEW NAME'
self.stg.stg_text = 'NEW TEXT'
self.assertEqual(self.stg.stg_name, 'NEW NAME')
self.assertEqual(self.stg.stg_text, 'NEW TEXT')
self.stg.pars = (1, 2, 3, 4)
self.assertEqual(self.stg.pars, (1, 2, 3, 4))
self.stg.par_count = 3
self.assertEqual(self.stg.par_count, 3)
self.stg.par_boes = [(1, 10), (1, 10), (1, 10), (1, 10)]
self.assertEqual(self.stg.par_boes, [(1, 10), (1, 10), (1, 10), (1, 10)])
self.stg.par_types = ['conti', 'conti', 'discr', 'enum']
self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'enum'])
self.stg.par_types = 'conti, conti, discr, conti'
self.assertEqual(self.stg.par_types, ['conti', 'conti', 'discr', 'conti'])
self.stg.data_types = 'close, open'
self.assertEqual(self.stg.data_types, ['close', 'open'])
self.stg.data_types = ['close', 'high', 'low']
self.assertEqual(self.stg.data_types, ['close', 'high', 'low'])
self.stg.data_freq = 'w'
self.assertEqual(self.stg.data_freq, 'w')
self.stg.window_length = 300
self.assertEqual(self.stg.window_length, 300)
def test_rolling_timing(self):
stg = TestLSStrategy()
stg_pars = {'000100': (5, 10),
'000200': (5, 10),
'000300': (5, 6)}
stg.set_pars(stg_pars)
history_data = self.hp1.values
output = stg.generate(hist_data=history_data)
self.assertIsInstance(output, np.ndarray)
self.assertEqual(output.shape, (45, 3))
lsmask = np.array([[0., 0., 1.],
[0., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 0., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 1.],
[1., 1., 0.],
[1., 1., 0.],
[1., 1., 0.],
[1., 0., 0.],
[1., 0., 0.],
[1., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 0.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.],
[0., 1., 1.]])
# TODO: Issue to be solved: the np.nan value are converted to 0 in the lsmask,这样做可能会有意想不到的后果
# TODO: 需要解决nan值的问题
self.assertEqual(output.shape, lsmask.shape)
self.assertTrue(np.allclose(output, lsmask, equal_nan=True))
def test_sel_timing(self):
stg = TestSelStrategy()
stg_pars = ()
stg.set_pars(stg_pars)
history_data = self.hp1['high, low, close', :, :]
seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq)
self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49])
self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2])
self.assertEqual(seg_count, 8)
output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates)
self.assertIsInstance(output, np.ndarray)
self.assertEqual(output.shape, (45, 3))
selmask = np.array([[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0]])
self.assertEqual(output.shape, selmask.shape)
self.assertTrue(np.allclose(output, selmask))
def test_simple_timing(self):
stg = TestSigStrategy()
stg_pars = (0.2, 0.02, -0.02)
stg.set_pars(stg_pars)
history_data = self.hp1['close, open, high, low', :, 3:50]
output = stg.generate(hist_data=history_data, shares=self.shares, dates=self.date_indices)
self.assertIsInstance(output, np.ndarray)
self.assertEqual(output.shape, (45, 3))
sigmatrix = np.array([[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, -1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[-1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 1.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, -1.0],
[0.0, 0.0, 0.0],
[0.0, 1.0, 0.0]])
side_by_side_array = np.array([[i, out_line, sig_line]
for
i, out_line, sig_line
in zip(range(len(output)), output, sigmatrix)])
print(f'output and signal matrix lined up side by side is \n'
f'{side_by_side_array}')
self.assertEqual(sigmatrix.shape, output.shape)
self.assertTrue(np.allclose(output, sigmatrix))
def test_sel_finance(self):
"""Test selecting_finance strategy, test all built-in strategy parameters"""
stg = SelectingFinanceIndicator()
stg_pars = (False, 'even', 'greater', 0, 0, 0.67)
stg.set_pars(stg_pars)
stg.window_length = 5
stg.data_freq = 'd'
stg.sample_freq = '10d'
stg.sort_ascending = False
stg.condition = 'greater'
stg.lbound = 0
stg.ubound = 0
stg._poq = 0.67
history_data = self.hp2.values
print(f'Start to test financial selection parameter {stg_pars}')
seg_pos, seg_length, seg_count = stg._seg_periods(dates=self.hp1.hdates, freq=stg.sample_freq)
self.assertEqual(list(seg_pos), [0, 5, 11, 19, 26, 33, 41, 47, 49])
self.assertEqual(list(seg_length), [5, 6, 8, 7, 7, 8, 6, 2])
self.assertEqual(seg_count, 8)
output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates)
self.assertIsInstance(output, np.ndarray)
self.assertEqual(output.shape, (45, 3))
selmask = np.array([[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0]])
self.assertEqual(output.shape, selmask.shape)
self.assertTrue(np.allclose(output, selmask))
# test single factor, get mininum factor
stg_pars = (True, 'even', 'less', 1, 1, 0.67)
stg.sort_ascending = True
stg.condition = 'less'
stg.lbound = 1
stg.ubound = 1
stg.set_pars(stg_pars)
print(f'Start to test financial selection parameter {stg_pars}')
output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates)
selmask = np.array([[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5],
[0.5, 0.0, 0.5]])
self.assertEqual(output.shape, selmask.shape)
self.assertTrue(np.allclose(output, selmask))
# test single factor, get max factor in linear weight
stg_pars = (False, 'linear', 'greater', 0, 0, 0.67)
stg.sort_ascending = False
stg.weighting = 'linear'
stg.condition = 'greater'
stg.lbound = 0
stg.ubound = 0
stg.set_pars(stg_pars)
print(f'Start to test financial selection parameter {stg_pars}')
output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates)
selmask = np.array([[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.66667, 0.33333],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.00000, 0.33333, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.00000, 0.66667],
[0.33333, 0.66667, 0.00000],
[0.33333, 0.66667, 0.00000],
[0.33333, 0.66667, 0.00000]])
self.assertEqual(output.shape, selmask.shape)
self.assertTrue(np.allclose(output, selmask))
# test single factor, get max factor in linear weight
stg_pars = (False, 'proportion', 'greater', 0, 0, 0.67)
stg.sort_ascending = False
stg.weighting = 'proportion'
stg.condition = 'greater'
stg.lbound = 0
stg.ubound = 0
stg.set_pars(stg_pars)
print(f'Start to test financial selection parameter {stg_pars}')
output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates)
selmask = np.array([[0.00000, 0.08333, 0.91667],
[0.00000, 0.08333, 0.91667],
[0.00000, 0.08333, 0.91667],
[0.00000, 0.08333, 0.91667],
[0.00000, 0.08333, 0.91667],
[0.00000, 0.08333, 0.91667],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.91667, 0.08333],
[0.00000, 0.50000, 0.50000],
[0.00000, 0.50000, 0.50000],
[0.00000, 0.50000, 0.50000],
[0.00000, 0.50000, 0.50000],
[0.00000, 0.50000, 0.50000],
[0.00000, 0.50000, 0.50000],
[0.00000, 0.50000, 0.50000],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.00000, 0.00000, 1.00000],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.00000, 0.91667],
[0.08333, 0.91667, 0.00000],
[0.08333, 0.91667, 0.00000],
[0.08333, 0.91667, 0.00000]])
self.assertEqual(output.shape, selmask.shape)
self.assertTrue(np.allclose(output, selmask, 0.001))
# test single factor, get max factor in linear weight, threshold 0.2
stg_pars = (False, 'even', 'greater', 0.2, 0.2, 0.67)
stg.sort_ascending = False
stg.weighting = 'even'
stg.condition = 'greater'
stg.lbound = 0.2
stg.ubound = 0.2
stg.set_pars(stg_pars)
print(f'Start to test financial selection parameter {stg_pars}')
output = stg.generate(hist_data=history_data, shares=self.hp1.shares, dates=self.hp1.hdates)
selmask = np.array([[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.5, 0.5],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.0, 0.0, 1.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0],
[0.5, 0.5, 0.0]])
self.assertEqual(output.shape, selmask.shape)
self.assertTrue(np.allclose(output, selmask, 0.001))
def test_tokenizer(self):
self.assertListEqual(_exp_to_token('1+1'),
['1', '+', '1'])
print(_exp_to_token('1+1'))
self.assertListEqual(_exp_to_token('1 & 1'),
['1', '&', '1'])
print(_exp_to_token('1&1'))
self.assertListEqual(_exp_to_token('1 and 1'),
['1', 'and', '1'])
print(_exp_to_token('1 and 1'))
self.assertListEqual(_exp_to_token('1 or 1'),
['1', 'or', '1'])
print(_exp_to_token('1 or 1'))
self.assertListEqual(_exp_to_token('(1 - 1 + -1) * pi'),
['(', '1', '-', '1', '+', '-1', ')', '*', 'pi'])
print(_exp_to_token('(1 - 1 + -1) * pi'))
self.assertListEqual(_exp_to_token('abs(5-sqrt(2) / cos(pi))'),
['abs(', '5', '-', 'sqrt(', '2', ')', '/', 'cos(', 'pi', ')', ')'])
print(_exp_to_token('abs(5-sqrt(2) / cos(pi))'))
self.assertListEqual(_exp_to_token('sin(pi) + 2.14'),
['sin(', 'pi', ')', '+', '2.14'])
print(_exp_to_token('sin(pi) + 2.14'))
self.assertListEqual(_exp_to_token('(1-2)/3.0 + 0.0000'),
['(', '1', '-', '2', ')', '/', '3.0', '+', '0.0000'])
print(_exp_to_token('(1-2)/3.0 + 0.0000'))
self.assertListEqual(_exp_to_token('-(1. + .2) * max(1, 3, 5)'),
['-', '(', '1.', '+', '.2', ')', '*', 'max(', '1', ',', '3', ',', '5', ')'])
print(_exp_to_token('-(1. + .2) * max(1, 3, 5)'))
self.assertListEqual(_exp_to_token('(x + e * 10) / 10'),
['(', 'x', '+', 'e', '*', '10', ')', '/', '10'])
print(_exp_to_token('(x + e * 10) / 10'))
self.assertListEqual(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)'),
['8.2', '/', '(', '(', '-.1', '+', 'abs3(', '3', ',', '4', ',', '5', ')', ')', '*', '0.12',
')'])
print(_exp_to_token('8.2/((-.1+abs3(3,4,5))*0.12)'))
self.assertListEqual(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12'),
['8.2', '/', 'abs3(', '3', ',', '4', ',', '25.34', '+', '5', ')', '*', '0.12'])
print(_exp_to_token('8.2/abs3(3,4,25.34 + 5)*0.12'))
class TestLog(unittest.TestCase):
def test_init(self):
pass
class TestConfig(unittest.TestCase):
"""测试Config对象以及QT_CONFIG变量的设置和获取值"""
def test_init(self):
pass
def test_invest(self):
pass
def test_pars_string_to_type(self):
_parse_string_kwargs('000300', 'asset_pool', _valid_qt_kwargs())
class TestHistoryPanel(unittest.TestCase):
def setUp(self):
print('start testing HistoryPanel object\n')
self.data = np.random.randint(10, size=(5, 10, 4))
self.index = pd.date_range(start='20200101', freq='d', periods=10)
self.index2 = ['2016-07-01', '2016-07-04', '2016-07-05', '2016-07-06',
'2016-07-07', '2016-07-08', '2016-07-11', '2016-07-12',
'2016-07-13', '2016-07-14']
self.index3 = '2016-07-01, 2016-07-04, 2016-07-05, 2016-07-06, 2016-07-07, ' \
'2016-07-08, 2016-07-11, 2016-07-12, 2016-07-13, 2016-07-14'
self.shares = '000100,000101,000102,000103,000104'
self.htypes = 'close,open,high,low'
self.data2 = np.random.randint(10, size=(10, 5))
self.data3 = np.random.randint(10, size=(10, 4))
self.data4 = np.random.randint(10, size=(10))
self.hp = qt.HistoryPanel(values=self.data, levels=self.shares, columns=self.htypes, rows=self.index)
self.hp2 = qt.HistoryPanel(values=self.data2, levels=self.shares, columns='close', rows=self.index)
self.hp3 = qt.HistoryPanel(values=self.data3, levels='000100', columns=self.htypes, rows=self.index2)
self.hp4 = qt.HistoryPanel(values=self.data4, levels='000100', columns='close', rows=self.index3)
self.hp5 = qt.HistoryPanel(values=self.data)
self.hp6 = qt.HistoryPanel(values=self.data, levels=self.shares, rows=self.index3)
def test_properties(self):
""" test all properties of HistoryPanel
"""
self.assertFalse(self.hp.is_empty)
self.assertEqual(self.hp.row_count, 10)
self.assertEqual(self.hp.column_count, 4)
self.assertEqual(self.hp.level_count, 5)
self.assertEqual(self.hp.shape, (5, 10, 4))
self.assertSequenceEqual(self.hp.htypes, ['close', 'open', 'high', 'low'])
self.assertSequenceEqual(self.hp.shares, ['000100', '000101', '000102', '000103', '000104'])
self.assertSequenceEqual(list(self.hp.hdates), list(self.index))
self.assertDictEqual(self.hp.columns, {'close': 0, 'open': 1, 'high': 2, 'low': 3})
self.assertDictEqual(self.hp.levels, {'000100': 0, '000101': 1, '000102': 2, '000103': 3, '000104': 4})
row_dict = {Timestamp('2020-01-01 00:00:00', freq='D'): 0,
Timestamp('2020-01-02 00:00:00', freq='D'): 1,
Timestamp('2020-01-03 00:00:00', freq='D'): 2,
Timestamp('2020-01-04 00:00:00', freq='D'): 3,
Timestamp('2020-01-05 00:00:00', freq='D'): 4,
Timestamp('2020-01-06 00:00:00', freq='D'): 5,
Timestamp('2020-01-07 00:00:00', freq='D'): 6,
Timestamp('2020-01-08 00:00:00', freq='D'): 7,
Timestamp('2020-01-09 00:00:00', freq='D'): 8,
Timestamp('2020-01-10 00:00:00', freq='D'): 9}
self.assertDictEqual(self.hp.rows, row_dict)
def test_len(self):
""" test the function len(HistoryPanel)
:return:
"""
self.assertEqual(len(self.hp), 10)
def test_empty_history_panel(self):
"""测试空HP或者特殊HP如维度标签为纯数字的HP"""
test_hp = qt.HistoryPanel(self.data)
self.assertFalse(test_hp.is_empty)
self.assertIsInstance(test_hp, qt.HistoryPanel)
self.assertEqual(test_hp.shape[0], 5)
self.assertEqual(test_hp.shape[1], 10)
self.assertEqual(test_hp.shape[2], 4)
self.assertEqual(test_hp.level_count, 5)
self.assertEqual(test_hp.row_count, 10)
self.assertEqual(test_hp.column_count, 4)
self.assertEqual(test_hp.shares, list(range(5)))
self.assertEqual(test_hp.hdates, list(pd.date_range(start='20200730', periods=10, freq='d')))
self.assertEqual(test_hp.htypes, list(range(4)))
self.assertTrue(np.allclose(test_hp.values, self.data))
print(f'shares: {test_hp.shares}\nhtypes: {test_hp.htypes}')
print(test_hp)
# HistoryPanel should be empty if no value is given
empty_hp = qt.HistoryPanel()
self.assertTrue(empty_hp.is_empty)
self.assertIsInstance(empty_hp, qt.HistoryPanel)
self.assertEqual(empty_hp.shape[0], 0)
self.assertEqual(empty_hp.shape[1], 0)
self.assertEqual(empty_hp.shape[2], 0)
self.assertEqual(empty_hp.level_count, 0)
self.assertEqual(empty_hp.row_count, 0)
self.assertEqual(empty_hp.column_count, 0)
# HistoryPanel should also be empty if empty value (np.array([])) is given
empty_hp = qt.HistoryPanel(np.empty((5, 0, 4)), levels=self.shares, columns=self.htypes)
self.assertTrue(empty_hp.is_empty)
self.assertIsInstance(empty_hp, qt.HistoryPanel)
self.assertEqual(empty_hp.shape[0], 0)
self.assertEqual(empty_hp.shape[1], 0)
self.assertEqual(empty_hp.shape[2], 0)
self.assertEqual(empty_hp.level_count, 0)
self.assertEqual(empty_hp.row_count, 0)
self.assertEqual(empty_hp.column_count, 0)
def test_create_history_panel(self):
""" test the creation of a HistoryPanel object by passing all data explicitly
"""
self.assertIsInstance(self.hp, qt.HistoryPanel)
self.assertEqual(self.hp.shape[0], 5)
self.assertEqual(self.hp.shape[1], 10)
self.assertEqual(self.hp.shape[2], 4)
self.assertEqual(self.hp.level_count, 5)
self.assertEqual(self.hp.row_count, 10)
self.assertEqual(self.hp.column_count, 4)
self.assertEqual(list(self.hp.levels.keys()), self.shares.split(','))
self.assertEqual(list(self.hp.columns.keys()), self.htypes.split(','))
self.assertEqual(list(self.hp.rows.keys())[0], pd.Timestamp('20200101'))
self.assertIsInstance(self.hp2, qt.HistoryPanel)
self.assertEqual(self.hp2.shape[0], 5)
self.assertEqual(self.hp2.shape[1], 10)
self.assertEqual(self.hp2.shape[2], 1)
self.assertEqual(self.hp2.level_count, 5)
self.assertEqual(self.hp2.row_count, 10)
self.assertEqual(self.hp2.column_count, 1)
self.assertEqual(list(self.hp2.levels.keys()), self.shares.split(','))
self.assertEqual(list(self.hp2.columns.keys()), ['close'])
self.assertEqual(list(self.hp2.rows.keys())[0], pd.Timestamp('20200101'))
self.assertIsInstance(self.hp3, qt.HistoryPanel)
self.assertEqual(self.hp3.shape[0], 1)
self.assertEqual(self.hp3.shape[1], 10)
self.assertEqual(self.hp3.shape[2], 4)
self.assertEqual(self.hp3.level_count, 1)
self.assertEqual(self.hp3.row_count, 10)
self.assertEqual(self.hp3.column_count, 4)
self.assertEqual(list(self.hp3.levels.keys()), ['000100'])
self.assertEqual(list(self.hp3.columns.keys()), self.htypes.split(','))
self.assertEqual(list(self.hp3.rows.keys())[0], pd.Timestamp('2016-07-01'))
self.assertIsInstance(self.hp4, qt.HistoryPanel)
self.assertEqual(self.hp4.shape[0], 1)
self.assertEqual(self.hp4.shape[1], 10)
self.assertEqual(self.hp4.shape[2], 1)
self.assertEqual(self.hp4.level_count, 1)
self.assertEqual(self.hp4.row_count, 10)
self.assertEqual(self.hp4.column_count, 1)
self.assertEqual(list(self.hp4.levels.keys()), ['000100'])
self.assertEqual(list(self.hp4.columns.keys()), ['close'])
self.assertEqual(list(self.hp4.rows.keys())[0], pd.Timestamp('2016-07-01'))
self.hp5.info()
self.assertIsInstance(self.hp5, qt.HistoryPanel)
self.assertTrue(np.allclose(self.hp5.values, self.data))
self.assertEqual(self.hp5.shape[0], 5)
self.assertEqual(self.hp5.shape[1], 10)
self.assertEqual(self.hp5.shape[2], 4)
self.assertEqual(self.hp5.level_count, 5)
self.assertEqual(self.hp5.row_count, 10)
self.assertEqual(self.hp5.column_count, 4)
self.assertEqual(list(self.hp5.levels.keys()), [0, 1, 2, 3, 4])
self.assertEqual(list(self.hp5.columns.keys()), [0, 1, 2, 3])
self.assertEqual(list(self.hp5.rows.keys())[0], pd.Timestamp('2020-07-30'))
self.hp6.info()
self.assertIsInstance(self.hp6, qt.HistoryPanel)
self.assertTrue(np.allclose(self.hp6.values, self.data))
self.assertEqual(self.hp6.shape[0], 5)
self.assertEqual(self.hp6.shape[1], 10)
self.assertEqual(self.hp6.shape[2], 4)
self.assertEqual(self.hp6.level_count, 5)
self.assertEqual(self.hp6.row_count, 10)
self.assertEqual(self.hp6.column_count, 4)
self.assertEqual(list(self.hp6.levels.keys()), ['000100', '000101', '000102', '000103', '000104'])
self.assertEqual(list(self.hp6.columns.keys()), [0, 1, 2, 3])
self.assertEqual(list(self.hp6.rows.keys())[0], pd.Timestamp('2016-07-01'))
print('test creating HistoryPanel with very limited data')
print('test creating HistoryPanel with 2D data')
temp_data = np.random.randint(10, size=(7, 3)).astype('float')
temp_hp = qt.HistoryPanel(temp_data)
# Error testing during HistoryPanel creating
# shape does not match
self.assertRaises(AssertionError,
qt.HistoryPanel,
self.data,
levels=self.shares, columns='close', rows=self.index)
# valus is not np.ndarray
self.assertRaises(TypeError,
qt.HistoryPanel,
list(self.data))
# dimension/shape does not match
self.assertRaises(AssertionError,
qt.HistoryPanel,
self.data2,
levels='000100', columns=self.htypes, rows=self.index)
# value dimension over 3
self.assertRaises(AssertionError,
qt.HistoryPanel,
np.random.randint(10, size=(5, 10, 4, 2)))
# lebel value not valid
self.assertRaises(ValueError,
qt.HistoryPanel,
self.data2,
levels=self.shares, columns='close',
rows='a,b,c,d,e,f,g,h,i,j')
def test_history_panel_slicing(self):
"""测试HistoryPanel的各种切片方法
包括通过标签名称切片,通过数字切片,通过逗号分隔的标签名称切片,通过冒号分隔的标签名称切片等切片方式"""
self.assertTrue(np.allclose(self.hp['close'], self.data[:, :, 0:1]))
self.assertTrue(np.allclose(self.hp['close,open'], self.data[:, :, 0:2]))
self.assertTrue(np.allclose(self.hp[['close', 'open']], self.data[:, :, 0:2]))
self.assertTrue(np.allclose(self.hp['close:high'], self.data[:, :, 0:3]))
self.assertTrue(np.allclose(self.hp['close,high'], self.data[:, :, [0, 2]]))
self.assertTrue(np.allclose(self.hp[:, '000100'], self.data[0:1, :, ]))
self.assertTrue(np.allclose(self.hp[:, '000100,000101'], self.data[0:2, :]))
self.assertTrue(np.allclose(self.hp[:, ['000100', '000101']], self.data[0:2, :]))
self.assertTrue(np.allclose(self.hp[:, '000100:000102'], self.data[0:3, :]))
self.assertTrue(np.allclose(self.hp[:, '000100,000102'], self.data[[0, 2], :]))
self.assertTrue(np.allclose(self.hp['close,open', '000100,000102'], self.data[[0, 2], :, 0:2]))
print('start testing HistoryPanel')
data = np.random.randint(10, size=(10, 5))
# index = pd.date_range(start='20200101', freq='d', periods=10)
shares = '000100,000101,000102,000103,000104'
dtypes = 'close'
df = pd.DataFrame(data)
print('=========================\nTesting HistoryPanel creation from DataFrame')
hp = qt.dataframe_to_hp(df=df, shares=shares, htypes=dtypes)
hp.info()
hp = qt.dataframe_to_hp(df=df, shares='000100', htypes='close, open, high, low, middle', column_type='htypes')
hp.info()
print('=========================\nTesting HistoryPanel creation from initialization')
data = np.random.randint(10, size=(5, 10, 4)).astype('float')
index = pd.date_range(start='20200101', freq='d', periods=10)
dtypes = 'close, open, high,low'
data[0, [5, 6, 9], [0, 1, 3]] = np.nan
data[1:4, [4, 7, 6, 2], [1, 1, 3, 0]] = np.nan
data[4:5, [2, 9, 1, 2], [0, 3, 2, 1]] = np.nan
hp = qt.HistoryPanel(data, levels=shares, columns=dtypes, rows=index)
hp.info()
print('==========================\n输出close类型的所有历史数据\n')
self.assertTrue(np.allclose(hp['close', :, :], data[:, :, 0:1], equal_nan=True))
print(f'==========================\n输出close和open类型的所有历史数据\n')
self.assertTrue(np.allclose(hp[[0, 1], :, :], data[:, :, 0:2], equal_nan=True))
print(f'==========================\n输出第一只股票的所有类型历史数据\n')
self.assertTrue(np.allclose(hp[:, [0], :], data[0:1, :, :], equal_nan=True))
print('==========================\n输出第0、1、2个htype对应的所有股票全部历史数据\n')
self.assertTrue(np.allclose(hp[[0, 1, 2]], data[:, :, 0:3], equal_nan=True))
print('==========================\n输出close、high两个类型的所有历史数据\n')
self.assertTrue(np.allclose(hp[['close', 'high']], data[:, :, [0, 2]], equal_nan=True))
print('==========================\n输出0、1两个htype的所有历史数据\n')
self.assertTrue(np.allclose(hp[[0, 1]], data[:, :, 0:2], equal_nan=True))
print('==========================\n输出close、high两个类型的所有历史数据\n')
self.assertTrue(np.allclose(hp['close,high'], data[:, :, [0, 2]], equal_nan=True))
print('==========================\n输出close起到high止的三个类型的所有历史数据\n')
self.assertTrue(np.allclose(hp['close:high'], data[:, :, 0:3], equal_nan=True))
print('==========================\n输出0、1、3三个股票的全部历史数据\n')
self.assertTrue(np.allclose(hp[:, [0, 1, 3]], data[[0, 1, 3], :, :], equal_nan=True))
print('==========================\n输出000100、000102两只股票的所有历史数据\n')
self.assertTrue(np.allclose(hp[:, ['000100', '000102']], data[[0, 2], :, :], equal_nan=True))
print('==========================\n输出0、1、2三个股票的历史数据\n', hp[:, 0: 3])
self.assertTrue(np.allclose(hp[:, 0: 3], data[0:3, :, :], equal_nan=True))
print('==========================\n输出000100、000102两只股票的所有历史数据\n')
self.assertTrue(np.allclose(hp[:, '000100, 000102'], data[[0, 2], :, :], equal_nan=True))
print('==========================\n输出所有股票的0-7日历史数据\n')
self.assertTrue(np.allclose(hp[:, :, 0:8], data[:, 0:8, :], equal_nan=True))
print('==========================\n输出000100股票的0-7日历史数据\n')
self.assertTrue(np.allclose(hp[:, '000100', 0:8], data[0, 0:8, :], equal_nan=True))
print('==========================\nstart testing multy axis slicing of HistoryPanel object')
print('==========================\n输出000100、000120两只股票的close、open两组历史数据\n',
hp['close,open', ['000100', '000102']])
print('==========================\n输出000100、000120两只股票的close到open三组历史数据\n',
hp['close,open', '000100, 000102'])
print(f'historyPanel: hp:\n{hp}')
print(f'data is:\n{data}')
hp.htypes = 'open,high,low,close'
hp.info()
hp.shares = ['000300', '600227', '600222', '000123', '000129']
hp.info()
def test_segment(self):
"""测试历史数据片段的获取"""
test_hp = qt.HistoryPanel(self.data,
levels=self.shares,
columns=self.htypes,
rows=self.index2)
self.assertFalse(test_hp.is_empty)
self.assertIsInstance(test_hp, qt.HistoryPanel)
self.assertEqual(test_hp.shape[0], 5)
self.assertEqual(test_hp.shape[1], 10)
self.assertEqual(test_hp.shape[2], 4)
print(f'Test segment with None parameters')
seg1 = test_hp.segment()
seg2 = test_hp.segment('20150202')
seg3 = test_hp.segment(end_date='20201010')
self.assertIsInstance(seg1, qt.HistoryPanel)
self.assertIsInstance(seg2, qt.HistoryPanel)
self.assertIsInstance(seg3, qt.HistoryPanel)
# check values
self.assertTrue(np.allclose(
seg1.values, test_hp.values
))
self.assertTrue(np.allclose(
seg2.values, test_hp.values
))
self.assertTrue(np.allclose(
seg3.values, test_hp.values
))
# check that htypes and shares should be same
self.assertEqual(seg1.htypes, test_hp.htypes)
self.assertEqual(seg1.shares, test_hp.shares)
self.assertEqual(seg2.htypes, test_hp.htypes)
self.assertEqual(seg2.shares, test_hp.shares)
self.assertEqual(seg3.htypes, test_hp.htypes)
self.assertEqual(seg3.shares, test_hp.shares)
# check that hdates are the same
self.assertEqual(seg1.hdates, test_hp.hdates)
self.assertEqual(seg2.hdates, test_hp.hdates)
self.assertEqual(seg3.hdates, test_hp.hdates)
print(f'Test segment with proper dates')
seg1 = test_hp.segment()
seg2 = test_hp.segment('20160704')
seg3 = test_hp.segment(start_date='2016-07-05',
end_date='20160708')
self.assertIsInstance(seg1, qt.HistoryPanel)
self.assertIsInstance(seg2, qt.HistoryPanel)
self.assertIsInstance(seg3, qt.HistoryPanel)
# check values
self.assertTrue(np.allclose(
seg1.values, test_hp[:, :, :]
))
self.assertTrue(np.allclose(
seg2.values, test_hp[:, :, 1:10]
))
self.assertTrue(np.allclose(
seg3.values, test_hp[:, :, 2:6]
))
# check that htypes and shares should be same
self.assertEqual(seg1.htypes, test_hp.htypes)
self.assertEqual(seg1.shares, test_hp.shares)
self.assertEqual(seg2.htypes, test_hp.htypes)
self.assertEqual(seg2.shares, test_hp.shares)
self.assertEqual(seg3.htypes, test_hp.htypes)
self.assertEqual(seg3.shares, test_hp.shares)
# check that hdates are the same
self.assertEqual(seg1.hdates, test_hp.hdates)
self.assertEqual(seg2.hdates, test_hp.hdates[1:10])
self.assertEqual(seg3.hdates, test_hp.hdates[2:6])
print(f'Test segment with non-existing but in range dates')
seg1 = test_hp.segment()
seg2 = test_hp.segment('20160703')
seg3 = test_hp.segment(start_date='2016-07-03',
end_date='20160710')
self.assertIsInstance(seg1, qt.HistoryPanel)
self.assertIsInstance(seg2, qt.HistoryPanel)
self.assertIsInstance(seg3, qt.HistoryPanel)
# check values
self.assertTrue(np.allclose(
seg1.values, test_hp[:, :, :]
))
self.assertTrue(np.allclose(
seg2.values, test_hp[:, :, 1:10]
))
self.assertTrue(np.allclose(
seg3.values, test_hp[:, :, 1:6]
))
# check that htypes and shares should be same
self.assertEqual(seg1.htypes, test_hp.htypes)
self.assertEqual(seg1.shares, test_hp.shares)
self.assertEqual(seg2.htypes, test_hp.htypes)
self.assertEqual(seg2.shares, test_hp.shares)
self.assertEqual(seg3.htypes, test_hp.htypes)
self.assertEqual(seg3.shares, test_hp.shares)
# check that hdates are the same
self.assertEqual(seg1.hdates, test_hp.hdates)
self.assertEqual(seg2.hdates, test_hp.hdates[1:10])
self.assertEqual(seg3.hdates, test_hp.hdates[1:6])
print(f'Test segment with out-of-range dates')
seg1 = test_hp.segment(start_date='2016-05-03',
end_date='20160910')
self.assertIsInstance(seg1, qt.HistoryPanel)
# check values
self.assertTrue(np.allclose(
seg1.values, test_hp[:, :, :]
))
# check that htypes and shares should be same
self.assertEqual(seg1.htypes, test_hp.htypes)
self.assertEqual(seg1.shares, test_hp.shares)
# check that hdates are the same
self.assertEqual(seg1.hdates, test_hp.hdates)
def test_slice(self):
"""测试历史数据切片的获取"""
test_hp = qt.HistoryPanel(self.data,
levels=self.shares,
columns=self.htypes,
rows=self.index2)
self.assertFalse(test_hp.is_empty)
self.assertIsInstance(test_hp, qt.HistoryPanel)
self.assertEqual(test_hp.shape[0], 5)
self.assertEqual(test_hp.shape[1], 10)
self.assertEqual(test_hp.shape[2], 4)
print(f'Test slice with shares')
share = '000101'
slc = test_hp.slice(shares=share)
self.assertIsInstance(slc, qt.HistoryPanel)
self.assertEqual(slc.shares, ['000101'])
self.assertEqual(slc.htypes, test_hp.htypes)
self.assertEqual(slc.hdates, test_hp.hdates)
self.assertTrue(np.allclose(slc.values, test_hp[:, '000101']))
share = '000101, 000103'
slc = test_hp.slice(shares=share)
self.assertIsInstance(slc, qt.HistoryPanel)
self.assertEqual(slc.shares, ['000101', '000103'])
self.assertEqual(slc.htypes, test_hp.htypes)
self.assertEqual(slc.hdates, test_hp.hdates)
self.assertTrue(np.allclose(slc.values, test_hp[:, '000101, 000103']))
print(f'Test slice with htypes')
htype = 'open'
slc = test_hp.slice(htypes=htype)
self.assertIsInstance(slc, qt.HistoryPanel)
self.assertEqual(slc.shares, test_hp.shares)
self.assertEqual(slc.htypes, ['open'])
self.assertEqual(slc.hdates, test_hp.hdates)
self.assertTrue(np.allclose(slc.values, test_hp['open']))
htype = 'open, close'
slc = test_hp.slice(htypes=htype)
self.assertIsInstance(slc, qt.HistoryPanel)
self.assertEqual(slc.shares, test_hp.shares)
self.assertEqual(slc.htypes, ['open', 'close'])
self.assertEqual(slc.hdates, test_hp.hdates)
self.assertTrue(np.allclose(slc.values, test_hp['open, close']))
# test that slicing of "open, close" does NOT equal to "close, open"
self.assertFalse(np.allclose(slc.values, test_hp['close, open']))
print(f'Test slicing with both htypes and shares')
share = '000103, 000101'
htype = 'high, low, close'
slc = test_hp.slice(shares=share, htypes=htype)
self.assertIsInstance(slc, qt.HistoryPanel)
self.assertEqual(slc.shares, ['000103', '000101'])
self.assertEqual(slc.htypes, ['high', 'low', 'close'])
self.assertEqual(slc.hdates, test_hp.hdates)
self.assertTrue(np.allclose(slc.values, test_hp['high, low, close', '000103, 000101']))
print(f'Test Error cases')
# duplicated input
htype = 'open, close, open'
self.assertRaises(AssertionError, test_hp.slice, htypes=htype)
def test_relabel(self):
new_shares_list = ['000001', '000002', '000003', '000004', '000005']
new_shares_str = '000001, 000002, 000003, 000004, 000005'
new_htypes_list = ['close', 'volume', 'value', 'exchange']
new_htypes_str = 'close, volume, value, exchange'
temp_hp = self.hp.copy()
temp_hp.re_label(shares=new_shares_list)
print(temp_hp.info())
print(temp_hp.htypes)
self.assertTrue(np.allclose(self.hp.values, temp_hp.values))
self.assertEqual(self.hp.htypes, temp_hp.htypes)
self.assertEqual(self.hp.hdates, temp_hp.hdates)
self.assertEqual(temp_hp.shares, new_shares_list)
temp_hp = self.hp.copy()
temp_hp.re_label(shares=new_shares_str)
self.assertTrue(np.allclose(self.hp.values, temp_hp.values))
self.assertEqual(self.hp.htypes, temp_hp.htypes)
self.assertEqual(self.hp.hdates, temp_hp.hdates)
self.assertEqual(temp_hp.shares, new_shares_list)
temp_hp = self.hp.copy()
temp_hp.re_label(htypes=new_htypes_list)
self.assertTrue(np.allclose(self.hp.values, temp_hp.values))
self.assertEqual(self.hp.shares, temp_hp.shares)
self.assertEqual(self.hp.hdates, temp_hp.hdates)
self.assertEqual(temp_hp.htypes, new_htypes_list)
temp_hp = self.hp.copy()
temp_hp.re_label(htypes=new_htypes_str)
self.assertTrue(np.allclose(self.hp.values, temp_hp.values))
self.assertEqual(self.hp.shares, temp_hp.shares)
self.assertEqual(self.hp.hdates, temp_hp.hdates)
self.assertEqual(temp_hp.htypes, new_htypes_list)
print(f'test errors raising')
temp_hp = self.hp.copy()
self.assertRaises(AssertionError, temp_hp.re_label, htypes=new_shares_str)
self.assertRaises(TypeError, temp_hp.re_label, htypes=123)
self.assertRaises(AssertionError, temp_hp.re_label, htypes='wrong input!')
def test_csv_to_hp(self):
pass
def test_hdf_to_hp(self):
pass
def test_hp_join(self):
# TODO: 这里需要加强,需要用具体的例子确认hp_join的结果正确
# TODO: 尤其是不同的shares、htypes、hdates,以及它们在顺
# TODO: 序不同的情况下是否能正确地组合
print(f'join two simple HistoryPanels with same shares')
temp_hp = self.hp.join(self.hp2, same_shares=True)
self.assertIsInstance(temp_hp, qt.HistoryPanel)
def test_df_to_hp(self):
print(f'test converting DataFrame to HistoryPanel')
data = np.random.randint(10, size=(10, 5))
df1 = pd.DataFrame(data)
df2 = pd.DataFrame(data, columns=str_to_list(self.shares))
df3 = pd.DataFrame(data[:, 0:4])
df4 = pd.DataFrame(data[:, 0:4], columns=str_to_list(self.htypes))
hp = qt.dataframe_to_hp(df1, htypes='close')
self.assertIsInstance(hp, qt.HistoryPanel)
self.assertEqual(hp.shares, [0, 1, 2, 3, 4])
self.assertEqual(hp.htypes, ['close'])
self.assertEqual(hp.hdates, [pd.Timestamp('1970-01-01 00:00:00'),
pd.Timestamp('1970-01-01 00:00:00.000000001'),
pd.Timestamp('1970-01-01 00:00:00.000000002'),
pd.Timestamp('1970-01-01 00:00:00.000000003'),
pd.Timestamp('1970-01-01 00:00:00.000000004'),
pd.Timestamp('1970-01-01 00:00:00.000000005'),
pd.Timestamp('1970-01-01 00:00:00.000000006'),
pd.Timestamp('1970-01-01 00:00:00.000000007'),
pd.Timestamp('1970-01-01 00:00:00.000000008'),
pd.Timestamp('1970-01-01 00:00:00.000000009')])
hp = qt.dataframe_to_hp(df2, shares=self.shares, htypes='close')
self.assertIsInstance(hp, qt.HistoryPanel)
self.assertEqual(hp.shares, str_to_list(self.shares))
self.assertEqual(hp.htypes, ['close'])
hp = qt.dataframe_to_hp(df3, shares='000100', column_type='htypes')
self.assertIsInstance(hp, qt.HistoryPanel)
self.assertEqual(hp.shares, ['000100'])
self.assertEqual(hp.htypes, [0, 1, 2, 3])
hp = qt.dataframe_to_hp(df4, shares='000100', htypes=self.htypes, column_type='htypes')
self.assertIsInstance(hp, qt.HistoryPanel)
self.assertEqual(hp.shares, ['000100'])
self.assertEqual(hp.htypes, str_to_list(self.htypes))
hp.info()
self.assertRaises(KeyError, qt.dataframe_to_hp, df1)
def test_to_dataframe(self):
""" 测试HistoryPanel对象的to_dataframe方法
"""
print(f'START TEST == test_to_dataframe')
print(f'test converting test hp to dataframe with share == "000102":')
df_test = self.hp.to_dataframe(share='000102')
self.assertIsInstance(df_test, pd.DataFrame)
self.assertEqual(list(self.hp.hdates), list(df_test.index))
self.assertEqual(list(self.hp.htypes), list(df_test.columns))
values = df_test.values
self.assertTrue(np.allclose(self.hp[:, '000102'], values))
print(f'test DataFrame conversion with share == "000100"')
df_test = self.hp.to_dataframe(share='000100')
self.assertIsInstance(df_test, pd.DataFrame)
self.assertEqual(list(self.hp.hdates), list(df_test.index))
self.assertEqual(list(self.hp.htypes), list(df_test.columns))
values = df_test.values
self.assertTrue(np.allclose(self.hp[:, '000100'], values))
print(f'test DataFrame conversion error: type incorrect')
self.assertRaises(AssertionError, self.hp.to_dataframe, share=3.0)
print(f'test DataFrame error raising with share not found error')
self.assertRaises(KeyError, self.hp.to_dataframe, share='000300')
print(f'test DataFrame conversion with htype == "close"')
df_test = self.hp.to_dataframe(htype='close')
self.assertIsInstance(df_test, pd.DataFrame)
self.assertEqual(list(self.hp.hdates), list(df_test.index))
self.assertEqual(list(self.hp.shares), list(df_test.columns))
values = df_test.values
self.assertTrue(np.allclose(self.hp['close'].T, values))
print(f'test DataFrame conversion with htype == "high"')
df_test = self.hp.to_dataframe(htype='high')
self.assertIsInstance(df_test, pd.DataFrame)
self.assertEqual(list(self.hp.hdates), list(df_test.index))
self.assertEqual(list(self.hp.shares), list(df_test.columns))
values = df_test.values
self.assertTrue(np.allclose(self.hp['high'].T, values))
print(f'test DataFrame conversion with htype == "high" and dropna')
v = self.hp.values.astype('float')
v[:, 3, :] = np.nan
v[:, 4, :] = np.inf
test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index)
df_test = test_hp.to_dataframe(htype='high', dropna=True)
self.assertIsInstance(df_test, pd.DataFrame)
self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[4:]), list(df_test.index))
self.assertEqual(list(self.hp.shares), list(df_test.columns))
values = df_test.values
target_values = test_hp['high'].T
target_values = target_values[np.where(~np.isnan(target_values))].reshape(9, 5)
self.assertTrue(np.allclose(target_values, values))
print(f'test DataFrame conversion with htype == "high", dropna and treat infs as na')
v = self.hp.values.astype('float')
v[:, 3, :] = np.nan
v[:, 4, :] = np.inf
test_hp = qt.HistoryPanel(v, levels=self.shares, columns=self.htypes, rows=self.index)
df_test = test_hp.to_dataframe(htype='high', dropna=True, inf_as_na=True)
self.assertIsInstance(df_test, pd.DataFrame)
self.assertEqual(list(self.hp.hdates[:3]) + list(self.hp.hdates[5:]), list(df_test.index))
self.assertEqual(list(self.hp.shares), list(df_test.columns))
values = df_test.values
target_values = test_hp['high'].T
target_values = target_values[np.where(~np.isnan(target_values) & ~np.isinf(target_values))].reshape(8, 5)
self.assertTrue(np.allclose(target_values, values))
print(f'test DataFrame conversion error: type incorrect')
self.assertRaises(AssertionError, self.hp.to_dataframe, htype=pd.DataFrame())
print(f'test DataFrame error raising with share not found error')
self.assertRaises(KeyError, self.hp.to_dataframe, htype='non_type')
print(f'Raises ValueError when both or none parameter is given')
self.assertRaises(KeyError, self.hp.to_dataframe)
self.assertRaises(KeyError, self.hp.to_dataframe, share='000100', htype='close')
def test_to_df_dict(self):
"""测试HistoryPanel公有方法to_df_dict"""
print('test convert history panel slice by share')
df_dict = self.hp.to_df_dict('share')
self.assertEqual(self.hp.shares, list(df_dict.keys()))
df_dict = self.hp.to_df_dict()
self.assertEqual(self.hp.shares, list(df_dict.keys()))
print('test convert historypanel slice by htype ')
df_dict = self.hp.to_df_dict('htype')
self.assertEqual(self.hp.htypes, list(df_dict.keys()))
print('test raise assertion error')
self.assertRaises(AssertionError, self.hp.to_df_dict, by='random text')
self.assertRaises(AssertionError, self.hp.to_df_dict, by=3)
print('test empty hp')
df_dict = qt.HistoryPanel().to_df_dict('share')
self.assertEqual(df_dict, {})
def test_stack_dataframes(self):
print('test stack dataframes in a list')
df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]})
df1.index = ['20200101', '20200102', '20200103', '20200104']
df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]})
df2.index = ['20200101', '20200102', '20200104', '20200105']
df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]})
df3.index = ['20200101', '20200102', '20200103', '20200106']
values1 = np.array([[[1., 2., 3., np.nan],
[2., 3., 4., np.nan],
[3., 4., 5., np.nan],
[4., 5., 6., np.nan],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan]],
[[np.nan, 4., 6., 1.],
[np.nan, 3., 5., 1.],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, 2., 4., 1.],
[np.nan, 1., 3., 1.],
[np.nan, np.nan, np.nan, np.nan]],
[[6., 2., np.nan, 4.],
[6., 4., np.nan, 4.],
[6., 6., np.nan, 4.],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan],
[6., 8., np.nan, 4.]]])
values2 = np.array([[[1., np.nan, 6.],
[2., np.nan, 6.],
[3., np.nan, 6.],
[4., np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 6.]],
[[2., 4., 2.],
[3., 3., 4.],
[4., np.nan, 6.],
[5., 2., np.nan],
[np.nan, 1., np.nan],
[np.nan, np.nan, 8.]],
[[3., 6., np.nan],
[4., 5., np.nan],
[5., np.nan, np.nan],
[6., 4., np.nan],
[np.nan, 3., np.nan],
[np.nan, np.nan, np.nan]],
[[np.nan, 1., 4.],
[np.nan, 1., 4.],
[np.nan, np.nan, 4.],
[np.nan, 1., np.nan],
[np.nan, 1., np.nan],
[np.nan, np.nan, 4.]]])
print(df1.rename(index=pd.to_datetime))
print(df2.rename(index=pd.to_datetime))
print(df3.rename(index=pd.to_datetime))
hp1 = stack_dataframes([df1, df2, df3], stack_along='shares',
shares=['000100', '000200', '000300'])
hp2 = stack_dataframes([df1, df2, df3], stack_along='shares',
shares='000100, 000300, 000200')
print('hp1 is:\n', hp1)
print('hp2 is:\n', hp2)
self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd'])
self.assertEqual(hp1.shares, ['000100', '000200', '000300'])
self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True))
self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd'])
self.assertEqual(hp2.shares, ['000100', '000300', '000200'])
self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True))
hp3 = stack_dataframes([df1, df2, df3], stack_along='htypes',
htypes=['close', 'high', 'low'])
hp4 = stack_dataframes([df1, df2, df3], stack_along='htypes',
htypes='open, close, high')
print('hp3 is:\n', hp3.values)
print('hp4 is:\n', hp4.values)
self.assertEqual(hp3.htypes, ['close', 'high', 'low'])
self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd'])
self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True))
self.assertEqual(hp4.htypes, ['open', 'close', 'high'])
self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd'])
self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True))
print('test stack dataframes in a dict')
df1 = pd.DataFrame({'a': [1, 2, 3, 4], 'b': [2, 3, 4, 5], 'c': [3, 4, 5, 6]})
df1.index = ['20200101', '20200102', '20200103', '20200104']
df2 = pd.DataFrame({'b': [4, 3, 2, 1], 'd': [1, 1, 1, 1], 'c': [6, 5, 4, 3]})
df2.index = ['20200101', '20200102', '20200104', '20200105']
df3 = pd.DataFrame({'a': [6, 6, 6, 6], 'd': [4, 4, 4, 4], 'b': [2, 4, 6, 8]})
df3.index = ['20200101', '20200102', '20200103', '20200106']
values1 = np.array([[[1., 2., 3., np.nan],
[2., 3., 4., np.nan],
[3., 4., 5., np.nan],
[4., 5., 6., np.nan],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan]],
[[np.nan, 4., 6., 1.],
[np.nan, 3., 5., 1.],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, 2., 4., 1.],
[np.nan, 1., 3., 1.],
[np.nan, np.nan, np.nan, np.nan]],
[[6., 2., np.nan, 4.],
[6., 4., np.nan, 4.],
[6., 6., np.nan, 4.],
[np.nan, np.nan, np.nan, np.nan],
[np.nan, np.nan, np.nan, np.nan],
[6., 8., np.nan, 4.]]])
values2 = np.array([[[1., np.nan, 6.],
[2., np.nan, 6.],
[3., np.nan, 6.],
[4., np.nan, np.nan],
[np.nan, np.nan, np.nan],
[np.nan, np.nan, 6.]],
[[2., 4., 2.],
[3., 3., 4.],
[4., np.nan, 6.],
[5., 2., np.nan],
[np.nan, 1., np.nan],
[np.nan, np.nan, 8.]],
[[3., 6., np.nan],
[4., 5., np.nan],
[5., np.nan, np.nan],
[6., 4., np.nan],
[np.nan, 3., np.nan],
[np.nan, np.nan, np.nan]],
[[np.nan, 1., 4.],
[np.nan, 1., 4.],
[np.nan, np.nan, 4.],
[np.nan, 1., np.nan],
[np.nan, 1., np.nan],
[np.nan, np.nan, 4.]]])
print(df1.rename(index=pd.to_datetime))
print(df2.rename(index=pd.to_datetime))
print(df3.rename(index=pd.to_datetime))
hp1 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3},
stack_along='shares')
hp2 = stack_dataframes(dfs={'000001.SZ': df1, '000002.SZ': df2, '000003.SZ': df3},
stack_along='shares',
shares='000100, 000300, 000200')
print('hp1 is:\n', hp1)
print('hp2 is:\n', hp2)
self.assertEqual(hp1.htypes, ['a', 'b', 'c', 'd'])
self.assertEqual(hp1.shares, ['000001.SZ', '000002.SZ', '000003.SZ'])
self.assertTrue(np.allclose(hp1.values, values1, equal_nan=True))
self.assertEqual(hp2.htypes, ['a', 'b', 'c', 'd'])
self.assertEqual(hp2.shares, ['000100', '000300', '000200'])
self.assertTrue(np.allclose(hp2.values, values1, equal_nan=True))
hp3 = stack_dataframes(dfs={'close': df1, 'high': df2, 'low': df3},
stack_along='htypes')
hp4 = stack_dataframes(dfs={'close': df1, 'low': df2, 'high': df3},
stack_along='htypes',
htypes='open, close, high')
print('hp3 is:\n', hp3.values)
print('hp4 is:\n', hp4.values)
self.assertEqual(hp3.htypes, ['close', 'high', 'low'])
self.assertEqual(hp3.shares, ['a', 'b', 'c', 'd'])
self.assertTrue(np.allclose(hp3.values, values2, equal_nan=True))
self.assertEqual(hp4.htypes, ['open', 'close', 'high'])
self.assertEqual(hp4.shares, ['a', 'b', 'c', 'd'])
self.assertTrue(np.allclose(hp4.values, values2, equal_nan=True))
def test_to_csv(self):
pass
def test_to_hdf(self):
pass
def test_fill_na(self):
"""测试填充无效值"""
print(self.hp)
new_values = self.hp.values.astype(float)
new_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = np.nan
print(new_values)
temp_hp = qt.HistoryPanel(values=new_values, levels=self.hp.levels, rows=self.hp.rows, columns=self.hp.columns)
self.assertTrue(np.allclose(temp_hp.values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]], np.nan, equal_nan=True))
temp_hp.fillna(2.3)
filled_values = new_values.copy()
filled_values[[0, 1, 3, 2], [1, 3, 0, 2], [1, 3, 2, 2]] = 2.3
self.assertTrue(np.allclose(temp_hp.values,
filled_values, equal_nan=True))
def test_fill_inf(self):
"""测试填充无限值"""
def test_get_history_panel(self):
# TODO: implement this test case
# test get only one line of data
pass
def test_get_price_type_raw_data(self):
shares = '000039.SZ, 600748.SH, 000040.SZ'
start = '20200101'
end = '20200131'
htypes = 'open, high, low, close'
target_price_000039 = [[9.45, 9.49, 9.12, 9.17],
[9.46, 9.56, 9.4, 9.5],
[9.7, 9.76, 9.5, 9.51],
[9.7, 9.75, 9.7, 9.72],
[9.73, 9.77, 9.7, 9.73],
[9.83, 9.85, 9.71, 9.72],
[9.85, 9.85, 9.75, 9.79],
[9.96, 9.96, 9.83, 9.86],
[9.87, 9.94, 9.77, 9.93],
[9.82, 9.9, 9.76, 9.87],
[9.8, 9.85, 9.77, 9.82],
[9.84, 9.86, 9.71, 9.72],
[9.83, 9.93, 9.81, 9.86],
[9.7, 9.87, 9.7, 9.82],
[9.83, 9.86, 9.69, 9.79],
[9.8, 9.94, 9.8, 9.86]]
target_price_600748 = [[5.68, 5.68, 5.32, 5.37],
[5.62, 5.68, 5.46, 5.65],
[5.72, 5.72, 5.61, 5.62],
[5.76, 5.77, 5.6, 5.73],
[5.78, 5.84, 5.73, 5.75],
[5.89, 5.91, 5.76, 5.77],
[6.03, 6.04, 5.87, 5.89],
[5.94, 6.07, 5.94, 6.02],
[5.96, 5.98, 5.88, 5.97],
[6.04, 6.06, 5.95, 5.96],
[5.98, 6.04, 5.96, 6.03],
[6.1, 6.11, 5.89, 5.94],
[6.02, 6.12, 6., 6.1],
[5.96, 6.05, 5.88, 6.01],
[6.03, 6.03, 5.95, 5.99],
[6.02, 6.12, 5.99, 5.99]]
target_price_000040 = [[3.63, 3.83, 3.63, 3.65],
[3.99, 4.07, 3.97, 4.03],
[4.1, 4.11, 3.93, 3.95],
[4.12, 4.13, 4.06, 4.11],
[4.13, 4.19, 4.07, 4.13],
[4.27, 4.28, 4.11, 4.12],
[4.37, 4.38, 4.25, 4.29],
[4.34, 4.5, 4.32, 4.41],
[4.28, 4.35, 4.2, 4.34],
[4.41, 4.43, 4.29, 4.31],
[4.42, 4.45, 4.36, 4.41],
[4.51, 4.56, 4.33, 4.35],
[4.35, 4.55, 4.31, 4.55],
[4.3, 4.41, 4.22, 4.36],
[4.27, 4.44, 4.23, 4.34],
[4.23, 4.27, 4.18, 4.25]]
print(f'test get price type raw data with single thread')
df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d')
self.assertIsInstance(df_list, dict)
self.assertEqual(len(df_list), 3)
self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039)))
self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748)))
self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040)))
print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n'
f'{df_list["000039.SZ"]}\n"600748.SH":\n'
f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}')
print(f'test get price type raw data with with multi threads')
df_list = get_price_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, freq='d', parallel=10)
self.assertIsInstance(df_list, dict)
self.assertEqual(len(df_list), 3)
self.assertTrue(np.allclose(df_list['000039.SZ'].values, np.array(target_price_000039)))
self.assertTrue(np.allclose(df_list['600748.SH'].values, np.array(target_price_600748)))
self.assertTrue(np.allclose(df_list['000040.SZ'].values, np.array(target_price_000040)))
print(f'in get financial report type raw data, got DataFrames: \n"000039.SZ":\n'
f'{df_list["000039.SZ"]}\n"600748.SH":\n'
f'{df_list["600748.SH"]}\n"000040.SZ":\n{df_list["000040.SZ"]}')
def test_get_financial_report_type_raw_data(self):
shares = '000039.SZ, 600748.SH, 000040.SZ'
start = '20160101'
end = '20201231'
htypes = 'eps,basic_eps,diluted_eps,total_revenue,revenue,total_share,' \
'cap_rese,undistr_porfit,surplus_rese,net_profit'
target_eps_000039 = [[1.41],
[0.1398],
[-0.0841],
[-0.1929],
[0.37],
[0.1357],
[0.1618],
[0.1191],
[1.11],
[0.759],
[0.3061],
[0.1409],
[0.81],
[0.4187],
[0.2554],
[0.1624],
[0.14],
[-0.0898],
[-0.1444],
[0.1291]]
target_eps_600748 = [[0.41],
[0.22],
[0.22],
[0.09],
[0.42],
[0.23],
[0.22],
[0.09],
[0.36],
[0.16],
[0.15],
[0.07],
[0.47],
[0.19],
[0.12],
[0.07],
[0.32],
[0.22],
[0.14],
[0.07]]
target_eps_000040 = [[-0.6866],
[-0.134],
[-0.189],
[-0.036],
[-0.6435],
[0.05],
[0.062],
[0.0125],
[0.8282],
[1.05],
[0.985],
[0.811],
[0.41],
[0.242],
[0.113],
[0.027],
[0.19],
[0.17],
[0.17],
[0.064]]
target_basic_eps_000039 = [[1.3980000e-01, 1.3980000e-01, 6.3591954e+10, 6.3591954e+10],
[-8.4100000e-02, -8.4100000e-02, 3.9431807e+10, 3.9431807e+10],
[-1.9290000e-01, -1.9290000e-01, 1.5852177e+10, 1.5852177e+10],
[3.7000000e-01, 3.7000000e-01, 8.5815341e+10, 8.5815341e+10],
[1.3570000e-01, 1.3430000e-01, 6.1660271e+10, 6.1660271e+10],
[1.6180000e-01, 1.6040000e-01, 4.2717729e+10, 4.2717729e+10],
[1.1910000e-01, 1.1900000e-01, 1.9099547e+10, 1.9099547e+10],
[1.1100000e+00, 1.1000000e+00, 9.3497622e+10, 9.3497622e+10],
[7.5900000e-01, 7.5610000e-01, 6.6906147e+10, 6.6906147e+10],
[3.0610000e-01, 3.0380000e-01, 4.3560398e+10, 4.3560398e+10],
[1.4090000e-01, 1.4050000e-01, 1.9253639e+10, 1.9253639e+10],
[8.1000000e-01, 8.1000000e-01, 7.6299930e+10, 7.6299930e+10],
[4.1870000e-01, 4.1710000e-01, 5.3962706e+10, 5.3962706e+10],
[2.5540000e-01, 2.5440000e-01, 3.3387152e+10, 3.3387152e+10],
[1.6240000e-01, 1.6200000e-01, 1.4675987e+10, 1.4675987e+10],
[1.4000000e-01, 1.4000000e-01, 5.1111652e+10, 5.1111652e+10],
[-8.9800000e-02, -8.9800000e-02, 3.4982614e+10, 3.4982614e+10],
[-1.4440000e-01, -1.4440000e-01, 2.3542843e+10, 2.3542843e+10],
[1.2910000e-01, 1.2860000e-01, 1.0412416e+10, 1.0412416e+10],
[7.2000000e-01, 7.1000000e-01, 5.8685804e+10, 5.8685804e+10]]
target_basic_eps_600748 = [[2.20000000e-01, 2.20000000e-01, 5.29423397e+09, 5.29423397e+09],
[2.20000000e-01, 2.20000000e-01, 4.49275653e+09, 4.49275653e+09],
[9.00000000e-02, 9.00000000e-02, 1.59067065e+09, 1.59067065e+09],
[4.20000000e-01, 4.20000000e-01, 8.86555586e+09, 8.86555586e+09],
[2.30000000e-01, 2.30000000e-01, 5.44850143e+09, 5.44850143e+09],
[2.20000000e-01, 2.20000000e-01, 4.34978927e+09, 4.34978927e+09],
[9.00000000e-02, 9.00000000e-02, 1.73793793e+09, 1.73793793e+09],
[3.60000000e-01, 3.60000000e-01, 8.66375241e+09, 8.66375241e+09],
[1.60000000e-01, 1.60000000e-01, 4.72875116e+09, 4.72875116e+09],
[1.50000000e-01, 1.50000000e-01, 3.76879016e+09, 3.76879016e+09],
[7.00000000e-02, 7.00000000e-02, 1.31785454e+09, 1.31785454e+09],
[4.70000000e-01, 4.70000000e-01, 7.23391685e+09, 7.23391685e+09],
[1.90000000e-01, 1.90000000e-01, 3.76072215e+09, 3.76072215e+09],
[1.20000000e-01, 1.20000000e-01, 2.35845364e+09, 2.35845364e+09],
[7.00000000e-02, 7.00000000e-02, 1.03831865e+09, 1.03831865e+09],
[3.20000000e-01, 3.20000000e-01, 6.48880919e+09, 6.48880919e+09],
[2.20000000e-01, 2.20000000e-01, 3.72209142e+09, 3.72209142e+09],
[1.40000000e-01, 1.40000000e-01, 2.22563924e+09, 2.22563924e+09],
[7.00000000e-02, 7.00000000e-02, 8.96647052e+08, 8.96647052e+08],
[4.80000000e-01, 4.80000000e-01, 6.61917508e+09, 6.61917508e+09]]
target_basic_eps_000040 = [[-1.34000000e-01, -1.34000000e-01, 2.50438755e+09, 2.50438755e+09],
[-1.89000000e-01, -1.89000000e-01, 1.32692347e+09, 1.32692347e+09],
[-3.60000000e-02, -3.60000000e-02, 5.59073338e+08, 5.59073338e+08],
[-6.43700000e-01, -6.43700000e-01, 6.80576162e+09, 6.80576162e+09],
[5.00000000e-02, 5.00000000e-02, 6.38891620e+09, 6.38891620e+09],
[6.20000000e-02, 6.20000000e-02, 5.23267082e+09, 5.23267082e+09],
[1.25000000e-02, 1.25000000e-02, 2.22420874e+09, 2.22420874e+09],
[8.30000000e-01, 8.30000000e-01, 8.67628947e+09, 8.67628947e+09],
[1.05000000e+00, 1.05000000e+00, 5.29431716e+09, 5.29431716e+09],
[9.85000000e-01, 9.85000000e-01, 3.56822382e+09, 3.56822382e+09],
[8.11000000e-01, 8.11000000e-01, 1.06613439e+09, 1.06613439e+09],
[4.10000000e-01, 4.10000000e-01, 8.13102532e+09, 8.13102532e+09],
[2.42000000e-01, 2.42000000e-01, 5.17971521e+09, 5.17971521e+09],
[1.13000000e-01, 1.13000000e-01, 3.21704120e+09, 3.21704120e+09],
[2.70000000e-02, 2.70000000e-02, 8.41966738e+08, 8.24272235e+08],
[1.90000000e-01, 1.90000000e-01, 3.77350171e+09, 3.77350171e+09],
[1.70000000e-01, 1.70000000e-01, 2.38643892e+09, 2.38643892e+09],
[1.70000000e-01, 1.70000000e-01, 1.29127117e+09, 1.29127117e+09],
[6.40000000e-02, 6.40000000e-02, 6.03256858e+08, 6.03256858e+08],
[1.30000000e-01, 1.30000000e-01, 1.66572918e+09, 1.66572918e+09]]
target_total_share_000039 = [[3.5950140e+09, 4.8005360e+09, 2.1573660e+10, 3.5823430e+09],
[3.5860750e+09, 4.8402300e+09, 2.0750827e+10, 3.5823430e+09],
[3.5860750e+09, 4.9053550e+09, 2.0791307e+10, 3.5823430e+09],
[3.5845040e+09, 4.8813110e+09, 2.1482857e+10, 3.5823430e+09],
[3.5831490e+09, 4.9764250e+09, 2.0926816e+10, 3.2825850e+09],
[3.5825310e+09, 4.8501270e+09, 2.1020418e+10, 3.2825850e+09],
[2.9851110e+09, 5.4241420e+09, 2.2438350e+10, 3.2825850e+09],
[2.9849890e+09, 4.1284000e+09, 2.2082769e+10, 3.2825850e+09],
[2.9849610e+09, 4.0838010e+09, 2.1045994e+10, 3.2815350e+09],
[2.9849560e+09, 4.2491510e+09, 1.9694345e+10, 3.2815350e+09],
[2.9846970e+09, 4.2351600e+09, 2.0016361e+10, 3.2815350e+09],
[2.9828890e+09, 4.2096630e+09, 1.9734494e+10, 3.2815350e+09],
[2.9813960e+09, 3.4564240e+09, 1.8562738e+10, 3.2793790e+09],
[2.9803530e+09, 3.0759650e+09, 1.8076208e+10, 3.2793790e+09],
[2.9792680e+09, 3.1376690e+09, 1.7994776e+10, 3.2793790e+09],
[2.9785770e+09, 3.1265850e+09, 1.7495053e+10, 3.2793790e+09],
[2.9783640e+09, 3.1343850e+09, 1.6740840e+10, 3.2035780e+09],
[2.9783590e+09, 3.1273880e+09, 1.6578389e+10, 3.2035780e+09],
[2.9782780e+09, 3.1169280e+09, 1.8047639e+10, 3.2035780e+09],
[2.9778200e+09, 3.1818630e+09, 1.7663145e+10, 3.2035780e+09]]
target_total_share_600748 = [[1.84456289e+09, 2.60058426e+09, 5.72443733e+09, 4.58026529e+08],
[1.84456289e+09, 2.60058426e+09, 5.72096899e+09, 4.58026529e+08],
[1.84456289e+09, 2.60058426e+09, 5.65738237e+09, 4.58026529e+08],
[1.84456289e+09, 2.60058426e+09, 5.50257806e+09, 4.58026529e+08],
[1.84456289e+09, 2.59868164e+09, 5.16741523e+09, 4.44998882e+08],
[1.84456289e+09, 2.59684471e+09, 5.14677280e+09, 4.44998882e+08],
[1.84456289e+09, 2.59684471e+09, 4.94955591e+09, 4.44998882e+08],
[1.84456289e+09, 2.59684471e+09, 4.79001451e+09, 4.44998882e+08],
[1.84456289e+09, 3.11401684e+09, 4.46326988e+09, 4.01064256e+08],
[1.84456289e+09, 3.11596723e+09, 4.45419136e+09, 4.01064256e+08],
[1.84456289e+09, 3.11596723e+09, 4.39652948e+09, 4.01064256e+08],
[1.84456289e+09, 3.18007783e+09, 4.26608403e+09, 4.01064256e+08],
[1.84456289e+09, 3.10935622e+09, 3.78417688e+09, 3.65651701e+08],
[1.84456289e+09, 3.10935622e+09, 3.65806574e+09, 3.65651701e+08],
[1.84456289e+09, 3.10935622e+09, 3.62063090e+09, 3.65651701e+08],
[1.84456289e+09, 3.10935622e+09, 3.50063915e+09, 3.65651701e+08],
[1.41889453e+09, 3.55940850e+09, 3.22272993e+09, 3.62124939e+08],
[1.41889453e+09, 3.56129650e+09, 3.11477476e+09, 3.62124939e+08],
[1.41889453e+09, 3.59632888e+09, 3.06836903e+09, 3.62124939e+08],
[1.08337087e+09, 3.37400726e+07, 3.00918704e+09, 3.62124939e+08]]
target_total_share_000040 = [[1.48687387e+09, 1.06757900e+10, 8.31900755e+08, 2.16091994e+08],
[1.48687387e+09, 1.06757900e+10, 7.50177302e+08, 2.16091994e+08],
[1.48687387e+09, 1.06757899e+10, 9.90255974e+08, 2.16123282e+08],
[1.48687387e+09, 1.06757899e+10, 1.03109866e+09, 2.16091994e+08],
[1.48687387e+09, 1.06757910e+10, 2.07704745e+09, 2.16123282e+08],
[1.48687387e+09, 1.06757910e+10, 2.09608665e+09, 2.16123282e+08],
[1.48687387e+09, 1.06803833e+10, 2.13354083e+09, 2.16123282e+08],
[1.48687387e+09, 1.06804090e+10, 2.11489364e+09, 2.16123282e+08],
[1.33717327e+09, 8.87361727e+09, 2.42939924e+09, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 2.34220254e+09, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 2.16390368e+09, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 1.07961915e+09, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 8.58866066e+08, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 6.87024393e+08, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 5.71554565e+08, 1.88489589e+08],
[1.33717327e+09, 8.87361727e+09, 5.54241222e+08, 1.88489589e+08],
[1.33717327e+09, 8.87361726e+09, 5.10059576e+08, 1.88489589e+08],
[1.33717327e+09, 8.87361726e+09, 4.59351639e+08, 1.88489589e+08],
[4.69593364e+08, 2.78355875e+08, 4.13430814e+08, 1.88489589e+08],
[4.69593364e+08, 2.74235459e+08, 3.83557678e+08, 1.88489589e+08]]
target_net_profit_000039 = [[np.nan],
[2.422180e+08],
[np.nan],
[2.510113e+09],
[np.nan],
[1.102220e+09],
[np.nan],
[4.068455e+09],
[np.nan],
[1.315957e+09],
[np.nan],
[3.158415e+09],
[np.nan],
[1.066509e+09],
[np.nan],
[7.349830e+08],
[np.nan],
[-5.411600e+08],
[np.nan],
[2.271961e+09]]
target_net_profit_600748 = [[np.nan],
[4.54341757e+08],
[np.nan],
[9.14476670e+08],
[np.nan],
[5.25360283e+08],
[np.nan],
[9.24502415e+08],
[np.nan],
[4.66560302e+08],
[np.nan],
[9.15265285e+08],
[np.nan],
[2.14639674e+08],
[np.nan],
[7.45093049e+08],
[np.nan],
[2.10967312e+08],
[np.nan],
[6.04572711e+08]]
target_net_profit_000040 = [[np.nan],
[-2.82458846e+08],
[np.nan],
[-9.57130872e+08],
[np.nan],
[9.22114527e+07],
[np.nan],
[1.12643819e+09],
[np.nan],
[1.31715269e+09],
[np.nan],
[5.39940093e+08],
[np.nan],
[1.51440838e+08],
[np.nan],
[1.75339071e+08],
[np.nan],
[8.04740415e+07],
[np.nan],
[6.20445815e+07]]
print('test get financial data, in multi thread mode')
df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=4)
self.assertIsInstance(df_list, tuple)
self.assertEqual(len(df_list), 4)
self.assertEqual(len(df_list[0]), 3)
self.assertEqual(len(df_list[1]), 3)
self.assertEqual(len(df_list[2]), 3)
self.assertEqual(len(df_list[3]), 3)
# 检查确认所有数据类型正确
self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values()))
# 检查是否有空数据
print(all(item.empty for subdict in df_list for item in subdict.values()))
# 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略
if df_list[0]['000039.SZ'].empty:
print(f'income data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039))
if df_list[0]['600748.SH'].empty:
print(f'income data for "600748.SH" is empty')
else:
self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748))
if df_list[0]['000040.SZ'].empty:
print(f'income data for "000040.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040))
if df_list[1]['000039.SZ'].empty:
print(f'indicator data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039))
if df_list[1]['600748.SH'].empty:
print(f'indicator data for "600748.SH" is empty')
else:
self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748))
if df_list[1]['000040.SZ'].empty:
print(f'indicator data for "000040.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040))
if df_list[2]['000039.SZ'].empty:
print(f'balance data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039))
if df_list[2]['600748.SH'].empty:
print(f'balance data for "600748.SH" is empty')
else:
self.assertTrue(np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748))
if df_list[2]['000040.SZ'].empty:
print(f'balance data for "000040.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[2]['000040.SZ'].values, target_total_share_000040))
if df_list[3]['000039.SZ'].empty:
print(f'cash flow data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[3]['000039.SZ'].values, target_net_profit_000039, equal_nan=True))
if df_list[3]['600748.SH'].empty:
print(f'cash flow data for "600748.SH" is empty')
else:
self.assertTrue(np.allclose(df_list[3]['600748.SH'].values, target_net_profit_600748, equal_nan=True))
if df_list[3]['000040.SZ'].empty:
print(f'cash flow data for "000040.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[3]['000040.SZ'].values, target_net_profit_000040, equal_nan=True))
print('test get financial data, in single thread mode')
df_list = get_financial_report_type_raw_data(start=start, end=end, shares=shares, htypes=htypes, parallel=0)
self.assertIsInstance(df_list, tuple)
self.assertEqual(len(df_list), 4)
self.assertEqual(len(df_list[0]), 3)
self.assertEqual(len(df_list[1]), 3)
self.assertEqual(len(df_list[2]), 3)
self.assertEqual(len(df_list[3]), 3)
# 检查确认所有数据类型正确
self.assertTrue(all(isinstance(item, pd.DataFrame) for subdict in df_list for item in subdict.values()))
# 检查是否有空数据,因为网络问题,有可能会取到空数据
self.assertFalse(all(item.empty for subdict in df_list for item in subdict.values()))
# 检查获取的每组数据正确,且所有数据的顺序一致, 如果取到空数据,则忽略
if df_list[0]['000039.SZ'].empty:
print(f'income data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[0]['000039.SZ'].values, target_basic_eps_000039))
if df_list[0]['600748.SH'].empty:
print(f'income data for "600748.SH" is empty')
else:
self.assertTrue(np.allclose(df_list[0]['600748.SH'].values, target_basic_eps_600748))
if df_list[0]['000040.SZ'].empty:
print(f'income data for "000040.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[0]['000040.SZ'].values, target_basic_eps_000040))
if df_list[1]['000039.SZ'].empty:
print(f'indicator data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[1]['000039.SZ'].values, target_eps_000039))
if df_list[1]['600748.SH'].empty:
print(f'indicator data for "600748.SH" is empty')
else:
self.assertTrue(np.allclose(df_list[1]['600748.SH'].values, target_eps_600748))
if df_list[1]['000040.SZ'].empty:
print(f'indicator data for "000040.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[1]['000040.SZ'].values, target_eps_000040))
if df_list[2]['000039.SZ'].empty:
print(f'balance data for "000039.SZ" is empty')
else:
self.assertTrue(np.allclose(df_list[2]['000039.SZ'].values, target_total_share_000039))
if df_list[2]['600748.SH'].empty:
print(f'balance data for "600748.SH" is empty')
else:
self.assertTrue( | np.allclose(df_list[2]['600748.SH'].values, target_total_share_600748) | numpy.allclose |
import numpy as np
import logging
logger = logging.getLogger(name=__name__)
from ...sgmcmc_sampler import SGMCMCHelper
from ..._utils import random_categorical, lower_tri_mat_inv
class SLDSHelper(SGMCMCHelper):
""" LGSSM Helper
forward_message (dict) with keys
x (dict):
log_constant (double) log scaling const
mean_precision (ndarray) mean precision
precision (ndarray) precision
z (dict):
prob_vector (ndarray) dimension num_states
log_constant (double) log scaling const
x_prev (ndarray)
z_prev (ndarray)
backward_message (dict) with keys
x (dict):
log_constant (double) log scaling const
mean_precision (ndarray) mean precision
precision (ndarray) precision
z (dict):
likelihood_vector (ndarray) dimension num_states
log_constant (double) log scaling const
x_next (ndarray)
z_next (ndarray)
"""
def __init__(self, num_states, n, m,
forward_message=None, backward_message=None,
**kwargs):
self.num_states = num_states
self.n = n
self.m = m
if forward_message is None:
forward_message = {
'x': {
'log_constant': 0.0,
'mean_precision': np.zeros(self.n),
'precision': np.eye(self.n)/10,
},
'z': {
'log_constant': 0.0,
'prob_vector': np.ones(self.num_states)/self.num_states,
},
}
self.default_forward_message=forward_message
if backward_message is None:
backward_message = {
'x': {
'log_constant': 0.0,
'mean_precision': np.zeros(self.n),
'precision': np.zeros((self.n, self.n)),
},
'z': {
'log_constant': np.log(self.num_states),
'likelihood_vector':
np.ones(self.num_states)/self.num_states,
},
}
self.default_backward_message=backward_message
return
def _forward_messages(self, observations, parameters, forward_message,
x=None, z=None, **kwargs):
if z is not None:
if x is not None:
raise ValueError("Either x or z can be conditioned on")
# Forward Messages conditioned on z
return self._x_forward_messages(
observations=observations,
z=z,
parameters=parameters,
forward_message=forward_message,
**kwargs
)
elif x is not None:
# Forward Messages conditioned on z
return self._z_forward_messages(
observations=observations,
x=x,
parameters=parameters,
forward_message=forward_message,
**kwargs
)
else:
raise ValueError("Requires x or z be passed to condition on")
def _backward_messages(self, observations, parameters, backward_message, x=None, z=None, **kwargs):
if z is not None:
if x is not None:
raise ValueError("Either x or z can be conditioned on")
# Forward Messages conditioned on z
return self._x_backward_messages(
observations=observations,
z=z,
parameters=parameters,
backward_message=backward_message,
**kwargs
)
elif x is not None:
# Forward Messages conditioned on z
return self._z_backward_messages(
observations=observations,
x=x,
parameters=parameters,
backward_message=backward_message,
**kwargs
)
else:
raise ValueError("Requires x or z be passed to condition on")
## Helper Functions conditioned on z
def _x_forward_messages(self, observations, z, parameters, forward_message,
weights=None, tqdm=None, only_return_last=False):
# Return list of forward messages Pr(x_{t} | y_{<=t}, z)
# y is num_obs x m matrix
num_obs = np.shape(observations)[0]
if not only_return_last:
forward_messages = [None]*(num_obs+1)
forward_messages[0] = forward_message
mean_precision = forward_message['x']['mean_precision']
precision = forward_message['x']['precision']
log_constant = forward_message['x']['log_constant']
z_prev = forward_message.get('z_prev', None)
Pi = parameters.pi
A = parameters.A
LQinv = parameters.LQinv
Qinv = np.array([np.dot(LQinv_k, LQinv_k.T)
for LQinv_k in LQinv])
AtQinv = np.array([np.dot(A_k.T, Qinv_k)
for (A_k, Qinv_k) in zip(A, Qinv)])
AtQinvA = np.array([np.dot(AtQinv_k, A_k)
for (A_k, AtQinv_k) in zip(A, AtQinv)])
C = parameters.C
LRinv = parameters.LRinv
Rinv = np.dot(LRinv, LRinv.T)
CtRinv = np.dot(C.T, Rinv)
CtRinvC = np.dot(CtRinv, C)
pbar = range(num_obs)
if tqdm is not None:
pbar = tqdm(pbar)
pbar.set_description("forward messages")
for t in pbar:
y_cur = observations[t]
z_cur = z[t]
weight_t = 1.0 if weights is None else weights[t]
# Calculate Predict Parameters
J = np.linalg.solve(AtQinvA[z_cur] + precision, AtQinv[z_cur])
pred_mean_precision = np.dot(J.T, mean_precision)
pred_precision = Qinv[z_cur] - np.dot(AtQinv[z_cur].T, J)
# Calculate Observation Parameters
y_mean = np.dot(C,
np.linalg.solve(pred_precision, pred_mean_precision))
y_precision = Rinv - np.dot(CtRinv.T,
np.linalg.solve(CtRinvC + pred_precision, CtRinv))
log_constant += weight_t * (
-0.5 * np.dot(y_cur-y_mean,
np.dot(y_precision, y_cur-y_mean)) + \
0.5 * np.linalg.slogdet(y_precision)[1] + \
-0.5 * self.m * np.log(2*np.pi)
)
if z_prev is not None:
log_constant += weight_t * np.log(Pi[z_prev, z_cur])
# Calculate Filtered Parameters
new_mean_precision = pred_mean_precision + np.dot(CtRinv, y_cur)
new_precision = pred_precision + CtRinvC
# Save Messages
mean_precision = new_mean_precision
precision = new_precision
z_prev = z_cur
if not only_return_last:
forward_messages[t+1] = dict(
x={
'mean_precision': mean_precision,
'precision': precision,
'log_constant': log_constant,
},
z_prev=z_prev,
)
if only_return_last:
last_message = dict(
x={
'mean_precision': mean_precision,
'precision': precision,
'log_constant': log_constant,
},
z_prev=z_prev,
)
return last_message
else:
return forward_messages
def _x_backward_messages(self, observations, z, parameters, backward_message,
weights=None, tqdm=None, only_return_last=False):
# Return list of backward messages Pr(y_{>t} | x_t, z)
# y is num_obs x n matrix
num_obs = np.shape(observations)[0]
if not only_return_last:
backward_messages = [None]*(num_obs+1)
backward_messages[-1] = backward_message
mean_precision = backward_message['x']['mean_precision']
precision = backward_message['x']['precision']
log_constant = backward_message['x']['log_constant']
z_next = backward_message.get('z_next', None)
Pi = parameters.pi
A = parameters.A
LQinv = parameters.LQinv
Qinv = np.array([np.dot(LQinv_k, LQinv_k.T)
for LQinv_k in LQinv])
AtQinv = np.array([np.dot(A_k.T, Qinv_k)
for (A_k, Qinv_k) in zip(A, Qinv)])
AtQinvA = np.array([np.dot(AtQinv_k, A_k)
for (A_k, AtQinv_k) in zip(A, AtQinv)])
C = parameters.C
LRinv = parameters.LRinv
Rinv = np.dot(LRinv, LRinv.T)
CtRinv = np.dot(C.T, Rinv)
CtRinvC = np.dot(CtRinv, C)
pbar = reversed(range(num_obs))
if tqdm is not None:
pbar = tqdm(pbar)
pbar.set_description("backward messages")
for t in pbar:
y_cur = observations[t]
z_cur = z[t]
weight_t = 1.0 if weights is None else weights[t]
# Helper Values
xi = Qinv[z_cur] + precision + CtRinvC
L = np.linalg.solve(xi, AtQinv[z_cur].T)
vi = mean_precision + np.dot(CtRinv, y_cur)
# Calculate new parameters
log_constant += weight_t * (
-0.5 * self.m * np.log(2.0*np.pi) + \
np.sum(np.log(np.diag(LRinv))) + \
np.sum(np.log(np.diag(LQinv[z_cur]))) + \
-0.5 * np.linalg.slogdet(xi)[1] + \
-0.5 * np.dot(y_cur, np.dot(Rinv, y_cur)) + \
0.5 * np.dot(vi, np.linalg.solve(xi, vi))
)
if z_next is not None:
log_constant += weight_t * np.log(Pi[z_cur, z_next])
new_mean_precision = np.dot(L.T, vi)
new_precision = AtQinvA[z_cur] - np.dot(AtQinv[z_cur], L)
# Save Messages
mean_precision = new_mean_precision
precision = new_precision
z_next = z_cur
if not only_return_last:
backward_messages[t] = dict(x={
'mean_precision': mean_precision,
'precision': precision,
'log_constant': log_constant,
}, z_next=z_next)
if only_return_last:
last_message = dict(x={
'mean_precision': mean_precision,
'precision': precision,
'log_constant': log_constant,
}, z_next=z_next)
return last_message
else:
return backward_messages
def _x_marginal_loglikelihood(self, observations, z, parameters,
forward_message=None, backward_message=None, weights=None,
**kwargs):
# Run forward pass + combine with backward pass
# y is num_obs x m matrix
# forward_pass is Pr(x_{T-1} | y_{<=T-1})
forward_pass = self._forward_message(
observations=observations,
z=z,
parameters=parameters,
forward_message=forward_message,
weights=weights,
**kwargs)
weight_T = 1.0 if weights is None else weights[-1]
# Calculate the marginal loglikelihood of forward + backward message
f_mean_precision = forward_pass['x']['mean_precision']
f_precision = forward_pass['x']['precision']
c_mean_precision = f_mean_precision + backward_message['x']['mean_precision']
c_precision = f_precision + backward_message['x']['precision']
loglikelihood = forward_pass['x']['log_constant'] + \
(backward_message['x']['log_constant'] + \
+0.5 * np.linalg.slogdet(f_precision)[1] + \
-0.5 * np.linalg.slogdet(c_precision)[1] + \
-0.5 * np.dot(f_mean_precision,
np.linalg.solve(f_precision, f_mean_precision)
) + \
0.5 * np.dot(c_mean_precision,
np.linalg.solve(c_precision, c_mean_precision)
)
) * weight_T
z_next = backward_message.get('z_next')
z_prev = forward_pass.get('z_prev')
if (z_next is not None) and (z_prev is not None):
loglikelihood = loglikelihood + weight_T * np.log(
parameters.pi[z_prev, z_next])
return loglikelihood
def _x_gradient_marginal_loglikelihood(self, observations, z, parameters,
forward_message=None, backward_message=None, weights=None,
tqdm=None):
Pi, expanded_pi = parameters.pi, parameters.expanded_pi
A, LQinv, C, LRinv = \
parameters.A, parameters.LQinv, parameters.C, parameters.LRinv
# Forward Pass
# forward_messages = [Pr(x_{t} | z, y_{-inf:t}), y{t}] for t=-1,...,T-1
forward_messages = self.forward_pass(
observations=observations,
z=z,
parameters=parameters,
forward_message=forward_message,
include_init_message=True)
# Backward Pass
# backward_messages = [Pr(y_{t+1:inf} | z,x_{t}), y{t}] for t=-1,...,T-1
backward_messages = self.backward_pass(
observations=observations,
z=z,
parameters=parameters,
backward_message=backward_message,
include_init_message=True)
# Gradients
grad = {var: np.zeros_like(value)
for var, value in parameters.as_dict().items()}
grad['LQinv'] = np.zeros_like(parameters.LQinv)
grad['LRinv'] = np.zeros_like(parameters.LRinv)
# Helper Constants
Rinv = np.dot(LRinv, LRinv.T)
RinvC = np.dot(Rinv, C)
CtRinvC = np.dot(C.T, RinvC)
LRinv_diaginv = np.diag(np.diag(LRinv)**-1)
Qinv = np.array([np.dot(LQinv_k, LQinv_k.T)
for LQinv_k in LQinv])
QinvA = np.array([np.dot(Qinv_k, A_k)
for (A_k, Qinv_k) in zip(A, Qinv)])
AtQinvA = np.array([np.dot(A_k.T, QinvA_k)
for (A_k, QinvA_k) in zip(A, QinvA)])
LQinv_diaginv = np.array([np.diag(np.diag(LQinv_k)**-1)
for LQinv_k in LQinv])
# Emission Gradients
p_bar = zip(forward_messages[1:], backward_messages[1:], observations)
if tqdm is not None:
pbar = tqdm(pbar)
pbar.set_description("emission gradient loglike")
for t, (forward_t, backward_t, y_t) in enumerate(p_bar):
weight_t = 1.0 if weights is None else weights[t]
# Pr(x_t | y)
c_mean_precision = \
forward_t['x']['mean_precision'] + \
backward_t['x']['mean_precision']
c_precision = \
forward_t['x']['precision'] + backward_t['x']['precision']
x_mean = np.linalg.solve(c_precision, c_mean_precision)
xxt_mean = np.linalg.inv(c_precision) + np.outer(x_mean, x_mean)
# Gradient of C
grad['C'] += weight_t * (np.outer(np.dot(Rinv, y_t), x_mean) + \
-1.0 * np.dot(RinvC, xxt_mean))
# Gradient of LRinv
#raise NotImplementedError("SHOULD CHECK THE MATH FOR LRINV")
Cxyt = np.outer(np.dot(C, x_mean), y_t)
CxxtCt = np.dot(C, np.dot(xxt_mean, C.T))
grad['LRinv'] += weight_t * (LRinv_diaginv + \
-1.0*np.dot(np.outer(y_t, y_t) - Cxyt - Cxyt.T + CxxtCt, LRinv))
# Transition Gradients
p_bar = zip(forward_messages[0:-1], backward_messages[1:], observations, z)
if tqdm is not None:
pbar = tqdm(pbar)
pbar.set_description("transition gradient loglike")
for t, (forward_t, backward_t, y_t, z_t) in enumerate(p_bar):
weight_t = 1.0 if weights is None else weights[t]
# Pr(x_t, x_t+1 | y)
c_mean_precision = \
np.concatenate([
forward_t['x']['mean_precision'],
backward_t['x']['mean_precision'] + np.dot(RinvC.T,y_t)
])
c_precision = \
np.block([
[forward_t['x']['precision'] + AtQinvA[z_t],
-QinvA[z_t].T],
[-QinvA[z_t],
backward_t['x']['precision'] + CtRinvC + Qinv[z_t]]
])
c_mean = np.linalg.solve(c_precision, c_mean_precision)
c_cov = np.linalg.inv(c_precision)
xp_mean = c_mean[0:self.n]
xn_mean = c_mean[self.n:]
xpxpt_mean = c_cov[0:self.n, 0:self.n] + np.outer(xp_mean, xp_mean)
xnxpt_mean = c_cov[self.n:, 0:self.n] + np.outer(xn_mean, xp_mean)
xnxnt_mean = c_cov[self.n:, self.n:] + np.outer(xn_mean, xn_mean)
# Gradient of A
grad['A'][z_t] += weight_t * (np.dot(Qinv[z_t],
xnxpt_mean - np.dot(A[z_t],xpxpt_mean)))
# Gradient of LQinv
Axpxnt = np.dot(A[z_t], xnxpt_mean.T)
AxpxptAt = np.dot(A[z_t], np.dot(xpxpt_mean, A[z_t].T))
grad['LQinv'][z_t] += weight_t * (LQinv_diaginv[z_t] + \
-1.0*np.dot(xnxnt_mean - Axpxnt - Axpxnt.T + AxpxptAt,
LQinv[z_t]))
# Latent State Gradients
z_prev = forward_message.get('z_prev') if forward_message is not None else None
for t, z_t in enumerate(z):
weight_t = 1.0 if weights is None else weights[t]
if z_prev is not None:
if parameters.pi_type == "logit":
logit_pi_grad_t = -Pi[z_prev] + 0.0
logit_pi_grad_t[z_t] += 1.0
grad['logit_pi'][z_prev] += weight_t * logit_pi_grad_t
elif parameters.pi_type == "expanded":
expanded_pi_grad_t = - Pi[z_prev] / expanded_pi[z_prev]
expanded_pi_grad_t[z_t] += 1.0 / expanded_pi[z_prev, z_t]
grad['expanded_pi'][z_prev] += weight_t * expanded_pi_grad_t
z_prev = z_t
grad['LQinv_vec'] = np.array([grad_LQinv_k[np.tril_indices(self.n)]
for grad_LQinv_k in grad.pop('LQinv')])
grad['LRinv_vec'] = grad.pop('LRinv')[np.tril_indices(self.m)]
return grad
def _x_predictive_loglikelihood(self, observations, z, parameters, lag=10,
forward_message=None, backward_message=None, **kwargs):
if forward_message is None:
forward_message = self.default_forward_message
if backward_message is None:
backward_message = self.default_backward_message
# Calculate Filtered
if lag == 0:
forward_messages = self.forward_pass(
observations=observations,
z=z,
parameters=parameters,
forward_message=forward_message,
**kwargs)
else:
forward_messages = self.forward_pass(
observations=observations[0:-lag],
z=z[0:-lag],
parameters=parameters,
forward_message=forward_message,
**kwargs)
loglike = 0.0
A = parameters.A
Q = parameters.Q
C = parameters.C
R = parameters.R
for t in range(lag, np.shape(observations)[0]):
y_cur = observations[t]
z_cur = z[t]
# Calculate Pr(x_t | y_{<=t-lag}, theta)
mean_precision = forward_messages[t-lag]['x']['mean_precision']
precision = forward_messages[t-lag]['x']['precision']
mean = np.linalg.solve(precision, mean_precision)
var = np.linalg.inv(precision)
for l in range(lag):
mean = np.dot(A[z_cur], mean)
var = np.dot(A[z_cur], np.dot(var, A[z_cur].T)) + Q[z_cur]
y_mean = np.dot(C, mean)
y_var = np.dot(C, np.dot(var, C.T)) + R
log_like_t = -0.5 * np.dot(y_cur - y_mean,
np.linalg.solve(y_var, y_cur - y_mean)) + \
-0.5 * np.linalg.slogdet(y_var)[1] + \
-0.5 * self.m * np.log(2*np.pi)
loglike += log_like_t
return loglike
def _x_latent_var_sample(self, observations, z, parameters,
forward_message=None, backward_message=None,
distribution='smoothed', tqdm=None):
""" Sample latent vars from observations
Args:
observations (ndarray): num_obs by n observations
z (ndarray): num_obs latent states
parameters (LGSSMParameters): parameters
forward_message (dict): alpha message
backward_message (dict): beta message
distr (string): 'smoothed', 'filtered', 'predict'
smoothed: sample X from Pr(X | Y, theta)
filtered: sample X_t from Pr(X_t | Y_<=t, theta) iid for all t
predictive: sample X_t from Pr(X_t | Y_<t, theta) iid for all t
Returns
x (ndarray): num_obs sampled latent values (in R^n)
"""
if forward_message is None:
forward_message = self.default_forward_message
if backward_message is None:
backward_message = self.default_backward_message
A = parameters.A
LQinv = parameters.LQinv
Qinv = np.array([np.dot(LQinv_k, LQinv_k.T)
for LQinv_k in LQinv])
AtQinv = np.array([np.dot(A_k.T, Qinv_k)
for (A_k, Qinv_k) in zip(A, Qinv)])
AtQinvA = np.array([np.dot(AtQinv_k, A_k)
for (A_k, AtQinv_k) in zip(A, AtQinv)])
L = np.shape(observations)[0]
if distribution == 'smoothed':
# Forward Pass
forward_messages = self.forward_pass(
observations=observations,
z=z,
parameters=parameters,
forward_message=forward_message,
include_init_message=False,
tqdm=tqdm
)
# Backward Sampler
x = np.zeros((L, self.n))
x_cov = np.linalg.inv(forward_messages[-1]['x']['precision'])
x_mean = np.dot(x_cov, forward_messages[-1]['x']['mean_precision'])
x[-1, :] = np.random.multivariate_normal(mean=x_mean, cov=x_cov)
pbar = reversed(range(L-1))
if tqdm is not None:
pbar = tqdm(pbar)
pbar.set_description("backward smoothed sampling x")
for t in pbar:
x_next = x[t+1,:]
z_next = z[t+1]
x_cov = np.linalg.inv(forward_messages[t]['x']['precision'] +
AtQinvA[z_next])
x_mean = np.dot(x_cov,
forward_messages[t]['x']['mean_precision'] +
| np.dot(AtQinv[z_next], x_next) | numpy.dot |
#!/usr/bin/python2.7
# -*- coding:utf-8 -*-
# Author: NetworkRanger
# Date: 2018/12/22 下午6:39
# 11.2 TensorFlow可视化: Tensorboard
# 1. 导入必要的编程库
import os
import io
import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
# 2. 初始化计算图会话,创建summary-writer将Tensorboard summary写入Tensorboard文件夹
sess = tf.Session()
# Create a visualizer object
summary_writer = tf.train.SummaryWriter('tensorboard', tf.get_default_graph())
# 3. 确保summary_writer写入的Tensorboardyyywr夹存在
if not os.path.exists('tensorboard'):
os.makedirs('tensorboard')
# 4. 设置模型参数,为模型生成线性数据集。注意,设置真实斜率true_slope为2(注:迭代训练时,我们将随着时间的变化可视化斜率,起到取到真实斜率值)
batch_size = 50
generations = 100
# Create sample input data
x_data = np.arange(1000)/10.
true_slope = 2.
y_data = x_data * true_slope + | np.random.normal(loc=0.0, scale=25, size=1000) | numpy.random.normal |
from cmstk.structure.util import metric_tensor, cartesian_fractional_matrix
from cmstk.structure.util import fractional_cartesian_matrix, position_index
from cmstk.structure.util import volume
from cmstk.util import within_one_percent
import numpy as np
def test_metric_tensor_triclinic():
vectors = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
# parameters of Microcline
# https://www.mindat.org/min-2704.html
a, b, c = 8.5784, 12.96, 7.2112
alpha, beta, gamma = 90.3, 116.05, 89
mt = metric_tensor(a, b, c, alpha, beta, gamma)
for i, v in enumerate(vectors):
res = np.matmul(v, mt)
res = np.matmul(res, v)
if i == 0:
assert within_one_percent(res, 73.59)
elif i == 1:
assert within_one_percent(res, 167.96)
elif i == 2:
assert within_one_percent(res, 52)
v = np.sqrt(np.linalg.det(mt))
assert within_one_percent(v, 720.16)
def test_metric_tensor_monoclinic():
vectors = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
# parameters of Orthoclase
# https://www.mindat.org/min-3026.html
a, b, c = 8.5632, 12.963, 7.299
alpha, beta, gamma = 90, 116.073, 90
mt = metric_tensor(a, b, c, alpha, beta, gamma)
for i, v in enumerate(vectors):
res = np.matmul(v, mt)
res = np.matmul(res, v)
if i == 0:
assert within_one_percent(res, 73.33)
elif i == 1:
assert within_one_percent(res, 168.04)
elif i == 2:
assert within_one_percent(res, 53.28)
v = np.sqrt(np.linalg.det(mt))
assert within_one_percent(v, 727.77)
def test_metric_tensor_orthorhombic():
vectors = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
# parameters of Aragonite
# https://www.mindat.org/min-307.html
a, b, c = 4.9611, 7.9672, 5.7407
alpha, beta, gamma = 90, 90, 90
mt = metric_tensor(a, b, c, alpha, beta, gamma)
for i, v in enumerate(vectors):
res = | np.matmul(v, mt) | numpy.matmul |
"""
Gmsh format 2.2
"""
import numpy as np
from flow import Flow
from element import Element
from element_search import find_neighbors
from text.text_flow import write_flow
from text.text_elements import write_elements
from text.text_geometries import write_geometries
#==============================================================================
def intIt(l):
return np.array([int(e) for e in l])
def floatIt(l):
return np.array([float(e) for e in l])
def extract_msh(path_msh):
f = open(path_msh, 'r')
nodes_X, nodes_Y = [], []
elements = []
line = f.readline()
# ...
# $Nodes\n
# n_nodes
# ...
while line != '$Nodes\n':
line = f.readline()
line = f.readline()
n_nodes = int(line.strip())
for i in range(n_nodes):
# line = id x y z
line = f.readline()
coord = floatIt(line.strip().split())
nodes_X.append(coord[1])
nodes_Y.append(coord[2])
# ...
# $Elements\n
# n_elements
# ...
while line != '$Elements\n':
line = f.readline()
line = f.readline()
n_elements = int(line.strip())
count = 0
for i in range(n_elements):
# element_id element_type ... ... nodes_id
line = f.readline()
coord = intIt(line.strip().split())
element_type = coord[1]
if element_type == 9: # 6-node second order triangle
count += 1
e = Element(count)
e.nodes = np.array(coord[-6:])
elements.append(e)
# if element_type == 1: # 2-node line
# e.element_type = 1
# e.nodes = coord[-2:]
#
# elif element_type == 2: # 3-node triangle
# e.element_type = 2
# e.nodes = coord[-3:]
#
# elif element_type == 3: # 4-node quadrangle
# e.element_type = 3
# e.nodes = coord[-4:]
#
# elif element_type == 8: # 3-node second order line
# e.element_type = 8
# e.nodes = coord[-3:]
#
# elif element_type == 9: # 6-node second order triangle
# e.element_type = 9
# e.nodes = coord[-6:]
#
# elif element_type == 10: # 9-node second order quadrangle
# e.element_type = 10
# e.nodes = coord[-9:]
#
# elif element_type == 15: # 1-node point
# e.element_type = 15
# e.nodes = coord[-1:]
#
# elements.append(e)
f.close()
return np.array(nodes_X), np.array(nodes_Y), np.array(elements)
def generate_poiseuille(path_msh, parent_folder):
single_nodes_X, single_nodes_Y, elements = extract_msh(path_msh)
d = np.max(single_nodes_Y) - np.min(single_nodes_Y)
y_middle = np.min(single_nodes_Y) + d/2
n_nodes = len(single_nodes_X)
mu = 1e-3
p = 2*mu*single_nodes_X
U = d**2/4 - (single_nodes_Y - y_middle)**2
V = np.zeros(n_nodes)
nodes_X, nodes_Y = np.array([]), np.array([])
Us, Vs, ps = np.array([]), np.array([]), np.array([])
Nt = 101
times = np.linspace(0, 1, Nt)
for t in times:
nodes_X = np.vstack([nodes_X, single_nodes_X]) if nodes_X.size else single_nodes_X
nodes_Y = np.vstack([nodes_Y, single_nodes_Y]) if nodes_Y.size else single_nodes_Y
Us = np.vstack([Us, U]) if Us.size else U
Vs = np.vstack([Vs, V]) if Vs.size else V
ps = np.vstack([ps, p]) if ps.size else p
Re, Ur = 1e-3*1*d/mu, np.inf # Reynolds number and reduced velocity are not
# defined in the Hagen-Poiseuille problem
flow = Flow()
flow.Re, flow.Ur = Re, Ur
flow.times = times
flow.nodes_X, flow.nodes_Y = nodes_X, nodes_Y
flow.Us, flow.Vs, flow.ps = Us, Vs, ps
write_flow(flow, parent_folder + 'flows/poiseuille')
find_neighbors(elements)
write_elements(elements, parent_folder + 'elements/poiseuille')
write_geometries(np.array([]), parent_folder + 'geometries/poiseuille')
def generate_periodic(path_msh, parent_folder):
single_nodes_X, single_nodes_Y, elements = extract_msh(path_msh)
d = np.max(single_nodes_Y) - np.min(single_nodes_Y)
Nt = 101
times = np.linspace(0, 1, Nt)
period = 0.25
w = 2*np.pi/period
# U = U0*cos(wt) with U0 = 1
# Navier-Stokes, uniform:
# rho dU/dt + 0 = - dp/dx with rho = 1
# dp/dx = rhoU0*w*sin(wt)
# p = p0 + rhoU0*w*sin(wt) with p0 = 0
nodes_X, nodes_Y = np.array([]), np.array([])
Us, Vs, ps = np.array([]), np.array([]), np.array([])
for t in times:
nodes_X = np.vstack([nodes_X, single_nodes_X]) if nodes_X.size else single_nodes_X
nodes_Y = np.vstack([nodes_Y, single_nodes_Y]) if nodes_Y.size else single_nodes_Y
U = 0*nodes_X + np.cos(w*t)
V = 0*nodes_X
p = 0*nodes_X + w*np.sin(w*t)
Us = np.vstack([Us, U]) if Us.size else U
Vs = np.vstack([Vs, V]) if Vs.size else V
ps = np.vstack([ps, p]) if ps.size else p
Re, Ur = 1*1*d/1e-6, np.inf
flow = Flow()
flow.Re, flow.Ur = Re, Ur
flow.times = times
flow.nodes_X, flow.nodes_Y = nodes_X, nodes_Y
flow.Us, flow.Vs, flow.ps = Us, Vs, ps
write_flow(flow, parent_folder + 'flows/periodic')
find_neighbors(elements)
write_elements(elements, parent_folder + 'elements/periodic')
write_geometries(np.array([]), parent_folder + 'geometries/periodic')
def generate_inviscid(path_msh, parent_folder):
single_nodes_X, single_nodes_Y, elements = extract_msh(path_msh)
rs = np.sqrt(single_nodes_X**2 + single_nodes_Y**2)
thetas = np.arctan2(single_nodes_Y, single_nodes_X)
Ur, Utheta, p = [], [], []
for r, theta in zip(rs, thetas):
if r == 0:
Ur.append(0)
Utheta.append(0)
p.append(0)
else:
Ur.append((1 - (0.5/r)**2)*np.cos(theta))
Utheta.append((1 + (0.5/r)**2)*np.sin(theta))
p.append(2*(0.5/r)**2 * np.cos(2*theta) - (0.5/r)**4)
Ur = np.array(Ur)
Utheta = np.array(Utheta)
p = np.array(p)
U = Ur*np.cos(thetas) - Utheta* | np.sin(thetas) | numpy.sin |
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 5 16:57:00 2014
@author: hash
"""
import numpy as np
import skrf as rf
import scipy as sp
class ResonantDoubleLoop(object):
def __init__(self, CT1, CT2, plasma, C=np.tile(60e-12,4)):
"""
Resonant Double Loop Initializer
Parameters
-----------
CT1, CT2: :class: ConjugateT
Conjugate-T objects
plasma: :class: 'skrf.network'
Plasma network
C=[C1H, C1B, C2H, C2B]: 4 elements array
Capacitor values in Farad
"""
self.CT1 = CT1
self.CT2 = CT2
self.plasma = plasma
self.C = C
@property
def C(self):
"""
Returns the capacitor set values
"""
return self._C
@C.setter
def C(self, C):
"""
Set the capacitor values
Parameters
-----------
C=[C1H, C1B, C2H, C2B]: 4 elements array
Capacitor values in Farad
"""
self._C = C
self.CT1.C = [self.C[0], self.C[1]]
self.CT2.C = [self.C[2], self.C[3]]
# update the network
self.network = self.get_network()
def get_network(self, freq=None):
'''
Connect the both RDLs to the 4-ports plasma and return the resulting network
Parameters
----------
freq : list or string
frequency slicing indicator. Default is None (all frequencies).
Slicing indicator as in http://scikit-rf.readthedocs.io/en/latest/tutorials/Networks.html#Slicing
Returns
----------
antenna : :class: 'skrf.network' 2 ports network
'''
# renormalize the characteritic impedance of the conjugate-T ports 2 & 3
# to the plasma port characteristic impedances
self.CT1.z0[1:] = np.array([self.plasma.z0[0,0], self.plasma.z0[0,2]])
self.CT2.z0[1:] = np.array([self.plasma.z0[0,1], self.plasma.z0[0,3]])
# Should we renormalize as well the bridge output port z0 to the plasma port z0 ?
self.CT1.network = self.CT1.get_network().renormalize(
np.tile([self.CT1.z0[0], self.plasma.z0[0,0], self.plasma.z0[0,2]], (len(self.CT1.get_network()),1) ))
self.CT2.network = self.CT2.get_network().renormalize(
np.tile([self.CT2.z0[0], self.plasma.z0[0,1], self.plasma.z0[0,3]], (len(self.CT2.get_network()),1) ))
# frequency slicing (if any)
plasma = self.plasma[freq]
CT1 = self.CT1.get_network()[freq]
CT2 = self.CT2.get_network()[freq]
# connect the network together
temp1 = rf.connect(plasma, 0, CT1, 1)
temp2 = rf.innerconnect(temp1, 1, 4) # watch out ! plasma ports 0 & 2 to RDL (TOPICA indexing)
network = rf.innerconnect(rf.connect(temp2, 0, CT2, 1), 0, 3)
network.name = 'antenna'
return(network)
def match(self, power_in, phase_in, f_match, Z_match):
"""
Match the resonant double antenna for a given matching frequency and impedance
Parameters
----------
power_in : 2 element array
Input wave powers [Watts]
phase_in : 2 element array
Input wave phases [rad]
f_match: scalar
Matching frequency in [Hz]
Z_match: 2-elements array
Matching impedance of each transmission line in [Ohm]
Returns
----------
sol: scipy.optimize.solution
Solution found
"""
success = False
while success == False:
# a random number centered on 70 pF +/- 50pF
C0 = 70 + (-1 + 2*np.random.rand(4))*40
sol = sp.optimize.least_squares(fun=self._match_function, x0=C0,
args=(power_in, phase_in, f_match, Z_match),
bounds=(15,150)
)
success = sol.success
print(success, sol.x)
for Cm in sol.x:
if np.isclose(sol.x, 12).any() or np.isclose(sol.x, 150).any(): #(Cm < 12) or (Cm > 150):
success = False
print('Bad solution found (out of range capacitor) ! Re-doing...')
print('Solution found : C={}'.format(sol.x))
# Apply the solution
self.C = sol.x*1e-12
return(sol)
def _match_function(self, C, power_in, phase_in, f_match, Z_match):
"""
Match a double RDL on a given plasma.
Parameters
-----------
C = [C1H, C1B, C2H, C2B] :
capacitor values in pF
a_in=[a1, a2] : 2 elements array
Power waves input
f_match : number
Matching frequency in Hz
Z_match = [Z1_match, Z2_match] :
(characteristic) impedances to match with
Returns
-----------
y = [Re[Z1_active] - Re[Z1_match], Im[Z1_active] - Im[Z1_match],
Re[Z2_active] - Re[Z2_match], Im[Z2_active] - Im[Z2_match]] :
Matching criteria.
"""
self.C = C * 1e-12
# create the antenna network with the given capacitor values
network = self.get_network()
# optimization target
index_f_match = np.argmin(np.abs(network.frequency.f - f_match))
Z_active = self.get_z_active(power_in, phase_in)
y = [np.real(Z_active[index_f_match,0]) - np.real(Z_match[0]),
np.imag(Z_active[index_f_match,0]) - np.imag(Z_match[0]),
np.real(Z_active[index_f_match,1]) - np.real(Z_match[1]),
np.imag(Z_active[index_f_match,1]) - np.imag(Z_match[1])]
return(np.asarray(y))
def get_power_waves(self, power_in, phase_in):
'''
Returns the input power waves from power and phase excitations.
Arguments
---------
- power_in [2x1] : input RF power in each ConjugateT [W]
- phase_in [2x1] : input phase in each ConjugateT [rad]
Returns
---------
- a_in [2x1] : input power waves
'''
# Wath out the factor 2 in the power wave definition
# This is expected from the power wave definition
# as the power is defined by P = 1/2 V.I --> P = 1/2 a^2
a_in = np.sqrt(2*np.array(power_in)) * np.exp(1j*np.array(phase_in))
return a_in
def get_s_active(self, power_in, phase_in):
"""
Get the "active" scattering parameters S1act and S2act.
These "active" scattering parameters are defined by [from HFSS definition]
Sn_active = \sum_{k=1}^N S_{nk} a_k / a_n
Arguments
---------
- power_in [2x1] : input RF power in each ConjugateT [W]
- phase_in [2x1] : input phase in each ConjugateT [rad]
Returns
----------
Sact=[S1_active, S2_active]: 2 elements array
active scattering parameters
"""
a_in = self.get_power_waves(power_in, phase_in)
S = self.get_network().s
S1_active = (S[:,0,0]*a_in[0] + S[:,0,1]*a_in[1])/a_in[0]
S2_active = (S[:,1,0]*a_in[0] + S[:,1,1]*a_in[1])/a_in[1]
# transpose in order to have an array f x 2
return(np.transpose([S1_active, S2_active]))
def get_z_active(self, power_in, phase_in):
"""
Get the "active" impedance parameters Z1act and Z2act.
These "active" impedance parameters are defined by [from HFSS] definition
Zn_active = Z0_n * (1+Sn_active)/(1-Sn_active)
Arguments
---------
- power_in [2x1] : input RF power in each ConjugateT [W]
- phase_in [2x1] : input phase in each ConjugateT [rad]
Returns
----------
Zact=[Z1_active, Z2_active]: 2 elements array
active impedance parameters
"""
# active s parameters
Sact = self.get_s_active(power_in, phase_in)
# port characteristic impedances
Z0 = self.get_network().z0
# active impedance parameters
Z1_active = Z0[:,0]*(1+Sact[:,0])/(1-Sact[:,0])
Z2_active = Z0[:,1]*(1+Sact[:,1])/(1-Sact[:,1])
# transpose in order to have an array f x 2
return(np.transpose([Z1_active, Z2_active]))
def get_vswr_active(self, power_in, phase_in):
"""
Get the "active" VSWR vswr_1_act and vswr_2_act.
These "active" VSWR are defined by [from HFSS definition]
vswr_n_active = Z0_n * (1+|Sn_active|)/(1-|Sn_active|)
Arguments
---------
- power_in [2x1] : input RF power in each ConjugateT [W]
- phase_in [2x1] : input phase in each ConjugateT [rad]
Returns
----------
vswr_act=[vswr1_active, vswr2_active]: 2 elements array
active VSWR
"""
# active s parameters
Sact = self.get_s_active(power_in, phase_in)
# active vswr parameters
vswr1_active = (1+np.abs(Sact[:,0]))/(1-np.abs(Sact[:,0]))
vswr2_active = (1+np.abs(Sact[:,1]))/(1-np.abs(Sact[:,1]))
# transpose in order to have an array f x 2
return(np.transpose([vswr1_active, vswr2_active]))
def get_f(self):
"""
Returns the frequency values of the network
Returns
-------
f : (f,) array
Frequency values of the network
alias to self.get_network().frequency.f
"""
return(self.get_network().frequency.f)
def get_currents_and_voltages(self, power_in, phase_in, freq=None):
"""
Returns the currents and voltages at the capacitors (plasma side)
for a prescribed power excitation.
Arguments
---------
- power_in [2x1] : input RF power in each ConjugateT [W]
- phase_in [2x1] : input phase in each ConjugateT [rad]
- freq (None) : selected frequencies as a list.
If None, return results for all network frequencies
Returns
---------
- I_capa [fx2]: capacitor currents in [A]
- V_capa [fx2]: capacitor voltages in [A]
"""
a_in = self.get_power_waves(power_in, phase_in)
# For each frequencies of the network
_a = []
_b = []
for idx, f in enumerate(self.CT1.frequency[freq].f):
S_CT1 = self.CT1.get_network()[freq].s[idx]
S_CT2 = self.CT2.get_network()[freq].s[idx]
S_plasma = self.plasma.s[idx]
# convenience matrices
A = np.array([[S_CT1[1,0], 0 ],
[0 , S_CT2[1,0] ],
[S_CT1[2,0], 0 ],
[0 , S_CT2[2,0]]])
C = np.array([[S_CT1[1,1], 0, S_CT1[1,2], 0],
[0, S_CT2[1,1], 0, S_CT2[1,2]],
[S_CT1[2,1], 0, S_CT1[2,2], 0],
[0, S_CT2[2,1], 0, S_CT2[2,2]]])
_a_plasma = np.linalg.inv(np.eye(4) - C.dot(S_plasma)).dot(A).dot(a_in)
_b_plasma = S_plasma.dot(_a_plasma)
_a.append(_a_plasma)
_b.append(_b_plasma)
a_plasma = np.column_stack(_a)
b_plasma = np.column_stack(_b)
# Deduces Currents and Voltages from power waves
z0 = np.concatenate((self.CT1.z0[1:], self.CT2.z0[1:]))
I_plasma = (a_plasma - b_plasma).T / np.sqrt( | np.real(z0) | numpy.real |
#!/usr/bin/env python
import numpy as np
import os
import unittest
if __package__ is "" or "None": # py2 and py3 compatible
print("setting __package__ to gwsurrogate.new so relative imports work")
__package__="gwsurrogate.new"
from gwsurrogate.new import surrogate, nodeFunction
TEST_FILE = 'test.h5' # Gets created and deleted
def _tear_down():
if os.path.isfile(TEST_FILE):
os.remove(TEST_FILE)
def _set_up():
# Don't overwrite this in case it's actually needed by something else
if os.path.isfile(TEST_FILE):
raise Exception("{} already exists! Please move or remove it.")
class BaseTest(unittest.TestCase):
def setUp(self):
_set_up()
def tearDown(self):
_tear_down()
class SplinterpTester(BaseTest):
def setUp(self):
super(SplinterpTester, self).setUp()
xmin = 0.
xmax = 10.
n_sparse = 60
n_dense = 237
self.abs_tol = 1.e-4
self.x_sparse = np.linspace(xmin, xmax, n_sparse)
self.x_dense = np.linspace(xmin, xmax, n_dense)
def test_real(self):
y_sparse = np.sin(self.x_sparse)
y_dense = np.sin(self.x_dense)
y_interp = surrogate._splinterp(self.x_dense, self.x_sparse, y_sparse)
self.assertLess(np.max(abs(y_interp - y_dense)), self.abs_tol)
def test_complex(self):
y_sparse = np.exp(1.j*self.x_sparse)
y_dense = np.exp(1.j*self.x_dense)
y_interp = surrogate._splinterp(self.x_dense, self.x_sparse, y_sparse)
self.assertLess(np.max(abs(y_interp - y_dense)), self.abs_tol)
class ParamSpaceTester(BaseTest):
def _test_ParamDim_nudge(self, tol, xmin, xmax):
pd = surrogate.ParamDim("mass", xmin, xmax, rtol=tol/(xmax - xmin))
self.assertEqual(pd.nudge(xmin - 0.9*tol), xmin + tol)
self.assertEqual(pd.nudge(xmax + 0.9*tol), xmax - tol)
with self.assertRaises(Exception):
pd.nudge(xmin - 1.1*tol)
with self.assertRaises(Exception):
pd.nudge(xmax + 1.1*tol)
for x in [xmin + tol, 0.5*(xmin + xmax), xmax - tol]:
self.assertEqual(pd.nudge(x), x)
def test_ParamDim(self):
# Test nudge
self._test_ParamDim_nudge(1.e-4, 0., 1.)
self._test_ParamDim_nudge(1.e-4, 5., 123)
# Test save/load
pd = surrogate.ParamDim("Length in beardseconds", 0.1, 1.e5)
pd.save(TEST_FILE)
pd2 = surrogate.ParamDim("", 0, 1)
pd2.load(TEST_FILE)
self.assertEqual(pd2.name, "Length in beardseconds")
self.assertEqual(pd2.min_val, 0.1)
self.assertEqual(pd2.max_val, 1.e5)
def _test_ParamSpace_nudge(self, xmins, xmaxs, tols):
params = []
for xmin, xmax, tol in zip(xmins, xmaxs, tols):
pd = surrogate.ParamDim("x", xmin, xmax, rtol=tol/(xmax - xmin))
params.append(pd)
ps = surrogate.ParamSpace("param space", params)
# Nudge all
xmin = np.array([x for x in xmins])
xmax = np.array([x for x in xmaxs])
for i in range(len(xmins)):
xmin[i] -= 0.9 * tols[i]
xmax[i] += 0.9 * tols[i]
xmin = ps.nudge_params(xmin)
xmax = ps.nudge_params(xmax)
for i in range(len(xmins)):
self.assertEqual(xmin[i], xmins[i] + tols[i])
self.assertEqual(xmax[i], xmaxs[i] - tols[i])
# Nudge one
xmin = np.array([x for x in xmins])
xmax = np.array([x for x in xmaxs])
for i in range(len(xmins)):
xmin[i] -= 0.9 * tols[i]
xmax[i] += 0.9 * tols[i]
xmin = ps.nudge_params(xmin)
xmax = ps.nudge_params(xmax)
self.assertEqual(xmin[i], xmins[i] + tols[i])
self.assertEqual(xmax[i], xmaxs[i] - tols[i])
# Check Exceptions
for i in range(len(xmins)):
xmin = np.array([x for x in xmins])
xmax = np.array([x for x in xmaxs])
xmin[i] -= 1.1*tols[i]
xmax[i] += 1.1*tols[i]
with self.assertRaises(Exception):
ps.nudge_params(xmin)
with self.assertRaises(Exception):
ps.nudge_params(xmax)
# Check unmodified
x = np.array([x + tol for x, tol in zip(xmins, tols)])
check_params = [1*x]
for i in range(len(xmins)):
x[i] += 0.5*(xmaxs[i] - xmins[i]) - tols[i]
check_params.append(1*x)
for i in range(len(xmins)):
x[i] += 0.5*(xmaxs[i] - xmins[i]) - tols[i]
check_params.append(1*x)
for x in check_params:
x2 = ps.nudge_params(x)
for xi, xi2 in zip(x, x2):
self.assertEqual(xi, xi2)
return ps
def test_ParamSpace(self):
ps = self._test_ParamSpace_nudge([0.], [1.], [1.e-4])
ps = self._test_ParamSpace_nudge([1., 2., 100.],
[1.1, 100., 101.],
[1.e-4, 1.e-5, 1.e-6])
# Test saving/loading
ps.save(TEST_FILE)
ps2 = surrogate.ParamSpace("", [])
ps2.load(TEST_FILE)
self.assertEqual(ps.name, ps2.name)
self.assertEqual(ps.dim, ps2.dim)
for i in range(ps.dim):
pd = ps._params[i]
pd2 = ps2._params[i]
self.assertEqual(pd.min_val, pd2.min_val)
self.assertEqual(pd.max_val, pd2.max_val)
self.assertEqual(pd.tol, pd2.tol)
class SingleFunctionSurrogateTester(BaseTest):
def test_SingleFunctionSurrogate_NoChecks(self):
ei = np.array([ | np.ones(10) | numpy.ones |
from math import gamma
from typing import Dict, List, Tuple
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
import torch.optim as optim
from atcenv.MASAC.buffer import ReplayBuffer
from atcenv.MASAC.mactor_critic import Actor, CriticQ, CriticV
from torch.nn.utils.clip_grad import clip_grad_norm_
GAMMMA = 0.99
TAU =5e-3
INITIAL_RANDOM_STEPS = 100
POLICY_UPDATE_FREQUENCE = 2
NUM_AGENTS = 10
BUFFER_SIZE = 1000000
BATCH_SIZE = 256
ACTION_DIM = 2
STATE_DIM = 14
NUMBER_INTRUDERS_STATE = 2
MEANS = [57000,57000,0,0,0,0,0,0]
STDS = [31500,31500,100000,100000,1,1,1,1]
class MaSacAgent:
def __init__(self):
self.memory = ReplayBuffer(STATE_DIM,ACTION_DIM, BUFFER_SIZE, BATCH_SIZE)
try:
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print('DEVICE USED: ', torch.cuda.device(torch.cuda.current_device()), torch.cuda.get_device_name(0))
except:
# Cuda isn't available
self.device = torch.device("cpu")
print('DEVICE USED: CPU')
self.target_alpha = -np.prod((ACTION_DIM,)).item()
self.log_alpha = torch.zeros(1, requires_grad=True, device=self.device)
self.alpha_optimizer = optim.Adam([self.log_alpha], lr=3e-4)
self.actor = Actor(STATE_DIM, ACTION_DIM).to(self.device)
self.vf = CriticV(STATE_DIM).to(self.device)
self.vf_target = CriticV(STATE_DIM).to(self.device)
self.vf_target.load_state_dict(self.vf.state_dict())
self.qf1 = CriticQ(STATE_DIM + ACTION_DIM).to(self.device)
self.qf2 = CriticQ(STATE_DIM + ACTION_DIM).to(self.device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=3e-4)
self.vf_optimizer = optim.Adam(self.vf.parameters(), lr=3e-4)
self.qf1_optimizer = optim.Adam(self.qf1.parameters(), lr=3e-4)
self.qf2_optimizer = optim.Adam(self.qf2.parameters(), lr=3e-4)
self.transition = [[] for i in range(NUM_AGENTS)]
self.total_step = 0
self.is_test = False
def do_step(self, state, max_speed, min_speed, test = False, batch = False):
if not test and self.total_step < INITIAL_RANDOM_STEPS and not self.is_test:
selected_action = np.random.uniform(-1, 1, (len(state), ACTION_DIM))
else:
selected_action = []
for i in range(len(state)):
action = self.actor(torch.FloatTensor(state[i]).to(self.device))[0].detach().cpu().numpy()
selected_action.append(action)
selected_action = np.array(selected_action)
selected_action = | np.clip(selected_action, -1, 1) | numpy.clip |
"""
Running this script creates two files results.csv and results.plk in
the 'user/raw' directory containing the relevant parameters and the estimated
power/level of the tests. We use the following numbering of experiments:
uniform mnist
1 2
3 4
5 6
7 8
9 10
11 12
Experiments i and i+1 are the same but using the uniform and mnist data.
We first run the uniform experiments followed by the mnist experiments.
The settings of all those experiments can be understood by their
relations to the figures presented in our paper:
Figure 3 and 4: experiments 1 and 3
Figure 5: experiments 2 and 4
Figure 6: experiments 9 and 10
Figure 7: experiments 1, 2, 3 and 4
Figure 8: experiments 7 and 8
Figure 9: experiments 1, 2, 11 and 12
Table 1: experiments 5 and 6
The figures and table can be created by running the figures.py script.
"""
import numpy as np
import itertools
import pandas as pd
from mnist import download_mnist, load_mnist
from pathlib import Path
from seed import generate_seed
from sample_test import sample_and_test_uniform, sample_and_test_mnist
import argparse
# create results directory if it does not exist
Path("user/raw").mkdir(exist_ok=True, parents=True)
# panda dataframe: lists of indices and entries
index_vals = []
results = []
# parameters shared for all experiments
alpha = 0.05
B1 = 500
B2 = 500
B3 = 100
kernel_types = ["gaussian", "laplace"]
k_num = len(kernel_types)
approx_types = ["wild bootstrap", "permutation"]
a_num = len(approx_types)
############# UNIFORM #############
# parameters for all uniform experiments
s = 1
perturbation_multipliers = [2.7, 7.3]
bandwidth_multipliers = np.linspace(0.1, 1, 10)
e_num = 2
p_num = 4
# Experiment 1
exp = "1: uniform alternative"
repetitions = 500
sample_sizes = [500, 2000]
L = [(-6, -2), (-4, 0), (-2, 2)]
l_num = len(L)
function_types = ["uniform", "increasing", "decreasing", "centred", "ost"]
f_num = len(function_types)
for a, k, e, l, f, p in itertools.product(
range(a_num), range(k_num), range(2), range(l_num), range(f_num), range(p_num)
):
if (a, l) not in [(1, 0), (1, 2)] and (e, p) != (1, 3):
approx_type = approx_types[a]
kernel_type = kernel_types[k]
d = e + 1
n = m = sample_sizes[e]
perturbation_multiplier = perturbation_multipliers[e]
l_minus, l_plus = L[l]
l_minus_l_plus = L[l]
function_type = function_types[f]
perturbation = p + 1
perturbation_or_Qi = perturbation
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, e, l, f, p, i)
test_output_list.append(
sample_and_test_uniform(
function_type,
seed,
kernel_type,
approx_type,
m,
n,
d,
perturbation,
s,
perturbation_multiplier,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 1 completed.')
# Experiment 3
exp = "3: uniform alternative"
repetitions = 500
sample_sizes = [500, 2000]
l_minus = l_plus = None
l_minus_l_plus = None
function_types = ["median", "split", "split (doubled sample sizes)"]
f_num = len(function_types)
for a, k, e, f, p in itertools.product(
range(a_num), range(k_num), range(e_num), range(f_num), range(p_num)
):
if (e, p) != (1, 3):
approx_type = approx_types[a]
kernel_type = kernel_types[k]
d = e + 1
n = m = sample_sizes[e]
perturbation_multiplier = perturbation_multipliers[e]
function_type = function_types[f]
perturbation = p + 1
perturbation_or_Qi = perturbation
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, e, 3, f, p, i)
test_output_list.append(
sample_and_test_uniform(
function_type,
seed,
kernel_type,
approx_type,
m,
n,
d,
perturbation,
s,
perturbation_multiplier,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 3 completed.')
# Experiment 5
exp = "5: uniform null"
repetitions = 5000
sample_sizes = [500, 2000]
function_types = [
"uniform",
"increasing",
"decreasing",
"centred",
"ost",
"median",
"split",
]
f_num = len(function_types)
L = [(-4, 0)]
l_num = len(L)
l_minus, l_plus = L[0]
l_minus_l_plus = L[0]
perturbation = 0
perturbation_or_Qi = perturbation
for a, k, e, f in itertools.product(
range(a_num), range(k_num), range(e_num), range(f_num)
):
approx_type = approx_types[a]
kernel_type = kernel_types[k]
d = e + 1
n = m = sample_sizes[e]
function_type = function_types[f]
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, e, 0, f, 5, i)
test_output_list.append(
sample_and_test_uniform(
function_type,
seed,
kernel_type,
approx_type,
m,
n,
d,
perturbation,
s,
perturbation_multiplier,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 5 completed.')
# Experiment 7
exp = "7: uniform alternative"
repetitions = 500
sample_sizes_m = [100, 250]
sample_sizes_n = [1000, 2000, 3000, 4000, 5000]
v_num = len(sample_sizes_n)
function_types = ["uniform", "increasing", "decreasing", "centred"]
f_num = len(function_types)
l_minus, l_plus = (-4, 0)
l_minus_l_plus = (-4, 0)
perturbations = [3, 2]
approx_type = "permutation"
for k, e, f, v in itertools.product(
range(k_num), range(e_num), range(f_num), range(v_num)
):
kernel_type = kernel_types[k]
d = e + 1
n = sample_sizes_n[v]
m = sample_sizes_m[e]
perturbation_multiplier = perturbation_multipliers[e]
function_type = function_types[f]
perturbation = perturbations[e]
perturbation_or_Qi = perturbation
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, e, 3, f, v, i)
test_output_list.append(
sample_and_test_uniform(
function_type,
seed,
kernel_type,
approx_type,
m,
n,
d,
perturbation,
s,
perturbation_multiplier,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 7 completed.')
# Experiment 9
exp = "9: uniform alternative"
repetitions = 500
sample_sizes = [500, 2000]
function_types = ["uniform", "centred"]
f_num = len(function_types)
L = [(-2, -2), (-3, -1), (-4, 0), (-5, 1), (-6, 2), (-7, 3), (-8, 4), (-9, 5)]
l_num = len(L)
perturbations = [3, 2]
approx_type = "wild bootstrap"
for k, e, l, f in itertools.product(
range(k_num), range(e_num), range(l_num), range(f_num)
):
kernel_type = kernel_types[k]
d = e + 1
n = m = sample_sizes[e]
perturbation_multiplier = perturbation_multipliers[e]
l_minus, l_plus = L[l]
l_minus_l_plus = L[l]
function_type = function_types[f]
perturbation = perturbations[e]
p = perturbation - 1
perturbation_or_Qi = perturbation
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, e, l, f, p, i)
test_output_list.append(
sample_and_test_uniform(
function_type,
seed,
kernel_type,
approx_type,
m,
n,
d,
perturbation,
s,
perturbation_multiplier,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 9 completed.')
# Experiment 11
exp = "11: uniform alternative"
repetitions = 500
function_types = ["ost"]
f = 0
function_type = function_types[f]
l_minus, l_plus = (-4, 0)
l_minus_l_plus = (-4, 0)
l = 3
approx_type = None
sample_sizes = [
[int(i * 10 ** 5) for i in [0.25, 0.5, 0.75, 1]],
[int(i * 10 ** 5) for i in [2.5, 5, 7.5, 10]],
]
v_num = len(sample_sizes[0])
for v, k, e, p in itertools.product(
range(v_num), range(k_num), range(e_num), range(p_num)
):
if (e, p) != (1, 3):
kernel_type = kernel_types[k]
d = e + 1
n = m = sample_sizes[e][v]
perturbation_multiplier = perturbation_multipliers[e]
function_type = function_types[f]
perturbation = p + 1
perturbation_or_Qi = perturbation
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, e, 3, 0, p, i)
test_output_list.append(
sample_and_test_uniform(
function_type,
seed,
kernel_type,
approx_type,
m,
n,
d,
perturbation,
s,
perturbation_multiplier,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 11 completed.')
############# MNIST #############
# parameters for all mnist experiments
p_num = 5
d = None
Q_list = ["Q1", "Q2", "Q3", "Q4", "Q5"]
bandwidth_multipliers = np.array([2 ** i for i in range(10, 21)])
Path("mnist_dataset").mkdir(exist_ok=True)
if Path("mnist_dataset/mnist_7x7.data").is_file() == False:
download_mnist()
P, Q_list = load_mnist()
Q_list_str = ["Q1", "Q2", "Q3", "Q4", "Q5"]
# Experiment 2
exp = "2: mnist alternative"
repetitions = 500
sample_size = 500
function_types = ["uniform", "increasing", "decreasing", "centred", "ost"]
f_num = len(function_types)
L = [[(8, 12), (10, 14), (12, 16)], [(10, 14), (12, 16), (14, 18)]]
l_num = len(L[0])
for a, k, l, f, p in itertools.product(
range(a_num), range(k_num), range(l_num), range(f_num), range(p_num)
):
if (a, l) not in [(1, 0), (1, 2)]:
approx_type = approx_types[a]
kernel_type = kernel_types[k]
n = m = sample_size
l_minus, l_plus = L[k][l]
l_minus_l_plus = L[k][l]
function_type = function_types[f]
Qi = Q_list[p]
perturbation_or_Qi = Q_list_str[p]
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, 2, l, f, p, i)
test_output_list.append(
sample_and_test_mnist(
P,
Qi,
function_type,
seed,
kernel_type,
approx_type,
m,
n,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 2 completed.')
# Experiment 4
exp = "4: mnist alternative"
repetitions = 500
sample_size = 500
function_types = ["median", "split", "split (doubled sample sizes)"]
f_num = len(function_types)
l_minus = l_plus = None
l_minus_l_plus = None
for a, k, f, p in itertools.product(
range(a_num), range(k_num), range(f_num), range(p_num)
):
approx_type = approx_types[a]
kernel_type = kernel_types[k]
n = m = sample_size
function_type = function_types[f]
Qi = Q_list[p]
perturbation_or_Qi = Q_list_str[p]
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, 2, 3, f, p, i)
test_output_list.append(
sample_and_test_mnist(
P,
Qi,
function_type,
seed,
kernel_type,
approx_type,
m,
n,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 4 completed.')
# Experiment 6
exp = "6: mnist null"
repetitions = 5000
sample_size = 500
function_types = [
"uniform",
"increasing",
"decreasing",
"centred",
"ost",
"median",
"split",
]
f_num = len(function_types)
L = [(10, 14), (12, 16)]
for a, k, f in itertools.product(range(a_num), range(k_num), range(f_num)):
approx_type = approx_types[a]
kernel_type = kernel_types[k]
n = m = sample_size
function_type = function_types[f]
l_minus, l_plus = L[k]
l_minus_l_plus = L[k]
perturbation_or_Qi = "P"
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, 2, l, f, 5, i)
test_output_list.append(
sample_and_test_mnist(
P,
P,
function_type,
seed,
kernel_type,
approx_type,
m,
n,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 6 completed.')
# Experiment 8
exp = "8: mnist alternative"
repetitions = 500
sample_size_m = 100
sample_sizes_n = [200, 400, 600, 800, 1000]
v_num = len(sample_sizes_n)
function_types = ["uniform", "increasing", "decreasing", "centred"]
f_num = len(function_types)
L = [(10, 14), (12, 16)]
approx_type = "permutation"
for k, f, v in itertools.product(range(k_num), range(f_num), range(v_num)):
kernel_type = kernel_types[k]
n = sample_sizes_n[v]
m = sample_size_m
function_type = function_types[f]
Qi = Q_list[2]
perturbation_or_Qi = Q_list_str[2]
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, 2, 3, f, v, i)
test_output_list.append(
sample_and_test_mnist(
P,
Qi,
function_type,
seed,
kernel_type,
approx_type,
m,
n,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 8 completed.')
# Experiment 10
exp = "10: mnist alternative"
repetitions = 500
sample_sizes = 500
function_types = ["uniform", "centred"]
f_num = len(function_types)
L = [
[(12, 12), (11, 13), (10, 14), (9, 15), (8, 16), (7, 17), (6, 18), (5, 19)],
[(14, 14), (13, 15), (12, 16), (11, 17), (10, 18), (9, 19), (8, 20), (7, 21)],
]
l_num = len(L[0])
approx_type = "wild bootstrap"
for k, l, f in itertools.product(range(k_num), range(l_num), range(f_num)):
kernel_type = kernel_types[k]
n = m = sample_sizes
l_minus, l_plus = L[k][l]
l_minus_l_plus = L[k][l]
function_type = function_types[f]
Qi = Q_list[2]
perturbation_or_Qi = Q_list_str[2]
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, 2, l, f, v, i)
test_output_list.append(
sample_and_test_mnist(
P,
Qi,
function_type,
seed,
kernel_type,
approx_type,
m,
n,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = np.mean(test_output_list)
index_val = (
exp,
d,
repetitions,
m,
n,
approx_type,
kernel_type,
l_minus_l_plus,
function_type,
perturbation_or_Qi,
)
index_vals.append(index_val)
results.append(power)
print('Experiment 10 completed.')
# Experiment 12
exp = "12: mnist alternative"
repetitions = 500
function_types = ["ost"]
f = 0
function_type = function_types[f]
L = [(10, 14), (12, 16)]
l = 3
approx_type = None
sample_sizes = [int(i * 10 ** 5) for i in [0.5, 1, 1.5, 2, 2.5]]
v_num = len(sample_sizes)
for v, k, p in itertools.product(range(v_num), range(k_num), range(p_num)):
kernel_type = kernel_types[k]
n = m = sample_sizes[v]
function_type = function_types[f]
l_minus, l_plus = L[k]
l_minus_l_plus = L[k]
Qi = Q_list[p]
perturbation_or_Qi = Q_list_str[p]
test_output_list = []
for i in range(repetitions):
seed = generate_seed(k, 2, 3, f, p, i)
test_output_list.append(
sample_and_test_mnist(
P,
Qi,
function_type,
seed,
kernel_type,
approx_type,
m,
n,
alpha,
l_minus,
l_plus,
B1,
B2,
B3,
bandwidth_multipliers,
)
)
power = | np.mean(test_output_list) | numpy.mean |
import math
import numpy as np
import numpy.linalg as lin
import scipy.optimize.nnls as nnls
import scipy.optimize as opt
# import cv2
import time
from joblib import Parallel, delayed
from itertools import product
# Function Definitions
def unmixGradProjMatrixNNLS(image, A, tolerance=1e-4, maxiter=100):
"""
Performs NNLS via Gradient Projection of the primal problem.
Terminates when duality gap falls below tolerance
"""
if image.ndim == 2:
(n1, n3) = image.shape
n2 = 1;
elif image.ndim == 3:
(n1, n2, n3) = image.shape
k = A.shape[1]
# Reshape to n3 x n1*n2 matrix
image = image.reshape(n1*n2,n3).T
# Precompute Quantities
ATA = np.dot(A.T,A)
pinvA = np.linalg.pinv(A)
ATimage = np.dot(A.T,image)
alpha = np.linalg.norm(ATA,ord=2)
# Start with thresholded pseudo-inverse
X = np.dot(pinvA, image)
X[X < 0] = 0
# See if meets convergence criterion
grad = np.dot(ATA,X) - ATimage
gradthresh = np.array(grad)
gradthresh[gradthresh < 0] = 0
gap = np.tensordot(X, gradthresh)/(n1*n2*k)
iter = 0
while (gap > tolerance) and (iter < maxiter):
iter += 1
# Gradient Step
X = X - grad/alpha
# Projection
X[X < 0] = 0
# See if meets convergence criterion
grad = np.dot(ATA,X) - ATimage
gradthresh = np.array(grad)
gradthresh[gradthresh < 0] = 0
gap = np.tensordot(X, gradthresh)/(n1*n2*k)
# Reshape back to n1 x n2 x k image
X = X.T.reshape(n1,n2,k)
return X
def unmixGradProjMatrixMinArcNNLS(image, A, tolerance=1e-4):
"""
Performs NNLS via Gradient Projection of the primal problem.
Includes minimization along projection arc
Terminates when duality gap falls below tolerance
"""
if image.ndim == 2:
(n1, n3) = image.shape
n2 = 1;
elif image.ndim == 3:
(n1, n2, n3) = image.shape
k = A.shape[1]
# Reshape to n3 x n1*n2 matrix
image = image.reshape(n1*n2,n3).T
# Precompute Quantities
ATA = np.dot(A.T,A)
pinvA = np.linalg.pinv(A)
ATimage = | np.dot(A.T,image) | numpy.dot |
import cv2
import numpy as np
import matplotlib.pyplot as plt
import torch
def draw_skeleton(input_image, joints, draw_edges=True, vis=None, radius=None):
"""
joints is 3 x 19. but if not will transpose it.
0: Right ankle
1: Right knee
2: Right hip
3: Left hip
4: Left knee
5: Left ankle
6: Right wrist
7: Right elbow
8: Right shoulder
9: Left shoulder
10: Left elbow
11: Left wrist
12: Neck
13: Head top
14: nose
15: left_eye
16: right_eye
17: left_ear
18: right_ear
"""
if radius is None:
radius = max(4, (np.mean(input_image.shape[:2]) * 0.01).astype(int))
colors = {
'pink': np.array([197, 27, 125]), # L lower leg
'light_pink': np.array([233, 163, 201]), # L upper leg
'light_green': np.array([161, 215, 106]), # L lower arm
'green': np.array([77, 146, 33]), # L upper arm
'red': np.array([215, 48, 39]), # head
'light_red': np.array([252, 146, 114]), # head
'light_orange': np.array([252, 141, 89]), # chest
'purple': np.array([118, 42, 131]), # R lower leg
'light_purple': np.array([175, 141, 195]), # R upper
'light_blue': | np.array([145, 191, 219]) | numpy.array |
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import pandas as pd
from covid_epidemiology import model
from covid_epidemiology.src.models.shared import model_utils
class ModelUtilsTest(unittest.TestCase):
def test_update_metric_to_predictions(self):
metric_to_predictions = {
"Infected": [
model.Prediction(
time_horizon=1, predicted_value=20, ground_truth=12)
]
}
gt_data = [7, 2, 5, 7]
got = model_utils.update_metric_to_predictions(
metric="recovered_cases",
values=np.array([[12], [23]], np.float32),
metric_to_predictions=metric_to_predictions,
train_end_of_window=2,
gt_data=gt_data)
wanted = {
"Infected": [
model.Prediction(
time_horizon=1, predicted_value=20, ground_truth=12)
],
"recovered_cases": [
model.Prediction(
time_horizon=1, predicted_value=12, ground_truth=5),
model.Prediction(
time_horizon=2, predicted_value=23, ground_truth=7)
],
}
self.assertEqual(wanted, got)
def test_update_metric_to_predictions_with_quantiles(self):
metric_to_predictions = {}
gt_data = [7, 2, 5, 7]
got = model_utils.update_metric_to_predictions(
metric="recovered_cases",
values=np.array([[12, 14], [23, 25]], np.float32),
metric_to_predictions=metric_to_predictions,
train_end_of_window=2,
gt_data=gt_data,
quantiles=[0.1, 0.9],
metric_string_format="{metric}_{quantile}_quantile")
wanted = {
"recovered_cases_0.1_quantile": [
model.Prediction(
time_horizon=1, predicted_value=12, ground_truth=5),
model.Prediction(
time_horizon=2, predicted_value=23, ground_truth=7)
],
"recovered_cases_0.9_quantile": [
model.Prediction(
time_horizon=1, predicted_value=14, ground_truth=5),
model.Prediction(
time_horizon=2, predicted_value=25, ground_truth=7)
],
}
self.assertEqual(wanted, got)
def test_update_metric_to_predictions_offset(self):
metric_to_predictions = {
"Infected": [
model.Prediction(
time_horizon=1, predicted_value=20, ground_truth=12)
]
}
gt_data = [7, 2, 5, 7]
got = model_utils.update_metric_to_predictions(
metric="recovered_cases",
values=np.array([[12], [23]], np.float32),
metric_to_predictions=metric_to_predictions,
train_end_of_window=2,
gt_data=gt_data,
time_horizon_offset=2)
wanted = {
"Infected": [
model.Prediction(
time_horizon=1, predicted_value=20, ground_truth=12)
],
"recovered_cases": [
model.Prediction(
time_horizon=-1, predicted_value=12, ground_truth=5),
model.Prediction(
time_horizon=0, predicted_value=23, ground_truth=7)
],
}
self.assertEqual(wanted, got)
def test_populate_gt_list(self):
gt_list = np.zeros((2, 4))
gt_indicator = np.ones((2, 4))
location_to_gt = {
"IR": pd.Series([12, 4, 5]),
"US": pd.Series([3, 4, 5, 6, 7])
}
gt_list, gt_indicator = model_utils.populate_gt_list(
0, location_to_gt, "IR", 4, gt_list, gt_indicator)
gt_list, gt_indicator = model_utils.populate_gt_list(
1, location_to_gt, "US", 4, gt_list, gt_indicator)
wanted = | np.array([[12, 4, 5, 0], [3, 4, 5, 6]], np.float32) | numpy.array |
#!/usr/bin/env python
# Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Parts are based on https://github.com/multimodallearning/pytorch-mask-rcnn
published under MIT license.
"""
import warnings
warnings.filterwarnings('ignore', '.*From scipy 0.13.0, the output shape of zoom()*')
import numpy as np
import scipy.misc
import scipy.ndimage
import scipy.interpolate
from scipy.ndimage.measurements import label as lb
import torch
import tqdm
from custom_extensions.nms import nms
from custom_extensions.roi_align import roi_align
############################################################
# Segmentation Processing
############################################################
def sum_tensor(input, axes, keepdim=False):
axes = np.unique(axes)
if keepdim:
for ax in axes:
input = input.sum(ax, keepdim=True)
else:
for ax in sorted(axes, reverse=True):
input = input.sum(int(ax))
return input
def get_one_hot_encoding(y, n_classes):
"""
transform a numpy label array to a one-hot array of the same shape.
:param y: array of shape (b, 1, y, x, (z)).
:param n_classes: int, number of classes to unfold in one-hot encoding.
:return y_ohe: array of shape (b, n_classes, y, x, (z))
"""
dim = len(y.shape) - 2
if dim == 2:
y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3])).astype('int32')
elif dim == 3:
y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3], y.shape[4])).astype('int32')
else:
raise Exception("invalid dimensions {} encountered".format(y.shape))
for cl in np.arange(n_classes):
y_ohe[:, cl][y[:, 0] == cl] = 1
return y_ohe
def dice_per_batch_inst_and_class(pred, y, n_classes, convert_to_ohe=True, smooth=1e-8):
'''
computes dice scores per batch instance and class.
:param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1)
:param y: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes]
:param n_classes: int
:return: dice scores of shape (b, c)
'''
if convert_to_ohe:
pred = get_one_hot_encoding(pred, n_classes)
y = get_one_hot_encoding(y, n_classes)
axes = tuple(range(2, len(pred.shape)))
intersect = np.sum(pred*y, axis=axes)
denominator = np.sum(pred, axis=axes)+np.sum(y, axis=axes)
dice = (2.0*intersect + smooth) / (denominator + smooth)
return dice
def dice_per_batch_and_class(pred, targ, n_classes, convert_to_ohe=True, smooth=1e-8):
'''
computes dice scores per batch and class.
:param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1)
:param targ: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes])
:param n_classes: int
:param smooth: Laplacian smooth, https://en.wikipedia.org/wiki/Additive_smoothing
:return: dice scores of shape (b, c)
'''
if convert_to_ohe:
pred = get_one_hot_encoding(pred, n_classes)
targ = get_one_hot_encoding(targ, n_classes)
axes = (0, *list(range(2, len(pred.shape)))) #(0,2,3(,4))
intersect = np.sum(pred * targ, axis=axes)
denominator = np.sum(pred, axis=axes) + np.sum(targ, axis=axes)
dice = (2.0 * intersect + smooth) / (denominator + smooth)
assert dice.shape==(n_classes,), "dice shp {}".format(dice.shape)
return dice
def batch_dice(pred, y, false_positive_weight=1.0, smooth=1e-6):
'''
compute soft dice over batch. this is a differentiable score and can be used as a loss function.
only dice scores of foreground classes are returned, since training typically
does not benefit from explicit background optimization. Pixels of the entire batch are considered a pseudo-volume to compute dice scores of.
This way, single patches with missing foreground classes can not produce faulty gradients.
:param pred: (b, c, y, x, (z)), softmax probabilities (network output).
:param y: (b, c, y, x, (z)), one hote encoded segmentation mask.
:param false_positive_weight: float [0,1]. For weighting of imbalanced classes,
reduces the penalty for false-positive pixels. Can be beneficial sometimes in data with heavy fg/bg imbalances.
:return: soft dice score (float).This function discards the background score and returns the mena of foreground scores.
'''
if len(pred.size()) == 4:
axes = (0, 2, 3)
intersect = sum_tensor(pred * y, axes, keepdim=False)
denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False)
return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) #only fg dice here.
elif len(pred.size()) == 5:
axes = (0, 2, 3, 4)
intersect = sum_tensor(pred * y, axes, keepdim=False)
denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False)
return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) #only fg dice here.
else:
raise ValueError('wrong input dimension in dice loss')
############################################################
# Bounding Boxes
############################################################
def compute_iou_2D(box, boxes, box_area, boxes_area):
"""Calculates IoU of the given box with the array of the given boxes.
box: 1D vector [y1, x1, y2, x2] THIS IS THE GT BOX
boxes: [boxes_count, (y1, x1, y2, x2)]
box_area: float. the area of 'box'
boxes_area: array of length boxes_count.
Note: the areas are passed in rather than calculated here for
efficency. Calculate once in the caller to avoid duplicate work.
"""
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)
union = box_area + boxes_area[:] - intersection[:]
iou = intersection / union
return iou
def compute_iou_3D(box, boxes, box_volume, boxes_volume):
"""Calculates IoU of the given box with the array of the given boxes.
box: 1D vector [y1, x1, y2, x2, z1, z2] (typically gt box)
boxes: [boxes_count, (y1, x1, y2, x2, z1, z2)]
box_area: float. the area of 'box'
boxes_area: array of length boxes_count.
Note: the areas are passed in rather than calculated here for
efficency. Calculate once in the caller to avoid duplicate work.
"""
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
z1 = np.maximum(box[4], boxes[:, 4])
z2 = np.minimum(box[5], boxes[:, 5])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) * np.maximum(z2 - z1, 0)
union = box_volume + boxes_volume[:] - intersection[:]
iou = intersection / union
return iou
def compute_overlaps(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2)]. / 3D: (z1, z2))
For better performance, pass the largest set first and the smaller second.
:return: (#boxes1, #boxes2), ious of each box of 1 machted with each of 2
"""
# Areas of anchors and GT boxes
if boxes1.shape[1] == 4:
area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
# Compute overlaps to generate matrix [boxes1 count, boxes2 count]
# Each cell contains the IoU value.
overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0]))
for i in range(overlaps.shape[1]):
box2 = boxes2[i] #this is the gt box
overlaps[:, i] = compute_iou_2D(box2, boxes1, area2[i], area1)
return overlaps
else:
# Areas of anchors and GT boxes
volume1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) * (boxes1[:, 5] - boxes1[:, 4])
volume2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) * (boxes2[:, 5] - boxes2[:, 4])
# Compute overlaps to generate matrix [boxes1 count, boxes2 count]
# Each cell contains the IoU value.
overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0]))
for i in range(boxes2.shape[0]):
box2 = boxes2[i] # this is the gt box
overlaps[:, i] = compute_iou_3D(box2, boxes1, volume2[i], volume1)
return overlaps
def box_refinement(box, gt_box):
"""Compute refinement needed to transform box to gt_box.
box and gt_box are [N, (y1, x1, y2, x2)] / 3D: (z1, z2))
"""
height = box[:, 2] - box[:, 0]
width = box[:, 3] - box[:, 1]
center_y = box[:, 0] + 0.5 * height
center_x = box[:, 1] + 0.5 * width
gt_height = gt_box[:, 2] - gt_box[:, 0]
gt_width = gt_box[:, 3] - gt_box[:, 1]
gt_center_y = gt_box[:, 0] + 0.5 * gt_height
gt_center_x = gt_box[:, 1] + 0.5 * gt_width
dy = (gt_center_y - center_y) / height
dx = (gt_center_x - center_x) / width
dh = torch.log(gt_height / height)
dw = torch.log(gt_width / width)
result = torch.stack([dy, dx, dh, dw], dim=1)
if box.shape[1] > 4:
depth = box[:, 5] - box[:, 4]
center_z = box[:, 4] + 0.5 * depth
gt_depth = gt_box[:, 5] - gt_box[:, 4]
gt_center_z = gt_box[:, 4] + 0.5 * gt_depth
dz = (gt_center_z - center_z) / depth
dd = torch.log(gt_depth / depth)
result = torch.stack([dy, dx, dz, dh, dw, dd], dim=1)
return result
def unmold_mask_2D(mask, bbox, image_shape):
"""Converts a mask generated by the neural network into a format similar
to it's original shape.
mask: [height, width] of type float. A small, typically 28x28 mask.
bbox: [y1, x1, y2, x2]. The box to fit the mask in.
Returns a binary mask with the same size as the original image.
"""
y1, x1, y2, x2 = bbox
out_zoom = [y2 - y1, x2 - x1]
zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)]
mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32)
# Put the mask in the right location.
full_mask = np.zeros(image_shape[:2]) #only y,x
full_mask[y1:y2, x1:x2] = mask
return full_mask
def unmold_mask_2D_torch(mask, bbox, image_shape):
"""Converts a mask generated by the neural network into a format similar
to it's original shape.
mask: [height, width] of type float. A small, typically 28x28 mask.
bbox: [y1, x1, y2, x2]. The box to fit the mask in.
Returns a binary mask with the same size as the original image.
"""
y1, x1, y2, x2 = bbox
out_zoom = [(y2 - y1).float(), (x2 - x1).float()]
zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)]
mask = mask.unsqueeze(0).unsqueeze(0)
mask = torch.nn.functional.interpolate(mask, scale_factor=zoom_factor)
mask = mask[0][0]
#mask = scipy.ndimage.zoom(mask.cpu().numpy(), zoom_factor, order=1).astype(np.float32)
#mask = torch.from_numpy(mask).cuda()
# Put the mask in the right location.
full_mask = torch.zeros(image_shape[:2]) # only y,x
full_mask[y1:y2, x1:x2] = mask
return full_mask
def unmold_mask_3D(mask, bbox, image_shape):
"""Converts a mask generated by the neural network into a format similar
to it's original shape.
mask: [height, width] of type float. A small, typically 28x28 mask.
bbox: [y1, x1, y2, x2, z1, z2]. The box to fit the mask in.
Returns a binary mask with the same size as the original image.
"""
y1, x1, y2, x2, z1, z2 = bbox
out_zoom = [y2 - y1, x2 - x1, z2 - z1]
zoom_factor = [i/j for i,j in zip(out_zoom, mask.shape)]
mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32)
# Put the mask in the right location.
full_mask = np.zeros(image_shape[:3])
full_mask[y1:y2, x1:x2, z1:z2] = mask
return full_mask
def nms_numpy(box_coords, scores, thresh):
""" non-maximum suppression on 2D or 3D boxes in numpy.
:param box_coords: [y1,x1,y2,x2 (,z1,z2)] with y1<=y2, x1<=x2, z1<=z2.
:param scores: ranking scores (higher score == higher rank) of boxes.
:param thresh: IoU threshold for clustering.
:return:
"""
y1 = box_coords[:, 0]
x1 = box_coords[:, 1]
y2 = box_coords[:, 2]
x2 = box_coords[:, 3]
assert np.all(y1 <= y2) and np.all(x1 <= x2), """"the definition of the coordinates is crucially important here:
coordinates of which maxima are taken need to be the lower coordinates"""
areas = (x2 - x1) * (y2 - y1)
is_3d = box_coords.shape[1] == 6
if is_3d: # 3-dim case
z1 = box_coords[:, 4]
z2 = box_coords[:, 5]
assert np.all(z1<=z2), """"the definition of the coordinates is crucially important here:
coordinates of which maxima are taken need to be the lower coordinates"""
areas *= (z2 - z1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0: # order is the sorted index. maps order to index: order[1] = 24 means (rank1, ix 24)
i = order[0] # highest scoring element
yy1 = np.maximum(y1[i], y1[order]) # highest scoring element still in >order<, is compared to itself, that is okay.
xx1 = np.maximum(x1[i], x1[order])
yy2 = np.minimum(y2[i], y2[order])
xx2 = np.minimum(x2[i], x2[order])
h = np.maximum(0.0, yy2 - yy1)
w = np.maximum(0.0, xx2 - xx1)
inter = h * w
if is_3d:
zz1 = np.maximum(z1[i], z1[order])
zz2 = np.minimum(z2[i], z2[order])
d = np.maximum(0.0, zz2 - zz1)
inter *= d
iou = inter / (areas[i] + areas[order] - inter)
non_matches = np.nonzero(iou <= thresh)[0] # get all elements that were not matched and discard all others.
order = order[non_matches]
keep.append(i)
return keep
############################################################
# M-RCNN
############################################################
def refine_proposals(rpn_pred_probs, rpn_pred_deltas, proposal_count, batch_anchors, cf):
"""
Receives anchor scores and selects a subset to pass as proposals
to the second stage. Filtering is done based on anchor scores and
non-max suppression to remove overlaps. It also applies bounding
box refinement details to anchors.
:param rpn_pred_probs: (b, n_anchors, 2)
:param rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d))))
:return: batch_normalized_props: Proposals in normalized coordinates (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score))
:return: batch_out_proposals: Box coords + RPN foreground scores
for monitoring/plotting (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score))
"""
std_dev = torch.from_numpy(cf.rpn_bbox_std_dev[None]).float().cuda()
norm = torch.from_numpy(cf.scale).float().cuda()
anchors = batch_anchors.clone()
batch_scores = rpn_pred_probs[:, :, 1]
# norm deltas
batch_deltas = rpn_pred_deltas * std_dev
batch_normalized_props = []
batch_out_proposals = []
# loop over batch dimension.
for ix in range(batch_scores.shape[0]):
scores = batch_scores[ix]
deltas = batch_deltas[ix]
non_nans = deltas == deltas
assert torch.all(non_nans), "deltas have nans: {}".format(deltas[~non_nans])
non_nans = anchors == anchors
assert torch.all(non_nans), "anchors have nans: {}".format(anchors[~non_nans])
# improve performance by trimming to top anchors by score
# and doing the rest on the smaller subset.
pre_nms_limit = min(cf.pre_nms_limit, anchors.size()[0])
scores, order = scores.sort(descending=True)
order = order[:pre_nms_limit]
scores = scores[:pre_nms_limit]
deltas = deltas[order, :]
# apply deltas to anchors to get refined anchors and filter with non-maximum suppression.
if batch_deltas.shape[-1] == 4:
boxes = apply_box_deltas_2D(anchors[order, :], deltas)
non_nans = boxes == boxes
assert torch.all(non_nans), "unnormalized boxes before clip/after delta apply have nans: {}".format(boxes[~non_nans])
boxes = clip_boxes_2D(boxes, cf.window)
else:
boxes = apply_box_deltas_3D(anchors[order, :], deltas)
boxes = clip_boxes_3D(boxes, cf.window)
non_nans = boxes == boxes
assert torch.all(non_nans), "unnormalized boxes before nms/after clip have nans: {}".format(boxes[~non_nans])
# boxes are y1,x1,y2,x2, torchvision-nms requires x1,y1,x2,y2, but consistent swap x<->y is irrelevant.
keep = nms.nms(boxes, scores, cf.rpn_nms_threshold)
keep = keep[:proposal_count]
boxes = boxes[keep, :]
rpn_scores = scores[keep][:, None]
# pad missing boxes with 0.
if boxes.shape[0] < proposal_count:
n_pad_boxes = proposal_count - boxes.shape[0]
zeros = torch.zeros([n_pad_boxes, boxes.shape[1]]).cuda()
boxes = torch.cat([boxes, zeros], dim=0)
zeros = torch.zeros([n_pad_boxes, rpn_scores.shape[1]]).cuda()
rpn_scores = torch.cat([rpn_scores, zeros], dim=0)
# concat box and score info for monitoring/plotting.
batch_out_proposals.append(torch.cat((boxes, rpn_scores), 1).cpu().data.numpy())
# normalize dimensions to range of 0 to 1.
non_nans = boxes == boxes
assert torch.all(non_nans), "unnormalized boxes after nms have nans: {}".format(boxes[~non_nans])
normalized_boxes = boxes / norm
where = normalized_boxes <=1
assert torch.all(where), "normalized box coords >1 found:\n {}\n".format(normalized_boxes[~where])
# add again batch dimension
batch_normalized_props.append(torch.cat((normalized_boxes, rpn_scores), 1).unsqueeze(0))
batch_normalized_props = torch.cat(batch_normalized_props)
batch_out_proposals = np.array(batch_out_proposals)
return batch_normalized_props, batch_out_proposals
def pyramid_roi_align(feature_maps, rois, pool_size, pyramid_levels, dim):
"""
Implements ROI Pooling on multiple levels of the feature pyramid.
:param feature_maps: list of feature maps, each of shape (b, c, y, x , (z))
:param rois: proposals (normalized coords.) as returned by RPN. contain info about original batch element allocation.
(n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs)
:param pool_size: list of poolsizes in dims: [x, y, (z)]
:param pyramid_levels: list. [0, 1, 2, ...]
:return: pooled: pooled feature map rois (n_proposals, c, poolsize_y, poolsize_x, (poolsize_z))
Output:
Pooled regions in the shape: [num_boxes, height, width, channels].
The width and height are those specific in the pool_shape in the layer
constructor.
"""
boxes = rois[:, :dim*2]
batch_ixs = rois[:, dim*2]
# Assign each ROI to a level in the pyramid based on the ROI area.
if dim == 2:
y1, x1, y2, x2 = boxes.chunk(4, dim=1)
else:
y1, x1, y2, x2, z1, z2 = boxes.chunk(6, dim=1)
h = y2 - y1
w = x2 - x1
# Equation 1 in https://arxiv.org/abs/1612.03144. Account for
# the fact that our coordinates are normalized here.
# divide sqrt(h*w) by 1 instead image_area.
roi_level = (4 + torch.log2(torch.sqrt(h*w))).round().int().clamp(pyramid_levels[0], pyramid_levels[-1])
# if Pyramid contains additional level P6, adapt the roi_level assignment accordingly.
if len(pyramid_levels) == 5:
roi_level[h*w > 0.65] = 5
# Loop through levels and apply ROI pooling to each.
pooled = []
box_to_level = []
fmap_shapes = [f.shape for f in feature_maps]
for level_ix, level in enumerate(pyramid_levels):
ix = roi_level == level
if not ix.any():
continue
ix = torch.nonzero(ix)[:, 0]
level_boxes = boxes[ix, :]
# re-assign rois to feature map of original batch element.
ind = batch_ixs[ix].int()
# Keep track of which box is mapped to which level
box_to_level.append(ix)
# Stop gradient propogation to ROI proposals
level_boxes = level_boxes.detach()
if len(pool_size) == 2:
# remap to feature map coordinate system
y_exp, x_exp = fmap_shapes[level_ix][2:] # exp = expansion
level_boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda())
pooled_features = roi_align.roi_align_2d(feature_maps[level_ix],
torch.cat((ind.unsqueeze(1).float(), level_boxes), dim=1),
pool_size)
else:
y_exp, x_exp, z_exp = fmap_shapes[level_ix][2:]
level_boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp, z_exp, z_exp], dtype=torch.float32).cuda())
pooled_features = roi_align.roi_align_3d(feature_maps[level_ix],
torch.cat((ind.unsqueeze(1).float(), level_boxes), dim=1),
pool_size)
pooled.append(pooled_features)
# Pack pooled features into one tensor
pooled = torch.cat(pooled, dim=0)
# Pack box_to_level mapping into one array and add another
# column representing the order of pooled boxes
box_to_level = torch.cat(box_to_level, dim=0)
# Rearrange pooled features to match the order of the original boxes
_, box_to_level = torch.sort(box_to_level)
pooled = pooled[box_to_level, :, :]
return pooled
def roi_align_3d_numpy(input: np.ndarray, rois, output_size: tuple,
spatial_scale: float = 1., sampling_ratio: int = -1) -> np.ndarray:
""" This fct mainly serves as a verification method for 3D CUDA implementation of RoIAlign, it's highly
inefficient due to the nested loops.
:param input: (ndarray[N, C, H, W, D]): input feature map
:param rois: list (N,K(n), 6), K(n) = nr of rois in batch-element n, single roi of format (y1,x1,y2,x2,z1,z2)
:param output_size:
:param spatial_scale:
:param sampling_ratio:
:return: (List[N, K(n), C, output_size[0], output_size[1], output_size[2]])
"""
out_height, out_width, out_depth = output_size
coord_grid = tuple([np.linspace(0, input.shape[dim] - 1, num=input.shape[dim]) for dim in range(2, 5)])
pooled_rois = [[]] * len(rois)
assert len(rois) == input.shape[0], "batch dim mismatch, rois: {}, input: {}".format(len(rois), input.shape[0])
print("Numpy 3D RoIAlign progress:", end="\n")
for b in range(input.shape[0]):
for roi in tqdm.tqdm(rois[b]):
y1, x1, y2, x2, z1, z2 = np.array(roi) * spatial_scale
roi_height = max(float(y2 - y1), 1.)
roi_width = max(float(x2 - x1), 1.)
roi_depth = max(float(z2 - z1), 1.)
if sampling_ratio <= 0:
sampling_ratio_h = int(np.ceil(roi_height / out_height))
sampling_ratio_w = int(np.ceil(roi_width / out_width))
sampling_ratio_d = int(np.ceil(roi_depth / out_depth))
else:
sampling_ratio_h = sampling_ratio_w = sampling_ratio_d = sampling_ratio # == n points per bin
bin_height = roi_height / out_height
bin_width = roi_width / out_width
bin_depth = roi_depth / out_depth
n_points = sampling_ratio_h * sampling_ratio_w * sampling_ratio_d
pooled_roi = np.empty((input.shape[1], out_height, out_width, out_depth), dtype="float32")
for chan in range(input.shape[1]):
lin_interpolator = scipy.interpolate.RegularGridInterpolator(coord_grid, input[b, chan],
method="linear")
for bin_iy in range(out_height):
for bin_ix in range(out_width):
for bin_iz in range(out_depth):
bin_val = 0.
for i in range(sampling_ratio_h):
for j in range(sampling_ratio_w):
for k in range(sampling_ratio_d):
loc_ijk = [
y1 + bin_iy * bin_height + (i + 0.5) * (bin_height / sampling_ratio_h),
x1 + bin_ix * bin_width + (j + 0.5) * (bin_width / sampling_ratio_w),
z1 + bin_iz * bin_depth + (k + 0.5) * (bin_depth / sampling_ratio_d)]
# print("loc_ijk", loc_ijk)
if not (np.any([c < -1.0 for c in loc_ijk]) or loc_ijk[0] > input.shape[2] or
loc_ijk[1] > input.shape[3] or loc_ijk[2] > input.shape[4]):
for catch_case in range(3):
# catch on-border cases
if int(loc_ijk[catch_case]) == input.shape[catch_case + 2] - 1:
loc_ijk[catch_case] = input.shape[catch_case + 2] - 1
bin_val += lin_interpolator(loc_ijk)
pooled_roi[chan, bin_iy, bin_ix, bin_iz] = bin_val / n_points
pooled_rois[b].append(pooled_roi)
return np.array(pooled_rois)
def refine_detections(cf, batch_ixs, rois, deltas, scores, regressions):
"""
Refine classified proposals (apply deltas to rpn rois), filter overlaps (nms) and return final detections.
:param rois: (n_proposals, 2 * dim) normalized boxes as proposed by RPN. n_proposals = batch_size * POST_NMS_ROIS
:param deltas: (n_proposals, n_classes, 2 * dim) box refinement deltas as predicted by mrcnn bbox regressor.
:param batch_ixs: (n_proposals) batch element assignment info for re-allocation.
:param scores: (n_proposals, n_classes) probabilities for all classes per roi as predicted by mrcnn classifier.
:param regressions: (n_proposals, n_classes, regression_features (+1 for uncertainty if predicted) regression vector
:return: result: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score, *regression vector features))
"""
# class IDs per ROI. Since scores of all classes are of interest (not just max class), all are kept at this point.
class_ids = []
fg_classes = cf.head_classes - 1
# repeat vectors to fill in predictions for all foreground classes.
for ii in range(1, fg_classes + 1):
class_ids += [ii] * rois.shape[0]
class_ids = torch.from_numpy(np.array(class_ids)).cuda()
batch_ixs = batch_ixs.repeat(fg_classes)
rois = rois.repeat(fg_classes, 1)
deltas = deltas.repeat(fg_classes, 1, 1)
scores = scores.repeat(fg_classes, 1)
regressions = regressions.repeat(fg_classes, 1, 1)
# get class-specific scores and bounding box deltas
idx = torch.arange(class_ids.size()[0]).long().cuda()
# using idx instead of slice [:,] squashes first dimension.
#len(class_ids)>scores.shape[1] --> probs is broadcasted by expansion from fg_classes-->len(class_ids)
batch_ixs = batch_ixs[idx]
deltas_specific = deltas[idx, class_ids]
class_scores = scores[idx, class_ids]
regressions = regressions[idx, class_ids]
# apply bounding box deltas. re-scale to image coordinates.
std_dev = torch.from_numpy(np.reshape(cf.rpn_bbox_std_dev, [1, cf.dim * 2])).float().cuda()
scale = torch.from_numpy(cf.scale).float().cuda()
refined_rois = apply_box_deltas_2D(rois, deltas_specific * std_dev) * scale if cf.dim == 2 else \
apply_box_deltas_3D(rois, deltas_specific * std_dev) * scale
# round and cast to int since we're dealing with pixels now
refined_rois = clip_to_window(cf.window, refined_rois)
refined_rois = torch.round(refined_rois)
# filter out low confidence boxes
keep = idx
keep_bool = (class_scores >= cf.model_min_confidence)
if not 0 in torch.nonzero(keep_bool).size():
score_keep = torch.nonzero(keep_bool)[:, 0]
pre_nms_class_ids = class_ids[score_keep]
pre_nms_rois = refined_rois[score_keep]
pre_nms_scores = class_scores[score_keep]
pre_nms_batch_ixs = batch_ixs[score_keep]
for j, b in enumerate(unique1d(pre_nms_batch_ixs)):
bixs = torch.nonzero(pre_nms_batch_ixs == b)[:, 0]
bix_class_ids = pre_nms_class_ids[bixs]
bix_rois = pre_nms_rois[bixs]
bix_scores = pre_nms_scores[bixs]
for i, class_id in enumerate(unique1d(bix_class_ids)):
ixs = torch.nonzero(bix_class_ids == class_id)[:, 0]
# nms expects boxes sorted by score.
ix_rois = bix_rois[ixs]
ix_scores = bix_scores[ixs]
ix_scores, order = ix_scores.sort(descending=True)
ix_rois = ix_rois[order, :]
class_keep = nms.nms(ix_rois, ix_scores, cf.detection_nms_threshold)
# map indices back.
class_keep = keep[score_keep[bixs[ixs[order[class_keep]]]]]
# merge indices over classes for current batch element
b_keep = class_keep if i == 0 else unique1d(torch.cat((b_keep, class_keep)))
# only keep top-k boxes of current batch-element
top_ids = class_scores[b_keep].sort(descending=True)[1][:cf.model_max_instances_per_batch_element]
b_keep = b_keep[top_ids]
# merge indices over batch elements.
batch_keep = b_keep if j == 0 else unique1d(torch.cat((batch_keep, b_keep)))
keep = batch_keep
else:
keep = torch.tensor([0]).long().cuda()
# arrange output
output = [refined_rois[keep], batch_ixs[keep].unsqueeze(1)]
output += [class_ids[keep].unsqueeze(1).float(), class_scores[keep].unsqueeze(1)]
output += [regressions[keep]]
result = torch.cat(output, dim=1)
# shape: (n_keeps, catted feats), catted feats: [0:dim*2] are box_coords, [dim*2] are batch_ics,
# [dim*2+1] are class_ids, [dim*2+2] are scores, [dim*2+3:] are regression vector features (incl uncertainty)
return result
def loss_example_mining(cf, batch_proposals, batch_gt_boxes, batch_gt_masks, batch_roi_scores,
batch_gt_class_ids, batch_gt_regressions):
"""
Subsamples proposals for mrcnn losses and generates targets. Sampling is done per batch element, seems to have positive
effects on training, as opposed to sampling over entire batch. Negatives are sampled via stochastic hard-example mining
(SHEM), where a number of negative proposals is drawn from larger pool of highest scoring proposals for stochasticity.
Scoring is obtained here as the max over all foreground probabilities as returned by mrcnn_classifier (worked better than
loss-based class-balancing methods like "online hard-example mining" or "focal loss".)
Classification-regression duality: regressions can be given along with classes (at least fg/bg, only class scores
are used for ranking).
:param batch_proposals: (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs).
boxes as proposed by RPN. n_proposals here is determined by batch_size * POST_NMS_ROIS.
:param mrcnn_class_logits: (n_proposals, n_classes)
:param batch_gt_boxes: list over batch elements. Each element is a list over the corresponding roi target coordinates.
:param batch_gt_masks: list over batch elements. Each element is binary mask of shape (n_gt_rois, c, y, x, (z))
:param batch_gt_class_ids: list over batch elements. Each element is a list over the corresponding roi target labels.
if no classes predicted (only fg/bg from RPN): expected as pseudo classes [0, 1] for bg, fg.
:param batch_gt_regressions: list over b elements. Each element is a regression target vector. if None--> pseudo
:return: sample_indices: (n_sampled_rois) indices of sampled proposals to be used for loss functions.
:return: target_class_ids: (n_sampled_rois)containing target class labels of sampled proposals.
:return: target_deltas: (n_sampled_rois, 2 * dim) containing target deltas of sampled proposals for box refinement.
:return: target_masks: (n_sampled_rois, y, x, (z)) containing target masks of sampled proposals.
"""
# normalization of target coordinates
#global sample_regressions
if cf.dim == 2:
h, w = cf.patch_size
scale = torch.from_numpy(np.array([h, w, h, w])).float().cuda()
else:
h, w, z = cf.patch_size
scale = torch.from_numpy(np.array([h, w, h, w, z, z])).float().cuda()
positive_count = 0
negative_count = 0
sample_positive_indices = []
sample_negative_indices = []
sample_deltas = []
sample_masks = []
sample_class_ids = []
if batch_gt_regressions is not None:
sample_regressions = []
else:
target_regressions = torch.FloatTensor().cuda()
std_dev = torch.from_numpy(cf.bbox_std_dev).float().cuda()
# loop over batch and get positive and negative sample rois.
for b in range(len(batch_gt_boxes)):
gt_masks = torch.from_numpy(batch_gt_masks[b]).float().cuda()
gt_class_ids = torch.from_numpy(batch_gt_class_ids[b]).int().cuda()
if batch_gt_regressions is not None:
gt_regressions = torch.from_numpy(batch_gt_regressions[b]).float().cuda()
#if np.any(batch_gt_class_ids[b] > 0): # skip roi selection for no gt images.
if np.any([len(coords)>0 for coords in batch_gt_boxes[b]]):
gt_boxes = torch.from_numpy(batch_gt_boxes[b]).float().cuda() / scale
else:
gt_boxes = torch.FloatTensor().cuda()
# get proposals and indices of current batch element.
proposals = batch_proposals[batch_proposals[:, -1] == b][:, :-1]
batch_element_indices = torch.nonzero(batch_proposals[:, -1] == b).squeeze(1)
# Compute overlaps matrix [proposals, gt_boxes]
if not 0 in gt_boxes.size():
if gt_boxes.shape[1] == 4:
assert cf.dim == 2, "gt_boxes shape {} doesnt match cf.dim{}".format(gt_boxes.shape, cf.dim)
overlaps = bbox_overlaps_2D(proposals, gt_boxes)
else:
assert cf.dim == 3, "gt_boxes shape {} doesnt match cf.dim{}".format(gt_boxes.shape, cf.dim)
overlaps = bbox_overlaps_3D(proposals, gt_boxes)
# Determine positive and negative ROIs
roi_iou_max = torch.max(overlaps, dim=1)[0]
# 1. Positive ROIs are those with >= 0.5 IoU with a GT box
positive_roi_bool = roi_iou_max >= (0.5 if cf.dim == 2 else 0.3)
# 2. Negative ROIs are those with < 0.1 with every GT box.
negative_roi_bool = roi_iou_max < (0.1 if cf.dim == 2 else 0.01)
else:
positive_roi_bool = torch.FloatTensor().cuda()
negative_roi_bool = torch.from_numpy(np.array([1]*proposals.shape[0])).cuda()
# Sample Positive ROIs
if not 0 in torch.nonzero(positive_roi_bool).size():
positive_indices = torch.nonzero(positive_roi_bool).squeeze(1)
positive_samples = int(cf.train_rois_per_image * cf.roi_positive_ratio)
rand_idx = torch.randperm(positive_indices.size()[0])
rand_idx = rand_idx[:positive_samples].cuda()
positive_indices = positive_indices[rand_idx]
positive_samples = positive_indices.size()[0]
positive_rois = proposals[positive_indices, :]
# Assign positive ROIs to GT boxes.
positive_overlaps = overlaps[positive_indices, :]
roi_gt_box_assignment = torch.max(positive_overlaps, dim=1)[1]
roi_gt_boxes = gt_boxes[roi_gt_box_assignment, :]
roi_gt_class_ids = gt_class_ids[roi_gt_box_assignment]
if batch_gt_regressions is not None:
roi_gt_regressions = gt_regressions[roi_gt_box_assignment]
# Compute bbox refinement targets for positive ROIs
deltas = box_refinement(positive_rois, roi_gt_boxes)
deltas /= std_dev
roi_masks = gt_masks[roi_gt_box_assignment]
assert roi_masks.shape[1] == 1, "gt masks have more than one channel --> is this desired?"
# Compute mask targets
boxes = positive_rois
box_ids = torch.arange(roi_masks.shape[0]).cuda().unsqueeze(1).float()
if len(cf.mask_shape) == 2:
y_exp, x_exp = roi_masks.shape[2:] # exp = expansion
boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda())
masks = roi_align.roi_align_2d(roi_masks,
torch.cat((box_ids, boxes), dim=1),
cf.mask_shape)
else:
y_exp, x_exp, z_exp = roi_masks.shape[2:] # exp = expansion
boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp, z_exp, z_exp], dtype=torch.float32).cuda())
masks = roi_align.roi_align_3d(roi_masks,
torch.cat((box_ids, boxes), dim=1),
cf.mask_shape)
masks = masks.squeeze(1)
# Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with
# binary cross entropy loss.
masks = torch.round(masks)
sample_positive_indices.append(batch_element_indices[positive_indices])
sample_deltas.append(deltas)
sample_masks.append(masks)
sample_class_ids.append(roi_gt_class_ids)
if batch_gt_regressions is not None:
sample_regressions.append(roi_gt_regressions)
positive_count += positive_samples
else:
positive_samples = 0
# Sample negative ROIs. Add enough to maintain positive:negative ratio, but at least 1. Sample via SHEM.
if not 0 in torch.nonzero(negative_roi_bool).size():
negative_indices = torch.nonzero(negative_roi_bool).squeeze(1)
r = 1.0 / cf.roi_positive_ratio
b_neg_count = np.max((int(r * positive_samples - positive_samples), 1))
roi_scores_neg = batch_roi_scores[batch_element_indices[negative_indices]]
raw_sampled_indices = shem(roi_scores_neg, b_neg_count, cf.shem_poolsize)
sample_negative_indices.append(batch_element_indices[negative_indices[raw_sampled_indices]])
negative_count += raw_sampled_indices.size()[0]
if len(sample_positive_indices) > 0:
target_deltas = torch.cat(sample_deltas)
target_masks = torch.cat(sample_masks)
target_class_ids = torch.cat(sample_class_ids)
if batch_gt_regressions is not None:
target_regressions = torch.cat(sample_regressions)
# Pad target information with zeros for negative ROIs.
if positive_count > 0 and negative_count > 0:
sample_indices = torch.cat((torch.cat(sample_positive_indices), torch.cat(sample_negative_indices)), dim=0)
zeros = torch.zeros(negative_count, cf.dim * 2).cuda()
target_deltas = torch.cat([target_deltas, zeros], dim=0)
zeros = torch.zeros(negative_count, *cf.mask_shape).cuda()
target_masks = torch.cat([target_masks, zeros], dim=0)
zeros = torch.zeros(negative_count).int().cuda()
target_class_ids = torch.cat([target_class_ids, zeros], dim=0)
if batch_gt_regressions is not None:
# regression targets need to have 0 as background/negative with below practice
if 'regression_bin' in cf.prediction_tasks:
zeros = torch.zeros(negative_count, dtype=torch.float).cuda()
else:
zeros = torch.zeros(negative_count, cf.regression_n_features, dtype=torch.float).cuda()
target_regressions = torch.cat([target_regressions, zeros], dim=0)
elif positive_count > 0:
sample_indices = torch.cat(sample_positive_indices)
elif negative_count > 0:
sample_indices = torch.cat(sample_negative_indices)
target_deltas = torch.zeros(negative_count, cf.dim * 2).cuda()
target_masks = torch.zeros(negative_count, *cf.mask_shape).cuda()
target_class_ids = torch.zeros(negative_count).int().cuda()
if batch_gt_regressions is not None:
if 'regression_bin' in cf.prediction_tasks:
target_regressions = torch.zeros(negative_count, dtype=torch.float).cuda()
else:
target_regressions = torch.zeros(negative_count, cf.regression_n_features, dtype=torch.float).cuda()
else:
sample_indices = torch.LongTensor().cuda()
target_class_ids = torch.IntTensor().cuda()
target_deltas = torch.FloatTensor().cuda()
target_masks = torch.FloatTensor().cuda()
target_regressions = torch.FloatTensor().cuda()
return sample_indices, target_deltas, target_masks, target_class_ids, target_regressions
############################################################
# Anchors
############################################################
def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride):
"""
scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128]
ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2]
shape: [height, width] spatial shape of the feature map over which
to generate anchors.
feature_stride: Stride of the feature map relative to the image in pixels.
anchor_stride: Stride of anchors on the feature map. For example, if the
value is 2 then generate anchors for every other feature map pixel.
"""
# Get all combinations of scales and ratios
scales, ratios = np.meshgrid(np.array(scales), np.array(ratios))
scales = scales.flatten()
ratios = ratios.flatten()
# Enumerate heights and widths from scales and ratios
heights = scales / np.sqrt(ratios)
widths = scales * np.sqrt(ratios)
# Enumerate shifts in feature space
shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride
shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride
shifts_x, shifts_y = np.meshgrid(shifts_x, shifts_y)
# Enumerate combinations of shifts, widths, and heights
box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
box_heights, box_centers_y = np.meshgrid(heights, shifts_y)
# Reshape to get a list of (y, x) and a list of (h, w)
box_centers = np.stack([box_centers_y, box_centers_x], axis=2).reshape([-1, 2])
box_sizes = np.stack([box_heights, box_widths], axis=2).reshape([-1, 2])
# Convert to corner coordinates (y1, x1, y2, x2)
boxes = np.concatenate([box_centers - 0.5 * box_sizes, box_centers + 0.5 * box_sizes], axis=1)
return boxes
def generate_anchors_3D(scales_xy, scales_z, ratios, shape, feature_stride_xy, feature_stride_z, anchor_stride):
"""
scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128]
ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2]
shape: [height, width] spatial shape of the feature map over which
to generate anchors.
feature_stride: Stride of the feature map relative to the image in pixels.
anchor_stride: Stride of anchors on the feature map. For example, if the
value is 2 then generate anchors for every other feature map pixel.
"""
# Get all combinations of scales and ratios
scales_xy, ratios_meshed = np.meshgrid(np.array(scales_xy), np.array(ratios))
scales_xy = scales_xy.flatten()
ratios_meshed = ratios_meshed.flatten()
# Enumerate heights and widths from scales and ratios
heights = scales_xy / np.sqrt(ratios_meshed)
widths = scales_xy * np.sqrt(ratios_meshed)
depths = np.tile(np.array(scales_z), len(ratios_meshed)//np.array(scales_z)[..., None].shape[0])
# Enumerate shifts in feature space
shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride_xy #translate from fm positions to input coords.
shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride_xy
shifts_z = np.arange(0, shape[2], anchor_stride) * (feature_stride_z)
shifts_x, shifts_y, shifts_z = np.meshgrid(shifts_x, shifts_y, shifts_z)
# Enumerate combinations of shifts, widths, and heights
box_widths, box_centers_x = np.meshgrid(widths, shifts_x)
box_heights, box_centers_y = np.meshgrid(heights, shifts_y)
box_depths, box_centers_z = np.meshgrid(depths, shifts_z)
# Reshape to get a list of (y, x, z) and a list of (h, w, d)
box_centers = np.stack(
[box_centers_y, box_centers_x, box_centers_z], axis=2).reshape([-1, 3])
box_sizes = np.stack([box_heights, box_widths, box_depths], axis=2).reshape([-1, 3])
# Convert to corner coordinates (y1, x1, y2, x2, z1, z2)
boxes = np.concatenate([box_centers - 0.5 * box_sizes,
box_centers + 0.5 * box_sizes], axis=1)
boxes = np.transpose(np.array([boxes[:, 0], boxes[:, 1], boxes[:, 3], boxes[:, 4], boxes[:, 2], boxes[:, 5]]), axes=(1, 0))
return boxes
def generate_pyramid_anchors(logger, cf):
"""Generate anchors at different levels of a feature pyramid. Each scale
is associated with a level of the pyramid, but each ratio is used in
all levels of the pyramid.
from configs:
:param scales: cf.RPN_ANCHOR_SCALES , for conformity with retina nets: scale entries need to be list, e.g. [[4], [8], [16], [32]]
:param ratios: cf.RPN_ANCHOR_RATIOS , e.g. [0.5, 1, 2]
:param feature_shapes: cf.BACKBONE_SHAPES , e.g. [array of shapes per feature map] [80, 40, 20, 10, 5]
:param feature_strides: cf.BACKBONE_STRIDES , e.g. [2, 4, 8, 16, 32, 64]
:param anchors_stride: cf.RPN_ANCHOR_STRIDE , e.g. 1
:return anchors: (N, (y1, x1, y2, x2, (z1), (z2)). All generated anchors in one array. Sorted
with the same order of the given scales. So, anchors of scale[0] come first, then anchors of scale[1], and so on.
"""
scales = cf.rpn_anchor_scales
ratios = cf.rpn_anchor_ratios
feature_shapes = cf.backbone_shapes
anchor_stride = cf.rpn_anchor_stride
pyramid_levels = cf.pyramid_levels
feature_strides = cf.backbone_strides
logger.info("anchor scales {} and feature map shapes {}".format(scales, feature_shapes))
expected_anchors = [np.prod(feature_shapes[level]) * len(ratios) * len(scales['xy'][level]) for level in pyramid_levels]
anchors = []
for lix, level in enumerate(pyramid_levels):
if len(feature_shapes[level]) == 2:
anchors.append(generate_anchors(scales['xy'][level], ratios, feature_shapes[level],
feature_strides['xy'][level], anchor_stride))
elif len(feature_shapes[level]) == 3:
anchors.append(generate_anchors_3D(scales['xy'][level], scales['z'][level], ratios, feature_shapes[level],
feature_strides['xy'][level], feature_strides['z'][level], anchor_stride))
else:
raise Exception("invalid feature_shapes[{}] size {}".format(level, feature_shapes[level]))
logger.info("level {}: expected anchors {}, built anchors {}.".format(level, expected_anchors[lix], anchors[-1].shape))
out_anchors = np.concatenate(anchors, axis=0)
logger.info("Total: expected anchors {}, built anchors {}.".format(np.sum(expected_anchors), out_anchors.shape))
return out_anchors
def apply_box_deltas_2D(boxes, deltas):
"""Applies the given deltas to the given boxes.
boxes: [N, 4] where each row is y1, x1, y2, x2
deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)]
"""
# Convert to y, x, h, w
non_nans = boxes == boxes
assert torch.all(non_nans), "boxes at beginning of delta apply have nans: {}".format(
boxes[~non_nans])
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
center_y = boxes[:, 0] + 0.5 * height
center_x = boxes[:, 1] + 0.5 * width
# Apply deltas
center_y += deltas[:, 0] * height
center_x += deltas[:, 1] * width
# clip delta preds in order to avoid infs and later nans after exponentiation.
height *= torch.exp(torch.clamp(deltas[:, 2], max=6.))
width *= torch.exp(torch.clamp(deltas[:, 3], max=6.))
non_nans = width == width
assert torch.all(non_nans), "inside delta apply, width has nans: {}".format(
width[~non_nans])
# 0.*inf results in nan. fix nans to zeros?
# height[height!=height] = 0.
# width[width!=width] = 0.
non_nans = height == height
assert torch.all(non_nans), "inside delta apply, height has nans directly after setting to zero: {}".format(
height[~non_nans])
non_nans = width == width
assert torch.all(non_nans), "inside delta apply, width has nans directly after setting to zero: {}".format(
width[~non_nans])
# Convert back to y1, x1, y2, x2
y1 = center_y - 0.5 * height
x1 = center_x - 0.5 * width
y2 = y1 + height
x2 = x1 + width
result = torch.stack([y1, x1, y2, x2], dim=1)
non_nans = result == result
assert torch.all(non_nans), "inside delta apply, result has nans: {}".format(result[~non_nans])
return result
def apply_box_deltas_3D(boxes, deltas):
"""Applies the given deltas to the given boxes.
boxes: [N, 6] where each row is y1, x1, y2, x2, z1, z2
deltas: [N, 6] where each row is [dy, dx, dz, log(dh), log(dw), log(dd)]
"""
# Convert to y, x, h, w
height = boxes[:, 2] - boxes[:, 0]
width = boxes[:, 3] - boxes[:, 1]
depth = boxes[:, 5] - boxes[:, 4]
center_y = boxes[:, 0] + 0.5 * height
center_x = boxes[:, 1] + 0.5 * width
center_z = boxes[:, 4] + 0.5 * depth
# Apply deltas
center_y += deltas[:, 0] * height
center_x += deltas[:, 1] * width
center_z += deltas[:, 2] * depth
height *= torch.exp(deltas[:, 3])
width *= torch.exp(deltas[:, 4])
depth *= torch.exp(deltas[:, 5])
# Convert back to y1, x1, y2, x2
y1 = center_y - 0.5 * height
x1 = center_x - 0.5 * width
z1 = center_z - 0.5 * depth
y2 = y1 + height
x2 = x1 + width
z2 = z1 + depth
result = torch.stack([y1, x1, y2, x2, z1, z2], dim=1)
return result
def clip_boxes_2D(boxes, window):
"""
boxes: [N, 4] each col is y1, x1, y2, x2
window: [4] in the form y1, x1, y2, x2
"""
boxes = torch.stack( \
[boxes[:, 0].clamp(float(window[0]), float(window[2])),
boxes[:, 1].clamp(float(window[1]), float(window[3])),
boxes[:, 2].clamp(float(window[0]), float(window[2])),
boxes[:, 3].clamp(float(window[1]), float(window[3]))], 1)
return boxes
def clip_boxes_3D(boxes, window):
"""
boxes: [N, 6] each col is y1, x1, y2, x2, z1, z2
window: [6] in the form y1, x1, y2, x2, z1, z2
"""
boxes = torch.stack( \
[boxes[:, 0].clamp(float(window[0]), float(window[2])),
boxes[:, 1].clamp(float(window[1]), float(window[3])),
boxes[:, 2].clamp(float(window[0]), float(window[2])),
boxes[:, 3].clamp(float(window[1]), float(window[3])),
boxes[:, 4].clamp(float(window[4]), float(window[5])),
boxes[:, 5].clamp(float(window[4]), float(window[5]))], 1)
return boxes
from matplotlib import pyplot as plt
def clip_boxes_numpy(boxes, window):
"""
boxes: [N, 4] each col is y1, x1, y2, x2 / [N, 6] in 3D.
window: iamge shape (y, x, (z))
"""
if boxes.shape[1] == 4:
boxes = np.concatenate(
(np.clip(boxes[:, 0], 0, window[0])[:, None],
np.clip(boxes[:, 1], 0, window[0])[:, None],
np.clip(boxes[:, 2], 0, window[1])[:, None],
np.clip(boxes[:, 3], 0, window[1])[:, None]), 1
)
else:
boxes = np.concatenate(
(np.clip(boxes[:, 0], 0, window[0])[:, None],
np.clip(boxes[:, 1], 0, window[0])[:, None],
np.clip(boxes[:, 2], 0, window[1])[:, None],
np.clip(boxes[:, 3], 0, window[1])[:, None],
np.clip(boxes[:, 4], 0, window[2])[:, None],
np.clip(boxes[:, 5], 0, window[2])[:, None]), 1
)
return boxes
def bbox_overlaps_2D(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2)].
"""
# 1. Tile boxes2 and repeate boxes1. This allows us to compare
# every boxes1 against every boxes2 without loops.
# TF doesn't have an equivalent to np.repeate() so simulate it
# using tf.tile() and tf.reshape.
boxes1_repeat = boxes2.size()[0]
boxes2_repeat = boxes1.size()[0]
boxes1 = boxes1.repeat(1,boxes1_repeat).view(-1,4)
boxes2 = boxes2.repeat(boxes2_repeat,1)
# 2. Compute intersections
b1_y1, b1_x1, b1_y2, b1_x2 = boxes1.chunk(4, dim=1)
b2_y1, b2_x1, b2_y2, b2_x2 = boxes2.chunk(4, dim=1)
y1 = torch.max(b1_y1, b2_y1)[:, 0]
x1 = torch.max(b1_x1, b2_x1)[:, 0]
y2 = torch.min(b1_y2, b2_y2)[:, 0]
x2 = torch.min(b1_x2, b2_x2)[:, 0]
#--> expects x1<x2 & y1<y2
zeros = torch.zeros(y1.size()[0], requires_grad=False)
if y1.is_cuda:
zeros = zeros.cuda()
intersection = torch.max(x2 - x1, zeros) * torch.max(y2 - y1, zeros)
# 3. Compute unions
b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1)
b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1)
union = b1_area[:,0] + b2_area[:,0] - intersection
# 4. Compute IoU and reshape to [boxes1, boxes2]
iou = intersection / union
assert torch.all(iou<=1), "iou score>1 produced in bbox_overlaps_2D"
overlaps = iou.view(boxes2_repeat, boxes1_repeat) #--> per gt box: ious of all proposal boxes with that gt box
return overlaps
def bbox_overlaps_3D(boxes1, boxes2):
"""Computes IoU overlaps between two sets of boxes.
boxes1, boxes2: [N, (y1, x1, y2, x2, z1, z2)].
"""
# 1. Tile boxes2 and repeate boxes1. This allows us to compare
# every boxes1 against every boxes2 without loops.
# TF doesn't have an equivalent to np.repeate() so simulate it
# using tf.tile() and tf.reshape.
boxes1_repeat = boxes2.size()[0]
boxes2_repeat = boxes1.size()[0]
boxes1 = boxes1.repeat(1,boxes1_repeat).view(-1,6)
boxes2 = boxes2.repeat(boxes2_repeat,1)
# 2. Compute intersections
b1_y1, b1_x1, b1_y2, b1_x2, b1_z1, b1_z2 = boxes1.chunk(6, dim=1)
b2_y1, b2_x1, b2_y2, b2_x2, b2_z1, b2_z2 = boxes2.chunk(6, dim=1)
y1 = torch.max(b1_y1, b2_y1)[:, 0]
x1 = torch.max(b1_x1, b2_x1)[:, 0]
y2 = torch.min(b1_y2, b2_y2)[:, 0]
x2 = torch.min(b1_x2, b2_x2)[:, 0]
z1 = torch.max(b1_z1, b2_z1)[:, 0]
z2 = torch.min(b1_z2, b2_z2)[:, 0]
zeros = torch.zeros(y1.size()[0], requires_grad=False)
if y1.is_cuda:
zeros = zeros.cuda()
intersection = torch.max(x2 - x1, zeros) * torch.max(y2 - y1, zeros) * torch.max(z2 - z1, zeros)
# 3. Compute unions
b1_volume = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) * (b1_z2 - b1_z1)
b2_volume = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) * (b2_z2 - b2_z1)
union = b1_volume[:,0] + b2_volume[:,0] - intersection
# 4. Compute IoU and reshape to [boxes1, boxes2]
iou = intersection / union
overlaps = iou.view(boxes2_repeat, boxes1_repeat)
return overlaps
def gt_anchor_matching(cf, anchors, gt_boxes, gt_class_ids=None):
"""Given the anchors and GT boxes, compute overlaps and identify positive
anchors and deltas to refine them to match their corresponding GT boxes.
anchors: [num_anchors, (y1, x1, y2, x2, (z1), (z2))]
gt_boxes: [num_gt_boxes, (y1, x1, y2, x2, (z1), (z2))]
gt_class_ids (optional): [num_gt_boxes] Integer class IDs for one stage detectors. in RPN case of Mask R-CNN,
set all positive matches to 1 (foreground)
Returns:
anchor_class_matches: [N] (int32) matches between anchors and GT boxes.
1 = positive anchor, -1 = negative anchor, 0 = neutral
anchor_delta_targets: [N, (dy, dx, (dz), log(dh), log(dw), (log(dd)))] Anchor bbox deltas.
"""
anchor_class_matches = np.zeros([anchors.shape[0]], dtype=np.int32)
anchor_delta_targets = np.zeros((cf.rpn_train_anchors_per_image, 2*cf.dim))
anchor_matching_iou = cf.anchor_matching_iou
if gt_boxes is None:
anchor_class_matches = np.full(anchor_class_matches.shape, fill_value=-1)
return anchor_class_matches, anchor_delta_targets
# for mrcnn: anchor matching is done for RPN loss, so positive labels are all 1 (foreground)
if gt_class_ids is None:
gt_class_ids = np.array([1] * len(gt_boxes))
# Compute overlaps [num_anchors, num_gt_boxes]
overlaps = compute_overlaps(anchors, gt_boxes)
# Match anchors to GT Boxes
# If an anchor overlaps a GT box with IoU >= anchor_matching_iou then it's positive.
# If an anchor overlaps a GT box with IoU < 0.1 then it's negative.
# Neutral anchors are those that don't match the conditions above,
# and they don't influence the loss function.
# However, don't keep any GT box unmatched (rare, but happens). Instead,
# match it to the closest anchor (even if its max IoU is < 0.1).
# 1. Set negative anchors first. They get overwritten below if a GT box is
# matched to them. Skip boxes in crowd areas.
anchor_iou_argmax = np.argmax(overlaps, axis=1)
anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax]
if anchors.shape[1] == 4:
anchor_class_matches[(anchor_iou_max < 0.1)] = -1
elif anchors.shape[1] == 6:
anchor_class_matches[(anchor_iou_max < 0.01)] = -1
else:
raise ValueError('anchor shape wrong {}'.format(anchors.shape))
# 2. Set an anchor for each GT box (regardless of IoU value).
gt_iou_argmax = np.argmax(overlaps, axis=0)
for ix, ii in enumerate(gt_iou_argmax):
anchor_class_matches[ii] = gt_class_ids[ix]
# 3. Set anchors with high overlap as positive.
above_thresh_ixs = np.argwhere(anchor_iou_max >= anchor_matching_iou)
anchor_class_matches[above_thresh_ixs] = gt_class_ids[anchor_iou_argmax[above_thresh_ixs]]
# Subsample to balance positive anchors.
ids = np.where(anchor_class_matches > 0)[0]
extra = len(ids) - (cf.rpn_train_anchors_per_image // 2)
if extra > 0:
# Reset the extra ones to neutral
ids = np.random.choice(ids, extra, replace=False)
anchor_class_matches[ids] = 0
# Leave all negative proposals negative for now and sample from them later in online hard example mining.
# For positive anchors, compute shift and scale needed to transform them to match the corresponding GT boxes.
ids = np.where(anchor_class_matches > 0)[0]
ix = 0 # index into anchor_delta_targets
for i, a in zip(ids, anchors[ids]):
# closest gt box (it might have IoU < anchor_matching_iou)
gt = gt_boxes[anchor_iou_argmax[i]]
# convert coordinates to center plus width/height.
gt_h = gt[2] - gt[0]
gt_w = gt[3] - gt[1]
gt_center_y = gt[0] + 0.5 * gt_h
gt_center_x = gt[1] + 0.5 * gt_w
# Anchor
a_h = a[2] - a[0]
a_w = a[3] - a[1]
a_center_y = a[0] + 0.5 * a_h
a_center_x = a[1] + 0.5 * a_w
if cf.dim == 2:
anchor_delta_targets[ix] = [
(gt_center_y - a_center_y) / a_h,
(gt_center_x - a_center_x) / a_w,
np.log(gt_h / a_h),
np.log(gt_w / a_w),
]
else:
gt_d = gt[5] - gt[4]
gt_center_z = gt[4] + 0.5 * gt_d
a_d = a[5] - a[4]
a_center_z = a[4] + 0.5 * a_d
anchor_delta_targets[ix] = [
(gt_center_y - a_center_y) / a_h,
(gt_center_x - a_center_x) / a_w,
(gt_center_z - a_center_z) / a_d,
np.log(gt_h / a_h),
np.log(gt_w / a_w),
np.log(gt_d / a_d)
]
# normalize.
anchor_delta_targets[ix] /= cf.rpn_bbox_std_dev
ix += 1
return anchor_class_matches, anchor_delta_targets
def clip_to_window(window, boxes):
"""
window: (y1, x1, y2, x2) / 3D: (z1, z2). The window in the image we want to clip to.
boxes: [N, (y1, x1, y2, x2)] / 3D: (z1, z2)
"""
boxes[:, 0] = boxes[:, 0].clamp(float(window[0]), float(window[2]))
boxes[:, 1] = boxes[:, 1].clamp(float(window[1]), float(window[3]))
boxes[:, 2] = boxes[:, 2].clamp(float(window[0]), float(window[2]))
boxes[:, 3] = boxes[:, 3].clamp(float(window[1]), float(window[3]))
if boxes.shape[1] > 5:
boxes[:, 4] = boxes[:, 4].clamp(float(window[4]), float(window[5]))
boxes[:, 5] = boxes[:, 5].clamp(float(window[4]), float(window[5]))
return boxes
############################################################
# Connected Componenent Analysis
############################################################
def get_coords(binary_mask, n_components, dim):
"""
loops over batch to perform connected component analysis on binary input mask. computes box coordinates around
n_components - biggest components (rois).
:param binary_mask: (b, y, x, (z)). binary mask for one specific foreground class.
:param n_components: int. number of components to extract per batch element and class.
:return: coords (b, n, (y1, x1, y2, x2 (,z1, z2))
:return: batch_components (b, n, (y1, x1, y2, x2, (z1), (z2))
"""
assert len(binary_mask.shape)==dim+1
binary_mask = binary_mask.astype('uint8')
batch_coords = []
batch_components = []
for ix,b in enumerate(binary_mask):
clusters, n_cands = lb(b) # performs connected component analysis.
uniques, counts = np.unique(clusters, return_counts=True)
keep_uniques = uniques[1:][ | np.argsort(counts[1:]) | numpy.argsort |
import numpy as np
from PuzzleLib.Backend import gpuarray
from PuzzleLib.Backend.gpuarray import memoryPool as memPool
from PuzzleLib.Modules.Module import ModuleError, Module
class KMaxPool(Module):
def __init__(self, topk, axis, name=None):
super().__init__(name)
self.registerBlueprint(locals())
self.topk = topk
self.axis = axis
self.indices = None
@staticmethod
def sliceAlongAxis(ary, axis, start, end):
ary = | np.rollaxis(ary, axis) | numpy.rollaxis |
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
import math
import cv2
import random
import numpy as np
import types
from PIL import Image
from paddle.vision.transforms import CenterCrop
from . import cv2_func as F
_cv2_str_to_interpolation = {
'nearest': cv2.INTER_NEAREST,
'linear': cv2.INTER_LINEAR,
'area': cv2.INTER_AREA,
'cubic': cv2.INTER_CUBIC,
'lanczos4': cv2.INTER_LANCZOS4,
}
class Compose(object):
def __init__(self, trans):
self.trans = trans
def __call__(self, img):
for t in self.trans:
img = t(img)
return img
class ByolNormalize(object):
def __init__(self, mean=None, std=None):
if mean is None or std is None:
self.mean = None
self.std = None
else:
# HWC
self.mean = np.array(mean, dtype='float32').reshape([1, 1, 3])
self.std = np.array(std, dtype='float32').reshape([1, 1, 3])
def __call__(self, img):
img = np.array(img)
return F.normalize(img, self.mean, self.std)
class Resize(object):
""" size, int or (h, w)"""
def __init__(self, size, interpolation='linear'):
assert isinstance(size, int) or len(size) == 2
self.size = size
self.interpolation = _cv2_str_to_interpolation[interpolation]
def __call__(self, img):
return F.resize(img, self.size, self.interpolation)
class ToCHW(object):
def __call__(self, img):
return F.to_chw(img)
class ToRGB(object):
def __call__(self, img):
return F.to_rgb_bgr(img)
class Lambda(object):
def __init__(self, lambd):
assert isinstance(lambd, types.LambdaType)
self.lambd = lambd
def __call__(self, img):
return self.lambd(img)
class RandomTransforms(object):
def __init__(self, trans):
assert isinstance(trans, (list, tuple))
self.trans = trans
def __call__(self, *args, **kwargs):
raise NotImplementedError()
class RandomApply(RandomTransforms):
def __init__(self, trans, p=0.5):
super(RandomApply, self).__init__(trans)
self.p = p
def __call__(self, img):
if self.p < random.random():
return img
for t in self.trans:
img = t(img)
return img
class ByolRandomHorizontalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img):
if random.random() < self.p:
return F.hflip(img)
return img
class ByolRandomVerticalFlip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img):
if | np.random.uniform() | numpy.random.uniform |
import os
import sys
import numpy as np
import matplotlib.pyplot as plt
sys.path.insert(0, os.getcwd() + '/../../tools/')
import wb
import trf
# revise this function to config the dataset used to train different model
def data():
# ptb + wsj93 experiments
return data_ptb() + data_wsj92nbest()
def data_verfy(paths):
for w in paths:
if not os.path.isfile(w):
print('[ERROR] no such file: ' + w)
return paths
def data_ptb():
root = './data/ptb/'
train = root + 'ptb.train.txt'
valid = root + 'ptb.valid.txt'
test = root + 'ptb.test.txt'
return data_verfy([train, valid, test])
def data_wsj92nbest():
root = './data/WSJ92-test-data/'
nbest = root + '1000best.sent'
trans = root + 'transcript.txt'
ac = root + '1000best.acscore'
lm = root + '1000best.lmscore'
return data_verfy([nbest, trans, ac, lm])
def log_add(a,b):
if a>b:
return a + np.log(1 + np.exp(b-a))
else:
return b + np.log(np.exp(a-b) + 1)
def log_sub(a,b):
if a>b:
return a + np.log(abs(1 - np.exp(b-a)))
else:
return b + np.log(abs(np.exp(a-b) - 1))
def log_sum(a):
s = a[0]
for i in a[1:]:
s = log_add(s, i)
return s
def log_mean(a):
return log_sum(a) - np.log(len(a))
def log_var(a):
m = log_mean(a)
b = []
for i in a:
b.append(log_sub(i, m) * 2)
return log_mean(b)
def mat_mean(mat):
m = []
for a in np.array(mat):
m.append(np.log(np.mean(np.exp(a))))
return m
def mat_var(mat):
var = []
for a in np.array(mat):
var.append(np.log(np.var(np.exp(a))))
return var
def load_ais_weight(logfile):
logw = []
with open(logfile) as f:
for line in f:
if line.find('logz') == 0:
a = line.split()
cur_logw = [float(i) for i in a[4:]]
logw.append(cur_logw)
return logw
def revise_logz(read_trf, write_trf, logz):
with open(read_trf) as f1, open(write_trf, 'wt') as f2:
nline = 0
for line in f1:
nline+=1
if nline == 4:
a = line.split()
print(a)
for i in range(len(logz)):
a[i+1] = '{}'.format(logz[i])
print(a)
f2.write(' '.join(a) + '\n')
elif nline == 5:
a = line.split()
print(a)
for i in range(len(logz)):
a[i+1] = '{}'.format(logz[i] - logz[0])
print(a)
f2.write(' '.join(a) + '\n')
else:
f2.write(line)
def main():
if len(sys.argv) == 1:
print('\"python run.py -train\" train LSTM\n',
'\"python run.py -rescore\" rescore nbest\n',
'\"python run.py -wer\" compute WER'
)
run_times = range(0, 1) # for multiple run
bindir = '../../tools/trf/bin/'
workdir = 'trflm/'
fres = wb.FRes('models_ppl.txt')
model = trf.model(bindir, workdir)
class_num = 200
train = workdir + 'train.id'
valid = workdir + 'valid.id'
test = workdir + 'test.id'
vocab = workdir + 'vocab_c{}.list'.format(class_num)
thread = 18
ais_chain = 10
ais_inter = 200000
if '-wer' in sys.argv:
# calculate mean of the WER of 10 TRFs after AIS
res_list = []
for runnum in run_times:
name = 'trf_c200_g4_w_c_ws_cs_wsh_csh_tied.run{}.ais{}_{}'.format(runnum, ais_chain, ais_inter)
res = fres.Get(name)[1:]
if run_times.index(runnum) == 0:
res_list = [[] for i in range(len(res))]
for i in range(len(res)):
res_list[i].append(res[i])
name = 'trf_c200_g4_w_c_ws_cs_wsh_csh_tied.runavg.ais{}_{}'.format(ais_chain, ais_inter)
head = fres.GetHead()[1:]
for i in range(len(head)):
mean = np.mean(res_list[i])
std = np.std(res_list[i])
fres.Add(name, [head[i]], ['{:.2f}+{:.2f}'.format(mean, std)])
if '-ais' in sys.argv:
for runnum in run_times:
write_model = workdir + 'trf_c200_g4_w_c_ws_cs_wsh_csh_tied.run{}'.format(runnum)
[read_nbest, read_templ, read_acscore] = data()[3:6]
write_templ_id = workdir + os.path.split(read_templ)[1] + '.id'
v = trf.ReadVocab(vocab)
trf.NbestToID(read_templ, write_templ_id, v)
# run asi to calculate the normalization constnts of models
ais_model = '{}.ais{}_{}'.format(write_model, ais_chain, ais_inter)
if not os.path.exists(ais_model + '.model'):
config = ' -vocab {0} -read {1}.model -write {2}.model -log {2}.log'.format(vocab, write_model, ais_model)
config += ' -norm-method AIS -AIS-chain {} -AIS-inter {} -thread {} '.format(ais_chain, ais_inter, thread)
config += ' -norm-len-max {} '.format(trf.FileMaxLen(read_nbest)-1) # just compute the needed length
model.use(config)
# rescore and compute wer
write_lmscore = ais_model + '.lmscore'
config = ' -vocab {} -read {}.model'.format(vocab, ais_model)
config += ' -nbest {} -test {} '.format(read_nbest, write_templ_id) # calculate the ppl of test set
config += ' -lmscore {} '.format(write_lmscore)
LL_templ = model.use(config, False)
PPL_templ = wb.LL2PPL(-LL_templ, write_templ_id)
[wer, lmscale, acscale] = wb.TuneWER(read_nbest, read_templ,
write_lmscore, read_acscore, | np.linspace(0.1, 0.9, 9) | numpy.linspace |
import numpy as np
import copy
from io import StringIO
import sys
import h5py
from scipy.optimize import minimize
import lmfit
import emcee
from dynesty import NestedSampler
from dynesty.utils import resample_equal
from .parameters import Parameters
from .likelihood import computeRedChiSq, lnprob, ln_like, ptform
from . import plots_s5 as plots
#FINDME: Keep reload statements for easy testing
from importlib import reload
reload(plots)
def lsqfitter(lc, model, meta, log, calling_function='lsq', **kwargs):
"""Perform least-squares fit.
Parameters
----------
lc: eureka.S5_lightcurve_fitting.lightcurve.LightCurve
The lightcurve data object
model: eureka.S5_lightcurve_fitting.models.CompositeModel
The composite model to fit
meta: MetaClass
The metadata object
log: logedit.Logedit
The open log in which notes from this step can be added.
**kwargs:
Arbitrary keyword arguments.
Returns
-------
best_model: eureka.S5_lightcurve_fitting.models.CompositeModel
The composite model after fitting
Notes
-----
History:
- December 29-30, 2021 <NAME>
Updated documentation and arguments. Reduced repeated code.
Also saving covariance matrix for later estimation of sampler step size.
- January 7-22, 2022 <NAME>
Adding ability to do a single shared fit across all channels
- February 28-March 1, 2022 <NAME>
Adding scatter_ppm parameter
"""
# Group the different variable types
freenames, freepars, prior1, prior2, priortype, indep_vars = group_variables(model)
neg_lnprob = lambda theta, lc, model, prior1, prior2, priortype, freenames: -lnprob(theta, lc, model, prior1, prior2, priortype, freenames)
if not hasattr(meta, 'lsq_method'):
log.writelog('No lsq optimization method specified - using Nelder-Mead by default.')
meta.lsq_method = 'Nelder-Mead'
if not hasattr(meta, 'lsq_tol'):
log.writelog('No lsq tolerance specified - using 1e-6 by default.')
meta.lsq_tol = 1e-6
results = minimize(neg_lnprob, freepars, args=(lc, model, prior1, prior2, priortype, freenames), method=meta.lsq_method, tol=meta.lsq_tol)
if meta.run_verbose:
log.writelog("\nVerbose lsq results: {}\n".format(results))
else:
log.writelog("Success?: {}".format(results.success))
log.writelog(results.message)
# Get the best fit params
fit_params = results.x
# Save the fit ASAP
save_fit(meta, lc, calling_function, fit_params, freenames)
# Make a new model instance
best_model = copy.copy(model)
best_model.components[0].update(fit_params, freenames)
model.update(fit_params, freenames)
if "scatter_ppm" in freenames:
ind = [i for i in np.arange(len(freenames)) if freenames[i][0:11] == "scatter_ppm"]
lc.unc_fit = np.ones_like(lc.flux) * fit_params[ind[0]] * 1e-6
if len(ind)>1:
for chan in np.arange(lc.flux.size//lc.time.size):
lc.unc_fit[chan*lc.time.size:(chan+1)*lc.time.size] = fit_params[ind[chan]] * 1e-6
# Save the covariance matrix in case it's needed to estimate step size for a sampler
model_lc = model.eval()
# FINDME
# Commented out for now because op.least_squares() doesn't provide covariance matrix
# Need to compute using Jacobian matrix instead (hess_inv = (J.T J)^{-1})
# if results[1] is not None:
# residuals = (lc.flux - model_lc)
# cov_mat = results[1]*np.var(residuals)
# else:
# # Sometimes lsq will fail to converge and will return a None covariance matrix
# cov_mat = None
cov_mat = None
best_model.__setattr__('cov_mat',cov_mat)
# Plot fit
if meta.isplots_S5 >= 1:
plots.plot_fit(lc, model, meta, fitter=calling_function)
# Compute reduced chi-squared
chi2red = computeRedChiSq(lc, model, meta, freenames, log)
print('\nLSQ RESULTS:')
for freenames_i, fit_params_i in zip(freenames, fit_params):
log.writelog('{0}: {1}'.format(freenames_i, fit_params_i))
log.writelog('')
# Plot Allan plot
if meta.isplots_S5 >= 3 and calling_function=='lsq':
# This plot is only really useful if you're actually using the lsq fitter, otherwise don't make it
plots.plot_rms(lc, model, meta, fitter=calling_function)
# Plot residuals distribution
if meta.isplots_S5 >= 3 and calling_function=='lsq':
plots.plot_res_distr(lc, model, meta, fitter=calling_function)
best_model.__setattr__('chi2red',chi2red)
best_model.__setattr__('fit_params',fit_params)
return best_model
def demcfitter(lc, model, meta, log, **kwargs):
"""Perform sampling using Differential Evolution Markov Chain.
This is an empty placeholder function to be filled later.
Parameters
----------
lc: eureka.S5_lightcurve_fitting.lightcurve.LightCurve
The lightcurve data object
model: eureka.S5_lightcurve_fitting.models.CompositeModel
The composite model to fit
meta: MetaClass
The metadata object
log: logedit.Logedit
The open log in which notes from this step can be added.
**kwargs:
Arbitrary keyword arguments.
Returns
-------
best_model: eureka.S5_lightcurve_fitting.models.CompositeModel
The composite model after fitting
Notes
-----
History:
- December 29, 2021 <NAME>
Updated documentation and arguments
"""
best_model = None
return best_model
def emceefitter(lc, model, meta, log, **kwargs):
"""Perform sampling using emcee.
Parameters
----------
lc: eureka.S5_lightcurve_fitting.lightcurve.LightCurve
The lightcurve data object
model: eureka.S5_lightcurve_fitting.models.CompositeModel
The composite model to fit
meta: MetaClass
The metadata object
log: logedit.Logedit
The open log in which notes from this step can be added.
**kwargs:
Arbitrary keyword arguments.
Returns
-------
best_model: eureka.S5_lightcurve_fitting.models.CompositeModel
The composite model after fitting
Notes
-----
History:
- December 29, 2021 <NAME>
Updated documentation. Reduced repeated code.
- January 7-22, 2022 <NAME>
Adding ability to do a single shared fit across all channels
- February 23-25, 2022 <NAME>
Added log-uniform and Gaussian priors.
- February 28-March 1, 2022 <NAME>
Adding scatter_ppm parameter. Added statements to avoid some initial
state issues.
"""
if not hasattr(meta, 'lsq_first') or meta.lsq_first:
# Only call lsq fitter first if asked or lsq_first option wasn't passed (allowing backwards compatibility)
log.writelog('\nCalling lsqfitter first...')
# RUN LEAST SQUARES
lsq_sol = lsqfitter(lc, model, meta, log, calling_function='emcee_lsq', **kwargs)
# SCALE UNCERTAINTIES WITH REDUCED CHI2
if meta.rescale_err:
lc.unc *= | np.sqrt(lsq_sol.chi2red) | numpy.sqrt |
import numpy as np
import sys
import fire
import GMMEM
import GMMVB
def createData():
"""Create 3-dimensional data that is divided into 4 clusters.
Args:
None.
Returns:
X (numpy ndarray): Input data whose size is (N, 3).
"""
# The number of data at each cluster
N1 = 4000
N2 = 3000
N3 = 2000
N4 = 1000
# Mean values
Mu1 = [5, -5, -5]
Mu2 = [-5, 5, 5]
Mu3 = [-5, -5, -5]
Mu4 = [5, 5, 5]
# Variance-covariance matrices
Sigma1 = [[1, 0, -0.25], [0, 1, 0], [-0.25, 0, 1]]
Sigma2 = [[1, 0, 0], [0, 1, -0.25], [0, -0.25, 1]]
Sigma3 = [[1, 0.25, 0], [0.25, 1, 0], [0, 0, 1]]
Sigma4 = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
# Generate data from Gaussian distribution
X1 = np.random.multivariate_normal(Mu1, Sigma1, N1)
X2 = np.random.multivariate_normal(Mu2, Sigma2, N2)
X3 = | np.random.multivariate_normal(Mu3, Sigma3, N3) | numpy.random.multivariate_normal |
#!/usr/bin/env python3
# coding: utf-8
import forgi # only for residue coloring
import matplotlib.patches as mpatches
import sys
import random
import string
import RNA
import numpy as np
import os
import subprocess
from dataclasses import dataclass, field
import pandas as pd
# import seaborn as sns
from scipy import optimize
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection, CircleCollection, EllipseCollection
import matplotlib.patheffects as path_effects
import matplotlib.path as mpath
Path = mpath.Path
@dataclass
class pos_data:
backbone: list
aucg_bonds: list
gu_bonds: list
annotation_lines: list
annotation_chars: list
annotation_numbers: list
@dataclass
class circular_data:
textpos: list
backbone: list
lines: list
annotation_lines: list
annotation_numbers: list
def matrix_rotation(p, origin=(0, 0), degrees=0):
# cite source
if not origin:
origin = p.mean(axis=0)
angle = np.deg2rad(degrees)
R = np.array([[np.cos(angle), -np.sin(angle)],
[np.sin(angle), np.cos(angle)]])
o = np.atleast_2d(origin)
p = np.atleast_2d(p)
return np.squeeze((R @ (p.T-o.T) + o.T).T)
class pyrnaplot:
def __init__(self, sequence, s) -> None:
self.sequence = sequence
self.s = s
self.pt = RNA.ptable(self.s)
self.textoffset = 0, 0
self.plot_scalar = 0
self.coords_naview = []
self.naview_layout = None # pos_data dataclass
self.coords_circular = []
self.circular_layout = None # pos_data dataclass
# colouring
cg = forgi.load_rna(self.s, "any", allow_many=True)[0]
self.cstring = cg.to_element_string()
self.forgi_coding = {'f': 'orange',
't': 'orange',
's': 'green',
'h': 'blue',
'i': 'yellow',
'm': 'red'}
def get_naview_coords(self, rotate=0):
c = []
for i, coord in enumerate(RNA.naview_xy_coordinates(self.s)):
if i == len(self.s):
break
c.append((coord.X, coord.Y))
c = np.array(c).astype(float)
if rotate != 0:
c = matrix_rotation(c, origin=False, degrees=-rotate)
return c
def get_circular_coords(self):
# this just creates dot along a unit circle with len(s) points
c = []
for i, coord in enumerate(RNA.simple_circplot_coordinates(self.s)):
if i == len(self.s):
break
c.append((coord.X, coord.Y))
c = np.array(c).astype(float)
return c
def naview_plot_layout(self, coordinates=False):
if not isinstance(coordinates, bool):
self.coords_naview = coordinates
else:
self.coords_naview = self.get_naview_coords()
c = self.coords_naview
backbone = []
aucg_bonds = []
gu_bonds = []
annotation_lines = []
annotation_chars = []
annotation_numbers = []
for i, ch in enumerate(self.sequence):
x, y = c[i] + self.textoffset
# print (i, c, x, y)
annotation_chars.append(((x, y), ch))
# ax.text(x, y, ch, size=16*plot_modifier, ha="center", va="center")
# AU, CG, GU bonds
if self.pt[i+1] > i:
# print ("link", i, pt1[i+1]-1)
char1 = self.sequence[i]
char2 = self.sequence[self.pt[i+1]-1]
pos1 = c[i]
pos2 = c[self.pt[i+1]-1]
if pos1[0] < pos2[0]:
pos1, pos2 = pos2, pos1
bond_identifier = str(i+1) + "-" + str(self.pt[i+1])
if (char1 == "G" and char2 == "U") or (char1 == "U" and char2 == "G"):
midpoint = (pos1+pos2)/2
# gu_bonds.append((midpoint[0], midpoint[1]))
gu_bonds.append((bond_identifier, midpoint))
else:
v = pos2-pos1
l = np.linalg.norm(v) # euclidean distance
v /= l
pos1 = pos1 + v*5
pos2 = pos2 - v*5
aucg_bonds.append((bond_identifier, pos1, pos2))
# backbone
if i+1 == len(self.sequence):
continue
pos1 = c[i]
pos2 = c[i+1]
if pos1[0] < pos2[0]:
pos1, pos2 = pos2, pos1
v = pos2-pos1
l = np.linalg.norm(v)
if l > 12: # ignore short lines
v /= l # normalize to unit vector
cutoff = 1.2*self.plot_scalar
pos1 = pos1 + v*6 # 4
pos2 = pos2 - v*6
link = [pos1, pos2]
# line1, = ax.plot(*zip(*link))
# links.append(((pos1[0], pos1[1]),(pos2[0], pos2[1])))
backbone.append((pos1, pos2))
else:
# add a dummy placeholder backbone if invisible
backbone.append(((pos1+pos2)/2, (pos1+pos2)/2))
# annotations: calculate normal vector
if i % 10 == 9 or i == 0: # start counting at 1, not 0
if i == 0:
lastpos = c[i]
else:
lastpos = c[i-1]
nextpos = c[i+1]
v = nextpos-lastpos
l = np.linalg.norm(v)
v /= l # normalize to unit vector
v = np.array([v[1], -v[0]]) # 90° rotation
pos1 = c[i] + v*6
pos2 = pos1 + v*18 # 13 length vector
charpos = pos2 + v*6
annotation_lines.append((pos1, pos2))
annotation_numbers.append((charpos, i+1))
self.naview_layout = pos_data(
backbone, aucg_bonds, gu_bonds, annotation_lines, annotation_chars, annotation_numbers)
return self.naview_layout
def naview_plot(self, dpi=72, rotate=0, coordinates=False):
textoffset = -0.5, -0.9
# textoffset = 0, 0
border = 30
if not isinstance(coordinates, bool):
self.coords_naview = coordinates
else:
self.coords_naview = self.get_naview_coords()
if rotate != 0:
self.coords_naview = matrix_rotation(
self.coords_naview, origin=False, degrees=-rotate)
self.naview_plot_layout(coordinates)
c = self.coords_naview
# set plot dimensions and estimate a scalar for text / object rendering
limits = c.min()*1.1, c.max()*1.1
xmax, ymax = c.max(axis=0) + [border, border]
xmin, ymin = c.min(axis=0) - [border, border]
xlength = abs(xmax-xmin)
ylength = abs(ymax-ymin)
ratio = xlength/ylength
# inverse distance, adjust font size / bond size according to total plot length
self.plot_scalar = 1/abs(limits[1]-limits[0])*300
if ratio > 1:
self.plot_scalar *= ratio
# matplotlib start
fig = plt.figure(figsize=(10*ratio, 10), dpi=dpi)
ax = fig.add_subplot(1, 1, 1)
# plt.rcParams.update({
# "text.usetex": False,
# # "font.family": "serif",
# "font.family": "sans-serif",
# "font.sans-serif": ["Helvetica"]})
plt.tight_layout()
ax.set_xlim((xmin, xmax))
ax.set_ylim((ymin, ymax))
ax.axis("off")
ax.scatter(c[:, 0], c[:, 1], alpha=0.0)
# get the location of all our text & lines
l = self.naview_layout
# discard info which would interfer with LineCollection (identifiers i[0] are needed for movies)
l.aucg_bonds = [(i[1], i[2]) for i in l.aucg_bonds]
l.gu_bonds = [i[1] for i in l.aucg_bonds]
backbonecollection = LineCollection(
l.backbone, colors="grey", linewidths=2.0*self.plot_scalar, path_effects=[path_effects.Stroke(capstyle="round")])
aucgcollection = LineCollection(l.aucg_bonds, colors="red", linewidths=2.5 *
self.plot_scalar, path_effects=[path_effects.Stroke(capstyle="round")])
annotationcollection = LineCollection(
l.annotation_lines, colors="grey", linewidths=1.2*self.plot_scalar, path_effects=[path_effects.Stroke(capstyle="round")])
ax.add_collection(backbonecollection)
ax.add_collection(aucgcollection)
ax.add_collection(annotationcollection)
circlesizes = [8*self.plot_scalar**2] * len(l.gu_bonds)
coll = CircleCollection(
circlesizes, offsets=l.gu_bonds, color="red", transOffset=ax.transData)
ax.add_collection(coll)
for i, ((x, y), ch) in enumerate(l.annotation_chars):
text = ax.text(x, y, ch, size=16*self.plot_scalar,
ha="center", va="center")
c = self.forgi_coding[self.cstring[i]]
text.set_path_effects([path_effects.Stroke(linewidth=4, foreground=c, alpha=0.3),
path_effects.Normal()])
for (x, y), ch in l.annotation_numbers:
ax.text(x, y, ch, size=12*self.plot_scalar,
ha="center", va="center")
def circular_plot_layout(self):
if not self.coords_circular:
self.coords_circular = self.get_circular_coords()
r = self.coords_circular
angle_multiplier = 4
line_modifier = 1/len(self.sequence) * 100
# print (line_modifier)
textpos = []
backbone = []
lines = []
annotation_lines = []
annotation_numbers = []
for i, e in enumerate(self.sequence):
pos = r[i]*1.08
textpos.append((pos, e))
# circle bezier segments
if i+1 != len(self.sequence):
pos1 = r[i]
pos2 = r[i+1]
midpoint = (pos2+pos1)/2
midpoint /= np.linalg.norm(midpoint) # * 0.99
v = midpoint-pos1
v += pos1
backbone.append((pos1, v, pos2))
# annotations: calculate normal vector
if i % 10 == 9 or i == 0: # start counting at 1, not 0
pos1 = r[i]
pos2 = r[i]*1.14
pos3 = r[i]*1.18
annotation_lines.append((pos1, pos2))
annotation_numbers.append((pos3, i+1))
if self.pt[i+1] > i:
# print ("link", i, pt1[i+1]-1)
char1 = self.sequence[i]
char2 = self.sequence[self.pt[i+1]-1]
# position 1 and adjacent nodes for normal vector
if i == 0:
pos1l = r[-1]
else:
pos1l = r[i-1]
pos1 = r[i]
pos1r = r[i+1]
pos2l = r[self.pt[i+1]-2]
pos2 = r[self.pt[i+1]-1]
if self.pt[i+1] == len(self.sequence):
pos2r = r[0]
else:
pos2r = r[self.pt[i+1]]
midpoint = (pos1+pos2)/2
midpointdist = np.linalg.norm(midpoint) # distance to origin
l12 = np.linalg.norm(pos2-pos1) / angle_multiplier
# print ("l", l12, midpointdist)
v1 = pos1l-pos1r
v1 = np.array([v1[1], -v1[0]]) # 90° rotation
v1 /= np.linalg.norm(v1)
v1 *= l12
bezierpos1 = pos1+v1
v2 = pos2l-pos2r
v2 = np.array([v2[1], -v2[0]]) # *15 # 90° rotation
v2 /= | np.linalg.norm(v2) | numpy.linalg.norm |
#!/usr/bin/env python
# ------------------------------------------------------------------------------------------------------%
# Created by "Thieu" at 14:05, 28/01/2021 %
# %
# Email: <EMAIL> %
# Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 %
# Github: https://github.com/thieu1995 %
# ------------------------------------------------------------------------------------------------------%
### Reading all results files to find True pareto-fronts (Reference Fronts)
from time import time
from pathlib import Path
from copy import deepcopy
from config import Config, OptExp, OptParas
from pandas import read_csv, DataFrame, to_numeric
from numpy import array, zeros, vstack, hstack, min, max, mean, std
from utils.io_util import load_tasks, load_nodes
from utils.metric_util import *
from utils.visual.scatter import visualize_front_3d
def inside_loop(my_model, n_trials, n_timebound, epoch, fe, end_paras):
for pop_size in OptExp.POP_SIZE:
if Config.TIME_BOUND_KEY:
path_results = f'{Config.RESULTS_DATA}/{n_timebound}s/task_{my_model["problem"]["n_tasks"]}/{Config.METRICS}/{my_model["name"]}/{n_trials}'
else:
path_results = f'{Config.RESULTS_DATA}/no_time_bound/task_{my_model["problem"]["n_tasks"]}/{Config.METRICS}/{my_model["name"]}/{n_trials}'
name_paras = f'{epoch}_{pop_size}_{end_paras}'
file_name = f'{path_results}/experiment_results/{name_paras}-results.csv'
df = read_csv(file_name, usecols=["Power", "Latency", "Cost"])
return df.values
def getting_results_for_task(models):
matrix_fit = zeros((1, 6))
for n_task in OptExp.N_TASKS:
for my_model in models:
tasks = load_tasks(f'{Config.INPUT_DATA}/tasks_{n_task}.json')
problem = deepcopy(my_model['problem'])
problem["tasks"] = tasks
problem["n_tasks"] = n_task
problem["shape"] = [len(problem["clouds"]) + len(problem["fogs"]), n_task]
my_model['problem'] = problem
for n_trials in range(OptExp.N_TRIALS):
if Config.TIME_BOUND_KEY:
for n_timebound in OptExp.TIME_BOUND_VALUES:
if Config.MODE == "epoch":
for epoch in OptExp.EPOCH:
end_paras = f"{epoch}"
df_matrix = inside_loop(my_model, n_trials, n_timebound, epoch, None, end_paras)
df_name = array([[n_task, my_model["name"], n_trials], ] * len(df_matrix))
matrix = hstack(df_name, df_matrix)
matrix_fit = vstack((matrix_fit, matrix))
else:
if Config.MODE == "epoch":
for epoch in OptExp.EPOCH:
end_paras = f"{epoch}"
df_matrix = inside_loop(my_model, n_trials, None, epoch, None, end_paras)
df_name = array([[n_task, my_model["name"], n_trials], ] * len(df_matrix))
matrix = hstack((df_name, df_matrix))
matrix_fit = vstack((matrix_fit, matrix))
return matrix_fit[1:]
starttime = time()
clouds, fogs, peers = load_nodes(f'{Config.INPUT_DATA}/nodes_2_8_5.json')
problem = {
"clouds": clouds,
"fogs": fogs,
"peers": peers,
"n_clouds": len(clouds),
"n_fogs": len(fogs),
"n_peers": len(peers),
}
models = [
{"name": "NSGA-II", "class": "BaseNSGA_II", "param_grid": OptParas.NSGA_II, "problem": problem},
{"name": "NSGA-III", "class": "BaseNSGA_III", "param_grid": OptParas.NSGA_III, "problem": problem},
{"name": "MO-ALO", "class": "BaseMO_ALO", "param_grid": OptParas.MO_ALO, "problem": problem},
{"name": "MO-SSA", "class": "BaseMO_SSA", "param_grid": OptParas.MO_SSA, "problem": problem},
]
## Load all results of all trials
matrix_results = getting_results_for_task(models)
# df_full = DataFrame(matrix_results, columns=["Task", "Model", "Trial", "Fit1", "Fit2", "Fit3"])
data = {'Task': matrix_results[:, 0],
'Model': matrix_results[:, 1],
'Trial': matrix_results[:, 2],
'Fit1': matrix_results[:, 3],
'Fit2': matrix_results[:, 4],
'Fit3': matrix_results[:, 5],
}
df_full = DataFrame(data)
df_full["Task"] = to_numeric(df_full["Task"])
df_full["Trial"] = to_numeric(df_full["Trial"])
df_full["Fit1"] = to_numeric(df_full["Fit1"])
df_full["Fit2"] = to_numeric(df_full["Fit2"])
df_full["Fit3"] = to_numeric(df_full["Fit3"])
for n_task in OptExp.N_TASKS:
performance_results = []
performance_results_mean = []
## Find matrix results for each problem
df_task = df_full[df_full["Task"] == n_task]
matrix_task = df_task[['Fit1', 'Fit2', 'Fit3']].values
hyper_point = max(matrix_task, axis=0)
## Find non-dominated matrix for each problem
reference_fronts = zeros((1, 3))
dominated_list = find_dominates_list(matrix_task)
for idx, value in enumerate(dominated_list):
if value == 0:
reference_fronts = vstack((reference_fronts, matrix_task[idx]))
reference_fronts = reference_fronts[1:]
## For each model and each trial, calculate its performance metrics
for model in models:
er_list = zeros(OptExp.N_TRIALS)
gd_list = zeros(OptExp.N_TRIALS)
igd_list = zeros(OptExp.N_TRIALS)
ste_list = zeros(OptExp.N_TRIALS)
hv_list = zeros(OptExp.N_TRIALS)
har_list = zeros(OptExp.N_TRIALS)
for trial in range(OptExp.N_TRIALS):
df_result = df_task[ (df_task["Model"] == model["name"]) & (df_task["Trial"] == trial) ]
pareto_fronts = array(df_result.values[:, 3:], dtype=float)
er = error_ratio(pareto_fronts, reference_fronts)
gd = generational_distance(pareto_fronts, reference_fronts)
igd = inverted_generational_distance(pareto_fronts, reference_fronts)
ste = spacing_to_extent(pareto_fronts)
hv = hyper_volume(pareto_fronts, reference_fronts, hyper_point, 100)
har = hyper_area_ratio(pareto_fronts, reference_fronts, hyper_point, 100)
performance_results.append([n_task, model["name"], trial, er, gd, igd, ste, hv, har])
er_list[trial] = er
gd_list[trial] = gd
igd_list[trial] = igd
ste_list[trial] = ste
hv_list[trial] = hv
har_list[trial] = har
er_min, er_max, er_mean, er_std, er_cv = min(er_list), max(er_list), mean(er_list), std(er_list), std(er_list)/mean(er_list)
gd_min, gd_max, gd_mean, gd_std, gd_cv = min(gd_list), max(gd_list), mean(gd_list), std(gd_list), std(gd_list)/ | mean(gd_list) | numpy.mean |
from PIL import Image
import numpy as np
import cv2
def image_from_path(path, normalize=True):
"""
Create image from path
:param path: path to image
:param normalize: indication of whether or not to normalize image to 0-1
:return: 3d array representation of image
"""
image = np.array(Image.open(path))
image = image.astype("float64")
if len(image.shape) == 2:
_image = np.zeros(image.shape + (3,))
_image[:, :, 0] = image
_image[:, :, 1] = image
_image[:, :, 2] = image
image = _image
if normalize:
return image / 255.
return image
def save_image(img, out_path, rescale=True):
"""
Save image to out_path
:param img: 3d array representation of image
:param out_path: path to save image to
:param rescale: indication of whether or not image needs to be rescaled to 0-255
"""
if rescale:
img = img * 255.
img = img.astype("uint8")
img = Image.fromarray(img)
img.save(out_path)
def rgb_to_yuv(img):
"""
Convert image from RGB to YUV
:param img: 3d array representation of image
"""
conversion_matrix = np.array([
[0.299, 0.587, 0.114],
[-0.147, -0.289, 0.436],
[0.615, -0.515, -0.100]
])
yuv_img = img @ conversion_matrix.T
# Clip values to boundary
yuv_img[:, :, 0] = yuv_img[:, :, 0].clip(0, 1)
yuv_img[:, :, 1] = yuv_img[:, :, 1].clip(-0.5, 0.5)
yuv_img[:, :, 2] = yuv_img[:, :, 2].clip(-0.5, 0.5)
return yuv_img
def yuv_to_rgb(img):
"""
Convert image from YUV to RGB
:param img: 3d array representation of image
"""
conversion_matrix = np.array([
[1, 0, 1.14],
[1, -0.395, -0.581],
[1, 2.032, 0]
])
# Clip values to boundary
return (img @ conversion_matrix.T).clip(0, 1)
def get_neighbor_coords(channel_data, coord, radius=1, omit_center=False):
"""
Get set of coordinates in neighborhood around coord
:param channel_data: channel data that neighborhoods are in
:param coord: (row, col) at center of neighborhood
:param radius: number of pixels on each side of coord in neighborhood
:param omit_center: indication of whether or not coord should be omitted from neighborhood coords
:return: set of (row, col) in neighborhood in channel_data
"""
# Compute bounds based on image size
lower_bound1 = max(coord[0] - radius, 0)
upper_bound1 = min(coord[0] + radius + 1, channel_data.shape[0])
lower_bound2 = max(coord[1] - radius, 0)
upper_bound2 = min(coord[1] + radius + 1, channel_data.shape[1])
# Compute coordinates in computed bounds
window_coords = np.array(
np.meshgrid(
| np.arange(lower_bound1, upper_bound1) | numpy.arange |
from time import time
import numpy as np
import lptml
import itertools
import csv
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import ShuffleSplit
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
import pandas as pd
import scipy.io as sio
run_mlwga = False
previous_solution = []
def split_pca_learn_metric(x, y, PCA_dim_by, repetitions, t_size, lptml_iterations, S, D, ut, lt, run_hadoop=False, num_machines=10, label_noise=0, rand_state=-1):
experiment_results = {}
global previous_solution
d = len(x[0])
if rand_state < 0:
ss = ShuffleSplit(test_size=1-t_size, n_splits=repetitions)
else:
ss = ShuffleSplit(test_size=1 - t_size, n_splits=repetitions, random_state=rand_state)
for train_index, test_index in ss.split(x):
x_train, x_test = x[train_index], x[test_index]
y_train, y_test = y[train_index], y[test_index]
# add label noise by re-sampling a fraction of the training labels
if label_noise > 0:
all_labels = np.unique(y_train)
np.random.seed(rand_state)
nss = ShuffleSplit(test_size=label_noise/100, n_splits=1, random_state=rand_state)
for no_noise, yes_noise in nss.split(y_train):
for i in yes_noise:
y_train[i] = np.random.choice(np.setdiff1d(all_labels, y_train[i]), 1);
np.random.seed(None)
for reduce_dim_by in PCA_dim_by:
print("Reducing dimension by", reduce_dim_by)
dimensions = d - reduce_dim_by
if reduce_dim_by > 0:
pca = PCA(n_components=dimensions)
x_pca_train = pca.fit(x_train).transform(x_train)
x_pca_test = pca.fit(x_test).transform(x_test)
else:
x_pca_train = x_train
x_pca_test = x_test
if (ut == 0) and (lt == 0):
distances = []
all_pairs = []
for pair_of_indexes in itertools.combinations(range(0, min(1000, len(x_pca_train))), 2):
all_pairs.append(pair_of_indexes)
distances.append(np.linalg.norm(x_pca_train[pair_of_indexes[0]] - x_pca_train[pair_of_indexes[1]]))
u = np.percentile(distances, 10)
l = np.percentile(distances, 90)
else:
u = ut
l = lt
previous_solution = []
# replace use of d by dim from here
previous_t = 0
for target_iteration in lptml_iterations:
t = target_iteration - previous_t
previous_t = t
print("Algorithm t=", lptml_iterations)
if str(reduce_dim_by) not in experiment_results.keys():
experiment_results[str(reduce_dim_by)] = {str(target_iteration): []}
else:
if str(target_iteration) not in experiment_results[str(reduce_dim_by)].keys():
experiment_results[str(reduce_dim_by)][str(target_iteration)] = []
iteration_results = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print('u', u, 'l', l)
start_time = time()
if run_mlwga:
if len(S) > 0:
sim = []
dis = []
# select those pairs in S & D that are in the training set
for j in range(len(S)):
if ((S[j][0] - 1) in train_index) and ((S[j][1] - 1) in train_index):
# print("here", np.where(train_index == S[j][0]))
sim.append([np.where(train_index == (S[j][0] - 1))[0][0], np.where(train_index == (S[j][1] - 1))[0][0]])
# print(S[j])
for j in range(len(D)):
if ((D[j][0] - 1) in train_index) and ((D[j][1] - 1) in train_index):
# print(train_index)
dis.append([np.where(train_index == (D[j][0] - 1))[0][0], np.where(train_index == (D[j][1] - 1))[0][0]])
# print(D[j])
G = lptml.fit(x_pca_train, y_train, u, l, t, sim, dis, run_hadoop=run_hadoop, num_machines=num_machines, initial_solution=previous_solution)
else:
G = lptml.fit(x_pca_train, y_train, u, l, t, run_hadoop=run_hadoop, num_machines=num_machines, initial_solution=previous_solution, random_seed=rand_state)
previous_solution = np.dot(np.transpose(G), G)
else:
G = np.identity(len(x_pca_train[1]))
elapsed_time = time() - start_time
print("elapsed time to get G", elapsed_time)
# x_lptml = np.matmul(G, x.T).T
print("what I got back was of type", type(G))
# x_lptml_train, x_lptml_test = x_lptml[train_index], x_lptml[test_index]
try:
x_lptml_train = np.matmul(G, np.transpose(x_pca_train)).T
x_lptml_test = np.matmul(G, np.transpose(x_pca_test)).T
except:
print("continue")
raise
neigh_lptml = KNeighborsClassifier(n_neighbors=4, metric="euclidean")
neigh_lptml.fit(x_lptml_train, np.ravel(y_train))
neigh = KNeighborsClassifier(n_neighbors=4, metric="euclidean")
neigh.fit(x_pca_train, np.ravel(y_train))
y_prediction = neigh.predict(x_pca_test)
y_lptml_prediction = neigh_lptml.predict(x_lptml_test)
iteration_results[0] = accuracy_score(y_test, y_prediction)
iteration_results[1] = accuracy_score(y_test, y_lptml_prediction)
iteration_results[4] = precision_score(y_test, y_prediction, average="macro")
iteration_results[5] = precision_score(y_test, y_lptml_prediction, average="macro")
iteration_results[8] = recall_score(y_test, y_prediction, average="macro")
iteration_results[9] = recall_score(y_test, y_lptml_prediction, average="macro")
iteration_results[12] = f1_score(y_test, y_prediction, average="macro")
iteration_results[13] = f1_score(y_test, y_lptml_prediction, average="macro")
iteration_results[16] = lptml.initial_violation_count
iteration_results[17] = lptml.max_best_solution_d + lptml.max_best_solution_s #violated constraints
d_viol, s_viol = lptml.count_violated_constraints(x_pca_test, y_test, lptml.transformer(np.identity(dimensions)), u, l)
iteration_results[18] = d_viol + s_viol
d_viol, s_viol = lptml.count_violated_constraints(x_pca_test, y_test, G, u, l)
iteration_results[19] = d_viol + s_viol
iteration_results[20] = elapsed_time
print(iteration_results)
experiment_results[str(reduce_dim_by)][str(target_iteration)].append(iteration_results)
return experiment_results
def perform_experiment(x, y, number_of_folds, feat_count, PCA_dim_by, repeat_experiment, result_header, filename, lptml_iterations, S, D, ut, lt, run_hadoop=False, num_machines=10, label_noise=0, rand_state=-1):
results_dict = split_pca_learn_metric(x, y, PCA_dim_by, repeat_experiment, number_of_folds, lptml_iterations, S, D, ut, lt, run_hadoop=run_hadoop, num_machines=num_machines, label_noise=label_noise, rand_state=rand_state)
for pca in PCA_dim_by:
for ite in lptml_iterations:
final_results = ["", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
results = np.array(results_dict[str(pca)][str(ite)])
if pca == 0:
final_results[0] = result_header + " NOPCA"
else:
final_results[0] = result_header + " to " + str(feat_count - pca)
final_results[0] += " t=" + str(ite)
# Averages accuracy for Euclidean, lptml, LMNN, ITML
final_results[1] = np.round(np.average(results[:, 0]), 2)
final_results[2] = np.round(np.average(results[:, 1]), 2)
# Std accuracy for Euclidean, lptml, LMNN, ITML
final_results[3] = np.round(np.std(results[:, 0]), 2)
final_results[4] = np.round(np.std(results[:, 1]), 2)
# Averages precision for Euclidean, lptml, LMNN, ITML
final_results[5] = np.round(np.average(results[:, 4]), 2)
final_results[6] = np.round(np.average(results[:, 5]), 2)
# Std precision for Euclidean, lptml, LMNN, ITML
final_results[7] = np.round(np.std(results[:, 4]), 2)
final_results[8] = np.round(np.std(results[:, 5]), 2)
# Averages recall for Euclidean, lptml, LMNN, ITML
final_results[9] = np.round(np.average(results[:, 8]), 2)
final_results[10] = np.round(np.average(results[:, 9]), 2)
# Std recall for Euclidean, lptml, LMNN, ITML
final_results[11] = np.round(np.std(results[:, 8]), 2)
final_results[12] = np.round(np.std(results[:, 9]), 2)
# Averages F1 score for Euclidean, lptml, LMNN, ITML
final_results[13] = np.round(np.average(results[:, 12]), 2)
final_results[14] = np.round( | np.average(results[:, 13]) | numpy.average |
import numpy as np
import cvxopt as co
import matplotlib.pyplot as plt
from tilitools.ssad_convex import ConvexSSAD
from tilitools.utils_kernel import get_kernel
if __name__ == '__main__':
# example constants (training set size and splitting)
k_type = 'rbf'
# attention: this is the shape parameter of a Gaussian
# which is 1/sigma^2
k_param = 2.4
N_pos = 10
N_neg = 10
N_unl = 10
# generate training labels
Dy = np.zeros(N_pos+N_neg+N_unl, dtype=np.int)
Dy[:N_pos] = 1
Dy[N_pos+N_unl:] = -1
# generate training data
co.setseed(11)
Dtrainp = co.normal(2,N_pos)*0.6
Dtrainu = co.normal(2,N_unl)*0.6
Dtrainn = co.normal(2,N_neg)*0.6
Dtrain21 = Dtrainn-1
Dtrain21[0,:] = Dtrainn[0,:]+1
Dtrain22 = -Dtrain21
# training data
Dtrain = co.matrix([[Dtrainp], [Dtrainu], [Dtrainn+0.8]])
Dtrain = | np.array(Dtrain) | numpy.array |
"""
Utility functions for the validation scripts.
"""
from htof.parse import DataParser, HipparcosOriginalData, HipparcosRereductionDVDBook, HipparcosRereductionJavaTool
from htof.fit import AstrometricFitter
from htof.sky_path import parallactic_motion, earth_ephemeris
from astropy import time
from astropy.coordinates import Angle
from astropy.table import Table
from glob import glob
import os
import warnings
import numpy as np
def refit_hip_fromdata(data: DataParser, fit_degree, cntr_RA=Angle(0, unit='degree'), cntr_Dec=Angle(0, unit='degree'),
use_parallax=False):
data.calculate_inverse_covariance_matrices()
# generate parallax motion
jyear_epoch = time.Time(data.julian_day_epoch(), format='jd', scale='tcb').jyear
# note that ra_motion and dec_motion are in degrees here.
# generate sky path
year_epochs = jyear_epoch - time.Time(1991.25, format='decimalyear', scale='tcb').jyear
ra_motion, dec_motion = parallactic_motion(jyear_epoch, cntr_RA.degree, cntr_Dec.degree, 'degree',
time.Time(1991.25, format='decimalyear', scale='tcb').jyear,
ephemeris=earth_ephemeris) # Hipparcos was in a geostationary orbit.
ra_resid = Angle(data.residuals.values * np.sin(data.scan_angle.values), unit='mas')
dec_resid = Angle(data.residuals.values * | np.cos(data.scan_angle.values) | numpy.cos |
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import cv2
class Lane():
def __init__(self, nb_memory_items):
self.nb_memory_items = nb_memory_items
self.search_type = 'window'
# x values of the last n fits of the line
#x values for detected line pixels
self.x = {'left': [], 'right': []}
#y values for detected line pixels
self.y = {'left': [], 'right': []}
self.recent_xfitted = {'left': deque(maxlen=nb_memory_items), 'right':deque(maxlen=nb_memory_items)}
# x values of the current fits of the line
self.current_xfitted = {'left': [], 'right':[]}
#average x values of the fitted line over the last n iterations
self.best_xfitted = {'left': [], 'right': []}
#polynomial coefficients of last n iterations
self.recent_fit = {'left': deque(maxlen=nb_memory_items), 'right':deque(maxlen=nb_memory_items)}
#polynomial coefficients averaged over the last n iterations
self.best_fit = {'left': [], 'right':[]}
#polynomial coefficients for the most recent fit
self.current_fit = {'left': [], 'right':[]}
# Status of the lines tells if they are valid
self.line_valid = {'left': True, 'right': True}
self.invalid_counter = {'left': 0, 'right': 0}
self.search_margin = {'left': 65, 'right': 65}
self.ploty = np.linspace(0, 719, 720)
self.ploty2 = self.ploty**2
#radius of curvature of the line in some units
self.radius_of_curvature = {'left': [], 'right':[]}
self.average_radius_of_curvature = []
#distance in meters of vehicle center from the line
self.vehicle_position = 0
self.xmeter_per_pixel = 3.7/700
self.ymeter_per_pixel = 30/720
# ++++++++++++++++++++++ N O T U S E D ++++++++++++++++++++++
# was the line detected in the last iteration?
self.detected = False
self.line_base_pos = None
#difference in fit coefficients between last and new fits
self.diffs = np.array([0,0,0], dtype='float')
# ++++++++++++++++++++++ N O T U S E D ++++++++++++++++++++++
def _analyse_line_status(self, verbose=0):
if len(self.recent_xfitted['left']) >= 1:
last_radius = self.radius_of_curvature.copy()
self._calculate_curvature_radius()
for key in self.line_valid:
self.line_valid[key] = (self.radius_of_curvature[key] > 150) # ((np.absolute(last_radius[key]-self.radius_of_curvature[key]) < 100) &
if self.line_valid[key] == False:
self.invalid_counter[key] += 1
else:
self.invalid_counter[key] = 0
if self.invalid_counter[key] >= 2:
self.search_type = 'window'
if verbose==1:
print("{0}:\t{1},\t valid[{2}],\t margin[{3}],\t counter[{4},\t #pxl[{5}],\tx[{6}]]".format(key,
self.search_type,
self.line_valid[key],
self.search_margin[key],
self.invalid_counter[key],
len(self.x[key]),
self.best_xfitted[key][-1]))
if verbose == 1:
print('\n')
def _bounded_increase_search_margin(self, key):
margin = self.search_margin[key]
self.search_margin[key] = min((margin + 50), 200)
def _bounded_decrease_search_margin(self, key):
margin = self.search_margin[key]
self.search_margin[key] = max((margin - 25), 65)
def line_search(self, binary_warped, verbose=0):
# Create an output image to draw on and visualize the result
out_img = | np.dstack((binary_warped, binary_warped, binary_warped)) | numpy.dstack |
import numpy as np
import torch
import matplotlib.pyplot as plt
from typing import Optional
from torch.nn.utils import rnn as rnn_utils
def batch_gather(sequence, indices):
# type: (torch.Tensor, torch.Tensor) -> torch.Tensor
"""Batch gather from sequences.
Arguments:
sequence: A tensor of shape (batch_size, length, ...).
indices: A tensor of shape (batch_size, num_indices).
Returns:
permuted_inputs: A tensor of shape (batch_size, num_indices, ...).
"""
indices = torch.stack([indices] * sequence.shape[-1], dim=-1)
permuted_inputs = torch.gather(sequence, 1, indices)
return permuted_inputs
def batch_sequence_mask(lengths, max_len=None, dtype=torch.bool):
# type: (torch.Tensor, Optional[int], Optional[torch.dtype]) -> torch.Tensor
"""Create a batch of sequence masks by valid lengths.
Arguments:
lengths: A `torch.int64` tensor of shape (batch_size,), the valid length of each example.
max_len: An `int`, the maximum length to padding. Defaults to the maximum value of `lengths`.
dtype: A `torch.dtype`, the output data type.
Returns:
mask: A binary tensor of shape (batch_size, max_len), true values for valid position.
"""
return (torch.arange(max_len or lengths.max())[None, :] < lengths[:, None]).to(dtype=dtype)
def batch_reverse_sequence(sequences, lengths):
indices = torch.arange(sequences.shape[-1], dtype=torch.int64)
indices, lengths = torch.broadcast_tensors(indices[None, :], lengths[:, None])
gather_indices = torch.where(
indices < lengths,
lengths - indices - 1,
indices)
return torch.gather(sequences, 1, gather_indices)
def batch_step_mask(masked, decoded):
"""Create a new mask by adding a decoded position to an old mask.
Arguments:
masked: The old mask of shape (batch_size, max_len).
decoded: The decoded positions of shape (batch_size,).
Returns:
A new mask of shape (batch_size, max_len).
"""
decoded = decoded.unsqueeze(-1)
return masked.scatter(-1, decoded, torch.zeros_like(decoded, dtype=masked.dtype))
def batch_steps_mask(steps, dtype=torch.bool):
"""Create a step mask by masking decoded position at each step.
Arguments:
steps: The index sequence of shape (batch_size, max_len).
dtype: Output data type.
Returns:
A mask of shape (batch_size, max_len, max_len).
"""
batch_size, max_len = steps.size()
masked = torch.ones(batch_size, max_len, dtype=dtype)
masks = [masked]
for i in range(max_len - 1):
masked = batch_step_mask(masked, steps[:, i])
masks.append(masked)
return torch.stack(masks, dim=1)
def batch_journey(parameters, ending, lengths):
# indices: starting zero at end
mask = batch_sequence_mask(lengths, max_len=ending.shape[-1], dtype=parameters.dtype)
ending = batch_gather(parameters, ending)
beginning = ending.roll(1, dims=1)
return ((ending - beginning).square().sum(-1) * mask).sqrt().sum(-1)
def combine_masks(*masks, dtype=None):
masks = torch.broadcast_tensors(*masks)
mask = torch.ones_like(masks[0], dtype=torch.bool)
for m in masks:
mask = torch.logical_and(mask, m.to(dtype=torch.bool))
return mask.to(dtype=dtype or masks[0].dtype)
def dynamic_rnn(rnn, inputs, lengths=None, hidden_state=None):
if lengths is None:
return rnn(inputs, hidden_state)
packed_rnn_inputs = rnn_utils.pack_padded_sequence(inputs, lengths, enforce_sorted=False, batch_first=True)
packed_rnn_outputs, hidden_state = rnn(packed_rnn_inputs, hidden_state)
padded_outputs, _ = rnn_utils.pad_packed_sequence(packed_rnn_outputs, batch_first=True)
return padded_outputs, hidden_state
def stack_n(tensor, n, dim):
return torch.stack([tensor] * n, dim=dim)
def _get_numpy(maybe_tensor):
if isinstance(maybe_tensor, torch.Tensor):
if maybe_tensor.requires_grad:
maybe_tensor = maybe_tensor.detach()
return maybe_tensor.cpu().numpy()
return np.array(maybe_tensor)
def plot_solution(parameters, target, prediction):
parameters, target, prediction = _get_numpy(parameters), _get_numpy(target), _get_numpy(prediction)
target = np.concatenate([target, target[0:1]], axis=0)
prediction = | np.concatenate([prediction, prediction[0:1]], axis=0) | numpy.concatenate |
# coding: utf-8
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from libcity.model.abstract_model import AbstractModel
from math import sin, cos, sqrt, atan2, radians
import numpy as np
def identity_loss(y_true, y_pred):
return torch.mean(y_pred - 0 * y_true)
class CARA1(nn.Module):
def hard_sigmoid(self, x):
x = torch.tensor(x / 6 + 0.5)
x = F.threshold(-x, -1, -1)
x = F.threshold(-x, 0, 0)
return x
def __init__(self, output_dim, input_dim,
init='glorot_uniform', inner_init='orthogonal',
**kwargs):
super(CARA1, self).__init__()
self.output_dim = output_dim
self.init = init
self.inner_init = inner_init
self.activation = self.hard_sigmoid
self.inner_activation = nn.Tanh()
self.build(input_dim)
def add_weight(self, shape, initializer):
ts = torch.zeros(shape)
if initializer == 'glorot_uniform':
ts = nn.init.xavier_normal_(ts)
elif initializer == 'orthogonal':
ts = nn.init.orthogonal_(ts)
return nn.Parameter(ts)
def build(self, input_shape):
# self.input_spec = [InputSpec(shape=input_shape)]
self.input_dim = input_shape
self.W_z = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_z = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_z = self.add_weight((self.output_dim,),
initializer='zero')
self.W_r = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_r = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_r = self.add_weight((self.output_dim,),
initializer='zero')
self.W_h = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_h = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_h = self.add_weight((self.output_dim,),
initializer='zero')
self.A_h = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.A_u = self.add_weight((self.output_dim, self.output_dim),
initializer=self.init)
self.b_a_h = self.add_weight((self.output_dim,),
initializer='zero')
self.b_a_u = self.add_weight((self.output_dim,),
initializer='zero')
self.W_t = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_t = self.add_weight((1, self.output_dim),
initializer=self.init)
self.b_t = self.add_weight((self.output_dim,),
initializer='zero')
self.W_g = self.add_weight((self.input_dim, self.output_dim),
initializer=self.init)
self.U_g = self.add_weight((1, self.output_dim),
initializer=self.init)
self.b_g = self.add_weight((self.output_dim,),
initializer='zero')
def preprocess_input(self, x):
return x
def forward(self, x):
"""
X : batch * timeLen * dims(有拓展)
"""
tlen = x.shape[1]
output = torch.zeros((x.shape[0], self.output_dim))
for i in range(tlen):
output = self.step(x[:, i, :], output)
return output
def step(self, x, states):
"""
用于多批次同一时间
states为上一次多批次统一时间数据
"""
h_tm1 = states
# phi_t
u = x[:, self.output_dim: 2 * self.output_dim]
# delta_t
t = x[:, 2 * self.output_dim: (2 * self.output_dim) + 1]
# delta_g
g = x[:, (2 * self.output_dim) + 1:]
# phi_v
x = x[:, :self.output_dim]
t = self.inner_activation(torch.matmul(t, self.U_t))
g = self.inner_activation(torch.matmul(g, self.U_g))
# Time-based gate
t1 = self.inner_activation(torch.matmul(x, self.W_t) + t + self.b_t)
# Geo-based gate
g1 = self.inner_activation(torch.matmul(x, self.W_g) + g + self.b_g)
# Contextual Attention Gate
a = self.inner_activation(
torch.matmul(h_tm1, self.A_h) + torch.matmul(u, self.A_u) + self.b_a_h + self.b_a_u)
x_z = torch.matmul(x, self.W_z) + self.b_z
x_r = torch.matmul(x, self.W_r) + self.b_r
x_h = torch.matmul(x, self.W_h) + self.b_h
u_z_ = torch.matmul((1 - a) * u, self.W_z) + self.b_z
u_r_ = torch.matmul((1 - a) * u, self.W_r) + self.b_r
u_h_ = torch.matmul((1 - a) * u, self.W_h) + self.b_h
u_z = torch.matmul(a * u, self.W_z) + self.b_z
u_r = torch.matmul(a * u, self.W_r) + self.b_r
u_h = torch.matmul(a * u, self.W_h) + self.b_h
# update gate
z = self.inner_activation(x_z + torch.matmul(h_tm1, self.U_z) + u_z)
# reset gate
r = self.inner_activation(x_r + torch.matmul(h_tm1, self.U_r) + u_r)
# hidden state
hh = self.activation(x_h + torch.matmul(r * t1 * g1 * h_tm1, self.U_h) + u_h)
h = z * h_tm1 + (1 - z) * hh
h = (1 + u_z_ + u_r_ + u_h_) * h
return h
# return h
def bpr_triplet_loss(x):
positive_item_latent, negative_item_latent = x
reg = 0
loss = 1 - torch.log(torch.sigmoid(
torch.sum(positive_item_latent, dim=-1, keepdim=True) -
torch.sum(negative_item_latent, dim=-1, keepdim=True))) - reg
return loss
class Recommender(nn.Module):
def __init__(self, num_users, num_items, num_times, latent_dim, maxvenue=5):
super(Recommender, self).__init__()
self.maxVenue = maxvenue
self.latent_dim = latent_dim
# num * maxVenue * dim
self.U_Embedding = nn.Embedding(num_users, latent_dim)
self.V_Embedding = nn.Embedding(num_items, latent_dim)
self.T_Embedding = nn.Embedding(num_times, latent_dim)
torch.nn.init.uniform_(self.U_Embedding.weight)
torch.nn.init.uniform_(self.V_Embedding.weight)
torch.nn.init.uniform_(self.T_Embedding.weight)
self.rnn = nn.Sequential(
CARA1(latent_dim, latent_dim, input_shape=(self.maxVenue, (self.latent_dim * 2) + 2,), unroll=True))
# latent_dim * 2 + 2 = v_embedding + t_embedding + time_gap + distance
def forward(self, x):
# INPUT = [self.user_input, self.time_input, self.gap_time_input, self.pos_distance_input,
# self.neg_distance_input, self.checkins_input,
# self.neg_checkins_input]
# pass
# User latent factor
user_input = torch.tensor(x[0])
time_input = torch.tensor(x[1])
gap_time_input = torch.tensor(x[2], dtype=torch.float32)
pos_distance_input = torch.tensor(x[3], dtype=torch.float32)
neg_distance_input = torch.tensor(x[4], dtype=torch.float32)
checkins_input = torch.tensor(x[5])
neg_checkins_input = torch.tensor(x[6])
self.u_latent = self.U_Embedding(user_input)
self.t_latent = self.T_Embedding(time_input)
h, w = gap_time_input.shape
gap_time_input = gap_time_input.view(h, w, 1)
rnn_input = torch.cat([self.V_Embedding(checkins_input), self.T_Embedding(time_input), gap_time_input], -1)
neg_rnn_input = torch.cat([self.V_Embedding(neg_checkins_input), self.T_Embedding(time_input), gap_time_input],
-1)
h, w = pos_distance_input.shape
pos_distance_input = pos_distance_input.view(h, w, 1)
h, w = neg_distance_input.shape
neg_distance_input = neg_distance_input.view(h, w, 1)
rnn_input = torch.cat([rnn_input, pos_distance_input], -1)
neg_rnn_input = torch.cat([neg_rnn_input, neg_distance_input], -1)
self.checkins_emb = self.rnn(rnn_input)
self.neg_checkins_emb = self.rnn(neg_rnn_input)
pred = (self.checkins_emb * self.u_latent).sum(dim=1)
neg_pred = (self.neg_checkins_emb * self.u_latent).sum(dim=1)
return bpr_triplet_loss([pred, neg_pred])
def rank(self, uid, hist_venues, hist_times, hist_time_gap, hist_distances):
# hist_venues = hist_venues + [candidate_venue]
# hist_times = hist_times + [time]
# hist_time_gap = hist_time_gap + [time_gap]
# hist_distances = hist_distances + [distance]
# u_latent = self.U_Embedding(torch.tensor(uid))
# v_latent = self.V_Embedding(torch.tensor(hist_venues))
# t_latent = self.T_Embedding(torch.tensor(hist_times))
u_latent = self.U_Embedding.weight[uid]
v_latent = self.V_Embedding.weight[hist_venues.reshape(-1)].view(hist_venues.shape[0], hist_venues.shape[1], -1)
t_latent = self.T_Embedding.weight[hist_times.reshape(-1)].view(hist_times.shape[0], hist_times.shape[1], -1)
h, w = hist_time_gap.shape
hist_time_gap = hist_time_gap.reshape(h, w, 1)
h, w = hist_distances.shape
hist_distances = hist_distances.reshape(h, w, 1)
rnn_input = torch.cat([t_latent, torch.tensor(hist_time_gap, dtype=torch.float32)], dim=-1)
rnn_input = torch.cat([rnn_input, torch.tensor(hist_distances, dtype=torch.float32)], dim=-1)
rnn_input = torch.cat([v_latent, rnn_input], dim=-1)
dynamic_latent = self.rnn(rnn_input)
scores = torch.mul(dynamic_latent, u_latent).sum(1)
# scores = np.dot(dynamic_latent, u_latent)
return scores
class CARA(AbstractModel):
"""rnn model with long-term history attention"""
def __init__(self, config, data_feature):
super(CARA, self).__init__(config, data_feature)
self.loc_size = data_feature['loc_size']
self.tim_size = data_feature['tim_size']
self.uid_size = data_feature['uid_size']
self.poi_profile = data_feature['poi_profile']
self.id2locid = data_feature['id2locid']
self.id2loc = []
for i in range(self.loc_size - 1):
self.id2loc.append(self.id2locid[str(i)])
self.id2loc.append(self.loc_size)
self.id2loc = np.array(self.id2loc)
self.coor = self.poi_profile['coordinates'].apply(eval)
self.rec = Recommender(self.uid_size, self.loc_size, self.tim_size, 10)
def get_time_interval(self, x):
y = x[:, :-1]
y = np.concatenate([x[:, 0, None], y], axis=1)
return x - y
def get_time_interval2(self, x):
y = x[:-1]
y = np.concatenate([x[0, None], y], axis=0)
return x - y
def get_pos_distance(self, x):
x = np.array(x.tolist())
y = np.concatenate([x[:, 0, None, :], x[:, :-1, :]], axis=1)
r = 6373.0
rx = np.radians(x)
ry = np.radians(y)
d = x - y
a = np.sin(d[:, :, 0] / 2) ** 2 + np.cos(rx[:, :, 0]) * np.cos(ry[:, :, 0]) * | np.sin(d[:, :, 1] / 2) | numpy.sin |
import numpy as np
import datetime
import pandas
import os
import glob
import h5py
import yaml
from scipy import interpolate
from ttools import utils, config
from ttools.satellite import SATELLITES
OMNI_COLUMNS = (
"rotation_number", "imf_id", "sw_id", "imf_n", "plasma_n", "b_mag", "b_vector_mag", "b_vector_lat_avg",
"b_vector_lon_avg", "bx", "by_gse", "bz_gse", "by_gsm", "bz_gsm", "b_mag_std", "b_vector_mag_std", "bx_std",
"by_std", "bz_std", "proton_temp", "proton_density", "plasma_speed", "plasma_lon_angle", "plasma_lat_angle",
"na_np_ratio", "flow_pressure", "temp_std", "density_std", "speed_std", "phi_v_std", "theta_v_std",
"na_np_ratio_std", "e_field", "plasma_beta", "alfven_mach_number", "kp", "r", "dst", "ae", "proton_flux_1",
"proton_flux_2", "proton_flux_4", "proton_flux_10", "proton_flux_30", "proton_flux_60", "proton_flux_flag", "ap",
"f107", "pcn", "al", "au", "magnetosonic_mach_number"
)
def get_gm_index_kyoto(fn=None):
if fn is None:
fn = config.kp_file
with open(fn, 'r') as f:
text = f.readlines()
ut_list = []
kp_list = []
ap_list = []
for line in text[1:]:
day = datetime.datetime.strptime(line[:8], '%Y%m%d')
dt = datetime.timedelta(hours=3)
uts = np.array([(day + i * dt).timestamp() for i in range(8)], dtype=int)
kp = []
for i in range(9, 25, 2):
num = float(line[i])
sign = line[i + 1]
if sign == '+':
num += 1 / 3
elif sign == '-':
num -= 1 / 3
kp.append(num)
kp_sum = float(line[25:27])
sign = line[27]
if sign == '+':
kp_sum += 1 / 3
elif sign == '-':
kp_sum -= 1 / 3
assert abs(kp_sum - sum(kp)) < .01
kp_list.append(kp)
ap = []
for i in range(28, 52, 3):
ap.append(float(line[i:i + 3]))
ap = np.array(ap, dtype=int)
Ap = float(line[52:55])
ut_list.append(uts)
ap_list.append(ap)
ut = np.concatenate(ut_list)
ap = np.concatenate(ap_list)
kp = np.concatenate(kp_list)
return pandas.DataFrame({'kp': kp, 'ap': ap, 'ut': ut}, index=pandas.to_datetime(ut, unit='s'))
def get_kp(times, fn=None):
if fn is None:
fn = config.kp_file
data = get_gm_index_kyoto(fn)
interpolator = interpolate.interp1d(data['ut'].values, data['kp'], kind='previous')
return interpolator(times.astype('datetime64[s]').astype(float))
def get_omni_data(fn=None):
if fn is None:
fn = config.omni_file
data = np.loadtxt(fn)
year = (data[:, 0] - 1970).astype('datetime64[Y]')
doy = (data[:, 1] - 1).astype('timedelta64[D]')
hour = data[:, 2].astype('timedelta64[h]')
datetimes = (year + doy + hour).astype('datetime64[s]')
dtindex = pandas.DatetimeIndex(datetimes)
df = pandas.DataFrame(data=data[:, 3:], index=dtindex, columns=OMNI_COLUMNS)
for field in df:
bad_val = df[field].max()
bad_val_str = str(int(np.floor(bad_val)))
if bad_val_str.count('9') == len(bad_val_str):
mask = df[field] == bad_val
df[field].loc[mask] = np.nan
return df
def get_borovsky_data(fn="E:\\borovsky_2020_data.txt"):
data = np.loadtxt(fn, skiprows=1)
year = (data[:, 1] - 1970).astype('datetime64[Y]')
doy = (data[:, 2] - 1).astype('timedelta64[D]')
hour = data[:, 3].astype('timedelta64[h]')
datetimes = (year + doy + hour).astype('datetime64[s]')
return datetimes.astype(int), data[:, 4:]
def get_madrigal_data(start_date, end_date, data_dir=None):
"""Gets madrigal TEC and timestamps assuming regular sampling. Fills in missing time steps.
Parameters
----------
start_date, end_date: np.datetime64
data_dir: str
Returns
-------
tec, times: numpy.ndarray
"""
if data_dir is None:
data_dir = config.madrigal_dir
dt = np.timedelta64(5, 'm')
dt_sec = dt.astype('timedelta64[s]').astype(int)
start_date = (np.ceil(start_date.astype('datetime64[s]').astype(int) / dt_sec) * dt_sec).astype('datetime64[s]')
end_date = (np.ceil(end_date.astype('datetime64[s]').astype(int) / dt_sec) * dt_sec).astype('datetime64[s]')
ref_times = np.arange(start_date, end_date, dt)
ref_times_ut = ref_times.astype('datetime64[s]').astype(int)
tec = np.ones((config.madrigal_lat.shape[0], config.madrigal_lon.shape[0], ref_times_ut.shape[0])) * np.nan
file_dates = np.unique(ref_times.astype('datetime64[D]'))
file_dates = utils.decompose_datetime64(file_dates)
for i in range(file_dates.shape[0]):
y = file_dates[i, 0]
m = file_dates[i, 1]
d = file_dates[i, 2]
try:
fn = glob.glob(os.path.join(data_dir, f"gps{y - 2000:02d}{m:02d}{d:02d}g.*.hdf5"))[-1]
except IndexError:
print(f"{y}-{m}-{d} madrigal file doesn't exist")
continue
t, ut, lat, lon = open_madrigal_file(fn)
month_time_mask = np.in1d(ref_times_ut, ut)
day_time_mask = | np.in1d(ut, ref_times_ut) | numpy.in1d |
#%%
# This script performs posterior inference for multiple operators
# at a single aTc conc (by default, Oid, O1, O2 at 1ng/mL).
import re #regex
import warnings
import dill
from multiprocessing import Pool
from git import Repo #for directory convenience
import numpy as np
from scipy.stats import nbinom as neg_binom
from mpmath import hyp2f1
from scipy.special import gammaln
import pandas as pd
import emcee
import srep
def log_like_repressed(params, data_rep):
"""Conv wrapper for log likelihood for 2-state promoter w/
transcription bursts and repression.
data_rep: a list of arrays, each of which is n x 2, of form
data[:, 0] = SORTED unique mRNA counts
data[:, 1] = frequency of each mRNA count
Note the data pre-processing here, credit to Manuel for this observation:
'The likelihood asks for unique mRNA entries and their corresponding
counts to speed up the process of computing the probability distribution.
Instead of computing the probability of 3 mRNAs n times, it computes it
once and multiplies the value by n.'
This also reduces the size of the data arrays by ~10-fold,
which reduces the time penalty of emcee's pickling
to share the data within the multiprocessing Pool.
"""
k_burst, mean_burst, kR_on, *k_offs = params
params_local = np.array([k_burst, mean_burst, kR_on, 0])
target = 0
for i, expt in enumerate(data_rep):
max_m = expt[0].max()
params_local[-1] = k_offs[i]
# note log_probs contains values for ALL m < max_m,
# not just those in the data set...
log_probs = srep.models.log_prob_m_bursty_rep(max_m, *params_local)
# ...so extract just the ones we want & * by their occurence
target += np.sum(expt[1] * log_probs[expt[0]])
return target
def log_like_constitutive(params, data_uv5):
k_burst = params[0]
mean_burst = params[1]
# change vars for scipy's goofy parametrization
p = (1 + mean_burst)**(-1)
return np.sum(data_uv5[1] * neg_binom._logpmf(data_uv5[0], k_burst, p))
def log_prior(params):
k_burst, mean_burst, kR_on, koff_Oid, koff_O1, koff_O2 = params
# remember these params are log_10 of the actual values!!
if (0.62 < k_burst < 0.8 and 0.4 < mean_burst < 0.64 and
0.1 < kR_on < 1.5 and -0.8 < koff_Oid < 0
and -0.5 < koff_O1 < 0.3 and 0.1 < koff_O2 < 1.2 ):
return 0.0
return -np.inf
def log_posterior(params, data_uv5, data_rep):
"""check prior and then farm out data to the respective likelihoods."""
lp = log_prior(params)
if lp == -np.inf:
return -np.inf
# we're sampling in log space but liklihoods are written in linear space
params = 10**params
return (lp + log_like_constitutive(params, data_uv5)
+ log_like_repressed(params, data_rep))
#%%
repo = Repo("./", search_parent_directories=True)
# repo_rootdir holds the absolute path to the top-level of our repo
repo_rootdir = repo.working_tree_dir
expts = ("Oid_1ngmL", "O1_1ngmL", "O2_1ngmL")
data_uv5, data_rep = srep.utils.condense_data(expts)
#%%
n_dim = 6
n_walkers = 18
n_burn = 1
n_steps = 100
# init walkers
p0 = | np.zeros([n_walkers, n_dim]) | numpy.zeros |
import math
import unittest
import numpy as np
from quasarnp.layers import (batch_normalization, conv1d, dense, flatten,
linear, relu, sigmoid)
class TestActivations(unittest.TestCase):
def test_linear(self):
# Test the liner activation for integers, positive and negative
self.assertEqual(linear(0), 0)
self.assertEqual(linear(1), 1)
self.assertEqual(linear(-1), -1)
# Test the linear activation for numpy arrays, both flat and 2d
in_arr = np.arange(-10, 10)
expected = np.arange(-10, 10)
self.assertTrue(np.allclose(linear(in_arr), expected))
in_arr = np.reshape(in_arr, (-1, 5))
expected = np.reshape(expected, (-1, 5))
self.assertTrue(np.allclose(linear(in_arr), expected))
def test_relu(self):
# Test the relu activation for integers, positive and negative
self.assertEqual(relu(0), 0)
self.assertEqual(relu(1), 1)
self.assertEqual(relu(-1), 0)
# Test the relu activation for numpy arrays, both flat and 2d
in_arr = np.arange(-10, 10)
expected = np.asarray([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 2, 3, 4, 5, 6, 7, 8, 9])
self.assertTrue(np.allclose(relu(in_arr), expected))
in_arr = np.reshape(in_arr, (-1, 5))
expected = np.reshape(expected, (-1, 5))
self.assertTrue(np.allclose(relu(in_arr), expected))
def test_sigmoid(self):
# Test the sigmoid activation for integers, positive and negative
self.assertEqual(sigmoid(0), 0.5)
self.assertEqual(sigmoid(1), 1 / (1 + 1 / math.e))
self.assertEqual(sigmoid(-1), 1 / (1 + math.e))
# Test the relu activation for numpy arrays, both flat and 2d
in_arr = np.arange(-10, 10)
expected = 1 / (1 + np.exp(-in_arr))
self.assertTrue(np.allclose(sigmoid(in_arr), expected))
in_arr = np.reshape(in_arr, (-1, 5))
expected = np.reshape(expected, (-1, 5))
self.assertTrue(np.allclose(sigmoid(in_arr), expected))
class TestLayers(unittest.TestCase):
# For this test class we will assume that the activations are correct.
# We test those separately up above anyway.
def test_dense_weights(self):
# This test has all weights set to 0, but nonzero/nonunity bias
# This should mean the result is only the bias relu'd.
in_weights = np.zeros((11, 5))
in_bias = np.arange(-2, 3)
in_x = np.arange(-5, 6)
observed = dense(in_x, in_weights, in_bias, relu)
expected = [0, 0, 0, 1, 2]
self.assertTrue(np.allclose(observed, expected))
# Setting the weights to 1 and ensuring the answer remains correct.
# Since the input x array is symmetric the pre bias answer is still
# zeros.
in_weights = np.ones((11, 5))
observed = dense(in_x, in_weights, in_bias, relu)
expected = [0, 0, 0, 1, 2]
self.assertTrue(np.allclose(observed, expected))
def test_dense_bias(self):
# This test has all biases set to 0, but nonzero/nonunity weights
in_weights = [[1, 1, -5, -1, -1],
[1, 2, -4, -1, -2],
[1, 3, -3, -1, -3],
[1, 4, -2, -1, -4],
[1, 5, -1, -1, -5]]
in_weights = np.asarray(in_weights)
in_bias = np.zeros(5)
in_x = np.arange(-2, 3)
observed = dense(in_x, in_weights, in_bias, relu)
expected = [0, 10, 10, 0, 0]
self.assertTrue(np.allclose(observed, expected))
# Testing if we set the bias to 1 that the answer remains correct
# NOTE: The last weights product equals -10 so adding the
# 1 does not change the answer of the relu.
in_bias = np.ones(5)
observed = dense(in_x, in_weights, in_bias, relu)
expected = [1, 11, 11, 1, 0]
self.assertTrue(np.allclose(observed, expected))
# For testing flatten we need to test that the
# array only flattens everything except the first dimension AND
# that the flatten flattens in the correct order
# We split the tests by dimensionality to help diagnose any problems.
def test_flatten_2d(self):
# Creates array that looks like this:
# [1, 1, 1]
# [2, 2, 2]
# [3, 3, 3]
column = np.asarray([1, 2, 3])
in_x = np.asarray([column] * 3).T
# "Flatten" which does nothing here since we flatten higher dimensions
observed = flatten(in_x)
expected = in_x
self.assertEqual(observed.shape, expected.shape)
self.assertTrue(np.allclose(observed, expected))
def test_flatten_3d(self):
# Creates the following 3d array:
# [[[0 1], [2 3]],[[4 5],[6 7]]]
in_x = np.arange(0, 2 * 2 * 2).reshape((2, 2, 2))
# Flatten and test
observed = flatten(in_x)
expected = np.asarray([[0, 1, 2, 3], [4, 5, 6, 7]])
self.assertEqual(observed.shape, expected.shape)
self.assertTrue(np.allclose(observed, expected))
def test_flatten_4d(self):
# Creates the following 4d array:
# [[[[0 1], [2 3]], [[4 5], [6 7]]],
# [[[8 9], [10 11]], [[12 13], [14 15]]]]
in_x = np.arange(0, 2 * 2 * 2 * 2).reshape((2, 2, 2, 2))
# Flatten and test
observed = flatten(in_x)
expected = [[0, 1, 2, 3, 4, 5, 6, 7], [8, 9, 10, 11, 12, 13, 14, 15]]
expected = np.asarray(expected)
self.assertEqual(observed.shape, expected.shape)
self.assertTrue(np.allclose(observed, expected))
# This tests batchnormalizing a scalar
def test_batch_normalization_scalar(self):
eps = 1e-7 # To avoid divide by zero errors
x = 3
mu = 2
var = 2
gamma = 1
beta = 0
# First test gamma = 1, beta = 0 so no scaling or offset
observed = batch_normalization(x, mu, var, beta, gamma, eps)
expected = 1 / | np.sqrt(2) | numpy.sqrt |
import os
import logging
import numpy as np
'''
@ Multifactorial Evolutionary Algorithm
'''
def sbx_crossover(p1, p2, sbxdi):
D = p1.shape[0]
cf = np.empty([D])
u = np.random.rand(D)
cf[u <= 0.5] = np.power((2 * u[u <= 0.5]), (1 / (sbxdi + 1)))
cf[u > 0.5] = np.power((2 * (1 - u[u > 0.5])), (-1 / (sbxdi + 1)))
c1 = 0.5 * ((1 + cf) * p1 + (1 - cf) * p2)
c2 = 0.5 * ((1 + cf) * p2 + (1 - cf) * p1)
c1 = np.clip(c1, 0, 1)
c2 = np.clip(c2, 0, 1)
return c1, c2
def mutate(p, pmdi):
mp = float(1. / p.shape[0])
u = np.random.uniform(size=[p.shape[0]])
r = np.random.uniform(size=[p.shape[0]])
tmp = np.copy(p)
for i in range(p.shape[0]):
if r[i] < mp:
if u[i] < 0.5:
delta = (2*u[i]) ** (1/(1+pmdi)) - 1
tmp[i] = p[i] + delta * p[i]
else:
delta = 1 - (2 * (1 - u[i])) ** (1/(1+pmdi))
tmp[i] = p[i] + delta * (1 - p[i])
return tmp
'''
@ other ultilities
'''
def find_scalar_fitness(factorial_cost):
return 1 / np.min(np.argsort(np.argsort(factorial_cost, axis=0), axis=0) + 1, axis=1)
def get_best_individual(population, factorial_cost):
K = factorial_cost.shape[1]
p_bests = []
y_bests = []
for k in range(K):
best_index = | np.argmax(factorial_cost[:, k]) | numpy.argmax |
# -*- encoding:utf-8 -*-
import torch.nn.functional as F
import torch.optim.lr_scheduler
import numpy as np
from uer.models.model import Model
from uer.model_builder import build_model
from uer.layers.layer_norm import LayerNorm
from uer.utils.act_fun import gelu
import torch.nn as nn
from torch.autograd import Variable
from matplotlib.pylab import *
def orthonormal_initializer(output_size, input_size):
"""
adopted from <NAME> https://github.com/tdozat/Parser/blob/master/lib/linalg.py
"""
print(output_size, input_size)
I = np.eye(output_size)
lr = .1
eps = .05 / (output_size + input_size)
success = False
tries = 0
while not success and tries < 10:
Q = np.random.randn(input_size, output_size) / np.sqrt(output_size)
for i in range(100):
QTQmI = Q.T.dot(Q) - I
loss = np.sum(QTQmI ** 2 / 2)
Q2 = Q ** 2
Q -= lr * Q.dot(QTQmI) / (
np.abs(Q2 + Q2.sum(axis=0, keepdims=True) + Q2.sum(axis=1, keepdims=True) - 1) + eps)
if | np.max(Q) | numpy.max |
# coding=utf-8
import sys
sys.path.insert(0, '/home/chujie/PycharmProjects/amsoftmax_face_recognition_caffe/AM-Softmax-caffe/python')
import caffe
import cv2
import os
import numpy as np
import math
import copy
from numpy.linalg import inv, norm, lstsq
from numpy.linalg import matrix_rank as rank
of = 0 # 人脸对齐时多裁剪像素点
std_mean = 127.5
std_scale = 0.0078125
batchsize = 128
factor = 0.709
minisize = 30 # 检测人脸的最小值
# pnet
pnet_stride = 2
pnet_cell_size = 12
pnet_thread = 0.95
# rnet
rnet_thread = 0.95
# onet
onet_thread = 0.95
def Align_sphereface(input_image, points, output_size=(96, 112)):
image = copy.deepcopy(input_image)
src = np.matrix([[points[0], points[2], points[4], points[6], points[8]],
[points[1], points[3], points[5], points[7], points[9]], [1, 1, 1, 1, 1]])
dst = np.matrix([[30.2946, 65.5318, 48.0252, 33.5493, 62.7299],
[51.6963, 51.5014, 71.7366, 92.3655, 92.2041]])
T = (src * src.T).I * src * dst.T
img_affine = cv2.warpAffine(image, T.T, output_size)
return img_affine
def Align_seqface(input_image, points, output_size=(128, 128)):
image = copy.deepcopy(input_image)
eye_center_x = (points[0] + points[2]) * 0.5
eye_center_y = (points[1] + points[3]) * 0.5
mouse_center_x = (points[6] + points[8]) * 0.5
mouse_center_y = (points[7] + points[9]) * 0.5
rad_tan = 1.0 * (points[3] - points[1]) / (points[2] - points[0])
rad = math.atan(rad_tan)
deg = np.rad2deg(rad)
width = int(math.fabs(math.sin(rad)) * image.shape[0] + math.fabs(math.cos(rad)) * image.shape[1])
height = int(math.fabs(math.cos(rad)) * image.shape[0] + math.fabs(math.sin(rad)) * image.shape[1])
transformMat = cv2.getRotationMatrix2D((eye_center_x, eye_center_y), deg, 1.0)
dst = cv2.warpAffine(image, transformMat, (width, height))
diff_x = mouse_center_x - eye_center_x
diff_y = mouse_center_y - eye_center_y
r_mouse_center_y = diff_y * float(math.cos(rad)) - diff_x * float(math.sin(rad)) + eye_center_y
d = r_mouse_center_y - eye_center_y + 1
dx = int(d * 3 / 2.0)
dy = int(d * 3 / 3.0)
x0 = int(eye_center_x) - dx
x0 = max(x0, 0)
x1 = int(eye_center_x + (3 * d - dx)) - 1
x1 = min(x1, width - 1)
y0 = int(eye_center_y) - dy
y0 = max(y0, 0)
y1 = int(eye_center_y + (3 * d - dy)) - 1
y1 = min(y1, height - 1)
alignface = dst[y0:y1, x0:x1, :]
alignface = cv2.resize(alignface, (128, 128))
return alignface
def CalScale(width, height):
scales = []
scale = 12.0 / minisize # 12.0/30
minWH = min(height, width) * scale
while minWH >= 12.0:
scales.append(scale)
minWH *= factor
scale *= factor
return scales
def BBoxRegression(results):
for result in results:
box = result['faceBox']
bbox_reg = result['bbox_reg']
w = box[2] - box[0] + 1
h = box[3] - box[1] + 1
box[0] += bbox_reg[0] * w
box[1] += bbox_reg[1] * h
box[2] += bbox_reg[2] * w
box[3] += bbox_reg[3] * h
return results
def BBoxPad(results, width, height):
for result in results:
box = result['faceBox']
box[0] = round(max(box[0], 0.0))
box[1] = round(max(box[1], 0.0))
box[2] = round(min(box[2], width - 1.0))
box[3] = round(min(box[3], height - 1.0))
return results
def BBoxPadSquare(results, width, height):
for result in results:
box = result['faceBox']
w = box[2] - box[0] + 1;
h = box[3] - box[1] + 1;
side = max(w, h)
box[0] = round(max(box[0] + (w - side) * 0.5, 0))
box[1] = round(max(box[1] + (h - side) * 0.5, 0.))
box[2] = round(min(box[0] + side - 1.0, width - 1.0))
box[3] = round(min(box[1] + side - 1.0, height - 1.0))
return results
def NMS(results, thresh, methodType):
bboxes_nms = []
if len(results) == 0:
return bboxes_nms
else:
results = sorted(results, key=lambda result: result['bbox_score'], reverse=True)
flag = np.zeros_like(results)
for index, result_i in enumerate(results):
if flag[index] == 0:
box_i = result_i['faceBox']
area1 = (box_i[2] - box_i[0] + 1) * (box_i[3] - box_i[1] + 1)
bboxes_nms.append(result_i)
flag[index] = 1
for j, result_j in enumerate(results):
if flag[j] == 0:
box_j = result_j['faceBox']
area_intersect = (min(box_i[2], box_j[2]) - max(box_i[0], box_j[0]) + 1) * \
(min(box_i[3], box_j[3]) - max(box_i[1], box_j[1]) + 1)
if min(box_i[2], box_j[2]) - max(box_i[0], box_j[0]) < 0:
area_intersect = 0.0
area2 = (box_j[2] - box_j[0] + 1) * (box_j[3] - box_j[1] + 1)
iou = 0
if methodType == 'u':
iou = (area_intersect) * 1.0 / (area1 + area2 - area_intersect)
if methodType == 'm':
iou = (area_intersect) * 1.0 / min(area1, area2)
if iou > thresh:
flag[j] = 1
return bboxes_nms
def GenerateBBox(confidence, reg, scale, threshold):
ch, hs, ws = confidence.shape
results = []
for i in range(hs):
for j in range(ws):
if confidence[1][i][j] > threshold:
result = {}
box = []
box.append(j * pnet_stride / scale) # xmin
box.append(i * pnet_stride / scale) # ymin
box.append((j * pnet_stride + pnet_cell_size - 1.0) / scale) # xmax
box.append((i * pnet_stride + pnet_cell_size - 1.0) / scale) # ymax
result['faceBox'] = box
b_reg = []
for k in range(reg.shape[0]):
b_reg.append(reg[k][i][j])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[1][i][j]
results.append(result)
return results
def GetResult_net12(pnet, image):
image = (image.copy() - std_mean) * std_scale
rows, cols, channels = image.shape
scales = CalScale(cols, rows)
results = []
for scale in scales:
ws = int(math.ceil(cols * scale))
hs = int(math.ceil(rows * scale))
scale_img = cv2.resize(image, (ws, hs), cv2.INTER_CUBIC)
tempimg = np.zeros((1, hs, ws, 3))
tempimg[0, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
pnet.blobs['data'].reshape(1, 3, hs, ws)
pnet.blobs['data'].data[...] = tempimg
pnet.forward()
confidence = copy.deepcopy(pnet.blobs['prob1'].data[0])
reg = copy.deepcopy(pnet.blobs['conv4-2'].data[0])
result = GenerateBBox(confidence, reg, scale, pnet_thread)
results.extend(result)
res_boxes = NMS(results, 0.7, 'u')
res_boxes = BBoxRegression(res_boxes)
res_boxes = BBoxPadSquare(res_boxes, cols, rows)
return res_boxes
def GetResult_net24(rnet, res_boxes, image):
image = (image.copy() - std_mean) * std_scale
lenth = len(res_boxes)
num = int(math.floor(lenth * 1.0 / batchsize))
rnet.blobs['data'].reshape(batchsize, 3, 24, 24)
results = []
if len(res_boxes) == 0:
return results
for i in range(num):
tempimg = np.zeros((batchsize, 24, 24, 3))
for j in range(batchsize):
box = res_boxes[i * batchsize + j]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])])
scale_img = cv2.resize(roi, (24, 24))
tempimg[j, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
rnet.blobs['data'].data[...] = tempimg
rnet.forward()
confidence = copy.deepcopy(rnet.blobs['prob1'].data[...])
reg = copy.deepcopy(rnet.blobs['conv5-2'].data[...])
for j in range(batchsize):
result = {}
result['faceBox'] = res_boxes[i * batchsize + j]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[j][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[j][1]
if confidence[j][1] > onet_thread:
results.append(result)
resnum = lenth - num * batchsize
if resnum > 0:
rnet.blobs['data'].reshape(resnum, 3, 24, 24)
tempimg = np.zeros((resnum, 24, 24, 3))
for i in range(resnum):
box = res_boxes[num * batchsize + i]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])])
scale_img = cv2.resize(roi, (24, 24))
tempimg[i, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
rnet.blobs['data'].data[...] = tempimg
rnet.forward()
confidence = copy.deepcopy(rnet.blobs['prob1'].data[...])
reg = copy.deepcopy(rnet.blobs['conv5-2'].data[...])
for i in range(resnum):
result = {}
result['faceBox'] = res_boxes[num * batchsize + i]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[i][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[i][1]
if confidence[i][1] > rnet_thread:
results.append(result)
res_boxes = NMS(results, 0.7, 'u')
res_boxes = BBoxRegression(res_boxes)
res_boxes = BBoxPadSquare(res_boxes, image.shape[1], image.shape[0])
return res_boxes
def GetResult_net48(onet, res_boxes, image):
image = (image.copy() - std_mean) * std_scale
lenth = len(res_boxes)
num = int(math.floor(lenth * 1.0 / batchsize))
onet.blobs['data'].reshape(batchsize, 3, 48, 48)
results = []
if len(res_boxes) == 0:
return results
for i in range(num):
tempimg = np.zeros((batchsize, 48, 48, 3))
for j in range(batchsize):
box = res_boxes[i * batchsize + j]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])])
scale_img = cv2.resize(roi, (48, 48))
tempimg[j, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
onet.blobs['data'].data[...] = tempimg
onet.forward()
confidence = copy.deepcopy(onet.blobs['prob1'].data[...])
reg = copy.deepcopy(onet.blobs['conv6-2'].data[...])
reg_landmark = copy.deepcopy(onet.blobs["conv6-3"].data[...])
for j in range(batchsize):
result = {}
result['faceBox'] = res_boxes[i * batchsize + j]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[j][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[j][1]
w = result['faceBox'][2] - result['faceBox'][0] + 1
h = result['faceBox'][3] - result['faceBox'][1] + 1
l_reg = []
for l in range(5):
l_reg.append(reg_landmark[j][2 * l] * w + result['faceBox'][0])
l_reg.append(reg_landmark[j][2 * l + 1] * h + result['faceBox'][1])
result['landmark_reg'] = l_reg
if confidence[j][1] > onet_thread:
results.append(result)
resnum = lenth - num * batchsize
if resnum > 0:
onet.blobs['data'].reshape(resnum, 3, 48, 48)
tempimg = np.zeros((resnum, 48, 48, 3))
for i in range(resnum):
box = res_boxes[num * batchsize + i]['faceBox']
roi = copy.deepcopy(image[int(box[1]): int(box[3]), int(box[0]):int(box[2])].copy())
scale_img = cv2.resize(roi, (48, 48))
tempimg[i, :, :, :] = scale_img
tempimg = tempimg.transpose(0, 3, 1, 2)
onet.blobs['data'].data[...] = tempimg
onet.forward()
confidence = copy.deepcopy(onet.blobs['prob1'].data[...])
reg = copy.deepcopy(onet.blobs['conv6-2'].data[...])
reg_landmark = copy.deepcopy(onet.blobs["conv6-3"].data[...])
for i in range(resnum):
result = {}
result['faceBox'] = res_boxes[num * batchsize + i]['faceBox']
b_reg = []
for k in range(reg.shape[1]):
b_reg.append(reg[i][k])
result['bbox_reg'] = b_reg
result['bbox_score'] = confidence[i][1]
w = result['faceBox'][2] - result['faceBox'][0] + 1
h = result['faceBox'][3] - result['faceBox'][1] + 1
l_reg = []
for k in range(int(reg_landmark.shape[1] / 2)):
l_reg.append(reg_landmark[i][2 * k] * w + result['faceBox'][0])
l_reg.append(reg_landmark[i][2 * k + 1] * h + result['faceBox'][1])
result['landmark_reg'] = l_reg
if confidence[i][1] > onet_thread:
results.append(result)
res_boxes = BBoxRegression(results)
res_boxes = NMS(res_boxes, 0.7, 'm')
res_boxes = BBoxPad(res_boxes, image.shape[1], image.shape[0])
return res_boxes
def DetImage(pnet, rnet, onet, image, show=False):
results = GetResult_net12(pnet, image)
rnet_re = GetResult_net24(rnet, results, image)
onet_re = GetResult_net48(onet, rnet_re, image)
faceboxs = []
for index, result in enumerate(onet_re):
facebox = {}
facebox['box'] = result['faceBox']
facebox['landmark'] = result['landmark_reg']
faceboxs.append(facebox)
if show:
cv2.rectangle(image, (int(facebox['box'][0]), int(facebox['box'][1])),
(int(facebox['box'][2]), int(facebox['box'][3])),
(0, 0, 255), 1)
for i in range(5):
cv2.circle(image, (int(facebox['landmark'][2 * i]), int(facebox['landmark'][2 * i + 1])), 2,
(55, 255, 155), -1)
if show:
cv2.imshow('', image)
cv2.waitKey(0)
return faceboxs
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
def tformfwd(trans, uv):
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
xy = np.dot(uv, trans)
xy = xy[:, 0:-1]
return xy
def tforminv(trans, uv):
Tinv = inv(trans)
xy = tformfwd(Tinv, uv)
return xy
def findNonreflectiveSimilarity(uv, xy, options=None):
options = {'K': 2}
K = options['K']
M = xy.shape[0]
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
X = np.vstack((tmp1, tmp2))
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
U = np.vstack((u, v))
if rank(X) >= 2 * K:
r, _, _, _ = lstsq(X, U)
r = np.squeeze(r)
else:
raise Exception('cp2tform:twoUniquePointsReq')
sc = r[0]
ss = r[1]
tx = r[2]
ty = r[3]
Tinv = np.array([
[sc, -ss, 0],
[ss, sc, 0],
[tx, ty, 1]
])
T = inv(Tinv)
T[:, 2] = np.array([0, 0, 1])
return T, Tinv
def findSimilarity(uv, xy, options=None):
options = {'K': 2}
# Solve for trans1
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
# Solve for trans2
# manually reflect the xy data across the Y-axis
xyR = xy
xyR[:, 0] = -1 * xyR[:, 0]
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
# manually reflect the tform to undo the reflection done on xyR
TreflectY = np.array([
[-1, 0, 0],
[0, 1, 0],
[0, 0, 1]
])
trans2 = np.dot(trans2r, TreflectY)
# Figure out if trans1 or trans2 is better
xy1 = tformfwd(trans1, uv)
norm1 = norm(xy1 - xy)
xy2 = tformfwd(trans2, uv)
norm2 = norm(xy2 - xy)
if norm1 <= norm2:
return trans1, trans1_inv
else:
trans2_inv = | inv(trans2) | numpy.linalg.inv |
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 30 13:44:34 2018
@author: Moha-Thinkpad
"""
from tensorflow.keras import optimizers
from tensorflow.keras.models import Model
import datetime
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import tensorflow.keras
import argparse
import tensorflow as tf
from tensorflow.keras import backend as K
#cfg = K.tf.ConfigProto()
#cfg.gpu_options.allow_growth = True
#K.set_session(K.tf.Session(config=cfg))
####################################
########################################################################
####################################
def custom_loss_seg (y_true, y_pred):
#A = tensorflow.keras.losses.mean_squared_error(y_true, y_pred)
B = tensorflow.keras.losses.mean_absolute_error(y_true, y_pred)
return(B)
from tensorflow.keras.layers import Lambda
sum_dim_channel = Lambda(lambda xin: K.sum(xin, axis=3))
def lrelu(x): #from pix2pix code
a=0.2
# adding these together creates the leak part and linear part
# then cancels them out by subtracting/adding an absolute value term
# leak: a*x/2 - a*abs(x)/2
# linear: x/2 + abs(x)/2
# this block looks like it has 2 inputs on the graph unless we do this
x = tf.identity(x)
return (0.5 * (1 + a)) * x + (0.5 * (1 - a)) * tf.abs(x)
def lrelu_output_shape(input_shape):
shape = list(input_shape)
return tuple(shape)
layer_lrelu=Lambda(lrelu, output_shape=lrelu_output_shape)
def PreProcess(InputImages):
#output=np.zeros(InputImages.shape,dtype=np.float)
InputImages=InputImages.astype(np.float)
for i in range(InputImages.shape[0]):
try:
InputImages[i,:,:,:]=InputImages[i,:,:,:]/np.max(InputImages[i,:,:,:])
# output[i,:,:,:] = (output[i,:,:,:]* 2)-1
except:
InputImages[i,:,:]=InputImages[i,:,:]/np.max(InputImages[i,:,:])
# output[i,:,:] = (output[i,:,:]* 2) -1
return InputImages
####################################
########################################################################
####################################
parser = argparse.ArgumentParser()
parser.add_argument("--mode", choices=["train", "test", "export"])
parser.add_argument("--input_dir", help="path to folder containing images")
parser.add_argument("--target_dir", help="where to")
parser.add_argument("--checkpoint", help="where to ")
parser.add_argument("--output_dir", help="where to p")
parser.add_argument("--landmarks", help=" -,-,-")
parser.add_argument("--lr", help="adam learning rate")
parser.add_argument("--ngf", type=int, default=64, help="number of generator filters in first conv layer")
# export options
a = parser.parse_args()
a.batch_size=40
a.max_epochs_seg=1
a.lr_seg=0.0001
a.beta1=0.5
a.ngf=64
#a.seed=1
# a.mode="train"
# a.input_dir='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/temp_train_png/'
# a.target_dir='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/temp_train_lm/'
# a.checkpoint='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/Models_lm/'
# a.output_dir='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/Models_lm/'
# a.landmarks='43,43,43'
#a.mode="test"
#a.batch_size=1
#a.input_dir='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/temp_test_png/'
#a.target_dir='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/temp_test_lm/'
#a.checkpoint='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/Models_lm/'
#a.output_dir='C:\\Users\\User\\Desktop\\Example_LoSoCo_Inputs_3_large_heatmaps/Models_lm/'
#a.landmarks='43,43,43'
######## ------------ Config
#Ind_impo_landmarks_matlab=np.array([5, 6, 15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36,37,38,41])
#Ind_impo_landmarks_python=Ind_impo_landmarks_matlab-1
#Num_landmarks=25
# 33,23,16 - 29,15, - 30,20,26 - 5,18,21 - 44,17,41 - 28,22,34, - 27,43,37
StrLandmarks=a.landmarks
StrLandmarks=StrLandmarks.split(",")
Ind_impo_landmarks_matlab=np.array([0,0,0])
Ind_impo_landmarks_matlab[0]=int(StrLandmarks[0])
Ind_impo_landmarks_matlab[1]=int(StrLandmarks[1])
Ind_impo_landmarks_matlab[2]=int(StrLandmarks[2])
Ind_impo_landmarks_python=Ind_impo_landmarks_matlab-1
Num_landmarks=3
print('============================')
print('============================')
print(datetime.datetime.now())
print('============================')
print('============================')
#########----------------------DATA
from os import listdir
ImageFileNames=[]
FileNames=listdir(a.input_dir)
for names in FileNames:
if names.endswith(".png"):
ImageFileNames.append(names)
#LMFileNames=listdir(a.target_dir)
from skimage import io as ioSK
from numpy import genfromtxt
Images=np.zeros((len(ImageFileNames),256,256,3),dtype=np.uint8)
#Images_seg=np.zeros((len(ImageFileNames),256,256),dtype=np.uint8)
LandmarkLocations=np.zeros((len(ImageFileNames),2,44),dtype=np.uint8)
for i in range(len(ImageFileNames)):
Image = ioSK.imread(a.input_dir+'/'+ImageFileNames[i])
Images[i,:,:,:]=Image
FileName=ImageFileNames[i]
FileName=FileName[:-4]
# Image = ioSK.imread(a.target_dir_seg+'/'+ImageFileNames[i])
# Images_seg[i,:,:]=Image
Landmarks0 = | genfromtxt(a.target_dir+'/'+FileName+'.csv', delimiter=',') | numpy.genfromtxt |
import numpy as np
import os
import requests
from matplotlib import pyplot as plt
from matplotlib import cm
from lmfit.models import Model
from sklearn.cluster import KMeans
from shapely.geometry import Polygon
from radio_beam.commonbeam import getMinVolEllipse
from scipy import ndimage as ndi
from scipy.spatial import distance
from skimage import io
from skimage.measure import EllipseModel
from skimage.color import rgb2gray
from skimage import filters, util
from skimage.morphology import disk, skeletonize, ball
from skimage.measure import approximate_polygon
from skimage import transform
from PIL import Image, ImageDraw, ImageFilter, ImageOps
from sklearn.linear_model import LinearRegression
from scipy import ndimage
import copy
import cv2
from scipy.spatial import ConvexHull
import sys
import logging
import time
import glob
from logging import StreamHandler, Formatter
from src.cfg import CfgAnglesNames, CfgBeamsNames, CfgDataset
handler = StreamHandler(stream=sys.stdout)
handler.setFormatter(Formatter(fmt='[%(asctime)s: %(levelname)s] %(message)s'))
logger = logging.getLogger(__name__)
logger.addHandler(handler)
file_path = os.getcwd() + '/utils.py'
class grainPreprocess():
@classmethod
def imdivide(cls, image: np.ndarray, h: int, side: str) -> np.ndarray:
"""
:param image: ndarray (height,width,channels)
:param h: int scalar
:param side: str 'left'
:return: ndarray (height,width/2,channels)
"""
#
# возвращает левую или правую часть полученного изображения
#
height, width = image.shape
sides = {'left': 0, 'right': 1}
shapes = [(0, height - h, 0, width // 2), (0, height - h, width // 2, width)]
shape = shapes[sides[side]]
return image[shape[0]:shape[1], shape[2]:shape[3]]
@classmethod
def combine(cls, image: np.ndarray, h: int, k=0.5) -> np.ndarray:
"""
:param image: ndarray (height,width,channels)
:param h: int scalar
:param k: float scalar
:return: ndarray (height,width/2,channels)
"""
#
# накладывает левую и правые части изображения
# если k=1, то на выходе будет левая часть изображения, если k=0, то будет правая часть
#
left_img = cls.imdivide(image, h, 'left')
right_img = cls.imdivide(image, h, 'right')
l = k
r = 1 - l
gray = np.array(left_img) * l
gray += np.array(right_img) * r
return gray.astype('uint8')
@classmethod
def do_otsu(cls, img: np.ndarray) -> np.ndarray:
"""
:param img: ndarray (height,width,channels)
:return: ndarray (height,width), Boolean
"""
#
# бинаризация отсу
#
global_thresh = filters.threshold_otsu(img)
binary_global = img > global_thresh
return binary_global.astype('uint8')
@classmethod
def image_preprocess(cls, image: np.ndarray) -> np.ndarray:
"""
:param image: ndarray (height,width,channels)
:return: ndarray (height,width)
"""
#
# комбинация медианного фильтра, биноризации и гражиента
# у зерен значение пикселя - 0, у регионов связ. в-ва - 127,а у их границы - 254
#
unsigned_image = util.img_as_ubyte(image)
denoised = filters.rank.median(unsigned_image, ball(3))
binary = cls.do_otsu(denoised)
grad = abs(filters.rank.gradient(binary, ball(1)))
bin_grad = (1 - binary + grad) * 127
return bin_grad.astype(np.uint8)
@classmethod
def image_preprocess_kmeans(cls, image: np.ndarray, h=135, k=1, n_clusters=3, pos=1) -> np.ndarray:
"""
:param image: array (height,width,channels)
:param h: int scalar
:param k: float scalar
:param n_clusters: int scalar
:param pos: int scalar, cluster index
:return: ndarray (height,width)
"""
#
# выделение границ при помощи кластеризации
# и выравнивание шума медианным фильтром
# pos отвечает за выбор кластера, который будет отображен на возвращенном изображении
#
combined = cls.combine(image, h, k)
clustered, colors = grainMorphology.kmeans_image(combined, n_clusters)
cluster = clustered == colors[pos]
cluster = np.array(cluster * 255, dtype='uint8')
new_image = filters.median(cluster, disk(2))
return new_image
@classmethod
def read_preprocess_data(cls, images_dir, max_images_num_per_class=100, preprocess=False, save=False,
crop_bottom=False,
h=135, resize=True, resize_shape=None,
save_name='all_images.npy'):
folders_names = glob.glob(images_dir + '*')
images_paths = [glob.glob(folder_name + '/*')[:max_images_num_per_class] for folder_name in folders_names]
l = np.array(images_paths).flatten().shape[0]
# Initial call to print 0% progress
GrainLogs.printProgressBar(0, l, prefix='Progress:', suffix='Complete', length=50)
preproc_images = []
start_time = time.time()
step = 0
for i, images_list_paths in enumerate(images_paths):
preproc_images.append([])
for image_path in images_list_paths:
step += 1
image = io.imread(image_path).astype(np.uint8)
# вырезает нижнюю полоску фотографии с линекой и тд
if crop_bottom:
image = grainPreprocess.combine(image, h)
# ресайзит изображения
if resize:
if resize_shape is not None:
image = transform.resize(image, resize_shape)
else:
print('No resize shape')
# последовательно применяет фильтры (медианный, отсу, собель и тд)
if preprocess:
image = grainPreprocess.image_preprocess(image)
end_time = time.time()
eta = round((end_time - start_time) * (l - step), 1)
GrainLogs.printProgressBar(step, l, eta=eta, prefix='Progress:', suffix='Complete', length=50)
start_time = time.time()
preproc_images[i].append(image)
if save:
np.save(save_name, preproc_images)
return preproc_images
@classmethod
def tiff2jpg(cls, folder_path, start_name=0, stop_name=-4, new_folder_path='resized'):
#
# переводит из tiff 2^16 в jpg 2^8 бит
#
folders = os.listdir(folder_path)
if not os.path.exists(new_folder_path):
os.mkdir(new_folder_path)
for folder in folders:
if not os.path.exists(new_folder_path + '/' + folder):
os.mkdir(new_folder_path + '/' + folder)
for i, folder in enumerate(folders):
images_names = os.listdir(folder_path + '/' + folder)
for i, name in enumerate(images_names):
if 'hdr' not in name:
img = io.imread(folder_path + '/' + folder + '/' + name)
img = (img / 255).astype('uint8')
io.imsave(new_folder_path + '/' + folder + '/' + name[start_name:stop_name] + '.jpg', img)
@classmethod
def get_example_images(cls):
'''
:return: ndarray [[img1],[img2]..]
'''
#
# скачивает из контейнера s3 по 1 снимку каждого образца
#
urls = CfgDataset.images_urls
images = []
for url in urls:
logger.warning(f'downloading {url}')
file = requests.get(url, stream=True).raw
img = np.asarray(Image.open(file))
images.append([img])
return np.array(images)
class grainMorphology():
@classmethod
def kmeans_image(cls, image, n_clusters=3):
#
# кластеризует при помощи kmeans
# и возвращает изображение с нанесенными цветами кластеров
#
img = image.copy()
size = img.shape
img = img.reshape(-1, 1)
model = KMeans(n_clusters=n_clusters)
clusters = model.fit_predict(img)
colors = []
for i in range(n_clusters):
color = np.median(img[clusters == i]) # медианное значение пикселей у кластера
img[clusters == i] = color
colors.append(int(color))
img = img.reshape(size)
colors.sort()
return img, colors
class grainFig():
@classmethod
def line(cls, point1, point2):
#
# возвращает растровые координаты прямой между двумя точками
#
line = []
x1, y1 = point1[0], point1[1]
x2, y2 = point2[0], point2[1]
dx = x2 - x1
dy = y2 - y1
sign_x = 1 if dx > 0 else -1 if dx < 0 else 0
sign_y = 1 if dy > 0 else -1 if dy < 0 else 0
if dx < 0: dx = -dx
if dy < 0: dy = -dy
if dx > dy:
pdx, pdy = sign_x, 0
es, el = dy, dx
else:
pdx, pdy = 0, sign_y
es, el = dx, dy
x, y = x1, y1
error, t = el / 2, 0
line.append((x, y))
while t < el:
error -= es
if error < 0:
error += el
x += sign_x
y += sign_y
else:
x += pdx
y += pdy
t += 1
line.append((x, y))
return np.array(line).astype('int')
@classmethod
def rect(cls, point1, point2, r):
#
# возвращает растровые координаты прямоугольника ширины 2r,
# построеного между двумя точками
#
x1, y1 = point1[0], point1[1]
x2, y2 = point2[0], point2[1]
l1, l2 = (x2 - x1), (y2 - y1)
l_len = (l1 ** 2 + l2 ** 2) ** 0.5
l_len = int(l_len)
a = (x1 - r * l2 / l_len), (y1 + r * l1 / l_len)
b = (x1 + r * l2 / l_len), (y1 - r * l1 / l_len)
side = cls.line(a, b)
# a -> c
lines = np.zeros((side.shape[0], l_len * 2, 2), dtype='int64')
for i, left_point in enumerate(side):
right_point = (left_point[0] + l1), (left_point[1] + l2)
line_points = cls.line(left_point, right_point)
for j, point in enumerate(line_points):
lines[i, j] = point
return lines
class grainMark():
@classmethod
def mark_corners_and_classes(cls, image, max_num=100000, sens=0.1, max_dist=1):
#
# НЕТ ГАРАНТИИ РАБОТЫ
#
corners = cv2.goodFeaturesToTrack(image, max_num, sens, max_dist)
corners = np.int0(corners)
x = copy.copy(corners[:, 0, 1])
y = copy.copy(corners[:, 0, 0])
corners[:, 0, 0], corners[:, 0, 1] = x, y
classes = filters.rank.gradient(image, disk(1)) < 250
classes, num = ndi.label(classes)
return corners, classes, num
@classmethod
def mean_pixel(cls, image, point1, point2, r):
val2, num2 = cls.draw_rect(image, point2, point1, r)
val = val1 + val2
num = num1 + num2
if num != 0 and val != 0:
mean = (val / num) / 255
dist = distance.euclidean(point1, point2)
else:
mean = 1
dist = 1
return mean, dist
@classmethod
def get_row_contours(cls, image):
"""
:param image: ndarray (width, height,3)
:return: list (N_contours,M_points,2)
where ndarray (M_points,2)
"""
#
# возвращает набор точек контуров
#
edges = cv2.Canny(image, 0, 255, L2gradient=False)
# направление обхода контура по часовой стрелке
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
new_contours = []
for cnt in contours:
new_contours.append(np.array(cnt).reshape((-1, 2)))
return new_contours
@classmethod
def get_contours(cls, image, tol=3):
"""
:param tol:
:param image: ndarray (width, height,3)
:return: list (N_contours,M_points,2)
where ndarray (M_points,2)
"""
#
# уменьшение количества точек контура при помощи алгоритма Дугласа-Пекера
#
contours = cls.get_row_contours(image)
new_contours = []
for j, cnt in enumerate(contours):
if len(cnt) > 2:
coords = approximate_polygon(cnt, tolerance=tol)
new_contours.append(coords)
else:
continue
return new_contours
@classmethod
def get_angles(cls, image, thr=5):
#
# считаем углы с направлением обхода контура против часовой стрелки, углы >180 градусов учитываются
#
approx = cls.get_contours(image, tol=4)
# вычисление угла
angles = []
angles_pos = []
for k, cnt in enumerate(approx):
if len(cnt) > 2:
for i, point in enumerate(cnt[:-1]):
point1 = cnt[i - 1]
point2 = cnt[i]
point3 = cnt[i + 1]
x1, y1 = point1[1], point1[0]
x2, y2 = point2[1], point2[0]
x3, y3 = point3[1], point3[0]
# убирает контуры у границ
if abs(x2 - image.shape[0] - 1) > thr and \
abs(y2 - image.shape[1] - 1) > thr and \
x2 > thr and y2 > thr:
v1 = np.array((x1 - x2, y1 - y2)).reshape(1, 2)
v2 = np.array((x3 - x2, y3 - y2)).reshape(1, 2)
dot = np.dot(v1[0], v2[0])
dist1 = np.linalg.norm(v1[0])
dist2 = np.linalg.norm(v2[0])
cos = dot / (dist1 * dist2)
v = np.concatenate([v1, v2])
det = np.linalg.det(v)
if abs(cos) < 1:
ang = int(np.arccos(cos) * 180 / np.pi)
if det < 0:
angles.append(ang)
angles_pos.append([(x1, y1), (x2, y2), (x3, y3)])
else:
angles.append(360 - ang)
angles_pos.append([(x1, y1), (x2, y2), (x3, y3)])
else:
if det < 0:
angles.append(360)
angles_pos.append([(x1, y1), (x2, y2), (x3, y3)])
else:
angles.append(0)
angles_pos.append([(x1, y1), (x2, y2), (x3, y3)])
return np.array(angles), angles_pos
@classmethod
def get_mvee_params(cls, image, tol=0.2, debug=False):
"""
:param image:
:param tol:
:return: ndarray (n_angles), radian
"""
#
# возвращает полуоси и угол поворота фигуры minimal volume enclosing ellipsoid,
# которая ограничивает исходные точки контура эллипсом
#
approx = grainMark.get_row_contours(image)
a_beams = []
b_beams = []
angles = []
centroids = []
for i, cnt in enumerate(approx):
if len(cnt) > 2:
try:
cnt = np.array(cnt)
polygon = Polygon(cnt)
x_centroid, y_centroid = polygon.centroid.coords[0]
points = cnt - (x_centroid, y_centroid)
x_norm, y_norm = points.mean(axis=0)
points = (points - (x_norm, y_norm))
data = getMinVolEllipse(points, tol)
xc, yc = data[0][0]
a, b = data[1]
sin = data[2][0][1]
angle = -np.arcsin(sin)
a_beams.append(a)
b_beams.append(b)
angles.append(angle)
centroids.append([x_centroid + x_norm, y_centroid + y_norm])
except Exception:
if debug:
logger.warning(f'{file_path} error i={i}, singularity matrix error, no reason why',
exc_info=debug)
a_beams = np.array(a_beams, dtype='int32')
b_beams = np.array(b_beams, dtype='int32')
angles = np.array(angles, dtype='float32')
centroids = np.array(centroids, dtype='int32')
return a_beams, b_beams, angles, centroids
@classmethod
def skeletons_coords(cls, image):
#
# на вход подается бинаризованное изображение
# создает массив индивидуальных скелетов
# пикселю скелета дается класс, на координатах которого он находится
# координаты класса определяются ndi.label
#
skeleton = np.array(skeletonize(image))
labels, classes_num = ndimage.label(image)
bones = [[] for i in range(classes_num + 1)]
for i in range(skeleton.shape[0]):
for j in range(skeleton.shape[1]):
if skeleton[i, j]:
label = labels[i, j]
bones[label].append((i, j))
return bones
class grainShow():
@classmethod
def img_show(cls, image, N=20, cmap=plt.cm.nipy_spectral):
#
# выводит изображение image
#
plt.figure(figsize=(N, N))
plt.axis('off')
plt.imshow(image, cmap=cmap)
plt.show()
@classmethod
def enclosing_ellipse_show(cls, image, pos=0, tolerance=0.2, N=15):
#
# рисует график точек многоугольника и описанного эллипса
#
a_beams, b_beams, angles, cetroids = grainMark.get_mvee_params(image, tolerance)
approx = grainMark.get_row_contours(image)
a = a_beams[pos]
b = b_beams[pos]
angle = angles[pos]
print('полуось а ', a)
print('полуось b ', b)
print('угол поворота ', round(angle, 3), ' радиан')
cnt = np.array(approx[pos])
xp = cnt[:, 0]
yp = cnt[:, 1]
xc = cetroids[pos, 0]
yc = cetroids[pos, 1]
x, y = grainStats.ellipse(a, b, angle)
plt.figure(figsize=(N, N))
plt.plot(xp - xc, yp - yc)
plt.scatter(0, 0)
plt.plot(x, y)
plt.show()
class grainDraw():
@classmethod
def draw_corners(cls, image, corners, color=255):
#
# НЕТ ГАРАНТИИ РАБОТЫ
#
image = copy.copy(image)
for i in corners:
x, y = i.ravel()
cv2.circle(image, (x, y), 3, color, -1)
return image
@classmethod
def draw_edges(cls, image, cnts, color=(50, 50, 50)):
#
# рисует на изображении линии по точкам контура cnts
# линии в стиле x^1->x^2,x^2->x^3 и тд
#
new_image = copy.copy(image)
im = Image.fromarray(np.uint8(cm.gist_earth(new_image) * 255))
draw = ImageDraw.Draw(im)
for j, cnt in enumerate(cnts):
if len(cnt) > 1:
point = cnt[0]
x1, y1 = point[1], point[0]
r = 4
for i, point2 in enumerate(cnt):
p2 = point2
x2, y2 = p2[1], p2[0]
draw.ellipse((y2 - r, x2 - r, y2 + r, x2 + r), fill=color, width=5)
draw.line((y1, x1, y2, x2), fill=(100, 100, 100), width=4)
x1, y1 = x2, y2
else:
continue
img = np.array(im)
return img
@classmethod
def draw_tree(cls, img, centres=False, leafs=False, nodes=False, bones=False):
#
# на вход подается биноризованное изображение
# рисует на инвертированном изображении
# скелет и точки центров, листьев, узлов и пикселей скелета
#
image = img.copy() / 255
skeleton = np.array(skeletonize(image)) * 255
im = 1 - image + skeleton
im = Image.fromarray(np.uint8(cm.gist_earth(im) * 255))
draw = ImageDraw.Draw(im)
if bones:
for j, bone in enumerate(bones):
for i, point in enumerate(bone):
x2, y2 = point
r = 1
draw.ellipse((y2 - r, x2 - r, y2 + r, x2 + r), fill=(89, 34, 0), width=5)
if centres:
for j, point in enumerate(centres):
x2, y2 = point
r = 2
draw.ellipse((y2 - r, x2 - r, y2 + r, x2 + r), fill=(255, 0, 0), width=5)
if leafs:
for j, leaf in enumerate(leafs):
for i, point in enumerate(leaf):
x2, y2 = point
r = 2
draw.ellipse((y2 - r, x2 - r, y2 + r, x2 + r), fill=(0, 255, 0), width=5)
if nodes:
for j, node in enumerate(nodes):
for i, point in enumerate(node):
x2, y2 = point
r = 2
draw.ellipse((y2 - r, x2 - r, y2 + r, x2 + r), fill=(0, 0, 255), width=10)
return np.array(im)
class grainStats():
@classmethod
def kernel_points(cls, image, point, step=1):
#
# возвращает координаты пикселей матрицы,
# центр которой это point
#
x, y = point
coords = []
for xi in range(x - step, x + step + 1):
for yi in range(y - step, y + step + 1):
if xi < image.shape[0] and yi < image.shape[1]:
coords.append((xi, yi))
return coords
@classmethod
def stats_preprocess(cls, array, step):
#
# приведение углов к кратости, например 0,step,2*step и тд
#
array_copy = array.copy()
if step != 0:
for i, a in enumerate(array_copy):
while array_copy[i] % step != 0:
array_copy[i] += 1
array_copy_set = np.sort(np.array(list(set(array_copy))))
dens_curve = []
for arr in array_copy_set:
num = 0
for ar in array_copy:
if arr == ar:
num += 1
dens_curve.append(num)
return np.array(array_copy), array_copy_set, np.array(dens_curve)
else:
print('step is 0, stats preprocess error')
@classmethod
def gaussian(cls, x, mu, sigma, amp=1):
#
# возвращает нормальную фунцию по заданным параметрам
#
return np.array((amp / (np.sqrt(2 * np.pi) * sigma)) * np.exp(-(x - mu) ** 2 / (2 * sigma ** 2)))
@classmethod
def gaussian_bimodal(cls, x, mu1, mu2, sigma1, sigma2, amp1=1, amp2=1):
#
# возвращает бимодальную нормальную фунцию по заданным параметрам
#
return cls.gaussian(x, mu1, sigma1, amp1) + cls.gaussian(x, mu2, sigma2, amp2)
@classmethod
def gaussian_termodal(cls, x, mu1, mu2, mu3, sigma1, sigma2, sigma3, amp1=1, amp2=1, amp3=1):
#
# возвращает термодальную нормальную фунцию по заданным параметрам
#
return cls.gaussian(x, mu1, sigma1, amp1) + cls.gaussian(x, mu2, sigma2, amp2) + cls.gaussian(x, mu3, sigma3,
amp3)
@classmethod
def ellipse(cls, a, b, angle, xc=0, yc=0, num=50):
#
# возвращает координаты эллипса, построенного по заданным параметрам
# по умолчанию центр (0,0)
# угол в радианах, уменьшение угла обозначает поворот эллипса по часовой стрелке
#
xy = EllipseModel().predict_xy(np.linspace(0, 2 * np.pi, num),
params=(xc, yc, a, b, angle))
return xy[:, 0], xy[:, 1]
class grainApprox():
@classmethod
def gaussian_fit(cls, x, y, mu=1, sigma=1, amp=1):
#
# аппроксимация заданных точек нормальной функцией
#
gmodel = Model(grainStats.gaussian)
res = gmodel.fit(y, x=x, mu=mu, sigma=sigma, amp=amp)
mu = res.params['mu'].value
sigma = res.params['sigma'].value
amp = res.params['amp'].value
return mu, sigma, amp
@classmethod
def gaussian_fit_bimodal(cls, x, y, mu1=100, mu2=240, sigma1=30, sigma2=30, amp1=1, amp2=1):
#
# аппроксимация заданных точек бимодальной нормальной функцией
#
gmodel = Model(grainStats.gaussian_bimodal)
res = gmodel.fit(y, x=x, mu1=mu1, mu2=mu2, sigma1=sigma1, sigma2=sigma2, amp1=amp1, amp2=amp2)
mus = [res.params['mu1'].value, res.params['mu2'].value]
sigmas = [res.params['sigma1'].value, res.params['sigma2'].value]
amps = [res.params['amp1'].value, res.params['amp2'].value]
return mus, sigmas, amps
@classmethod
def gaussian_fit_termodal(cls, x, y, mu1=10, mu2=100, mu3=240, sigma1=10, sigma2=30, sigma3=30, amp1=1, amp2=1,
amp3=1):
#
# аппроксимация заданных точек термодальной нормальной функцией
#
gmodel = Model(grainStats.gaussian_termodal)
res = gmodel.fit(y, x=x, mu1=mu1, mu2=mu2, mu3=mu3, sigma1=sigma1, sigma2=sigma2, sigma3=sigma3, amp1=amp1,
amp2=amp2, amp3=amp3)
mus = [res.params['mu1'].value, res.params['mu2'].value, res.params['mu3'].value]
sigmas = [res.params['sigma1'].value, res.params['sigma2'].value, res.params['sigma3'].value]
amps = [res.params['amp1'].value, res.params['amp2'].value, res.params['amp3'].value]
return mus, sigmas, amps
@classmethod
def lin_regr_approx(cls, x, y):
#
# аппроксимация распределения линейной функцией
# и создание графика по параметрам распределения
#
x_pred = np.linspace(x.min(axis=0), x.max(axis=0), 50)
reg = LinearRegression().fit(x, y)
y_pred = reg.predict(x_pred)
k = reg.coef_[0][0]
b = reg.predict([[0]])[0][0]
angle = np.rad2deg(np.arctan(k))
score = reg.score(x, y)
return (x_pred, y_pred), k, b, angle, score
@classmethod
def bimodal_gauss_approx(cls, x, y):
#
# аппроксимация распределения бимодальным гауссом
#
mus, sigmas, amps = cls.gaussian_fit_bimodal(x, y)
x_gauss = np.arange(0, 361)
y_gauss = grainStats.gaussian_bimodal(x_gauss, mus[0], mus[1], sigmas[0], sigmas[1], amps[0], amps[1])
return (x_gauss, y_gauss), mus, sigmas, amps
class grainGenerate():
@classmethod
def angles_legend(cls, images_amount, name, itype, step, mus, sigmas, amps, norm, ):
#
# создание легенды распределения углов
#
mu1 = round(mus[0], 2)
sigma1 = round(sigmas[0], 2)
amp1 = round(amps[0], 2)
mu2 = round(mus[1], 2)
sigma2 = round(sigmas[1], 2)
amp2 = round(amps[1], 2)
val = round(norm, 4)
border = '--------------\n'
total_number = '\n количество углов ' + str(val)
images_number = '\n количество снимков ' + str(images_amount)
text_angle = '\n шаг угла ' + str(step) + ' градусов'
moda1 = '\n mu1 = ' + str(mu1) + ' sigma1 = ' + str(sigma1) + ' amp1 = ' + str(amp1)
moda2 = '\n mu2 = ' + str(mu2) + ' sigma2 = ' + str(sigma2) + ' amp2 = ' + str(amp2)
legend = border + name + ' ' + itype + total_number + images_number + text_angle + moda1 + moda2
return legend
@classmethod
def angles_approx_save(cls, folder, images, names, types, step, save=True):
"""
:param folder: str path to dir
:param images: ndarray uint8 [[image1_class1,image2_class1,..],[image1_class2,image2_class2,..]..]
:param names: list str [class_name1,class_name2,..]
:param types: list str [class_type1,class_type2,..]
:param step: scalar int [0,N]
:param save: bool
:return: ndarray uint8 (n_classes,n_samples, height, width)
"""
#
# вывод распределения углов для всех фотографий одного образца
#
texts = []
xy_scatter = []
xy_gauss = []
xy_gauss_data = []
if not os.path.exists(folder):
os.mkdir(folder)
start_time = 0
progress_bar_step = 0
l = images.shape[0] * images.shape[1]
GrainLogs.printProgressBar(0, l, prefix='Progress:', suffix='Complete', length=30)
for i, images_list in enumerate(images):
all_original_angles = []
for j, image in enumerate(images_list):
original_angles, _ = grainMark.get_angles(image)
end_time = time.time()
progress_bar_step += 1
eta = round((end_time - start_time) * (l - 1 - progress_bar_step), 1)
# print('eta: ', eta)
# вывод времени не работает, пофиксить потом
GrainLogs.printProgressBar(progress_bar_step, l, prefix='Progress:', suffix='Complete',
length=30)
start_time = time.time()
for angle in original_angles:
all_original_angles.append(angle)
angles, angles_set, dens_curve = grainStats.stats_preprocess(all_original_angles, step)
x = angles_set.astype(np.float64)
y = dens_curve
norm = np.sum(y)
y = y / norm
(x_gauss, y_gauss), mus, sigmas, amps = grainApprox.bimodal_gauss_approx(x, y)
text = grainGenerate.angles_legend(len(images_list), names[i], types[i], step, mus, sigmas, amps, norm)
xy_gauss.append((x_gauss, y_gauss))
xy_scatter.append((x, y))
xy_gauss_data.append((
(mus[0], sigmas[0], amps[0]),
(mus[1], sigmas[1], amps[1])
))
texts.append(text)
if save:
np.save(f'{folder}/' + CfgAnglesNames.values + f'{step}.npy', np.array(xy_scatter, dtype=object))
np.save(f'{folder}/' + CfgAnglesNames.approx + f'{step}.npy', np.array(xy_gauss))
np.save(f'{folder}/' + CfgAnglesNames.approx_data + f'{step}.npy', np.array(xy_gauss_data))
np.save(f'{folder}/' + CfgAnglesNames.legend + f'{step}.npy', np.array(texts))
@classmethod
def beams_legend(cls, name, itype, norm, k, angle, b, score, dist_step, dist_mean):
#
# создание легенды для распределения длин полуосей
#
border = '--------------'
tp = '\n ' + name + ' тип ' + itype
num = '\n регионы Co ' + str(norm) + ' шт'
lin_k = '\n k наклона ' + str(round((k), 3)) + ' сдвиг b ' + str(round(b, 3))
lin_k_angle = '\n угол наклона $' + str(round(angle, 3)) + '^{\circ}$'
acc = '\n точность ' + str(round(score, 2))
text_step = '\n шаг длины ' + str(dist_step) + '$ мкм$'
mean_text = '\n средняя длина ' + str(round(dist_mean, 2))
legend = border + tp + lin_k + lin_k_angle + acc + num + text_step + mean_text
return legend
@classmethod
def diametr_approx_save(cls, folder, images, names, types, step, pixel, start=2, end=-3, save=True, debug=False):
#
# вывод распределения длин а- и б- полуосей для разных образцов
#
texts = []
xy_scatter = []
xy_linear = []
xy_linear_data = []
l = images.shape[0] * images.shape[1]
GrainLogs.printProgressBar(0, l, prefix='Progress:', suffix='Complete', length=30)
progress_bar_step = 0
start_time = 0
angles = None
for i, images_list in enumerate(images):
all_a_beams = []
all_b_beams = []
for j, image in enumerate(images_list):
a_beams, b_beams, angles, cetroids = grainMark.get_mvee_params(image, 0.2, debug=debug)
progress_bar_step += 1
end_time = time.time()
eta = round((end_time - start_time) * (l - 1 - progress_bar_step), 1)
# print('eta: ', eta)
# вывод времени не работает, пофиксить потом
GrainLogs.printProgressBar(progress_bar_step, l, prefix='Progress:', suffix='Complete',
length=30)
start_time = time.time()
for k in range(len(a_beams)):
all_a_beams.append(a_beams[k])
all_b_beams.append(b_beams[k])
distances1, dist1_set, dens1_curve = grainStats.stats_preprocess(all_a_beams, step)
distances2, dist2_set, dens2_curve = grainStats.stats_preprocess(all_b_beams, step)
angles, angles_set, angles_dens_curve = grainStats.stats_preprocess(np.rad2deg(angles).astype('int32'),
step=step)
norm1 = round( | np.sum(dens1_curve) | numpy.sum |
import math
import numbers
import numpy as np
import pandas as pd
import lmfit as lm
from scipy.spatial.transform import Rotation
import scipy.optimize as optimize
import pypdt
from .conversions import one_gev_c2_to_kg, one_kgm_s_to_mev_c, q_factor
from scipy.constants import c
cbar = c / 1.e9
cmmns = c / 1.e6
m_e = pypdt.get(11).mass*1000.
q_e = -1
# fitting routine
def fit_helix(track_data, B_data, m=m_e, q=q_e, rot=True):
'''
track_data is 4 by N np.array, B_data is 3 by N where each row is
track_data: [t, x, y, z] with units [s, m, m, m]
B_data: [Bx, By, Bz] with units [T, T, T]
(to work out of the box with emtracks.particle)
'''
track_data = track_data.copy() # to not change track_data information
track_data[0] = track_data[0]*1e9 # convert to ns
track_data[1:] = track_data[1:]*1e3 # convert to mm
# x0, y0 = track_data[1:3,0] # for phi0 estimate
# translations:
translate_vec = track_data[:,0].reshape(1, 4)
track_data = track_data - np.repeat(translate_vec, track_data.shape[1], axis=0).T
# Rotate so mean B vector is on z-axis
B_mean = np.mean(B_data, axis=1)
B = np.linalg.norm(B_mean)
B_mean_T = np.linalg.norm(B_mean[:2]) # average transverse Bfield (original coords)
# calculate rotation angles
rot_theta = np.arctan2(B_mean_T, B_mean[2])
rot_phi = np.arctan2(B_mean[1], B_mean[0])
# create rotation function (+inverse) to align mean B with z axis
rot_func = Rotation.from_euler('zy', | np.array([-rot_phi, -rot_theta]) | numpy.array |
"""
This script is a demo script, showing how to use eslearn to training and testing a SVC model.
Classifier: linear SVC
Dimension reduction: PCA
Feature selection: ReliefF
"""
import numpy as np
import eslearn.machine_learning.classfication.pca_relieff_svc_cv as pca_relieff_svc
# =============================================================================
# All inputs
path_patients = r'D:\WorkStation_2018\Workstation_Old\WorkStation_2018-05_MVPA_insomnia_FCS\Degree\degree_gray_matter\Zdegree\Z_degree_patient\Weighted' # .nii format
path_HC = r'D:\WorkStation_2018\Workstation_Old\WorkStation_2018-05_MVPA_insomnia_FCS\Degree\degree_gray_matter\Zdegree\Z_degree_control\Weighted' # .nii format
path_mask = r'G:\Softer_DataProcessing\spm12\spm12\tpm\Reslice3_TPM_greaterThan0.2.nii' # mask file for filter image
path_out = r'D:\WorkStation_2018\Workstation_Old\WorkStation_2018-05_MVPA_insomnia_FCS\Degree\degree_gray_matter\Zdegree' # directory for saving results
# =============================================================================
clf = pca_relieff_svc.PcaReliffSvcCV(
path_patients=path_patients,
path_HC=path_HC,
path_mask=path_mask,
path_out=path_out,
data_preprocess_method='MinMaxScaler',
data_preprocess_level='group',
num_of_kfold=5, # How many folds to perform cross validation (Default: 5-fold cross validation)
is_dim_reduction=1, # Default is using PCA to reduce the dimension.
components=0.75,
is_feature_selection=False, # Whether perform feature selection( Default is using relief-based feature selection algorithms).
n_features_to_select=0.99, # How many features to be selected.
is_showfig_finally=True, # Whether show results figure finally.
is_showfig_in_each_fold=False # Whether show results in each fold.
)
results = clf.main_function()
results = results.__dict__
print(f"mean accuracy = {np.mean(results['accuracy'])}")
print(f"std of accuracy = {np.std(results['accuracy'])}")
print(f"mean sensitivity = {np.mean(results['sensitivity'])}")
print(f"std of sensitivity = {np.std(results['sensitivity'])}")
print(f"mean specificity = { | np.mean(results['specificity']) | numpy.mean |
# Copyright 2018- Onai (Onu Technology, Inc., San Jose, California)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is furnished
# to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
# INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
# PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
# HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
Rounding
"""
from sklearn.cluster import KMeans
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as pp
import numpy as np
N = int(128000)
N_BINS = 128
N_ROUNDS = 100
AMT = 10 ** 6
def generate_amts():
return np.random.randint(AMT, size=N) / AMT
def cluster_amts(amts):
setup = KMeans(n_clusters=N_BINS)
clusters = setup.fit(amts.reshape(-1, 1))
centers = clusters.cluster_centers_.squeeze()
plot_cents(centers)
return (
clusters.cluster_centers_,
clusters.labels_,
get_cluster_sums(amts, clusters.labels_),
)
def get_cluster_sums(amts, labels):
result = {}
for i in range(N_BINS):
cluster_sum = amts[np.where(labels == i)[0]].sum()
result[i] = (cluster_sum, np.where(labels == i)[0].shape[0])
return result
def plot_cents(centers, round=0):
pp.clf()
pp.plot(centers, np.zeros_like(centers), "|")
fig = pp.gcf()
fig.set_size_inches(18.5, 10.5)
pp.savefig("centers" + str(round) + ".png", dpi=100)
def new_round(amts, clusters):
"""
choose some existing amts, reduce their amt (just halve for now),
introduce new amts with the remainder
"""
# keep it equal for now
n_picked = 100
picked_amts = np.random.randint(0, len(amts), size=n_picked)
for amt_idx in picked_amts:
new_amts, new_clusters = nuke_old_amt(amts, amt_idx, clusters)
# new_amt = amts[amt_idx] - new_amts[amt_idx]
new_amt = np.random.randint(AMT, AMT * 100, size=1).squeeze()
amts, clusters = add_new_amt(new_amts, new_clusters, new_amt)
return amts, clusters
def nuke_old_amt(amts, amt_idx, clusters):
"""
"""
old_amt = amts[amt_idx]
new_amt = old_amt // 2
# get cluster id, update this cluster's center
cur_cluster = clusters[1][amt_idx]
cluster_center = clusters[0][cur_cluster]
new_cluster = get_new_cluster(new_amt, clusters[0])
cluster_attrs = clusters[-1]
cur_sum, cur_size = cluster_attrs[cur_cluster]
new_sum = cur_sum - old_amt
new_size = cur_size - 1
cluster_attrs[cur_cluster] = (new_sum, new_size)
amts[amt_idx] = new_amt
new_center = new_sum / new_size
clusters[0][cur_cluster] = new_center
clusters[1][amt_idx] = new_cluster
return amts, (clusters[0], clusters[1], cluster_attrs)
def add_new_amt(amts, clusters, new_amt):
new_cluster = get_new_cluster(new_amt, clusters[0])
new_amts = np.append(amts, new_amt)
new_labels = np.append(clusters[1], new_cluster)
cluster_attrs = clusters[-1]
new_size = cluster_attrs[new_cluster][1] + 1
new_sum = cluster_attrs[new_cluster][0] + new_amt
cluster_attrs[new_cluster] = (new_sum, new_size)
new_center = new_sum / new_size
clusters[0][new_cluster] = new_center
new_clusters = np.append(clusters[1], new_cluster)
return new_amts, (clusters[0], new_clusters, cluster_attrs)
def get_new_cluster(new_amt, centers):
min_dist = AMT * 100
cl_id = -1
for i, center in enumerate(centers):
if abs(center - new_amt) < min_dist:
min_dist = abs(center - new_amt)
cl_id = i
return cl_id
def metric(amts, clusters):
cluster_amts = | np.zeros_like(amts) | numpy.zeros_like |
import networkx as nx
import numpy as np
import utils as utils
import sys
import matplotlib.pyplot as plt
def inputmaker(n):
if n == 50:
f = open("50.in", "w")
elif n == 100:
f = open("100.in", "w")
elif n == 200:
f = open("200.in", "w")
f.write(str(n))
f.write("\n")
f.write(str(int(n / 2)))
f.write("\n")
f.write(str(0))
for i in np.arange(1, n):
f.write(" ")
f.write(str(i))
f.write("\n")
f.write(str(0))
for i in | np.arange(2, n, 2) | numpy.arange |
import os
import shutil
import six
import pytest
import numpy as np
from pyshac.config import hyperparameters as hp, data
# compatible with both Python 2 and 3
try:
FileNotFoundError
except NameError:
FileNotFoundError = IOError
def deterministic_test(func):
@six.wraps(func)
def wrapper(*args, **kwargs):
np.random.seed(0)
output = func(*args, **kwargs)
np.random.seed(None)
return output
return wrapper
# wrapper function to clean up saved files
def cleanup_dirs(func):
@six.wraps(func)
def wrapper(*args, **kwargs):
output = func(*args, **kwargs)
# remove temporary files
if os.path.exists('shac/'):
shutil.rmtree('shac/')
if os.path.exists('custom/'):
shutil.rmtree('custom/')
return output
return wrapper
def get_hyperparameter_list():
h1 = hp.DiscreteHyperParameter('h1', [0, 1, 2])
h2 = hp.DiscreteHyperParameter('h2', [3, 4, 5, 6])
h3 = hp.UniformContinuousHyperParameter('h3', 7, 10)
h4 = hp.DiscreteHyperParameter('h4', ['v1', 'v2'])
return [h1, h2, h3, h4]
def get_multi_parameter_list():
h1 = hp.MultiDiscreteHyperParameter('h1', [0, 1, 2], sample_count=2)
h2 = hp.MultiDiscreteHyperParameter('h2', [3, 4, 5, 6], sample_count=3)
h3 = hp.MultiUniformContinuousHyperParameter('h3', 7, 10, sample_count=5)
h4 = hp.MultiDiscreteHyperParameter('h4', ['v1', 'v2'], sample_count=4)
return [h1, h2, h3, h4]
@cleanup_dirs
def test_dataset_param_list():
params = get_hyperparameter_list()
dataset = data.Dataset(params)
assert isinstance(dataset._parameters, hp.HyperParameterList)
dataset.set_parameters(params)
assert isinstance(dataset._parameters, hp.HyperParameterList)
h = hp.HyperParameterList(params)
dataset.set_parameters(h)
assert isinstance(dataset._parameters, hp.HyperParameterList)
@cleanup_dirs
def test_dataset_multi_param_list():
params = get_multi_parameter_list()
dataset = data.Dataset(params)
assert isinstance(dataset._parameters, hp.HyperParameterList)
dataset.set_parameters(params)
assert isinstance(dataset._parameters, hp.HyperParameterList)
h = hp.HyperParameterList(params)
dataset.set_parameters(h)
assert isinstance(dataset._parameters, hp.HyperParameterList)
@cleanup_dirs
def test_dataset_basedir():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
assert os.path.exists(dataset.basedir)
@cleanup_dirs
def test_dataset_basedir_custom():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h, basedir='custom')
assert os.path.exists(dataset.basedir)
assert not os.path.exists('shac')
@cleanup_dirs
def test_dataset_add_sample():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
x, y = dataset.get_dataset()
assert len(dataset) == 5
assert x.shape == (5, 4)
assert y.shape == (5,)
@cleanup_dirs
def test_dataset_multi_add_sample():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
x, y = dataset.get_dataset()
assert len(dataset) == 5
assert x.shape == (5, 14)
assert y.shape == (5,)
@cleanup_dirs
def test_set_dataset():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
# numpy arrays
samples = [(np.array(h.sample()), np.random.uniform()) for _ in range(5)]
x, y = zip(*samples)
x = np.array(x)
y = np.array(y)
dataset.set_dataset(x, y)
assert len(dataset) == 5
dataset.clear()
# python arrays
samples = [(h.sample(), float(np.random.uniform())) for _ in range(5)]
x, y = zip(*samples)
dataset.set_dataset(x, y)
assert len(dataset) == 5
# None data
with pytest.raises(TypeError):
dataset.set_dataset(None, int(6))
with pytest.raises(TypeError):
dataset.set_dataset([1, 2, 3], None)
with pytest.raises(TypeError):
dataset.set_dataset(None, None)
@cleanup_dirs
def test_multi_set_dataset():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
# numpy arrays
samples = [(np.array(h.sample()), np.random.uniform()) for _ in range(5)]
x, y = zip(*samples)
x = np.array(x)
y = np.array(y)
dataset.set_dataset(x, y)
assert len(dataset) == 5
dataset.clear()
# python arrays
samples = [(h.sample(), float(np.random.uniform())) for _ in range(5)]
x, y = zip(*samples)
dataset.set_dataset(x, y)
assert len(dataset) == 5
# None data
with pytest.raises(TypeError):
dataset.set_dataset(None, int(6))
with pytest.raises(TypeError):
dataset.set_dataset([1, 2, 3], None)
with pytest.raises(TypeError):
dataset.set_dataset(None, None)
@cleanup_dirs
@deterministic_test
def test_dataset_get_best_parameters():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
with pytest.raises(ValueError):
dataset.get_best_parameters(None)
# Test with empty dataset
assert dataset.get_best_parameters() is None
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
objective_values = [v for h, v in samples]
min_index = np.argmin(objective_values)
max_index = np.argmax(objective_values)
max_hp = list(dataset.get_best_parameters(objective='max').values())
min_hp = list(dataset.get_best_parameters(objective='min').values())
assert max_hp == samples[max_index][0]
assert min_hp == samples[min_index][0]
@cleanup_dirs
@deterministic_test
def test_dataset_multi_get_best_parameters():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
with pytest.raises(ValueError):
dataset.get_best_parameters(None)
# Test with empty dataset
assert dataset.get_best_parameters() is None
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
objective_values = [v for h, v in samples]
min_index = np.argmin(objective_values)
max_index = np.argmax(objective_values)
max_hp = data.flatten_parameters(dataset.get_best_parameters(objective='max'))
min_hp = data.flatten_parameters(dataset.get_best_parameters(objective='min'))
assert max_hp == samples[max_index][0]
assert min_hp == samples[min_index][0]
@cleanup_dirs
def test_dataset_parameters():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
assert len(params) == len(dataset.parameters)
dataset.parameters = params
assert len(params) == len(dataset.parameters)
@cleanup_dirs
def test_dataset_serialization_deserialization():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
# serialization
dataset.save_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization
dataset.clear()
assert len(dataset) == 0
dataset.restore_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization from class
path = os.path.join('shac', 'datasets')
dataset2 = data.Dataset.load_from_directory(path)
assert dataset2.parameters is not None
assert len(dataset2.X) == 5
assert len(dataset2.Y) == 5
assert len(dataset2) == 5
dataset3 = data.Dataset.load_from_directory()
assert dataset3.parameters is not None
assert len(dataset3.X) == 5
assert len(dataset3.Y) == 5
# serialization of empty get_dataset
dataset = data.Dataset()
with pytest.raises(FileNotFoundError):
dataset.load_from_directory('null')
with pytest.raises(ValueError):
dataset.save_dataset()
@cleanup_dirs
def test_dataset_multi_serialization_deserialization():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
# serialization
dataset.save_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization
dataset.clear()
assert len(dataset) == 0
dataset.restore_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization from class
path = os.path.join('shac', 'datasets')
dataset2 = data.Dataset.load_from_directory(path)
assert dataset2.parameters is not None
assert len(dataset2.X) == 5
assert len(dataset2.Y) == 5
assert len(dataset2) == 5
dataset3 = data.Dataset.load_from_directory()
assert dataset3.parameters is not None
assert len(dataset3.X) == 5
assert len(dataset3.Y) == 5
# serialization of empty get_dataset
dataset = data.Dataset()
with pytest.raises(FileNotFoundError):
dataset.load_from_directory('null')
with pytest.raises(ValueError):
dataset.save_dataset()
@cleanup_dirs
def test_dataset_serialization_deserialization_custom_basepath():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h, basedir='custom')
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
# serialization
dataset.save_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization
dataset.clear()
assert len(dataset) == 0
dataset.restore_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization from class
path = os.path.join('custom', 'datasets')
dataset2 = data.Dataset.load_from_directory(path)
assert dataset2.parameters is not None
assert len(dataset2.X) == 5
assert len(dataset2.Y) == 5
assert len(dataset2) == 5
dataset3 = data.Dataset.load_from_directory('custom')
assert dataset3.parameters is not None
assert len(dataset3.X) == 5
assert len(dataset3.Y) == 5
# serialization of empty get_dataset
dataset = data.Dataset(basedir='custom')
with pytest.raises(FileNotFoundError):
dataset.load_from_directory('null')
with pytest.raises(ValueError):
dataset.save_dataset()
@cleanup_dirs
def test_dataset_serialization_deserialization_custom_param():
class MockDiscreteHyperParameter(hp.DiscreteHyperParameter):
def __init__(self, name, values, seed=None):
super(MockDiscreteHyperParameter, self).__init__(name, values, seed)
# register the new hyper parameters
hp.set_custom_parameter_class(MockDiscreteHyperParameter)
params = get_hyperparameter_list()
params.append(MockDiscreteHyperParameter('mock-param', ['x', 'y']))
h = hp.HyperParameterList(params, seed=0)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
# serialization
dataset.save_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization
dataset.clear()
assert len(dataset) == 0
dataset.restore_dataset()
assert len(dataset) == 5
assert os.path.exists(dataset.data_path)
assert os.path.exists(dataset.parameter_path)
# deserialization from class
path = os.path.join('shac', 'datasets')
dataset2 = data.Dataset.load_from_directory(path)
assert dataset2.parameters is not None
assert len(dataset2.X) == 5
assert len(dataset2.Y) == 5
assert len(dataset2) == 5
assert 'mock-param' in dataset2.parameters.name_map.values()
assert dataset2.parameters.num_choices == 5
dataset3 = data.Dataset.load_from_directory()
assert dataset3.parameters is not None
assert len(dataset3.X) == 5
assert len(dataset3.Y) == 5
assert 'mock-param' in dataset3.parameters.name_map.values()
assert dataset3.parameters.num_choices == 5
# serialization of empty get_dataset
dataset = data.Dataset()
with pytest.raises(FileNotFoundError):
dataset.load_from_directory('null')
with pytest.raises(ValueError):
dataset.save_dataset()
@cleanup_dirs
@deterministic_test
def test_dataset_single_encoding_decoding():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
sample = (h.sample(), np.random.uniform())
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset()
y_values = [0.]
assert encoded_x.shape == (1, 4)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (1,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
assert decoded_x.shape == (1, 4)
@cleanup_dirs
@deterministic_test
def test_dataset_single_multi_encoding_decoding():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
sample = (h.sample(), np.random.uniform())
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset()
y_values = [0.]
assert encoded_x.shape == (1, 14)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (1,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
assert decoded_x.shape == (1, 14)
@cleanup_dirs
@deterministic_test
def test_dataset_single_encoding_decoding_min():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
sample = (h.sample(), np.random.uniform())
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset(objective='min')
y_values = [0.]
assert encoded_x.shape == (1, 4)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (1,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
assert decoded_x.shape == (1, 4)
@cleanup_dirs
@deterministic_test
def test_dataset_single_multi_encoding_decoding_min():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params)
dataset = data.Dataset(h)
sample = (h.sample(), np.random.uniform())
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset(objective='min')
y_values = [0.]
assert encoded_x.shape == (1, 14)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (1,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
assert decoded_x.shape == (1, 14)
@cleanup_dirs
@deterministic_test
def test_dataset_encoding_decoding():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params, seed=0)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset(objective='min')
y_values = [0., 0., 0., 1., 1.]
assert encoded_x.shape == (5, 4)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (5,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
decoded_x2 = dataset.decode_dataset()
assert decoded_x.shape == (5, 4)
assert len(decoded_x) == len(decoded_x2)
x, y = dataset.get_dataset()
x_ = x[:, :3].astype('float')
decoded_x_ = decoded_x[:, :3].astype('float')
assert np.allclose(x_, decoded_x_, rtol=1e-3)
samples2 = [(h.sample(), np.random.uniform()) for _ in range(5)]
x, y = zip(*samples2)
encoded_x, encoded_y = dataset.encode_dataset(x, y, objective='min')
y_values = [0., 1., 0., 0., 1.]
assert encoded_x.shape == (5, 4)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (5,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
@cleanup_dirs
@deterministic_test
def test_dataset_multi_encoding_decoding():
params = get_multi_parameter_list()
h = hp.HyperParameterList(params, seed=0)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset(objective='min')
y_values = [0., 0., 0., 1., 1.]
assert encoded_x.shape == (5, 14)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (5,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
decoded_x2 = dataset.decode_dataset()
assert decoded_x.shape == (5, 14)
assert len(decoded_x) == len(decoded_x2)
x, y = dataset.get_dataset()
x_ = x[:, :10].astype('float')
decoded_x_ = decoded_x[:, :10].astype('float')
assert np.allclose(x_, decoded_x_, rtol=1e-3)
samples2 = [(h.sample(), np.random.uniform()) for _ in range(5)]
x, y = zip(*samples2)
encoded_x, encoded_y = dataset.encode_dataset(x, y, objective='min')
y_values = [0., 1., 0., 0., 1.]
assert encoded_x.shape == (5, 14)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (5,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
@cleanup_dirs
@deterministic_test
def test_dataset_encoding_decoding_min():
params = get_hyperparameter_list()
h = hp.HyperParameterList(params, seed=0)
dataset = data.Dataset(h)
samples = [(h.sample(), np.random.uniform()) for _ in range(5)]
for sample in samples:
dataset.add_sample(*sample)
encoded_x, encoded_y = dataset.encode_dataset(objective='min')
y_values = [0., 0., 0., 1., 1.]
assert encoded_x.shape == (5, 4)
assert encoded_x.dtype == np.float64
assert encoded_y.shape == (5,)
assert encoded_y.dtype == np.float64
assert np.allclose(y_values, encoded_y, rtol=1e-3)
decoded_x = dataset.decode_dataset(encoded_x)
assert decoded_x.shape == (5, 4)
x, y = dataset.get_dataset()
x_ = x[:, :3].astype('float')
decoded_x_ = decoded_x[:, :3].astype('float')
assert | np.allclose(x_, decoded_x_, rtol=1e-3) | numpy.allclose |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.