prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
''' Created on 29.09.2017 @author: lemmerfn ''' import numbers from collections import namedtuple from functools import total_ordering import numpy as np import pysubgroup as ps @total_ordering class NumericTarget: statistic_types = ( 'size_sg', 'size_dataset', 'mean_sg', 'mean_dataset', 'std_sg', 'std_dataset', 'median_sg', 'median_dataset', 'max_sg', 'max_dataset', 'min_sg', 'min_dataset', 'mean_lift', 'median_lift') def __init__(self, target_variable): self.target_variable = target_variable def __repr__(self): return "T: " + str(self.target_variable) def __eq__(self, other): return self.__dict__ == other.__dict__ def __lt__(self, other): return str(self) < str(other) def get_attributes(self): return [self.target_variable] def get_base_statistics(self, subgroup, data): cover_arr, size_sg = ps.get_cover_array_and_size(subgroup, len(data), data) all_target_values = data[self.target_variable] sg_target_values = all_target_values[cover_arr] instances_dataset = len(data) instances_subgroup = size_sg mean_sg = np.mean(sg_target_values) mean_dataset = np.mean(all_target_values) return (instances_dataset, mean_dataset, instances_subgroup, mean_sg) def calculate_statistics(self, subgroup, data, cached_statistics=None): if cached_statistics is None or not isinstance(cached_statistics, dict): statistics = dict() elif all(k in cached_statistics for k in NumericTarget.statistic_types): return cached_statistics else: statistics = cached_statistics cover_arr, _ = ps.get_cover_array_and_size(subgroup, len(data), data) all_target_values = data[self.target_variable].to_numpy() sg_target_values = all_target_values[cover_arr] statistics['size_sg'] = len(sg_target_values) statistics['size_dataset'] = len(data) statistics['mean_sg'] = np.mean(sg_target_values) statistics['mean_dataset'] = np.mean(all_target_values) statistics['std_sg'] = np.std(sg_target_values) statistics['std_dataset'] = np.std(all_target_values) statistics['median_sg'] = np.median(sg_target_values) statistics['median_dataset'] = np.median(all_target_values) statistics['max_sg'] = np.max(sg_target_values) statistics['max_dataset'] = np.max(all_target_values) statistics['min_sg'] = np.min(sg_target_values) statistics['min_dataset'] = np.min(all_target_values) statistics['mean_lift'] = statistics['mean_sg'] / statistics['mean_dataset'] statistics['median_lift'] = statistics['median_sg'] / statistics['median_dataset'] return statistics class StandardQFNumeric(ps.BoundedInterestingnessMeasure): tpl = namedtuple('StandardQFNumeric_parameters', ('size_sg', 'mean', 'estimate')) @staticmethod def standard_qf_numeric(a, _, mean_dataset, instances_subgroup, mean_sg): return instances_subgroup ** a * (mean_sg - mean_dataset) def __init__(self, a, invert=False, estimator='sum'): if not isinstance(a, numbers.Number): raise ValueError(f'a is not a number. Received a={a}') self.a = a self.invert = invert self.required_stat_attrs = ('size_sg', 'mean') self.dataset_statistics = None self.all_target_values = None self.has_constant_statistics = False if estimator == 'sum': self.estimator = StandardQFNumeric.Summation_Estimator(self) elif estimator == 'average': self.estimator = StandardQFNumeric.Average_Estimator(self) elif estimator == 'order': self.estimator = StandardQFNumeric.Ordering_Estimator(self) else: raise ValueError('estimator is not one of the following: ' + str(['sum', 'average', 'order'])) def calculate_constant_statistics(self, data, target): data = self.estimator.get_data(data, target) self.all_target_values = data[target.target_variable].to_numpy() target_mean = np.mean(self.all_target_values) data_size = len(data) self.dataset_statistics = StandardQFNumeric.tpl(data_size, target_mean, None) self.estimator.calculate_constant_statistics(data, target) self.has_constant_statistics = True def evaluate(self, subgroup, target, data, statistics=None): statistics = self.ensure_statistics(subgroup, target, data, statistics) dataset = self.dataset_statistics return StandardQFNumeric.standard_qf_numeric(self.a, dataset.size_sg, dataset.mean, statistics.size_sg, statistics.mean) def calculate_statistics(self, subgroup, target, data, statistics=None): cover_arr, sg_size = ps.get_cover_array_and_size(subgroup, len(self.all_target_values), data) sg_mean =
np.array([0])
numpy.array
''' Utility functions to analyze particle data. @author: <NAME> <<EMAIL>> Units: unless otherwise noted, all quantities are in (combinations of): mass [M_sun] position [kpc comoving] distance, radius [kpc physical] velocity [km / s] time [Gyr] ''' # system ---- from __future__ import absolute_import, division, print_function # python 2 compatability import numpy as np from numpy import Inf # local ---- from . import basic as ut from . import halo_property from . import orbit from . import catalog #=================================================================================================== # utilities - parsing input arguments #=================================================================================================== def parse_species(part, species): ''' Parse input list of species to ensure all are in catalog. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to analyze Returns ------- species : list : name[s] of particle species ''' Say = ut.io.SayClass(parse_species) if np.isscalar(species): species = [species] if species == ['all'] or species == ['total']: species = list(part.keys()) elif species == ['baryon']: species = ['gas', 'star'] for spec in list(species): if spec not in part: species.remove(spec) Say.say('! {} not in particle catalog'.format(spec)) return species def parse_indices(part_spec, part_indices): ''' Parse input list of particle indices. If none, generate via arange. Parameters ---------- part_spec : dict : catalog of particles of given species part_indices : array-like : indices of particles Returns ------- part_indices : array : indices of particles ''' if part_indices is None or not len(part_indices): if 'position' in part_spec: part_indices = ut.array.get_arange(part_spec['position'].shape[0]) elif 'id' in part_spec: part_indices = ut.array.get_arange(part_spec['id'].size) elif 'mass' in part_spec: part_indices = ut.array.get_arange(part_spec['mass'].size) return part_indices def parse_property(parts_or_species, property_name, property_values=None, single_host=True): ''' Get property values, either input or stored in particle catalog. List-ify as necessary to match input particle catalog. Parameters ---------- parts_or_species : dict or string or list thereof : catalog[s] of particles or string[s] of species property_name : str : options: 'center_position', 'center_velocity', 'indices' property_values : float/array or list thereof : property values to assign single_host : bool : use only the primary host (if not input any property_values) Returns ------- property_values : float or list ''' def parse_property_single(part_or_spec, property_name, property_values, single_host): if property_name in ['center_position', 'center_velocity']: if property_values is None or not len(property_values): if property_name == 'center_position': property_values = part_or_spec.host_positions elif property_name == 'center_velocity': # default to the primary host property_values = part_or_spec.host_velocities if property_values is None or not len(property_values): raise ValueError('no input {} and no {} in input catalog'.format( property_name, property_name)) if single_host: property_values = property_values[0] # use omly the primary host if isinstance(property_values, list): raise ValueError('input list of {}s but input single catalog'.format(property_name)) return property_values assert property_name in ['center_position', 'center_velocity', 'indices'] if isinstance(parts_or_species, list): # input list of particle catalogs if (property_values is None or not len(property_values) or not isinstance(property_values, list)): property_values = [property_values for _ in parts_or_species] if len(property_values) != len(parts_or_species): raise ValueError('number of input {}s not match number of input catalogs'.format( property_name)) for i, part_or_spec in enumerate(parts_or_species): property_values[i] = parse_property_single( part_or_spec, property_name, property_values[i], single_host) else: # input single particle catalog property_values = parse_property_single( parts_or_species, property_name, property_values, single_host) return property_values #=================================================================================================== # id <-> index conversion #=================================================================================================== def assign_id_to_index( part, species=['all'], id_name='id', id_min=0, store_as_dict=False, print_diagnostic=True): ''' Assign, to particle dictionary, arrays that points from object id to species kind and index in species array. This is useful for analyses multi-species catalogs with intermixed ids. Do not assign pointers for ids below id_min. Parameters ---------- part : dict : catalog of particles of various species species : str or list : name[s] of species to use: 'all' = use all in particle dictionary id_name : str : key name for particle id id_min : int : minimum id in catalog store_as_dict : bool : whether to store id-to-index pointer as dict instead of array print_diagnostic : bool : whether to print diagnostic information ''' Say = ut.io.SayClass(assign_id_to_index) # get list of species that have valid id key species = parse_species(part, species) for spec in species: assert id_name in part[spec] # get list of all ids ids_all = [] for spec in species: ids_all.extend(part[spec][id_name]) ids_all = np.array(ids_all, dtype=part[spec][id_name].dtype) if print_diagnostic: # check if duplicate ids within species for spec in species: masks = (part[spec][id_name] >= id_min) total_number = np.sum(masks) unique_number = np.unique(part[spec][id_name][masks]).size if total_number != unique_number: Say.say('species {} has {} ids that are repeated'.format( spec, total_number - unique_number)) # check if duplicate ids across species if len(species) > 1: masks = (ids_all >= id_min) total_number = np.sum(masks) unique_number = np.unique(ids_all[masks]).size if total_number != unique_number: Say.say('across all species, {} ids are repeated'.format( total_number - unique_number)) Say.say('maximum id = {}'.format(ids_all.max())) part.id_to_index = {} if store_as_dict: # store pointers as a dictionary # store overall dictionary (across all species) and dictionary within each species for spec in species: part[spec].id_to_index = {} for part_i, part_id in enumerate(part[spec][id_name]): if part_id in part.id_to_index: # redundant ids - add to existing entry as list if isinstance(part.id_to_index[part_id], tuple): part.id_to_index[part_id] = [part.id_to_index[part_id]] part.id_to_index[part_id].append((spec, part_i)) if part_id in part[spec].id_to_index: if np.isscalar(part[spec].id_to_index[part_id]): part[spec].id_to_index[part_id] = [part[spec].id_to_index[part_id]] part[spec].id_to_index[part_id].append(part_i) else: # new id - add as new entry part.id_to_index[part_id] = (spec, part_i) part[spec].id_to_index[part_id] = part_i # convert lists to arrays dtype = part[spec][id_name].dtype for part_id in part[spec].id_to_index: if isinstance(part[spec].id_to_index[part_id], list): part[spec].id_to_index[part_id] = np.array( part[spec].id_to_index[part_id], dtype=dtype) else: # store pointers as arrays part.id_to_index['species'] = np.zeros(ids_all.max() + 1, dtype='|S6') dtype = ut.array.parse_data_type(ids_all.max() + 1) part.id_to_index['index'] = ut.array.get_array_null(ids_all.max() + 1, dtype=dtype) for spec in species: masks = (part[spec][id_name] >= id_min) part.id_to_index['species'][part[spec][id_name][masks]] = spec part.id_to_index['index'][part[spec][id_name][masks]] = ut.array.get_arange( part[spec][id_name], dtype=dtype)[masks] #=================================================================================================== # position, velocity #=================================================================================================== def get_center_positions( part, species=['star', 'dark', 'gas'], part_indicess=None, method='center-of-mass', center_number=1, exclusion_distance=200, center_positions=None, distance_max=Inf, compare_centers=False, return_array=True): ''' Get position[s] of center of mass [kpc comoving] using iterative zoom-in on input species. Parameters ---------- part : dict : dictionary of particles species : str or list : name[s] of species to use: 'all' = use all in particle dictionary part_indicess : array or list of arrays : indices of particle to use to define center use this to include only particles that you know are relevant method : str : method of centering: 'center-of-mass', 'potential' center_number : int : number of centers to compute exclusion_distance : float : radius around previous center to cut before finding next center [kpc comoving] center_position : array-like : initial center position[s] to use distance_max : float : maximum radius to consider initially compare_centers : bool : whether to run sanity check to compare centers via zoom v potential return_array : bool : whether to return single array instead of array of arrays, if center_number = 1 Returns ------- center_positions : array or array of arrays: position[s] of center[s] [kpc comoving] ''' Say = ut.io.SayClass(get_center_positions) assert method in ['center-of-mass', 'potential'] species = parse_species(part, species) part_indicess = parse_property(species, 'indices', part_indicess) if center_positions is None or np.ndim(center_positions) == 1: # list-ify center_positions center_positions = [center_positions for _ in range(center_number)] if np.shape(center_positions)[0] != center_number: raise ValueError('! input center_positions = {} but also input center_number = {}'.format( center_positions, center_number)) if method == 'potential': if len(species) > 1: Say.say('! using only first species = {} for centering via potential'.format( species[0])) if 'potential' not in part[species[0]]: Say.say('! {} does not have potential, using center-of-mass zoom instead'.format( species[0])) method = 'center-of-mass' if method == 'potential': # use single (first) species spec_i = 0 spec_name = species[spec_i] part_indices = parse_indices(spec_name, part_indicess[spec_i]) for center_i, center_position in enumerate(center_positions): if center_i > 0: # cull out particles near previous center distances = get_distances_wrt_center( part, spec_name, part_indices, center_positions[center_i - 1], total_distance=True, return_array=True) # exclusion distance in [kpc comoving] part_indices = part_indices[ distances > (exclusion_distance * part.info['scalefactor'])] if center_position is not None and distance_max > 0 and distance_max < Inf: # impose distance cut around input center part_indices = get_indices_within_coordinates( part, spec_name, [0, distance_max], center_position, part_indicess=part_indices, return_array=True) part_index = np.nanargmin(part[spec_name]['potential'][part_indices]) center_positions[center_i] = part[spec_name]['position'][part_index] else: for spec_i, spec_name in enumerate(species): part_indices = parse_indices(part[spec_name], part_indicess[spec_i]) if spec_i == 0: positions = part[spec_name]['position'][part_indices] masses = part[spec_name]['mass'][part_indices] else: positions = np.concatenate( [positions, part[spec_name]['position'][part_indices]]) masses = np.concatenate([masses, part[spec_name]['mass'][part_indices]]) for center_i, center_position in enumerate(center_positions): if center_i > 0: # remove particles near previous center distances = ut.coordinate.get_distances( positions, center_positions[center_i - 1], part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) # [kpc physical] masks = (distances > (exclusion_distance * part.info['scalefactor'])) positions = positions[masks] masses = masses[masks] center_positions[center_i] = ut.coordinate.get_center_position_zoom( positions, masses, part.info['box.length'], center_position=center_position, distance_max=distance_max) center_positions = np.array(center_positions) if compare_centers: position_dif_max = 1 # [kpc comoving] if 'potential' not in part[species[0]]: Say.say('! {} not have potential, cannot compare against zoom center-of-mass'.format( species[0])) return center_positions if method == 'potential': method_other = 'center-of-mass' else: method_other = 'potential' center_positions_other = get_center_positions( part, species, part_indicess, method_other, center_number, exclusion_distance, center_positions, distance_max, compare_centers=False, return_array=False) position_difs = np.abs(center_positions - center_positions_other) for pi, position_dif in enumerate(position_difs): if np.max(position_dif) > position_dif_max: Say.say('! offset center positions') Say.say('center position via {}: '.format(method), end='') ut.io.print_array(center_positions[pi], '{:.3f}') Say.say('center position via {}: '.format(method_other), end='') ut.io.print_array(center_positions_other[pi], '{:.3f}') Say.say('position difference: ', end='') ut.io.print_array(position_dif, '{:.3f}') if return_array and center_number == 1: center_positions = center_positions[0] return center_positions def get_center_velocities( part, species_name='star', part_indices=None, distance_max=15, center_positions=None, return_array=True): ''' Get velocity[s] [km / s] of center of mass of input species. Parameters ---------- part : dict : dictionary of particles species_name : str : name of particle species to use part_indices : array : indices of particle to use to define center use this to exclude particles that you know are not relevant distance_max : float : maximum radius to consider [kpc physical] center_positions : array or list of arrays: center position[s] [kpc comoving] if None, will use default center position[s] in catalog return_array : bool : whether to return single array instead of array of arrays, if input single center position Returns ------- center_velocities : array or array of arrays : velocity[s] of center of mass [km / s] ''' center_positions = parse_property(part, 'center_position', center_positions, single_host=False) part_indices = parse_indices(part[species_name], part_indices) distance_max /= part.snapshot['scalefactor'] # convert to [kpc comoving] to match positions center_velocities = np.zeros(center_positions.shape, part[species_name]['velocity'].dtype) for center_i, center_position in enumerate(center_positions): center_velocities[center_i] = ut.coordinate.get_center_velocity( part[species_name]['velocity'][part_indices], part[species_name]['mass'][part_indices], part[species_name]['position'][part_indices], center_position, distance_max, part.info['box.length']) if return_array and len(center_velocities) == 1: center_velocities = center_velocities[0] return center_velocities def get_distances_wrt_center( part, species=['star'], part_indicess=None, center_position=None, rotation=None, coordinate_system='cartesian', total_distance=False, return_array=True): ''' Get distances (scalar or vector) between input particles and center_position (input or stored in particle catalog). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to compute part_indicess : array or list : indices[s] of particles to compute, one array per input species center_position : array : position of center [kpc comoving] if None, will use default center position in particle catalog rotation : bool or array : whether to rotate particles two options: (a) if input array of eigen-vectors, will define rotation axes for all species (b) if True, will rotate to align with principal axes defined by input species coordinate_system : str : which coordinates to get distances in: 'cartesian' (default), 'cylindrical', 'spherical' total_distance : bool : whether to compute total/scalar distance return_array : bool : whether to return single array instead of dict if input single species Returns ------- dist : array (object number x dimension number) or dict thereof : [kpc physical] 3-D distance vectors aligned with default x,y,z axes OR 3-D distance vectors aligned with major, medium, minor axis OR 2-D distance vectors along major axes and along minor axis OR 1-D scalar distances OR dictionary of above for each species ''' assert coordinate_system in ('cartesian', 'cylindrical', 'spherical') species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) part_indicess = parse_property(species, 'indices', part_indicess) dist = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) dist[spec] = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance) # [kpc physical] if not total_distance: if rotation is not None: if rotation is True: # get principal axes stored in particle dictionary if (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('! cannot find principal_axes_tensor in species dict') elif len(rotation): # use input rotation vectors rotation_tensor = rotation dist[spec] = ut.coordinate.get_coordinates_rotated(dist[spec], rotation_tensor) if coordinate_system in ['cylindrical', 'spherical']: dist[spec] = ut.coordinate.get_positions_in_coordinate_system( dist[spec], 'cartesian', coordinate_system) if return_array and len(species) == 1: dist = dist[species[0]] return dist def get_velocities_wrt_center( part, species=['star'], part_indicess=None, center_velocity=None, center_position=None, rotation=False, coordinate_system='cartesian', total_velocity=False, return_array=True): ''' Get velocities (either scalar or vector) between input particles and center_velocity (input or stored in particle catalog). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to get part_indicess : array or list : indices[s] of particles to select, one array per input species center_velocity : array : center velocity [km / s] if None, will use default center velocity in catalog center_position : array : center position [kpc comoving], to use in computing Hubble flow if None, will use default center position in catalog rotation : bool or array : whether to rotate particles two options: (a) if input array of eigen-vectors, will define rotation axes for all species (b) if True, will rotate to align with principal axes defined by input species coordinate_system : str : which coordinates to get positions in: 'cartesian' (default), 'cylindrical', 'spherical' total_velocity : bool : whether to compute total/scalar velocity return_array : bool : whether to return array (instead of dict) if input single species Returns ------- vel : array or dict thereof : velocities (object number x dimension number, or object number) [km / s] ''' assert coordinate_system in ('cartesian', 'cylindrical', 'spherical') species = parse_species(part, species) center_velocity = parse_property(part, 'center_velocity', center_velocity) center_position = parse_property(part, 'center_position', center_position) part_indicess = parse_property(species, 'indices', part_indicess) vel = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) vel[spec] = ut.coordinate.get_velocity_differences( part[spec]['velocity'][part_indices], center_velocity, part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], part.snapshot['time.hubble'], total_velocity) if not total_velocity: if rotation is not None: if rotation is True: # get principal axes stored in particle dictionary if (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('! cannot find principal_axes_tensor in species dict') elif len(rotation): # use input rotation vectors rotation_tensor = rotation vel[spec] = ut.coordinate.get_coordinates_rotated(vel[spec], rotation_tensor) if coordinate_system in ('cylindrical', 'spherical'): # need to compute distance vectors distances = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] if rotation is not None: # need to rotate distances too distances = ut.coordinate.get_coordinates_rotated(distances, rotation_tensor) vel[spec] = ut.coordinate.get_velocities_in_coordinate_system( vel[spec], distances, 'cartesian', coordinate_system) if return_array and len(species) == 1: vel = vel[species[0]] return vel def get_orbit_dictionary( part, species=['star'], part_indicess=None, center_position=None, center_velocity=None, return_single=True): ''' Get dictionary of orbital parameters. Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to compute part_indicess : array or list : indices[s] of particles to select, one array per input species center_position : array : center (reference) position center_position : array : center (reference) velociy return_single : bool : whether to return single dict instead of dict of dicts, if single species Returns ------- orb : dict : dictionary of orbital properties, one for each species (unless scalarize is True) ''' species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) center_velocity = parse_property(part, 'center_velocity', center_velocity) part_indicess = parse_property(species, 'indices', part_indicess) orb = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) distance_vectors = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) velocity_vectors = ut.coordinate.get_velocity_differences( part[spec]['velocity'][part_indices], center_velocity, part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], part.snapshot['time.hubble']) orb[spec] = orbit.get_orbit_dictionary(distance_vectors, velocity_vectors) if return_single and len(species) == 1: orb = orb[species[0]] return orb #=================================================================================================== # subsample #=================================================================================================== def get_indices_within_coordinates( part, species=['star'], distance_limitss=[], center_position=None, velocity_limitss=[], center_velocity=None, rotation=None, coordinate_system='cartesian', part_indicess=None, return_array=True): ''' Get indices of particles that are within distance and/or velocity coordinate limits from center (either input or stored in particle catalog). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to use distance_limitss : list or list of lists: min and max distance[s], relative to center, to get particles [kpc physical] default is 1-D list, but can be 2-D or 3-D list to select separately along dimensions if 2-D or 3-D, need to input *signed* limits center_position : array : center position [kpc comoving] if None, will use default center position in particle catalog velocity_limitss : list or list of lists: min and max velocities, relative to center, to get particles [km / s] default is 1-D list, but can be 2-D or 3-D list to select separately along dimensions if 2-D or 3-D, need to input *signed* limits center_velocity : array : center velocity [km / s] if None, will use default center velocity in particle catalog rotation : bool or array : whether to rotate particle coordinates two options: (a) if input array of eigen-vectors, will use to define rotation axes for all species (b) if True, will rotate to align with principal axes defined by each input species coordinate_system : str : which coordinates to get positions in: 'cartesian' (default), 'cylindrical', 'spherical' part_indicess : array : prior indices[s] of particles to select, one array per input species return_array : bool : whether to return single array instead of dict, if input single species Returns ------- part_index : dict or array : array or dict of arrays of indices of particles in region ''' assert coordinate_system in ['cartesian', 'cylindrical', 'spherical'] species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) if velocity_limitss is not None and len(velocity_limitss): center_velocity = parse_property(part, 'center_velocity', center_velocity) part_indicess = parse_property(species, 'indices', part_indicess) part_index = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) if len(part_indices) and distance_limitss is not None and len(distance_limitss): distance_limits_dimen = np.ndim(distance_limitss) if distance_limits_dimen == 1: total_distance = True elif distance_limits_dimen == 2: total_distance = False assert len(distance_limitss) in [2, 3] else: raise ValueError('! cannot parse distance_limitss = {}'.format(distance_limitss)) if (distance_limits_dimen == 1 and distance_limitss[0] <= 0 and distance_limitss[1] >= Inf): pass # null case, no actual limits imposed, so skip rest else: """ # an attempt to be clever, but gains seem modest distances = np.abs(coordinate.get_position_difference( part[spec]['position'] - center_position, part.info['box.length'])) * part.snapshot['scalefactor'] # [kpc physical] for dimension_i in range(part[spec]['position'].shape[1]): masks *= ((distances[:, dimension_i] < np.max(distance_limits)) * (distances[:, dimension_i] >= np.min(distance_limits))) part_indices[spec] = part_indices[spec][masks] distances = distances[masks] distances = np.sum(distances ** 2, 1) # assume 3-d position """ distancess = get_distances_wrt_center( part, spec, part_indices, center_position, rotation, coordinate_system, total_distance) if distance_limits_dimen == 1: # distances are absolute masks = ( (distancess >= np.min(distance_limitss)) * (distancess < np.max(distance_limitss)) ) elif distance_limits_dimen == 2: if len(distance_limitss) == 2: # distances are signed masks = ( (distancess[0] >= np.min(distance_limitss[0])) * (distancess[0] < np.max(distance_limitss[0])) * (distancess[1] >= np.min(distance_limitss[1])) * (distancess[1] < np.max(distance_limitss[1])) ) elif distance_limits_dimen == 3: # distances are signed masks = ( (distancess[0] >= np.min(distance_limitss[0])) * (distancess[0] < np.max(distance_limitss[0])) * (distancess[1] >= np.min(distance_limitss[1])) * (distancess[1] < np.max(distance_limitss[1])) (distancess[2] >= np.min(distance_limitss[2])) * (distancess[2] < np.max(distance_limitss[2])) ) part_indices = part_indices[masks] if len(part_indices) and velocity_limitss is not None and len(velocity_limitss): velocity_limits_dimen = np.ndim(velocity_limitss) if velocity_limits_dimen == 1: return_total_velocity = True elif velocity_limits_dimen == 2: return_total_velocity = False assert len(velocity_limitss) in [2, 3] else: raise ValueError('! cannot parse velocity_limitss = {}'.format(velocity_limitss)) if (velocity_limits_dimen == 1 and velocity_limitss[0] <= 0 and velocity_limitss[1] >= Inf): pass # null case, no actual limits imposed, so skip rest else: velocitiess = get_velocities_wrt_center( part, spec, part_indices, center_velocity, center_position, rotation, coordinate_system, return_total_velocity) if velocity_limits_dimen == 1: # velocities are absolute masks = ( (velocitiess >= np.min(velocity_limitss)) * (velocitiess < np.max(velocity_limitss)) ) elif velocity_limits_dimen == 2: if len(velocity_limitss) == 2: # velocities are signed masks = ( (velocitiess[0] >= np.min(velocity_limitss[0])) * (velocitiess[0] < np.max(velocity_limitss[0])) * (velocitiess[1] >= np.min(velocity_limitss[1])) * (velocitiess[1] < np.max(velocity_limitss[1])) ) elif len(velocity_limitss) == 3: # velocities are signed masks = ( (velocitiess[0] >= np.min(velocity_limitss[0])) * (velocitiess[0] < np.max(velocity_limitss[0])) * (velocitiess[1] >= np.min(velocity_limitss[1])) * (velocitiess[1] < np.max(velocity_limitss[1])) (velocitiess[2] >= np.min(velocity_limitss[2])) * (velocitiess[2] < np.max(velocity_limitss[2])) ) part_indices = part_indices[masks] part_index[spec] = part_indices if return_array and len(species) == 1: part_index = part_index[species[0]] return part_index def get_indices_id_kind( part, species=['star'], id_kind='unique', part_indicess=None, return_array=True): ''' Get indices of particles that either are unique (no other particles of same species have same id) or multiple (other particle of same species has same id). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species split_kind : str : id kind of particles to get: 'unique', 'multiple' part_indicess : array : prior indices[s] of particles to select, one array per input species return_array : bool : whether to return single array instead of dict, if input single species Returns ------- part_index : dict or array : array or dict of arrays of indices of particles of given split kind ''' species = parse_species(part, species) part_indicess = parse_property(species, 'indices', part_indicess) assert id_kind in ['unique', 'multiple'] part_index = {} for spec_i, spec in enumerate(species): part_indices = parse_indices(part[spec], part_indicess[spec_i]) _pids, piis, counts = np.unique( part[spec]['id'][part_indices], return_index=True, return_counts=True) pis_unsplit = np.sort(part_indices[piis[counts == 1]]) if id_kind == 'unique': part_index[spec] = pis_unsplit elif id_kind == 'multiple': part_index[spec] = np.setdiff1d(part_indices, pis_unsplit) else: raise ValueError('! not recognize id_kind = {}'.format(id_kind)) if return_array and len(species) == 1: part_index = part_index[species[0]] return part_index #=================================================================================================== # halo/galaxy major/minor axes #=================================================================================================== def get_principal_axes( part, species_name='star', distance_max=Inf, mass_percent=None, age_percent=None, age_limits=[], center_positions=None, center_velocities=None, part_indices=None, return_array=True, print_results=True): ''' Get reverse-sorted eigen-vectors, eigen-values, and axis ratios of principal axes of each host galaxy/halo. Ensure that principal axes are oriented so median v_phi > 0. Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to use distance_max : float : maximum distance to select particles [kpc physical] mass_percent : float : keep particles within the distance that encloses mass percent [0, 100] of all particles within distance_max age_percent : float : use the youngest age_percent of particles within distance cut age_limits : float : use only particles within age limits center_positions : array or array of arrays : position[s] of center[s] [kpc comoving] center_velocities : array or array of arrays : velocity[s] of center[s] [km / s] part_indices : array : indices[s] of particles to select return_array : bool : whether to return single array for each property, instead of array of arrays, if single host print_results : bool : whether to print axis ratios Returns ------- principal_axes = { 'rotation.tensor': array : rotation vectors that define max, med, min axes 'eigen.values': array : eigen-values of max, med, min axes 'axis.ratios': array : ratios of principal axes } ''' Say = ut.io.SayClass(get_principal_axes) center_positions = parse_property(part, 'center_position', center_positions, single_host=False) center_velocities = parse_property( part, 'center_velocity', center_velocities, single_host=False) part_indices = parse_indices(part[species_name], part_indices) principal_axes = { 'rotation.tensor': [], 'eigen.values': [], 'axis.ratios': [], } for center_i, center_position in enumerate(center_positions): distance_vectors = ut.coordinate.get_distances( part[species_name]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] distances = np.sqrt(np.sum(distance_vectors ** 2, 1)) masks = (distances < distance_max) if mass_percent: distance_percent = ut.math.percentile_weighted( distances[masks], mass_percent, part[species_name].prop('mass', part_indices[masks])) masks *= (distances < distance_percent) if age_percent or (age_limits is not None and len(age_limits)): if 'form.scalefactor' not in part[species_name]: raise ValueError('! input age constraints but age not in {} catalog'.format( species_name)) if age_percent and (age_limits is not None and len(age_limits)): Say.say('input both age_percent and age_limits, using only age_percent') if age_percent: age_max = ut.math.percentile_weighted( part[species_name].prop('age', part_indices[masks]), age_percent, part[species_name].prop('mass', part_indices[masks])) age_limits_use = [0, age_max] else: age_limits_use = age_limits Say.say('using {} particles with age = {} Gyr'.format( species_name, ut.array.get_limits_string(age_limits_use))) masks *= ((part[species_name].prop('age', part_indices) >= min(age_limits_use)) * (part[species_name].prop('age', part_indices) < max(age_limits_use))) rotation_tensor, eigen_values, axis_ratios = ut.coordinate.get_principal_axes( distance_vectors[masks], part[species_name].prop('mass', part_indices[masks]), print_results) # test if need to flip a principal axis to ensure that net v_phi > 0 velocity_vectors = ut.coordinate.get_velocity_differences( part[species_name].prop('velocity', part_indices[masks]), center_velocities[center_i]) velocity_vectors_rot = ut.coordinate.get_coordinates_rotated( velocity_vectors, rotation_tensor) distance_vectors_rot = ut.coordinate.get_coordinates_rotated( distance_vectors[masks], rotation_tensor) velocity_vectors_cyl = ut.coordinate.get_velocities_in_coordinate_system( velocity_vectors_rot, distance_vectors_rot, 'cartesian', 'cylindrical') if np.median(velocity_vectors_cyl[:, 2]) < 0: rotation_tensor[1] *= -1 # flip so net v_phi is positive principal_axes['rotation.tensor'].append(rotation_tensor) principal_axes['eigen.values'].append(eigen_values) principal_axes['axis.ratios'].append(axis_ratios) for k in principal_axes: principal_axes[k] = np.array(principal_axes[k]) if return_array and np.shape(center_positions)[0] == 1: for k in principal_axes: principal_axes[k] = principal_axes[k][0] return principal_axes #=================================================================================================== # halo/galaxy radius #=================================================================================================== def get_halo_properties( part, species=['dark', 'star', 'gas'], virial_kind='200m', distance_limits=[10, 600], distance_bin_width=0.02, distance_scaling='log', center_position=None, return_array=True, print_results=True): ''' Compute halo radius according to virial_kind. Return this radius, the mass from each species within this radius, and particle indices within this radius (if get_part_indices). Parameters ---------- part : dict : catalog of particles at snapshot species : str or list : name[s] of particle species to use: 'all' = use all in dictionary virial_kind : str : virial overdensity definition '200m' -> average density is 200 x matter '200c' -> average density is 200 x critical 'vir' -> average density is Bryan & Norman 'fof.100m' -> edge density is 100 x matter, for FoF(ll=0.168) 'fof.60m' -> edge density is 60 x matter, for FoF(ll=0.2) distance_limits : list : min and max distance to consider [kpc physical] distance_bin_width : float : width of distance bin distance_scaling : str : scaling of distance: 'log', 'linear' center_position : array : center position to use if None, will use default center position in catalog return_array : bool : whether to return array (instead of dict) if input single species print_results : bool : whether to print radius and mass Returns ------- halo_prop : dict : dictionary of halo properties: radius : float : halo radius [kpc physical] mass : float : mass within radius [M_sun] indices : array : indices of partices within radius (if get_part_indices) ''' distance_limits = np.asarray(distance_limits) Say = ut.io.SayClass(get_halo_properties) species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) HaloProperty = halo_property.HaloPropertyClass(part.Cosmology, part.snapshot['redshift']) DistanceBin = ut.binning.DistanceBinClass( distance_scaling, distance_limits, width=distance_bin_width, dimension_number=3) overdensity, reference_density = HaloProperty.get_overdensity(virial_kind, units='kpc physical') virial_density = overdensity * reference_density mass_cum_in_bins = np.zeros(DistanceBin.number) distancess = [] for spec_i, spec in enumerate(species): distances = ut.coordinate.get_distances( part[spec]['position'], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) # [kpc physical] distancess.append(distances) mass_in_bins = DistanceBin.get_histogram(distancess[spec_i], False, part[spec]['mass']) # get mass within distance minimum, for computing cumulative values distance_indices = np.where(distancess[spec_i] < np.min(distance_limits))[0] mass_cum_in_bins += (np.sum(part[spec]['mass'][distance_indices]) + np.cumsum(mass_in_bins)) if part.info['baryonic'] and len(species) == 1 and species[0] == 'dark': # correct for baryonic mass if analyzing only dark matter in baryonic simulation Say.say('! using only dark particles, so correcting for baryonic mass') mass_factor = 1 + part.Cosmology['omega_baryon'] / part.Cosmology['omega_matter'] mass_cum_in_bins *= mass_factor # cumulative densities in bins density_cum_in_bins = mass_cum_in_bins / DistanceBin.volumes_cum # get smallest radius that satisfies virial density for d_bin_i in range(DistanceBin.number - 1): if (density_cum_in_bins[d_bin_i] >= virial_density and density_cum_in_bins[d_bin_i + 1] < virial_density): # interpolate in log space log_halo_radius = np.interp( np.log10(virial_density), np.log10(density_cum_in_bins[[d_bin_i + 1, d_bin_i]]), DistanceBin.log_maxs[[d_bin_i + 1, d_bin_i]]) halo_radius = 10 ** log_halo_radius break else: Say.say('! could not determine halo R_{}'.format(virial_kind)) if density_cum_in_bins[0] < virial_density: Say.say('distance min = {:.1f} kpc already is below virial density = {}'.format( distance_limits.min(), virial_density)) Say.say('decrease distance_limits') elif density_cum_in_bins[-1] > virial_density: Say.say('distance max = {:.1f} kpc still is above virial density = {}'.format( distance_limits.max(), virial_density)) Say.say('increase distance_limits') else: Say.say('not sure why!') return # get maximum of V_circ = sqrt(G M(< r) / r) vel_circ_in_bins = ut.constant.km_per_kpc * np.sqrt( ut.constant.grav_kpc_msun_sec * mass_cum_in_bins / DistanceBin.maxs) vel_circ_max = np.max(vel_circ_in_bins) vel_circ_max_radius = DistanceBin.maxs[np.argmax(vel_circ_in_bins)] halo_mass = 0 part_indices = {} for spec_i, spec in enumerate(species): masks = (distancess[spec_i] < halo_radius) halo_mass += np.sum(part[spec]['mass'][masks]) part_indices[spec] = ut.array.get_arange(part[spec]['mass'])[masks] if print_results: Say.say( 'R_{} = {:.1f} kpc\n M_{} = {} M_sun, log = {}\n V_max = {:.1f} km/s'.format( virial_kind, halo_radius, virial_kind, ut.io.get_string_from_numbers(halo_mass, 2), ut.io.get_string_from_numbers(np.log10(halo_mass), 2), vel_circ_max) ) halo_prop = {} halo_prop['radius'] = halo_radius halo_prop['mass'] = halo_mass halo_prop['vel.circ.max'] = vel_circ_max halo_prop['vel.circ.max.radius'] = vel_circ_max_radius if return_array and len(species) == 1: part_indices = part_indices[species[0]] halo_prop['indices'] = part_indices return halo_prop def get_galaxy_properties( part, species_name='star', edge_kind='mass.percent', edge_value=90, distance_max=20, distance_bin_width=0.02, distance_scaling='log', center_position=None, axis_kind='', rotation_tensor=None, rotation_distance_max=20, other_axis_distance_limits=None, part_indices=None, print_results=True): ''' Compute galaxy radius according to edge_kind. Return this radius, the mass from species within this radius, particle indices within this radius, and rotation vectors (if applicable). Parameters ---------- part : dict : catalog of particles at snapshot species_name : str : name of particle species to use edge_kind : str : method to define galaxy radius 'mass.percent' = radius at which edge_value (percent) of stellar mass within distance_max 'density' = radius at which density is edge_value [log(M_sun / kpc^3)] edge_value : float : value to use to define galaxy radius mass_percent : float : percent of mass (out to distance_max) to define radius distance_max : float : maximum distance to consider [kpc physical] distance_bin_width : float : width of distance bin distance_scaling : str : distance bin scaling: 'log', 'linear' axis_kind : str : 'major', 'minor', 'both' rotation_tensor : array : rotation vectors that define principal axes rotation_distance_max : float : maximum distance to use in defining rotation vectors of principal axes [kpc physical] other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] center_position : array : center position [kpc comoving] if None, will use default center position in catalog part_indices : array : star particle indices (if already know which ones are close) print_results : bool : whether to print radius and mass of galaxy Returns ------- gal_prop : dict : dictionary of galaxy properties: radius or radius.major & radius.minor : float : galaxy radius[s] [kpc physical] mass : float : mass within radius[s] [M_sun] indices : array : indices of partices within radius[s] (if get_part_indices) rotation.vectors : array : eigen-vectors that defined rotation ''' def get_radius_mass_indices( masses, distances, distance_scaling, distance_limits, distance_bin_width, dimension_number, edge_kind, edge_value): ''' Utility function. ''' Say = ut.io.SayClass(get_radius_mass_indices) DistanceBin = ut.binning.DistanceBinClass( distance_scaling, distance_limits, width=distance_bin_width, dimension_number=dimension_number) # get masses in distance bins mass_in_bins = DistanceBin.get_histogram(distances, False, masses) if edge_kind == 'mass.percent': # get mass within distance minimum, for computing cumulative values d_indices = np.where(distances < np.min(distance_limits))[0] log_masses_cum = ut.math.get_log(np.sum(masses[d_indices]) + np.cumsum(mass_in_bins)) log_mass = np.log10(edge_value / 100) + log_masses_cum.max() try: # interpolate in log space log_radius = np.interp(log_mass, log_masses_cum, DistanceBin.log_maxs) except ValueError: Say.say('! could not find object radius - increase distance_max') return elif edge_kind == 'density': log_density_in_bins = ut.math.get_log(mass_in_bins / DistanceBin.volumes) # use only bins with defined density (has particles) d_bin_indices = np.arange(DistanceBin.number)[np.isfinite(log_density_in_bins)] # get smallest radius that satisfies density threshold for d_bin_ii, d_bin_i in enumerate(d_bin_indices): d_bin_i_plus_1 = d_bin_indices[d_bin_ii + 1] if (log_density_in_bins[d_bin_i] >= edge_value and log_density_in_bins[d_bin_i_plus_1] < edge_value): # interpolate in log space log_radius = np.interp( edge_value, log_density_in_bins[[d_bin_i_plus_1, d_bin_i]], DistanceBin.log_maxs[[d_bin_i_plus_1, d_bin_i]]) break else: Say.say('! could not find object radius - increase distance_max') return radius = 10 ** log_radius masks = (distances < radius) mass = np.sum(masses[masks]) indices = ut.array.get_arange(masses)[masks] return radius, mass, indices # start function Say = ut.io.SayClass(get_galaxy_properties) distance_min = 0.001 # [kpc physical] distance_limits = [distance_min, distance_max] if edge_kind == 'mass.percent': # dealing with cumulative value - stable enough to decrease bin with distance_bin_width *= 0.1 center_position = parse_property(part, 'center_position', center_position) if part_indices is None or not len(part_indices): part_indices = ut.array.get_arange(part[species_name]['position'].shape[0]) distance_vectors = ut.coordinate.get_distances( part[species_name]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] distances = np.sqrt(np.sum(distance_vectors ** 2, 1)) # 3-D distance masses = part[species_name].prop('mass', part_indices) if axis_kind: # radius along 2-D major axes (projected radius) or along 1-D minor axis (height) assert axis_kind in ['major', 'minor', 'both'] if rotation_tensor is None or not len(rotation_tensor): if (len(part[species_name].host_rotation_tensors) and len(part[species_name].host_rotation_tensors[0])): # use only the primary host rotation_tensor = part[species_name].host_rotation_tensors[0] else: masks = (distances < rotation_distance_max) rotation_tensor = ut.coordinate.get_principal_axes( distance_vectors[masks], masses[masks])[0] distance_vectors = ut.coordinate.get_coordinates_rotated( distance_vectors, rotation_tensor=rotation_tensor) distances_cyl = ut.coordinate.get_positions_in_coordinate_system( distance_vectors, 'cartesian', 'cylindrical') major_distances, minor_distances = distances_cyl[:, 0], distances_cyl[:, 1] minor_distances = np.abs(minor_distances) # need only absolute distances if axis_kind in ['major', 'minor']: if axis_kind == 'minor': dimension_number = 1 distances = minor_distances other_distances = major_distances elif axis_kind == 'major': dimension_number = 2 distances = major_distances other_distances = minor_distances if (other_axis_distance_limits is not None and (min(other_axis_distance_limits) > 0 or max(other_axis_distance_limits) < Inf)): masks = ((other_distances >= min(other_axis_distance_limits)) * (other_distances < max(other_axis_distance_limits))) distances = distances[masks] masses = masses[masks] else: # spherical average dimension_number = 3 gal_prop = {} if axis_kind == 'both': # first get 3-D radius galaxy_radius_3d, _galaxy_mass_3d, indices = get_radius_mass_indices( masses, distances, distance_scaling, distance_limits, distance_bin_width, 3, edge_kind, edge_value) galaxy_radius_major = galaxy_radius_3d axes_mass_dif = 1 # then iterate to get both major and minor axes while axes_mass_dif > 0.005: # get 1-D radius along minor axis masks = (major_distances < galaxy_radius_major) galaxy_radius_minor, galaxy_mass_minor, indices = get_radius_mass_indices( masses[masks], minor_distances[masks], distance_scaling, distance_limits, distance_bin_width, 1, edge_kind, edge_value) # get 2-D radius along major axes masks = (minor_distances < galaxy_radius_minor) galaxy_radius_major, galaxy_mass_major, indices = get_radius_mass_indices( masses[masks], major_distances[masks], distance_scaling, distance_limits, distance_bin_width, 2, edge_kind, edge_value) axes_mass_dif = (abs(galaxy_mass_major - galaxy_mass_minor) / (0.5 * (galaxy_mass_major + galaxy_mass_minor))) indices = (major_distances < galaxy_radius_major) * (minor_distances < galaxy_radius_minor) gal_prop['radius.major'] = galaxy_radius_major gal_prop['radius.minor'] = galaxy_radius_minor gal_prop['mass'] = galaxy_mass_major gal_prop['log mass'] = np.log10(galaxy_mass_major) gal_prop['rotation.tensor'] = rotation_tensor gal_prop['indices'] = part_indices[indices] if print_results: Say.say('R_{:.0f} along major, minor axes = {:.2f}, {:.2f} kpc physical'.format( edge_value, galaxy_radius_major, galaxy_radius_minor)) else: galaxy_radius, galaxy_mass, indices = get_radius_mass_indices( masses, distances, distance_scaling, distance_limits, distance_bin_width, dimension_number, edge_kind, edge_value) gal_prop['radius'] = galaxy_radius gal_prop['mass'] = galaxy_mass gal_prop['log mass'] = np.log10(galaxy_mass) gal_prop['indices'] = part_indices[indices] if print_results: Say.say('R_{:.0f} = {:.2f} kpc physical'.format(edge_value, galaxy_radius)) if print_results: Say.say('M_star = {:.2e} M_sun, log = {:.2f}'.format( gal_prop['mass'], gal_prop['log mass'])) return gal_prop #=================================================================================================== # profiles of properties #=================================================================================================== class SpeciesProfileClass(ut.binning.DistanceBinClass): ''' Get profiles of either histogram/sum or stastitics (such as average, median) of given property for given particle species. __init__ is defined via ut.binning.DistanceBinClass ''' def get_profiles( self, part, species=['all'], property_name='', property_statistic='sum', weight_by_mass=False, center_position=None, center_velocity=None, rotation=None, other_axis_distance_limits=None, property_select={}, part_indicess=None): ''' Parse inputs into either get_sum_profiles() or get_statistics_profiles(). If know what you want, can skip this and jump to those functions. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to compute mass from property_name : str : name of property to get statistics of property_statistic : str : statistic to get profile of: 'sum', 'sum.cum', 'density', 'density.cum', 'vel.circ' weight_by_mass : bool : whether to weight property by species mass center_position : array : position of center center_velocity : array : velocity of center rotation : bool or array : whether to rotate particles - two options: (a) if input array of eigen-vectors, will define rotation axes (b) if True, will rotate to align with principal axes stored in species dictionary other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] property_select : dict : (other) properties to select on: names as keys and limits as values part_indicess : array (species number x particle number) : indices of particles from which to select Returns ------- pros : dict : dictionary of profiles for each particle species ''' if ('sum' in property_statistic or 'vel.circ' in property_statistic or 'density' in property_statistic): pros = self.get_sum_profiles( part, species, property_name, center_position, rotation, other_axis_distance_limits, property_select, part_indicess) else: pros = self.get_statistics_profiles( part, species, property_name, weight_by_mass, center_position, center_velocity, rotation, other_axis_distance_limits, property_select, part_indicess) for k in pros: if '.cum' in property_statistic or 'vel.circ' in property_statistic: pros[k]['distance'] = pros[k]['distance.cum'] pros[k]['log distance'] = pros[k]['log distance.cum'] else: pros[k]['distance'] = pros[k]['distance.mid'] pros[k]['log distance'] = pros[k]['log distance.mid'] return pros def get_sum_profiles( self, part, species=['all'], property_name='mass', center_position=None, rotation=None, other_axis_distance_limits=None, property_select={}, part_indicess=None): ''' Get profiles of summed quantity (such as mass or density) for given property for each particle species. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to compute mass from property_name : str : property to get sum of center_position : list : center position rotation : bool or array : whether to rotate particles - two options: (a) if input array of eigen-vectors, will define rotation axes (b) if True, will rotate to align with principal axes stored in species dictionary other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] property_select : dict : (other) properties to select on: names as keys and limits as values part_indicess : array (species number x particle number) : indices of particles from which to select Returns ------- pros : dict : dictionary of profiles for each particle species ''' if 'gas' in species and 'consume.time' in property_name: pros_mass = self.get_sum_profiles( part, species, 'mass', center_position, rotation, other_axis_distance_limits, property_select, part_indicess) pros_sfr = self.get_sum_profiles( part, species, 'sfr', center_position, rotation, other_axis_distance_limits, property_select, part_indicess) pros = pros_sfr for k in pros_sfr['gas']: if 'distance' not in k: pros['gas'][k] = pros_mass['gas'][k] / pros_sfr['gas'][k] / 1e9 return pros pros = {} Fraction = ut.math.FractionClass() if np.isscalar(species): species = [species] if species == ['baryon']: # treat this case specially for baryon fraction species = ['gas', 'star', 'dark', 'dark2'] species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) part_indicess = parse_property(species, 'indices', part_indicess) assert 0 < self.dimension_number <= 3 for spec_i, spec in enumerate(species): part_indices = part_indicess[spec_i] if part_indices is None or not len(part_indices): part_indices = ut.array.get_arange(part[spec].prop(property_name)) if property_select: part_indices = catalog.get_indices_catalog( part[spec], property_select, part_indices) prop_values = part[spec].prop(property_name, part_indices) if self.dimension_number == 3: # simple case: profile using scalar distance distances = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) # [kpc physical] elif self.dimension_number in [1, 2]: # other cases: profile along R (2 major axes) or Z (minor axis) if rotation is not None and not isinstance(rotation, bool) and len(rotation): rotation_tensor = rotation elif (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('want 2-D or 1-D profile but no means to define rotation') distancess = get_distances_wrt_center( part, spec, part_indices, center_position, rotation_tensor, coordinate_system='cylindrical') # ensure all distances are positive definite distancess = np.abs(distancess) if self.dimension_number == 1: # compute profile along minor axis (Z) distances = distancess[:, 1] other_distances = distancess[:, 0] elif self.dimension_number == 2: # compute profile along major axes (R) distances = distancess[:, 0] other_distances = distancess[:, 1] if (other_axis_distance_limits is not None and (min(other_axis_distance_limits) > 0 or max(other_axis_distance_limits) < Inf)): masks = ((other_distances >= min(other_axis_distance_limits)) * (other_distances < max(other_axis_distance_limits))) distances = distances[masks] prop_values = prop_values[masks] pros[spec] = self.get_sum_profile(distances, prop_values) # defined in DistanceBinClass props = [pro_prop for pro_prop in pros[species[0]] if 'distance' not in pro_prop] props_dist = [pro_prop for pro_prop in pros[species[0]] if 'distance' in pro_prop] if property_name == 'mass': # create dictionary for baryonic mass if 'star' in species or 'gas' in species: spec_new = 'baryon' pros[spec_new] = {} for spec in np.intersect1d(species, ['star', 'gas']): for pro_prop in props: if pro_prop not in pros[spec_new]: pros[spec_new][pro_prop] = np.array(pros[spec][pro_prop]) elif 'log' in pro_prop: pros[spec_new][pro_prop] = ut.math.get_log( 10 ** pros[spec_new][pro_prop] + 10 ** pros[spec][pro_prop]) else: pros[spec_new][pro_prop] += pros[spec][pro_prop] for pro_prop in props_dist: pros[spec_new][pro_prop] = pros[species[0]][pro_prop] species.append(spec_new) if len(species) > 1: # create dictionary for total mass spec_new = 'total' pros[spec_new] = {} for spec in np.setdiff1d(species, ['baryon', 'total']): for pro_prop in props: if pro_prop not in pros[spec_new]: pros[spec_new][pro_prop] = np.array(pros[spec][pro_prop]) elif 'log' in pro_prop: pros[spec_new][pro_prop] = ut.math.get_log( 10 ** pros[spec_new][pro_prop] + 10 ** pros[spec][pro_prop]) else: pros[spec_new][pro_prop] += pros[spec][pro_prop] for pro_prop in props_dist: pros[spec_new][pro_prop] = pros[species[0]][pro_prop] species.append(spec_new) # create mass fraction wrt total mass for spec in np.setdiff1d(species, ['total']): for pro_prop in ['sum', 'sum.cum']: pros[spec][pro_prop + '.fraction'] = Fraction.get_fraction( pros[spec][pro_prop], pros['total'][pro_prop]) if spec == 'baryon': # units of cosmic baryon fraction pros[spec][pro_prop + '.fraction'] /= ( part.Cosmology['omega_baryon'] / part.Cosmology['omega_matter']) # create circular velocity = sqrt (G m(< r) / r) for spec in species: pros[spec]['vel.circ'] = halo_property.get_circular_velocity( pros[spec]['sum.cum'], pros[spec]['distance.cum']) return pros def get_statistics_profiles( self, part, species=['all'], property_name='', weight_by_mass=True, center_position=None, center_velocity=None, rotation=None, other_axis_distance_limits=None, property_select={}, part_indicess=None): ''' Get profiles of statistics (such as median, average) for given property for each particle species. Parameters ---------- part : dict : catalog of particles species : str or list : name[s] of particle species to compute mass from property_name : str : name of property to get statistics of weight_by_mass : bool : whether to weight property by species mass center_position : array : position of center center_velocity : array : velocity of center rotation : bool or array : whether to rotate particles - two options: (a) if input array of eigen-vectors, will define rotation axes (b) if True, will rotate to align with principal axes stored in species dictionary other_axis_distance_limits : float : min and max distances along other axis[s] to keep particles [kpc physical] property_select : dict : (other) properties to select on: names as keys and limits as values part_indicess : array or list : indices of particles from which to select Returns ------- pros : dict : dictionary of profiles for each particle species ''' pros = {} species = parse_species(part, species) center_position = parse_property(part, 'center_position', center_position) if 'velocity' in property_name: center_velocity = parse_property(part, 'center_velocity', center_velocity) part_indicess = parse_property(species, 'indices', part_indicess) assert 0 < self.dimension_number <= 3 for spec_i, spec in enumerate(species): prop_test = property_name if 'velocity' in prop_test: prop_test = 'velocity' # treat velocity specially because compile below assert part[spec].prop(prop_test) is not None part_indices = part_indicess[spec_i] if part_indices is None or not len(part_indices): part_indices = ut.array.get_arange(part[spec].prop(property_name)) if property_select: part_indices = catalog.get_indices_catalog( part[spec], property_select, part_indices) masses = None if weight_by_mass: masses = part[spec].prop('mass', part_indices) if 'velocity' in property_name: distance_vectors = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor']) # [kpc physical] velocity_vectors = ut.coordinate.get_velocity_differences( part[spec]['velocity'][part_indices], center_velocity, part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], part.snapshot['time.hubble']) # defined in DistanceBinClass pro = self.get_velocity_profile(distance_vectors, velocity_vectors, masses) pros[spec] = pro[property_name.replace('host.', '')] for prop in pro: if 'velocity' not in prop: pros[spec][prop] = pro[prop] else: prop_values = part[spec].prop(property_name, part_indices) if self.dimension_number == 3: # simple case: profile using total distance [kpc physical] distances = ut.coordinate.get_distances( part[spec]['position'][part_indices], center_position, part.info['box.length'], part.snapshot['scalefactor'], total_distance=True) elif self.dimension_number in [1, 2]: # other cases: profile along R (2 major axes) or Z (minor axis) if rotation is not None and not isinstance(rotation, bool) and len(rotation): rotation_tensor = rotation elif (len(part[spec].host_rotation_tensors) and len(part[spec].host_rotation_tensors[0])): rotation_tensor = part[spec].host_rotation_tensors[0] else: raise ValueError('want 2-D or 1-D profile but no means to define rotation') distancess = get_distances_wrt_center( part, spec, part_indices, center_position, rotation_tensor, 'cylindrical') distancess =
np.abs(distancess)
numpy.abs
import pickle import numpy as np import random class Cifar(): def __init__(self,filename): self.filename = filename splitfile = filename.split("/") metaname = "/batches.meta" metalabel = b'label_names' if splitfile[-1] == "cifar-100-python": metaname = "/meta" metalabel = b'fine_label_names' self.metaname = metaname self.metalabel = metalabel self.image_size = 32 self.img_channels = 3 # 解析数据 def unpickle(self,filename): with open(filename,"rb") as fo: dict = pickle.load(fo,encoding='bytes') return dict # 将数据导入 def load_data_one(self,file): batch = self.unpickle(file) data = batch[b'data'] labelname = b'labels' if self.metaname== "/meta": labelname = b'fine_labels' label = batch[labelname] print("Loading %s : %d." % (file, len(data))) return data, label # 对 label进行处理 def load_data(self,files,data_dir, label_count): data, labels = self.load_data_one(data_dir + "/" + files[0]) for f in files[1:]: data_n, labels_n = self.load_data_one(data_dir + '/' + f) data = np.append(data, data_n, axis=0) labels = np.append(labels, labels_n, axis=0) labels = np.array([[float(i == label) for i in range(label_count)] for label in labels]) data = data.reshape([-1, self.img_channels, self.image_size, self.image_size]) data = data.transpose([0, 2, 3, 1]) # 将图片转置 跟卷积层一致 return data, labels # 数据导入 def prepare_data(self): print("======Loading data======") # data_dir = '../Cifar_10/cifar-100-python' # image_dim = self.image_size * self.image_size * self.img_channels meta = self.unpickle(self.filename + self.metaname) label_names = meta[self.metalabel] label_count = len(label_names) if self.metaname== "/batches.meta": train_files = ['data_batch_%d' % d for d in range(1, 6)] train_data, train_labels = self.load_data(train_files, self.filename, label_count) test_data, test_labels = self.load_data(['test_batch'], self.filename, label_count) else: train_data, train_labels = self.load_data(['train'],self.filename, label_count) test_data, test_labels = self.load_data(['test'] , self.filename, label_count) print("Train data:", np.shape(train_data),
np.shape(train_labels)
numpy.shape
""" Unit tests for mir_eval.chord """ import mir_eval import numpy as np import nose.tools import warnings import glob import json A_TOL = 1e-12 # Path to the fixture files REF_GLOB = 'data/chord/ref*.lab' EST_GLOB = 'data/chord/est*.lab' SCORES_GLOB = 'data/chord/output*.json' def __check_valid(function, parameters, result): ''' Helper function for checking the output of a function ''' assert function(*parameters) == result def __check_exception(function, parameters, exception): ''' Makes sure the provided function throws the provided exception given the provided input ''' nose.tools.assert_raises(exception, function, *parameters) def test_pitch_class_to_semitone(): valid_classes = ['Gbb', 'G', 'G#', 'Cb', 'B#'] valid_semitones = [5, 7, 8, 11, 0] for pitch_class, semitone in zip(valid_classes, valid_semitones): yield (__check_valid, mir_eval.chord.pitch_class_to_semitone, (pitch_class,), semitone) invalid_classes = ['Cab', '#C', 'bG'] for pitch_class in invalid_classes: yield (__check_exception, mir_eval.chord.pitch_class_to_semitone, (pitch_class,), mir_eval.chord.InvalidChordException) def test_scale_degree_to_semitone(): valid_degrees = ['b7', '#3', '1', 'b1', '#7', 'bb5', '11', '#13'] valid_semitones = [10, 5, 0, -1, 12, 5, 17, 22] for scale_degree, semitone in zip(valid_degrees, valid_semitones): yield (__check_valid, mir_eval.chord.scale_degree_to_semitone, (scale_degree,), semitone) invalid_degrees = ['7b', '4#', '77', '15'] for scale_degree in invalid_degrees: yield (__check_exception, mir_eval.chord.scale_degree_to_semitone, (scale_degree,), mir_eval.chord.InvalidChordException) def test_scale_degree_to_bitmap(): def __check_bitmaps(function, parameters, result): actual = function(*parameters) assert np.all(actual == result), (actual, result) valid_degrees = ['3', '*3', 'b1', '9'] valid_bitmaps = [[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]] for scale_degree, bitmap in zip(valid_degrees, valid_bitmaps): yield (__check_bitmaps, mir_eval.chord.scale_degree_to_bitmap, (scale_degree, True, 12), np.array(bitmap)) yield (__check_bitmaps, mir_eval.chord.scale_degree_to_bitmap, ('9', False, 12), np.array([0] * 12)) yield (__check_bitmaps, mir_eval.chord.scale_degree_to_bitmap, ('9', False, 15), np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])) def test_validate_chord_label(): valid_labels = ['C', 'Eb:min/5', 'A#:dim7', 'B:maj(*1,*5)/3', 'A#:sus4', 'A:(9,11)'] # For valid labels, calling the function without an error = pass for chord_label in valid_labels: yield (mir_eval.chord.validate_chord_label, chord_label) invalid_labels = ["C::maj", "C//5", "C((4)", "C5))", "C:maj(*3/3", "Cmaj*3/3)", 'asdf'] for chord_label in invalid_labels: yield (__check_exception, mir_eval.chord.validate_chord_label, (chord_label,), mir_eval.chord.InvalidChordException) def test_split(): labels = ['C', 'B:maj(*1,*3)/5', 'Ab:min/b3', 'N', 'G:(3)'] splits = [['C', 'maj', set(), '1'], ['B', 'maj', set(['*1', '*3']), '5'], ['Ab', 'min', set(), 'b3'], ['N', '', set(), ''], ['G', '', set(['3']), '1']] for chord_label, split_chord in zip(labels, splits): yield (__check_valid, mir_eval.chord.split, (chord_label,), split_chord) # Test with reducing extended chords labels = ['C', 'C:minmaj7'] splits = [['C', 'maj', set(), '1'], ['C', 'min', set(['7']), '1']] for chord_label, split_chord in zip(labels, splits): yield (__check_valid, mir_eval.chord.split, (chord_label, True), split_chord) # Test that an exception is raised when a chord with an omission but no # quality is supplied yield (__check_exception, mir_eval.chord.split, ('C(*5)',), mir_eval.chord.InvalidChordException) def test_join(): # Arguments are root, quality, extensions, bass splits = [('F#', '', None, ''), ('F#', 'hdim7', None, ''), ('F#', '', ['*b3', '4'], ''), ('F#', '', None, 'b7'), ('F#', '', ['*b3', '4'], 'b7'), ('F#', 'hdim7', None, 'b7'), ('F#', 'hdim7', ['*b3', '4'], 'b7')] labels = ['F#', 'F#:hdim7', 'F#:(*b3,4)', 'F#/b7', 'F#:(*b3,4)/b7', 'F#:hdim7/b7', 'F#:hdim7(*b3,4)/b7'] for split_chord, chord_label in zip(splits, labels): yield (__check_valid, mir_eval.chord.join, split_chord, chord_label) def test_rotate_bitmaps_to_roots(): def __check_bitmaps(bitmaps, roots, expected_bitmaps): ''' Helper function for checking bitmaps_to_roots ''' ans = mir_eval.chord.rotate_bitmaps_to_roots(bitmaps, roots) assert np.all(ans == expected_bitmaps) bitmaps = [ [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]] roots = [0, 5, 11] expected_bitmaps = [ [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]] # The function can operate on many bitmaps/roots at a time # but we should only test them one at a time. for bitmap, root, expected_bitmap in zip(bitmaps, roots, expected_bitmaps): yield (__check_bitmaps, [bitmap], [root], [expected_bitmap]) def test_encode(): def __check_encode(label, expected_root, expected_intervals, expected_bass, reduce_extended_chords, strict_bass_intervals): ''' Helper function for checking encode ''' root, intervals, bass = mir_eval.chord.encode( label, reduce_extended_chords=reduce_extended_chords, strict_bass_intervals=strict_bass_intervals) assert root == expected_root, (root, expected_root) assert np.all(intervals == expected_intervals), (intervals, expected_intervals) assert bass == expected_bass, (bass, expected_bass) labels = ['B:maj(*1,*3)/5', 'G:dim', 'C:(3)/3', 'A:9/b3'] expected_roots = [11, 7, 0, 9] expected_intervals = [[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], # Note that extended scale degrees are dropped. [1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]] expected_bass = [7, 0, 4, 3] args = zip(labels, expected_roots, expected_intervals, expected_bass) for label, e_root, e_interval, e_bass in args: yield (__check_encode, label, e_root, e_interval, e_bass, False, False) # Non-chord bass notes *must* be explicitly named as extensions when # strict_bass_intervals == True yield (__check_exception, mir_eval.chord.encode, ('G:dim(4)/6', False, True), mir_eval.chord.InvalidChordException) # Otherwise, we can cut a little slack. yield (__check_encode, 'G:dim(4)/6', 7, [1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0], 9, False, False) # Check that extended scale degrees are mapped back into pitch classes. yield (__check_encode, 'A:9', 9, [1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0], 0, True, False) def test_encode_many(): def __check_encode_many(labels, expected_roots, expected_intervals, expected_basses): ''' Does all of the logic for checking encode_many ''' roots, intervals, basses = mir_eval.chord.encode_many(labels) assert np.all(roots == expected_roots) assert np.all(intervals == expected_intervals) assert np.all(basses == expected_basses) labels = ['B:maj(*1,*3)/5', 'B:maj(*1,*3)/5', 'N', 'C:min', 'C:min'] expected_roots = [11, 11, -1, 0, 0] expected_intervals = [ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]] expected_basses = [7, 7, -1, 0, 0] yield (__check_encode_many, labels, expected_roots, expected_intervals, expected_basses) def __check_one_metric(metric, ref_label, est_label, score): ''' Checks that a metric function produces score given ref_label and est_label ''' # We provide a dummy interval. We're just checking one pair # of labels at a time. assert metric([ref_label], [est_label]) == score def __check_not_comparable(metric, ref_label, est_label): ''' Checks that ref_label is not comparable to est_label by metric ''' with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # Try to produce the warning score = mir_eval.chord.weighted_accuracy(metric([ref_label], [est_label]), np.array([1])) assert len(w) == 1 assert issubclass(w[-1].category, UserWarning) assert str(w[-1].message) == ("No reference chords were comparable " "to estimated chords, returning 0.") # And confirm that the metric is 0 assert np.allclose(score, 0) # TODO(ejhumphrey): Comparison functions lacking unit tests. # test_root() def test_mirex(): ref_labels = ['N', 'C:maj', 'C:maj', 'C:maj', 'C:min', 'C:maj', 'C:maj', 'G:min', 'C:maj', 'C:min', 'C:min', 'C:maj', 'F:maj', 'C:maj7', 'A:maj', 'A:maj'] est_labels = ['N', 'N', 'C:aug', 'C:dim', 'C:dim', 'C:5', 'C:sus4', 'G:sus2', 'G:maj', 'C:hdim7', 'C:min7', 'C:maj6', 'F:min6', 'C:minmaj7', 'A:7', 'A:9'] scores = [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.mirex, ref_label, est_label, score) ref_not_comparable = ['C:5', 'X'] est_not_comparable = ['C:maj', 'N'] for ref_label, est_label in zip(ref_not_comparable, est_not_comparable): yield (__check_not_comparable, mir_eval.chord.mirex, ref_label, est_label) def test_thirds(): ref_labels = ['N', 'C:maj', 'C:maj', 'C:maj', 'C:min', 'C:maj', 'G:min', 'C:maj', 'C:min', 'C:min', 'C:maj', 'F:maj', 'C:maj', 'A:maj', 'A:maj'] est_labels = ['N', 'N', 'C:aug', 'C:dim', 'C:dim', 'C:sus4', 'G:sus2', 'G:maj', 'C:hdim7', 'C:min7', 'C:maj6', 'F:min6', 'C:minmaj7', 'A:7', 'A:9'] scores = [1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.thirds, ref_label, est_label, score) yield (__check_not_comparable, mir_eval.chord.thirds, 'X', 'N') def test_thirds_inv(): ref_labels = ['C:maj/5', 'G:min', 'C:maj', 'C:min/b3', 'C:min'] est_labels = ['C:sus4/5', 'G:min/b3', 'C:maj/5', 'C:hdim7/b3', 'C:dim'] scores = [1.0, 0.0, 0.0, 1.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.thirds_inv, ref_label, est_label, score) yield (__check_not_comparable, mir_eval.chord.thirds_inv, 'X', 'N') def test_triads(): ref_labels = ['C:min', 'C:maj', 'C:maj', 'C:min', 'C:maj', 'C:maj', 'G:min', 'C:maj', 'C:min', 'C:min'] est_labels = ['C:min7', 'C:7', 'C:aug', 'C:dim', 'C:sus2', 'C:sus4', 'G:minmaj7', 'G:maj', 'C:hdim7', 'C:min6'] scores = [1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.triads, ref_label, est_label, score) yield (__check_not_comparable, mir_eval.chord.triads, 'X', 'N') def test_triads_inv(): ref_labels = ['C:maj/5', 'G:min', 'C:maj', 'C:min/b3', 'C:min/b3'] est_labels = ['C:maj7/5', 'G:min7/5', 'C:7/5', 'C:min6/b3', 'C:dim/b3'] scores = [1.0, 0.0, 0.0, 1.0, 0.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.triads_inv, ref_label, est_label, score) yield (__check_not_comparable, mir_eval.chord.triads_inv, 'X', 'N') def test_tetrads(): ref_labels = ['C:min', 'C:maj', 'C:7', 'C:maj7', 'C:sus2', 'C:7/3', 'G:min', 'C:maj', 'C:min', 'C:min'] est_labels = ['C:min7', 'C:maj6', 'C:9', 'C:maj7/5', 'C:sus2/2', 'C:11/b7', 'G:sus2', 'G:maj', 'C:hdim7', 'C:minmaj7'] scores = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.tetrads, ref_label, est_label, score) yield (__check_not_comparable, mir_eval.chord.tetrads, 'X', 'N') def test_tetrads_inv(): ref_labels = ['C:maj7/5', 'G:min', 'C:7/5', 'C:min/b3', 'C:min9'] est_labels = ['C:maj7/3', 'G:min/b3', 'C:13/5', 'C:hdim7/b3', 'C:min7'] scores = [0.0, 0.0, 1.0, 0.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.tetrads_inv, ref_label, est_label, score) yield (__check_not_comparable, mir_eval.chord.tetrads_inv, 'X', 'N') def test_majmin(): ref_labels = ['N', 'C:maj', 'C:maj', 'C:min', 'G:maj7'] est_labels = ['N', 'N', 'C:aug', 'C:dim', 'G'] scores = [1.0, 0.0, 0.0, 0.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.majmin, ref_label, est_label, score) ref_not_comparable = ['C:aug', 'X'] est_not_comparable = ['C:maj', 'N'] for ref_label, est_label in zip(ref_not_comparable, est_not_comparable): yield (__check_not_comparable, mir_eval.chord.majmin, ref_label, est_label) def test_majmin_inv(): ref_labels = ['C:maj/5', 'G:min', 'C:maj/5', 'C:min7', 'G:min/b3', 'C:maj7/5', 'C:7'] est_labels = ['C:sus4/5', 'G:min/b3', 'C:maj/5', 'C:min', 'G:min/b3', 'C:maj/5', 'C:maj'] scores = [0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.majmin_inv, ref_label, est_label, score) ref_not_comparable = ['C:hdim7/b3', 'C:maj/4', 'C:maj/2', 'X'] est_not_comparable = ['C:min/b3', 'C:maj/4', 'C:sus2/2', 'N'] for ref_label, est_label in zip(ref_not_comparable, est_not_comparable): yield (__check_not_comparable, mir_eval.chord.majmin_inv, ref_label, est_label) def test_sevenths(): ref_labels = ['C:min', 'C:maj', 'C:7', 'C:maj7', 'C:7/3', 'G:min', 'C:maj', 'C:7'] est_labels = ['C:min7', 'C:maj6', 'C:9', 'C:maj7/5', 'C:11/b7', 'G:sus2', 'G:maj', 'C:maj7'] scores = [0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.sevenths, ref_label, est_label, score) ref_not_comparable = ['C:sus2', 'C:hdim7', 'X'] est_not_comparable = ['C:sus2/2', 'C:hdim7', 'N'] for ref_label, est_label in zip(ref_not_comparable, est_not_comparable): yield (__check_not_comparable, mir_eval.chord.sevenths, ref_label, est_label) def test_sevenths_inv(): ref_labels = ['C:maj7/5', 'G:min', 'C:7/5', 'C:min7/b7'] est_labels = ['C:maj7/3', 'G:min/b3', 'C:13/5', 'C:min7/b7'] scores = [0.0, 0.0, 1.0, 1.0] for ref_label, est_label, score in zip(ref_labels, est_labels, scores): yield (__check_one_metric, mir_eval.chord.sevenths_inv, ref_label, est_label, score) ref_not_comparable = ['C:dim7/b3', 'X'] est_not_comparable = ['C:dim7/b3', 'N'] for ref_label, est_label in zip(ref_not_comparable, est_not_comparable): yield (__check_not_comparable, mir_eval.chord.sevenths_inv, ref_label, est_label) def test_directional_hamming_distance(): ref_ivs = np.array([[0., 1.], [1., 2.], [2., 3.]]) est_ivs = np.array([[0., 0.9], [0.9, 1.8], [1.8, 2.5]]) dhd_ref_to_est = (0.1 + 0.2 + 0.5) / 3. dhd_est_to_ref = (0.0 + 0.1 + 0.2) / 2.5 dhd = mir_eval.chord.directional_hamming_distance assert np.allclose(dhd_ref_to_est, dhd(ref_ivs, est_ivs)) assert np.allclose(dhd_est_to_ref, dhd(est_ivs, ref_ivs)) assert np.allclose(0, dhd(ref_ivs, ref_ivs)) assert np.allclose(0, dhd(est_ivs, est_ivs)) ivs_overlap_all = np.array([[0., 1.], [0.9, 2.]]) ivs_overlap_one = np.array([[0., 1.], [0.9, 2.], [2., 3.]]) nose.tools.assert_raises(ValueError, dhd, ivs_overlap_all, est_ivs) nose.tools.assert_raises(ValueError, dhd, ivs_overlap_one, est_ivs) def test_segmentation_functions(): ref_ivs = np.array([[0., 2.], [2., 2.5], [2.5, 3.2]]) est_ivs = np.array([[0., 3.], [3., 3.5]]) true_oseg = 1. - 0.2 / 3.2 true_useg = 1. - (1. + 0.2) / 3.5 true_seg = min(true_oseg, true_useg) assert np.allclose(true_oseg, mir_eval.chord.overseg(ref_ivs, est_ivs)) assert np.allclose(true_useg, mir_eval.chord.underseg(ref_ivs, est_ivs)) assert np.allclose(true_seg, mir_eval.chord.seg(ref_ivs, est_ivs)) ref_ivs = np.array([[0., 2.], [2., 2.5], [2.5, 3.2]]) est_ivs = np.array([[0., 2.], [2., 2.5], [2.5, 3.2]]) true_oseg = 1.0 true_useg = 1.0 true_seg = 1.0 assert np.allclose(true_oseg, mir_eval.chord.overseg(ref_ivs, est_ivs)) assert np.allclose(true_useg, mir_eval.chord.underseg(ref_ivs, est_ivs)) assert np.allclose(true_seg, mir_eval.chord.seg(ref_ivs, est_ivs)) ref_ivs = np.array([[0., 2.], [2., 2.5], [2.5, 3.2]]) est_ivs = np.array([[0., 3.2]]) true_oseg = 1.0 true_useg = 1 - 1.2 / 3.2 true_seg = min(true_oseg, true_useg) assert np.allclose(true_oseg, mir_eval.chord.overseg(ref_ivs, est_ivs)) assert np.allclose(true_useg, mir_eval.chord.underseg(ref_ivs, est_ivs)) assert np.allclose(true_seg, mir_eval.chord.seg(ref_ivs, est_ivs)) ref_ivs = np.array([[0., 2.], [2., 2.5], [2.5, 3.2]]) est_ivs = np.array([[3.2, 3.5]]) true_oseg = 1.0 true_useg = 1.0 true_seg = 1.0 assert np.allclose(true_oseg, mir_eval.chord.overseg(ref_ivs, est_ivs)) assert np.allclose(true_useg, mir_eval.chord.underseg(ref_ivs, est_ivs)) assert np.allclose(true_seg, mir_eval.chord.seg(ref_ivs, est_ivs)) def test_merge_chord_intervals(): intervals = np.array([[0., 1.], [1., 2.], [2., 3], [3., 4.], [4., 5.]]) labels = ['C:maj', 'C:(1,3,5)', 'A:maj', 'A:maj7', 'A:maj7/3'] assert np.allclose(np.array([[0., 2.], [2., 3], [3., 4.], [4., 5.]]), mir_eval.chord.merge_chord_intervals(intervals, labels)) def test_weighted_accuracy(): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') # First, test for a warning on empty beats score = mir_eval.chord.weighted_accuracy(np.array([1, 0, 1]), np.array([0, 0, 0])) assert len(w) == 1 assert issubclass(w[-1].category, UserWarning) assert str(w[-1].message) == 'No nonzero weights, returning 0' # And that the metric is 0 assert np.allclose(score, 0) # len(comparisons) must equal len(weights) comparisons = np.array([1, 0, 1]) weights = np.array([1, 1]) nose.tools.assert_raises(ValueError, mir_eval.chord.weighted_accuracy, comparisons, weights) # Weights must all be positive comparisons =
np.array([1, 1])
numpy.array
#! /usr/bin/python3 # -*- coding: utf-8 -*- """ ******** BST file ******** """ __author__ = '<NAME>' __copyright__ = 'Copyright 2021, nenupy' __credits__ = ['<NAME>'] __maintainer__ = 'Alan' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ "XST" ] from abc import ABC import os from itertools import islice from astropy.time import Time, TimeDelta from astropy.coordinates import SkyCoord, AltAz, Angle import astropy.units as u from astropy.io import fits from healpy.fitsfunc import write_map, read_map from healpy.pixelfunc import mask_bad, nside2resol import numpy as np import json import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colorbar import ColorbarBase from matplotlib.ticker import LinearLocator from matplotlib.colors import Normalize from matplotlib.cm import get_cmap from mpl_toolkits.axes_grid1.inset_locator import inset_axes import dask.array as da from dask.diagnostics import ProgressBar import nenupy from os.path import join, dirname from nenupy.astro.target import FixedTarget, SolarSystemTarget from nenupy.io.io_tools import StatisticsData from nenupy.io.bst import BST_Slice from nenupy.astro import wavelength, altaz_to_radec, l93_to_etrs, etrs_to_enu from nenupy.astro.uvw import compute_uvw from nenupy.astro.sky import HpxSky from nenupy.astro.pointing import Pointing from nenupy.instru import NenuFAR, MiniArray, read_cal_table, freq2sb, nenufar_miniarrays from nenupy import nenufar_position, DummyCtMgr import logging log = logging.getLogger(__name__) # ============================================================= # # ------------------------- XST_Slice ------------------------- # # ============================================================= # class XST_Slice: """ """ def __init__(self, mini_arrays, time, frequency, value): self.mini_arrays = mini_arrays self.time = time self.frequency = frequency self.value = value # --------------------------------------------------------- # # ------------------------ Methods ------------------------ # def plot_correlaton_matrix(self, mask_autocorrelations: bool = False, **kwargs): """ """ max_ma_index = self.mini_arrays.max() + 1 all_mas = np.arange(max_ma_index) matrix = np.full([max_ma_index, max_ma_index], np.nan, "complex") ma1, ma2 = np.tril_indices(self.mini_arrays.size, 0) for ma in all_mas: if ma not in self.mini_arrays: ma1[ma1 >= ma] += 1 ma2[ma2 >= ma] += 1 mask = None if mask_autocorrelations: mask = ma1 != ma2 # cross_correlation mask matrix[ma2[mask], ma1[mask]] = np.mean(self.value, axis=(0, 1))[mask] fig = plt.figure(figsize=kwargs.get("figsize", (10, 10))) ax = fig.add_subplot(111) ax.set_aspect("equal") data = np.absolute(matrix) if kwargs.get("decibel", True): data = 10*np.log10(data) im = ax.pcolormesh( all_mas, all_mas, data, shading="nearest", cmap=kwargs.get("cmap", "YlGnBu"), vmin=kwargs.get("vmin", np.nanmin(data)), vmax=kwargs.get("vmax", np.nanmax(data)) ) ax.set_xticks(all_mas[::2]) ax.set_yticks(all_mas[::2]) ax.grid(alpha=0.5) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.3) cbar = fig.colorbar(im, cax=cax) cbar.set_label(kwargs.get("colorbar_label", "dB" if kwargs.get("decibel", True) else "Amp")) # Axis abels ax.set_xlabel(f"Mini-Array index") ax.set_ylabel(f"Mini-Array index") # Title ax.set_title(kwargs.get("title", "")) # Save or show the figure figname = kwargs.get("figname", "") if figname != "": plt.savefig( figname, dpi=300, bbox_inches="tight", transparent=True ) log.info(f"Figure '{figname}' saved.") else: plt.show() plt.close("all") def rephase_visibilities(self, phase_center, uvw): """ """ # Compute the zenith original phase center zenith = SkyCoord( np.zeros(self.time.size), np.ones(self.time.size)*90, unit="deg", frame=AltAz( obstime=self.time, location=nenufar_position ) ) zenith_phase_center = altaz_to_radec(zenith) # Define the rotation matrix def rotation_matrix(skycoord): """ """ ra_rad = skycoord.ra.rad dec_rad = skycoord.dec.rad if np.isscalar(ra_rad): ra_rad = np.array([ra_rad]) dec_rad = np.array([dec_rad]) cos_ra = np.cos(ra_rad) sin_ra = np.sin(ra_rad) cos_dec = np.cos(dec_rad) sin_dec = np.sin(dec_rad) return np.array([ [cos_ra, -sin_ra, np.zeros(ra_rad.size)], [-sin_ra*sin_dec, -cos_ra*sin_dec, cos_dec], [sin_ra*cos_dec, cos_ra*cos_dec, sin_dec], ]) # Transformation matrices to_origin = rotation_matrix(zenith_phase_center) # (3, 3, ntimes) to_new_center = rotation_matrix(phase_center) # (3, 3, 1) total_transformation = np.matmul( np.transpose( to_new_center, (2, 0, 1) ), to_origin ) # (3, 3, ntimes) rotUVW = np.matmul( np.expand_dims( (to_origin[2, :] - to_new_center[2, :]).T, axis=1 ), np.transpose( to_origin, (2, 1, 0) ) ) # (ntimes, 1, 3) phase = np.matmul( rotUVW, np.transpose(uvw, (0, 2, 1)) ) # (ntimes, 1, nvis) rotate_visibilities = np.exp( 2.j*np.pi*phase/wavelength(self.frequency).to(u.m).value[None, :, None] ) # (ntimes, nfreqs, nvis) new_uvw = np.matmul( uvw, # (ntimes, nvis, 3) np.transpose(total_transformation, (2, 0, 1)) ) return rotate_visibilities, new_uvw def make_image(self, resolution: u.Quantity = 1*u.deg, fov_radius: u.Quantity = 25*u.deg, phase_center: SkyCoord = None, stokes: str = "I" ): """ :Example: xst = XST("XST.fits") data = xst.get_stokes("I") sky = data.make_image( resolution=0.5*u.deg, fov_radius=27*u.deg, phase_center=SkyCoord(277.382, 48.746, unit="deg") ) sky[0, 0, 0].plot( center=SkyCoord(277.382, 48.746, unit="deg"), radius=24.5*u.deg ) """ exposure = self.time[-1] - self.time[0] # Compute XST UVW coordinates (zenith phased) uvw = compute_uvw( interferometer=NenuFAR()[self.mini_arrays], phase_center=None, # will be zenith time=self.time, ) # Prepare visibilities rephasing rephase_matrix, uvw = self.rephase_visibilities( phase_center=phase_center, uvw=uvw ) # Mask auto-correlations ma1, ma2 = np.tril_indices(self.mini_arrays.size, 0) cross_mask = ma1 != ma2 uvw = uvw[:, cross_mask, :] # Transform to lambda units wvl = wavelength(self.frequency).to(u.m).value uvw = uvw[:, None, :, :]/wvl[None, :, None, None] # (t, f, bsl, 3) # Mean in time uvw = np.mean(uvw, axis=0) # Prepare the sky sky = HpxSky( resolution=resolution, time=self.time[0] + exposure/2, frequency=np.mean(self.frequency), polarization=
np.array([stokes])
numpy.array
from __future__ import division import numpy as np from scipy.stats import norm from scipy.optimize import minimize, bisect import sklearn.gaussian_process as gp from sklearn.gaussian_process import GaussianProcessClassifier as GPC from pyDOE import lhs from gp import GPR def normalize(y, return_mean_std=False): y_mean = np.mean(y) y_std = np.std(y) y = (y-y_mean)/y_std if return_mean_std: return y, y_mean, y_std return y def inv_normalize(y, y_mean, y_std): return y*y_std + y_mean def proba_of_improvement(samples, gp_model, f_best): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) PI = 1 - norm.cdf(f_best, loc=mu, scale=sigma) return np.squeeze(PI) def expected_improvement(samples, gp_model, f_best): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) with np.errstate(divide='ignore'): Z = (mu - f_best)/sigma EI = (mu - f_best) * norm.cdf(Z) + sigma * norm.pdf(Z) EI[sigma==0.0] = 0.0 return np.squeeze(EI) def upper_confidence_bound(samples, gp_model, beta): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) UCB = mu + beta * sigma return np.squeeze(UCB) def lower_confidence_bound(samples, gp_model, beta): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) LCB = mu - beta * sigma return np.squeeze(LCB) def regularized_ei_quadratic(samples, gp_model, f_best, center, w): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) epsilon = np.diag(np.matmul(np.matmul(samples-center, np.diag(w**(-2))), (samples-center).T)).reshape(-1,1) f_tilde = f_best * (1. + np.sign(f_best)*epsilon) with np.errstate(divide='ignore'): Z = (mu - f_tilde)/sigma EIQ = (mu - f_tilde) * norm.cdf(Z) + sigma * norm.pdf(Z) EIQ[sigma==0.0] = 0.0 return np.squeeze(EIQ) def regularized_ei_hinge_quadratic(samples, gp_model, f_best, center, R, beta): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) dists = np.linalg.norm(samples-center, axis=1, keepdims=True) epsilon = (dists-R)/beta/R epsilon[dists < R] = 0.0 f_tilde = f_best * (1 + np.sign(f_best)*epsilon) with np.errstate(divide='ignore'): Z = (mu - f_tilde)/sigma EIQ = (mu - f_tilde) * norm.cdf(Z) + sigma * norm.pdf(Z) EIQ[sigma==0.0] = 0.0 return np.squeeze(EIQ) def var_constrained_pi(samples, gp_model, f_best, tau): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) PI = 1 - norm.cdf(f_best, loc=mu, scale=sigma) PI[sigma > (tau*gp_model.kernel_.diag(samples).reshape(-1,1))**.5] = 0.0 return np.squeeze(PI) def var_constrained_ei(samples, gp_model, f_best, tau): samples = np.array(samples).reshape(-1, gp_model.X_train_.shape[1]) mu, sigma = gp_model.predict(samples, return_std=True) mu = mu.reshape(-1,1) sigma = sigma.reshape(-1,1) with np.errstate(divide='ignore'): Z = (mu - f_best)/sigma EI = (mu - f_best) * norm.cdf(Z) + sigma * norm.pdf(Z) EI[sigma==0.0] = 0.0 EI[sigma > (tau*gp_model.kernel_.diag(samples).reshape(-1,1))**.5] = 0.0 return np.squeeze(EI) def compute_tau(f_best, gp_model, xi=0.01, kappa=0.1): delta = 0.01 sigma_plus = (xi+delta)/norm.ppf(1-kappa) _ = np.zeros((1, gp_model.X_train_.shape[1])) k0 = np.asscalar(gp_model.kernel_(_, _)) def func(x): mu_tau = 0.#xi - np.sqrt(x*k0)*norm.ppf(1-kappa) u_tau = (mu_tau-f_best)/np.sqrt(x*k0) EI_tau = np.sqrt(x*k0) * (u_tau*norm.cdf(u_tau) + norm.pdf(u_tau)) u_plus = -delta/sigma_plus EI_plus = sigma_plus * (u_plus*norm.cdf(u_plus) + norm.pdf(u_plus)) return EI_tau - EI_plus # import matplotlib.pyplot as plt # xx = np.linspace(0.1, 1., 100) # plt.plot(xx, func(xx)) try: tau = bisect(func, 0.01, 1.) tau =
np.clip(tau, 0.0001, 0.99)
numpy.clip
""" Intermittency Graph by <NAME>. Goal here is to emphasize the complexities of daily and seasonal intermittency compared to baseload low carbon sources like nuclear. Want two scenarios: nuclear and solar. For each, we'll want winter and summer versions. So, 2x2 subplots? With text in each one saying how much power going around. Both nuclear and solar will just use some form of energy storage to deal with intermittency and/or load follow """ import os import csv from datetime import datetime import copy import numpy as np import matplotlib.pyplot as plt import matplotlib matplotlib.use('TkAgg') from matplotlib import animation from matplotlib.animation import ArtistAnimation from matplotlib.animation import ImageMagickFileWriter from matplotlib import collections DFMT = "%m/%d/%Y %H:%M" NUM_POINTS = 288 # b/c the data is messy def read_data(): """ Read CAISO data Exported from web interface at https://www.caiso.com/TodaysOutlook/Pages/supply.html We need: * Summer demand * Winter demand * Summer solar (mostly shape important) * Winter solar (shape and peak/avg important for setting mag) * Nuclear generation (assume 91% cf) """ data = {} data.update(_read_demand()) data.update(_read_solar_supply()) data.update(_read_nuclear_supply()) return data def _read_demand(): """Read summer and winter demand curves.""" data = {} for label, fname in [ # ("Summer demand", "CAISO-demand-20200621.csv"), ("Summer demand", "CAISO-demand-20190621.csv"), ("Winter demand", "CAISO-demand-20191221.csv"), ]: datetimes = [] print(f"opening {fname}") with open(os.path.join("data", fname)) as f: reader = csv.reader(f) row = next(reader) # grab header # process row full of times date = row[0].split()[1] times = row[1:NUM_POINTS] # convert to datetime objects # import pdb;pdb.set_trace() datetimes = [datetime.strptime(f"{date} {time}", DFMT) for time in times] for row in reader: if row[0].startswith("Demand (5"): # process demand data print(f"Reading {label}") mw = np.array([float(di) for di in row[1:NUM_POINTS]]) data[label] = datetimes, mw else: # lookahead estimate. throw it away print(f"Skipping {row[0]}") continue return data def _read_solar_supply(): """Read how much solar comes in a day.""" data = {} for label, fname in [ ("Summer solar", "CAISO-renewables-20190621.csv"), ("Winter solar", "CAISO-renewables-20191221.csv"), ]: datetimes = [] print(f"opening {fname}") with open(os.path.join("data", fname)) as f: reader = csv.reader(f) row = next(reader) # grab header # process row full of times date = row[0].split()[1] times = row[1:NUM_POINTS] datetimes = [datetime.strptime(f"{date} {time}", DFMT) for time in times] for row in reader: if row[0].startswith("Solar"): # process demand data print(f"Reading {label}") mw = np.array([float(di) for di in row[1:NUM_POINTS]]) data[label] = datetimes, mw else: # lookahead estimate. throw it away print(f"Skipping {row[0]}") continue return data def _read_nuclear_supply(): return {} def _integrate_megawatts(mw): """Sum megawatts over a day and return GW*day. Assume 5 minute increments.""" mw = np.array(mw) return sum(mw * 5 / 60 / 24) / 1000 def plot_demand(data): """ Plot demand curves I was surprised that winter 2019 was roughly the same demand integral as summer 2020. Maybe covid? So I grabbed summer 2019 data file too. Still really close!! Damn check out that huge baseload. """ fig, ax = plt.subplots() for label in ["Summer demand", "Winter demand"]: x, y = data[label] integral = _integrate_megawatts(y) x = [dt.time().hour + dt.time().minute / 60 for dt in x] ax.plot(x, y / 1000, label=label + f" ({integral:.1f} GWd)") ax.legend(loc="lower right") ax.set_ylabel("Demand (GW)") ax.set_xlabel("Time (hour of day)") ax.set_title("Seasonal demand variation in California 2019") ax.grid(alpha=0.3, ls="--") ax.set_ylim(bottom=0) ax.set_xlim([0, 24]) ax.set_xticks(np.arange(0, 25, 3.0)) ax.text(1, 0.1, "W: 2019-12-21\nS: 2019-06-21\nData: CAISO") # plt.show() plt.savefig("Seasonal-demand-variation.png") def plot_solar_supply(data): """Yikes solar was really low on 2019-12-21. Must've been cloudy.""" fig, ax = plt.subplots() for label in ["Summer solar", "Winter solar"]: x, y = data[label] integral = _integrate_megawatts(y) x = [dt.time().hour + dt.time().minute / 60 for dt in x] ax.plot(x, y / 1000, label=label + f" ({integral:.1f} GWd)") ax.legend(loc="upper left") ax.set_ylabel("Solar supply (GW)") ax.set_xlabel("Time (hour of day)") ax.set_title("Seasonal solar variation in California 2019") ax.grid(alpha=0.3, ls="--") ax.set_ylim(bottom=0) ax.set_xlim([0, 24]) ax.set_xticks(np.arange(0, 25, 3.0)) ax.text(1, 0.1, "W: 2019-12-21\nS: 2019-06-21\nData: CAISO") # plt.show() plt.savefig("seasonal-solar-variation.png") def plot_solar_scenario(data): fig, ax = plt.subplots(figsize=(10, 8)) for season, color in [("Winter", "tab:cyan"), ("Summer", "tab:pink")]: demand_dt, demand_mw = data[f"{season} demand"] supply_dt, supply_mw = data[f"{season} solar"] demand_t = [dt.time().hour + dt.time().minute / 60 for dt in demand_dt] supply_t = [dt.time().hour + dt.time().minute / 60 for dt in supply_dt] demand_integral = _integrate_megawatts(demand_mw) supply_integral = _integrate_megawatts(supply_mw) scaleup = demand_integral / supply_integral ax.plot( demand_t, demand_mw / 1000, "-.", lw=2, color=color, label=f"{season} Demand ({demand_integral:.1f} GWd)", ) ax.plot( supply_t, supply_mw / 1000, "-", lw=2, color=color, label=f"{season} Supply Current ({supply_integral:.1f} GWd)", ) ax.plot( supply_t, scaleup * supply_mw / 1000, ":", lw=2, color=color, label=f"{season} Supply Required ({supply_integral*scaleup:.1f} GWd)", ) ax.legend(loc="upper left") ax.set_ylabel("Power (GW)") ax.set_xlabel("Time (hour of day)") ax.set_title("Seasonal implications of 100% solar in California") ax.grid(alpha=0.3, ls="--") ax.set_ylim(bottom=0) ax.set_xlim([0, 24]) ax.set_xticks(np.arange(0, 25, 3.0)) ax.text(1, 5, "W: 2019-12-21\nS: 2019-06-21\nData: CAISO") # plt.show() plt.savefig("solar-scenario.png") import typing class Data(typing.NamedTuple): time: np.ndarray vals: np.ndarray integral: np.ndarray label: str color: str hatch: str = None opacity: float = 1.0 def process(data, season, nonelectric=False): demand_dt, demand_mw = data[f"{season} demand"] demand_integral = _integrate_megawatts(demand_mw) demand_gw = demand_mw/1000 demand_t = np.array([dt.time().hour + dt.time().minute / 60 for dt in demand_dt]) demand = Data(demand_t, demand_gw, demand_integral, f"{season} demand", "tan") # factor in other 60% that is not electric # gratuitously reduce primary energy assuming electric efficiency # by 60% # Today 40% of energy is electric so 60% is non-electric. But if we electrify # everything let's assume the 60% chunk is itself reduced to 60%, or 36% of # the original total. Then the total integral itself is also reduced to 40%+36% # of the original (76%). But since we're starting from electricity demand integral # we still have to increase the total others_integral = demand_integral/0.4*0.6*0.6 total_integral = demand_integral + others_integral # flat line value in GW will equal integral in GWd since time is 1 day others_gw = np.array([others_integral for dt in demand_dt]) others = Data(demand_t, others_gw, others_integral, "Transportation,Industry,Heating", "brown") supply_dt, supply_mw = data[f"{season} solar"] supply_t = np.array([dt.time().hour + dt.time().minute / 60 for dt in supply_dt]) supply_integral = _integrate_megawatts(supply_mw) supply_gw = supply_mw/1000 supply = Data( supply_t, supply_gw, supply_integral, f"{season} solar supply", "green" ) if nonelectric: factor = total_integral/supply_integral else: factor = demand_integral /supply_integral scaled_gw = supply_gw * factor scaled = Data( supply_t, scaled_gw, supply_integral*factor, f"{season} required supply", "green", "", 0.1, ) return demand, supply, scaled, others def add_data(ax, data, x=12, y0=0.0): line, = ax.plot( data.time, data.vals, "-", lw=2, color=data.color, label=f"{data.label} ({data.integral:.1f} GWd)", ) fill = ax.fill_between( data.time, data.vals, y2=y0, alpha=data.opacity, color=data.color, hatch=data.hatch ) text = ax.text( x, data.vals.max()*0.6, f"{data.label}:\n{data.integral:.1f} GWd", horizontalalignment="center", verticalalignment="center", ) return line, fill, text def plot_both_scenarios(data): seasons = ["Summer", "Winter"] #seasons = ["Winter"] fig, axs = plt.subplots( 1, len(seasons), figsize=(4 * len(seasons), 4), squeeze=False, dpi=100 ) for season, ax in zip(seasons, axs[0]): demand, supply, scaled, _others = process(data, season) add_data(ax, demand) add_data(ax, supply) add_data(ax, scaled) an_demand1 = ax.annotate( "Area of supply\nmust equal area\nof demand", xy=(8, 5), xytext=(4, 50), arrowprops=dict(arrowstyle="->",facecolor="black", relpos=(0.3,0.5)), horizontalalignment="center", verticalalignment="bottom", ) an_demand2 = ax.annotate( "Area of supply\nmust equal area\nof demand", xy=(4, 15), xytext=(4, 50), arrowprops=dict(arrowstyle="->",facecolor="black", relpos=(0.3,0.5)), horizontalalignment="center", verticalalignment="bottom", ) #an_demand3 = ax.annotate( # "Area of supply must\nequal area of demand", # xy=(10, 40), # xytext=(1, 40), # arrowprops=dict(facecolor="black", shrink=0.05), # horizontalalignment="left", # verticalalignment="bottom", #) if ax is axs[0][0]: an_storage = ax.annotate( "Area above demand\ncurve must be handled \nby energy storage\nsystems", xy=(16, 60), horizontalalignment="left", verticalalignment="bottom", ) peak_req = scaled.vals.max() storage_bounds = ax.annotate( "", xy=(18, 24), xytext=(18, peak_req), arrowprops=dict(arrowstyle="<->"), ) if ax is axs[0][1]: # winter only peak_req = scaled.vals.max() an_cap_req = ax.annotate( f"Total capacity required\n({peak_req:.1f}) GW", xy=(14, peak_req), xytext=(20, peak_req), arrowprops=dict(facecolor="black", shrink=0.05), horizontalalignment="center", verticalalignment="center", ) cpeak = supply.vals.max() an_cap_now = ax.annotate( f"Current winter capacity\n({cpeak:.1f}) GW", xy=(14, cpeak), xytext=(20, cpeak), arrowprops=dict(facecolor="black", shrink=0.05), horizontalalignment="center", verticalalignment="center", ) add_axes(ax) ax.set_title(f"{season}") #fig.suptitle("Seasonal implications of 100% solar in California", fontsize=14) # ax.text(1, 5, "W: 2019-12-21\nS: 2019-06-21\nData: CAISO") #plt.tight_layout() plt.show() #plt.savefig("solar-intermittency.png") #from matplotlib.animation import FFMpegWriter #writer = FFMpegWriter(fps=1, metadata=dict(artist="Me"), bitrate=1800) #anim.save("movie.mp4", writer=writer) # writer = ImageMagickFileWriter() # anim.save("animation.avi", writer=writer) def scene1_summer(season, data, showSupply=True): fig, axs = plt.subplots(1, 1, squeeze=False, dpi=200) ax = axs[0][0] demand, supply, scaled, others = process(data, season) add_data(ax, demand, 3.5) if showSupply: add_data(ax, supply, 13) #add_data(ax, scaled) #an_demand1 = ax.annotate( # "Area of supply\nmust equal area\nof demand", # xy=(8, 5), # xytext=(4, 30), # arrowprops=dict(arrowstyle="->",facecolor="black", relpos=(0.3,0.5)), # horizontalalignment="center", # verticalalignment="bottom", #) #an_demand2 = ax.annotate( # "Area of supply\nmust equal area\nof demand", # xy=(4, 15), # xytext=(4, 30), # arrowprops=dict(arrowstyle="->",facecolor="black", relpos=(0.3,0.5)), # horizontalalignment="center", # verticalalignment="bottom", #) ax.set_title(f"{season} electricity in California") #fig.suptitle("Seasonal implications of 100% solar in California", fontsize=14) # ax.text(1, 5, "W: 2019-12-21\nS: 2019-06-21\nData: CAISO") ax.set_ylabel("Power (GW)") ax.set_xlabel("Time (hour of day)") ax.grid(alpha=0.3, ls="--") ax.set_ylim(bottom=0) ax.set_xlim([0, 24]) ax.set_ylim([0, 40]) ax.set_xticks(
np.arange(0, 25, 3.0)
numpy.arange
#!/usr/bin/env python __author__ = "<NAME>" __email__ = "mncosta(at)isr(dot)tecnico(dot)ulisboa(dot)pt" import numpy as np from sklearn.linear_model import HuberRegressor import math from random import randint import cvxopt as cvx from RiskPerception.OpticalFlow import getWeightFromOFDistance, calcDistance from RiskPerception.Objects import getOFWeightFromObjects from RiskPerception.CONFIG import CVX_SUPRESS_PRINT,\ HUBER_LOSS_EPSILON,\ RANSAC_MINIMUM_DATAPOINTS,\ RANSAC_NUMBER_ITERATIONS, \ RANSAC_MINIMUM_RATIO_INLIERS,\ RANSAC_MINIMUM_ERROR_ANGLE,\ RANSAC_RATIO_INCREASE_ETA,\ ITERATIVE_OBJECT_WEIGHTS_ITERATIONS,\ MAXIMUM_INLIERS_ANGLE,\ EXPONENTIAL_DECAY_NBR_WEIGHTS,\ EXPONENTIAL_DECAY_INITIAL,\ EXPONENTIAL_DECAY_TAU def l1_norm_optimization(a_i, b_i, c_i, w_i=None): """Solve l1-norm optimization problem.""" cvx.solvers.options['show_progress'] = not CVX_SUPRESS_PRINT # Non-Weighted optimization: if w_i is None: # Problem must be formulated as sum |P*x - q| P = cvx.matrix([[cvx.matrix(a_i)], [cvx.matrix(b_i)]]) q = cvx.matrix(c_i * -1) # Solve the l1-norm problem u = cvx.l1.l1(P, q) # Get results x0, y0 = u[0], u[1] # Weighted optimization: else: # Problem must be formulated as sum |P*x - q| P = cvx.matrix([[cvx.matrix(np.multiply(a_i, w_i))], [cvx.matrix(np.multiply(b_i, w_i))]]) q = cvx.matrix(np.multiply(w_i, c_i * -1)) # Solve the l1-norm problem u = cvx.l1.l1(P, q) # Get results x0, y0 = u[0], u[1] # return resulting point return (x0, y0) def l2_norm_optimization(a_i, b_i, c_i, w_i=None): """Solve l2-norm optimization problem.""" # Non-Weighted optimization: if w_i is None: aux1 = -2 * ((np.sum(np.multiply(b_i, b_i))) * ( np.sum(np.multiply(a_i, a_i))) / float( np.sum(np.multiply(a_i, b_i))) - (np.sum(np.multiply(a_i, b_i)))) aux2 = 2 * ((np.sum(np.multiply(b_i, b_i))) * ( np.sum(np.multiply(a_i, c_i))) / float( np.sum(np.multiply(a_i, b_i))) - (np.sum(np.multiply(b_i, c_i)))) x0 = aux2 / float(aux1) y0 = (-(np.sum(np.multiply(a_i, c_i))) - ( np.sum(np.multiply(a_i, a_i))) * x0) / float( np.sum(np.multiply(a_i, b_i))) # Weighted optimization: else: aux1 = -2 * ((np.sum(np.multiply(np.multiply(b_i, b_i), w_i))) * ( np.sum(np.multiply(np.multiply(a_i, a_i), w_i))) / float( np.sum(np.multiply(np.multiply(a_i, b_i), w_i))) - ( np.sum(np.multiply(np.multiply(a_i, b_i), w_i)))) aux2 = 2 * ((np.sum(np.multiply(np.multiply(b_i, b_i), w_i))) * ( np.sum(np.multiply(np.multiply(a_i, c_i), w_i))) / float( np.sum(np.multiply(np.multiply(a_i, b_i), w_i))) - ( np.sum(np.multiply(np.multiply(b_i, c_i), w_i)))) x0 = aux2 / float(aux1) y0 = (-(np.sum(np.multiply(np.multiply(a_i, c_i), w_i))) - ( np.sum(np.multiply(np.multiply(a_i, a_i), w_i))) * x0) / float( np.sum(np.multiply(np.multiply(a_i, b_i), w_i))) # return resulting point return (x0, y0) def huber_loss_optimization(a_i, b_i, c_i, w_i=None): """Solve Huber loss optimization problem.""" for k in range(5): try: # Non-Weighted optimization: if w_i is None: huber = HuberRegressor(fit_intercept=True, alpha=0.0, max_iter=100, epsilon=HUBER_LOSS_EPSILON) X = -1 * np.concatenate( (a_i.reshape(a_i.shape[0], 1), b_i.reshape(b_i.shape[0], 1)), axis=1) y = c_i huber.fit(X, y) # Get results x0, y0 = huber.coef_ + np.array([0., 1.]) * huber.intercept_ # Weighted optimization: else: huber = HuberRegressor(fit_intercept=True, alpha=0.0, max_iter=100, epsilon=HUBER_LOSS_EPSILON) X = -1 * np.concatenate( (a_i.reshape(a_i.shape[0], 1), b_i.reshape(b_i.shape[0], 1)), axis=1) y = c_i sampleWeight = w_i huber.fit(X, y, sample_weight=sampleWeight) # Get results x0, y0 = huber.coef_ + np.array([0., 1.]) * huber.intercept_ except ValueError: pass else: # return resulting point return x0, y0 else: return None, None def select_subset(OFVectors): """Select a subset of a given set.""" subset = np.array([]).reshape(0, 4) for i in range(RANSAC_MINIMUM_DATAPOINTS): idx = randint(0, (OFVectors.shape)[0] - 1) subset = np.vstack((subset, np.array([OFVectors[idx]]))) return subset def fit_model(subset): """Return a solution for a given subset of points.""" # Initialize some empty variables a_i = np.array([]) b_i = np.array([]) c_i = np.array([]) # Save the lines coeficients of the form a*x + b*y + c = 0 to the variables for i in range(subset.shape[0]): a1, b1, c1, d1 = subset[i] pt1 = (a1, b1) # So we don't divide by zero if (a1 - c1) == 0: continue a = float(b1 - d1) / float(a1 - c1) b = -1 c = (b1) - a * a1 denominator = float(a ** 2 + 1) a_i = np.append(a_i, a / denominator) b_i = np.append(b_i, b / denominator) c_i = np.append(c_i, c / denominator) # Solve a optimization problem with Minimum Square distance as a metric (x0, y0) = l2_norm_optimization(a_i, b_i, c_i) # Return FOE return (x0, y0) def get_intersect_point(a1, b1, c1, d1, x0, y0): """Get the point on the lines that passes through (a1,b1) and (c1,d1) and s closest to the point (x0,y0).""" a = 0 if (a1 - c1) != 0: a = float(b1 - d1) / float(a1 - c1) c = b1 - a * a1 # Compute the line perpendicular to the line of the OF vector that passes throught (x0,y0) a_aux = 0 if a != 0: a_aux = -1 / a c_aux = y0 - a_aux * x0 # Get intersection of the two lines x1 = (c_aux - c) / (a - a_aux) y1 = a_aux * x1 + c_aux return (x1, y1) def find_angle_between_lines(x0, y0, a1, b1, c1, d1): """Finds the angle between two lines.""" # Line 1 : line that passes through (x0,y0) and (a1,b1) # Line 2 : line that passes through (c1,d1) and (a1,b1) angle1 = 0 angle2 = 0 if (a1 - x0) != 0: angle1 = float(b1 - y0) / float(a1 - x0) if (a1 - c1) != 0: angle2 = float(b1 - d1) / float(a1 - c1) # Get angle in degrees angle1 = math.degrees(math.atan(angle1)) angle2 = math.degrees(math.atan(angle2)) ang_diff = angle1 - angle2 # Find angle in the interval [0,180] if math.fabs(ang_diff) > 180: ang_diff = ang_diff - 180 # Return angle between the two lines return ang_diff def find_inliers_outliers(x0, y0, OFVectors): """Find set of inliers and outliers of a given set of optical flow vectors and the estimated FOE.""" # Initialize some varaiables inliers = np.array([]) nbr_inlier = 0 # Find inliers with the angle method # For each vector for i in range((OFVectors.shape)[0]): a1, b1, c1, d1 = OFVectors[i] # Find the angle between the line that passes through (x0,y0) and (a1,b1) and the line that passes through (c1,d1) and (a1,b1) ang_diff = find_angle_between_lines((x0, y0), (a1, b1, c1, d1)) # If the angle is below a certain treshold consider it a inlier if -RANSAC_MINIMUM_ERROR_ANGLE < ang_diff < RANSAC_MINIMUM_ERROR_ANGLE: # Increment number of inliers and add save it nbr_inlier += 1 inliers = np.append(inliers, i) # Compute the ratio of inliers to overall number of optical flow vectors ratioInliersOutliers = float(nbr_inlier) / (OFVectors.shape)[0] # Return set of inliers and ratio of inliers to overall set return inliers, ratioInliersOutliers def RANSAC(OFVectors): """Estimate the FOE of a set of optical flow (OF) vectors using RANSAC.""" # Initialize some variables savedRatio = 0 FOE = (0, 0) inliersModel = np.array([]) # Repeat iterations for a number of times for i in range(RANSAC_NUMBER_ITERATIONS): # Randomly initial select OF vectors subset = select_subset(OFVectors) # Estimate a FOE for the set of OF vectors (x0, y0) = fit_model(subset) # Find the inliers of the set for the estimated FOE inliers, ratioInliersOutliers = find_inliers_outliers((x0, y0), OFVectors) # If ratio of inliers is bigger than the previous iterations, save current solution if savedRatio < ratioInliersOutliers: savedRatio = ratioInliersOutliers inliersModel = inliers FOE = (x0, y0) # If ratio is acceptable, stop iterating and return the found solution if savedRatio > RANSAC_MINIMUM_RATIO_INLIERS and RANSAC_MINIMUM_RATIO_INLIERS != 0: break # Return the estimated FOE, the found inliers ratio and the set of inliers return FOE, savedRatio, inliersModel def RANSAC_ImprovedModel(OFVectors): """Estimate the FOE of a set of optical flow (OF) vectors using a form of RANSAC method.""" # Initialize some variables FOE = (0, 0) savedRatio = 0 inliersModel = np.array([]) # Repeat iterations for a number of times for i in range(RANSAC_NUMBER_ITERATIONS): # Randomly select initial OF vectors subset = select_subset(OFVectors) # Estimate a FOE for the set of OF vectors (x0, y0) = fit_model(subset) # Find the inliers of the set for the estimated FOE inliers, ratioInliersOutliers = find_inliers_outliers((x0, y0), OFVectors) # Initialize some varaibles iter = 0 ratioInliersOutliers_old = 0 # While the ratio of inliers keeps on increasing while ((inliers.shape)[ 0] != 0 and ratioInliersOutliers - ratioInliersOutliers_old > RANSAC_RATIO_INCREASE_ETA): # Repeat iterations for a number of times if iter > RANSAC_NUMBER_ITERATIONS: break iter += 1 # Select a new set of OF vectors that are inliers tot he estimated FOE for i in range((inliers.shape)[0]): subset = np.vstack( (subset, np.array([OFVectors[int(inliers[i])]]))) # Estimate a FOE for the new set of OF vectors (x0, y0) = fit_model(subset) # Save the previous iteration ratio if inliers ratioInliersOutliers_old = ratioInliersOutliers # Find the inliers of the set for the estimated FOE inliers, ratioInliersOutliers = find_inliers_outliers((x0, y0), OFVectors) # If ratio of inliers is bigger than the previous iterations, save current solution if savedRatio < ratioInliersOutliers: savedRatio = ratioInliersOutliers inliersModel = inliers FOE = (x0, y0) # If ratio is acceptable, stop iterating and return the found solution if savedRatio > RANSAC_MINIMUM_RATIO_INLIERS and RANSAC_MINIMUM_RATIO_INLIERS != 0: break # If ratio is acceptable, stop iterating and return the found solution if savedRatio > RANSAC_MINIMUM_RATIO_INLIERS and RANSAC_MINIMUM_RATIO_INLIERS != 0: break # Return the estimated FOE, the found inliers ratio and the set of inliers return FOE, savedRatio, inliersModel def vectorOFRightDirection(OFvect, FOE): """Returns True if OF vector is pointing away from the FOE, False otherwise.""" # Get points of optical flow vector a1, b1, c1, d1 = OFvect # If left side of FOE if a1 <= FOE[0]: if c1 <= a1: return False # If right side of FOE else: if c1 >= a1: return False return True def improveOFObjectsWeights(OF, objects, framenbr, FOE, currResult, dist_intervals=None, dist_avg_int=None, dist_max_int=None): """Iteratively check weights coming from objects.""" staticObjects = objects[objects[:, 0] == str(framenbr)].copy() staticObjects[:, 6] = 0 a_i = np.array([]) b_i = np.array([]) c_i = np.array([]) w_i = np.array([]) (x0, y0) = currResult for i in range((OF.shape)[0]): a1, b1, c1, d1 = OF[i] # So we don't divide by zero if (a1 - c1) == 0: continue a = float(b1 - d1) / float(a1 - c1) b = -1 c = (b1) - a*a1 lengthLine = math.sqrt((a1-c1)**2 + (b1-d1)**2) distToFOE = calcDistance((a1, b1), FOE) for j in range(dist_intervals.shape[0] - 1): if dist_intervals[j] < distToFOE < dist_intervals[j + 1]: break distance_weight = ( getWeightFromOFDistance((lengthLine), (dist_avg_int[j]), (dist_max_int[j]))) if getOFWeightFromObjects(objects, (a1, b1), framenbr) != 0: for object in staticObjects: if (float(object[1]) <= float(a1) <= float(object[3])) and ( float(object[2]) <= float(b1) <= float(object[4])): if (-MAXIMUM_INLIERS_ANGLE < find_angle_between_lines((x0,y0), (a1, b1, c1,d1)) < MAXIMUM_INLIERS_ANGLE) and \ vectorOFRightDirection((a1, b1, c1, d1), FOE): object_weight = 1 object[6] = str(float(object[6]) + 1) else: object_weight = 0 object[6] = str(float(object[6]) - 1) else: object_weight = 1 weight = distance_weight * object_weight denominator = float(a ** 2 + 1) a_i = np.append(a_i, a / denominator) b_i = np.append(b_i, b / denominator) c_i = np.append(c_i, c / denominator) w_i = np.append(w_i, [weight]) return a_i, b_i, c_i, w_i, staticObjects def iterative_improve_on_object_weights(optimization_method, OF, objects, framenbr, FOE, curr_result, dist_intervals, dist_avg_int, dist_max_int): for i in range(ITERATIVE_OBJECT_WEIGHTS_ITERATIONS): a_i, b_i, c_i, w_i, staticObjects = \ improveOFObjectsWeights(OF, objects, framenbr, FOE, curr_result, dist_intervals=dist_intervals, dist_avg_int=dist_avg_int, dist_max_int=dist_max_int) (x0, y0) = optimization_method(a_i, b_i, c_i, w_i) if x0 is None and y0 is None: return curr_result return (x0, y0) def negative_exponential_decay(x, initial = None, tau = None): """Returns the value of a negative exponential [f(x) = No * e^-(t*x) ].""" if initial is None: initial = EXPONENTIAL_DECAY_INITIAL if tau is None: tau = EXPONENTIAL_DECAY_TAU return initial * math.exp(-1 * tau * x) def generate_weights(nbr_weights): """Generate negative exponential weights.""" weights = np.array([]) for i in range(nbr_weights): weights = np.append(weights, negative_exponential_decay(i)) return weights def points_history(points, newPoint): """Refresh the points history. Delete the oldest point and add the new point.""" points = np.delete(points, (points.shape)[1] - 1, axis=1) points = np.insert(points, 0, newPoint, axis=1) return points def initialize_points_history(width, height, nbr_points = None): """Initialize the point history memory.""" if nbr_points is None: nbr_points = EXPONENTIAL_DECAY_NBR_WEIGHTS points =
np.array([[],[]])
numpy.array
import numpy as np import pandas as pd from numpy.testing import assert_array_equal from pandas.testing import assert_frame_equal from nose.tools import (assert_equal, assert_almost_equal, raises, ok_, eq_) from rsmtool.preprocessor import (FeaturePreprocessor, FeatureSubsetProcessor, FeatureSpecsProcessor) class TestFeaturePreprocessor: def setUp(self): self.fpp = FeaturePreprocessor() def test_select_candidates_with_N_or_more_items(self): data = pd.DataFrame({'candidate': ['a'] * 3 + ['b'] * 2 + ['c'], 'sc1': [2, 3, 1, 5, 6, 1]}) df_included_expected = pd.DataFrame({'candidate': ['a'] * 3 + ['b'] * 2, 'sc1': [2, 3, 1, 5, 6]}) df_excluded_expected = pd.DataFrame({'candidate': ['c'], 'sc1': [1]}) (df_included, df_excluded) = FeaturePreprocessor.select_candidates(data, 2) assert_frame_equal(df_included, df_included_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_select_candidates_with_N_or_more_items_all_included(self): data = pd.DataFrame({'candidate': ['a'] * 2 + ['b'] * 2 + ['c'] * 2, 'sc1': [2, 3, 1, 5, 6, 1]}) (df_included, df_excluded) = FeaturePreprocessor.select_candidates(data, 2) assert_frame_equal(df_included, data) assert_equal(len(df_excluded), 0) def test_select_candidates_with_N_or_more_items_all_excluded(self): data = pd.DataFrame({'candidate': ['a'] * 3 + ['b'] * 2 + ['c'], 'sc1': [2, 3, 1, 5, 6, 1]}) (df_included, df_excluded) = FeaturePreprocessor.select_candidates(data, 4) assert_frame_equal(df_excluded, data) assert_equal(len(df_included), 0) def test_select_candidates_with_N_or_more_items_custom_name(self): data = pd.DataFrame({'ID': ['a'] * 3 + ['b'] * 2 + ['c'], 'sc1': [2, 3, 1, 5, 6, 1]}) df_included_expected = pd.DataFrame({'ID': ['a'] * 3 + ['b'] * 2, 'sc1': [2, 3, 1, 5, 6]}) df_excluded_expected = pd.DataFrame({'ID': ['c'], 'sc1': [1]}) (df_included, df_excluded) = FeaturePreprocessor.select_candidates(data, 2, 'ID') assert_frame_equal(df_included, df_included_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_rename_no_columns(self): df = pd.DataFrame(columns=['spkitemid', 'sc1', 'sc2', 'length', 'raw', 'candidate', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'spkitemid', 'sc1', 'sc2', 'length', 'raw', 'candidate') assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', 'length', 'raw', 'candidate', 'feature1', 'feature2']) def test_rename_no_columns_some_values_none(self): df = pd.DataFrame(columns=['spkitemid', 'sc1', 'sc2', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'spkitemid', 'sc1', 'sc2', None, None, None) assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', 'feature1', 'feature2']) def test_rename_no_used_columns_but_unused_columns_with_default_names(self): df = pd.DataFrame(columns=['spkitemid', 'sc1', 'sc2', 'length', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'spkitemid', 'sc1', 'sc2', None, None, None) assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', '##length##', 'feature1', 'feature2']) def test_rename_used_columns(self): df = pd.DataFrame(columns=['id', 'r1', 'r2', 'words', 'SR', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'id', 'r1', 'r2', 'words', 'SR', None) assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', 'length', 'raw', 'feature1', 'feature2']) def test_rename_used_columns_and_unused_columns_with_default_names(self): df = pd.DataFrame(columns=['id', 'r1', 'r2', 'words', 'raw', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'id', 'r1', 'r2', 'words', None, None) assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', 'length', '##raw##', 'feature1', 'feature2']) def test_rename_used_columns_with_swapped_names(self): df = pd.DataFrame(columns=['id', 'sc1', 'sc2', 'raw', 'words', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'id', 'sc2', 'sc1', 'words', None, None) assert_array_equal(df.columns, ['spkitemid', 'sc2', 'sc1', '##raw##', 'length', 'feature1', 'feature2']) def test_rename_used_columns_but_not_features(self): df = pd.DataFrame(columns=['id', 'sc1', 'sc2', 'length', 'feature2']) df = self.fpp.rename_default_columns(df, ['length'], 'id', 'sc1', 'sc2', None, None, None) assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', 'length', 'feature2']) def test_rename_candidate_column(self): df = pd.DataFrame(columns=['spkitemid', 'sc1', 'sc2', 'length', 'apptNo', 'feature1', 'feature2']) df = self.fpp.rename_default_columns(df, [], 'spkitemid', 'sc1', 'sc2', None, None, 'apptNo') assert_array_equal(df.columns, ['spkitemid', 'sc1', 'sc2', '##length##', 'candidate', 'feature1', 'feature2']) def test_rename_candidate_named_sc2(self): df = pd.DataFrame(columns=['id', 'sc1', 'sc2', 'question', 'l1', 'score']) df_renamed = self.fpp.rename_default_columns(df, [], 'id', 'sc1', None, None, 'score', 'sc2') assert_array_equal(df_renamed.columns, ['spkitemid', 'sc1', 'candidate', 'question', 'l1', 'raw']) @raises(KeyError) def test_check_subgroups_missing_columns(self): df = pd.DataFrame(columns=['a', 'b', 'c']) subgroups = ['a', 'd'] FeaturePreprocessor.check_subgroups(df, subgroups) def test_check_subgroups_nothing_to_replace(self): df = pd.DataFrame({'a': ['1', '2'], 'b': ['32', '34'], 'd': ['abc', 'def']}) subgroups = ['a', 'd'] df_out = FeaturePreprocessor.check_subgroups(df, subgroups) assert_frame_equal(df_out, df) def test_check_subgroups_replace_empty(self): df = pd.DataFrame({'a': ['1', ''], 'b': [' ', '34'], 'd': ['ab c', ' ']}) subgroups = ['a', 'd'] df_expected = pd.DataFrame({'a': ['1', 'No info'], 'b': [' ', '34'], 'd': ['ab c', 'No info']}) df_out = FeaturePreprocessor.check_subgroups(df, subgroups) assert_frame_equal(df_out, df_expected) def test_filter_on_column(self): bad_df = pd.DataFrame({'spkitemlab': np.arange(1, 9, dtype='int64'), 'sc1': ['00', 'TD', '02', '03'] * 2}) df_filtered_with_zeros = pd.DataFrame({'spkitemlab': [1, 3, 4, 5, 7, 8], 'sc1': [0.0, 2.0, 3.0] * 2}) df_filtered = pd.DataFrame({'spkitemlab': [3, 4, 7, 8], 'sc1': [2.0, 3.0] * 2}) (output_df_with_zeros, output_excluded_df_with_zeros) = self.fpp.filter_on_column(bad_df, 'sc1', 'spkitemlab', exclude_zeros=False) output_df, output_excluded_df = self.fpp.filter_on_column(bad_df, 'sc1', 'spkitemlab', exclude_zeros=True) assert_frame_equal(output_df_with_zeros, df_filtered_with_zeros) assert_frame_equal(output_df, df_filtered) def test_filter_on_column_all_non_numeric(self): bad_df = pd.DataFrame({'sc1': ['A', 'I', 'TD', 'TD'] * 2, 'spkitemlab': range(1, 9)}) expected_df_excluded = bad_df.copy() expected_df_excluded.drop('sc1', axis=1, inplace=True) df_filtered, df_excluded = self.fpp.filter_on_column(bad_df, 'sc1', 'spkitemlab', exclude_zeros=True) ok_(df_filtered.empty) ok_("sc1" not in df_filtered.columns) assert_frame_equal(df_excluded, expected_df_excluded, check_dtype=False) def test_filter_on_column_std_epsilon_zero(self): # Test that the function exclude columns where std is returned as # very low value rather than 0 data = {'id': np.arange(1, 21, dtype='int64'), 'feature_ok': np.arange(1, 21), 'feature_zero_sd': [1.5601] * 20} bad_df = pd.DataFrame(data=data) output_df, output_excluded_df = self.fpp.filter_on_column(bad_df, 'feature_zero_sd', 'id', exclude_zeros=False, exclude_zero_sd=True) good_df = bad_df[['id', 'feature_ok']].copy() assert_frame_equal(output_df, good_df) ok_(output_excluded_df.empty) def test_filter_on_column_with_inf(self): # Test that the function exclude columns where feature value is 'inf' data = pd.DataFrame({'feature_1': [1.5601, 0, 2.33, 11.32], 'feature_ok': np.arange(1, 5)}) data['feature_with_inf'] = 1 / data['feature_1'] data['id'] = np.arange(1, 5, dtype='int64') bad_df = data[np.isinf(data['feature_with_inf'])].copy() good_df = data[~np.isinf(data['feature_with_inf'])].copy() bad_df.reset_index(drop=True, inplace=True) good_df.reset_index(drop=True, inplace=True) output_df, output_excluded_df = self.fpp.filter_on_column(data, 'feature_with_inf', 'id', exclude_zeros=False, exclude_zero_sd=True) assert_frame_equal(output_df, good_df) assert_frame_equal(output_excluded_df, bad_df) def test_filter_on_flag_column_empty_flag_dictionary(self): # no flags specified, keep the data frame as is df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, 0, 0, 0], 'flag2': [1, 2, 2, 1]}) flag_dict = {} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_int_column_and_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, 1, 2, 3]}) flag_dict = {'flag1': [0, 1, 2, 3, 4]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_float_column_and_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0.5, 1.1, 2.2, 3.6]}) flag_dict = {'flag1': [0.5, 1.1, 2.2, 3.6, 4.5]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_str_column_and_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': ['a', 'b', 'c', 'd']}) flag_dict = {'flag1': ['a', 'b', 'c', 'd', 'e']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_float_column_int_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0.0, 1.0, 2.0, 3.0]}) flag_dict = {'flag1': [0, 1, 2, 3, 4]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_int_column_float_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, 1, 2, 3]}) flag_dict = {'flag1': [0.0, 1.0, 2.0, 3.0, 4.5]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_str_column_float_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': ['4', '1', '2', '3.5']}) flag_dict = {'flag1': [0.0, 1.0, 2.0, 3.5, 4.0]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_float_column_str_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [4.0, 1.0, 2.0, 3.5]}) flag_dict = {'flag1': ['1', '2', '3.5', '4', 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_str_column_int_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': ['0.0', '1.0', '2.0', '3.0']}) flag_dict = {'flag1': [0, 1, 2, 3, 4]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_int_column_str_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, 1, 2, 3]}) flag_dict = {'flag1': ['0.0', '1.0', '2.0', '3.0', 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_mixed_type_column_str_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, '1.0', 2, 3.5]}) flag_dict = {'flag1': ['0.0', '1.0', '2.0', '3.5', 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_mixed_type_column_int_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, '1.0', 2, 3.0]}) flag_dict = {'flag1': [0, 1, 2, 3, 4]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_mixed_type_column_float_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, '1.5', 2, 3.5]}) flag_dict = {'flag1': [0.0, 1.5, 2.0, 3.5, 4.0]} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_int_column_mixed_type_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0, 1, 2, 3]}) flag_dict = {'flag1': [0, 1, 2, 3.0, 3.5, 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_float_column_mixed_type_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [0.0, 1.0, 2.0, 3.5]}) flag_dict = {'flag1': [0, 1, 2, 3.0, 3.5, 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_str_column_mixed_type_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': ['0.0', '1.0', '2.0', '3.5']}) flag_dict = {'flag1': [0, 1, 2, 3.0, 3.5, 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_nothing_to_exclude_mixed_type_column_mixed_type_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [1, 2, 3.5, 'TD']}) flag_dict = {'flag1': [0, 1, 2, 3.0, 3.5, 'TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df) eq_(len(df_excluded), 0) def test_filter_on_flag_column_mixed_type_column_mixed_type_dict_filter_preserve_type(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1, 1.5, 2, 3.5, 'TD', 'NS']}) flag_dict = {'flag1': [1.5, 2, 'TD']} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [1.5, 2, 'TD']}) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1, 3.5, 'NS']}) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_with_none_value_in_int_flag_column_int_dict(self): df = pd.DataFrame({'spkitemid': [1, 2, 3, 4, 5, 6], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1, 2, 2, 3, 4, None]}, dtype=object) flag_dict = {'flag1': [2, 4]} df_new_expected = pd.DataFrame({'spkitemid': [2, 3, 5], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [2, 2, 4]}, dtype=object) df_excluded_expected = pd.DataFrame({'spkitemid': [1, 4, 6], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1, 3, None]}, dtype=object) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_with_none_value_in_float_flag_column_float_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1.2, 2.1, 2.1, 3.3, 4.2, None]}) flag_dict = {'flag1': [2.1, 4.2]} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [2.1, 2.1, 4.2]}) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1.2, 3.3, None]}) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_with_none_value_in_str_flag_column_str_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': ['a', 'b', 'b', 'c', 'd', None]}) flag_dict = {'flag1': ['b', 'd']} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': ['b', 'b', 'd']}) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': ['a', 'c', None]}) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_with_none_value_in_mixed_type_flag_column_float_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1, 1.5, 2.0, 'TD', 2.0, None]}, dtype=object) flag_dict = {'flag1': [1.5, 2.0]} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [1.5, 2.0, 2.0]}, dtype=object) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1, 'TD', None]}, dtype=object) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_with_none_value_in_mixed_type_flag_column_int_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1.5, 2, 2, 'TD', 4, None]}, dtype=object) flag_dict = {'flag1': [2, 4]} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [2, 2, 4]}, dtype=object) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1.5, 'TD', None]}, dtype=object) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_with_none_value_in_mixed_type_flag_column_mixed_type_dict(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1, 1.5, 2, 3.5, 'TD', None]}, dtype=object) flag_dict = {'flag1': [1.5, 2, 'TD']} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [1.5, 2, 'TD']}, dtype=object) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1, 3.5, None]}, dtype=object) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_two_flags_same_responses(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1, 1.5, 2, 3.5, 'TD', 'NS'], 'flag2': [1, 0, 0, 1, 0, 1]}) flag_dict = {'flag1': [1.5, 2, 'TD'], 'flag2': [0]} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [1.5, 2, 'TD'], 'flag2': [0, 0, 0]}) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1, 3.5, 'NS'], 'flag2': [1, 1, 1]}) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) def test_filter_on_flag_column_two_flags_different_responses(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd', 'e', 'f'], 'sc1': [1, 2, 1, 3, 4, 5], 'feature': [2, 3, 4, 5, 6, 2], 'flag1': [1, 1.5, 2, 3.5, 'TD', 'NS'], 'flag2': [2, 0, 0, 1, 0, 1]}) flag_dict = {'flag1': [1.5, 2, 'TD', 'NS'], 'flag2': [0, 2]} df_new_expected = pd.DataFrame({'spkitemid': ['b', 'c', 'e'], 'sc1': [2, 1, 4], 'feature': [3, 4, 6], 'flag1': [1.5, 2, 'TD'], 'flag2': [0, 0, 0]}) df_excluded_expected = pd.DataFrame({'spkitemid': ['a', 'd', 'f'], 'sc1': [1, 3, 5], 'feature': [2, 5, 2], 'flag1': [1, 3.5, 'NS'], 'flag2': [2, 1, 1]}) df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) assert_frame_equal(df_new, df_new_expected) assert_frame_equal(df_excluded, df_excluded_expected) @raises(KeyError) def test_filter_on_flag_column_missing_columns(self): df = pd.DataFrame({'spkitemid': ['a', 'b', 'c', 'd'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': ['1', '1', '1', '1'], 'flag2': ['1', '2', '2', '1']}) flag_dict = {'flag3': ['0'], 'flag2': ['1', '2']} df_new, df_excluded = self.fpp.filter_on_flag_columns(df, flag_dict) @raises(ValueError) def test_filter_on_flag_column_nothing_left(self): bad_df = pd.DataFrame({'spkitemid': ['a1', 'b1', 'c1', 'd1'], 'sc1': [1, 2, 1, 3], 'feature': [2, 3, 4, 5], 'flag1': [1, 0, 20, 14], 'flag2': [1, 1.0, 'TD', '03']}) flag_dict = {'flag1': [1, 0, 14], 'flag2': ['TD']} df_new, df_excluded = self.fpp.filter_on_flag_columns(bad_df, flag_dict) def test_remove_outliers(self): # we want to test that even if we pass in a list of # integers, we still get the right clamped output data = [1, 1, 2, 2, 1, 1] * 10 + [10] ceiling = np.mean(data) + 4 * np.std(data) clamped_data = FeaturePreprocessor.remove_outliers(data) assert_almost_equal(clamped_data[-1], ceiling) def test_generate_feature_names_subset(self): reserved_column_names = ['reserved_col1', 'reserved_col2'] expected = ['col_1'] df = pd.DataFrame({'reserved_col1': ['X', 'Y', 'Z'], 'reserved_col2': ['Q', 'R', 'S'], 'col_1': [1, 2, 3], 'col_2': ['A', 'B', 'C']}) subset = 'A' feature_subset = pd.DataFrame({'Feature': ['col_1', 'col_2', 'col_3'], 'A': [1, 0, 0], 'B': [1, 1, 1]}) feat_names = self.fpp.generate_feature_names(df, reserved_column_names, feature_subset, subset) eq_(feat_names, expected) def test_generate_feature_names_none(self): reserved_column_names = ['reserved_col1', 'reserved_col2'] expected = ['col_1', 'col_2'] df = pd.DataFrame({'reserved_col1': ['X', 'Y', 'Z'], 'reserved_col2': ['Q', 'R', 'S'], 'col_1': [1, 2, 3], 'col_2': ['A', 'B', 'C']}) feat_names = self.fpp.generate_feature_names(df, reserved_column_names, feature_subset_specs=None, feature_subset=None) eq_(feat_names, expected) def test_model_name_builtin_model(self): model_name = 'LinearRegression' model_type = self.fpp.check_model_name(model_name) eq_(model_type, 'BUILTIN') def test_model_name_skll_model(self): model_name = 'AdaBoostRegressor' model_type = self.fpp.check_model_name(model_name) eq_(model_type, 'SKLL') @raises(ValueError) def test_model_name_wrong_name(self): model_name = 'random_model' self.fpp.check_model_name(model_name) def test_trim(self): values = np.array([1.4, 8.5, 7.4]) expected = np.array([1.4, 8.4998, 7.4]) actual = FeaturePreprocessor.trim(values, 1, 8) assert_array_equal(actual, expected) def test_trim_with_list(self): values = [1.4, 8.5, 7.4] expected = np.array([1.4, 8.4998, 7.4]) actual = FeaturePreprocessor.trim(values, 1, 8) assert_array_equal(actual, expected) def test_trim_with_custom_tolerance(self): values = [0.6, 8.4, 7.4] expected = np.array([0.75, 8.25, 7.4]) actual = FeaturePreprocessor.trim(values, 1, 8, 0.25) assert_array_equal(actual, expected) def test_preprocess_feature_fail(self): np.random.seed(10) values = np.random.random(size=1000) values = np.append(values,
np.array([10000000])
numpy.array
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183':
np.array([-0.6718337295341267, 0.6620422637360075])
numpy.array
import os import copy import math import errno import torch #import trimesh import skimage import numpy as np import urllib.request import skimage.filters import matplotlib.colors as colors from tqdm import tqdm from PIL import Image #from inside_mesh import inside_mesh from torch.utils.data import Dataset from data_struct import QuadTree, OctTree from scipy.spatial import cKDTree as spKDTree from torchvision.transforms import Resize, Compose, ToTensor, Normalize def get_mgrid(sidelen, dim=2): '''Generates a flattened grid of (x,y,...) coordinates in a range of -1 to 1.''' if isinstance(sidelen, int): sidelen = dim * (sidelen,) if dim == 2: pixel_coords = np.stack(np.mgrid[:sidelen[0], :sidelen[1]], axis=-1)[None, ...].astype(np.float32) pixel_coords[0, :, :, 0] = pixel_coords[0, :, :, 0] / (sidelen[0] - 1) pixel_coords[0, :, :, 1] = pixel_coords[0, :, :, 1] / (sidelen[1] - 1) elif dim == 3: pixel_coords = np.stack(np.mgrid[:sidelen[0], :sidelen[1], :sidelen[2]], axis=-1)[None, ...].astype(np.float32) pixel_coords[..., 0] = pixel_coords[..., 0] / max(sidelen[0] - 1, 1) pixel_coords[..., 1] = pixel_coords[..., 1] / (sidelen[1] - 1) pixel_coords[..., 2] = pixel_coords[..., 2] / (sidelen[2] - 1) else: raise NotImplementedError('Not implemented for dim=%d' % dim) pixel_coords -= 0.5 pixel_coords *= 2. pixel_coords = torch.Tensor(pixel_coords).view(-1, dim) return pixel_coords def lin2img(tensor, image_resolution=None): batch_size, num_samples, channels = tensor.shape if image_resolution is None: width = np.sqrt(num_samples).astype(int) height = width else: height = image_resolution[0] width = image_resolution[1] return tensor.permute(0, 2, 1).view(batch_size, channels, height, width) def grads2img(gradients): mG = gradients.detach().squeeze(0).permute(-2, -1, -3).cpu() # assumes mG is [row,cols,2] nRows = mG.shape[0] nCols = mG.shape[1] mGr = mG[:, :, 0] mGc = mG[:, :, 1] mGa = np.arctan2(mGc, mGr) mGm =
np.hypot(mGc, mGr)
numpy.hypot
from nose import SkipTest from nose.tools import assert_raises, assert_true, assert_equal import networkx as nx from networkx.generators.classic import barbell_graph,cycle_graph,path_graph class TestConvertNumpy(object): numpy=1 # nosetests attribute, use nosetests -a 'not numpy' to skip test @classmethod def setupClass(cls): global np global np_assert_equal try: import numpy as np np_assert_equal=np.testing.assert_equal except ImportError: raise SkipTest('NumPy not available.') def __init__(self): self.G1 = barbell_graph(10, 3) self.G2 = cycle_graph(10, create_using=nx.DiGraph()) self.G3 = self.create_weighted(nx.Graph()) self.G4 = self.create_weighted(nx.DiGraph()) def create_weighted(self, G): g = cycle_graph(4) e = g.edges() source = [u for u,v in e] dest = [v for u,v in e] weight = [s+10 for s in source] ex = zip(source, dest, weight) G.add_weighted_edges_from(ex) return G def assert_equal(self, G1, G2): assert_true( sorted(G1.nodes())==sorted(G2.nodes()) ) assert_true( sorted(G1.edges())==sorted(G2.edges()) ) def identity_conversion(self, G, A, create_using): GG = nx.from_numpy_matrix(A, create_using=create_using) self.assert_equal(G, GG) GW = nx.to_networkx_graph(A, create_using=create_using) self.assert_equal(G, GW) GI = create_using.__class__(A) self.assert_equal(G, GI) def test_shape(self): "Conversion from non-square array." A=np.array([[1,2,3],[4,5,6]]) assert_raises(nx.NetworkXError, nx.from_numpy_matrix, A) def test_identity_graph_matrix(self): "Conversion from graph to matrix to graph." A = nx.to_numpy_matrix(self.G1) self.identity_conversion(self.G1, A, nx.Graph()) def test_identity_graph_array(self): "Conversion from graph to array to graph." A = nx.to_numpy_matrix(self.G1) A = np.asarray(A) self.identity_conversion(self.G1, A, nx.Graph()) def test_identity_digraph_matrix(self): """Conversion from digraph to matrix to digraph.""" A = nx.to_numpy_matrix(self.G2) self.identity_conversion(self.G2, A, nx.DiGraph()) def test_identity_digraph_array(self): """Conversion from digraph to array to digraph.""" A = nx.to_numpy_matrix(self.G2) A = np.asarray(A) self.identity_conversion(self.G2, A, nx.DiGraph()) def test_identity_weighted_graph_matrix(self): """Conversion from weighted graph to matrix to weighted graph.""" A = nx.to_numpy_matrix(self.G3) self.identity_conversion(self.G3, A, nx.Graph()) def test_identity_weighted_graph_array(self): """Conversion from weighted graph to array to weighted graph.""" A = nx.to_numpy_matrix(self.G3) A = np.asarray(A) self.identity_conversion(self.G3, A, nx.Graph()) def test_identity_weighted_digraph_matrix(self): """Conversion from weighted digraph to matrix to weighted digraph.""" A = nx.to_numpy_matrix(self.G4) self.identity_conversion(self.G4, A, nx.DiGraph()) def test_identity_weighted_digraph_array(self): """Conversion from weighted digraph to array to weighted digraph.""" A = nx.to_numpy_matrix(self.G4) A = np.asarray(A) self.identity_conversion(self.G4, A, nx.DiGraph()) def test_nodelist(self): """Conversion from graph to matrix to graph with nodelist.""" P4 = path_graph(4) P3 = path_graph(3) nodelist = P3.nodes() A = nx.to_numpy_matrix(P4, nodelist=nodelist) GA = nx.Graph(A) self.assert_equal(GA, P3) # Make nodelist ambiguous by containing duplicates. nodelist += [nodelist[0]] assert_raises(nx.NetworkXError, nx.to_numpy_matrix, P3, nodelist=nodelist) def test_weight_keyword(self): WP4 = nx.Graph() WP4.add_edges_from( (n,n+1,dict(weight=0.5,other=0.3)) for n in range(3) ) P4 = path_graph(4) A = nx.to_numpy_matrix(P4) np_assert_equal(A, nx.to_numpy_matrix(WP4,weight=None)) np_assert_equal(0.5*A, nx.to_numpy_matrix(WP4)) np_assert_equal(0.3*A, nx.to_numpy_matrix(WP4,weight='other')) def test_from_numpy_matrix_type(self): A=np.matrix([[1]]) G=nx.from_numpy_matrix(A) assert_equal(type(G[0][0]['weight']),int) A=np.matrix([[1]]).astype(np.float) G=nx.from_numpy_matrix(A) assert_equal(type(G[0][0]['weight']),float) A=np.matrix([[1]]).astype(np.str) G=nx.from_numpy_matrix(A) assert_equal(type(G[0][0]['weight']),str) A=
np.matrix([[1]])
numpy.matrix
# Copyright 2021 <NAME> # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """ """ import unittest import numpy as np import sempler import sempler.generators import ges import ges.utils as utils from ges.scores.gauss_obs_l0_pen import GaussObsL0Pen # --------------------------------------------------------------------- # Tests for the insert operator class InsertOperatorTests(unittest.TestCase): true_A = np.array([[0, 0, 1, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0]]) factorization = [(4, (2, 3)), (3, (2,)), (2, (0, 1)), (0, ()), (1, ())] true_B = true_A * np.random.uniform(1, 2, size=true_A.shape) scm = sempler.LGANM(true_B, (0, 0), (0.3, 0.4)) p = len(true_A) n = 10000 obs_data = scm.sample(n=n) # ------------------------------------------------------ # Tests def test_insert_1(self): # Test behaviour of the ges.insert(x,y,T) function # Insert should fail on adjacent edges try: ges.insert(0, 2, set(), self.true_A) self.fail("Call to insert should have failed") except ValueError as e: print("OK:", e) # Insert should fail when T contains non-neighbors of y try: ges.insert(0, 1, {2}, self.true_A) self.fail("Call to insert should have failed") except ValueError as e: print("OK:", e) # Insert should fail when T contains adjacents of x A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 try: ges.insert(3, 2, {4}, A) self.fail("Call to insert should have failed") except ValueError as e: print("OK:", e) # This should work true_new_A = A.copy() true_new_A[3, 2] = 1 new_A = ges.insert(3, 2, set(), A) self.assertTrue((true_new_A == new_A).all()) # This should work true_new_A = A.copy() true_new_A[1, 2] = 1 new_A = ges.insert(1, 2, set(), A) self.assertTrue((true_new_A == new_A).all()) # This should work true_new_A = A.copy() true_new_A[1, 2] = 1 true_new_A[4, 2], true_new_A[2, 4] = 1, 0 new_A = ges.insert(1, 2, {4}, A) self.assertTrue((true_new_A == new_A).all()) # This should work true_new_A = A.copy() true_new_A[1, 0] = 1 new_A = ges.insert(1, 0, set(), A) self.assertTrue((true_new_A == new_A).all()) def test_insert_2(self): G = 100 p = 20 for i in range(G): A = sempler.generators.dag_avg_deg(p, 3, 1, 1) cpdag = utils.dag_to_cpdag(A) for x in range(p): # Can only apply the operator to non-adjacent nodes adj_x = utils.adj(x, cpdag) Y = set(range(p)) - adj_x for y in Y: for T in utils.subsets(utils.neighbors(y, cpdag) - adj_x): # print(x,y,T) output = ges.insert(x, y, T, cpdag) # Verify the new vstructures vstructs = utils.vstructures(output) for t in T: vstruct = (x, y, t) if x < t else (t, y, x) self.assertIn(vstruct, vstructs) # Verify whole connectivity truth = cpdag.copy() # Add edge x -> y truth[x, y] = 1 # Orient t -> y truth[list(T), y] = 1 truth[y, list(T)] = 0 self.assertTrue((output == truth).all()) print("\nExhaustively checked insert operator on %i CPDAGS" % (i + 1)) def test_valid_insert_operators_1a(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should only be one valid operator, as # 1. X1 has no neighbors in A, so T0 = {set()} # 2. na_yx is also an empty set, thus na_yx U T is a clique # 3. there are no semi-directed paths from y to x valid_operators = ges.score_valid_insert_operators(0, 1, A, cache, debug=False) self.assertEqual(1, len(valid_operators)) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[0, 1] = 1 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_1b(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should only be one valid operator, as # 1. X0 has no neighbors in A, so T0 = {set()} # 2. na_yx is also an empty set, thus na_yx U T is a clique # 3. there are no semi-directed paths from y to x valid_operators = ges.score_valid_insert_operators(1, 0, A, cache, debug=False) self.assertEqual(1, len(valid_operators)) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[1, 0] = 1 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_2a(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should be two valid operators, as T0 = {X4} # 1. insert(X0,X2,set()) should be valid # 2. and also insert(X0,X2,{X4}), as na_yx U T = {X4} and is a clique # 3. there are no semi-directed paths from y to x valid_operators = ges.score_valid_insert_operators(0, 2, A, cache, debug=False) self.assertEqual(2, len(valid_operators)) # Test outcome of insert(0,2,set()) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[0, 2] = 1 self.assertTrue((new_A == true_new_A).all()) # Test outcome of insert(0,2,4) _, new_A, _, _, _ = valid_operators[1] true_new_A = A.copy() true_new_A[0, 2], true_new_A[2, 4] = 1, 0 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_2b(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should only be one valid operator, as # 1. X0 has no neighbors in A, so T0 = {set()} # 2. na_yx is also an empty set, thus na_yx U T is a clique # 3. there are no semi-directed paths from y to x valid_operators = ges.score_valid_insert_operators(2, 0, A, cache, debug=False) self.assertEqual(1, len(valid_operators)) # Test outcome of insert(2,0,set()) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[2, 0] = 1 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_3a(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should be two valid operators, as T0 = {X4} # 1. insert(X1,X2,set()) should be valid # 2. and also insert(X1,X2,{X4}), as na_yx U T = {X4} and is a clique # 3. there are no semi-directed paths from y to x valid_operators = ges.score_valid_insert_operators(1, 2, A, cache, debug=False) self.assertEqual(2, len(valid_operators)) # Test outcome of insert(0,2,set()) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[1, 2] = 1 self.assertTrue((new_A == true_new_A).all()) # Test outcome of insert(1,2,4) _, new_A, _, _, _ = valid_operators[1] true_new_A = A.copy() true_new_A[1, 2], true_new_A[2, 4] = 1, 0 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_3b(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should only be one valid operator, as # 1. X1 has no neighbors in A, so T0 = {set()} # 2. na_yx is also an empty set, thus na_yx U T is a clique # 3. there are no semi-directed paths from y to x valid_operators = ges.score_valid_insert_operators(2, 1, A, cache, debug=False) self.assertEqual(1, len(valid_operators)) # Test outcome of insert(2,0,set()) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[2, 1] = 1 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_4a(self): # Define A and cache A = np.zeros_like(self.true_A) A[2, 4], A[4, 2] = 1, 1 # x2 - x4 A[4, 3] = 1 # x4 -> x3 cache = GaussObsL0Pen(self.obs_data) # there should be one valid operator, as T0 = set(), na_yx = {4} # 1. insert(X0,X2,set()) should be valid # 2. na_yx U T = {X4} should be a clique # 3. the semi-directed path X2-X4->X3 contains one node in na_yx U T valid_operators = ges.score_valid_insert_operators(3, 2, A, cache, debug=False) self.assertEqual(1, len(valid_operators)) # Test outcome of insert(3,2,set()) _, new_A, _, _, _ = valid_operators[0] true_new_A = A.copy() true_new_A[3, 2] = 1 self.assertTrue((new_A == true_new_A).all()) def test_valid_insert_operators_4b(self): # Define A and cache A =
np.zeros_like(self.true_A)
numpy.zeros_like
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import unittest import sys from tests.op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.op import Operator paddle.enable_static() def calculate_momentum_by_numpy(param, grad, mu, velocity, use_nesterov, learning_rate, regularization_method=None, regularization_coeff=1.0): if regularization_method == "l2_decay": grad = grad + regularization_coeff * param velocity_out = mu * velocity + grad if use_nesterov: param_out = param - (grad + velocity_out * mu) * learning_rate else: param_out = param - learning_rate * velocity_out else: velocity_out = mu * velocity + grad if use_nesterov: param_out = param - grad * learning_rate - \ velocity_out * mu * learning_rate else: param_out = param - learning_rate * velocity_out return param_out, velocity_out class TestMomentumOp1(OpTest): def set_npu(self): self.__class__.use_custom_device = True def setUp(self): self.set_npu() self.op_type = "momentum" self.init_dtype() self.init_case() param = np.random.random(self.shape).astype(self.dtype) grad = np.random.random(self.shape).astype(self.dtype) velocity = np.zeros(self.shape).astype(self.dtype) learning_rate = np.array([0.001]).astype(np.float32) mu = 0.0001 self.inputs = { 'Param': param, 'Grad': grad, 'Velocity': velocity, 'LearningRate': learning_rate } self.attrs = {'mu': mu, 'use_nesterov': self.use_nesterov} param_out, velocity_out = calculate_momentum_by_numpy( param=param, grad=grad, mu=mu, velocity=velocity, use_nesterov=self.use_nesterov, learning_rate=learning_rate) self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out} def init_case(self): self.shape = (123, 321) self.use_nesterov = False def init_dtype(self): self.dtype = np.float32 def test_check_output(self): self.check_output_with_place(paddle.CustomPlace('ascend', 0)) class TestMomentumOpFp16(TestMomentumOp1): def init_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output(atol=1e-3) class TestMomentumOp2(TestMomentumOp1): def init_case(self): self.shape = (123, 321) self.use_nesterov = True class TestMomentumV2(unittest.TestCase): def test_momentum_dygraph(self): paddle.disable_static(place=paddle.CustomPlace('ascend', 0)) value =
np.arange(26)
numpy.arange
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for the von Mises distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import test_case from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import tfd = tfp.distributions @test_util.run_all_in_graph_and_eager_modes class _VonMisesTest(object): def make_tensor(self, x): x = tf.cast(x, self.dtype) return tf.compat.v1.placeholder_with_default( input=x, shape=x.shape if self.use_static_shape else None) def testVonMisesShape(self): loc = self.make_tensor([.1] * 5) concentration = self.make_tensor([.2] * 5) von_mises = tfd.VonMises(loc=loc, concentration=concentration) self.assertEqual([ 5, ], self.evaluate(von_mises.batch_shape_tensor())) self.assertAllEqual([], self.evaluate(von_mises.event_shape_tensor())) if self.use_static_shape: self.assertEqual(tf.TensorShape([5]), von_mises.batch_shape) self.assertEqual(tf.TensorShape([]), von_mises.event_shape) def testInvalidconcentration(self): with self.assertRaisesOpError("Condition x >= 0"): loc = self.make_tensor(0.) concentration = self.make_tensor(-.01) von_mises = tfd.VonMises(loc, concentration, validate_args=True) self.evaluate(von_mises.concentration) def testVonMisesLogPdf(self): locs_v = .1 concentrations_v = .2 x = np.array([2., 3., 4., 5., 6., 7.]) von_mises = tfd.VonMises( self.make_tensor(locs_v), self.make_tensor(concentrations_v)) try: from scipy import stats # pylint:disable=g-import-not-at-top except ImportError: tf.compat.v1.logging.warn("Skipping scipy-dependent tests") return expected_log_prob = stats.vonmises.logpdf(x, concentrations_v, loc=locs_v) log_prob = von_mises.log_prob(self.make_tensor(x)) self.assertAllClose(expected_log_prob, self.evaluate(log_prob)) def testVonMisesLogPdfUniform(self): x = np.array([2., 3., 4., 5., 6., 7.]) von_mises = tfd.VonMises(self.make_tensor(.1), self.make_tensor(0.)) log_prob = von_mises.log_prob(self.make_tensor(x)) expected_log_prob = np.array([-np.log(2. * np.pi)] * 6) self.assertAllClose(expected_log_prob, self.evaluate(log_prob)) def testVonMisesPdf(self): locs_v = .1 concentrations_v = .2 x = np.array([2., 3., 4., 5., 6., 7.]) von_mises = tfd.VonMises( self.make_tensor(locs_v), self.make_tensor(concentrations_v)) prob = von_mises.prob(self.make_tensor(x)) try: from scipy import stats # pylint:disable=g-import-not-at-top except ImportError: tf.compat.v1.logging.warn("Skipping scipy-dependent tests") return expected_prob = stats.vonmises.pdf(x, concentrations_v, loc=locs_v) self.assertAllClose(expected_prob, self.evaluate(prob)) def testVonMisesPdfUniform(self): x = np.array([2., 3., 4., 5., 6., 7.]) von_mises = tfd.VonMises(self.make_tensor(1.), self.make_tensor(0.)) prob = von_mises.prob(self.make_tensor(x)) expected_prob = np.array([1. / (2. * np.pi)] * 6) self.assertAllClose(expected_prob, self.evaluate(prob)) def testVonMisesCdf(self): locs_v = np.reshape(np.linspace(-10., 10., 20), [-1, 1, 1]) concentrations_v = np.reshape(np.logspace(-3., 3., 20), [1, -1, 1]) x = np.reshape(np.linspace(-10., 10., 20), [1, 1, -1]) von_mises = tfd.VonMises( self.make_tensor(locs_v), self.make_tensor(concentrations_v)) cdf = von_mises.cdf(self.make_tensor(x)) try: from scipy import stats # pylint:disable=g-import-not-at-top except ImportError: tf.compat.v1.logging.warn("Skipping scipy-dependent tests") return expected_cdf = stats.vonmises.cdf(x, concentrations_v, loc=locs_v) self.assertAllClose(expected_cdf, self.evaluate(cdf), atol=1e-4, rtol=1e-4) def testVonMisesCdfUniform(self): x =
np.linspace(-np.pi, np.pi, 20)
numpy.linspace
import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as md import datetime as dt from matplotlib.ticker import FormatStrFormatter import cartopy import cartopy.crs as ccrs import cartopy.feature as cfeature import cartopy.io.shapereader as shpreader from matplotlib.axes import Axes from cartopy.mpl.geoaxes import GeoAxes GeoAxes._pcolormesh_patched = Axes.pcolormesh proj_cart = ccrs.PlateCarree(central_longitude=-95) # Add a note about plotting counties by default if metpy is available in docs, and how to add your own map data without relying on built-ins. # reader = shpreader.Reader('/Users/vannac/Documents/UScounties/UScounties.shp') # reader = shpreader.Reader('/home/vanna/status_plots/UScounties/UScounties.shp') # counties = list(reader.geometries()) # COUNTIES = cfeature.ShapelyFeature(counties, ccrs.PlateCarree()) try: from metpy.plots import USCOUNTIES county_scales = ['20m', '5m', '500k'] COUNTIES = USCOUNTIES.with_scale(county_scales[0]) except ImportError: COUNTIES = None M2KM = 1000.0 COORD_TH = [0.1, 0.8, 0.83, 0.1] COORD_PLAN = [0.1, 0.1, 0.65, 0.5] COORD_LON = [0.1, 0.65, 0.65, 0.1] COORD_LAT = [0.8, 0.1, 0.13, 0.5] COORD_HIST = [0.8, 0.65, 0.13, 0.1] xdiv = 0.01 ydiv = 0.01 zdiv = 0.1 class XlmaPlot(object): def __init__(self, data, stime, subplot_labels, bkgmap, readtype, **kwargs): """ data = an data structure matching the lmatools or pyxlma formats: 1. pyxlma.lmalib.io.lmatools.LMAdata.data for reading with lmatools 2. pyxlma.lmalib.io.read.lma_file.readfile() for a pandas dataframe with same headers as LYLOUT files. stime = start time datetime object readtype = fileread options "lmatools" or "pandas" dataframe """ self.data = data self.readtype = readtype if self.readtype == 'pandas': self.stime = stime self.subplot_labels = subplot_labels self.bkgmap = bkgmap self.majorFormatter = FormatStrFormatter('%.1f') self.setup_figure(**kwargs) self.time_height() self.lon_alt() self.histogram() self.plan_view() self.lat_alt() def setup_figure(self, **kwargs): if self.readtype == 'lmatools': self.datetime = self.data.datetime self.dt_init = dt.datetime( self.data.year, self.data.month, self.data.day) if self.readtype == 'pandas': self.datetime = self.data.Datetime self.dt_init = dt.datetime( self.stime.year, self.stime.month, self.stime.day) self._subset_data(**kwargs) self._setup_colors(**kwargs) self.fig = plt.figure(figsize=(8.5, 11)) self.ax_th = self.fig.add_axes(COORD_TH) if self.bkgmap == False: self.ax_plan = self.fig.add_axes(COORD_PLAN) if self.bkgmap == True: self.ax_plan = self.fig.add_axes(COORD_PLAN,projection=ccrs.PlateCarree()) self.ax_lon = self.fig.add_axes(COORD_LON) self.ax_lat = self.fig.add_axes(COORD_LAT) self.ax_hist = self.fig.add_axes(COORD_HIST) self.yticks = 5 * np.arange(6) if 'title' in kwargs.keys(): self.title = kwargs['title'] else: schi = 'chisqr = ' + str(kwargs['chi2']) if self.density: self.title = \ self.tlim[0].strftime('%Y%m%d Source Density, ') + schi else: self.title = \ self.tlim[0].strftime('%Y%m%d Sources by Time, ') + schi self.xbins = int((self.xlim[1] - self.xlim[0]) / xdiv) self.ybins = int((self.ylim[1] - self.ylim[0]) / ydiv) self.zbins = int((self.zlim[1] - self.zlim[0]) / zdiv) self.tbins = 300 def time_height(self): if self.density: if self.readtype == 'lmatools': self.ax_th.hist2d( self.data.data['time'][self.cond], self.data.data['alt'][self.cond]/M2KM, bins=[self.tbins, self.zbins], density=True, cmap=self.cmap, cmin=0.00001) if self.readtype == 'pandas': self.ax_th.hist2d( self.data['time (UT sec of day)'][self.cond], self.data['alt(m)'][self.cond]/M2KM, bins=[self.tbins, self.zbins], density=True, cmap=self.cmap, cmin=0.00001) else: if self.readtype == 'lmatools': self.ax_th.scatter( self.data.data['time'][self.cond], self.data.data['alt'][self.cond]/M2KM, c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') if self.readtype == 'pandas': self.ax_th.scatter( self.data['time (UT sec of day)'][self.cond], self.data['alt(m)'][self.cond]/M2KM, c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') self.ax_th.set_xlabel('Time (UTC)') self.ax_th.set_ylabel('Altitude (km)') self.ax_th.set_yticks(self.yticks) self.ax_th.set_ylim(self.zlim) self.ax_th.set_title(self.title) self.ax_th.minorticks_on() # Now fix the ticks and labels on the time axis # Ticks tstep = int(1e6*(self.tlim[1] - self.tlim[0]).total_seconds()/5) sod_start = (self.tlim[0] - self.dt_init).total_seconds() xticks = [sod_start + i*tstep*1e-6 for i in range(6)] self.ax_th.set_xlim(xticks[0], xticks[-1]) self.ax_th.set_xticks(xticks) # Tick labels dt1 = self.tlim[0] dt2 = dt1 + dt.timedelta(microseconds=tstep) dt3 = dt2 + dt.timedelta(microseconds=tstep) dt4 = dt3 + dt.timedelta(microseconds=tstep) dt5 = dt4 + dt.timedelta(microseconds=tstep) dt6 = dt5 + dt.timedelta(microseconds=tstep) if tstep < 5000000: tfmt = '%H:%M:%S.%f' else: tfmt = '%H:%M:%S000' self.ax_th.set_xticklabels([ dt1.strftime(tfmt)[:-3], dt2.strftime(tfmt)[:-3], dt3.strftime(tfmt)[:-3], dt4.strftime(tfmt)[:-3], dt5.strftime(tfmt)[:-3], dt6.strftime(tfmt)[:-3]]) # Subplot letter if self.subplot_labels == True: plt.text(0.05, 0.8, '(a)', fontsize='x-large', weight='bold', horizontalalignment='center', verticalalignment='center', transform=self.ax_th.transAxes) def lon_alt(self): if self.density: if self.readtype == 'lmatools': self.ax_lon.hist2d( self.data.data['lon'][self.cond], self.data.data['alt'][self.cond]/M2KM, bins=[self.xbins, self.zbins], density=True, cmap=self.cmap, cmin=0.00001) if self.readtype == 'pandas': self.ax_lon.hist2d( self.data['lon'][self.cond], self.data['alt(m)'][self.cond]/M2KM, bins=[self.xbins, self.zbins], density=True, cmap=self.cmap, cmin=0.00001) else: if self.readtype == 'lmatools': self.ax_lon.scatter( self.data.data['lon'][self.cond], self.data.data['alt'][self.cond]/M2KM, c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') if self.readtype == 'pandas': self.ax_lon.scatter( self.data['lon'][self.cond], self.data['alt(m)'][self.cond]/M2KM, c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') self.ax_lon.set_ylabel('Altitude (km MSL)') self.ax_lon.set_yticks(self.yticks) self.ax_lon.set_ylim(self.zlim) if hasattr(self, 'xlim'): self.ax_lon.set_xlim(self.xlim) self.ax_lon.minorticks_on() # self.ax_lon.xaxis.set_major_formatter(self.majorFormatter) if self.subplot_labels == True: plt.text(0.065, 0.80, '(b)', fontsize='x-large', weight='bold', horizontalalignment='center', verticalalignment='center', transform=self.ax_lon.transAxes) def histogram(self): if self.readtype == 'lmatools': self.ax_hist.hist(self.data.data['alt'][self.cond]/M2KM, orientation='horizontal', density=True, bins=80, range=(0, 20)) if self.readtype == 'pandas': self.ax_hist.hist(self.data['alt(m)'][self.cond]/M2KM, orientation='horizontal', density=True, bins=80, range=(0, 20)) self.ax_hist.set_xticks([0, 0.1, 0.2, 0.3]) self.ax_hist.set_yticks(self.yticks) self.ax_hist.set_ylim(self.zlim) self.ax_hist.set_xlim(0, 0.3) self.ax_hist.set_xlabel('Freq') self.ax_hist.minorticks_on() if self.subplot_labels == True: plt.text(0.30, 0.80, '(c)', fontsize='x-large', weight='bold', horizontalalignment='center', verticalalignment='center', transform=self.ax_hist.transAxes) plt.text(0.25, 0.10, # str(len(self.data.data['alt'][self.cond])) + ' src', str(len(self.data['alt(m)'][self.cond])) + ' src', fontsize='small', horizontalalignment='left', verticalalignment='center', transform=self.ax_hist.transAxes) def plan_view(self): if self.density: if self.readtype == 'lmatools': self.ax_plan.hist2d( self.data.data['lon'][self.cond], self.data.data['lat'][self.cond], bins=[self.xbins, self.ybins], density=True, cmap=self.cmap, cmin=0.00001) if self.readtype == 'pandas': self.ax_plan.hist2d( self.data['lon'][self.cond], self.data['lat'][self.cond], bins=[self.xbins, self.ybins], density=True, cmap=self.cmap, cmin=0.00001) else: if self.readtype == 'lmatools': self.ax_plan.scatter( self.data.data['lon'][self.cond], self.data.data['lat'][self.cond], c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') if self.readtype == 'pandas': self.ax_plan.scatter( self.data['lon'][self.cond], self.data['lat'][self.cond], c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') if self.bkgmap == True: if COUNTIES is not None: self.ax_plan.add_feature(COUNTIES, facecolor='none', edgecolor='gray') self.ax_plan.add_feature(cfeature.BORDERS) self.ax_plan.add_feature(cfeature.STATES.with_scale('10m')) self.ax_plan.set_xlabel('Longitude (degrees)') self.ax_plan.set_ylabel('Latitude (degrees)') if hasattr(self, 'xlim'): self.ax_plan.set_xlim(self.xlim) if hasattr(self, 'ylim'): self.ax_plan.set_ylim(self.ylim) self.ax_plan.minorticks_on() self.ax_plan.xaxis.set_major_formatter(self.majorFormatter) if self.bkgmap == True: self.ax_plan.set_xticks(self.ax_plan.get_xticks()) self.ax_plan.set_yticks(self.ax_plan.get_yticks()) if self.bkgmap == True: self.ax_plan.set_extent([self.xlim[0], self.xlim[1], self.ylim[0], self.ylim[1]]) if self.subplot_labels == True: plt.text(0.065, 0.95, '(d)', fontsize='x-large', weight='bold', horizontalalignment='center', verticalalignment='center', transform=self.ax_plan.transAxes) def lat_alt(self): if self.density: if self.readtype == 'lmatools': self.ax_lat.hist2d( self.data.data['alt'][self.cond]/M2KM, self.data.data['lat'][self.cond], bins=[self.zbins, self.ybins], density=True, cmap=self.cmap, cmin=0.00001) if self.readtype == 'pandas': self.ax_lat.hist2d( self.data['alt(m)'][self.cond]/M2KM, self.data['lat'][self.cond], bins=[self.zbins, self.ybins], density=True, cmap=self.cmap, cmin=0.00001) else: if self.readtype == 'lmatools': self.ax_lat.scatter( self.data.data['alt'][self.cond]/M2KM, self.data.data['lat'][self.cond], c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') if self.readtype == 'pandas': self.ax_lat.scatter( self.data['alt(m)'][self.cond]/M2KM, self.data['lat'][self.cond], c=self.c, vmin=self.vmin, vmax=self.vmax, cmap=self.cmap, s=self.s, marker='o', edgecolors='none') self.ax_lat.set_xlabel('Altitude (km MSL)') self.ax_lat.set_xticks(self.yticks) self.ax_lat.set_xlim(self.zlim) if hasattr(self, 'ylim'): self.ax_lat.set_ylim(self.ylim) self.ax_lat.minorticks_on() for xlabel_i in self.ax_lat.get_yticklabels(): xlabel_i.set_fontsize(0.0) xlabel_i.set_visible(False) if self.subplot_labels == True: plt.text(0.30, 0.95, '(e)', fontsize='x-large', weight='bold', horizontalalignment='center', verticalalignment='center', transform=self.ax_lat.transAxes) def _subset_data(self, **kwargs): if self.readtype == 'lmatools': if 'chi2' in kwargs.keys(): self.cond = self.data.data['chi2'] <= kwargs['chi2'] else: self.cond = self.data.data['chi2'] <= 5 if 'xlim' in kwargs.keys(): self.xlim = kwargs['xlim'] tmpcond = np.logical_and(self.data.data['lon'] >= self.xlim[0], self.data.data['lon'] <= self.xlim[1]) self.cond = np.logical_and(self.cond, tmpcond) if 'ylim' in kwargs.keys(): self.ylim = kwargs['ylim'] tmpcond = np.logical_and(self.data.data['lat'] >= self.ylim[0], self.data.data['lat'] <= self.ylim[1]) self.cond = np.logical_and(self.cond, tmpcond) if 'zlim' in kwargs.keys(): self.zlim = kwargs['zlim'] else: self.zlim = (0, 20) tmpcond = np.logical_and(self.data.data['alt']/M2KM >= self.zlim[0], self.data.data['alt']/M2KM <= self.zlim[1]) self.cond =
np.logical_and(self.cond, tmpcond)
numpy.logical_and
from ..flow.plotting import FlowPlot from ..flow import transform from matplotlib.colors import LogNorm, LinearSegmentedColormap from .conftest import create_linear_data, create_lognormal_data import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import pytest sns.set(style="white", font_scale=1.2) sns.set_style("ticks", {"xtick.major.size": 8, "ytick.major.size": 8}) def test_create_linear_data(): data = create_linear_data() fig, ax = plt.subplots(figsize=(5, 5)) bins = [np.histogram_bin_edges(data.x.values, bins="sqrt"),
np.histogram_bin_edges(data.y.values, bins="sqrt")
numpy.histogram_bin_edges
import argparse import fnmatch import os import shutil import h5py as h5py import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sn from sklearn.metrics import confusion_matrix import sunrgbd import wrgbd51 from alexnet_model import AlexNet from basic_utils import Models, RunSteps from densenet_model import DenseNet from main import init_save_dirs from resnet_models import ResNet from vgg16_model import VGG16Net def get_rnn_model(params): if params.net_model == Models.AlexNet: model_rnn = AlexNet(params) elif params.net_model == Models.VGGNet16: model_rnn = VGG16Net(params) elif params.net_model == Models.ResNet50 or params.net_model == Models.ResNet101: model_rnn = ResNet(params) else: # params.net_model == Models.DenseNet121: model_rnn = DenseNet(params) return model_rnn def calc_scores(l123_preds, test_labels, model_rnn): model_rnn.test_labels = test_labels avg_res, true_preds, test_size = model_rnn.calc_scores(l123_preds) conf_mat = confusion_matrix(test_labels, l123_preds) return avg_res, true_preds, test_size, conf_mat def show_sunrgbd_conf_mat(conf_mat): num_ctgs = len(conf_mat) cm_sum = np.sum(conf_mat, axis=1, keepdims=True) cm_perc = conf_mat / cm_sum.astype(float) * 100 columns = sunrgbd.get_class_names(range(num_ctgs)) df_cm = pd.DataFrame(cm_perc, index=columns, columns=columns) plt.figure(figsize=(20, 15)) sn.set(font_scale=1.4) # for label size heatmap = sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, cmap='Oranges', fmt=".1f", vmax=100) # font size heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=16) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=16) # plt.ylabel('True Label') # plt.xlabel('Predicted Label') plt.show() # plt.savefig('sunrgb_confusion_matrix.eps', format='eps', dpi=1000) def calc_scores_conf_mat(svm_path): model_rnn = get_rnn_model(params) l1, l2, l3 = 'layer5', 'layer6', 'layer7' with h5py.File(svm_path, 'r') as f: l1_conf_scores = np.asarray(f[l1]) l2_conf_scores = np.asarray(f[l2]) l3_conf_scores = np.asarray(f[l3]) test_labels = np.asarray(f['labels']) f.close() print('Running Layer-[{}+{}+{}] Confidence Average Fusion...'.format(l1, l2, l3)) print('SVM confidence scores of {}, {} and {} are average fused'.format(l1, l2, l3)) print('SVM confidence average fusion') l123_avr_confidence = np.mean(np.array([l1_conf_scores, l2_conf_scores, l3_conf_scores]), axis=0) l123_preds = np.argmax(l123_avr_confidence, axis=1) avg_res, true_preds, test_size, conf_mat = calc_scores(l123_preds, test_labels, model_rnn) print('Fusion result: {0:.2f}% ({1}/{2})..'.format(avg_res, true_preds, test_size)) show_sunrgbd_conf_mat(conf_mat) def sunrgbd_combined_scores_conf_mat(rgb_svm_path, depth_svm_path): model_rnn = get_rnn_model(params) l1, l2, l3 = 'layer5', 'layer6', 'layer7' with h5py.File(rgb_svm_path, 'r') as f: rgb1_conf_scores = np.asarray(f[l1]) rgb2_conf_scores = np.asarray(f[l2]) rgb3_conf_scores = np.asarray(f[l3]) test_labels = np.asarray(f['labels']) f.close() with h5py.File(depth_svm_path, 'r') as f: depth1_conf_scores = np.asarray(f[l1]) depth2_conf_scores = np.asarray(f[l2]) depth3_conf_scores = np.asarray(f[l3]) f.close() rgb_l123_sum_confidence = np.sum(np.array([rgb1_conf_scores, rgb2_conf_scores, rgb3_conf_scores]), axis=0) depth_l123_sum_confidence = np.sum(np.array([depth1_conf_scores, depth2_conf_scores, depth3_conf_scores]), axis=0) print('Weighted Average SVM confidence scores of [RGB({}+{}+{})+Depth({}+{}+{})] are taken') print('SVMs confidence weighted fusion') w_rgb, w_depth = model_rnn.calc_modality_weights((rgb_l123_sum_confidence, depth_l123_sum_confidence)) rgbd_l123_wadd_confidence = np.add(rgb_l123_sum_confidence * w_rgb[:, np.newaxis], depth_l123_sum_confidence * w_depth[:, np.newaxis]) l123_preds = np.argmax(rgbd_l123_wadd_confidence, axis=1) avg_res, true_preds, test_size, conf_mat = calc_scores(l123_preds, test_labels, model_rnn) print('Combined Weighted Confidence result: {0:.2f}% ({1}/{2})..'.format(avg_res, true_preds, test_size)) show_sunrgbd_conf_mat(conf_mat) def sunrgbd_main(params): root_path = '../../data/sunrgbd/' svm_conf_paths = root_path + params.features_root + params.proceed_step + '/svm_confidence_scores/' rgb_svm_path = svm_conf_paths + params.net_model + '_RGB_JPG.hdf5' depth_svm_path = svm_conf_paths + params.net_model + '_Depth_Colorized_HDF5.hdf5' if params.data_type == 'rgb': calc_scores_conf_mat(rgb_svm_path) elif params.data_type == 'depth': calc_scores_conf_mat(depth_svm_path) else: sunrgbd_combined_scores_conf_mat(rgb_svm_path, depth_svm_path) def individual_class_scores(total_conf_mat): num_ctgs = len(total_conf_mat) cm_sum = np.sum(total_conf_mat, axis=1, keepdims=True) cm_perc = total_conf_mat / cm_sum.astype(float) * 100 indidual_scores = cm_perc.diagonal() categories = wrgbd51.get_class_names(range(num_ctgs)) i = 0 for category, category_score in zip(categories, indidual_scores): print(f'{category:<15} {category_score:>10.1f}') def show_wrgbd_conf_mat(conf_mat): num_ctgs = len(conf_mat) cm_sum = np.sum(conf_mat, axis=1, keepdims=True) cm_perc = conf_mat / cm_sum.astype(float) * 100 columns = wrgbd51.get_class_names(range(num_ctgs)) df_cm = pd.DataFrame(cm_perc, index=columns, columns=columns) plt.figure(figsize=(20, 15)) sn.set(font_scale=1.4) # for label size heatmap = sn.heatmap(df_cm, annot=True, annot_kws={"size": 10}, cmap='Oranges', fmt=".1f", vmax=100) # font size heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right', fontsize=12) heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right', fontsize=12) plt.ylabel('True Label') plt.xlabel('Predicted Label') plt.show() def wrgb_scores_conf_mat(params, svm_conf_paths): model_rnn = get_rnn_model(params) if params.data_type == 'rgb': params.proceed_step = RunSteps.FIX_RECURSIVE_NN data_type_ex = 'crop' params.data_type = 'crop' l1, l2, l3 = model_rnn.get_best_trio_layers() params.data_type = 'rgb' else: params.proceed_step = RunSteps.FINE_RECURSIVE_NN data_type_ex = 'depthcrop' params.data_type = 'depthcrop' l1, l2, l3 = model_rnn.get_best_trio_layers() params.data_type = 'depths' all_splits_scores = [] for split in range(1, 11): conf_file = params.net_model + '_' + data_type_ex + '_split_' + str(split) + '.hdf5' svm_conf_file_path = svm_conf_paths + conf_file with h5py.File(svm_conf_file_path, 'r') as f: l1_conf_scores = np.asarray(f[l1]) l2_conf_scores = np.asarray(f[l2]) l3_conf_scores =
np.asarray(f[l3])
numpy.asarray
import numpy as np import math import scipy from fractions import Fraction import itertools import biotuner from biotuner.biotuner_utils import * import matplotlib.pyplot as plt from numpy import array, zeros, ones, arange, log2, sqrt, diff, concatenate import pytuning from math import gcd from numpy import array, zeros, ones, arange, log2, sqrt, diff, concatenate from scipy.stats import norm from scipy.signal import argrelextrema, detrend import scipy.signal as ss from pytuning import create_euler_fokker_scale from collections import Counter from functools import reduce from pytuning.utilities import normalize_interval from pactools import Comodulogram, REFERENCES '''---------------------------------------------------------Extended peaks-------------------------------------------------------------''' '''EXTENDED PEAKS from expansions ''' def EEG_harmonics_mult(peaks, n_harmonics, n_oct_up = 0): """ Natural harmonics This function takes a list of frequency peaks as input and computes the desired number of harmonics with the formula: x, 2x, 3x ..., nx peaks: List (float) Peaks represent local maximum in a spectrum n_harmonics: int Number of harmonics to compute n_oct_up: int Defaults to 0. Corresponds to the number of octave the peaks are shifted Returns ------- multi_harmonics: array (n_peaks, n_harmonics + 1) """ n_harmonics = n_harmonics + 2 multi_harmonics = [] multi_harmonics_rebound = [] for p in peaks: multi_harmonics_r = [] multi_harm_temp = [] harmonics = [] p = p * (2**n_oct_up) i = 1 harm_temp = p while i < n_harmonics: harm_temp = p * i harmonics.append(harm_temp) i+=1 multi_harmonics.append(harmonics) multi_harmonics = np.array(multi_harmonics) return multi_harmonics def EEG_harmonics_div(peaks, n_harmonics, n_oct_up = 0, mode = 'div'): """ Natural sub-harmonics This function takes a list of frequency peaks as input and computes the desired number of harmonics with using division: peaks: List (float) Peaks represent local maximum in a spectrum n_harmonics: int Number of harmonics to compute n_oct_up: int Defaults to 0. Corresponds to the number of octave the peaks are shifted mode: str Defaults to 'div'. 'div': x, x/2, x/3 ..., x/n 'div_add': x, (x+x/2), (x+x/3), ... (x+x/n) 'div_sub': x, (x-x/2), (x-x/3), ... (x-x/n) Returns ------- div_harmonics: array (n_peaks, n_harmonics + 1) div_harmonics_bounded: array (n_peaks, n_harmonics + 1) """ n_harmonics = n_harmonics + 2 div_harmonics = [] for p in peaks: harmonics = [] p = p * (2**n_oct_up) i = 1 harm_temp = p while i < n_harmonics: if mode == 'div': harm_temp = (p/i) if mode == 'div_add': harm_temp = p + (p/i) if mode == 'div_sub': harm_temp = p - (p/i) harmonics.append(harm_temp) i+=1 div_harmonics.append(harmonics) div_harmonics = np.array(div_harmonics) div_harmonics_bounded = div_harmonics.copy() #Rebound the result between 1 and 2 for i in range(len(div_harmonics_bounded)): for j in range(len(div_harmonics_bounded[i])): div_harmonics_bounded[i][j] = rebound(div_harmonics_bounded[i][j]) return div_harmonics, div_harmonics_bounded def harmonic_fit(peaks, n_harm = 10, bounds = 1, function = 'mult', div_mode = 'div', n_common_harms = 5): """ This function computes harmonics of a list of peaks and compares the lists of harmonics pairwise to find fitting between the harmonic series peaks: List (float) Peaks represent local maximum in a spectrum n_harm: int Number of harmonics to compute bounds: int Minimum distance (in Hz) between two frequencies to consider a fit function: str Defaults to 'mult'. 'mult' will use natural harmonics 'div' will use natural sub-harmonics div_mode: str Defaults to 'div'. See EEG_harmonics_div function. Returns ------- """ from itertools import combinations peak_bands = [] for i in range(len(peaks)): peak_bands.append(i) if function == 'mult': multi_harmonics = EEG_harmonics_mult(peaks, n_harm) elif function == 'div': multi_harmonics, x = EEG_harmonics_div(peaks, n_harm, mode = div_mode) elif function == 'exp': multi_harmonics = [] increments = [] for h in range(n_harm+1): h += 1 multi_harmonics.append([i**h for i in peaks]) multi_harmonics = np.array(multi_harmonics) multi_harmonics = np.moveaxis(multi_harmonics, 0, 1) #print(np.array(multi_harmonics).shape) list_peaks = list(combinations(peak_bands,2)) #print(list_peaks) harm_temp = [] harm_list1 = [] harm_list2 = [] harm_list = [] harmonics = [] for i in range(len(list_peaks)): harms, _, _, d, e, harm_list = compareLists(multi_harmonics[list_peaks[i][0]], multi_harmonics[list_peaks[i][1]], bounds) harm_temp.append(harms) harm_list1.append(d) harm_list2.append(e) harmonics.append(harm_list) harm_fit = np.array(harm_temp).squeeze() harmonics = reduce(lambda x, y: x+y, harmonics) most_common_harmonics= [h for h, h_count in Counter(harmonics).most_common(n_common_harms) if h_count > 1] harmonics = list(np.sort(list(set(harmonics)))) if len(peak_bands) > 2: harm_fit = list(itertools.chain.from_iterable(harm_fit)) harm_fit = [round(num, 3) for num in harm_fit] harm_fit = list(dict.fromkeys(harm_fit)) harm_fit = list(set(harm_fit)) return harm_fit, harm_list1, harm_list2, harmonics, most_common_harmonics '''EXTENDED PEAKS from restrictions ''' def consonance_peaks (peaks, limit): """ This function computes consonance (for a given ratio a/b, when a < 2b, consonance corresponds to (a+b)/(a*b)) between peaks peaks: List (float) Peaks represent local maximum in a spectrum limit: float minimum consonance value to keep associated pairs of peaks Comparisons with familiar ratios: Unison-frequency ratio 1:1 yields a value of 2 Octave-frequency ratio 2:1 yields a value of 1.5 Perfect 5th-frequency ratio 3:2 yields a value of 0.833 Perfect 4th-frequency ratio 4:3 yields a value of 0.583 Major 6th-frequency ratio 5:3 yields a value of 0.533 Major 3rd-frequency ratio 5:4 yields a value of 0.45 Minor 3rd-frequency ratio 5:6 yields a value of 0.366 Minor 6th-frequency ratio 5:8 yields a value of 0.325 Major 2nd-frequency ratio 8:9 yields a value of 0.236 Major 7th-frequency ratio 8:15 yields a value of 0.192 Minor 7th-frequency ratio 9:16 yields a value of 0.174 Minor 2nd-frequency ratio 15:16 yields a value of 0.129 Returns ------- consonance: List (float) consonance scores for each pairs of consonant peaks cons_pairs: List of lists (float) list of lists of each pairs of consonant peaks cons_peaks: List (float) list of consonant peaks (no doublons) cons_tot: float averaged consonance value for each pairs of peaks """ from fractions import Fraction consonance_ = [] peaks2keep = [] peaks_consonance = [] cons_tot = [] for p1 in peaks: for p2 in peaks: peaks2keep_temp = [] p2x = p2 p1x = p1 if p1x > p2x: while p1x > p2x: p1x = p1x/2 if p1x < p2x: while p2x > p1x: p2x = p2x/2 if p1x < 0.1: p1x = 0.06 if p2x < 0.1: p2x = 0.06 #random number to avoid division by 0 ratio = Fraction(p2x/p1x).limit_denominator(1000) cons_ = (ratio.numerator + ratio.denominator)/(ratio.numerator * ratio.denominator) if cons_ < 1 : cons_tot.append(cons_) if cons_ > 1 or cons_ < limit: cons_ = None cons_ = None p2x = None p1x = None if p2x != None: peaks2keep_temp.extend([p2, p1]) consonance_.append(cons_) peaks2keep.append(peaks2keep_temp) #cons_pairs = np.array(peaks2keep) cons_pairs = [x for x in peaks2keep if x] #consonance = np.array(consonance_) consonance = [i for i in consonance_ if i] cons_peaks = list(itertools.chain(*cons_pairs)) cons_peaks = [np.round(c, 2) for c in cons_peaks] cons_peaks = list(set(cons_peaks)) #consonance = list(set(consonance)) return consonance, cons_pairs, cons_peaks, np.average(cons_tot) def multi_consonance(cons_pairs, n_freqs = 5): """ Function that keeps the frequencies that are the most consonant with others Takes pairs of frequencies that are consonant (output of the 'compute consonance' function) cons_pairs: List of lists (float) list of lists of each pairs of consonant peaks n_freqs: int maximum number of consonant freqs to keep Returns ------- freqs_related: List (float) peaks that are consonant with at least two other peaks, starting with the peak that is consonant with the maximum number of other peaks """ freqs_dup = list(itertools.chain(*cons_pairs)) pairs_temp = list(itertools.chain.from_iterable(cons_pairs)) freqs_nodup = list(dict.fromkeys(pairs_temp)) f_count = [] for f in freqs_nodup: f_count.append(freqs_dup.count(f)) freqs_related = [x for _,x in sorted(zip(f_count,freqs_nodup))][-(n_freqs):][::-1] return freqs_related def consonant_ratios (peaks, limit, sub = False, input_type = 'peaks', metric = 'cons'): """ Function that computes integer ratios from peaks with higher consonance Needs at least two pairs of values peaks: List (float) Peaks represent local maximum in a spectrum limit: float minimum consonance value to keep associated pairs of peaks sub: boolean Defaults to False When set to True, include ratios a/b when a < b. Returns ------- cons_ratios: List (float) list of consonant ratios consonance: List (float) list of associated consonance values """ from fractions import Fraction consonance_ = [] ratios2keep = [] if input_type == 'peaks': ratios = compute_peak_ratios(peaks, sub = sub) if input_type == 'ratios': ratios = peaks for ratio in ratios: frac = Fraction(ratio).limit_denominator(1000) if metric == 'cons': cons_ = (frac.numerator + frac.denominator)/(frac.numerator * frac.denominator) if metric == 'harmsim': cons_ = dyad_similarity(ratio) if cons_ > limit : consonance_.append(cons_) ratios2keep.append(ratio) #print(ratios2keep) ratios2keep = np.array(np.round(ratios2keep, 3)) cons_ratios = np.sort(list(set(ratios2keep))) #cons_ratios = np.array(ratios2keep) #ratios = [] #ratios = [ratios.append(x) for x in ratios2keep if x not in ratios] consonance = np.array(consonance_) consonance = [i for i in consonance if i] return cons_ratios, consonance def timepoint_consonance (data, method = 'cons', limit = 0.2, min_notes = 3): """ ## Function that keeps moments of consonance from multiple time series of peak frequencies data: List of lists (float) Axis 0 represents moments in time Axis 1 represents the sets of frequencies method: str Defaults to 'cons' 'cons' will compute pairwise consonance between frequency peaks in the form of (a+b)/(a*b) 'euler' will compute Euler's gradus suavitatis limit: float limit of consonance under which the set of frequencies are not retained When method = 'cons' --> See consonance_peaks method's doc to refer consonance values to common intervals When method = 'euler' --> Major (4:5:6) = 9 Minor (10:12:15) = 9 Major 7th (8:10:12:15) = 10 Minor 7th (10:12:15:18) = 11 Diminish (20:24:29) = 38 min_notes: int minimum number of consonant frequencies in the chords. Only relevant when method is set to 'cons'. Returns ------- chords: List of lists (float) Axis 0 represents moments in time Axis 1 represents the sets of consonant frequencies positions: List (int) positions on Axis 0 """ data = np.moveaxis(data, 0, 1) #print('NAN', np.argwhere(np.isnan(data))) out = [] positions = [] for count, peaks in enumerate(data): peaks = [x for x in peaks if x >= 0] if method == 'cons': cons, b, peaks_cons, d = consonance_peaks(peaks, limit) #print(peaks_cons) out.append(peaks_cons) if len(list(set(peaks_cons))) >= min_notes: positions.append(count) if method == 'euler': peaks_ = [int(np.round(p, 2)*100) for p in peaks] #print(peaks_) eul = euler(*peaks_) #print(eul) if eul < limit: out.append(list(peaks)) positions.append(count) out = [x for x in out if x != []] #if method == 'cons': out = list(out for out,_ in itertools.groupby(out)) chords = [x for x in out if len(x)>=min_notes] return chords, positions ''' ################################################## PEAKS METRICS ############################################################ ''' #Consonance# #Input: peaks def consonance (ratio, limit = 1000): ''' Compute metric of consonance from a single ratio of frequency ratio: float limit: int Defaults to 1000 Maximum value of the denominator of the fraction representing the ratio ''' ratio = Fraction(float(ratio)).limit_denominator(limit) cons = (ratio.numerator + ratio.denominator)/(ratio.numerator * ratio.denominator) return cons def euler(*numbers): """ Euler's "gradus suavitatis" (degree of sweetness) function Return the "degree of sweetness" of a musical interval or chord expressed as a ratio of frequencies a:b:c, according to Euler's formula Greater values indicate more dissonance numbers: List (int) frequencies """ factors = prime_factors(lcm(*reduced_form(*numbers))) return 1 + sum(p - 1 for p in factors) #Input: peaks def tenneyHeight(peaks, avg = True): """ Tenney Height is a measure of inharmonicity calculated on two frequencies (a/b) reduced in their simplest form. It can also be called the log product complexity of a given interval. peaks: List (float) frequencies avg: Boolean Default to True When set to True, all tenney heights are averaged """ pairs = getPairs(peaks) pairs tenney = [] for p in pairs: try: frac = Fraction(p[0]/p[1]).limit_denominator(1000) except ZeroDivisionError: p[1] = 0.01 frac = Fraction(p[0]/p[1]).limit_denominator(1000) x = frac.numerator y = frac.denominator tenney.append(log2(x*y)) if avg == True: tenney = np.average(tenney) return tenney def peaks_to_metrics (peaks, n_harm = 10): ''' This function computes different metrics on peak frequencies. peaks: List (float) Peaks represent local maximum in a spectrum n_harm: int Number of harmonics to compute for 'harm_fit' metric Returns ------- metrics: dict (float) Dictionary of values associated to metrics names metrics_list: List (float) list of peaks metrics values in the order: 'cons', 'euler', 'tenney', 'harm_fit' ''' peaks = list(peaks) metrics = {'cons' : 0, 'euler' : 0, 'tenney': 0, 'harm_fit': 0} harm_fit, harm_pos1, harm_pos2 = harmonic_fit(peaks, n_harm = n_harm) metrics['harm_pos1'] = harm_pos1 metrics['harm_pos2'] = harm_pos2 metrics['harm_fit'] = len(harm_fit) a, b, c, metrics['cons'] = consonance_peaks (peaks, 0.1) peaks_highfreq = [int(p*1000) for p in peaks] metrics['euler'] = euler(*peaks_highfreq) metrics['tenney'] = tenneyHeight(peaks_highfreq) metrics_list = [] for value in metrics.values(): metrics_list.append(value) return metrics, metrics_list def metric_denom(ratio): '''Function that computes the denominator of the normalized ratio ratio: float ''' ratio = sp.Rational(ratio).limit_denominator(10000) normalized_degree = normalize_interval(ratio) y = int(sp.fraction(normalized_degree)[1]) return y '''SCALE METRICS''' '''Metric of harmonic similarity represents the degree of similarity between a scale and the natural harmonic series ### Implemented from Gill and Purves (2009)''' def dyad_similarity(ratio): ''' This function computes the similarity between a dyad of frequencies and the natural harmonic series ratio: float frequency ratio ''' frac = Fraction(float(ratio)).limit_denominator(1000) x = frac.numerator y = frac.denominator z = ((x+y-1)/(x*y))*100 return z #Input: ratios (list of floats) def ratios2harmsim (ratios): ''' This function computes the similarity for each ratio of a list ratios: List (float) list of frequency ratios (forming a scale) Returns --------- similarity: List (float) list of percentage of similarity for each ratios ''' fracs = [] for r in ratios: fracs.append(Fraction(r).limit_denominator(1000)) sims = [] for f in fracs: sims.append(dyad_similarity(f.numerator/f.denominator)) similarity = np.array(sims) return similarity def scale_cons_matrix (scale, function): ''' This function gives a metric of a scale corresponding to the averaged metric for each pairs of ratios (matrix) scale: List (float) function: function possible functions: dyad_similarity consonance metric_denom ''' metric_values = [] mode_values = [] for index1 in range(len(scale)): for index2 in range(len(scale)): if scale[index1] > scale[index2]: #not include the diagonale in the computation of the avg. consonance entry = scale[index1]/scale[index2] mode_values.append([scale[index1], scale[index2]]) metric_values.append(function(entry)) return np.average(metric_values) def PyTuning_metrics(scale, maxdenom): ''' This function computes the scale metrics of the PyTuning library (https://pytuning.readthedocs.io/en/0.7.2/metrics.html) Smaller values are more consonant scale: List (float) List of ratios corresponding to scale steps maxdenom: int Maximum value of the denominator for each step's fraction ''' scale_frac, num, denom = scale2frac(scale, maxdenom) metrics = pytuning.metrics.all_metrics(scale_frac) sum_p_q = metrics['sum_p_q'] sum_distinct_intervals = metrics['sum_distinct_intervals'] metric_3 = metrics['metric_3'] sum_p_q_for_all_intervals = metrics['sum_p_q_for_all_intervals'] sum_q_for_all_intervals = metrics['sum_q_for_all_intervals'] return sum_p_q, sum_distinct_intervals, metric_3, sum_p_q_for_all_intervals, sum_q_for_all_intervals def scale_to_metrics(scale): ''' This function computes the scale metrics of the PyTuning library and other scale metrics scale: List (float) List of ratios corresponding to scale steps Returns ---------- scale_metrics: dictionary keys correspond to metrics names scale_metrics_list: List (float) List of values corresponding to all computed metrics (in the same order as dictionary) ''' scale_frac, num, denom = scale2frac(scale, maxdenom=1000) scale_metrics = pytuning.metrics.all_metrics(scale_frac) scale_metrics['harm_sim'] = np.round(np.average(ratios2harmsim(scale)), 2) scale_metrics['matrix_harm_sim'] = scale_cons_matrix(scale, dyad_similarity) scale_metrics['matrix_cons'] = scale_cons_matrix(scale, consonance) scale_metrics_list = [] for value in scale_metrics.values(): scale_metrics_list.append(value) return scale_metrics, scale_metrics_list def scale_consonance (scale, function, rounding = 4): ''' Function that gives the average consonance of each scale interval scale: List (float) scale to reduce function: function function used to compute the consonance between pairs of ratios Choose between: consonance, dyad_similarity, metric_denom ''' metric_values = [] mode_values = [] for index1 in range(len(scale)): metric_value = [] for index2 in range(len(scale)): entry = scale[index1]/scale[index2] mode_values.append([scale[index1], scale[index2]]) metric_value.append(function(entry)) metric_values.append(np.average(metric_value)) return metric_values ''' ################################################ SCALE CONSTRUCTION ############################################################## ''' def oct_subdiv(ratio, octave_limit = 0.01365 ,octave = 2 ,n = 5): ''' N-TET tuning from Generator Interval This function uses a generator interval to suggest numbers of steps to divide the octave, so the given interval will be approximately present (octave_limit) in the steps of the N-TET tuning. ratio: float ratio that corresponds to the generator_interval e.g.: by giving the fifth (3/2) as generator interval, this function will suggest to subdivide the octave in 12, 53, ... octave_limit: float Defaults to 0.01365 (Pythagorean comma) approximation of the octave corresponding to the acceptable distance between the ratio of the generator interval after multiple iterations and the octave value. octave: int Defaults to 2 value of the octave n: int Defaults to 5 number of suggested octave subdivisions Returns ------- Octdiv: List (int) list of N-TET tunings corresponding to dividing the octave in equal steps Octvalue: List (float) list of the approximations of the octave for each N-TET tuning ''' Octdiv, Octvalue, i = [], [], 1 ratios = [] while len(Octdiv) < n: ratio_mult = (ratio**i) while ratio_mult > octave: ratio_mult = ratio_mult/octave rescale_ratio = ratio_mult - round(ratio_mult) ratios.append(ratio_mult) i+=1 if -octave_limit < rescale_ratio < octave_limit: Octdiv.append(i-1) Octvalue.append(ratio_mult) else: continue return Octdiv, Octvalue def compare_oct_div(Octdiv = 12, Octdiv2 = 53, bounds = 0.005, octave = 2): ''' Function that compare steps for two N-TET tunings and return matching ratios and corresponding degrees Octdiv: int Defaults to 12. first N-TET tuning number of steps Octdiv2: int Defaults to 53. second N-TET tuning number of steps bounds: float Defaults to 0.005 Maximum distance between 1 ratio of Octdiv and 1 ratio of Octdiv2 to consider a match octave: int Defaults to 2 value of the octave Returns ------- avg_ratios: List (float) list of ratios corresponding to the shared steps in the two N-TET tunings shared_steps: List of tuples the two elements of each tuple corresponds to the scale steps sharing the same interval in the two N-TET tunings ''' ListOctdiv = [] ListOctdiv2 = [] OctdivSum = 1 OctdivSum2 = 1 i = 1 i2 = 1 while OctdivSum < octave: OctdivSum =(nth_root(octave, Octdiv))**i i+=1 ListOctdiv.append(OctdivSum) while OctdivSum2 < octave: OctdivSum2 =(nth_root(octave, Octdiv2))**i2 i2+=1 ListOctdiv2.append(OctdivSum2) shared_steps = [] avg_ratios = [] for i, n in enumerate(ListOctdiv): for j, harm in enumerate(ListOctdiv2): if harm-bounds < n < harm+bounds: shared_steps.append((i+1, j+1)) avg_ratios.append((n+harm)/2) return avg_ratios, shared_steps #Output1: octave subdivisions #Output2: ratios that led to Output1 def multi_oct_subdiv (peaks, max_sub = 100, octave_limit = 1.01365, octave = 2, n_scales = 10, cons_limit = 0.1): ''' This function uses the most consonant peaks ratios as input of oct_subdiv function. Each consonant ratio leads to a list of possible octave subdivisions. These lists are compared and optimal octave subdivisions are determined. peaks: List (float) Peaks represent local maximum in a spectrum max_sub: int Defaults to 100. Maximum number of intervals in N-TET tuning suggestions. octave_limit: float Defaults to 1.01365 (Pythagorean comma). Approximation of the octave corresponding to the acceptable distance between the ratio of the generator interval after multiple iterations and the octave value. octave: int Defaults to 2. value of the octave n_scales: int Defaults to 10. Number of N-TET tunings to compute for each generator interval (ratio). Returns ------- multi_oct_div: List (int) List of octave subdivisions that fit with multiple generator intervals. ratios: List (float) list of the generator intervals for which at least 1 N-TET tuning match with another generator interval. ''' import itertools from collections import Counter #a, b, pairs, cons = consonance_peaks(peaks, cons_limit) ratios, cons = consonant_ratios(peaks, cons_limit) list_oct_div = [] for i in range(len(ratios)): list_temp, _ = oct_subdiv(ratios[i], octave_limit, octave, n_scales) list_oct_div.append(list_temp) counts = Counter(list(itertools.chain(*list_oct_div))) oct_div_temp = [] for k, v in counts.items(): if v > 1: oct_div_temp.append(k) oct_div_temp = np.sort(oct_div_temp) multi_oct_div = [] for i in range(len(oct_div_temp)): if oct_div_temp[i] < max_sub: multi_oct_div.append(oct_div_temp[i]) return multi_oct_div, ratios def harmonic_tuning (list_harmonics, octave = 2, min_ratio = 1, max_ratio = 2): ''' Function that computes a tuning based on a list of harmonic positions list_harmonics: List (int) harmonic positions to use in the scale construction octave: int min_ratio: float max_ratio: float ''' ratios = [] for i in list_harmonics: ratios.append(rebound(1*i, min_ratio, max_ratio, octave)) ratios = list(set(ratios)) ratios = list(np.sort(np.array(ratios))) return ratios def euler_fokker_scale(intervals, n = 1): ''' Function that takes as input a series of intervals and derives a Euler Fokker Genera scale intervals: List (float) n: int Defaults to 1 number of times the interval is used in the scale generation ''' multiplicities = [n for x in intervals] scale = create_euler_fokker_scale(intervals, multiplicities) return scale def generator_interval_tuning (interval = 3/2, steps = 12, octave = 2): ''' Function that takes a generator interval and derives a tuning based on its stacking. interval: float Generator interval steps: int Defaults to 12 (12-TET for interval 3/2) Number of steps in the scale octave: int Defaults to 2 Value of the octave ''' scale = [] for s in range(steps): s += 1 degree = interval**s while degree > octave: degree = degree/octave scale.append(degree) return sorted(scale) #function that takes two ratios a input (boundaries of ) #The mediant corresponds to the interval where small and large steps are equal. def tuning_range_to_MOS (frac1, frac2, octave = 2, max_denom_in = 100, max_denom_out = 100): gen1 = octave**(frac1) gen2 = octave**(frac2) a = Fraction(frac1).limit_denominator(max_denom_in).numerator b = Fraction(frac1).limit_denominator(max_denom_in).denominator c = Fraction(frac2).limit_denominator(max_denom_in).numerator d = Fraction(frac2).limit_denominator(max_denom_in).denominator print(a, b, c, d) mediant = (a+c)/(b+d) mediant_frac = sp.Rational((a+c)/(b+d)).limit_denominator(max_denom_out) gen_interval = octave**(mediant) gen_interval_frac = sp.Rational(octave**(mediant)).limit_denominator(max_denom_out) MOS_signature = [d, b] invert_MOS_signature = [b, d] return mediant, mediant_frac, gen_interval, gen_interval_frac, MOS_signature, invert_MOS_signature #def tuning_embedding () def stern_brocot_to_generator_interval (ratio, octave = 2): gen_interval = octave**(ratio) return gen_interval def gen_interval_to_stern_brocot (gen): root_ratio = log2(gen) return root_ratio #Dissonance def dissmeasure(fvec, amp, model='min'): """ Given a list of partials in fvec, with amplitudes in amp, this routine calculates the dissonance by summing the roughness of every sine pair based on a model of Plomp-Levelt's roughness curve. The older model (model='product') was based on the product of the two amplitudes, but the newer model (model='min') is based on the minimum of the two amplitudes, since this matches the beat frequency amplitude. """ # Sort by frequency sort_idx = np.argsort(fvec) am_sorted = np.asarray(amp)[sort_idx] fr_sorted = np.asarray(fvec)[sort_idx] # Used to stretch dissonance curve for different freqs: Dstar = 0.24 # Point of maximum dissonance S1 = 0.0207 S2 = 18.96 C1 = 5 C2 = -5 # Plomp-Levelt roughness curve: A1 = -3.51 A2 = -5.75 # Generate all combinations of frequency components idx = np.transpose(np.triu_indices(len(fr_sorted), 1)) fr_pairs = fr_sorted[idx] am_pairs = am_sorted[idx] Fmin = fr_pairs[:, 0] S = Dstar / (S1 * Fmin + S2) Fdif = fr_pairs[:, 1] - fr_pairs[:, 0] if model == 'min': a = np.amin(am_pairs, axis=1) elif model == 'product': a = np.prod(am_pairs, axis=1) # Older model else: raise ValueError('model should be "min" or "product"') SFdif = S * Fdif D = np.sum(a * (C1 * np.exp(A1 * SFdif) + C2 * np.exp(A2 * SFdif))) return D #Input: peaks and amplitudes def diss_curve (freqs, amps, denom=1000, max_ratio=2, euler_comp = True, method = 'min', plot = True, n_tet_grid = None): ''' This function computes the dissonance curve and related metrics for a given set of frequencies (freqs) and amplitudes (amps) freqs: List (float) list of frequencies associated with spectral peaks amps: List (float) list of amplitudes associated with freqs (must be same lenght) denom: int Defaults to 1000. Highest value for the denominator of each interval max_ratio: int Defaults to 2. Value of the maximum ratio Set to 2 for a span of 1 octave Set to 4 for a span of 2 octaves Set to 8 for a span of 3 octaves Set to 2**n for a span of n octaves euler: Boolean Defaults to True When set to True, compute the Euler Gradus Suavitatis for the derived scale method: str Defaults to 'min' Can be set to 'min' or 'product'. Refer to dissmeasure function for more information. plot: boolean Defaults to True When set to True, a plot of the dissonance curve will be generated n_tet_grid: int Defaults to None When an integer is given, dotted lines will be add to the plot a steps of the given N-TET scale Returns ------- intervals: List of tuples Each tuple corresponds to the numerator and the denominator of each scale step ratio ratios: List (float) list of ratios that constitute the scale euler_score: int value of consonance of the scale diss: float value of averaged dissonance of the total curve dyad_sims: List (float) list of dyad similarities for each ratio of the scale ''' from numpy import array, linspace, empty, concatenate from scipy.signal import argrelextrema from fractions import Fraction freqs = np.array(freqs) r_low = 1 alpharange = max_ratio method = method n = 1000 diss = empty(n) a = concatenate((amps, amps)) for i, alpha in enumerate(linspace(r_low, alpharange, n)): f = concatenate((freqs, alpha*freqs)) d = dissmeasure(f, a, method) diss[i] = d diss_minima = argrelextrema(diss, np.less) intervals = [] for d in range(len(diss_minima[0])): frac = Fraction(diss_minima[0][d]/(n/(max_ratio-1))+1).limit_denominator(denom) frac = (frac.numerator, frac.denominator) intervals.append(frac) intervals.append((2, 1)) ratios = [i[0]/i[1] for i in intervals] ratios_sim = [np.round(r, 2) for r in ratios] #round ratios for similarity measures of harmonic series #print(ratios_sim) dyad_sims = ratios2harmsim(ratios[:-1]) # compute dyads similarities with natural harmonic series dyad_sims a = 1 ratios_euler = [a]+ratios ratios_euler = [int(round(num, 2)*1000) for num in ratios] #print(ratios_euler) euler_score = None if euler_comp == True: euler_score = euler(*ratios_euler) euler_score = euler_score/len(diss_minima) else: euler_score = 'NaN' if plot == True: plt.figure(figsize=(14, 6)) plt.plot(linspace(r_low, alpharange, len(diss)), diss) plt.xscale('linear') plt.xlim(r_low, alpharange) try: plt.text(1.9, 1.5, 'Euler = '+str(int(euler_score)), horizontalalignment = 'center', verticalalignment='center', fontsize = 16) except: pass for n, d in intervals: plt.axvline(n/d, color='silver') # Plot N-TET grid if n_tet_grid != None: n_tet = NTET_ratios(n_tet_grid, max_ratio = max_ratio) for n in n_tet : plt.axvline(n, color='red', linestyle = '--') # Plot scale ticks plt.minorticks_off() plt.xticks([n/d for n, d in intervals], ['{}/{}'.format(n, d) for n, d in intervals], fontsize = 13) plt.yticks(fontsize = 13) plt.tight_layout() plt.show() return intervals, ratios, euler_score, np.average(diss), dyad_sims '''Harmonic Entropy''' def compute_harmonic_entropy_domain_integral(ratios, ratio_interval, spread=0.01, min_tol=1e-15): # The first step is to pre-sort the ratios to speed up computation ind = np.argsort(ratios) weight_ratios = ratios[ind] centers = (weight_ratios[:-1] + weight_ratios[1:]) / 2 ratio_interval = array(ratio_interval) N = len(ratio_interval) HE = zeros(N) for i, x in enumerate(ratio_interval): P = diff(concatenate(([0], norm.cdf(log2(centers), loc=log2(x), scale=spread), [1]))) ind = P > min_tol HE[i] = -np.sum(P[ind] * log2(P[ind])) return weight_ratios, HE def compute_harmonic_entropy_simple_weights(numerators, denominators, ratio_interval, spread=0.01, min_tol=1e-15): # The first step is to pre-sort the ratios to speed up computation ratios = numerators / denominators ind = np.argsort(ratios) numerators = numerators[ind] denominators = denominators[ind] weight_ratios = ratios[ind] ratio_interval = array(ratio_interval) N = len(ratio_interval) HE = zeros(N) for i, x in enumerate(ratio_interval): P = norm.pdf(log2(weight_ratios), loc=log2(x), scale=spread) / sqrt(numerators * denominators) ind = P > min_tol P = P[ind] P /= np.sum(P) HE[i] = -np.sum(P * log2(P)) return weight_ratios, HE def harmonic_entropy (ratios, res = 0.001, spread = 0.01, plot_entropy = True, plot_tenney = False, octave = 2): ''' Harmonic entropy is a measure of the uncertainty in pitch perception, and it provides a physical correlate of tonalness, one aspect of the psychoacoustic concept of dissonance (Sethares). High tonalness corresponds to low entropy and low tonalness corresponds to high entropy. ratios: List (float) ratios between each pairs of frequency peaks res: float Defaults to 0.001 resolution of the ratio steps spread: float Default to 0.01 plot_entropy: boolean Defaults to True When set to True, plot the harmonic entropy curve plot_tenney: boolean Defaults to False When set to True, plot the tenney heights (y-axis) across ratios (x-axis) octave: int Defaults to 2 Value of the maximum interval ratio Returns ---------- HE_minima: List (float) List of ratios corresponding to minima of the harmonic entropy curve HE: float Value of the averaged harmonic entropy ''' fracs, numerators, denominators = scale2frac(ratios) ratios = numerators / denominators #print(ratios) #ratios = np.interp(ratios, (ratios.min(), ratios.max()), (1, 10)) bendetti_heights = numerators * denominators tenney_heights = log2(bendetti_heights) ind = np.argsort(tenney_heights) # first, sort by Tenney height to make things more efficient bendetti_heights = bendetti_heights[ind] tenney_heights = tenney_heights[ind] numerators = numerators[ind] denominators = denominators[ind] #ratios = ratios[ind] if plot_tenney == True: fig = plt.figure(figsize=(10, 4), dpi=150) ax = fig.add_subplot(111) # ax.scatter(ratios, 2**tenney_heights, s=1) ax.scatter(ratios, tenney_heights, s=1, alpha=.2) # ax.scatter(ratios[:200], tenney_heights[:200], s=1, color='r') plt.show() # Next, we need to ensure a distance `d` between adjacent ratios M = len(bendetti_heights) delta = 0.00001 indices = ones(M, dtype=bool) for i in range(M - 2): ind = abs(ratios[i + 1:] - ratios[i]) > delta indices[i + 1:] = indices[i + 1:] * ind bendetti_heights = bendetti_heights[indices] tenney_heights = tenney_heights[indices] numerators = numerators[indices] denominators = denominators[indices] ratios = ratios[indices] M = len(tenney_heights) #print(M) #print('hello') x_ratios = arange(1, octave, res) _, HE = compute_harmonic_entropy_domain_integral(ratios, x_ratios, spread=spread) #_, HE = compute_harmonic_entropy_simple_weights(numerators, denominators, x_ratios, spread=0.01) ind = argrelextrema(HE, np.less) HE_minima = (x_ratios[ind], HE[ind]) if plot_entropy == True: fig = plt.figure(figsize=(10, 4), dpi=150) ax = fig.add_subplot(111) # ax.plot(weight_ratios, log2(pdf)) ax.plot(x_ratios, HE) # ax.plot(x_ratios, HE_simple) ax.scatter(HE_minima[0], HE_minima[1], color='k', s=4) ax.set_xlim(1, octave) plt.show() return HE_minima, np.average(HE) '''Scale reduction''' def scale_reduction (scale, mode_n_steps, function, rounding = 4): ''' Function that reduces the number of steps in a scale according to the consonance between pairs of ratios scale: List (float) scale to reduce mode_n_steps: int number of steps of the reduced scale function: function function used to compute the consonance between pairs of ratios Choose between: consonance, dyad_similarity, metric_denom ''' metric_values = [] mode_values = [] for index1 in range(len(scale)): for index2 in range(len(scale)): if scale[index1] > scale[index2]: #not include the diagonale in the computation of the avg. consonance entry = scale[index1]/scale[index2] #print(entry_value, scale[index1], scale[index2]) mode_values.append([scale[index1], scale[index2]]) #if function == metric_denom: # metric_values.append(int(function(sp.Rational(entry).limit_denominator(1000)))) #else: metric_values.append(function(entry)) if function == metric_denom: cons_ratios = [x for _, x in sorted(zip(metric_values, mode_values))] else: cons_ratios = [x for _, x in sorted(zip(metric_values, mode_values))][::-1] i = 0 mode_ = [] mode_out = [] while len(mode_out) < mode_n_steps: cons_temp = cons_ratios[i] mode_.append(cons_temp) mode_out_temp = [item for sublist in mode_ for item in sublist] mode_out_temp = [np.round(x, rounding) for x in mode_out_temp] mode_out = sorted(set(mode_out_temp), key = mode_out_temp.index)[0:mode_n_steps] i +=1 mode_metric = [] for index1 in range(len(mode_out)): for index2 in range(len(mode_out)): if mode_out[index1] > mode_out[index2]: entry = mode_out[index1]/mode_out[index2] #if function == metric_denom: # mode_metric.append(int(function(sp.Rational(entry).limit_denominator(1000)))) #else: mode_metric.append(function(entry)) return np.average(metric_values), mode_out, np.average(mode_metric) '''------------------------------------------------------Peaks extraction--------------------------------------------------------------''' import emd from PyEMD import EMD, EEMD from scipy.signal import butter, lfilter import colorednoise as cn #PEAKS FUNCTIONS #HH1D_weightAVG (Hilbert-Huang 1D): takes the average of all the instantaneous frequencies weighted by power #HH1D_max: takes the frequency bin that has the maximum power value def compute_peaks_ts (data, peaks_function = 'EMD', FREQ_BANDS = None, precision = 0.25, sf = 1000, max_freq = 80): alphaband = [[7, 12]] try: if FREQ_BANDS == None: FREQ_BANDS = [[2, 3.55], [3.55, 7.15], [7.15, 14.3], [14.3, 28.55], [28.55, 49.4]] except: pass if peaks_function == 'EEMD': IMFs = EMD_eeg(data)[1:6] if peaks_function == 'EMD': data = np.interp(data, (data.min(), data.max()), (0, +1)) IMFs = emd.sift.sift(data) #IMFs = emd.sift.ensemble_sift(data) IMFs = np.moveaxis(IMFs, 0, 1)[1:6] try: peaks_temp = [] amps_temp = [] for imf in range(len(IMFs)): p, a = compute_peak(IMFs[imf], precision = precision, average = 'median') #print(p) peaks_temp.append(p) amps_temp.append(a) peaks_temp = np.flip(peaks_temp) amps_temp = np.flip(amps_temp) except: pass if peaks_function == 'HH1D_max': IMFs = EMD_eeg(data) IMFs = np.moveaxis(IMFs, 0, 1) IP, IF, IA = emd.spectra.frequency_transform(IMFs[:, 1:6], sf, 'nht') precision_hh = precision*2 low = 1 high = max_freq steps = int((high-low)/precision_hh) edges, bins = emd.spectra.define_hist_bins(low, high, steps, 'log') # Compute the 1d Hilbert-Huang transform (power over carrier frequency) spec = emd.spectra.hilberthuang_1d(IF, IA, edges) spec = np.moveaxis(spec, 0, 1) peaks_temp = [] amps_temp = [] for e, i in enumerate(spec): max_power = np.argmax(i) peaks_temp.append(bins[max_power]) amps_temp.append(spec[e][max_power]) peaks_temp = np.flip(peaks_temp) amps_temp = np.flip(amps_temp) #if peaks_function == 'HH1D_weightAVG': if peaks_function == 'adapt': p, a = compute_peaks_raw(data, alphaband, precision = precision, average = 'median') FREQ_BANDS = alpha2bands(p) peaks_temp, amps_temp = compute_peaks_raw(data, FREQ_BANDS, precision = precision, average = 'median') if peaks_function == 'fixed': peaks_temp, amps_temp = compute_peaks_raw(data, FREQ_BANDS, precision = precision, average = 'median') peaks = np.array(peaks_temp) amps = np.array(amps_temp) return peaks, amps def extract_all_peaks (data, sf, precision, max_freq = None): if max_freq == None: max_freq = sf/2 mult = 1/precision nperseg = sf*mult nfft = nperseg freqs, psd = scipy.signal.welch(data, sf, nfft = nfft, nperseg = nperseg, average = 'median') psd = 10. * np.log10(psd) indexes = ss.find_peaks(psd, height=None, threshold=None, distance=10, prominence=None, width=2, wlen=None, rel_height=0.5, plateau_size=None) peaks = [] amps = [] for i in indexes[0]: peaks.append(freqs[i]) amps.append(psd[i]) peaks = np.around(np.array(peaks), 5) peaks = list(peaks) peaks = [p for p in peaks if p<=max_freq] return peaks, amps def harmonic_peaks_fit (peaks, amps, min_freq = 0.5, max_freq = 30, min_harms = 2, harm_limit = 128): n_total = [] harm_ = [] harm_peaks = [] max_n = [] max_peaks = [] max_amps = [] harmonics = [] harmonic_peaks = [] harm_peaks_fit = [] for p, a in zip(peaks, amps): n = 0 harm_temp = [] harm_peaks_temp = [] if p < max_freq and p > min_freq: for p2 in peaks: if p2 == p: ratio = 0.1 #arbitrary value to set ratio value to non integer if p2 > p: ratio = p2/p harm = ratio if p2 < p: ratio = p/p2 harm = -ratio if ratio.is_integer(): if harm <= harm_limit: n += 1 harm_temp.append(harm) if p not in harm_peaks_temp: harm_peaks_temp.append(p) if p2 not in harm_peaks_temp: harm_peaks_temp.append(p2) n_total.append(n) harm_.append(harm_temp) harm_peaks.append(harm_peaks_temp) if n >= min_harms: max_n.append(n) max_peaks.append(p) max_amps.append(a) #print(harm_temp) harmonics.append(harm_temp) harmonic_peaks.append(harm_peaks) harm_peaks_fit.append([p, harm_temp, harm_peaks_temp]) for i in range(len(harm_peaks_fit)): harm_peaks_fit[i][2] = sorted(harm_peaks_fit[i][2]) max_n = np.array(max_n) max_peaks = np.array(max_peaks) max_amps = np.array(max_amps) harmonics = np.array(harmonics) #print(harmonics.shape) harmonic_peaks = np.array(harmonic_peaks) #harm_peaks_fit = np.array(harm_peaks_fit) #max_indexes = np.argsort(n_total)[-10:] return max_n, max_peaks, max_amps, harmonics, harmonic_peaks, harm_peaks_fit def cepstrum(signal, sample_freq, plot_cepstrum = False, min_freq=1.5, max_freq=80): windowed_signal = signal dt = 1/sample_freq freq_vector = np.fft.rfftfreq(len(windowed_signal), d=dt) X = np.fft.rfft(windowed_signal) log_X = np.log(np.abs(X)) cepstrum =
np.fft.rfft(log_X)
numpy.fft.rfft
import sys import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm from utils.histograms import make_eta_range, make_phi_range import utils.transformation as utf def delta_phi(phi1, phi2): result = phi1 - phi2 while result > np.pi: result -= 2 * np.pi while result <= -np.pi: result += 2 * np.pi return result def vdelta_phi(x1, x2): return np.vectorize(delta_phi)(x1, x2) # PARAMETERS input_path = "./tracksReais_04_06_2019" output_path = "/data/track-ml/output/" extra_track_info = 7 max_num_hits = 28 num_fine_eta_bins = 88 num_fine_phi_bins = 63 num_fine_rho_bins = 120 num_coarse_eta_bins = 22 # 8.8/22 = 0.4 num_coarse_phi_bins = 13 # 6.28/13 = 0.48 hit_size = 6 # 3 space points + 3 technical information plt.ioff() # Open the input file tracks = np.genfromtxt(input_path, delimiter=",") print(tracks.shape) # Separate the input tracks in different parts indexes, vertices, momenta, hits = utf.parts_from_tracks(tracks) print("Hits", hits.shape) global_X = np.empty(0) global_Y = np.empty(0) global_eta = np.empty(0) global_phi = np.empty(0) global_rho = np.empty(0) global_centered_eta = np.empty(0) global_centered_phi = np.empty(0) num_hits = [] eta_bins = np.linspace(-4.4, 4.4, num_fine_eta_bins + 1) phi_bins = np.linspace(-np.pi, np.pi, num_fine_phi_bins + 1) rho_bins = np.linspace(0, 1200, num_fine_rho_bins + 1) delta_bins = np.linspace(-2.0, 2.0, 40 + 1) # Loop over particles for i in range(hits.shape[0]): # for i in range(100): if i % 100 == 0: print(i) the_hits = hits[i] reshaped_hits = the_hits.reshape(max_num_hits, 6) X = reshaped_hits[:, 0] Y = reshaped_hits[:, 1] Z = reshaped_hits[:, 2] X = np.trim_zeros(X) Y = np.trim_zeros(Y) Z = np.trim_zeros(Z) assert X.size == Y.size and X.size == Z.size and Y.size == Z.size if X.size < 1: continue num_hits.append(X.size) global_X = np.append(global_X, X) global_Y = np.append(global_Y, Y) global_rho = np.append(global_rho, np.sqrt(X * X + Y * Y)) eta = -np.log(np.tan(np.arctan2(np.sqrt(X * X + Y * Y), Z) / 2)) centered_eta = eta - eta.mean(axis=0) global_eta = np.append(global_eta, eta) global_centered_eta = np.append(global_centered_eta, centered_eta) # phi = np.arctan2(Y,X) ### SO EPIC, how do I make phi right? Use imaginary numbers! imagY = Y * (0 + 1j) XY_vector = (X + imagY) / (np.abs(X + imagY)) average_XY_vector = XY_vector.mean(axis=0) phi = np.angle(XY_vector) average_phi =
np.angle(average_XY_vector)
numpy.angle
"""Data utils functions for pre-processing and data loading.""" import os import pickle as pkl import sys import networkx as nx import numpy as np import scipy.sparse as sp import torch from scipy import sparse import logging def load_data(args, datapath): ## Load data data = load_data_lp(args.dataset, args.use_feats, datapath) adj = data['adj_train'] ## TAKES a lot of time if args.node_cluster == 1: task = 'nc' else: task = 'lp' cached_dir = os.path.join('/root/tmp', task, args.dataset, f"seed{args.split_seed}-val{args.val_prop}-test{args.test_prop}") if not os.path.isdir(cached_dir): logging.info(f"Caching at `{cached_dir}`randomly masked edges") os.makedirs(cached_dir, exist_ok=True) adj_train, train_edges, train_edges_false, val_edges, val_edges_false, test_edges, test_edges_false = mask_edges( adj, args.val_prop, args.test_prop, args.split_seed ) if args.val_prop + args.test_prop > 0: torch.save(val_edges, os.path.join(cached_dir, 'val_edges.pth')) torch.save(val_edges_false, os.path.join(cached_dir, 'val_edges_false.pth')) torch.save(test_edges, os.path.join(cached_dir, 'test_edges.pth')) torch.save(test_edges_false, os.path.join(cached_dir, 'test_edges_false.pth')) torch.save(train_edges, os.path.join(cached_dir, 'train_edges.pth')) torch.save(train_edges_false, os.path.join(cached_dir, 'train_edges_false.pth')) sparse.save_npz(os.path.join(cached_dir, "adj_train.npz"), adj_train) st0 = np.random.get_state() np.save(os.path.join(cached_dir, 'np_state.npy'), st0) else: logging.info(f"Loading from `{cached_dir}` randomly masked edges") if args.val_prop + args.test_prop > 0: val_edges = torch.load(os.path.join(cached_dir, 'val_edges.pth')) val_edges_false = torch.load(os.path.join(cached_dir, 'val_edges_false.pth')) test_edges = torch.load(os.path.join(cached_dir, 'test_edges.pth')) test_edges_false = torch.load(os.path.join(cached_dir, 'test_edges_false.pth')) adj_train = sparse.load_npz(os.path.join(cached_dir, "adj_train.npz")) train_edges = torch.load(os.path.join(cached_dir, 'train_edges.pth')) train_edges_false = torch.load(os.path.join(cached_dir, 'train_edges_false.pth')) st0 = np.load(os.path.join(cached_dir, 'np_state.npy'))
np.random.set_state(st0)
numpy.random.set_state
#!/usr/bin/env @PYTHON_EXECUTABLE@ """ Description: Viewer and exporter for Siconos mechanics-IO HDF5 files based on VTK. """ # Lighter imports before command line parsing from __future__ import print_function import sys import os import json import getopt import math import traceback import vtk from vtk.util.vtkAlgorithm import VTKPythonAlgorithmBase from vtk.numpy_interface import dataset_adapter as dsa import h5py # Exports from this module __all__ = ['VView', 'VViewOptions', 'VExportOptions', 'VViewConfig'] if hasattr(math, 'inf'): infinity = math.inf else: infinity = float('inf') ## Persistent configuration class VViewConfig(dict): def __init__(self, d={'background_color' : [0., 0. , 0.], 'window_size': [600,600]}, filename=None): super(self.__class__, self).__init__(d) self.should_save_config = True if filename is not None: self.filename = filename else: self.filename = os.path.join(os.environ['HOME'], '.config', 'siconos_vview.json') def load_configuration(self): if os.path.exists(self.filename): try: self.update(json.load(open(self.filename))) print('Loaded configuration from ', self.filename) for k in self: print(' ', k,': ', self[k]) self.should_save_config = True except: self.should_save_config = False print("Warning: Error loading configuration `{}'".format(self.filename)) def save_configuration(self, force=False): if not force and not self.should_save_config: return try: if not os.path.exists(os.path.join(os.environ['HOME'], '.config')): os.mkdir(os.path.join(os.environ['HOME'], '.config')) json.dump(self, open(self.filename,'w')) except: print("Error saving configuration `{}'".format(self.filename)) class VViewOptions(object): def __init__(self): self.min_time = None self.max_time = None self.cf_scale_factor = 1 self.normalcone_ratio = 1 self.time_scale_factor = 1 self.advance_by_time = None self.frames_per_second = 25 self.cf_disable = False if hasattr(vtk.vtkPolyDataMapper(), 'ImmediateModeRenderingOff'): self.imr = False else: # vtk 8 self.imr = True self.depth_peeling = True self.maximum_number_of_peels = 100 self.occlusion_ratio = 0.1 self.global_filter = False self.initial_camera = [None] * 5 self.visible_mode = 'all' self.export = False self.gen_para_script = False self.with_edges = False self.with_random_color = True self.with_charts= 0 self.depth_2d=0.1 self.verbose=0 ## Print usage information def usage(self, long=False): print(__doc__); print() print('Usage: {0} [OPTION]... <HDF5>' .format(os.path.split(sys.argv[0])[1])) print() if not long: print("""[--help] [--tmin=<float value>] [--tmax=<float value>] [--cf-scale=<float value>] [--no-cf] [--imr] [--global-filter] [--no-depth-peeling] [--maximum-number-of-peels=<int value>] [--occlusion-ratio=<float value>] [--normalcone-ratio = <float value>] [--advance=<'fps' or float value>] [--fps=float value] [--camera=x,y,z] [--lookat=x,y,z] [--up=x,y,z] [--clipping=near,far] [--ortho=scale] [--with-charts=<int value>] [--visible=all,avatars,contactors] [--with-edges] [--verbose] """) else: print("""Options: --help display this message --version display version information --tmin= value set the time lower bound for visualization --tmax= value set the time upper bound for visualization --cf-scale= value (default : 1.0 ) rescale the arrow representing the contact forces by the value. the normal cone and the contact points are also rescaled --no-cf do not display contact forces --imr immediate-mode-rendering, use less memory at the price of slower rendering --global-filter (default : off) With export mode, concatenates all blocks in a big vtkPolyData. This option is for when the number of objects is huge. With vview, the display is done with only one vtk actor. Note that global-filter use a vtkCompositeDataGeometryFilter which is slow. --no-depth-peeling (default : on) do not use vtk depth peeling --maximum-number-of-peels= value maximum number of peels when depth peeling is on --occlusion-ratio= value occlusion-ratio when depth peeling is on --normalcone-ratio = value (default : 1.0 ) introduce a ratio between the representation of the contact forces arrows the normal cone and the contact points. useful when the contact forces are small with respect to the characteristic dimesion --advance= value or 'fps' automatically advance time during recording (default : don't advance) --fps= value frames per second of generated video (default 25) --camera=x,y,z initial position of the camera (default=above looking down) --lookat=x,y,z initial direction to look (default=center of bounding box) --up=x,y,z initial up direction of the camera (default=y-axis) --ortho=scale start in ortho mode with given parallel scale (default=perspective) --with-charts=value display convergence charts --visible=all all: view all contactors and avatars avatars: view only avatar if an avatar is defined (for each object) contactors: ignore avatars, view only contactors where avatars are contactors with collision_group=-1 --with-edges add edges in the rendering (experimental for primitives) --with-fixed-color use fixed color defined in the config file --depth-2d=<value> specify a depth for 2D objects --verbose=<int verbose_level> """) def parse(self): ## Parse command line try: opts, args = getopt.gnu_getopt(sys.argv[1:], '', ['help', 'version', 'dat', 'tmin=', 'tmax=', 'no-cf', 'imr', 'global-filter', 'no-depth-peeling', 'maximum-number-of-peels=', 'occlusion-ratio=', 'cf-scale=', 'normalcone-ratio=', 'advance=', 'fps=', 'camera=', 'lookat=', 'up=', 'clipping=', 'ortho=', 'visible=', 'with-edges', 'with-fixed-color', 'with-charts=', 'depth-2d=', 'verbose=']) self.configure(opts, args) except getopt.GetoptError as err: sys.stderr.write('{0}\n'.format(str(err))) self.usage() exit(2) def configure(self, opts, args): for o, a in opts: if o == '--help': self.usage(long=True) exit(0) elif o == '--version': print('{0} @SICONOS_VERSION@'.format( os.path.split(sys.argv[0])[1])) exit(0) elif o == '--tmin': self.min_time = float(a) elif o == '--tmax': self.max_time = float(a) elif o == '--cf-scale': self.cf_scale_factor = float(a) elif o == '--no-cf': self.cf_disable = True elif o == '--imr': self.imr = True elif o == '--no-depth-peeling': self.depth_peeling=False elif o == '--maximum-number-of-peels': self.maximum_number_of_peels = int(a) elif o == '--occlusion-ratio': self.occlusion_ratio = float(a) elif o == '--global-filter': self.global_filter = True elif o == '--normalcone-ratio': self.normalcone_ratio = float(a) elif o == '--advance': if 'fps' in a: self.advance_by_time = \ eval(a, {'fps': 1.0 / self.frames_per_second}) else: self.advance_by_time = float(a) elif o == '--fps': self.frames_per_second = int(a) elif o == '--camera': self.initial_camera[0] = map(float, a.split(',')) elif o == '--lookat': self.initial_camera[1] = map(float, a.split(',')) elif o == '--up': self.initial_camera[2] = map(float, a.split(',')) elif o == '--clipping': self.initial_camera[4] = map(float, a.split(',')) elif o == '--ortho': self.initial_camera[3] = float(a) elif o == '--with-charts=': self.with_charts = int(a) elif o == '--depth-2d': self.depth_2d = float(a) elif o == '--visible': self.visible_mode = a elif o == '--with-edges': self.with_edges = True elif o == '--with-fixed-color': self.with_random_color = False elif o == '--verbose': self.verbose = int(a) if self.verbose >=1: self.display() if self.frames_per_second == 0: self.frames_per_second = 25 if len(args) > 0: self.io_filename = args[0] else: self.usage() exit(1) def display(self): display_str = \ """[io.VViewOptions] Display vview options: min_time : {0} min_time : {1} cf_disable : {2} cf_scale_factor : {3} normalcone_ratio {4} time_scale_factor {5} advance_by_time {6} frames_per_second {7} imr {8} depth_peeling {9} maximum_number_of_peels {10} occlusion_ratio {11} global_filter {12} initial_camera {13} visible_mode {14} export {15} gen_para_script {16} with_edges {17} with_random_color {18} with_charts {19} depth_2d {20} verbose {21}""".format(self.min_time, self.max_time, self.cf_disable, self.cf_scale_factor, self.normalcone_ratio, self.time_scale_factor, self.advance_by_time, self.frames_per_second, self.imr, self.depth_peeling, self.maximum_number_of_peels, self.occlusion_ratio, self.global_filter, self.initial_camera, self.visible_mode, self.export, self.gen_para_script, self.with_edges, self.with_random_color, self.with_charts, self.depth_2d, self.verbose ) print(display_str) # self.cf_scale_factor = 1 # self.normalcone_ratio = 1 # self.time_scale_factor = 1 # self.advance_by_time = None # self.frames_per_second = 25 # self.cf_disable = False # if hasattr(vtk.vtkPolyDataMapper(), 'ImmediateModeRenderingOff'): # self.imr = False # else: # # vtk 8 # self.imr = True # self.depth_peeling = True # self.maximum_number_of_peels = 100 # self.occlusion_ratio = 0.1 # self.global_filter = False # self.initial_camera = [None] * 5 # self.visible_mode = 'all' # self.export = False # self.gen_para_script = False # self.with_edges = False # self.with_random_color = True # self.with_charts= 0 # self.depth=0.1 # self.verbose=0 class VExportOptions(VViewOptions): def __init__(self): super(self.__class__, self).__init__() self.export = True self.ascii_mode = False self.start_step = 0 self.end_step = None self.stride = 1 self.nprocs = 1 self.gen_para_script = False def usage(self, long=False): print(__doc__); print() print('Usage: {0} [--help] [--version] [--ascii] <HDF5>' .format(os.path.split(sys.argv[0])[1])) if long: print() print("""Options: --help display this message --version display version information --global-filter one vtp file/time step --start-step=n integer, set the first simulation time step number (default: 0) --end-step=n integer, set the last simulation time step number (default: None) --stride=n integer, set export time step/simulation time step (default: 1) --ascii export file in ascii format --gen-para-script=n generation of a gnu parallel command for n processus """) def parse(self): ## Parse command line try: opts, args = getopt.gnu_getopt(sys.argv[1:], '', ['help', 'version', 'ascii', 'start-step=', 'end-step=', 'stride=', 'global-filter', 'gen-para-script=', 'depth-2d=', 'verbose=']) self.configure(opts, args) except getopt.GetoptError as err: sys.stderr.write('{0}\n'.format(str(err))) self.usage() exit(2) def configure(self, opts, args): for o, a in opts: if o == '--help': self.usage(long=True) exit(0) if o == '--version': print('{0} @SICONOS_VERSION@'.format( os.path.split(sys.argv[0])[1])) exit(0) if o == '--global-filter': self.global_filter = True if o == '--start-step': self.start_step = int(a) if o == '--end-step': self.end_step = int(a) if o == '--stride': self.stride = int(a) if o == '--gen-para-script': self.gen_para_script = True self.nprocs = int(a) if o in ('--ascii'): self.ascii_mode = True if o in ('--depth-2d'): self.depth_2d = float(a) if o in ('--verbose'): self.verbose = int(a) if self.verbose >=1: self.display() if len(args) > 0: self.io_filename = args[0] else: self.usage() exit(1) class VRawDataExportOptions(VViewOptions): def __init__(self, io_filename = None): super(self.__class__, self).__init__() self.export = True self._export_position = True self._export_velocity = True self._export_cf = False self._export_velocity_in_absolute_frame = False self.start_step = 0 self.end_step = None self.stride = 1 self.io_filename = io_filename def usage(self, long=False): print(__doc__); print() print('Usage: {0} [--help] <HDF5>' .format(os.path.split(sys.argv[0])[1])) if long: print() print("""Options: --help display this message --version display version information --start-step=n integer, set the first simulation time step number (default: 0) --end-step=n integer, set the last simulation time step number (default: None) --stride=n integer, set export time step/simulation time step (default: 1) --no-export-position do not export position --no-export-velocity do not export position --export-cf do export of contact friction data --export-velocity-in-absolute-frame do export of contact friction data """) def parse(self): ## Parse command line try: opts, args = getopt.gnu_getopt(sys.argv[1:], '', ['help', 'version', 'ascii', 'start-step=', 'end-step=', 'stride=', 'no-export-position', 'no-export-velocity', 'export-cf', 'export-velocity-in-absolute-frame']) self.configure(opts, args) except getopt.GetoptError as err: sys.stderr.write('{0}\n'.format(str(err))) self.usage() exit(2) def configure(self, opts, args): for o, a in opts: if o == '--help': self.usage(long=True) exit(0) if o == '--version': print('{0} @SICONOS_VERSION@'.format( os.path.split(sys.argv[0])[1])) exit(0) if o == '--start-step': self.start_step = int(a) if o == '--end-step': self.end_step = int(a) if o == '--stride': self.stride = int(a) if o == '--no-export-position': self._export_position = False if o == '--no-export-velocity': self._export_velocity = False if o == '--export-cf': self._export_cf = True if o == '--export-velocity-in-absolute-frame': self._export_velocity_in_absolute_frame = True if self.io_filename is None: if len(args) > 0 : self.io_filename = args[0] else: self.usage() exit(1) ## Utilities def add_compatiblity_methods(obj): """ Add missing methods in previous VTK versions. """ if hasattr(obj, 'SetInput'): obj.SetInputData = obj.SetInput if hasattr(obj, 'AddInput'): obj.AddInputData = obj.AddInput def random_color(): r = random.uniform(0.1, 0.9) g = random.uniform(0.1, 0.9) b = random.uniform(0.1, 0.9) return r, g, b class Quaternion(): def __init__(self, *args): import vtk self._vtkmath = vtk.vtkMath() self._data = vtk.vtkQuaternion[float](*args) def __mul__(self, q): r = Quaternion() self._vtkmath.MultiplyQuaternion(self._data, q._data, r._data) return r def __getitem__(self, i): return self._data[i] def conjugate(self): r = Quaternion((self[0], self[1], self[2], self[3])) r._data.Conjugate() return r def rotate(self, v): pv = Quaternion((0, v[0], v[1], v[2])) rv = self * pv * self.conjugate() # assert(rv[0] == 0) return [rv[1], rv[2], rv[3]] def axisAngle(self): r = [0, 0, 0] a = self._data.GetRotationAngleAndAxis(r) return r, a class InputObserver(): def __init__(self, vview, times=None, slider_repres=None): self.vview = vview self._opacity = 1.0 self._opacity_static = 1.0 self._opacity_contact = 0.4 self._current_id = vtk.vtkIdTypeArray() self._renderer = vview.renderer self._renderer_window = vview.renderer_window self._image_counter = 0 self._view_cycle = -1 self._recording = False self._times = None if times is None or len(times)==0: return self._times = times self._stimes = set(times) self._time_step = (max(self._stimes) - min(self._stimes)) \ / len(self._stimes) self._time = min(times) if slider_repres is None: return self._slider_repres = slider_repres def update(self): self.vview.print_verbose('InputObserver - update at time', self._time) self.vview.io_reader.SetTime(self._time) if self._times is None: self.vview.renderer_window.Render() return if not self.vview.opts.cf_disable: self.vview.io_reader.Update() for mu in self.vview.io_reader._mu_coefs: self.vview.contact_posa[mu].Update() self.vview.contact_posb[mu].Update() self.vview.contact_pos_force[mu].Update() self.vview.contact_pos_norm[mu].Update() self.vview.set_dynamic_actors_visibility(self.vview.io_reader._time) self.vview.set_static_actors_visibility(self.vview.io_reader._time) pos_data = self.vview.io_reader.pos_data self.vview.set_position(pos_data) self._slider_repres.SetValue(self.vview.io_reader._time) self._current_id.SetNumberOfValues(1) self._current_id.SetValue(0, self.vview.io_reader._index) if self.vview.opts.with_charts: self.vview.iter_plot.SetSelection(self._current_id) self.vview.prec_plot.SetSelection(self._current_id) self.vview.renderer_window.Render() def set_opacity(self): for instance, actors in self.vview.dynamic_actors.items(): for actor,_,_ in actors: actor.GetProperty().SetOpacity(self._opacity) def set_opacity_static(self): for instance, actors in self.vview.static_actors.items(): for actor,_,_ in actors: actor.GetProperty().SetOpacity(self._opacity_static) def set_opacity_contact(self): for mu in self.vview.io_reader._mu_coefs: self.vview.cactor[mu].GetProperty().SetOpacity(self._opacity_contact) self.vview.gactor[mu].GetProperty().SetOpacity(self._opacity_contact) self.vview.clactor[mu].GetProperty().SetOpacity(self._opacity_contact) self.vview.sactora[mu].GetProperty().SetOpacity(self._opacity_contact) self.vview.sactorb[mu].GetProperty().SetOpacity(self._opacity_contact) def key(self, obj, event): key = obj.GetKeySym() self.vview.print_verbose('InputObserver - key', key) key_recognized = True if key == 'r': self.vview.reload() self._slider_repres.SetMinimumValue(self.vview.min_time) self._slider_repres.SetMaximumValue(self.vview.max_time) self.update() elif key == 'p': self._image_counter += 1 self.vview.image_maker.Update() self.vview.writer.SetFileName( 'vview-{0}.png'.format(self._image_counter)) self.vview.writer.Write() elif key == 'Up': self._time_step = self._time_step * 2. self._time += self._time_step elif key == 'Down': self._time_step = self._time_step / 2. self._time -= self._time_step elif key == 'Left': self._time -= self._time_step elif key == 'Right': self._time += self._time_step elif key == 't': print('Decrease the opacity of bodies') self._opacity -= .1 self.set_opacity() elif key == 'T': print('Increase the opacity of bodies') self._opacity += .1 self.set_opacity() elif key == 'y': print('Decrease the opacity of static bodies') self._opacity_static -= .1 self.set_opacity_static() elif key == 'Y': print('Increase the opacity of static bodies') self._opacity_static += .1 self.set_opacity_static() elif key == 'u': print('Decrease the opacity of contact elements') self._opacity_contact -= .1 self.set_opacity_contact() elif key == 'U': print('Increase the opacity of contact elements') self._opacity_contact += .1 self.set_opacity_contact() elif key == 'c': print('camera position:', self._renderer.GetActiveCamera().GetPosition()) print('camera focal point', self._renderer.GetActiveCamera().GetFocalPoint()) print('camera clipping range', self._renderer.GetActiveCamera().GetClippingRange()) print('camera up vector', self._renderer.GetActiveCamera().GetViewUp()) if self._renderer.GetActiveCamera().GetParallelProjection() != 0: print('camera parallel scale', self._renderer.GetActiveCamera().GetParallelScale()) elif key == 'o': self._renderer.GetActiveCamera().SetParallelProjection( 1 - self._renderer.GetActiveCamera().GetParallelProjection()) elif key == 'v': # Cycle through some useful views dist = norm(self._renderer.GetActiveCamera().GetPosition()) # dist2 = norm([numpy.sqrt(dist**2)/3]*2) d3 = norm([numpy.sqrt(dist**2) / 3] * 3) self._view_cycle += 1 if self._view_cycle == 0: print('Left') self._renderer.GetActiveCamera().SetPosition( dist, 0, 0) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp(0, 0, 1) elif self._view_cycle == 1: print('Right') self._renderer.GetActiveCamera().SetPosition( 0, dist, 0) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp(0, 0, 1) elif self._view_cycle == 2: print('Top') self._renderer.GetActiveCamera().SetPosition( 0, 0, dist) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp(1, 0, 0) else: # Corner print('Corner') self._renderer.GetActiveCamera().SetPosition( d3, d3, d3) self._renderer.GetActiveCamera().SetFocalPoint(0, 0, 0) self._renderer.GetActiveCamera().SetViewUp( -1, -1, 1) self._view_cycle = -1 self._renderer.ResetCameraClippingRange() elif key == 'C': self._renderer.ResetCameraClippingRange() elif key == 's': self.toggle_recording(True) elif key == 'e': # Note 'e' has the effect to also "end" the program due to # default behaviour of vtkInteractorStyle, see class # documentation. self.toggle_recording(False) # else: # self.vview.print_verbose('InputObserver - key not recognized') # key_recognized=False # if(key_recognized): self.update() def time(self, obj, event): slider_repres = obj.GetRepresentation() self._time = slider_repres.GetValue() self.update() def toggle_recording(self, recording): self.vview.print_verbose('InputObserver - toggle recording') if recording and not self._recording: fps = 25 self._timer_id = (self.vview.interactor_renderer .CreateRepeatingTimer(1000//fps)) self._recording = True self.vview.recorder.Start() elif self._recording and not recording: self.vview.interactor_renderer.DestroyTimer(self._timer_id) self._timer_id = None self._recording = False self.vview.recorder.End() # observer on 2D chart def iter_plot_observer(self, obj, event): if self.vview.iter_plot.GetSelection() is not None: # just one selection at the moment! if self.vview.iter_plot.GetSelection().GetMaxId() >= 0: self._time = self._times[ self.vview.iter_plot.GetSelection().GetValue(0)] # -> recompute index ... self.update() def prec_plot_observer(self, obj, event): if self.vview.prec_plot.GetSelection() is not None: # just one selection at the moment! if self.vview.prec_plot.GetSelection().GetMaxId() >= 0: self._time = self._times[ self.vview.prec_plot.GetSelection().GetValue(0)] # -> recompute index ... self.update() def recorder_observer(self, obj, event): if self._recording: if self.vview.opts.advance_by_time is not None: self._time += self.vview.opts.advance_by_time self.vview.slwsc.SetEnabled(False) # Scale slider self.vview.xslwsc.SetEnabled(False) # Time scale slider # slider_widget.SetEnabled(False) # Time slider (TODO video options) # widget.SetEnabled(False) # Axis widget self.update() self.vview.image_maker.Modified() self.vview.recorder.Write() if self.vview.opts.advance_by_time is not None: self.vview.slwsc.SetEnabled(True) self.vview.xslwsc.SetEnabled(True) # slider_widget.SetEnabled(True) # widget.SetEnabled(True) # Axis widget # End video if done if self._time >= max(self._times): self.toggle_recording(False) class CellConnector(vtk.vtkProgrammableFilter): """ Add Arrays to Cells """ def __init__(self, instance, data_names, data_sizes): vtk.vtkProgrammableFilter.__init__(self) self._instance = instance self._data_names = data_names self._data_sizes = data_sizes self.SetExecuteMethod(self.method) self._datas = [numpy.zeros(s) for s in data_sizes] self._vtk_datas = [None]*len(data_sizes) self._index = list(enumerate(data_names)) for i, data_name in self._index: self._vtk_datas[i] = vtk.vtkFloatArray() self._vtk_datas[i].SetName(data_name) self._vtk_datas[i].SetNumberOfComponents(data_sizes[i]) def method(self): input = self.GetInput() output = self.GetOutput() output.ShallowCopy(input) ncells = output.GetNumberOfCells() for i, data_name in self._index: self._vtk_datas[i].SetNumberOfTuples(ncells) if output.GetCellData().GetArray(data_name) is None: output.GetCellData().AddArray(self._vtk_datas[i]) data = self._datas[i] data_t = data[0:self._data_sizes[i]] for c in range(ncells): output.GetCellData().GetArray(data_name).SetTuple(c, data_t) def makeConvexSourceClass(): class UnstructuredGridSource(vtk.vtkProgrammableSource): def GetOutputPort(self): # 3: UnstructuredGridOutput for vtkProgrammableSource return vtk.vtkProgrammableSource.GetOutputPort(self, 3) class ConvexSource(UnstructuredGridSource): def __init__(self, convex, points): self._convex = convex self._points = points self.SetExecuteMethod(self.method) def method(self): output = self.GetUnstructuredGridOutput() output.Allocate(1, 1) output.InsertNextCell( self._convex.GetCellType(), self._convex.GetPointIds()) output.SetPoints(self._points) return ConvexSource # attempt for a vtk reader # only half the way, the reading part is ok but the output is only used # in vview and export from python members class IOReader(VTKPythonAlgorithmBase): def __init__(self): VTKPythonAlgorithmBase.__init__(self, nInputPorts=0, nOutputPorts=1, outputType='vtkPolyData') self._io = None self._with_contact_forces = False self.cf_data = None self.time = 0 self.timestep = 0 self.points = vtk.vtkPoints() def RequestInformation(self, request, inInfo, outInfo): info = outInfo.GetInformationObject(0) info.Set(vtk.vtkStreamingDemandDrivenPipeline.TIME_STEPS(), self._times, len(self._times)) info.Set(vtk.vtkStreamingDemandDrivenPipeline.TIME_RANGE(), [self._times[0], self._times[-1]], 2) return 1 def RequestData(self, request, inInfo, outInfo): info = outInfo.GetInformationObject(0) output = vtk.vtkPolyData.GetData(outInfo) output.SetPoints(self.points) # The time step requested t = info.Get(vtk.vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP()) id_t = max(0, numpy.searchsorted(self._times, t, side='right') - 1) if id_t < len(self._indices)-1: self._id_t_m = list(range(self._indices[id_t], self._indices[id_t+1])) else: self._id_t_m = [self._indices[id_t]] self._time = self._times[id_t] self._index = id_t self.pos_data = self._idpos_data[self._id_t_m, :] self.velo_data = self._ivelo_data[self._id_t_m, :] static_id_t = max(0, numpy.searchsorted(self._static_times, t, side='right') - 1) if static_id_t < len(self._static_indices)-1: self._static_id_t_m = list(range(self._static_indices[static_id_t], self._static_indices[static_id_t+1])) else: self._static_id_t_m = [self._static_indices[static_id_t]] self.pos_static_data = self._ispos_data[self._static_id_t_m, :] vtk_pos_data = dsa.numpyTovtkDataArray(self.pos_data) vtk_pos_data.SetName('pos_data') vtk_velo_data = dsa.numpyTovtkDataArray(self.velo_data) vtk_velo_data.SetName('velo_data') vtk_points_data = dsa.numpyTovtkDataArray(self.pos_data[:, 2:5]) self.points.SetData(vtk_points_data) output.GetPointData().AddArray(vtk_velo_data) try: if self._with_contact_forces: ncfindices = len(self._cf_indices) id_t_cf = min(numpy.searchsorted(self._cf_times, t, side='right'), ncfindices-1) # Check the duration between t and last impact. # If it is superior to current time step, we consider there # is no contact (rebound). # The current time step is the max between slider timestep # and simulation timestep ctimestep = max(self.timestep, self._avg_timestep) if (id_t_cf > 0 and abs(t-self._cf_times[id_t_cf-1]) <= ctimestep): if id_t_cf < ncfindices-1: self._id_t_m_cf = list(range(self._cf_indices[id_t_cf-1], self._cf_indices[id_t_cf])) self.cf_data = self._icf_data[self._id_t_m_cf, :] else: self.cf_data = self._icf_data[self._cf_indices[ id_t_cf]:, :] self._cf_time = self._cf_times[id_t_cf] vtk_cf_data = dsa.numpyTovtkDataArray(self.cf_data) vtk_cf_data.SetName('cf_data') output.GetFieldData().AddArray(vtk_cf_data) else: # there is no contact forces at this time self.cf_data = None vtk_cf_data = dsa.numpyTovtkDataArray(numpy.array([])) vtk_cf_data.SetName('cf_data') output.GetFieldData().AddArray(vtk_cf_data) if self.cf_data is not None: self.contact = True data = self.cf_data for mu in self._mu_coefs: imu = numpy.where( abs(data[:, 1] - mu) < 1e-15)[0] #dom_imu = None #dom_imu = numpy.where( # self._dom_data[:,-1] == data[id_f[imu],-1] #)[0] if len(imu) > 0: self.cpa_at_time[mu] = data[ imu, 2:5] self.cpb_at_time[mu] = data[ imu, 5:8] self.cn_at_time[mu] = - data[ imu, 8:11] self.cf_at_time[mu] = data[ imu, 11:14] if data[imu, :].shape[1] > 26: self.ids_at_time[mu] = data[ imu, 23:26].astype(int) else: self.ids_at_time[mu] = None else: # for mu in self._mu_coefs: # self.cpa_at_time[mu] = [[nan, nan, nan]] # self.cpb_at_time[mu] = [[nan, nan, nan]] # self.cn_at_time[mu] = [[nan, nan, nan]] # self.cf_at_time[mu] = [[nan, nan, nan]] # self.ids_at_time[mu] = None pass if self._with_contact_forces: for mu in self._mu_coefs: self.cpa[mu] = numpy_support.numpy_to_vtk( self.cpa_at_time[mu]) self.cpa[mu].SetName('contact_positions_a') self.cpb[mu] = numpy_support.numpy_to_vtk( self.cpb_at_time[mu]) self.cpb[mu].SetName('contact_positions_b') self.cn[mu] = numpy_support.numpy_to_vtk( self.cn_at_time[mu]) self.cn[mu].SetName('contact_normals') self.cf[mu] = numpy_support.numpy_to_vtk( self.cf_at_time[mu]) self.cf[mu].SetName('contact_forces') # field info for vview (should go in point data) self._contact_field[mu].AddArray(self.cpa[mu]) self._contact_field[mu].AddArray(self.cpb[mu]) self._contact_field[mu].AddArray(self.cn[mu]) self._contact_field[mu].AddArray(self.cf[mu]) # contact points self._points[mu].SetData(self.cpa[mu]) self._output[mu].GetPointData().AddArray(self.cpb[mu]) self._output[mu].GetPointData().AddArray(self.cn[mu]) self._output[mu].GetPointData().AddArray(self.cf[mu]) if self.ids_at_time[mu] is not None: self.ids[mu] = numpy_support.numpy_to_vtk( self.ids_at_time[mu]) self.ids[mu].SetName('ids') self._contact_field[mu].AddArray(self.ids[mu]) self._output[mu].GetPointData().AddArray(self.ids[mu]) dsa_ids = numpy.unique(self.ids_at_time[mu][:, 1]) dsb_ids = numpy.unique(self.ids_at_time[mu][:, 2]) _i, _i, dsa_pos_ids = numpy.intersect1d( self.pos_data[:, 1], dsa_ids, return_indices=True) _i, _i, dsb_pos_ids = numpy.intersect1d( self.pos_data[:, 1], dsb_ids, return_indices=True) # objects a & b translations obj_pos_a = self.pos_data[dsa_pos_ids, 2:5] obj_pos_b = self.pos_data[dsb_pos_ids, 2:5] self._all_objs_pos[mu] = numpy.vstack((obj_pos_a, obj_pos_b)) self._all_objs_pos_vtk[mu] = numpy_support.numpy_to_vtk( self._all_objs_pos[mu]) self._objs_points[mu].SetData(self._all_objs_pos_vtk[mu]) self._objs_output[mu].GetPointData().AddArray(self.cn[mu]) self._objs_output[mu].GetPointData().AddArray(self.cf[mu]) #if dom_imu is not None: # self.dom_at_time[mu] = self._dom_data[ # dom_imu, 1] # self.dom[mu] = numpy_support.numpy_to_vtk( # self.dom_at_time[mu]) # self.dom[mu].SetName('domains') # self._contact_field[mu].AddArray(self.dom[mu]) except Exception: traceback.print_exc() return 1 def SetIO(self, io): self._io = io self._ispos_data = self._io.static_data() self._idpos_data = self._io.dynamic_data() try: self._idom_data = self._io.domains_data() except ValueError: self._idom_data = None self._icf_data = self._io.contact_forces_data() self._isolv_data = self._io.solver_data() self._ivelo_data = self._io.velocities_data() self._spos_data = self._ispos_data[:, :] # all times as hdf5 slice self._raw_times = self._idpos_data[:, 0] # build times steps self._times, self._indices = numpy.unique(self._raw_times, return_index=True) # all times as hdf5 slice for static objects self._static_raw_times = self._ispos_data[:, 0] # build times steps for static objects self._static_times, self._static_indices = numpy.unique(self._static_raw_times, return_index=True) dcf = self._times[1:]-self._times[:-1] self._avg_timestep = numpy.mean(dcf) self._min_timestep = numpy.min(dcf) # self._times.sort() # self._indices = ? # we assume times must be sorted # assert all(self._times[i] <= self._times[i+1] # for i in range(len(self._times)-1)) # if self._with_contact_forces: # assert all(self._cf_times[i] <= self._cf_times[i+1] # for i in range(len(self._cf_times)-1)) self.Modified() return 1 def SetTime(self, time): self.GetOutputInformation(0).Set( vtk.vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP(), time) self.timestep = abs(self.time-time) self.time = time # with a True pipeline: self.Modified() # but as the consumers (VView class, export function) are # not (yet) vtk filters, the Update is needed here self.Update() # contact forces provider def ContactForcesOn(self): self._cf_raw_times = self._icf_data[:, 0] self._cf_times, self._cf_indices = numpy.unique(self._cf_raw_times, return_index=True) self._mu_coefs = numpy.unique(self._icf_data[:, 1], return_index=False) self.cpa_at_time = dict() self.cpa = dict() self.cpb_at_time = dict() self.cpb = dict() self.cf_at_time = dict() self.cf = dict() self.cn_at_time = dict() self.cn = dict() self.ids_at_time = dict() self.ids = dict() self.dom_at_time = [dict(), None][self._idom_data is None] self.dom = dict() self._all_objs_pos = dict() self._all_objs_pos_vtk = dict() self._points = dict() self._contact_field = dict() self._output = dict() self._objs_points = dict() self._objs_output = dict() for mu in self._mu_coefs: # the contact points self._points[mu] = vtk.vtkPoints() self._contact_field[mu] = vtk.vtkPointData() self._output[mu] = vtk.vtkPolyData() self._output[mu].SetPoints(self._points[mu]) self._output[mu].SetFieldData(self._contact_field[mu]) # the objects translations self._objs_points[mu] = vtk.vtkPoints() self._objs_output[mu] = vtk.vtkPolyData() self._objs_output[mu].SetPoints(self._objs_points[mu]) self._with_contact_forces = True self.Update() def ContactForcesOff(self): self._with_contact_forces = False self.Update() def ExportOn(self): self._export = True def ExportOff(self): self._export = False # Read file and open VTK interaction window class VView(object): def __init__(self, io, options, config=None): self.opts = options self.config = [config,VViewConfig()][config is None] self.gui_initialized = False self.io = io self.refs = [] self.refs_attrs = [] self.shape = dict() self.pos = dict() self.mass = dict() self.inertia = dict() self.contact_posa = dict() self.contact_posb = dict() self.contact_pos_force = dict() self.contact_pos_norm = dict() self.cone = dict() self.cone_glyph = dict() self.cmapper = dict() self.cLUT = dict() self.cactor = dict() self.arrow = dict() self.cylinder = dict() self.sphere = dict() self.arrow_glyph = dict() self.gmapper = dict() self.gactor = dict() self.ctransform = dict() self.cylinder_glyph = dict() self.clmapper = dict() self.sphere_glypha = dict() self.sphere_glyphb = dict() self.smappera = dict() self.smapperb = dict() self.sactora = dict() self.sactorb = dict() self.clactor = dict() self.cell_connectors = dict() self.times_of_birth = dict() self.times_of_death = dict() self.min_time = self.opts.min_time self.max_time = self.opts.max_time self.transforms = dict() self.transformers = dict() self.offsets = dict() self.io_reader = IOReader() self.io_reader.SetIO(io=self.io) if self.opts.cf_disable: self.io_reader.ContactForcesOff() else: self.io_reader.ContactForcesOn() if self.opts.export: self.io_reader.ExportOn() else: self.io_reader.ExportOff() def print_verbose(self, *args, **kwargs): if self.opts.verbose: print('[io.vview]', *args, **kwargs) def print_verbose_level(self, level, *args, **kwargs): if level <= self.opts.verbose: print('[io.vview]', *args, **kwargs) def reload(self): if self.opts.cf_disable: self.io_reader.ContactForcesOff() else: self.io_reader._time = min(times[:]) for mu in self.io_reader._mu_coefs: self.contact_posa[mu].SetInputData(self.io_reader._output[mu]) self.contact_posa[mu].Update() self.contact_posb[mu].SetInputData(self.io_reader._output[mu]) self.contact_posb[mu].Update() self.contact_pos_force[mu].Update() self.contact_pos_norm[mu].Update() self.min_time = self.io_reader._times[0] self.max_time = self.io_reader._times[-1] self.set_dynamic_actors_visibility(self.time0) def init_contact_pos(self, mu): self.print_verbose_level(2,'contact positions', mu) self.contact_posa[mu] = vtk.vtkDataObjectToDataSetFilter() self.contact_posb[mu] = vtk.vtkDataObjectToDataSetFilter() add_compatiblity_methods(self.contact_posa[mu]) add_compatiblity_methods(self.contact_posb[mu]) self.contact_pos_force[mu] = vtk.vtkFieldDataToAttributeDataFilter() self.contact_pos_norm[mu] = vtk.vtkFieldDataToAttributeDataFilter() self.contact_posa[mu].SetDataSetTypeToPolyData() self.contact_posa[mu].SetPointComponent(0, "contact_positions_a", 0) self.contact_posa[mu].SetPointComponent(1, "contact_positions_a", 1) self.contact_posa[mu].SetPointComponent(2, "contact_positions_a", 2) self.contact_posb[mu].SetDataSetTypeToPolyData() self.contact_posb[mu].SetPointComponent(0, "contact_positions_b", 0) self.contact_posb[mu].SetPointComponent(1, "contact_positions_b", 1) self.contact_posb[mu].SetPointComponent(2, "contact_positions_b", 2) self.contact_pos_force[mu].SetInputConnection( self.contact_posa[mu].GetOutputPort()) self.contact_pos_force[mu].SetInputFieldToDataObjectField() self.contact_pos_force[mu].SetOutputAttributeDataToPointData() self.contact_pos_force[mu].SetVectorComponent(0, "contact_forces", 0) self.contact_pos_force[mu].SetVectorComponent(1, "contact_forces", 1) self.contact_pos_force[mu].SetVectorComponent(2, "contact_forces", 2) self.contact_pos_norm[mu].SetInputConnection( self.contact_posa[mu].GetOutputPort()) self.contact_pos_norm[mu].SetInputFieldToDataObjectField() self.contact_pos_norm[mu].SetOutputAttributeDataToPointData() self.contact_pos_norm[mu].SetVectorComponent(0, "contact_normals", 0) self.contact_pos_norm[mu].SetVectorComponent(1, "contact_normals", 1) self.contact_pos_norm[mu].SetVectorComponent(2, "contact_normals", 2) # if self.cf_prov.dom_at_time is not None: # self.contact_pos_norm[mu].SetScalarComponent(0, "domains", 0) def init_cf_sources(self, mu, transform): self.print_verbose_level(2,'contact sources', mu) self.cf_collector.AddInputData(self.io_reader._output[mu]) self.cf_collector.AddInputData(self.io_reader._objs_output[mu]) self.contact_posa[mu].SetInputData(self.io_reader._output[mu]) self.contact_posa[mu].Update() self.contact_posb[mu].SetInputData(self.io_reader._output[mu]) self.contact_posb[mu].Update() self.contact_pos_force[mu].Update() self.contact_pos_norm[mu].Update() self.cone[mu] = vtk.vtkConeSource() self.cone[mu].SetResolution(40) self.cone[mu].SetRadius(mu) # one coef!! self.cone_glyph[mu] = vtk.vtkGlyph3D() self.cone_glyph[mu].SetSourceTransform(transform) self.cone_glyph[mu].SetInputConnection(self.contact_pos_norm[mu].GetOutputPort()) self.cone_glyph[mu].SetSourceConnection(self.cone[mu].GetOutputPort()) self.cone_glyph[mu]._scale_fact = self.opts.normalcone_ratio self.cone_glyph[mu].SetScaleFactor( self.cone_glyph[mu]._scale_fact *self.opts.cf_scale_factor) self.cone_glyph[mu].SetVectorModeToUseVector() self.cone_glyph[mu].SetInputArrayToProcess(1, 0, 0, 0, 'contact_normals') self.cone_glyph[mu].OrientOn() # Don't allow scalar to affect size of glyph self.cone_glyph[mu].SetScaleModeToDataScalingOff() # Allow scalar to affect color of glyph self.cone_glyph[mu].SetColorModeToColorByScalar() self.cmapper[mu] = vtk.vtkPolyDataMapper() if not self.opts.imr: self.cmapper[mu].ImmediateModeRenderingOff() self.cmapper[mu].SetInputConnection(self.cone_glyph[mu].GetOutputPort()) # Random color map, up to 256 domains self.cLUT[mu] = vtk.vtkLookupTable() self.cLUT[mu].SetNumberOfColors(256) self.cLUT[mu].Build() for i in range(256): self.cLUT[mu].SetTableValue(i, *random_color()) self.cLUT[mu].SetTableRange(0, 255) # By default don't allow scalars to have an effect self.cmapper[mu].ScalarVisibilityOff() # If domain information is available, we turn on the color # table and turn on scalars if self.io_reader.dom_at_time is not None: self.cmapper[mu].SetLookupTable(self.cLUT[mu]) self.cmapper[mu].SetColorModeToMapScalars() self.cmapper[mu].SetScalarModeToUsePointData() self.cmapper[mu].SetScalarRange(0,255) self.cmapper[mu].ScalarVisibilityOn() self.cactor[mu] = vtk.vtkActor() self.cactor[mu].GetProperty().SetOpacity(self.config.get('contact_opacity', 0.4)) self.cactor[mu].GetProperty().SetColor(0, 0, 1) self.cactor[mu].SetMapper(self.cmapper[mu]) self.arrow[mu] = vtk.vtkArrowSource() self.arrow[mu].SetTipResolution(40) self.arrow[mu].SetShaftResolution(40) self.cylinder[mu] = vtk.vtkCylinderSource() self.cylinder[mu].SetRadius(.01) self.cylinder[mu].SetHeight(1) self.sphere[mu] = vtk.vtkSphereSource() # 1. scale = (scalar value of that particular data index); # 2. denominator = Range[1] - Range[0]; # 3. scale = (scale < Range[0] ? Range[0] : (scale > Range[1] ? Range[1] : scale)); # 4. scale = (scale - Range[0]) / denominator; # 5. scale *= scaleFactor; self.arrow_glyph[mu] = vtk.vtkGlyph3D() self.arrow_glyph[mu].SetInputConnection( self.contact_pos_force[mu].GetOutputPort()) self.arrow_glyph[mu].SetSourceConnection(self.arrow[mu].GetOutputPort()) self.arrow_glyph[mu].ScalingOn() self.arrow_glyph[mu].SetScaleModeToScaleByVector() self.arrow_glyph[mu].SetRange(0, .01) self.arrow_glyph[mu].ClampingOn() self.arrow_glyph[mu]._scale_fact = 5 self.arrow_glyph[mu].SetScaleFactor( self.arrow_glyph[mu]._scale_fact * self.opts.cf_scale_factor) self.arrow_glyph[mu].SetVectorModeToUseVector() self.arrow_glyph[mu].SetInputArrayToProcess(1, 0, 0, 0, 'contact_forces') self.arrow_glyph[mu].SetInputArrayToProcess(3, 0, 0, 0, 'contact_forces') self.arrow_glyph[mu].OrientOn() self.gmapper[mu] = vtk.vtkPolyDataMapper() if not self.opts.imr: self.gmapper[mu].ImmediateModeRenderingOff() self.gmapper[mu].SetInputConnection(self.arrow_glyph[mu].GetOutputPort()) self.gmapper[mu].SetScalarModeToUsePointFieldData() self.gmapper[mu].SetColorModeToMapScalars() self.gmapper[mu].ScalarVisibilityOn() self.gmapper[mu].SelectColorArray('contact_forces') # gmapper.SetScalarRange(contact_pos_force.GetOutput().GetPointData().GetArray('contact_forces').GetRange()) self.gactor[mu] = vtk.vtkActor() self.gactor[mu].SetMapper(self.gmapper[mu]) self.ctransform[mu] = vtk.vtkTransform() self.ctransform[mu].Translate(-0.5, 0, 0) self.ctransform[mu].RotateWXYZ(90, 0, 0, 1) self.cylinder_glyph[mu] = vtk.vtkGlyph3D() self.cylinder_glyph[mu].SetSourceTransform(self.ctransform[mu]) self.cylinder_glyph[mu].SetInputConnection( self.contact_pos_norm[mu].GetOutputPort()) self.cylinder_glyph[mu].SetSourceConnection(self.cylinder[mu].GetOutputPort()) self.cylinder_glyph[mu].SetVectorModeToUseVector() self.cylinder_glyph[mu].SetInputArrayToProcess(1, 0, 0, 0, 'contact_normals') self.cylinder_glyph[mu].OrientOn() self.cylinder_glyph[mu]._scale_fact = self.opts.normalcone_ratio self.cylinder_glyph[mu].SetScaleFactor( self.cylinder_glyph[mu]._scale_fact * self.opts.cf_scale_factor) self.clmapper[mu] = vtk.vtkPolyDataMapper() if not self.opts.imr: self.clmapper[mu].ImmediateModeRenderingOff() self.clmapper[mu].SetInputConnection(self.cylinder_glyph[mu].GetOutputPort()) self.sphere_glypha[mu] = vtk.vtkGlyph3D() self.sphere_glypha[mu].SetInputConnection(self.contact_posa[mu].GetOutputPort()) self.sphere_glypha[mu].SetSourceConnection(self.sphere[mu].GetOutputPort()) self.sphere_glypha[mu].ScalingOn() # self.sphere_glypha[mu].SetScaleModeToScaleByVector() # self.sphere_glypha[mu].SetRange(-0.5, 2) # self.sphere_glypha[mu].ClampingOn() self.sphere_glypha[mu]._scale_fact = .1 * self.opts.normalcone_ratio self.sphere_glypha[mu].SetScaleFactor( self.sphere_glypha[mu]._scale_fact * self.opts.cf_scale_factor) # self.sphere_glypha[mu].SetVectorModeToUseVector() self.sphere_glyphb[mu] = vtk.vtkGlyph3D() self.sphere_glyphb[mu].SetInputConnection(self.contact_posb[mu].GetOutputPort()) self.sphere_glyphb[mu].SetSourceConnection(self.sphere[mu].GetOutputPort()) self.sphere_glyphb[mu].ScalingOn() # self.sphere_glyphb[mu].SetScaleModeToScaleByVector() # self.sphere_glyphb[mu].SetRange(-0.5, 2) # self.sphere_glyphb[mu].ClampingOn() self.sphere_glyphb[mu]._scale_fact = .1 * self.opts.normalcone_ratio self.sphere_glyphb[mu].SetScaleFactor( self.sphere_glyphb[mu]._scale_fact * self.opts.cf_scale_factor) # self.sphere_glyphb[mu].SetVectorModeToUseVector() # self.sphere_glyphb[mu].SetInputArrayToProcess(1, 0, 0, 0, 'contact_normals') # self.sphere_glyph.OrientOn() self.smappera[mu] = vtk.vtkPolyDataMapper() if not self.opts.imr: self.smappera[mu].ImmediateModeRenderingOff() self.smappera[mu].SetInputConnection(self.sphere_glypha[mu].GetOutputPort()) self.smapperb[mu] = vtk.vtkPolyDataMapper() if not self.opts.imr: self.smapperb[mu].ImmediateModeRenderingOff() self.smapperb[mu].SetInputConnection(self.sphere_glyphb[mu].GetOutputPort()) # self.cmapper.SetScalarModeToUsePointFieldData() # self.cmapper.SetColorModeToMapScalars() # self.cmapper.ScalarVisibilityOn() # self.cmapper.SelectColorArray('contact_normals') # self.gmapper.SetScalarRange(contact_pos_force.GetOutput().GetPointData().GetArray('contact_forces').GetRange()) self.clactor[mu] = vtk.vtkActor() # cactor.GetProperty().SetOpacity(0.4) self.clactor[mu].GetProperty().SetColor(1, 0, 0) self.clactor[mu].SetMapper(self.clmapper[mu]) self.sactora[mu] = vtk.vtkActor() self.sactora[mu].GetProperty().SetColor(1, 0, 0) self.sactora[mu].SetMapper(self.smappera[mu]) self.sactorb[mu] = vtk.vtkActor() self.sactorb[mu].GetProperty().SetColor(0, 1, 0) self.sactorb[mu].SetMapper(self.smapperb[mu]) def init_shape(self, shape_name): self.print_verbose_level(2,'init_shape', shape_name) shape_type = (self.io.shapes()[shape_name].attrs['type']) try: # work-around h5py unicode bug # https://github.com/h5py/h5py/issues/379 shape_type = shape_type.decode('utf-8') except AttributeError: pass scale = None if 'scale' in self.io.shapes()[shape_name].attrs: scale = self.io.shapes()[shape_name].attrs['scale'] ConvexSource = makeConvexSourceClass() if shape_type in ['vtp', 'stl']: with io_tmpfile() as tmpf: ## fix compatibility with h5py version: to be removed in the future if (h5py.version.version_tuple.major >=3 ): tmpf[0].write((self.io.shapes()[shape_name][:][0]).decode('utf-8')) else: tmpf[0].write(str(self.io.shapes()[shape_name][:][0])) tmpf[0].flush() reader = self.vtk_reader[shape_type]() reader.SetFileName(tmpf[1]) reader.Update() self.readers[shape_name] = reader # a try for smooth rendering but it does not work here normals = vtk.vtkPolyDataNormals() normals.SetInputConnection(reader.GetOutputPort()) normals.SetFeatureAngle(60.0) mapper = vtk.vtkDataSetMapper() add_compatiblity_methods(mapper) mapper.SetInputConnection(normals.GetOutputPort()) mapper.ScalarVisibilityOff() # delayed (see the one in brep) # note: "lambda : mapper" fails (dynamic scope) # and (x for x in [mapper]) is ok. self.mappers[shape_name] = (x for x in [mapper]) elif shape_type in ['brep']: # try to find an associated shape if 'associated_shape' in self.io.shapes()[shape_name].attrs: associated_shape = \ self.io.shapes()[shape_name].\ attrs['associated_shape'] # delayed self.mappers[shape_name] = (x for x in [mappers[associated_shape]()]) else: if 'brep' in self.io.shapes()[shape_name].attrs: brep = self.io.shapes()[shape_name].attrs['brep'] else: brep = shape_name reader = brep_reader(str(self.io.shapes()[brep][:][0]), self.io.shapes()[brep].attrs['occ_indx']) self.readers[shape_name] = reader mapper = vtk.vtkDataSetMapper() add_compatiblity_methods(mapper) mapper.SetInputConnection(reader.GetOutputPort()) self.mappers[shape_name] = (x for x in [mapper]) elif shape_type in ['stp', 'step', 'igs', 'iges']: # try to find an associated shape if 'associated_shape' in self.io.shapes()[shape_name].attrs: associated_shape = \ self.io.shapes()[shape_name].\ attrs['associated_shape'] # delayed self.mappers[shape_name] = ( x for x in [mappers[associated_shape]()]) elif shape_type in ['stp', 'step', 'igs', 'iges']: with io_tmpfile( debug=True, suffix='.{0}'.format(shape_type), contents=str(self.io.shapes()[shape_name][:][0])) as tmpf: shape = occ_load_file(tmpf[1]) # whole shape reader = topods_shape_reader(shape) self.readers[shape_name] = reader mapper = vtk.vtkDataSetMapper() add_compatiblity_methods(mapper) mapper.SetInputConnection(reader.GetOutputPort()) self.mappers[shape_name] = (x for x in [mapper]) # subparts faces, edges = occ_topo_list(shape) for i, f in enumerate(faces): shape_indx = ('Face', shape_name, i) reader = topods_shape_reader(f) self.readers[shape_indx] = reader mapper = vtk.vtkDataSetMapper() add_compatiblity_methods(mapper) mapper.SetInputConnection(reader.GetOutputPort()) self.mappers[shape_indx] = (x for x in [mapper]) for i, e in enumerate(edges): shape_indx = ('Edge', shape_name, i) reader = topods_shape_reader(e) self.readers[shape_indx] = reader mapper = vtk.vtkDataSetMapper() add_compatiblity_methods(mapper) mapper.SetInputConnection(reader.GetOutputPort()) self.mappers[shape_indx] = (x for x in [mapper]) elif shape_type == 'heightmap': points = vtk.vtkPoints() shape = self.io.shapes()[shape_name] extents = list(shape.attrs['rect']) + [numpy.max(shape) - numpy.min(shape)] # Data points are adjusted to center tangentially, but # vertical position is left alone; i.e., supports # non-zero-centered data. User must use contactor # translation to compensate if desired, or simply adjust # data itself to desired origin. for x,d in enumerate(shape): for y,v in enumerate(d): points.InsertNextPoint( float(x) / (shape.shape[0]-1) * extents[0] - extents[0]/2, float(y) / (shape.shape[1]-1) * extents[1] - extents[1]/2, v) polydata = vtk.vtkPolyData() polydata.SetPoints(points) delaunay = vtk.vtkDelaunay2D() delaunay.SetInputData(polydata) delaunay.Update() self.datasets[shape_name] = polydata mapper = vtk.vtkPolyDataMapper() if not self.opts.imr: mapper.ImmediateModeRenderingOff() mapper.SetInputConnection(delaunay.GetOutputPort()) add_compatiblity_methods(mapper) self.mappers[shape_name] = None self.mappers[shape_name] = (x for x in [mapper]) elif shape_type == 'convex': # a convex shape points = vtk.vtkPoints() convex = vtk.vtkConvexPointSet() data = self.io.shapes()[shape_name][:] if self.io.dimension() == 3: convex.GetPointIds().SetNumberOfIds(data.shape[0]) for id_, vertice in enumerate(data): points.InsertNextPoint(vertice[0], vertice[1], vertice[2]) convex.GetPointIds().SetId(id_, id_) elif self.io.dimension() == 2: number_of_vertices = data.shape[0] convex.GetPointIds().SetNumberOfIds(data.shape[0]*2) for id_, vertice in enumerate(data): points.InsertNextPoint(vertice[0], vertice[1], - self.opts.depth_2d/2.0) convex.GetPointIds().SetId(id_, id_) points.InsertNextPoint(vertice[0], vertice[1], + self.opts.depth_2d/2.0) convex.GetPointIds().SetId(id_+number_of_vertices, id_+number_of_vertices) source = ConvexSource(convex, points) self.readers[shape_name] = source # not a source! self.datasets[shape_name] = source.GetUnstructuredGridOutput() mapper = vtk.vtkDataSetMapper() add_compatiblity_methods(mapper) mapper.SetInputData(source.GetUnstructuredGridOutput()) self.mappers[shape_name] = (x for x in [mapper]) else: assert shape_type == 'primitive' primitive = self.io.shapes()[shape_name].attrs['primitive'] attrs = self.io.shapes()[shape_name][:][0] if primitive == 'Sphere': source = vtk.vtkSphereSource() source.SetRadius(attrs[0]) source.SetThetaResolution(15) source.SetPhiResolution(15) elif primitive == 'Cone': source = vtk.vtkConeSource() source.SetRadius(attrs[0]) source.SetHeight(attrs[1]) source.SetResolution(15) source.SetDirection(0, 1, 0) # needed elif primitive == 'Cylinder': source = vtk.vtkCylinderSource() source.SetResolution(15) source.SetRadius(attrs[0]) source.SetHeight(attrs[1]) # source.SetDirection(0,1,0) elif primitive == 'Box': source = vtk.vtkCubeSource() source.SetXLength(attrs[0]) source.SetYLength(attrs[1]) source.SetZLength(attrs[2]) elif primitive == 'Capsule': sphere1 = vtk.vtkSphereSource() sphere1.SetRadius(attrs[0]) sphere1.SetCenter(0, attrs[1] / 2, 0) sphere1.SetThetaResolution(15) sphere1.SetPhiResolution(15) sphere1.Update() sphere2 = vtk.vtkSphereSource() sphere2.SetRadius(attrs[0]) sphere2.SetCenter(0, -attrs[1] / 2, 0) sphere2.SetThetaResolution(15) sphere2.SetPhiResolution(15) sphere2.Update() cylinder = vtk.vtkCylinderSource() cylinder.SetRadius(attrs[0]) cylinder.SetHeight(attrs[1]) cylinder.SetResolution(15) cylinder.Update() data = vtk.vtkMultiBlockDataSet() data.SetNumberOfBlocks(3) data.SetBlock(0, sphere1.GetOutput()) data.SetBlock(1, sphere2.GetOutput()) data.SetBlock(2, cylinder.GetOutput()) source = vtk.vtkMultiBlockDataGroupFilter() add_compatiblity_methods(source) source.AddInputData(data) elif primitive == 'Disk': source = vtk.vtkCylinderSource() source.SetResolution(100) source.SetRadius(attrs[0]) source.SetHeight(self.opts.depth_2d) elif primitive == 'Box2d': source = vtk.vtkCubeSource() source.SetXLength(attrs[0]) source.SetYLength(attrs[1]) source.SetZLength(self.opts.depth_2d) self.readers[shape_name] = source mapper = vtk.vtkCompositePolyDataMapper() if not self.opts.imr: mapper.ImmediateModeRenderingOff() mapper.SetInputConnection(source.GetOutputPort()) self.mappers[shape_name] = (x for x in [mapper]) if self.opts.with_edges: mapper_edge = vtk.vtkCompositePolyDataMapper() if not self.opts.imr: mapper_edge.ImmediateModeRenderingOff() mapper_edge.SetInputConnection(source.GetOutputPort()) self.mappers_edges[shape_name] = (y for y in [mapper_edge]) def init_shapes(self): self.print_verbose_level(1,'init_shapes') for shape_name in self.io.shapes(): self.init_shape(shape_name) for shape_name in self.mappers.keys(): if shape_name not in self.unfrozen_mappers: self.unfrozen_mappers[shape_name] = next(self.mappers[shape_name]) if self.opts.with_edges: for shape_name in self.mappers_edges.keys(): if shape_name not in self.unfrozen_mappers_edges: self.unfrozen_mappers_edges[shape_name] = next(self.mappers_edges[shape_name]) def init_contactor(self, contactor_instance_name, instance, instid): self.print_verbose_level(2,'init_contactor', contactor_instance_name) contactor = instance[contactor_instance_name] contact_shape_indx = None if 'shape_name' not in contactor.attrs: print("Warning: old format: ctr.name must be ctr.shape_name for contact {0}".format(contactor_instance_name)) shape_attr_name='name' else: shape_attr_name='shape_name' if 'group' in contactor.attrs: collision_group = contactor.attrs['group'] else: collision_group = -1 if 'type' in contactor.attrs: contact_type = contactor.attrs['type'] contact_index = contactor.attrs['contact_index'] contact_shape_indx = (contact_type, contactor.attrs[shape_attr_name], contact_index) else: contact_shape_indx = contactor.attrs[shape_attr_name] try: # work-around h5py unicode bug # https://github.com/h5py/h5py/issues/379 contact_shape_indx = contact_shape_indx.decode('utf-8') except AttributeError: pass if not (self.opts.global_filter or self.opts.export): actor = vtk.vtkActor() if self.opts.with_edges: actor_edge = vtk.vtkActor() if instance.attrs.get('mass', 0) > 0: # objects that may move self.dynamic_actors[instid].append((actor, contact_shape_indx, collision_group)) actor.GetProperty().SetOpacity( self.config.get('dynamic_opacity', 0.7)) actor.GetProperty().SetColor( instance.attrs.get('color', self.config.get('dynamic_bodies_color', [0.3,0.3,0.3]))) if self.opts.with_edges: self.dynamic_actors[instid].append((actor_edge, contact_shape_indx, collision_group)) actor_edge.GetProperty().SetOpacity( self.config.get('dynamic_opacity', 1.0)) actor_edge.GetProperty().SetRepresentationToWireframe() else: # objects that are not supposed to move self.static_actors[instid].append((actor, contact_shape_indx, collision_group)) actor.GetProperty().SetOpacity( self.config.get('static_opacity', 1.0)) actor.GetProperty().SetColor( instance.attrs.get('color', self.config.get('static_bodies_color', [0.5,0.5,0.5]))) if self.opts.with_random_color : actor.GetProperty().SetColor(random_color()) if self.opts.with_edges: actor_edge.GetProperty().SetColor(random_color()) actor.SetMapper(self.unfrozen_mappers[contact_shape_indx]) if self.opts.with_edges: actor_edge.SetMapper(self.unfrozen_mappers_edges[contact_shape_indx]) if not (self.opts.global_filter or self.opts.export): self.renderer.AddActor(actor) if self.opts.with_edges: self.renderer.AddActor(actor_edge) transform = vtk.vtkTransform() transformer = vtk.vtkTransformFilter() if contact_shape_indx in self.readers: transformer.SetInputConnection( self.readers[contact_shape_indx].GetOutputPort()) else: transformer.SetInputData(self.datasets[contact_shape_indx]) if isinstance(contact_shape_indx, tuple): contact_shape_name = contact_shape_indx[1] else: contact_shape_name = contact_shape_indx if 'scale' in self.io.shapes()[contact_shape_name].attrs: scale = self.io.shapes()[contact_shape_name].attrs['scale'] scale_transform = vtk.vtkTransform() scale_transform.Scale(scale, scale, scale) scale_transform.SetInput(transform) transformer.SetTransform(scale_transform) if not (self.opts.global_filter or self.opts.export): actor.SetUserTransform(scale_transform) if self.opts.with_edges: actor_edge.SetUserTransform(scale_transform) else: transformer.SetTransform(transform) if not (self.opts.global_filter or self.opts.export): actor.SetUserTransform(transform) if self.opts.with_edges: actor_edge.SetUserTransform(transform) self.transformers[contact_shape_indx] = transformer self.transforms[instid].append(transform) if 'center_of_mass' in instance.attrs: center_of_mass = instance.\ attrs['center_of_mass'].astype(float) else: center_of_mass = [0., 0., 0.] offset_orientation= contactor.attrs['orientation'].astype(float) # for disk, we change the offset since cylinder source are directed along the y axis by default # since the disk shapemis invariant with respect to the rotation w.r.t to z-axis # we propose to erase it. try: if self.io.shapes()[contact_shape_name].attrs['primitive'] == 'Disk': offset_orientation = [math.cos(pi/4.0), math.sin(pi/4.0), 0., 0.] except: pass self.offsets[instid].append( (numpy.subtract(contactor.attrs['translation'].astype(float), center_of_mass), offset_orientation)) self.cell_connectors[instid] = CellConnector( instid, data_names=['instance', 'translation', 'velocity(linear)','velocity(angular)', 'kinetic_energy'], data_sizes=[1, 3, 3, 3, 1]) self.cell_connectors[instid].SetInputConnection( transformer.GetOutputPort()) self.objects_collector.AddInputConnection( self.cell_connectors[instid].GetOutputPort()) self.cell_connectors[instid].Update() def init_instance(self, instance_name): self.print_verbose_level(2,'init_instance', instance_name) instance = self.io.instances()[instance_name] instid = int(instance.attrs['id']) self.transforms[instid] = [] self.offsets[instid] = [] if 'time_of_birth' in instance.attrs: self.times_of_birth[instid] = instance.attrs['time_of_birth'] if 'time_of_death' in instance.attrs: self.times_of_death[instid] = instance.attrs['time_of_death'] if 'mass' in instance.attrs: # a dynamic instance self.mass[instid] = instance.attrs['mass'] if 'inertia' in instance.attrs: inertia = instance.attrs['inertia'] if self.io.dimension() ==3 : if len(inertia.shape) > 1 and inertia.shape[0] == inertia.shape[1] == 3: self.inertia[instid] = inertia else: self.inertia[instid] = numpy.zeros((3, 3)) self.inertia[instid][0, 0] = inertia[0] self.inertia[instid][1, 1] = inertia[1] self.inertia[instid][2, 2] = inertia[2] elif self.io.dimension() ==2 : self.inertia[instid] = inertia else: if self.io.dimension() ==3 : self.inertia[instid] = numpy.eye(3) elif self.io.dimension() ==2 : self.inertia[instid] = 1.0 else: pass if instid >= 0: self.dynamic_actors[instid] = list() else: self.static_actors[instid] = list() for contactor_instance_name in instance: self.init_contactor(contactor_instance_name, instance, instid) def init_instances(self): self.print_verbose_level(1,'init_instances') for instance_name in self.io.instances(): self.init_instance(instance_name) # this sets the position for all transforms associated to an instance def set_position_i(self, instance, q0, q1, q2, q3, q4, q5, q6): # all objects are set to a nan position at startup, # so they are invisibles if (numpy.any(numpy.isnan([q0, q1, q2, q3, q4, q5, q6])) or numpy.any(numpy.isinf([q0, q1, q2, q3, q4, q5, q6]))): print('Bad position for object number', int(instance),' :', q0, q1, q2, q3, q4, q5, q6) else: q = Quaternion((q3, q4, q5, q6)) for transform, offset in zip(self.transforms[instance], self.offsets[instance]): p = q.rotate(offset[0]) r = q * Quaternion(offset[1]) transform.Identity() transform.Translate(q0 + p[0], q1 + p[1], q2 + p[2]) axis, angle = r.axisAngle() transform.RotateWXYZ(angle * 180. / pi, axis[0], axis[1], axis[2]) def set_position(self, data): self.print_verbose_level(2,'set_position') self.set_position_v(data[:, 1], data[:, 2], data[:, 3], data[:, 4], data[:, 5], data[:, 6], data[:, 7], data[:, 8]) def build_set_functions(self, cc=None): if cc is None: cc = self.cell_connectors # the numpy vectorization is ok on column vectors for each args self.set_position_v = numpy.vectorize(self.set_position_i) # here the numpy vectorization is used with a column vector and a # scalar for the time arg self.set_visibility_v = numpy.vectorize(self.set_dynamic_instance_visibility) self.set_visibility_static_v = numpy.vectorize(self.set_static_instance_visibility) def set_velocity(instance, v0, v1, v2, v3, v4, v5): if instance in cc: cc[instance]._datas[2][:] = [v0, v1, v2] cc[instance]._datas[3][:] = [v3, v4, v5] if self.io.dimension() == 3 : cc[instance]._datas[4][:] = \ 0.5*(self.mass[instance]*(v0*v0+v1*v1+v2*v2) + numpy.dot([v3, v4, v5], numpy.dot(self.inertia[instance], [v3, v4, v5]))) elif self.io.dimension() == 2 : kinetic_energy= 0.5*(self.mass[instance]*(v0*v0+v1*v1+v2*v2) + self.inertia[instance]*(v5*v5)) #print('velo', instance, v0, v1, v2, v3, v4, v5) #print('mass', self.mass[instance]) #print('inertia', self.inertia[instance]) #print('kinetic_energy', kinetic_energy) cc[instance]._datas[4][:] = kinetic_energy self.set_velocity_v = numpy.vectorize(set_velocity) def set_translation(instance, x0, x1, x2 ): if instance in cc: cc[instance]._datas[1][:] = [x0, x1, x2] self.set_translation_v = numpy.vectorize(set_translation) def set_instance(instance): if instance in cc: cc[instance]._datas[0][:] = [instance] self.set_instance_v = numpy.vectorize(set_instance) # set visibility for all actors associated to a dynamic instance def set_dynamic_instance_visibility(self, instance, time): tob = self.times_of_birth.get(instance, -1) tod = self.times_of_death.get(instance, infinity) has_avatar = False if self.opts.visible_mode=='avatars' or self.opts.visible_mode=='contactors': for actor, index, group in self.dynamic_actors[instance]: if group==-1: has_avatar = True break if (tob <= time and tod >= time): for actor, index, group in self.dynamic_actors[instance]: if not has_avatar or visible_mode=='all': actor.VisibilityOn() elif visible_mode=='avatars' and group==-1 and has_avatar: actor.VisibilityOn() elif visible_mode=='contactors' and group!=-1 and has_avatar: actor.VisibilityOn() else: actor.VisibilityOff() else: for actor, index, group in self.dynamic_actors[instance]: actor.VisibilityOff() # set visibility for all actors associated to a static instance def set_static_instance_visibility(self, instance, time): tob = self.times_of_birth.get(instance, -1) tod = self.times_of_death.get(instance, infinity) has_avatar = False if self.opts.visible_mode=='avatars' or self.opts.visible_mode=='contactors': for actor, index, group in self.static_actors[instance]: if group==-1: has_avatar = True break if (tob <= time and tod >= time): for actor, index, group in self.static_actors[instance]: if not has_avatar or visible_mode=='all': actor.VisibilityOn() elif visible_mode=='avatars' and group==-1 and has_avatar: actor.VisibilityOn() elif visible_mode=='contactors' and group!=-1 and has_avatar: actor.VisibilityOn() else: actor.VisibilityOff() else: for actor, index, group in self.static_actors[instance]: actor.VisibilityOff() def set_dynamic_actors_visibility(self, time): self.set_visibility_v(list(self.dynamic_actors.keys()), time) def set_static_actors_visibility(self, time): self.set_visibility_static_v(list(self.static_actors.keys()), time) # callback maker for scale manipulation def make_scale_observer(self, glyphs): def scale_observer(obj, event): slider_repres = obj.GetRepresentation() scale_at_pos = slider_repres.GetValue() for glyph in glyphs: for k in glyph: glyph[k].SetScaleFactor( scale_at_pos * glyph[k]._scale_fact) return scale_observer # callback maker for time scale manipulation def make_time_scale_observer(self, time_slider_repres, time_observer): delta_time = self.max_time - self.min_time def time_scale_observer(obj, event): slider_repres = obj.GetRepresentation() time_scale_at_pos = 1. - slider_repres.GetValue() current_time = time_observer._time shift = (current_time - self.min_time) / delta_time xmin_time = self.min_time + time_scale_at_pos / 2. * delta_time xmax_time = self.max_time - time_scale_at_pos / 2. * delta_time xdelta_time = xmax_time - xmin_time new_mintime = max(self.min_time, current_time - xdelta_time) new_maxtime = min(self.max_time, current_time + xdelta_time) time_slider_repres.SetMinimumValue(new_mintime) time_slider_repres.SetMaximumValue(new_maxtime) return time_scale_observer # make a slider widget and its representation def make_slider(self, title, observer, interactor, startvalue, minvalue, maxvalue, cx1, cy1, cx2, cy2): slider_repres = vtk.vtkSliderRepresentation2D() slider_repres.SetMinimumValue( minvalue - (maxvalue - minvalue) / 100) slider_repres.SetMaximumValue( maxvalue + (maxvalue - minvalue) / 100) slider_repres.SetValue(startvalue) slider_repres.SetTitleText(title) slider_repres.GetPoint1Coordinate().\ SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint1Coordinate().SetValue(cx1, cy1) slider_repres.GetPoint2Coordinate().\ SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint2Coordinate().SetValue(cx2, cy2) slider_repres.SetSliderLength(0.02) slider_repres.SetSliderWidth(0.03) slider_repres.SetEndCapLength(0.01) slider_repres.SetEndCapWidth(0.03) slider_repres.SetTubeWidth(0.005) slider_repres.SetLabelFormat('%f') slider_repres.SetTitleHeight(0.02) slider_repres.SetLabelHeight(0.02) background_color = self.config.get('background_color', [.0,.0,.0]) reverse_background_color =numpy.ones(3) - background_color if (numpy.linalg.norm(background_color-reverse_background_color) < 0.2): reverse_background_color = numpy.ones(3) slider_repres.GetSliderProperty().SetColor(*reverse_background_color) slider_repres.GetTitleProperty().SetColor(*reverse_background_color); slider_repres.GetLabelProperty().SetColor(*reverse_background_color); slider_repres.GetTubeProperty().SetColor(*reverse_background_color); slider_repres.GetCapProperty().SetColor(*reverse_background_color); slider_widget = vtk.vtkSliderWidget() slider_widget.SetInteractor(interactor) slider_widget.SetRepresentation(slider_repres) slider_widget.KeyPressActivationOff() slider_widget.SetAnimationModeToAnimate() slider_widget.SetEnabled(True) slider_widget.AddObserver('InteractionEvent', observer) return slider_widget, slider_repres def setup_initial_position(self): if self.opts.export: # For time_of_birth specifications with export mode: # a 0 scale for objects whose existence is deferred. # The correct transform will be set in set_position when # the objects appears in pos_data. # One have to disable vtkMath generic warnings in order to avoid # plenty of 'Unable to factor linear system' vtk.vtkMath.GlobalWarningDisplayOff() for instance_name in self.io.instances(): instance = self.io.instances()[instance_name] instid = int(instance.attrs['id']) for transform in self.transforms[instid]: transform.Scale(0, 0, 0) self.time0 = None if len(self.io_reader._times) > 0: # Positions at first time step self.time0 = self.io_reader._times[0] self.io_reader.SetTime(self.time0) #self.pos_t0 = dsa.WrapDataObject(self.io_reader.GetOutputDataObject(0).GetFieldData().GetArray('pos_data')) self.pos_t0 = [self.io_reader.pos_data] else: # this is for the case simulation has not been ran and # time does not exists self.time0 = 0 self.id_t0 = None self.pos_t0 = numpy.array([ numpy.hstack(([0., self.io.instances()[k].attrs['id']] ,self.io.instances()[k].attrs['translation'] ,self.io.instances()[k].attrs['orientation'])) for k in self.io.instances() if self.io.instances()[k].attrs['id'] >= 0]) if numpy.shape(self.io_reader._spos_data)[0] > 0: self.set_position(self.io_reader._spos_data) # print('self.io_reader._spos_data', self.io_reader._spos_data) # static objects are always visible #for instance, actors in self.static_actors.items(): # for actor,_,_ in actors: # actor.VisibilityOn() self.set_position(*self.pos_t0) self.set_static_actors_visibility(self.time0) self.set_dynamic_actors_visibility(self.time0) def setup_vtk_renderer(self): self.print_verbose_level(1,'setup_tvk_renderer') self.renderer_window.AddRenderer(self.renderer) self.interactor_renderer.SetRenderWindow(self.renderer_window) self.interactor_renderer.GetInteractorStyle().SetCurrentStyleToTrackballCamera() # http://www.itk.org/Wiki/VTK/Depth_Peeling if self.opts.depth_peeling: # Use a render window with alpha bits (as initial value is 0 (false) ): self.renderer_window.SetAlphaBitPlanes(1) # Force to not pick a framebuffer with a multisample buffer ( as initial # value is 8): self.renderer_window.SetMultiSamples(0) # Choose to use depth peeling (if supported) (initial value is 0 # (false) ) self.renderer.SetUseDepthPeeling(1) # Set depth peeling parameters. self.renderer.SetMaximumNumberOfPeels( self.opts.maximum_number_of_peels) # Set the occlusion ratio (initial value is 0.0, exact image) self.renderer.SetOcclusionRatio(self.opts.occlusion_ratio) # Set the initial camera position and orientation if specified if self.opts.initial_camera[0] is not None: self.renderer.GetActiveCamera().SetPosition(*self.opts.initial_camera[0]) if self.opts.initial_camera[1] is not None: self.renderer.GetActiveCamera().SetFocalPoint(*self.opts.initial_camera[1]) if self.opts.initial_camera[2] is not None: self.renderer.GetActiveCamera().SetViewUp(*self.opts.initial_camera[2]) if self.opts.initial_camera[4] is not None: self.renderer.GetActiveCamera().SetClippingRange(*self.opts.initial_camera[4]) else: self.renderer.ResetCameraClippingRange() if self.opts.initial_camera[3] is not None: self.renderer.GetActiveCamera().ParallelProjectionOn() self.renderer.GetActiveCamera().SetParallelScale( self.opts.initial_camera[3]) self.image_maker = vtk.vtkWindowToImageFilter() self.image_maker.SetInput(self.renderer_window) self.recorder = vtk.vtkOggTheoraWriter() self.recorder.SetQuality(2) self.recorder.SetRate(self.opts.frames_per_second) self.recorder.SetFileName(os.path.splitext(self.opts.io_filename)[0]+'.avi') self.recorder.SetInputConnection(self.image_maker.GetOutputPort()) self.writer = vtk.vtkPNGWriter() self.writer.SetInputConnection(self.image_maker.GetOutputPort()) # Create a vtkLight, and set the light parameters. light = vtk.vtkLight() light.SetFocalPoint(0, 0, 0) light.SetPosition(0, 0, 500) # light.SetLightTypeToHeadlight() self.renderer.AddLight(light) hlight = vtk.vtkLight() hlight.SetFocalPoint(0, 0, 0) # hlight.SetPosition(0, 0, 500) hlight.SetLightTypeToHeadlight() self.renderer.AddLight(hlight) self.renderer.SetBackground(*self.config.get('background_color', [.0,.0,.0])) self.renderer_window.SetSize(*self.config['window_size']) self.renderer_window.SetWindowName('vview: ' + self.opts.io_filename) def setup_charts(self): self.print_verbose_level(1,'setup_charts') # Warning! numpy support offer a view on numpy array # the numpy array must not be garbage collected! nxtime = self.io_reader._isolv_data[:, 0] nxiters = self.io_reader._isolv_data[:, 1] nprecs = self.io_reader._isolv_data[:, 2] xtime = numpy_support.numpy_to_vtk(nxtime) xiters = numpy_support.numpy_to_vtk(nxiters) xprecs = numpy_support.numpy_to_vtk(nprecs) xtime.SetName('time') xiters.SetName('iterations') xprecs.SetName('precisions') table = vtk.vtkTable() table.AddColumn(xtime) table.AddColumn(xiters) table.AddColumn(xprecs) # table.Dump() tview_iter = vtk.vtkContextView() tview_prec = vtk.vtkContextView() chart_iter = vtk.vtkChartXY() chart_prec = vtk.vtkChartXY() tview_iter.GetScene().AddItem(chart_iter) tview_prec.GetScene().AddItem(chart_prec) self.iter_plot = chart_iter.AddPlot(vtk.vtkChart.LINE) self.iter_plot.SetLabel('Solver iterations') self.iter_plot.GetXAxis().SetTitle('time') self.iter_plot.GetYAxis().SetTitle('iterations') self.prec_plot = chart_prec.AddPlot(vtk.vtkChart.LINE) self.prec_plot.SetLabel('Solver precisions') self.prec_plot.GetXAxis().SetTitle('time') self.prec_plot.GetYAxis().SetTitle('precisions') add_compatiblity_methods(self.iter_plot) add_compatiblity_methods(self.prec_plot) self.iter_plot.SetInputData(table, 'time', 'iterations') self.prec_plot.SetInputData(table, 'time', 'precisions') self.iter_plot.SetWidth(5.0) self.prec_plot.SetWidth(5.0) self.iter_plot.SetColor(0, 255, 0, 255) self.prec_plot.SetColor(0, 255, 0, 255) tview_iter.GetInteractor().AddObserver('RightButtonReleaseEvent', self.input_observer.iter_plot_observer) tview_prec.GetInteractor().AddObserver('RightButtonReleaseEvent', self.input_observer.prec_plot_observer) tview_iter.GetRenderer().GetRenderWindow().SetSize(600, 200) tview_prec.GetRenderer().GetRenderWindow().SetSize(600, 200) tview_iter.GetInteractor().Initialize() # tview_iter.GetInteractor().Start() tview_iter.GetRenderer().SetBackground(.9, .9, .9) tview_iter.GetRenderer().Render() tview_prec.GetInteractor().Initialize() # tview_prec.GetInteractor().Start() tview_prec.GetRenderer().SetBackground(.9, .9, .9) tview_prec.GetRenderer().Render() self.tview_iter = tview_iter self.tview_prec = tview_prec def setup_sliders(self, times): self.print_verbose_level(1,'setup_sliders') if len(times) > 0: slider_repres = vtk.vtkSliderRepresentation2D() if self.min_time is None: self.min_time = times[0] if self.max_time is None: self.max_time = times[len(times) - 1] slider_repres.SetMinimumValue(self.min_time) slider_repres.SetMaximumValue(self.max_time) slider_repres.SetValue(self.min_time) slider_repres.SetTitleText("time") slider_repres.GetPoint1Coordinate( ).SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint1Coordinate().SetValue(0.4, 0.9) slider_repres.GetPoint2Coordinate( ).SetCoordinateSystemToNormalizedDisplay() slider_repres.GetPoint2Coordinate().SetValue(0.9, 0.9) slider_repres.SetSliderLength(0.02) slider_repres.SetSliderWidth(0.03) slider_repres.SetEndCapLength(0.01) slider_repres.SetEndCapWidth(0.03) slider_repres.SetTubeWidth(0.005) slider_repres.SetLabelFormat("%3.4lf") slider_repres.SetTitleHeight(0.02) slider_repres.SetLabelHeight(0.02) background_color = self.config.get('background_color', [.0,.0,.0]) reverse_background_color =numpy.ones(3) - background_color if (numpy.linalg.norm(background_color-reverse_background_color) < 0.2): reverse_background_color = numpy.ones(3) slider_repres.GetSliderProperty().SetColor(*reverse_background_color) slider_repres.GetTitleProperty().SetColor(*reverse_background_color); slider_repres.GetLabelProperty().SetColor(*reverse_background_color); slider_repres.GetTubeProperty().SetColor(*reverse_background_color); slider_repres.GetCapProperty().SetColor(*reverse_background_color); slider_widget = vtk.vtkSliderWidget() self.slider_widget = slider_widget slider_widget.SetInteractor(self.interactor_renderer) slider_widget.SetRepresentation(slider_repres) slider_widget.KeyPressActivationOff() slider_widget.SetAnimationModeToAnimate() slider_widget.SetEnabled(True) self.input_observer = InputObserver(self, times, slider_repres) slider_widget.AddObserver("InteractionEvent", self.input_observer.time) else: self.input_observer = InputObserver(self) self.interactor_renderer.AddObserver('KeyPressEvent', self.input_observer.key) self.interactor_renderer.AddObserver( 'TimerEvent', self.input_observer.recorder_observer) if self.io.contact_forces_data().shape[0] > 0: self.slwsc, self.slrepsc = self.make_slider( 'CF scale', self.make_scale_observer([self.cone_glyph, self.cylinder_glyph, self.sphere_glypha, self.sphere_glyphb, self.arrow_glyph]), self.interactor_renderer, self.opts.cf_scale_factor, self.opts.cf_scale_factor - self.opts.cf_scale_factor / 2, self.opts.cf_scale_factor + self.opts.cf_scale_factor / 2, 0.03, 0.03, 0.03, 0.7) if len(times) > 0: self.xslwsc, self.xslrepsc = self.make_slider( 'Time scale', self.make_time_scale_observer(slider_repres, self.input_observer), self.interactor_renderer, self.opts.time_scale_factor, self.opts.time_scale_factor - self.opts.time_scale_factor / 2, self.opts.time_scale_factor + self.opts.time_scale_factor / 2, 0.1, 0.9, 0.3, 0.9) def setup_axes(self): self.print_verbose_level(1,'setup_axes') # display coordinates axes self.axes = vtk.vtkAxesActor() self.axes.SetTotalLength(1.0, 1.0, 1.0) self.widget = vtk.vtkOrientationMarkerWidget() # self.widget.SetOutlineColor( 0.9300, 0.5700, 0.1300 ) self.widget.SetOrientationMarker(self.axes) self.widget.SetInteractor(self.interactor_renderer) # self.widget.SetViewport( 0.0, 0.0, 40.0, 40.0 ); self.widget.SetEnabled(True) self.widget.InteractiveOn() # this should be extracted from the VView class def export(self): self.print_verbose('export start') times = self.io_reader._times[ self.opts.start_step:self.opts.end_step:self.opts.stride] ntime = len(times) if self.opts.gen_para_script: # just the generation of a parallel command options_str = '' if self.opts.ascii_mode: options_str += '--ascii ' if self.opts.global_filter: options_str += '--global-filter ' if self.opts.depth_2d != 0.1: options_str += ' --depth-2d='+str(self.opts.depth_2d) ntimes_proc = int(ntime / self.opts.nprocs) s = '' for i in range(self.opts.nprocs): s += '{0}/{1} '.format(ntimes_proc*i, ntimes_proc*(i+1)) print('#!/bin/sh') print('parallel --verbose', sys.argv[0], self.opts.io_filename, options_str, '--start-step={//} --end-step={/} :::', s) else: # export big_data_writer = vtk.vtkXMLMultiBlockDataWriter() add_compatiblity_methods(big_data_writer) big_data_writer.SetInputConnection(self.big_data_collector.GetOutputPort()) if self.opts.ascii_mode: big_data_writer.SetDataModeToAscii() k = self.opts.start_step packet = int(ntime/100)+1 for time in times: k = k + self.opts.stride if (k % packet == 0): sys.stdout.write('.') self.io_reader.SetTime(time) spos_data = self.io_reader.pos_static_data #print('spos_data at time 1' , time, spos_data) if spos_data.size > 0: self.set_position_v(spos_data[:, 1], spos_data[:, 2], spos_data[:, 3], spos_data[:, 4], spos_data[:, 5], spos_data[:, 6], spos_data[:, 7], spos_data[:, 8]) pos_data = self.io_reader.pos_data velo_data = self.io_reader.velo_data self.set_position_v( pos_data[:, 1], pos_data[:, 2], pos_data[:, 3], pos_data[:, 4], pos_data[:, 5], pos_data[:, 6], pos_data[:, 7], pos_data[:, 8]) self.set_velocity_v( velo_data[:, 1], velo_data[:, 2], velo_data[:, 3], velo_data[:, 4], velo_data[:, 5], velo_data[:, 6], velo_data[:, 7]) self.set_translation_v( pos_data[:, 1], pos_data[:, 2], pos_data[:, 3], pos_data[:, 4], ) self.set_instance_v(pos_data[:, 1]) big_data_writer.SetFileName('{0}-{1}.{2}'.format( os.path.splitext(os.path.basename(self.opts.io_filename))[0], k, big_data_writer.GetDefaultFileExtension())) if self.opts.global_filter: self.big_data_geometry_filter.Update() else: self.big_data_collector.Update() big_data_writer.Write() big_data_writer.Write() def export_raw_data(self): times = self.io_reader._times[ self.opts.start_step:self.opts.end_step:self.opts.stride] ntime = len(times) export_2d = False if self.io.dimension() ==2 : export_2d=True print('We export raw data for 2D object') # export k = self.opts.start_step packet = int(ntime/100)+1 # ######## position output ######## # nvalue = ndyna*7+1 # position_output = numpy.empty((ntime,nvalue)) # #print('position_output shape', numpy.shape(position_output)) # position_output[:,0] = times[:] position_output = {} velocity_output = {} velocity_absolute_output = {} for time in times: k = k + self.opts.stride if (k % packet == 0): sys.stdout.write('.') self.io_reader.SetTime(time) pos_data = self.io_reader.pos_data velo_data = self.io_reader.velo_data ndyna=pos_data.shape[0] for i in range(ndyna): bdy_id = int(pos_data[i,1]) ######## position output ######## if self.opts._export_position : nvalue=pos_data.shape[1] position_output_bdy = position_output.get(bdy_id) if position_output_bdy is None: position_output[bdy_id] = [] position_output_body = position_output[bdy_id] position_output_body.append([]) position_output_body[-1].append(time) if export_2d: data_2d = [pos_data[i,2],pos_data[i,3],numpy.acos(pos_data[i,5]/2.0)] position_output_body[-1].extend(data_2d) #position_output_body[-1].extend(pos_data[i,2:nvalue]) else: position_output_body[-1].extend(pos_data[i,2:nvalue]) position_output_body[-1].append(bdy_id) ######## velocity output ######## if self.opts._export_velocity : nvalue=velo_data.shape[1] velocity_output_bdy = velocity_output.get(bdy_id) if velocity_output_bdy is None: velocity_output[bdy_id] = [] velocity_output_body = velocity_output[bdy_id] velocity_output_body.append([]) velocity_output_body[-1].append(time) velocity_output_body[-1].extend(velo_data[i,2:nvalue]) velocity_output_body[-1].append(bdy_id) ######## velocity in absolute frame output ######## if self.opts._export_velocity_in_absolute_frame : nvalue=velo_data.shape[1] [q1,q2,q3,q4] = pos_data[i,5:9] q = Quaternion((q1, q2, q3, q4)) velo = q.rotate(velo_data[i,5:8]) velocity_absolute_output_bdy = velocity_absolute_output.get(bdy_id) if velocity_absolute_output_bdy is None: velocity_absolute_output[bdy_id] = [] velocity_absolute_output_body = velocity_absolute_output[bdy_id] velocity_absolute_output_body.append([]) velocity_absolute_output_body[-1].append(time) velocity_absolute_output_body[-1].extend(velo_data[i,2:5]) velocity_absolute_output_body[-1].extend(velo[:]) velocity_absolute_output_body[-1].append(bdy_id) for bdy_id in position_output.keys(): output =
numpy.array(position_output[bdy_id])
numpy.array
import os import re import glob import json import torch import random import asyncio import warnings import itertools import torchaudio import numpy as np #import asyncstdlib as a from pathlib import Path from tqdm import tqdm from PIL import Image as PILImage #from fastcache import clru_cache from functools import lru_cache #from async_lru import alru_cache from itertools import cycle, islice, chain from einops import rearrange, repeat from collections import defaultdict from tabulate import tabulate from termcolor import colored #from cachetools import cached, LRUCache, func import multiprocessing as mp import torch.utils.data as data import torch.nn.functional as F from torchvision.transforms import ( InterpolationMode, Compose, Resize, CenterCrop, ToTensor, Normalize ) from .audio import ( make_transform, _extract_kaldi_spectrogram ) from .image import make_clip_image_transform as make_image_transform from clip import tokenize def print_label_dist(cfg, echo, label_counts, label_map, ncol=30): def short_name(x): if len(x) > 15: return x[:13] + ".." return x data = list(itertools.chain(*[ [short_name(label_map[i]), int(v)] for i, v in enumerate(label_counts) ])) total_num_instances = sum(data[1::2]) data.extend([None] * (ncol - (len(data) % ncol))) data = itertools.zip_longest(*[data[i::ncol] for i in range(ncol)]) table = tabulate( data, headers=["category", "#"] * (ncol // 2), tablefmt="pipe", numalign="right", stralign="center", ) msg = colored(table, "cyan") echo(f"Distribution of instances among all {len(label_map)} categories:\n{msg}") class AudiosetNpz(data.Dataset): """ `__getitem__' loads raw file from disk. The same inputs as AudiosetSrc. """ def __init__(self, cfg, data_name, train, label_map, weighted): data_path = f"{cfg.data_root}/{data_name}.csv" assert os.path.isfile(data_path), f"{data_path} is not a file." self.cfg = cfg self.label_map = label_map self.num_label = len(label_map) label_counts = np.zeros(self.num_label) self.dataset = list() with open(data_path, "r") as fr: for iline, line in enumerate(fr): record = json.loads(line) if cfg.cat_label: self._cat_label(record) self.dataset.append(record) if not train and iline + 1 == cfg.eval_samples: break if weighted: # save label distribution for category in record["labels"]: label_counts[ self.label_map[category][0] ] += 1 self.length = len(self.dataset) if weighted: # compute sample weight lid2label = {v[0]: re.sub(f"^{cfg.prompt}", "", v[1]).strip() for _, v in label_map.items()} print_label_dist(cfg, print, label_counts, lid2label, ncol=18) self.sample_weights = np.zeros(self.length) label_counts = 1000.0 / (label_counts + 1.) for i, record in enumerate(self.dataset): for category in record["labels"]: self.sample_weights[i] += label_counts[ self.label_map[category][0] ] self.audio_norms = cfg.audio.norms # compatible with AudioSet and Balanced AudioSet self.aclip_key = "aclip_128" self.frame_key = "frame_224" self.train = train acfg = cfg.audio self.transform_image = make_image_transform(cfg.resolution) self.transform_audio, self.transform_fbank = make_transform(acfg) def _shuffle(self): pass def _cat_label(self, record): categories = record["labels"] label_text = [re.sub( f"^{self.cfg.prompt}", "", self.label_map[category][1] ).strip() for category in categories] label_text = self.cfg.prompt + " " + ", ".join(label_text) record["captions"] = [label_text] record["captions_bpe"] = tokenize( record["captions"], as_list=True ) # add bpe captions def _image2numpy(self, fname): if fname is not None: try: images = np.load(fname) images = [images[key] for key in images.files if len(images[key]) != 0] idx = np.random.choice(len(images), 1)[0] if self.train else int(np.ceil(len(images) / 2)) - 1 image = images[idx] except Exception as e: h = w = self.cfg.resolution image = PILImage.fromarray( (np.random.rand(h, w, 3) * 256).astype(np.uint8) ) warnings.warn(f"use random image instead because `{e}` {fname}.") image = self.transform_image(image).cpu().numpy() else: image = np.array([[[1]]]) return image def _process_item(self, index): akey = self.aclip_key fkey = self.frame_key sub_dir = self.dataset[index]["dir"] name = self.dataset[index]["id"] aclip = self.dataset[index][akey] frame = images = self.dataset[index][fkey] categories = self.dataset[index]["labels"] sub_dir = "" if len(sub_dir) == 0 else f"{sub_dir}/" aclip_file = f"{self.cfg.data_root}/{sub_dir}{akey}/{name}.{aclip}" frame_file = f"{self.cfg.data_root}/{sub_dir}{fkey}/{name}.{frame}" if self.cfg.imagine else None if not self.cfg.clf: # dummy if self.cfg.cat_label: record = self.dataset[index] label, text, text_int = 0, record["captions"][0], record["captions_bpe"][0] else: ict = np.random.choice(len(categories), 1)[0] if self.train else 0 category = categories[ict] label, text, text_int = self.label_map[category] else: # classification task label_set = set([self.label_map[category][0] for category in categories]) label = [1 if i in label_set else 0 for i in range(self.num_label)] text_int = [0] # TODO concatenate all text pieces item = {"text": text_int, "name": name} return item, label, aclip_file, frame_file def __getitem__(self, index): item, label, aclip_file, frame_file = self._process_item(index) max_audio_len = self.cfg.max_audio_len audio = np.load(aclip_file)["flag"] # (..., time, freq): `flag' is used as the key accidentally image = self._image2numpy(frame_file) npad = max_audio_len - audio.shape[0] if npad > 0: audio = np.pad(audio, ((0, npad), (0, 0)), "constant", constant_values=(0., 0.)) if not self.cfg.audio.eval_norms and len(self.audio_norms) == 2: mean, std = self.audio_norms audio = (audio - mean) / std #if self.train and self.transform_fbank is not None: if not self.cfg.audio.eval_norms and self.train and self.transform_fbank is not None: audio = self.transform_fbank(audio) image = image[None] audio = audio[None] item.update({"image": image, "audio": audio, "label": label}) return item def __len__(self): return self.length class AudiosetSrc(data.Dataset): """ `__getitem__' loads raw file from disk. """ def __init__(self, cfg, data_name, train, label_map, weighted, filter_set=None, external_text=None): data_path = f"{cfg.data_root}/{data_name}.csv" assert os.path.isfile(data_path), f"{data_path} is not a file." self.cfg = cfg self.label_map = label_map self.num_label = len(label_map) label_counts = np.zeros(self.num_label) self.dataset = list() with open(data_path, "r") as fr: for iline, line in enumerate(fr): record = json.loads(line) if filter_set is not None and record["id"] not in filter_set: continue # let us skip this sample if external_text is not None: self._add_text(record, external_text) elif cfg.cat_label: self._cat_label(record) self.dataset.append(record) if not train and iline + 1 == cfg.eval_samples: break if weighted: # save label distribution for category in record["labels"]: label_counts[ self.label_map[category][0] ] += 1 self.length = len(self.dataset) if weighted: # compute sample weight lid2label = {v[0]: re.sub(f"^{cfg.prompt}", "", v[1]).strip() for _, v in label_map.items()} print_label_dist(cfg, print, label_counts, lid2label, ncol=18) self.sample_weights = np.zeros(self.length) label_counts = 1000.0 / (label_counts + 1.) for i, record in enumerate(self.dataset): for category in record["labels"]: self.sample_weights[i] += label_counts[ self.label_map[category][0] ] self.audio_norms = cfg.audio.norms # compatible with AudioSet and Balanced AudioSet self.aclip_key = "clip" if "clip" in self.dataset[0] else "aclip" self.frame_key = cfg.frame_key self.train = train acfg = cfg.audio self.transform_image = make_image_transform(cfg.resolution) self.transform_audio, self.transform_fbank = make_transform(acfg) self.kaldi_params = { "htk_compat": True, "use_energy": False, "window_type": 'hanning', "num_mel_bins": acfg.num_mel_bins, "dither": 0.0, "frame_shift": 10 } def _shuffle(self): pass def _add_text(self, record, external_text): record["captions"] = external_text.get( record["id"], [-1] ) def _cat_label(self, record): categories = record["labels"] label_text = [re.sub( f"^{self.cfg.prompt}", "", self.label_map[category][1] ).strip() for category in categories] label_text = self.cfg.prompt + " " + ", ".join(label_text) record["captions"] = [label_text] record["captions_bpe"] = tokenize( record["captions"], as_list=True ) # add bpe captions def _process_item(self, index): akey = self.aclip_key fkey = self.frame_key sub_dir = self.dataset[index]["dir"] name = self.dataset[index]["id"] aclip = self.dataset[index][akey][0] frame = images = self.dataset[index][fkey] categories = self.dataset[index]["labels"] sub_dir = "" if len(sub_dir) == 0 else f"{sub_dir}/" aclip_file = f"{self.cfg.data_root}/{sub_dir}{akey}/{name}.{aclip}" frame_file = frame_emb_file = None if self.cfg.imagine: if isinstance(frame, str): frame_file = f"{self.cfg.data_root}/{sub_dir}{fkey}/{name}.{frame}" else: idx = np.random.choice(len(images), 1)[0] if self.train else int(np.ceil(len(images) / 2)) - 1 frame_file = f"{self.cfg.data_root}/{sub_dir}{fkey}/{name}.{images[idx]}" if self.cfg.frame_emb is not None: frame_emb_file = f"{self.cfg.data_root}/{self.cfg.frame_emb}/{name}.{images[idx].rsplit('.', 1)[0]}.npz" if not self.cfg.clf: if self.cfg.text_emb is not None: caption_indice = self.dataset[index]["captions"] # list of caption id ict = np.random.choice(len(caption_indice), 1)[0] if self.train else 0 label, text, text_int = 0, "", caption_indice[ict] text_int = f"{self.cfg.data_root}/caption/{self.cfg.text_emb}/{text_int}.npz" elif self.cfg.cat_label: record = self.dataset[index] label, text, text_int = 0, record["captions"][0], record["captions_bpe"][0] else: ict = np.random.choice(len(categories), 1)[0] if self.train else 0 category = categories[ict] label, text, text_int = self.label_map[category] else: # classification task label_set = set([self.label_map[category][0] for category in categories]) label = [1 if i in label_set else 0 for i in range(self.num_label)] text_int = [0] # TODO concatenate all text pieces item = {"text": text_int, "name": name} return item, label, aclip_file, frame_file, frame_emb_file def blocking_io(self, fname): try: image = np.load(fname)["v"] except Exception as e: image = np.random.rand(self.cfg.embed_dim).astype("float32") warnings.warn(f"use random image instead because `{e}` {fname}.") return image #@a.lru_cache(maxsize=100000) async def _async_text2embed(self, fname): #print(self._text2embed.cache_info()) # https://docs.python.org/3/library/asyncio-eventloop.html#executing-code-in-thread-or-process-pools loop = asyncio.get_running_loop() image = await loop.run_in_executor(None, self.blocking_io, fname) return image #@lru_cache(maxsize=100000) #@clru_cache(maxsize=100000) #@func.lru_cache(maxsize=100000) #@cached(cache=LRUCache(maxsize=100000)) def _text2embed(self, fname): #print(self._text2embed.cache_info()) # cache does not work in multi-thread model (e.g., worker > 0) # see https://discuss.pytorch.org/t/dataloader-re-initialize-dataset-after-each-iteration/32658 # and https://discuss.pytorch.org/t/dataloader-resets-dataset-state/27960 try: image = np.load(fname)["v"] except Exception as e: image = np.random.rand(self.cfg.embed_dim).astype("float32") warnings.warn(f"use random image instead because `{e}` {fname}.") return image def _image2embed(self, fname): try: image = np.load(fname)["v"] except Exception as e: image = np.random.rand(self.cfg.embed_dim).astype("float32") warnings.warn(f"use random image instead because `{e}` {fname}.") return image def _image2numpy(self, fname): if fname is not None: try: if fname.endswith(".npz"): images = np.load(fname) images = [images[key] for key in images.files if len(images[key]) != 0] idx = np.random.choice(len(images), 1)[0] if self.train else int(np.ceil(len(images) / 2)) - 1 image = images[idx] else: image = PILImage.open(fname) image = self.transform_image(image).cpu().numpy() except Exception as e: h = w = self.cfg.resolution image = PILImage.fromarray( (np.random.rand(h, w, 3) * 256).astype(np.uint8) ) warnings.warn(f"use random image instead because `{e}` {fname}.") image = self.transform_image(image).cpu().numpy() else: image = np.array([[[1]]]) return image def _audio2numpy_clf(self, aclip_file, label): wf, sr = torchaudio.load(aclip_file) wf = wf[:1] #wf.mean(0, keepdim=True) wf = wf - wf.mean() sampler = np.random if self.cfg.np_rnd else random #if self.train and sampler.random() < self.cfg.mixup_rate: if not self.cfg.audio.eval_norms and self.train and sampler.random() < self.cfg.mixup_rate: idx_mix = sampler.randint(0, self.length if self.cfg.np_rnd else self.length - 1) _, label_mix, aclip_file, _, _ = self._process_item(idx_mix) wf_mix, _ = torchaudio.load(aclip_file) wf_mix = wf_mix[:1] #wf_mix.mean(0, keepdim=True) wf_mix = wf_mix - wf_mix.mean() wf_len = wf.shape[1] wf_mix = wf_mix[:, :wf_len] npad = wf_len - wf_mix.shape[1] if npad > 0: wf_mix = F.pad(wf_mix, (0, npad), mode='constant', value=0.) lambd =
np.random.beta(10, 10)
numpy.random.beta
''' ---------------------------------------------------------- @file: collision_avoidance.py @date: June 10, 2020 @author: <NAME> @e-mail: <EMAIL> @brief: Implementation of collision avoidance algorithm @version: 1.0 @licence: Open source ---------------------------------------------------------- ''' import math import os import sys import time import numpy as np import rospy from geometry_msgs.msg import Pose2D, Vector3 from std_msgs.msg import Float64, Float32MultiArray, String from usv_perception.msg import obstacles_list # Class definition for easy debugging class Color(): RED = "\033[1;31m" BLUE = "\033[1;34m" CYAN = "\033[1;36m" GREEN = "\033[0;32m" RESET = "\033[0;0m" BOLD = "\033[;1m" REVERSE = "\033[;7m" class Obstacle: def __init__(self): self. x = 0 self.y = 0 self.radius = 0 self.teta = 0 self.alpha = 0 self.collision_flag = 0 self.past_collision_flag = 0 self.total_radius = 0 class Boat: def __init__(self, radius=0): self.radius = radius self.ned_x = 0 self.ned_y = 0 self.yaw = 0 self.u = 0 self.v = 0 self.vel = 0 self.bearing = 0 class CollisionAvoidance: def __init__(self, exp_offset=0, safety_radius=0, u_max=0, u_min=0, exp_gain=0, chi_psi=0, r_max=0, obstacle_mode=0): self.safety_radius = safety_radius self.u_max = u_max self.u_min = u_min self.chi_psi = chi_psi self.exp_gain = exp_gain self.exp_offset = exp_offset self.r_max = r_max self.obstacle_mode = obstacle_mode self.obs_list = [] self.vel_list = [] self.u_psi = 0 self.u_r = 0 self.boat = Boat() for i in range(0,21,1): obstacle = Obstacle() self.obs_list.append(obstacle) def avoid(self, ak, x1, y1, input_list, boat): ''' @name: avoid @brief: If there is an impending collision, returns the velocity and angle to avoid. @param: x1: x coordinate of the path starting-waypoint y1: y coordinate of the path starting-waypoint ak: angle from NED reference frame to path input_list: incomming obstacle list boat: boat class structure @return: bearing: bearing to avoid obstacles velocity: velocity to avoid obstacles ''' nearest_obs = [] self.vel_list = [] self.boat = boat vel_nedx,vel_nedy = self.body_to_ned(self.boat.u,self.boat.v,0,0) #print("self.u: " + str(self.boat.u)) #print("self.boat.v: " + str(self.boat.v)) #print("vel_nedx: " + str(vel_nedx)) #print("vel_nedy " + str(vel_nedy)) #print("ak: ", str(ak)) vel_ppx,vel_ppy = self.ned_to_pp(ak,0,0,vel_nedx,vel_nedy) #ppx,ppy = self.ned_to_pp(ak,x1,y1,self.boat.ned_x,self.boat.ned_y) self.check_obstacles(input_list) for i in range(0,len(self.obs_list),1): sys.stdout.write(Color.CYAN) print("obstacle"+str(i)) sys.stdout.write(Color.RESET) print("obsx: " + str(self.obs_list[i].x)) print("obsy: " + str(self.obs_list[i].y)) print("obsradius: " + str(self.obs_list[i].radius)) self.obs_list[i].total_radius = self.boat.radius + self.safety_radius + self.obs_list[i].radius collision, distance = self.get_collision(0, 0, vel_ppy, vel_ppx,i) #print("distance: " + str(distance)) if collision: #u_obs = np.amin(u_obstacle) avoid_distance = self.calculate_avoid_distance(self.boat.u, self.boat.v, i) nearest_obs.append(avoid_distance - distance) #print("avoid_distance: " + str(avoid_distance)) #print("distance: " + str(distance)) else: nearest_obs.append(0) #self.vel_list.append(self.vel) if len(nearest_obs) > 0: print('nearest_obs max: ' + str(np.max(nearest_obs))) if np.max(nearest_obs)>0: index = nearest_obs.index(np.max(nearest_obs)) if np.max(nearest_obs) > 0 and self.obs_list[index].alpha > 0: self.boat.vel = np.min(self.vel_list) sys.stdout.write(Color.BOLD) print('index: ' + str(index)) sys.stdout.write(Color.RESET) ppx,ppy = self.ned_to_pp(ak, x1, y1, self.boat.ned_x, self.boat.ned_y) obs_ppx, obs_ppy = self.get_obstacle( ak, x1, y1, index) self.dodge(vel_ppx, vel_ppy, ppx, ppy, obs_ppx, obs_ppy, index) else: #rospy.loginfo("nearest_obs: " + str(nearest_obs[index])) sys.stdout.write(Color.BLUE) print ('free') sys.stdout.write(Color.RESET) #sys.stdout.write(Color.BOLD) #print("yaw: " + str(self.yaw)) #print("bearing: " + str(self.bearing)) #sys.stdout.write(Color.RESET) else: sys.stdout.write(Color.BLUE) print ('no obstacles') sys.stdout.write(Color.RESET) print('vel:' + str(self.boat.vel)) return self.boat.bearing, self.boat.vel def check_obstacles(self, input_list): ''' @name: check_obstacles @brief: Recieves incomming obstacles and checks if they must be merged. @param: input_list: incomming obstacle list @return: -- ''' sys.stdout.write(Color.RED) print("Check Obstacles:") sys.stdout.write(Color.RESET) for i in range(0,len(input_list),1): #self.obstacle = Obstacle() self.obs_list[i].x = input_list[i]['X'] # Negative y to compensate Lidar reference frame self.obs_list[i].y = -input_list[i]['Y'] self.obs_list[i].radius = input_list[i]['radius'] print("self.obs_list[" + str(i)+ "].x: " + str(self.obs_list[i].x)) print("self.obs_list[i].y: " + str(self.obs_list[i].y)) print("self.obs_list[i].radius: " + str(self.obs_list[i].radius)) print("self.obs_list[i].collision_flag: " + str(self.obs_list[i].collision_flag)) i = 0 j = 0 while i < (len(self.obs_list)-1): j = i + 1 while j < len(self.obs_list): x = pow(self.obs_list[i].x-self.obs_list[j].x, 2) y = pow(self.obs_list[i].y-self.obs_list[j].y, 2) radius = self.obs_list[i].radius + self.obs_list[j].radius distance_centers = pow(x+y, 0.5) distance = distance_centers - radius #print("distance between i:" + str(i)+ " and j:" + str(j) + " = "+ str(distance)) #print("boat distance: " + str((self.boat.radius + self.safety_radius)*2)) if distance < 0: j = j + 1 elif distance <= (self.boat.radius + self.safety_radius)*2: x,y,radius = self.merge_obstacles(i,j, distance_centers) print("self.obs_list[i].y: " + str(self.obs_list[i].y)) print("self.obs_list[j].y: " + str(self.obs_list[j].y)) self.obs_list[i].x = x self.obs_list[i].y = y self.obs_list[i].radius = radius print("self.obs_list[ij].y: " + str(self.obs_list[i].y)) print("self.obs_list[ij].radius: " + str(self.obs_list[i].radius)) self.obs_list[j].x = x #print("self.obs_list[i].x: " + str(self.obs_list[j].x)) self.obs_list[j].y = y self.obs_list[j].radius = radius i = 0 else: j = j + 1 sys.stdout.write(Color.RED) #print("Obstacle the same") sys.stdout.write(Color.RESET) #print("i: " + str(i)) #print("j: " + str(j)) i = i + 1 #print("done j") #print(self.obs_list) return self.obs_list def merge_obstacles(self, i, j, distance_centers): ''' @name: merge_obstacles @brief: Calculates new obstacle center and radius for merged obstacles. @param: i: first obstacle index j: second obstacle index distance_centers: distance of obstacles centers @return: x: merged obstacle center x y: merged obstacle center y radius: merged obstacle radius ''' # calculate centroid x = (self.obs_list[i].x + self.obs_list[j].x)/2 y = (self.obs_list[i].y + self.obs_list[j].y)/2 #calculte radius max_radius = max(self.obs_list[i].radius, self.obs_list[i+1].radius) radius = distance_centers/2 + max_radius sys.stdout.write(Color.RED) print("Merged obstacle:" + str(radius)) sys.stdout.write(Color.RESET) return(x,y,radius) def get_collision(self, ppx, ppy, vel_ppy, vel_ppx, i): ''' @name: get_collision @brief: Calculates if there is an impending collision with an obstacle. @param: ppx: boat parallel path position x ppy: boat parallel path position y vel_ppy: boat parallel path velocity y vel_ppx: boat parallel path velocity x i: obstacle index @return: collision: 1 = collision 0 = non-collision distance: distance to obstacle ''' collision = 0 #print("Total Radius: " + str(total_radius)) x_pow = pow(self.obs_list[i].x - ppx,2) y_pow = pow(self.obs_list[i].y - ppy,2) distance = pow((x_pow + y_pow),0.5) distance_free = distance - self.obs_list[i].total_radius print("Distance_free: " + str(distance_free)) if distance < self.obs_list[i].total_radius: rospy.logwarn("CRASH") alpha_params = (self.obs_list[i].total_radius/distance) alpha = math.asin(alpha_params) beta = math.atan2(vel_ppy,vel_ppx)-math.atan2(self.obs_list[i].y-ppy,self.obs_list[i].x-ppx) if beta > math.pi: beta = beta - 2*math.pi if beta < - math.pi: beta = beta + 2*math.pi beta = abs(beta) if beta <= alpha or 1 == self.obs_list[i].collision_flag: #print('beta: ' + str(beta)) #print('alpha: ' + str(alpha)) print("COLLISION") collision = 1 self.obs_list[i].collision_flag = 1 self.calculate_avoid_angle(ppy, distance, ppx, i) #self.get_velocity(distance_free, i) else: #self.obs_list[i].collision_flag = 0 self.obs_list[i].tetha = 0 self.get_velocity(distance_free, i) return collision, distance def calculate_avoid_angle(self, ppy, distance, ppx, i): ''' @name: calculate_avoid_angle @brief: Calculates angle needed to avoid obstacle @param: ppy: boat y coordiante in path reference frame distance: distance from center of boat to center of obstacle ppx: boat x coordiante in path reference frame i: osbtacle index @return: -- ''' #print("ppx: " + str(ppx) + " obs: " + str(self.obs_list[i].x)) #print("ppy: " + str(ppy) + " obs: " + str(self.obs_list[i].y)) self.obs_list[i].total_radius = self.obs_list[i].total_radius + .30 tangent_param = abs((distance - self.obs_list[i].total_radius) * (distance + self.obs_list[i].total_radius)) #print("distance: " + str(distance)) tangent = pow(tangent_param, 0.5) #print("tangent: " + str(tangent)) teta = math.atan2(self.obs_list[i].total_radius,tangent) #print("teta: " + str(teta)) gamma1 = math.asin(abs(ppy-self.obs_list[i].y)/distance) #print("gamma1: " + str(gamma1)) gamma = ((math.pi/2) - teta) + gamma1 #print("gamma: " + str(gamma)) self.obs_list[i].alpha = (math.pi/2) - gamma print("alpha: " + str(self.obs_list[i].alpha)) hb = abs(ppy-self.obs_list[i].y)/math.cos(self.obs_list[i].alpha) #print("hb: " + str(hb)) b = self.obs_list[i].total_radius - hb #print("i: " + str(i)) print("b: " + str(b)) self.obs_list[i].teta = math.atan2(b,tangent) print("teta: " + str(self.obs_list[i].teta)) if self.obs_list[i].alpha < 0.0: self.obs_list[i].collision_flag = 0 sys.stdout.write(Color.BOLD) print("Collision flag off") sys.stdout.write(Color.RESET) def get_velocity(self, distance_free, i): ''' @name: get_velocity @brief: Calculates velocity needed to avoid obstacle @param: distance_free: distance to collision i: osbtacle index @return: -- ''' u_r_obs = 1/(1 + math.exp(-self.exp_gain*(distance_free*(1/5) - self.exp_offset))) u_psi_obs = 1/(1 + math.exp(self.exp_gain*(abs(self.obs_list[i].teta)*self.chi_psi -self.exp_offset))) #print("u_r_obs: " + str( u_r_obs)) #print("u_psi_obs" + str(u_psi_obs)) #print("Vel chosen: " + str(np.min([self.u_psi, self.u_r, u_r_obs, u_psi_obs]))) self.vel_list.append((self.u_max - self.u_min)*np.min([self.u_psi, self.u_r, u_r_obs, u_psi_obs]) + self.u_min) def calculate_avoid_distance(self, vel_ppx, vel_ppy, i): ''' @name: calculate_avoid_distance @brief: Calculates distance at wich it is necesary to leave path to avoid obstacle @param: vel_ppx: boat velocity x in path reference frame vel_ppy: boat velocity y in path reference frame i: obstacle index @return: avoid_distance: returns distance at wich it is necesary to leave path to avoid obstacle ''' time = (self.obs_list[i].teta/self.r_max) + 3 #print("time: " + str(time)) eucledian_vel = pow((pow(vel_ppx,2) + pow(vel_ppy,2)),0.5) #print("vel: " + str(eucledian_vel)) #print("self.boat.vel: " + str(self.boat.vel)) #avoid_distance = time * eucledian_vel + total_radius +.3 avoid_distance = time * self.boat.vel + self.obs_list[i].total_radius +.3 #+.5 return (avoid_distance) def get_obstacle(self, ak, x1, y1, i): ''' @name: get_obstacle @brief: Gets obstacle coodinates in parallel path reference frame @param: ak: coordinate frame angle difference x1: starting x coordinate y1: starting y coordinate i: osbtacle index @return: obs_ppx: obstalce x in parallel path reference frame obs_ppy: obstalce y in parallel path reference frame ''' # NED obstacles if (self.obstacle_mode == 0): obs_ppx,obs_ppy = self.ned_to_pp(ak,x1,y1,self.obs_list[i].x,self.obs_list[i].y) # Body obstacles if (self.obstacle_mode == 1): obs_nedx, obs_nedy = self.body_to_ned(self.obs_list[i].x, self.obs_list[i].y, self.boat.ned_x, self.boat.ned_y) obs_ppx,obs_ppy = self.ned_to_pp(ak, x1, y1, obs_nedx, obs_nedy) return(obs_ppx, obs_ppy) def dodge(self, vel_ppx, vel_ppy , ppx, ppy, obs_ppx, obs_ppy, i): ''' @name: dodge @brief: Calculates angle needed to avoid obstacle @param: vel_ppx: boat velocity x in path reference frame vel_ppy: boat velocity y in path reference frame ppx: boat x coordiante in path reference frame ppy: boat y coordiante in path reference frame obs_ppx: osbtacle x coordiante in path reference frame obs_ppy: osbtacle y coordiante in path reference frame i: obstacle index @return: -- ''' eucledian_vel = pow((pow(vel_ppx,2) + pow(vel_ppy,2)),0.5) # Euclaedian vel must be different to cero to avoid math error if eucledian_vel != 0: #print("vel x: " + str(vel_ppx)) #print("vel y: " + str(vel_ppy)) #print("obs_y: " + str(obs_y)) # obstacle in center, this is to avoid shaky behaivor if abs(self.obs_list[i].y) < 0.1: angle_difference = self.boat.bearing - self.boat.yaw #print("angle diference: " + str(angle_difference)) if 0.1 > abs(angle_difference) or 0 > (angle_difference): self.boat.bearing = self.boat.yaw - self.obs_list[i].teta sys.stdout.write(Color.RED) print("center left -") sys.stdout.write(Color.RESET) else: self.boat.bearing = self.boat.yaw + self.obs_list[i].teta sys.stdout.write(Color.GREEN) print("center right +") sys.stdout.write(Color.RESET) else: eucledian_pos = pow((pow(obs_ppx - ppx,2) + pow(obs_ppy - ppy,2)),0.5) #print("eucledian_vel " + str(eucledian_vel)) #print("eucladian_pos: " + str(eucledian_pos)) unit_vely = vel_ppy/eucledian_vel unit_posy = (obs_ppy - ppy)/eucledian_pos #print("unit_vely " + str(unit_vely)) #print("unit_posy: " + str(unit_posy)) if unit_vely <= unit_posy: self.boat.bearing = self.boat.yaw - self.obs_list[i].teta sys.stdout.write(Color.RED) print("left -") sys.stdout.write(Color.RESET) ''' if (abs(self.avoid_angle) > (math.pi/2)): self.avoid_angle = -math.pi/2 ''' else: self.boat.bearing = self.boat.yaw + self.obs_list[i].teta sys.stdout.write(Color.GREEN) print("right +") sys.stdout.write(Color.RESET) ''' if (abs(self.avoid_angle) > (math.pi/3)): self.avoid_angle = math.pi/2 ''' ''' if unit_vely <= unit_posy: self.teta = -self.teta else: self.teta = self.teta ''' def body_to_ned(self, x2, y2, offsetx, offsety): ''' @name: body_to_ned @brief: Coordinate transformation between body and NED reference frames. @param: x2: target x coordinate in body reference frame y2: target y coordinate in body reference frame offsetx: offset x in ned reference frame offsety: offset y in ned reference frame @return: ned_x2: target x coordinate in ned reference frame ned_y2: target y coordinate in ned reference frame ''' p = np.array([x2, y2]) J = np.array([[math.cos(self.boat.yaw), -1*math.sin(self.boat.yaw)], [math.sin(self.boat.yaw), math.cos(self.boat.yaw)]]) n = J.dot(p) ned_x2 = n[0] + offsetx ned_y2 = n[1] + offsety return (ned_x2, ned_y2) def ned_to_pp(self, ak, ned_x1, ned_y1, ned_x2, ned_y2): ''' @name: ned_to_ned @brief: Coordinate transformation between NED and body reference frames. @param: ak: angle difference from ned to parallel path ned_x1: origin of parallel path x coordinate in ned reference frame ned_y1: origin of parallel path y coordinate in ned reference frame ned_x2: target x coordinate in ned reference frame ned_y2: target y coordinate in ned reference frame @return: pp_x2: target x coordinate in parallel path reference frame pp_y2: target y coordinate in parallel path reference frame ''' n = np.array([ned_x2 - ned_x1, ned_y2 - ned_y1]) J = np.array([[math.cos(ak), -1*math.sin(ak)], [math.sin(ak), math.cos(ak)]]) J =
np.linalg.inv(J)
numpy.linalg.inv
import plotly.graph_objects as go import plotly.express as px import numpy as np import matplotlib.pyplot as plt def pair_to_arr(p): return p.birth(), p.death(), p.dim() def process_pairs(ps, remove_zeros=True): a = [] for p in ps: a.append([*pair_to_arr(p)]) a = np.array(a) lens = np.abs(a[:,1] - a[:,0]) if remove_zeros: a = a[lens > 0] return a def essential_pair_filter(a, tub=np.inf): """ tub - upper bound on what will be displayed """ return np.max(np.abs(a), axis=1) >= tub def non_essential_pair_filter(a, tub=np.inf): """ tub - upper bound on what will be displayed """ lens = np.abs(a[:,1] - a[:,0]) f = lens < tub return f def PD_uncertainty(ps, uncertainty_length = 0.5, remove_zeros=True, show_legend=True, tmax=0.0, tmin=0.0, **kwargs): fig, ax = plt.subplots(**kwargs) a = process_pairs(ps, remove_zeros) dims = np.array(a[:,2], dtype=int) # homology dimension cs=plt.get_cmap('Set1')(dims) # set colors issublevel = a[0,0] < a[0,1] eps = essential_pair_filter(a) tmax = np.max((tmax, np.ma.masked_invalid(a[:,:2]).max())) tmin = np.min((tmin, np.ma.masked_invalid(a[:,:2]).min())) if tmax == tmin: # handle identical tmax, tmin tmax = tmax*1.1 + 1.0 span = tmax - tmin inf_to = tmax + span/10 minf_to = tmin - span/10 # set axes xbnds = (minf_to -span/20, inf_to+span/20) ybnds = (minf_to-span/20, inf_to+span/20) ax.set_xlim(xbnds) ax.set_ylim(ybnds) ax.set_aspect('equal') # add visual lines ax.plot(xbnds, ybnds, '--k') x_array =
np.linspace(*xbnds, 10)
numpy.linspace
#!/usr/bin/python -u import argparse import numpy as np import scipy.spatial import data parser = argparse.ArgumentParser(description='Evaluate embeddings somehow...') parser.add_argument('--data', '-d', required=True, help='Training data directory') parser.add_argument('--file', '-f', required=True, help='Embeddings file (numpy format)') parser.add_argument('--type', type=int, default=1, help='Distance type') args = parser.parse_args() train_songs = data.load_songs_info(args.data) embeddings = np.load(args.file) print('Distance type: {}'.format(args.type)) print("Loaded embeddings of shape {} from file '{}'".format(np.shape(embeddings), args.file)) def album_distance_1(embeddings, songs1, songs2): x = 0 for song1 in songs1: for song2 in songs2: x += scipy.spatial.distance.cosine(embeddings[song1], embeddings[song2]) return x / (len(songs1) * len(songs2)) def album_distance_2(embeddings, songs1, songs2): x1 = np.mean(embeddings[songs1], axis=0) x2 =
np.mean(embeddings[songs2], axis=0)
numpy.mean
import numpy as np import pandas as pd from sklearn.metrics.pairwise import cosine_distances from analysis.data_parsing.word_vectorizer import WordVectorizer from analysis.data_parsing.word_data_parser import WordDataParser class TextInterestManager: """used to get an interest-vector from text sources (word, text). interest-vectors are described using a pd.DataFrame instance (where vector's ones are only numeric fields) usage example: wv = WordVectorizer('../data/model.bin') trans = TextInterestManager('../data/interest_data/interest_groups.csv', wv) text = '''прекрасный рыцарь спасет принцессу от любящего читать дракона''' print('original text is:\n', text, '\ntrained high-meanings:\n') trans.print_interest(trans.text_to_interest(text), head=20) """ def __init__(self, df, vectorizer: WordVectorizer = None): if isinstance(df, str): df = pd.read_csv(df, index_col=0) self.description =
np.array(df['description'])
numpy.array
"""timeresp_test.py - test time response functions""" from copy import copy from distutils.version import StrictVersion import numpy as np import pytest import scipy as sp import control as ct from control import StateSpace, TransferFunction, c2d, isctime, ss2tf, tf2ss from control.exception import slycot_check from control.tests.conftest import slycotonly from control.timeresp import (_default_time_vector, _ideal_tfinal_and_dt, forced_response, impulse_response, initial_response, step_info, step_response) class TSys: """Struct of test system""" def __init__(self, sys=None, call_kwargs=None): self.sys = sys self.kwargs = call_kwargs if call_kwargs else {} def __repr__(self): """Show system when debugging""" return self.sys.__repr__() class TestTimeresp: @pytest.fixture def tsystem(self, request): """Define some test systems""" """continuous""" A = np.array([[1., -2.], [3., -4.]]) B = np.array([[5.], [7.]]) C = np.array([[6., 8.]]) D = np.array([[9.]]) siso_ss1 = TSys(StateSpace(A, B, C, D, 0)) siso_ss1.t = np.linspace(0, 1, 10) siso_ss1.ystep = np.array([9., 17.6457, 24.7072, 30.4855, 35.2234, 39.1165, 42.3227, 44.9694, 47.1599, 48.9776]) siso_ss1.X0 = np.array([[.5], [1.]]) siso_ss1.yinitial = np.array([11., 8.1494, 5.9361, 4.2258, 2.9118, 1.9092, 1.1508, 0.5833, 0.1645, -0.1391]) ss1 = siso_ss1.sys """D=0, continuous""" siso_ss2 = TSys(StateSpace(ss1.A, ss1.B, ss1.C, 0, 0)) siso_ss2.t = siso_ss1.t siso_ss2.ystep = siso_ss1.ystep - 9 siso_ss2.initial = siso_ss1.yinitial - 9 siso_ss2.yimpulse = np.array([86., 70.1808, 57.3753, 46.9975, 38.5766, 31.7344, 26.1668, 21.6292, 17.9245, 14.8945]) """System with unspecified timebase""" siso_ss2_dtnone = TSys(StateSpace(ss1.A, ss1.B, ss1.C, 0, None)) siso_ss2_dtnone.t = np.arange(0, 10, 1.) siso_ss2_dtnone.ystep = np.array([0., 86., -72., 230., -360., 806., -1512., 3110., -6120., 12326.]) siso_tf1 = TSys(TransferFunction([1], [1, 2, 1], 0)) siso_tf2 = copy(siso_ss1) siso_tf2.sys = ss2tf(siso_ss1.sys) """MIMO system, contains ``siso_ss1`` twice""" mimo_ss1 = copy(siso_ss1) A = np.zeros((4, 4)) A[:2, :2] = siso_ss1.sys.A A[2:, 2:] = siso_ss1.sys.A B = np.zeros((4, 2)) B[:2, :1] = siso_ss1.sys.B B[2:, 1:] = siso_ss1.sys.B C = np.zeros((2, 4)) C[:1, :2] = siso_ss1.sys.C C[1:, 2:] = siso_ss1.sys.C D = np.zeros((2, 2)) D[:1, :1] = siso_ss1.sys.D D[1:, 1:] = siso_ss1.sys.D mimo_ss1.sys = StateSpace(A, B, C, D) """MIMO system, contains ``siso_ss2`` twice""" mimo_ss2 = copy(siso_ss2) A = np.zeros((4, 4)) A[:2, :2] = siso_ss2.sys.A A[2:, 2:] = siso_ss2.sys.A B = np.zeros((4, 2)) B[:2, :1] = siso_ss2.sys.B B[2:, 1:] = siso_ss2.sys.B C = np.zeros((2, 4)) C[:1, :2] = siso_ss2.sys.C C[1:, 2:] = siso_ss2.sys.C D = np.zeros((2, 2)) mimo_ss2.sys = StateSpace(A, B, C, D, 0) """discrete""" siso_dtf0 = TSys(TransferFunction([1.], [1., 0.], 1.)) siso_dtf0.t = np.arange(4) siso_dtf0.yimpulse = [0., 1., 0., 0.] siso_dtf1 = TSys(TransferFunction([1], [1, 1, 0.25], True)) siso_dtf1.t = np.arange(0, 5, 1) siso_dtf1.ystep = np.array([0. , 0. , 1. , 0. , 0.75]) siso_dtf2 = TSys(TransferFunction([1], [1, 1, 0.25], 0.2)) siso_dtf2.t = np.arange(0, 5, 0.2) siso_dtf2.ystep = np.array( [0. , 0. , 1. , 0. , 0.75 , 0.25 , 0.5625, 0.375 , 0.4844, 0.4219, 0.457 , 0.4375, 0.4482, 0.4424, 0.4456, 0.4438, 0.4448, 0.4443, 0.4445, 0.4444, 0.4445, 0.4444, 0.4445, 0.4444, 0.4444]) """Time step which leads to rounding errors for time vector length""" num = [-0.10966442, 0.12431949] den = [1., -1.86789511, 0.88255018] dt = 0.12493963338370018 siso_dtf3 = TSys(TransferFunction(num, den, dt)) siso_dtf3.t = np.linspace(0, 9*dt, 10) siso_dtf3.ystep = np.array( [ 0. , -0.1097, -0.1902, -0.2438, -0.2729, -0.2799, -0.2674, -0.2377, -0.1934, -0.1368]) """dtf1 converted statically, because Slycot and Scipy produce different realizations, wich means different initial condtions,""" siso_dss1 = copy(siso_dtf1) siso_dss1.sys = StateSpace([[-1., -0.25], [ 1., 0.]], [[1.], [0.]], [[0., 1.]], [[0.]], True) siso_dss1.X0 = [0.5, 1.] siso_dss1.yinitial = np.array([1., 0.5, -0.75, 0.625, -0.4375]) siso_dss2 = copy(siso_dtf2) siso_dss2.sys = tf2ss(siso_dtf2.sys) mimo_dss1 = TSys(StateSpace(ss1.A, ss1.B, ss1.C, ss1.D, True)) mimo_dss1.t = np.arange(0, 5, 0.2) mimo_dss2 = copy(mimo_ss1) mimo_dss2.sys = c2d(mimo_ss1.sys, mimo_ss1.t[1]-mimo_ss1.t[0]) mimo_tf2 = copy(mimo_ss2) tf_ = ss2tf(siso_ss2.sys) mimo_tf2.sys = TransferFunction( [[tf_.num[0][0], [0]], [[0], tf_.num[0][0]]], [[tf_.den[0][0], [1]], [[1], tf_.den[0][0]]], 0) mimo_dtf1 = copy(siso_dtf1) tf_ = siso_dtf1.sys mimo_dtf1.sys = TransferFunction( [[tf_.num[0][0], [0]], [[0], tf_.num[0][0]]], [[tf_.den[0][0], [1]], [[1], tf_.den[0][0]]], True) # for pole cancellation tests pole_cancellation = TSys(TransferFunction( [1.067e+05, 5.791e+04], [10.67, 1.067e+05, 5.791e+04])) no_pole_cancellation = TSys(TransferFunction( [1.881e+06], [188.1, 1.881e+06])) # System Type 1 - Step response not stationary: G(s)=1/s(s+1) siso_tf_type1 = TSys(TransferFunction(1, [1, 1, 0])) siso_tf_type1.step_info = { 'RiseTime': np.NaN, 'SettlingTime': np.NaN, 'SettlingMin': np.NaN, 'SettlingMax': np.NaN, 'Overshoot': np.NaN, 'Undershoot': np.NaN, 'Peak': np.Inf, 'PeakTime': np.Inf, 'SteadyStateValue': np.NaN} # SISO under shoot response and positive final value # G(s)=(-s+1)/(s²+s+1) siso_tf_kpos = TSys(TransferFunction([-1, 1], [1, 1, 1])) siso_tf_kpos.step_info = { 'RiseTime': 1.242, 'SettlingTime': 9.110, 'SettlingMin': 0.90, 'SettlingMax': 1.208, 'Overshoot': 20.840, 'Undershoot': 28.0, 'Peak': 1.208, 'PeakTime': 4.282, 'SteadyStateValue': 1.0} # SISO under shoot response and negative final value # k=-1 G(s)=-(-s+1)/(s²+s+1) siso_tf_kneg = TSys(TransferFunction([1, -1], [1, 1, 1])) siso_tf_kneg.step_info = { 'RiseTime': 1.242, 'SettlingTime': 9.110, 'SettlingMin': -1.208, 'SettlingMax': -0.90, 'Overshoot': 20.840, 'Undershoot': 28.0, 'Peak': 1.208, 'PeakTime': 4.282, 'SteadyStateValue': -1.0} siso_tf_asymptotic_from_neg1 = TSys(TransferFunction([-1, 1], [1, 1])) siso_tf_asymptotic_from_neg1.step_info = { 'RiseTime': 2.197, 'SettlingTime': 4.605, 'SettlingMin': 0.9, 'SettlingMax': 1.0, 'Overshoot': 0, 'Undershoot': 100.0, 'Peak': 1.0, 'PeakTime': 0.0, 'SteadyStateValue': 1.0} siso_tf_asymptotic_from_neg1.kwargs = { 'step_info': {'T': np.arange(0, 5, 1e-3)}} # example from matlab online help # https://www.mathworks.com/help/control/ref/stepinfo.html siso_tf_step_matlab = TSys(TransferFunction([1, 5, 5], [1, 1.65, 5, 6.5, 2])) siso_tf_step_matlab.step_info = { 'RiseTime': 3.8456, 'SettlingTime': 27.9762, 'SettlingMin': 2.0689, 'SettlingMax': 2.6873, 'Overshoot': 7.4915, 'Undershoot': 0, 'Peak': 2.6873, 'PeakTime': 8.0530, 'SteadyStateValue': 2.5} A = [[0.68, -0.34], [0.34, 0.68]] B = [[0.18, -0.05], [0.04, 0.11]] C = [[0, -1.53], [-1.12, -1.10]] D = [[0, 0], [0.06, -0.37]] mimo_ss_step_matlab = TSys(StateSpace(A, B, C, D, 0.2)) mimo_ss_step_matlab.kwargs['step_info'] = {'T': 4.6} mimo_ss_step_matlab.step_info = [[ {'RiseTime': 0.6000, 'SettlingTime': 3.0000, 'SettlingMin': -0.5999, 'SettlingMax': -0.4689, 'Overshoot': 15.5072, 'Undershoot': 0., 'Peak': 0.5999, 'PeakTime': 1.4000, 'SteadyStateValue': -0.5193}, {'RiseTime': 0., 'SettlingTime': 3.6000, 'SettlingMin': -0.2797, 'SettlingMax': -0.1043, 'Overshoot': 118.9918, 'Undershoot': 0, 'Peak': 0.2797, 'PeakTime': .6000, 'SteadyStateValue': -0.1277}], [{'RiseTime': 0.4000, 'SettlingTime': 2.8000, 'SettlingMin': -0.6724, 'SettlingMax': -0.5188, 'Overshoot': 24.6476, 'Undershoot': 11.1224, 'Peak': 0.6724, 'PeakTime': 1, 'SteadyStateValue': -0.5394}, {'RiseTime': 0.0000, # (*) 'SettlingTime': 3.4000, 'SettlingMin': -0.4350, # (*) 'SettlingMax': -0.1485, 'Overshoot': 132.0170, 'Undershoot': 0., 'Peak': 0.4350, 'PeakTime': .2, 'SteadyStateValue': -0.1875}]] # (*): MATLAB gives 0.4 for RiseTime and -0.1034 for # SettlingMin, but it is unclear what 10% and 90% of # the steady state response mean, when the step for # this channel does not start a 0. siso_ss_step_matlab = copy(mimo_ss_step_matlab) siso_ss_step_matlab.sys = siso_ss_step_matlab.sys[1, 0] siso_ss_step_matlab.step_info = siso_ss_step_matlab.step_info[1][0] Ta = [[siso_tf_kpos, siso_tf_kneg, siso_tf_step_matlab], [siso_tf_step_matlab, siso_tf_kpos, siso_tf_kneg]] mimo_tf_step_info = TSys(TransferFunction( [[Ti.sys.num[0][0] for Ti in Tr] for Tr in Ta], [[Ti.sys.den[0][0] for Ti in Tr] for Tr in Ta])) mimo_tf_step_info.step_info = [[Ti.step_info for Ti in Tr] for Tr in Ta] # enforce enough sample points for all channels (they have different # characteristics) mimo_tf_step_info.kwargs['step_info'] = {'T_num': 2000} systems = locals() if isinstance(request.param, str): return systems[request.param] else: return [systems[sys] for sys in request.param] @pytest.mark.parametrize( "kwargs", [{}, {'X0': 0}, {'X0': np.array([0, 0])}, {'X0': 0, 'return_x': True}, ]) @pytest.mark.parametrize("tsystem", ["siso_ss1"], indirect=True) def test_step_response_siso(self, tsystem, kwargs): """Test SISO system step response""" sys = tsystem.sys t = tsystem.t yref = tsystem.ystep # SISO call out = step_response(sys, T=t, **kwargs) tout, yout = out[:2] assert len(out) == 3 if ('return_x', True) in kwargs.items() else 2 np.testing.assert_array_almost_equal(tout, t) np.testing.assert_array_almost_equal(yout, yref, decimal=4) @pytest.mark.parametrize("tsystem", ["mimo_ss1"], indirect=True) def test_step_response_mimo(self, tsystem): """Test MIMO system, which contains ``siso_ss1`` twice.""" sys = tsystem.sys t = tsystem.t yref = tsystem.ystep _t, y_00 = step_response(sys, T=t, input=0, output=0) _t, y_11 = step_response(sys, T=t, input=1, output=1) np.testing.assert_array_almost_equal(y_00, yref, decimal=4) np.testing.assert_array_almost_equal(y_11, yref, decimal=4) @pytest.mark.parametrize("tsystem", ["mimo_ss1"], indirect=True) def test_step_response_return(self, tsystem): """Verify continuous and discrete time use same return conventions.""" sysc = tsystem.sys sysd = c2d(sysc, 1) # discrete time system Tvec = np.linspace(0, 10, 11) # make sure to use integer times 0..10 Tc, youtc = step_response(sysc, Tvec, input=0) Td, youtd = step_response(sysd, Tvec, input=0) np.testing.assert_array_equal(Tc.shape, Td.shape) np.testing.assert_array_equal(youtc.shape, youtd.shape) @pytest.mark.parametrize("dt", [0, 1], ids=["continuous", "discrete"]) def test_step_nostates(self, dt): """Constant system, continuous and discrete time. gh-374 "Bug in step_response()" """ sys = TransferFunction([1], [1], dt) t, y = step_response(sys) np.testing.assert_allclose(y, np.ones(len(t))) def assert_step_info_match(self, sys, info, info_ref): """Assert reasonable step_info accuracy.""" if sys.isdtime(strict=True): dt = sys.dt else: _, dt = _ideal_tfinal_and_dt(sys, is_step=True) for k in ['RiseTime', 'SettlingTime', 'PeakTime']: np.testing.assert_allclose(info[k], info_ref[k], atol=dt, err_msg=f"{k} does not match") for k in ['Overshoot', 'Undershoot', 'Peak', 'SteadyStateValue']: np.testing.assert_allclose(info[k], info_ref[k], rtol=5e-3, err_msg=f"{k} does not match") # steep gradient right after RiseTime absrefinf = np.abs(info_ref['SteadyStateValue']) if info_ref['RiseTime'] > 0: y_next_sample_max = 0.8*absrefinf/info_ref['RiseTime']*dt else: y_next_sample_max = 0 for k in ['SettlingMin', 'SettlingMax']: if (np.abs(info_ref[k]) - 0.9 * absrefinf) > y_next_sample_max: # local min/max peak well after signal has risen np.testing.assert_allclose(info[k], info_ref[k], rtol=1e-3) @pytest.mark.parametrize( "yfinal", [True, False], ids=["yfinal", "no yfinal"]) @pytest.mark.parametrize( "systype, time_2d", [("ltisys", False), ("time response", False), ("time response", True), ], ids=["ltisys", "time response (n,)", "time response (1,n)"]) @pytest.mark.parametrize( "tsystem", ["siso_tf_step_matlab", "siso_ss_step_matlab", "siso_tf_kpos", "siso_tf_kneg", "siso_tf_type1", "siso_tf_asymptotic_from_neg1"], indirect=["tsystem"]) def test_step_info(self, tsystem, systype, time_2d, yfinal): """Test step info for SISO systems.""" step_info_kwargs = tsystem.kwargs.get('step_info', {}) if systype == "time response": # simulate long enough for steady state value tfinal = 3 * tsystem.step_info['SettlingTime'] if np.isnan(tfinal): pytest.skip("test system does not settle") t, y = step_response(tsystem.sys, T=tfinal, T_num=5000) sysdata = y step_info_kwargs['T'] = t[np.newaxis, :] if time_2d else t else: sysdata = tsystem.sys if yfinal: step_info_kwargs['yfinal'] = tsystem.step_info['SteadyStateValue'] info = step_info(sysdata, **step_info_kwargs) self.assert_step_info_match(tsystem.sys, info, tsystem.step_info) @pytest.mark.parametrize( "yfinal", [True, False], ids=["yfinal", "no_yfinal"]) @pytest.mark.parametrize( "systype", ["ltisys", "time response"]) @pytest.mark.parametrize( "tsystem", ['mimo_ss_step_matlab', pytest.param('mimo_tf_step_info', marks=slycotonly)], indirect=["tsystem"]) def test_step_info_mimo(self, tsystem, systype, yfinal): """Test step info for MIMO systems.""" step_info_kwargs = tsystem.kwargs.get('step_info', {}) if systype == "time response": tfinal = 3 * max([S['SettlingTime'] for Srow in tsystem.step_info for S in Srow]) t, y = step_response(tsystem.sys, T=tfinal, T_num=5000) sysdata = y step_info_kwargs['T'] = t else: sysdata = tsystem.sys if yfinal: step_info_kwargs['yfinal'] = [[S['SteadyStateValue'] for S in Srow] for Srow in tsystem.step_info] info_dict = step_info(sysdata, **step_info_kwargs) for i, row in enumerate(info_dict): for j, info in enumerate(row): self.assert_step_info_match(tsystem.sys, info, tsystem.step_info[i][j]) def test_step_info_invalid(self): """Call step_info with invalid parameters.""" with pytest.raises(ValueError, match="time series data convention"): step_info(["not numeric data"]) with pytest.raises(ValueError, match="time series data convention"): step_info(np.ones((10, 15))) # invalid shape with pytest.raises(ValueError, match="matching time vector"): step_info(np.ones(15), T=np.linspace(0, 1, 20)) # time too long with pytest.raises(ValueError, match="matching time vector"): step_info(np.ones((2, 2, 15))) # no time vector @pytest.mark.parametrize("tsystem", [("no_pole_cancellation", "pole_cancellation")], indirect=True) def test_step_pole_cancellation(self, tsystem): # confirm that pole-zero cancellation doesn't perturb results # https://github.com/python-control/python-control/issues/440 step_info_no_cancellation = step_info(tsystem[0].sys) step_info_cancellation = step_info(tsystem[1].sys) self.assert_step_info_match(tsystem[0].sys, step_info_no_cancellation, step_info_cancellation) @pytest.mark.parametrize( "tsystem, kwargs", [("siso_ss2", {}), ("siso_ss2", {'X0': 0}), ("siso_ss2", {'X0': np.array([0, 0])}), ("siso_ss2", {'X0': 0, 'return_x': True}), ("siso_dtf0", {})], indirect=["tsystem"]) def test_impulse_response_siso(self, tsystem, kwargs): """Test impulse response of SISO systems.""" sys = tsystem.sys t = tsystem.t yref = tsystem.yimpulse out = impulse_response(sys, T=t, **kwargs) tout, yout = out[:2] assert len(out) == 3 if ('return_x', True) in kwargs.items() else 2 np.testing.assert_array_almost_equal(tout, t) np.testing.assert_array_almost_equal(yout, yref, decimal=4) @pytest.mark.parametrize("tsystem", ["mimo_ss2"], indirect=True) def test_impulse_response_mimo(self, tsystem): """"Test impulse response of MIMO systems.""" sys = tsystem.sys t = tsystem.t yref = tsystem.yimpulse _t, y_00 = impulse_response(sys, T=t, input=0, output=0) np.testing.assert_array_almost_equal(y_00, yref, decimal=4) _t, y_11 = impulse_response(sys, T=t, input=1, output=1) np.testing.assert_array_almost_equal(y_11, yref, decimal=4) yref_notrim = np.zeros((2, len(t))) yref_notrim[:1, :] = yref _t, yy = impulse_response(sys, T=t, input=0) np.testing.assert_array_almost_equal(yy[:,0,:], yref_notrim, decimal=4) @pytest.mark.skipif(StrictVersion(sp.__version__) < "1.3", reason="requires SciPy 1.3 or greater") @pytest.mark.parametrize("tsystem", ["siso_tf1"], indirect=True) def test_discrete_time_impulse(self, tsystem): # discrete time impulse sampled version should match cont time dt = 0.1 t = np.arange(0, 3, dt) sys = tsystem.sys sysdt = sys.sample(dt, 'impulse') np.testing.assert_array_almost_equal(impulse_response(sys, t)[1], impulse_response(sysdt, t)[1]) @pytest.mark.parametrize("tsystem", ["siso_ss1"], indirect=True) def test_impulse_response_warnD(self, tsystem): """Test warning about direct feedthrough""" with pytest.warns(UserWarning, match="System has direct feedthrough"): _ = impulse_response(tsystem.sys, tsystem.t) @pytest.mark.parametrize( "kwargs", [{}, {'X0': 0}, {'X0': np.array([0.5, 1])}, {'X0': np.array([[0.5], [1]])}, {'X0': np.array([0.5, 1]), 'return_x': True}, ]) @pytest.mark.parametrize("tsystem", ["siso_ss1"], indirect=True) def test_initial_response(self, tsystem, kwargs): """Test initial response of SISO system""" sys = tsystem.sys t = tsystem.t x0 = kwargs.get('X0', 0) yref = tsystem.yinitial if np.any(x0) else np.zeros_like(t) out = initial_response(sys, T=t, **kwargs) tout, yout = out[:2] assert len(out) == 3 if ('return_x', True) in kwargs.items() else 2 np.testing.assert_array_almost_equal(tout, t) np.testing.assert_array_almost_equal(yout, yref, decimal=4) @pytest.mark.parametrize("tsystem", ["mimo_ss1"], indirect=True) def test_initial_response_mimo(self, tsystem): """Test initial response of MIMO system""" sys = tsystem.sys t = tsystem.t x0 = np.array([[.5], [1.], [.5], [1.]]) yref = tsystem.yinitial yref_notrim = np.broadcast_to(yref, (2, len(t))) _t, y_00 = initial_response(sys, T=t, X0=x0, input=0, output=0) np.testing.assert_array_almost_equal(y_00, yref, decimal=4) _t, y_11 = initial_response(sys, T=t, X0=x0, input=0, output=1) np.testing.assert_array_almost_equal(y_11, yref, decimal=4) _t, yy = initial_response(sys, T=t, X0=x0) np.testing.assert_array_almost_equal(yy, yref_notrim, decimal=4) @pytest.mark.parametrize("tsystem", ["siso_ss1", "siso_tf2"], indirect=True) def test_forced_response_step(self, tsystem): """Test forced response of SISO systems as step response""" sys = tsystem.sys t = tsystem.t u = np.ones_like(t, dtype=float) yref = tsystem.ystep tout, yout = forced_response(sys, t, u) np.testing.assert_array_almost_equal(tout, t) np.testing.assert_array_almost_equal(yout, yref, decimal=4) @pytest.mark.parametrize("u", [np.zeros((10,), dtype=float), 0] # special algorithm ) @pytest.mark.parametrize("tsystem", ["siso_ss1", "siso_tf2"], indirect=True) def test_forced_response_initial(self, tsystem, u): """Test forced response of SISO system as intitial response.""" sys = tsystem.sys t = tsystem.t x0 = tsystem.X0 yref = tsystem.yinitial if isinstance(sys, StateSpace): tout, yout = forced_response(sys, t, u, X0=x0) np.testing.assert_array_almost_equal(tout, t) np.testing.assert_array_almost_equal(yout, yref, decimal=4) else: with pytest.warns(UserWarning, match="Non-zero initial condition " "given for transfer function"): tout, yout = forced_response(sys, t, u, X0=x0) @pytest.mark.parametrize("tsystem, useT", [("mimo_ss1", True), ("mimo_dss2", True), ("mimo_dss2", False)], indirect=["tsystem"]) def test_forced_response_mimo(self, tsystem, useT): """Test forced response of MIMO system""" # first system: initial value, second system: step response sys = tsystem.sys t = tsystem.t u = np.array([[0., 0, 0, 0, 0, 0, 0, 0, 0, 0], [1., 1, 1, 1, 1, 1, 1, 1, 1, 1]]) x0 = np.array([[.5], [1], [0], [0]]) yref = np.vstack([tsystem.yinitial, tsystem.ystep]) if useT: _t, yout = forced_response(sys, t, u, x0) else: _t, yout = forced_response(sys, U=u, X0=x0) np.testing.assert_array_almost_equal(yout, yref, decimal=4) @pytest.mark.usefixtures("editsdefaults") def test_forced_response_legacy(self): # Define a system for testing sys = ct.rss(2, 1, 1) T = np.linspace(0, 10, 10) U = np.sin(T) """Make sure that legacy version of forced_response works""" ct.config.use_legacy_defaults("0.8.4") # forced_response returns x by default t, y = ct.step_response(sys, T) t, y, x = ct.forced_response(sys, T, U) ct.config.use_legacy_defaults("0.9.0") # forced_response returns input/output by default t, y = ct.step_response(sys, T) t, y = ct.forced_response(sys, T, U) t, y, x = ct.forced_response(sys, T, U, return_x=True) @pytest.mark.parametrize( "tsystem, fr_kwargs, refattr", [pytest.param("siso_ss1", {'T': np.linspace(0, 1, 10)}, 'yinitial', id="ctime no U"), pytest.param("siso_dss1", {'T': np.arange(0, 5, 1,)}, 'yinitial', id="dt=True, no U"), pytest.param("siso_dtf1", {'U': np.ones(5,)}, 'ystep', id="dt=True, no T"), pytest.param("siso_dtf2", {'U': np.ones(25,)}, 'ystep', id="dt=0.2, no T"), pytest.param("siso_ss2_dtnone", {'U': np.ones(10,)}, 'ystep', id="dt=None, no T"), pytest.param("siso_dtf3", {'U': np.ones(10,)}, 'ystep', id="dt with rounding error, no T"), ], indirect=["tsystem"]) def test_forced_response_T_U(self, tsystem, fr_kwargs, refattr): """Test documented forced_response behavior for parameters T and U.""" if refattr == 'yinitial': fr_kwargs['X0'] = tsystem.X0 t, y = forced_response(tsystem.sys, **fr_kwargs) np.testing.assert_allclose(t, tsystem.t) np.testing.assert_allclose(y, getattr(tsystem, refattr), rtol=1e-3, atol=1e-5) @pytest.mark.parametrize("tsystem", ["siso_ss1"], indirect=True) def test_forced_response_invalid_c(self, tsystem): """Test invalid parameters.""" with pytest.raises(TypeError, match="StateSpace.*or.*TransferFunction"): forced_response("not a system") with pytest.raises(ValueError, match="T.*is mandatory for continuous"): forced_response(tsystem.sys) with pytest.raises(ValueError, match="time values must be equally " "spaced"): forced_response(tsystem.sys, [0, 0.1, 0.12, 0.4]) @pytest.mark.parametrize("tsystem", ["siso_dss2"], indirect=True) def test_forced_response_invalid_d(self, tsystem): """Test invalid parameters dtime with sys.dt > 0.""" with pytest.raises(ValueError, match="can't both be zero"): forced_response(tsystem.sys) with pytest.raises(ValueError, match="must have same elements"): forced_response(tsystem.sys, T=tsystem.t, U=np.random.randn(1, 12)) with pytest.raises(ValueError, match="must have same elements"): forced_response(tsystem.sys, T=tsystem.t, U=np.random.randn(12)) with pytest.raises(ValueError, match="must match sampling time"): forced_response(tsystem.sys, T=tsystem.t*0.9) with pytest.raises(ValueError, match="must be multiples of " "sampling time"): forced_response(tsystem.sys, T=tsystem.t*1.1) # but this is ok forced_response(tsystem.sys, T=tsystem.t*2) @pytest.mark.parametrize("u, x0, xtrue", [(np.zeros((10,)), np.array([2., 3.]), np.vstack([np.linspace(2, 5, 10), np.full((10,), 3)])), (np.ones((10,)), np.array([0., 0.]), np.vstack([0.5 * np.linspace(0, 1, 10)**2, np.linspace(0, 1, 10)])), (np.linspace(0, 1, 10), np.array([0., 0.]), np.vstack([np.linspace(0, 1, 10)**3 / 6., np.linspace(0, 1, 10)**2 / 2.]))], ids=["zeros", "ones", "linear"]) def test_lsim_double_integrator(self, u, x0, xtrue): """Test forced response of double integrator""" # Note: scipy.signal.lsim fails if A is not invertible A = np.array([[0., 1.], [0., 0.]]) B = np.array([[0.], [1.]]) C = np.array([[1., 0.]]) D = 0. sys = StateSpace(A, B, C, D) t = np.linspace(0, 1, 10) _t, yout, xout = forced_response(sys, t, u, x0, return_x=True) np.testing.assert_array_almost_equal(xout, xtrue, decimal=6) ytrue = np.squeeze(np.asarray(C.dot(xtrue))) np.testing.assert_array_almost_equal(yout, ytrue, decimal=6) @slycotonly def test_step_robustness(self): "Test robustness os step_response against denomiantors: gh-240" # Create 2 input, 2 output system num = [[[0], [1]], [[1], [0]]] den1 = [[[1], [1,1]], [[1, 4], [1]]] sys1 = TransferFunction(num, den1) den2 = [[[1], [1e-10, 1, 1]], [[1, 4], [1]]] # slight perturbation sys2 = TransferFunction(num, den2) t1, y1 = step_response(sys1, input=0, T=2, T_num=100) t2, y2 = step_response(sys2, input=0, T=2, T_num=100) np.testing.assert_array_almost_equal(y1, y2) @pytest.mark.parametrize( "tfsys, tfinal", [(TransferFunction(1, [1, .5]), 13.81551), # pole at 0.5 (TransferFunction(1, [1, .5]).sample(.1), 25), # discrete pole at 0.5 (TransferFunction(1, [1, .5, 0]), 25)]) # poles at 0.5 and 0 def test_auto_generated_time_vector_tfinal(self, tfsys, tfinal): """Confirm a TF with a pole at p simulates for tfinal seconds""" ideal_tfinal, ideal_dt = _ideal_tfinal_and_dt(tfsys) np.testing.assert_allclose(ideal_tfinal, tfinal, rtol=1e-4) T = _default_time_vector(tfsys) np.testing.assert_allclose(T[-1], tfinal, atol=0.5*ideal_dt) @pytest.mark.parametrize("wn, zeta", [(10, 0), (100, 0), (100, .1)]) def test_auto_generated_time_vector_dt_cont1(self, wn, zeta): """Confirm a TF with a natural frequency of wn rad/s gets a dt of 1/(ratio*wn)""" dtref = 0.25133 / wn tfsys = TransferFunction(1, [1, 2*zeta*wn, wn**2]) np.testing.assert_almost_equal(_ideal_tfinal_and_dt(tfsys)[1], dtref, decimal=5) def test_auto_generated_time_vector_dt_cont2(self): """A sampled tf keeps its dt""" wn = 100 zeta = .1 tfsys = TransferFunction(1, [1, 2*zeta*wn, wn**2]).sample(.1) tfinal, dt = _ideal_tfinal_and_dt(tfsys) np.testing.assert_almost_equal(dt, .1) T, _ = initial_response(tfsys) np.testing.assert_almost_equal(np.diff(T[:2]), [.1]) def test_default_timevector_long(self): """Test long time vector""" # TF with fast oscillations simulates only 5000 time steps # even with long tfinal wn = 100 tfsys = TransferFunction(1, [1, 0, wn**2]) tout = _default_time_vector(tfsys, tfinal=100) assert len(tout) == 5000 @pytest.mark.parametrize("fun", [step_response, impulse_response, initial_response]) def test_default_timevector_functions_c(self, fun): """Test that functions can calculate the time vector automatically""" sys = TransferFunction(1, [1, .5, 0]) _tfinal, _dt = _ideal_tfinal_and_dt(sys) # test impose number of time steps tout, _ = fun(sys, T_num=10) assert len(tout) == 10 # test impose final time tout, _ = fun(sys, T=100.) np.testing.assert_allclose(tout[-1], 100., atol=0.5*_dt) @pytest.mark.parametrize("fun", [step_response, impulse_response, initial_response]) @pytest.mark.parametrize("dt", [0.1, 0.112]) def test_default_timevector_functions_d(self, fun, dt): """Test that functions can calculate the time vector automatically""" sys = TransferFunction(1, [1, .5, 0], dt) # test impose number of time steps is ignored with dt given tout, _ = fun(sys, T_num=15) assert len(tout) != 15 # test impose final time tout, _ = fun(sys, 100) np.testing.assert_allclose(tout[-1], 100., atol=0.5*dt) @pytest.mark.parametrize("tsystem", ["siso_ss2", # continuous "siso_tf1", "siso_dss1", # unspecified sampling time "siso_dtf1", "siso_dss2", # matching timebase "siso_dtf2", "siso_ss2_dtnone", # undetermined timebase "mimo_ss2", # MIMO pytest.param("mimo_tf2", marks=slycotonly), "mimo_dss1", pytest.param("mimo_dtf1", marks=slycotonly), ], indirect=True) @pytest.mark.parametrize("fun", [step_response, impulse_response, initial_response, forced_response]) @pytest.mark.parametrize("squeeze", [None, True, False]) def test_time_vector(self, tsystem, fun, squeeze, matarrayout): """Test time vector handling and correct output convention gh-239, gh-295 """ sys = tsystem.sys kw = {} if hasattr(tsystem, "t"): t = tsystem.t kw['T'] = t if fun == forced_response: kw['U'] = np.vstack([np.sin(t) for i in range(sys.ninputs)]) elif fun == forced_response and isctime(sys, strict=True): pytest.skip("No continuous forced_response without time vector.") if hasattr(sys, "nstates"): kw['X0'] = np.arange(sys.nstates) + 1 if sys.ninputs > 1 and fun in [step_response, impulse_response]: kw['input'] = 1 if squeeze is not None: kw['squeeze'] = squeeze out = fun(sys, **kw) tout, yout = out[:2] assert tout.ndim == 1 if hasattr(tsystem, 't'): # tout should always match t, which has shape (n, ) np.testing.assert_allclose(tout, tsystem.t) elif fun == forced_response and sys.dt in [None, True]: np.testing.assert_allclose(np.diff(tout), 1.) if squeeze is False or not sys.issiso(): assert yout.shape[0] == sys.noutputs assert yout.shape[-1] == tout.shape[0] else: assert yout.shape == tout.shape if sys.isdtime(strict=True) and sys.dt is not True and not \ np.isclose(sys.dt, 0.5): kw['T'] =
np.arange(0, 5, 0.5)
numpy.arange
""" Stimulation protocols to run on the opsin models * Neuro-engineering stimuli: ``step``, ``sinusoid``, ``chirp``, ``ramp``, ``delta`` * Opsin-specific protocols: ``rectifier``, ``shortPulse``, ``recovery``. * The ``custom`` protocol can be used with arbitrary interpolation fuctions """ from __future__ import print_function, division import warnings import logging import os import abc from collections import OrderedDict import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl # for tick locators from scipy.interpolate import InterpolatedUnivariateSpline as spline # from scipy.optimize import curve_fit from lmfit import Parameters from pyrho.parameters import * from pyrho.parameters import PyRhOobject, smallSignalAnalysis from pyrho.utilities import * # times2cycles, cycles2times, plotLight, round_sig, expDecay, biExpDecay, findPeaks from pyrho.expdata import * # import loadData from pyrho.fitting import (fitFV, errFV, fitfV, errfV, getRecoveryPeaks, fitRecovery) from pyrho.models import * from pyrho.simulators import * # For characterise() from pyrho.config import * from pyrho import config __all__ = ['protocols', 'selectProtocol', 'characterise'] logger = logging.getLogger(__name__) class Protocol(PyRhOobject): # , metaclass=ABCMeta """Common base class for all protocols.""" __metaclass__ = abc.ABCMeta protocol = None nRuns = None Dt_delay = None cycles = None Dt_total = None dt = None phis = None Vs = None def __init__(self, params=None, saveData=True): if params is None: params = protParams[self.protocol] self.RhO = None self.dataTag = "" self.saveData = saveData self.plotPeakRecovery = False self.plotStateVars = False self.plotKinetics = False self.setParams(params) self.prepare() self.t_start, self.t_end = 0, self.Dt_total self.phi_ts = None self.lam = 470 # Default wavelength [nm] self.PD = None self.Ifig = None def __str__(self): return self.protocol def __repr__(self): return "<PyRhO {} Protocol object (nRuns={}, nPhis={}, nVs={})>".format(self.protocol, self.nRuns, self.nPhis, self.nVs) def __iter__(self): """Iterator to return the pulse sequence for the next trial.""" self.run = 0 self.phiInd = 0 self.vInd = 0 return self def __next__(self): """Iterator to return the pulse sequence for the next trial.""" self.run += 1 if self.run > self.nRuns: raise StopIteration return self.getRunCycles(self.run - 1) def prepare(self): """Function to set-up additional variables and make parameters consistent after any changes. """ if np.isscalar(self.cycles): # Only 'on' duration specified Dt_on = self.cycles if hasattr(self, 'Dt_total'): Dt_off = self.Dt_total - Dt_on - self.Dt_delay else: Dt_off = 0 self.cycles = np.asarray([[Dt_on, Dt_off]]) elif isinstance(self.cycles, (list, tuple, np.ndarray)): if np.isscalar(self.cycles[0]): self.cycles = [self.cycles] # Assume only one pulse else: raise TypeError('Unexpected type for cycles - expected a list or array!') self.cycles = np.asarray(self.cycles) self.nPulses = self.cycles.shape[0] self.pulses, self.Dt_total = cycles2times(self.cycles, self.Dt_delay) self.Dt_delays = np.array([pulse[0] for pulse in self.pulses], copy=True) # pulses[:,0] # Delay Durations #self.Dt_delays = np.array([self.Dt_delay] * self.nRuns) self.Dt_ons = np.array(self.cycles[:, 0]) # self.Dt_ons = np.array([cycle[0] for cycle in self.cycles]) self.Dt_offs = np.array(self.cycles[:, 1]) # self.Dt_offs = np.array([cycle[1] for cycle in self.cycles]) if np.isscalar(self.phis): self.phis = [self.phis] # np.asarray([self.phis]) self.phis.sort(reverse=True) self.nPhis = len(self.phis) if np.isscalar(self.Vs): self.Vs = [self.Vs] # np.asarray([self.Vs]) self.Vs.sort(reverse=True) self.nVs = len(self.Vs) self.extraPrep() return def extraPrep(self): pass def genContainer(self): return [[[None for v in range(self.nVs)] for p in range(self.nPhis)] for r in range(self.nRuns)] def getShortestPeriod(self): # min(self.Dt_delay, min(min(self.cycles))) return np.amin(self.cycles[self.cycles.nonzero()]) def finish(self, PC, RhO): pass def getRunCycles(self, run): return (self.cycles, self.Dt_delay) def genPulseSet(self, genPulse=None): """Function to generate a set of spline functions to phi(t) simulations.""" if genPulse is None: # Default to square pulse generator genPulse = self.genPulse phi_ts = [[[None for pulse in range(self.nPulses)] for phi in range(self.nPhis)] for run in range(self.nRuns)] for run in range(self.nRuns): cycles, Dt_delay = self.getRunCycles(run) pulses, Dt_total = cycles2times(cycles, Dt_delay) for phiInd, phi in enumerate(self.phis): for pInd, pulse in enumerate(pulses): phi_ts[run][phiInd][pInd] = genPulse(run, phi, pulse) self.phi_ts = phi_ts return phi_ts def genPulse(self, run, phi, pulse): """Default interpolation function for square pulses.""" pStart, pEnd = pulse phi_t = spline([pStart, pEnd], [phi, phi], k=1, ext=1) return phi_t def genPlottingStimuli(self, genPulse=None, vInd=0): """Redraw stimulus functions in case data has been realigned.""" if genPulse is None: genPulse = self.genPulse # # for Dt_delay in len(self.Dt_delays): # # self.Dt_delays -= self.PD.trials[run][phiInd][vInd] phi_ts = [[[None for pulse in range(self.nPulses)] for phi in range(self.nPhis)] for run in range(self.nRuns)] for run in range(self.nRuns): #cycles, Dt_delay = self.getRunCycles(run) #pulses, Dt_total = cycles2times(cycles, Dt_delay) for phiInd, phi in enumerate(self.phis): pc = self.PD.trials[run][phiInd][vInd] # if pc.pulseAligned: for p, pulse in enumerate(pc.pulses): phi_ts[run][phiInd][p] = genPulse(run, pc.phi, pulse) #self.phi_ts = self.genPulseSet() return phi_ts def getStimArray(self, run, phiInd, dt): # phi_ts, Dt_delay, cycles, dt): """Return a stimulus array (not spline) with the same sampling rate as the photocurrent. """ cycles, Dt_delay = self.getRunCycles(run) phi_ts = self.phi_ts[run][phiInd][:] nPulses = cycles.shape[0] assert(len(phi_ts) == nPulses) #start, end = RhO.t[0], RhO.t[0]+Dt_delay #start, end = 0.00, Dt_delay start, end = 0, Dt_delay nSteps = int(round(((end-start)/dt)+1)) t = np.linspace(start, end, nSteps, endpoint=True) phi_tV = np.zeros_like(t) #_idx_pulses_ = np.empty([0,2],dtype=int) # Light on and off indexes for each pulse for p in range(nPulses): start = end Dt_on, Dt_off = cycles[p, 0], cycles[p, 1] end = start + Dt_on + Dt_off nSteps = int(round(((end-start)/dt)+1)) tPulse = np.linspace(start, end, nSteps, endpoint=True) phi_t = phi_ts[p] phiPulse = phi_t(tPulse) # -tPulse[0] # Align time vector to 0 for phi_t to work properly #onInd = len(t) - 1 # Start of on-phase #offInd = onInd + int(round(Dt_on/dt)) #_idx_pulses_ = np.vstack((_idx_pulses_, [onInd,offInd])) #t = np.r_[t, tPulse[1:]] phi_tV = np.r_[phi_tV, phiPulse[1:]] phi_tV[np.ma.where(phi_tV < 0)] = 0 # Safeguard for negative phi values return phi_tV #, t, _idx_pulses_ def plot(self, plotStateVars=False): """Plot protocol.""" self.Ifig = plt.figure() self.createLayout(self.Ifig) self.PD.plot(self.axI) self.addAnnotations() self.plotExtras() self.plotStateVars = plotStateVars # TODO: Try producing animated state figures # https://jakevdp.github.io/blog/2013/05/28/a-simple-animation-the-magic-triangle/ #animateStates = True if self.plotStateVars: #RhO = self.RhO for run in range(self.nRuns): for phiInd in range(self.nPhis): for vInd in range(self.nVs): pc = self.PD.trials[run][phiInd][vInd] fileName = '{}States{}s-{}-{}-{}'.format(self.protocol, pc.nStates, run, phiInd, vInd) #RhO.plotStates(pc.t, pc.states, pc.pulses, RhO.stateLabels, phi, pc._idx_peaks_, fileName) logger.info('Plotting states to: {}'.format(fileName)) pc.plotStates(name=fileName) plt.figure(self.Ifig.number) plt.sca(self.axI) self.axI.set_xlim(self.PD.t_start, self.PD.t_end) # if addTitles: # figTitle = self.genTitle() # plt.title(figTitle) #'Photocurrent through time' #self.Ifig.tight_layout() plt.tight_layout() plt.show() figName = os.path.join(config.fDir, self.protocol+self.dataTag+"."+config.saveFigFormat) logger.info("Saving figure for {} protocol to {} as {}".format(self.protocol, figName, config.saveFigFormat)) #externalLegend = False #if externalLegend: # self.Ifig.savefig(figName, bbox_extra_artists=(lgd,), bbox_inches='tight', format=config.saveFigFormat) # Use this to save figures when legend is beside the plot #else: self.Ifig.savefig(figName, format=config.saveFigFormat) return def createLayout(self, Ifig=None, vInd=0): """Create axes for protocols with multiple subplots.""" if Ifig is None: Ifig = plt.figure() self.addStimulus = config.addStimulus #phi_ts = self.genPlottingStimuli() # Default layout self.axI = Ifig.add_subplot(111) plt.sca(self.axI) #plotLight(self.pulses, self.axI) # TODO: Refactor multiple getLineProps def getLineProps(self, run, vInd, phiInd): colours = config.colours styles = config.styles if config.verbose > 1 and (self.nRuns > len(colours) or len(self.phis) > len(colours) or len(self.Vs) > len(colours)): warnings.warn("Warning: only {} line colours are available!".format(len(colours))) if config.verbose > 0 and self.nRuns > 1 and len(self.phis) > 1 and len(self.Vs) > 1: warnings.warn("Warning: Too many changing variables for one plot!") if config.verbose > 2: print("Run=#{}/{}; phiInd=#{}/{}; vInd=#{}/{}".format(run, self.nRuns, phiInd, len(self.phis), vInd, len(self.Vs))) if self.nRuns > 1: col = colours[run % len(colours)] if len(self.phis) > 1: style = styles[phiInd % len(styles)] elif len(self.Vs) > 1: style = styles[vInd % len(styles)] else: style = '-' else: if len(self.Vs) > 1: col = colours[vInd % len(colours)] if len(self.phis) > 1: style = styles[phiInd % len(styles)] else: style = '-' else: if len(self.phis) > 1: col = colours[phiInd % len(colours)] style = '-' else: col = 'b' # colours[0] style = '-' # styles[0] return col, style def plotExtras(self): pass def addAnnotations(self): pass def plotStimulus(self, phi_ts, t_start, pulses, t_end, ax=None, light='shade', col=None, style=None): nPulses = pulses.shape[0] assert(nPulses == len(phi_ts)) nPoints = 10 * int(round(t_end-t_start / self.dt)) + 1 t = np.linspace(t_start, t_end, nPoints) if ax is None: #fig = plt.figure() ax = plt.gca() else: #plt.figure(fig.number) plt.sca(ax) if col is None: for p in range(nPulses): plt.plot(t, phi_ts[p](t)) else: if style is None: style = '-' for p in range(nPulses): plt.plot(t, phi_ts[p](t), color=col, linestyle=style) if light == 'spectral': plotLight(pulses, ax=ax, light='spectral', lam=self.lam) else: plotLight(pulses, ax=ax, light=light) plt.xlabel(r'$\mathrm{Time\ [ms]}$') plt.xlim((t_start, t_end)) plt.ylabel(r'$\mathrm{\phi\ [ph./mm^{2}/s]}$') return ax class protCustom(Protocol): """Present a time-varying stimulus defined by a spline function.""" # Class attributes protocol = 'custom' squarePulse = False # custPulseGenerator = None phi_ft = None def extraPrep(self): """Function to set-up additional variables and make parameters consistent after any changes. """ self.nRuns = 1 # nRuns ### TODO: Reconsider this... #self.custPulseGenerator = self.phi_ft if not hasattr(self, 'phi_ts') or self.phi_ts is None: #self.phi_ts = self.genPulseSet() #self.genPulseSet(self.custPulseGenerator) self.genPulseSet(self.phi_ft) def createLayout(self, Ifig=None, vInd=0): if Ifig is None: Ifig = plt.figure() self.addStimulus = config.addStimulus if self.addStimulus: # self.genPlottingStimuli(self.custPulseGenerator) phi_ts = self.genPlottingStimuli(self.phi_ft) gsStim = plt.GridSpec(4, 1) self.axS = Ifig.add_subplot(gsStim[0, :]) # Stimulus axes self.axI = Ifig.add_subplot(gsStim[1:, :], sharex=self.axS) # Photocurrent axes pc = self.PD.trials[0][0][0] plotLight(pc.pulses, ax=self.axS, light='spectral', lam=470, alpha=0.2) for run in range(self.nRuns): for phiInd in range(self.nPhis): pc = self.PD.trials[run][phiInd][vInd] col, style = self.getLineProps(run, vInd, phiInd) self.plotStimulus(phi_ts[run][phiInd], pc.t_start, self.pulses, pc.t_end, self.axS, light=None, col=col, style=style) #light='spectral' plt.setp(self.axS.get_xticklabels(), visible=False) self.axS.set_xlabel('') else: self.axI = Ifig.add_subplot(111) def plotExtras(self): pass class protStep(Protocol): """Present a step (Heaviside) pulse.""" protocol = 'step' squarePulse = True nRuns = 1 def extraPrep(self): """Function to set-up additional variables and make parameters consistent after any changes. """ self.nRuns = 1 self.phi_ts = self.genPulseSet() def addAnnotations(self): self.axI.get_xaxis().set_minor_locator(mpl.ticker.AutoMinorLocator()) self.axI.get_yaxis().set_minor_locator(mpl.ticker.AutoMinorLocator()) self.axI.grid(b=True, which='minor', axis='both', linewidth=.2) self.axI.grid(b=True, which='major', axis='both', linewidth=1) class protSinusoid(Protocol): """Present oscillating stimuli over a range of frequencies to find the resonant frequency. """ protocol = 'sinusoid' squarePulse = False startOn = False phi0 = 0 def extraPrep(self): """Function to set-up additional variables and make parameters consistent after any changes. """ self.fs = np.sort(np.array(self.fs)) # Frequencies [Hz] self.ws = 2 * np.pi * self.fs / (1000) # Frequencies [rads/ms] (scaled from /s to /ms self.sr = max(10000, int(round(10*max(self.fs)))) # Nyquist frequency - sampling rate (10*f) >= 2*f >= 10/ms #self.dt = 1000/self.sr # dt is set by simulator but used for plotting self.nRuns = len(self.ws) if (1000)/min(self.fs) > min(self.Dt_ons): warnings.warn('Warning: The period of the lowest frequency is longer than the stimulation time!') if isinstance(self.phi0, (int, float, complex)): self.phi0 = np.ones(self.nRuns) * self.phi0 elif isinstance(self.phi0, (list, tuple, np.ndarray)): if len(self.phi0) != self.nRuns: self.phi0 = np.ones(self.nRuns) * self.phi0[0] else: warnings.warn('Unexpected data type for phi0: ', type(self.phi0)) assert(len(self.phi0) == self.nRuns) self.t_start, self.t_end = 0, self.Dt_total self.phi_ts = self.genPulseSet() self.runLabels = [r'$f={}\mathrm{{Hz}}$ '.format(round_sig(f, 3)) for f in self.fs] def getShortestPeriod(self): return 1000/self.sr # dt [ms] def genPulse(self, run, phi, pulse): pStart, pEnd = pulse Dt_on = pEnd - pStart t = np.linspace(0.0, Dt_on, int(round((Dt_on*self.sr/1000))+1), endpoint=True) # Create smooth series of time points to interpolate between if self.startOn: # Generalise to phase offset phi_t = spline(pStart + t, self.phi0[run] + 0.5*phi*(1+np.cos(self.ws[run]*t)), ext=1, k=5) else: phi_t = spline(pStart + t, self.phi0[run] + 0.5*phi*(1-np.cos(self.ws[run]*t)), ext=1, k=5) return phi_t def createLayout(self, Ifig=None, vInd=0): if Ifig is None: Ifig = plt.figure() self.addStimulus = config.addStimulus if self.nRuns > 1: #len(phis) > 1: gsSin = plt.GridSpec(2, 3) self.axIp = Ifig.add_subplot(gsSin[0, -1]) self.axIss = Ifig.add_subplot(gsSin[1, -1], sharex=self.axIp) self.axI = Ifig.add_subplot(gsSin[:, :-1]) else: self.addStimulus = config.addStimulus if self.addStimulus: phi_ts = self.genPlottingStimuli() gsStim = plt.GridSpec(4, 1) self.axS = Ifig.add_subplot(gsStim[0, :]) # Stimulus axes self.axI = Ifig.add_subplot(gsStim[1:, :], sharex=self.axS) # Photocurrent axes for run in range(self.nRuns): for phiInd in range(self.nPhis): pc = self.PD.trials[run][phiInd][vInd] col, style = self.getLineProps(run, vInd, phiInd) self.plotStimulus(phi_ts[run][phiInd], pc.t_start, pc.pulses, pc.t_end, self.axS, light='spectral', col=col, style=style) plt.setp(self.axS.get_xticklabels(), visible=False) self.axS.set_xlabel('') # plt.xlabel('') self.axS.set_ylim(self.phi0[0], max(self.phis)) # phi0[r] if max(self.phis) / min(self.phis) >= 100: self.axS.set_yscale('log') # plt.yscale('log') else: self.axI = Ifig.add_subplot(111) def plotExtras(self): splineOrder = 2 # [1,5] trim = 0.1 transEndInd = int(self.Dt_delays[0] + round(self.Dt_ons[0] * trim / self.dt)) if self.nRuns > 1: #plt.figure(Ifig.number) #axI.legend().set_visible(False) #if len(self.phis) > 1: fstars = np.zeros((self.nPhis, self.nVs)) for phiInd, phiOn in enumerate(self.phis): # TODO: These loops need reconsidering...!!! for vInd, V in enumerate(self.Vs): Ipeaks = np.zeros(self.nRuns) for run in range(self.nRuns): PC = self.PD.trials[run][phiInd][vInd] Ipeaks[run] = abs(PC.I_peak_) # Maximum absolute value over all peaks from that trial Ip = self.PD.trials[np.argmax(Ipeaks)][phiInd][vInd].I_peak_ col, style = self.getLineProps(run, vInd, phiInd) self.axIp.plot(self.fs, Ipeaks, 'x', color=col) try: intIp = spline(self.fs, Ipeaks, k=splineOrder) #nPoints = 10*int(round(abs(np.log10(self.fs[-1])-np.log10(self.fs[0]))+1)) fsmooth = np.logspace(np.log10(self.fs[0]), np.log10(self.fs[-1]), num=1001) self.axIp.plot(fsmooth, intIp(fsmooth)) except: if config.verbose > 0: print('Unable to plot spline for current peaks!') fstar_p = self.fs[np.argmax(Ipeaks)] fstars[phiInd, vInd] = fstar_p Ap = max(Ipeaks) #fpLabel = r'$f^*_{{peak}}={}$ $\mathrm{{[Hz]}}$'.format(round_sig(fstar_p,3)) self.axIp.plot(fstar_p, Ap, '*', markersize=10) #axIp.annotate(fpLabel, xy=(fstar_p,Ap), xytext=(0.7, 0.9), textcoords='axes fraction', arrowprops={'arrowstyle':'->','color':'black'}) self.axIp.set_xscale('log') self.axIp.set_ylabel(r'$|A|_{peak}$ $\mathrm{[nA]}$') if config.addTitles: #self.axIp.set_title('$\mathrm{|Amplitude|_{peak}\ vs.\ frequency}.\ f^*:=arg\,max_f(|A|)$') self.axIp.set_title(r'$f^*:=arg\,max_f(|A|_{peak})$') #axIp.set_aspect('auto') # Calculate the time to allow for transition effects from the period of fstar_p # buffer = 3 # fstar_p = max(max(fstars)) # transD = buffer * np.ceil(1000/fstar_p) # [ms] # transEndInd = round((self.Dt_delays[0]+transD)/self.dt) # if transEndInd >= (self.Dt_ons[0])/self.dt: # If transition period is greater than the on period # transEndInd = round((self.Dt_delays[0]+self.Dt_ons[0]/2)/self.dt) # Take the second half of the data tTransEnd = transEndInd * self.dt #ts[0][0][0] self.axI.axvline(x=tTransEnd, linestyle=':', color='k') arrow = {'arrowstyle': '<->', 'color': 'black', 'shrinkA': 0, 'shrinkB': 0} for phiInd, phiOn in enumerate(self.phis): # TODO: These loops need reconsidering...!!! for vInd, V in enumerate(self.Vs): PC = self.PD.trials[np.argmax(Ipeaks)][phiInd][vInd] onBegInd, onEndInd = PC._idx_pulses_[0] t = PC.t self.axI.annotate('', xy=(tTransEnd, Ip), xytext=(t[onEndInd], Ip), arrowprops=arrow) for phiInd, phiOn in enumerate(self.phis): for vInd, V in enumerate(self.Vs): Iabs = np.zeros(self.nRuns) # [None for r in range(nRuns)] for run in range(self.nRuns): PC = self.PD.trials[run][phiInd][vInd] onBegInd, onEndInd = PC._idx_pulses_[0] t = PC.t # t = ts[run][phiInd][vInd] I_RhO = PC.I # I_RhO = Is[run][phiInd][vInd] #transEndInd = np.searchsorted(t,Dt_delay+transD,side="left") # Add one since upper bound is not included in slice #if transEndInd >= len(t): # If transition period is greater than the on period # transEndInd = round(len(t[onBegInd:onEndInd+1])/2) # Take the second half of the data #print(fstar_p,'Hz --> ',transD,'ms;', transEndInd,':',onEndInd+1) I_zone = I_RhO[transEndInd:onEndInd+1] try: maxV = max(I_zone) except ValueError: maxV = 0.0 try: minV = min(I_zone) except ValueError: minV = 0.0 Iabs[run] = abs(maxV-minV) #axI.axvline(x=t[transEndInd],linestyle=':',color='k') #axI.annotate('Search zone', xy=(t[transEndInd], min(I_RhO)), xytext=(t[onEndInd], min(I_RhO)), arrowprops={'arrowstyle':'<->','color':'black'}) col, style = self.getLineProps(run, vInd, phiInd) # TODO: Modify to match colours correctly self.axIss.plot(self.fs, Iabs, 'x', color=col) try: intIss = spline(self.fs, Iabs, k=splineOrder) #fsmooth = np.logspace(self.fs[0], self.fs[-1], 100) self.axIss.plot(fsmooth, intIss(fsmooth)) except: if config.verbose > 0: print('Unable to plot spline for current steady-states!') fstar_abs = self.fs[np.argmax(Iabs)] fstars[phiInd,vInd] = fstar_abs Aabs = max(Iabs) fabsLabel = r'$f^*_{{res}}={}$ $\mathrm{{[Hz]}}$'.format(round_sig(fstar_abs,3)) self.axIss.plot(fstar_abs, Aabs, '*', markersize=10, label=fabsLabel) self.axIss.legend(loc='best') #axIss.annotate(fabsLabel, xy=(fstar_abs,Aabs), xytext=(0.7, 0.9), textcoords='axes fraction', arrowprops={'arrowstyle':'->','color':'black'}) if config.verbose > 0: print('Resonant frequency (phi={}; V={}) = {} Hz'.format(phiOn, V, fstar_abs)) self.axIss.set_xscale('log') self.axIss.set_xlabel(r'$f$ $\mathrm{[Hz]}$') self.axIss.set_ylabel(r'$|A|_{ss}$ $\mathrm{[nA]}$') if config.addTitles: #axIss.set_title('$\mathrm{|Amplitude|_{ss}\ vs.\ frequency}.\ f^*:=arg\,max_f(|A|)$') self.axIss.set_title(r'$f^*:=arg\,max_f(|A|_{ss})$') plt.tight_layout() self.fstars = fstars if len(self.phis) > 1: # Multiple light amplitudes #for i, phi0 in enumerate(self.phi0): fstarAfig = plt.figure() for vInd, V in enumerate(self.Vs): if self.phi0[0] > 0: # phi0[r] plt.plot(
np.array(self.phis)
numpy.array
import unittest import hail as hl import hail.expr.aggregators as agg from subprocess import DEVNULL, call as syscall import numpy as np from struct import unpack import hail.utils as utils from hail.linalg import BlockMatrix from math import sqrt from .utils import resource, doctest_resource, startTestHailContext, stopTestHailContext setUpModule = startTestHailContext tearDownModule = stopTestHailContext class Tests(unittest.TestCase): _dataset = None def get_dataset(self): if Tests._dataset is None: Tests._dataset = hl.split_multi_hts(hl.import_vcf(resource('sample.vcf'))) return Tests._dataset def test_ibd(self): dataset = self.get_dataset() def plinkify(ds, min=None, max=None): vcf = utils.new_temp_file(prefix="plink", suffix="vcf") plinkpath = utils.new_temp_file(prefix="plink") hl.export_vcf(ds, vcf) threshold_string = "{} {}".format("--min {}".format(min) if min else "", "--max {}".format(max) if max else "") plink_command = "plink --double-id --allow-extra-chr --vcf {} --genome full --out {} {}" \ .format(utils.uri_path(vcf), utils.uri_path(plinkpath), threshold_string) result_file = utils.uri_path(plinkpath + ".genome") syscall(plink_command, shell=True, stdout=DEVNULL, stderr=DEVNULL) ### format of .genome file is: # _, fid1, iid1, fid2, iid2, rt, ez, z0, z1, z2, pihat, phe, # dst, ppc, ratio, ibs0, ibs1, ibs2, homhom, hethet (+ separated) ### format of ibd is: # i (iid1), j (iid2), ibd: {Z0, Z1, Z2, PI_HAT}, ibs0, ibs1, ibs2 results = {} with open(result_file) as f: f.readline() for line in f: row = line.strip().split() results[(row[1], row[3])] = (list(map(float, row[6:10])), list(map(int, row[14:17]))) return results def compare(ds, min=None, max=None): plink_results = plinkify(ds, min, max) hail_results = hl.identity_by_descent(ds, min=min, max=max).collect() for row in hail_results: key = (row.i, row.j) self.assertAlmostEqual(plink_results[key][0][0], row.ibd.Z0, places=4) self.assertAlmostEqual(plink_results[key][0][1], row.ibd.Z1, places=4) self.assertAlmostEqual(plink_results[key][0][2], row.ibd.Z2, places=4) self.assertAlmostEqual(plink_results[key][0][3], row.ibd.PI_HAT, places=4) self.assertEqual(plink_results[key][1][0], row.ibs0) self.assertEqual(plink_results[key][1][1], row.ibs1) self.assertEqual(plink_results[key][1][2], row.ibs2) compare(dataset) compare(dataset, min=0.0, max=1.0) dataset = dataset.annotate_rows(dummy_maf=0.01) hl.identity_by_descent(dataset, dataset['dummy_maf'], min=0.0, max=1.0) hl.identity_by_descent(dataset, hl.float32(dataset['dummy_maf']), min=0.0, max=1.0) def test_impute_sex_same_as_plink(self): ds = hl.import_vcf(resource('x-chromosome.vcf')) sex = hl.impute_sex(ds.GT, include_par=True) vcf_file = utils.uri_path(utils.new_temp_file(prefix="plink", suffix="vcf")) out_file = utils.uri_path(utils.new_temp_file(prefix="plink")) hl.export_vcf(ds, vcf_file) utils.run_command(["plink", "--vcf", vcf_file, "--const-fid", "--check-sex", "--silent", "--out", out_file]) plink_sex = hl.import_table(out_file + '.sexcheck', delimiter=' +', types={'SNPSEX': hl.tint32, 'F': hl.tfloat64}) plink_sex = plink_sex.select('IID', 'SNPSEX', 'F') plink_sex = plink_sex.select( s=plink_sex.IID, is_female=hl.cond(plink_sex.SNPSEX == 2, True, hl.cond(plink_sex.SNPSEX == 1, False, hl.null(hl.tbool))), f_stat=plink_sex.F).key_by('s') sex = sex.select('is_female', 'f_stat') self.assertTrue(plink_sex._same(sex.select_globals(), tolerance=1e-3)) ds = ds.annotate_rows(aaf=(agg.call_stats(ds.GT, ds.alleles)).AF[1]) self.assertTrue(hl.impute_sex(ds.GT)._same(hl.impute_sex(ds.GT, aaf='aaf'))) def test_linreg(self): phenos = hl.import_table(resource('regressionLinear.pheno'), types={'Pheno': hl.tfloat64}, key='Sample') covs = hl.import_table(resource('regressionLinear.cov'), types={'Cov1': hl.tfloat64, 'Cov2': hl.tfloat64}, key='Sample') mt = hl.import_vcf(resource('regressionLinear.vcf')) mt = mt.annotate_cols(pheno=phenos[mt.s].Pheno, cov=covs[mt.s]) mt = mt.annotate_entries(x = mt.GT.n_alt_alleles()).cache() t1 = hl.linear_regression( y=mt.pheno, x=mt.GT.n_alt_alleles(), covariates=[mt.cov.Cov1, mt.cov.Cov2 + 1 - 1]).rows() t1 = t1.select(p=t1.linreg.p_value) t2 = hl.linear_regression( y=mt.pheno, x=mt.x, covariates=[mt.cov.Cov1, mt.cov.Cov2]).rows() t2 = t2.select(p=t2.linreg.p_value) t3 = hl.linear_regression( y=[mt.pheno], x=mt.x, covariates=[mt.cov.Cov1, mt.cov.Cov2]).rows() t3 = t3.select(p=t3.linreg.p_value[0]) t4 = hl.linear_regression( y=[mt.pheno, mt.pheno], x=mt.x, covariates=[mt.cov.Cov1, mt.cov.Cov2]).rows() t4a = t4.select(p=t4.linreg.p_value[0]) t4b = t4.select(p=t4.linreg.p_value[1]) self.assertTrue(t1._same(t2)) self.assertTrue(t1._same(t3)) self.assertTrue(t1._same(t4a)) self.assertTrue(t1._same(t4b)) def test_linear_regression_with_two_cov(self): covariates = hl.import_table(resource('regressionLinear.cov'), key='Sample', types={'Cov1': hl.tfloat, 'Cov2': hl.tfloat}) pheno = hl.import_table(resource('regressionLinear.pheno'), key='Sample', missing='0', types={'Pheno': hl.tfloat}) mt = hl.import_vcf(resource('regressionLinear.vcf')) mt = hl.linear_regression(y=pheno[mt.s].Pheno, x=mt.GT.n_alt_alleles(), covariates=list(covariates[mt.s].values())) results = dict(mt.aggregate_rows(hl.agg.collect((mt.locus.position, mt.linreg)))) self.assertAlmostEqual(results[1].beta, -0.28589421, places=6) self.assertAlmostEqual(results[1].standard_error, 1.2739153, places=6) self.assertAlmostEqual(results[1].t_stat, -0.22442167, places=6) self.assertAlmostEqual(results[1].p_value, 0.84327106, places=6) self.assertAlmostEqual(results[2].beta, -0.5417647, places=6) self.assertAlmostEqual(results[2].standard_error, 0.3350599, places=6) self.assertAlmostEqual(results[2].t_stat, -1.616919, places=6) self.assertAlmostEqual(results[2].p_value, 0.24728705, places=6) self.assertAlmostEqual(results[3].beta, 1.07367185, places=6) self.assertAlmostEqual(results[3].standard_error, 0.6764348, places=6) self.assertAlmostEqual(results[3].t_stat, 1.5872510, places=6) self.assertAlmostEqual(results[3].p_value, 0.2533675, places=6) self.assertTrue(np.isnan(results[6].standard_error)) self.assertTrue(np.isnan(results[6].t_stat)) self.assertTrue(np.isnan(results[6].p_value)) self.assertTrue(np.isnan(results[7].standard_error)) self.assertTrue(np.isnan(results[8].standard_error)) self.assertTrue(np.isnan(results[9].standard_error)) self.assertTrue(np.isnan(results[10].standard_error)) def test_linear_regression_with_two_cov_pl(self): covariates = hl.import_table(resource('regressionLinear.cov'), key='Sample', types={'Cov1': hl.tfloat, 'Cov2': hl.tfloat}) pheno = hl.import_table(resource('regressionLinear.pheno'), key='Sample', missing='0', types={'Pheno': hl.tfloat}) mt = hl.import_vcf(resource('regressionLinear.vcf')) mt = hl.linear_regression(y=pheno[mt.s].Pheno, x=hl.pl_dosage(mt.PL), covariates=list(covariates[mt.s].values())) results = dict(mt.aggregate_rows(hl.agg.collect((mt.locus.position, mt.linreg)))) self.assertAlmostEqual(results[1].beta, -0.29166985, places=6) self.assertAlmostEqual(results[1].standard_error, 1.2996510, places=6) self.assertAlmostEqual(results[1].t_stat, -0.22442167, places=6) self.assertAlmostEqual(results[1].p_value, 0.84327106, places=6) self.assertAlmostEqual(results[2].beta, -0.5499320, places=6) self.assertAlmostEqual(results[2].standard_error, 0.3401110, places=6) self.assertAlmostEqual(results[2].t_stat, -1.616919, places=6) self.assertAlmostEqual(results[2].p_value, 0.24728705, places=6) self.assertAlmostEqual(results[3].beta, 1.09536219, places=6) self.assertAlmostEqual(results[3].standard_error, 0.6901002, places=6) self.assertAlmostEqual(results[3].t_stat, 1.5872510, places=6) self.assertAlmostEqual(results[3].p_value, 0.2533675, places=6) def test_linear_regression_with_two_cov_dosage(self): covariates = hl.import_table(resource('regressionLinear.cov'), key='Sample', types={'Cov1': hl.tfloat, 'Cov2': hl.tfloat}) pheno = hl.import_table(resource('regressionLinear.pheno'), key='Sample', missing='0', types={'Pheno': hl.tfloat}) mt = hl.import_gen(resource('regressionLinear.gen'), sample_file=resource('regressionLinear.sample')) mt = hl.linear_regression(y=pheno[mt.s].Pheno, x=hl.gp_dosage(mt.GP), covariates=list(covariates[mt.s].values())) results = dict(mt.aggregate_rows(hl.agg.collect((mt.locus.position, mt.linreg)))) self.assertAlmostEqual(results[1].beta, -0.29166985, places=4) self.assertAlmostEqual(results[1].standard_error, 1.2996510, places=4) self.assertAlmostEqual(results[1].t_stat, -0.22442167, places=6) self.assertAlmostEqual(results[1].p_value, 0.84327106, places=6) self.assertAlmostEqual(results[2].beta, -0.5499320, places=4) self.assertAlmostEqual(results[2].standard_error, 0.3401110, places=4) self.assertAlmostEqual(results[2].t_stat, -1.616919, places=6) self.assertAlmostEqual(results[2].p_value, 0.24728705, places=6) self.assertAlmostEqual(results[3].beta, 1.09536219, places=4) self.assertAlmostEqual(results[3].standard_error, 0.6901002, places=4) self.assertAlmostEqual(results[3].t_stat, 1.5872510, places=6) self.assertAlmostEqual(results[3].p_value, 0.2533675, places=6) self.assertTrue(
np.isnan(results[6].standard_error)
numpy.isnan
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import ScalarFormatter, FormatStrFormatter from matplotlib.path import Path import matplotlib.patches as patches ############################################## # PLOTTING FUNCTIONS FOR WIDGETS ############################################## def fcn_FDEM_InductionSpherePlaneWidget(xtx,ytx,ztx,m,orient,x0,y0,z0,a,sig,mur,xrx,yrx,zrx,logf,Comp,Phase): sig = 10**sig f = 10**logf fvec =
np.logspace(0,8,41)
numpy.logspace
import numpy as np import unittest import discretize from discretize.utils import volume_average from numpy.testing import assert_array_equal, assert_allclose class TestVolumeAverage(unittest.TestCase): def test_tensor_to_tensor(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [] h2s = [] for i in range(3): print(f"Tensor to Tensor {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TensorMesh(h2s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tree(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [h1] h2s = [h2] insert_1 = [0.25] insert_2 = [0.75] for i in range(1, 3): print(f"Tree to Tree {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_1.append(0.25) insert_2.append(0.75) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TreeMesh(h2s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tensor(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [h1] h2s = [h2] insert_1 = [0.25] for i in range(1, 3): print(f"Tree to Tensor {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_1.append(0.25) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TensorMesh(h2s) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tensor_to_tree(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() h1s = [h1] h2s = [h2] insert_2 = [0.75] for i in range(1, 3): print(f"Tensor to Tree {i+1}D: ", end="") h1s.append(h1) h2s.append(h2) insert_2.append(0.75) mesh1 = discretize.TensorMesh(h1s) mesh2 = discretize.TreeMesh(h2s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_errors(self): h1 = np.random.rand(16) h1 /= h1.sum() h2 = np.random.rand(16) h2 /= h2.sum() mesh1D = discretize.TensorMesh([h1]) mesh2D = discretize.TensorMesh([h1, h1]) mesh3D = discretize.TensorMesh([h1, h1, h1]) hr = np.r_[1, 1, 0.5] hz = np.r_[2, 1] meshCyl = discretize.CylMesh([hr, 1, hz], np.r_[0.0, 0.0, 0.0]) mesh2 = discretize.TreeMesh([h2, h2]) mesh2.insert_cells([0.75, 0.75], [4]) with self.assertRaises(TypeError): # Gives a wrong typed object to the function volume_average(mesh1D, h1) with self.assertRaises(NotImplementedError): # Gives a wrong typed mesh volume_average(meshCyl, mesh2) with self.assertRaises(ValueError): # Gives mismatching mesh dimensions volume_average(mesh2D, mesh3D) model1 = np.random.randn(mesh2D.nC) bad_model1 = np.random.randn(3) bad_model2 = np.random.rand(1) # gives input values with incorrect lengths with self.assertRaises(ValueError): volume_average(mesh2D, mesh2, bad_model1) with self.assertRaises(ValueError): volume_average(mesh2D, mesh2, model1, bad_model2) def test_tree_to_tree_same_base(self): h1 = np.random.rand(16) h1 /= h1.sum() h1s = [h1] insert_1 = [0.25] insert_2 = [0.75] for i in range(1, 3): print(f"Tree to Tree {i+1}D: same base", end="") h1s.append(h1) insert_1.append(0.25) insert_2.append(0.75) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TreeMesh(h1s) mesh2.insert_cells([insert_2], [4]) in_put = np.random.rand(mesh1.nC) out_put = np.empty(mesh2.nC) # test the three ways of calling... out1 = volume_average(mesh1, mesh2, in_put, out_put) assert_array_equal(out1, out_put) out2 = volume_average(mesh1, mesh2, in_put) assert_allclose(out1, out2) Av = volume_average(mesh1, mesh2) out3 = Av @ in_put assert_allclose(out1, out3) vol1 = np.sum(mesh1.vol * in_put) vol2 = np.sum(mesh2.vol * out3) print(vol1, vol2) self.assertAlmostEqual(vol1, vol2) def test_tree_to_tensor_same_base(self): h1 = np.random.rand(16) h1 /= h1.sum() h1s = [h1] insert_1 = [0.25] for i in range(1, 3): print(f"Tree to Tensor {i+1}D same base: ", end="") h1s.append(h1) insert_1.append(0.25) mesh1 = discretize.TreeMesh(h1s) mesh1.insert_cells([insert_1], [4]) mesh2 = discretize.TensorMesh(h1s) in_put = np.random.rand(mesh1.nC) out_put =
np.empty(mesh2.nC)
numpy.empty
# -*- coding: utf-8 -*- from __future__ import print_function, division # Built-ins from collections import OrderedDict, defaultdict import sys, datetime, copy, warnings # External import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.stats import entropy, mannwhitneyu from scipy.spatial.distance import squareform, pdist from itertools import combinations # soothsayer_utils from soothsayer_utils import assert_acceptable_arguments, is_symmetrical, is_graph, is_nonstring_iterable, dict_build, dict_filter, is_dict, is_dict_like, is_color, is_number, write_object, format_memory, format_header, check_packages try: from . import __version__ except ImportError: __version__ = "ImportError: attempted relative import with no known parent package" # ensemble_networkx from ensemble_networkx import Symmetric, condensed_to_dense # ========== # Conversion # ========== # Polar to cartesian coordinates def polar_to_cartesian(r, theta): x = r * np.cos(theta) y = r * np.sin(theta) return(x, y) # Cartesian to polar coordinates def cartesian_to_polar(x, y): r = np.sqrt(x**2 + y**2) theta = np.arctan2(y, x) return(r, theta) # ============= # Normalization # ============= # Normalize MinMax def normalize_minmax(x, feature_range=(0,1)): """ Adapted from the following source: * https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html """ x_std = (x - x.min())/(x.max() - x.min()) return x_std * (feature_range[1] - feature_range[0]) + feature_range[0] # ======================================================= # Hive # ======================================================= class Hive(object): def __init__(self, data, name=None, node_type=None, edge_type=None, axis_type=None, description=None, tol=1e-10): """ Hive plots for undirected networks Hive plots: Should only be used with 2-3 axis unless intelligently ordered b/c the arcs will overlap. Notes: * Does not store networkx graph to overuse memory just use .to_networkx as generate them in real time. Usage: import soothsayer_utils as syu import ensemble_networkx ax enx import hive_networkx as hx # Load data X, y, colors = syu.get_iris_data(["X", "y", "colors"]) n, m = X.shape # Get association matrix (n,n) method = "pearson" df_sim = X.T.corr(method=method) ratio = 0.382 number_of_edges = int((n**2 - n)/2) number_of_edges_negative = int(ratio*number_of_edges) # Make half of the edges negative to showcase edge coloring (not statistically meaningful at all) for a, b in zip(np.random.RandomState(0).randint(low=0, high=149, size=number_of_edges_negative), np.random.RandomState(1).randint(low=0, high=149, size=number_of_edges_negative)): if a != b: df_sim.values[a,b] = df_sim.values[b,a] = df_sim.values[a,b]*-1 # Create a Symmetric object from the association matrix sym_iris = enx.Symmetric(data=df_sim, node_type="<NAME>", edge_type=method, name="iris", association="network") # ==================================== # Symmetric(Name:iris, dtype: float64) # ==================================== # * Number of nodes (iris sample): 150 # * Number of edges (correlation): 11175 # * Association: network # * Memory: 174.609 KB # -------------------------------- # | Weights # -------------------------------- # (iris_1, iris_0) 0.995999 # (iris_0, iris_2) 0.999974 # (iris_3, iris_0) 0.998168 # (iris_0, iris_4) 0.999347 # (iris_0, iris_5) 0.999586 # ... # (iris_148, iris_146) 0.988469 # (iris_149, iris_146) 0.986481 # (iris_147, iris_148) 0.995708 # (iris_149, iris_147) 0.994460 # (iris_149, iris_148) 0.999916 # Create NetworkX graph from the Symmetric object graph_iris = sym_iris.to_networkx() # # Create Hive hive = hx.Hive(graph_iris, axis_type="species") # Organize nodes by species for each axis number_of_query_nodes = 3 axis_nodes = OrderedDict() for species, _y in y.groupby(y): axis_nodes[species] = _y.index[:number_of_query_nodes] # Make sure there each node is specific to an axis (not fastest way, easiest to understand) nodelist = list() for name_axis, nodes in axis_nodes.items(): nodelist += nodes.tolist() assert pd.Index(nodelist).value_counts().max() == 1, "Each node must be on only one axis" # Add axis for each species node_styles = dict(zip(['setosa', 'versicolor', 'virginica'], ["o", "p", "D"])) for name_axis, nodes in axis_nodes.items(): hive.add_axis(name_axis, nodes, sizes=150, colors=colors[nodes], split_axis=True, node_style=node_styles[name_axis]) hive.compile() # =============================== # Hive(Name:iris, dtype: float64) # =============================== # * Number of nodes (iris sample): 150 # * Number of edges (pearson): 11175 # * Axes (species): ['setosa', 'versicolor', 'virginica'] # * Memory: 174.609 KB # * Compiled: True # --------------------------- # | Axes # --------------------------- # 0. setosa (3) [iris_0, iris_1, iris_2] # 1. versicolor (3) [iris_50, iris_51, iris_52] # 2. virginica (3) [iris_100, iris_101, iris_102] # Plot Hive color_negative, color_positive = ('#278198', '#dc3a23') edge_colors = hive.weights.map(lambda w: {True:color_negative, False:color_positive}[w < 0]) legend = dict(zip(["Positive", "Negative"], [color_positive, color_negative])) fig, axes = hive.plot(func_edgeweight=lambda w: (w**10), edge_colors=edge_colors, style="light", show_node_labels=True, title="Iris", legend=legend) """ # Placeholders self.nodes_in_hive = None self.edges_in_hive = None self.weights = None # self.graph = None self.name = name self.node_type = node_type self.edge_type = edge_type # Propogate if isinstance(data, pd.DataFrame): data = self._from_pandas_adjacency(data, name, node_type, edge_type, tol) # -> Symmetric if isinstance(data, Symmetric): self._from_symmetric(data, name, node_type, edge_type) if all([ (self.nodes_in_hive is None), (self.edges_in_hive is None), (self.weights is None), ]): assert is_graph(data), "`data` must be either a pd.DataFrame adjacency, a Symmetric, or a networkx graph object" # Last resort, use this if Symmetric isn't provided self._from_networkx(data) # Initialize self.axes = OrderedDict() self.node_mapping_ = OrderedDict() self.compiled = False self.axis_type = axis_type self.description = description self.version = __version__ self.number_of_nodes_ = None self.memory = self.weights.memory_usage() self.__synthesized__ = datetime.datetime.utcnow() def _from_pandas_adjacency(self, data, name, node_type, edge_type, tol): # Convert pd.DataFrame into a Symmetric object assert isinstance(data, pd.DataFrame), "Must be a 2-dimensional pandas DataFrame object" assert is_symmetrical(data, tol=tol), "DataFrame must be symmetrical. Please force symmetry with (X + X.T)/2" return Symmetric(data=data, name=name, node_type=node_type, edge_type=edge_type, association="network", nans_ok=False, tol=tol) def _from_symmetric(self, data, name, node_type, edge_type): # Propogate information from Symmetric if name is None: self.name = data.name if node_type is None: self.node_type = data.node_type if edge_type is None: self.edge_type = data.edge_type self.nodes_in_hive = data.nodes self.edges_in_hive = data.edges self.weights = data.weights # return data.to_networkx() def _from_networkx(self, graph): # Propogate information from graph for attr in ["name", "node_type", "edge_type"]: if getattr(self, attr) is None: if attr in graph.graph: value =graph.graph[attr] if bool(value): setattr(self, attr, value) # if self.graph is None: # self.graph = graph if self.nodes_in_hive is None: self.nodes_in_hive = pd.Index(sorted(graph.nodes())) if (self.edges_in_hive is None) or (self.weights is None): self.weights = dict() for edge_data in graph.edges(data=True): edge = frozenset(edge_data[:-1]) weight = edge_data[-1]["weight"] self.weights[edge] = weight self.weights = pd.Series(self.weights, name="Weights")#.sort_index() self.edges_in_hive = pd.Index(self.weights.index, name="Edges") # Built-ins def __repr__(self): pad = 4 header = format_header("Hive(Name:{}, dtype: {})".format(self.name, self.weights.dtype),line_character="=") n = len(header.split("\n")[0]) fields = [ header, pad*" " + "* Number of nodes ({}): {}".format(self.node_type, len(self.nodes_in_hive)), pad*" " + "* Number of edges ({}): {}".format(self.edge_type, len(self.edges_in_hive)), pad*" " + "* Axes ({}): {}".format(self.axis_type, list(self.axes.keys())), pad*" " + "* Memory: {}".format(format_memory(self.memory)), pad*" " + "* Compiled: {}".format(self.compiled), ] if self.compiled: for field in map(lambda line:pad*" " + line, format_header("| Axes", "-", n=n-pad).split("\n")): fields.append(field) for field in map(lambda line: pad*" " + str(line), repr(self.axes_preview_).split("\n")[:-1]): fields.append(field) return "\n".join(fields) def __call__(self, name_axis=None): return self.get_axis_data(name_axis=name_axis) # def __getitem__(self, key): # return self.weights[key] # Add axis to HivePlot def add_axis(self, name_axis, nodes, sizes=None, colors=None, split_axis:bool=False, node_style="o", scatter_kws=dict()): """ Add or update axis nodes: Can be either an iterable of nodes or a dict-like with node positions {node:position} """ # Initialize axis container self.axes[name_axis] = defaultdict(dict) self.axes[name_axis]["colors"] = None self.axes[name_axis]["sizes"] = None self.axes[name_axis]["split_axis"] = split_axis self.axes[name_axis]["node_style"] = node_style self.axes[name_axis]["scatter_kws"] = scatter_kws # Assign (preliminary) node positions if is_nonstring_iterable(nodes) and not isinstance(nodes, pd.Series): nodes = pd.Series(np.arange(len(nodes)), index=nodes) if is_dict(nodes): nodes = pd.Series(nodes) nodes = nodes.sort_values() assert set(nodes.index) <= set(self.nodes_in_hive), "All nodes in axis should be in the Hive and they aren't..." # Set values self.axes[name_axis]["node_positions"] = pd.Series(nodes, name=(name_axis, "node_positions")) self.axes[name_axis]["nodes"] = pd.Index(nodes.index, name=(name_axis, "nodes")) self.axes[name_axis]["number_of_nodes"] = nodes.size # Group node with axis self.node_mapping_.update(dict_build([(name_axis, self.axes[name_axis]["nodes"])])) # Assign component colors if colors is None: colors = "white" if is_color(colors): colors = dict_build([(colors, self.axes[name_axis]["nodes"])]) if is_dict(colors): colors = pd.Series(colors) if not is_color(colors): if is_nonstring_iterable(colors) and not isinstance(colors, pd.Series): colors = pd.Series(colors, index=self.axes[name_axis]["nodes"]) self.axes[name_axis]["colors"] = pd.Series(colors[self.axes[name_axis]["nodes"]], name=(name_axis, "node_colors")) # Assign component sizes if sizes is None: sizes = 100 if is_number(sizes): sizes = dict_build([(sizes, self.axes[name_axis]["nodes"])]) if is_dict(sizes): sizes = pd.Series(sizes) self.axes[name_axis]["sizes"] = pd.Series(sizes[nodes.index], name=(name_axis, "node_sizes")) # Compile the data for plotting def compile(self, axes_theta_degrees=None, split_theta_degree=None, inner_radius=None, theta_center=90, axis_normalize=True, axis_maximum=1000): """ inner_radius should be similar units to axis_maximum """ number_of_axes = len(self.axes) if split_theta_degree is None: split_theta_degree = (360/number_of_axes)*0.16180339887 self.split_theta_degree = split_theta_degree self.axis_maximum = axis_maximum if inner_radius is None: if axis_normalize: inner_radius = (1/5)*self.axis_maximum else: inner_radius = 3 self.inner_radius = inner_radius self.outer_radius = self.axis_maximum - self.inner_radius self.theta_center = theta_center # Adjust all of the node_positions for i, query_axis in enumerate(self.axes): # If the axis is normalized, force everything between the minimum position and the `outer_radius` (that is, the axis_maximum - inner_radius. This ensures the axis_maximum is actually what is defined) if axis_normalize: node_positions = self.axes[query_axis]["node_positions"] self.axes[query_axis]["node_positions_normalized"] = normalize_minmax(node_positions, feature_range=(min(node_positions), self.outer_radius) ) else: self.axes[query_axis]["node_positions_normalized"] = self.axes[query_axis]["node_positions"].copy() # Offset the node positions by the inner radius self.axes[query_axis]["node_positions_normalized"] = self.axes[query_axis]["node_positions_normalized"] + self.inner_radius # Axis thetas if axes_theta_degrees is not None: assert hasattr(axes_theta_degrees, "__iter__"), "`axes_theta_degrees` must be either None or an iterable of {} angles in degrees".format(number_of_axes) assert len(axes_theta_degrees) == number_of_axes, "`axes_theta_degrees` must be either None or an iterable of {} angles in degrees".format(number_of_axes) if axes_theta_degrees is None: axes_theta_degrees = list() for i in range(number_of_axes): theta_add = (360/number_of_axes)*i axes_theta_degrees.append(theta_add) # Adjust all of the axes angles for i, query_axis in enumerate(self.axes): # If the axis is in single mode theta_add = axes_theta_degrees[i] #(360/number_of_axes)*i if not self.axes[query_axis]["split_axis"]: # If the query axis is the first then the `theta_add` will be 0 self.axes[query_axis]["theta"] = np.array([self.theta_center + theta_add]) else: self.axes[query_axis]["theta"] = np.array([self.theta_center + theta_add - split_theta_degree, self.theta_center + theta_add + split_theta_degree]) self.axes[query_axis]["theta"] = np.deg2rad(self.axes[query_axis]["theta"]) self.axes_theta_degrees_ = dict(zip(self.axes.keys(), axes_theta_degrees)) # Nodes self.nodes_ = list() for axes_data in self.axes.values(): self.nodes_ += list(axes_data["nodes"]) assert len(self.nodes_) == len(set(self.nodes_)), "Axes cannot contain duplicate nodes" self.number_of_nodes_ = len(self.nodes_) # Edges self.edges_ = list(map(frozenset, combinations(self.nodes_, r=2))) self.number_of_edges_ = len(self.edges_) # Axes self.number_of_axes_ = number_of_axes self.axes_preview_ = pd.Series(dict(zip(self.axes.keys(), map(lambda data:list(data["nodes"]), self.axes.values()))), name="Axes preview") self.axes_preview_.index = self.axes_preview_.index.map(lambda name_axis: "{}. {} ({})".format(self.axes_preview_.index.get_loc(name_axis), name_axis, len(self.axes_preview_[name_axis]))) # Compile self.compiled = True def _get_quadrant_info(self, theta_representative): # 0/360 if theta_representative in np.deg2rad([0,360]): horizontalalignment = "left" verticalalignment = "center" quadrant = 0 # 90 if theta_representative == np.deg2rad(90): horizontalalignment = "center" verticalalignment = "bottom" quadrant = 90 # 180 if theta_representative == np.deg2rad(180): horizontalalignment = "right" verticalalignment = "center" quadrant = 180 # 270 if theta_representative == np.deg2rad(270): horizontalalignment = "center" verticalalignment = "top" quadrant = 270 # Quadrant 1 if
np.deg2rad(0)
numpy.deg2rad
import numpy as np import sys class Softmax(): def __init__(self, D, C, learning_rate=1e-3): self.W = 0.001 * np.random.randn(D, C) self.lr = learning_rate def get_weights(self): return self.W def predict(self, X): scores = np.dot(X, self.W) pred = np.argmax(scores, axis=1) return pred def update_weights(self, grad): self.W += -self.lr * grad def vectorized_loss(self, X, y, reg): """ W - Weights (D x C) : (784 x 10) X - Training images (N x D) : (120 : 784) y - Training labels (N, ) : (120, ) reg - Regularizing constant """ dW =
np.zeros_like(self.W)
numpy.zeros_like
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from .data import Data from .. import backend as bkd from .. import config from ..utils import get_num_args, run_if_all_none class PDE(Data): """ODE or time-independent PDE solver. Args: geometry: Instance of ``Geometry``. pde: A global PDE or a list of PDEs. ``None`` if no global PDE. bcs: A boundary condition or a list of boundary conditions. Use ``[]`` if no boundary condition. num_domain (int): The number of training points sampled inside the domain. num_boundary (int): The number of training points sampled on the boundary. train_distribution (string): The distribution to sample training points. One of the following: "uniform" (equispaced grid), "pseudo" (pseudorandom), "LHS" (Latin hypercube sampling), "Halton" (Halton sequence), "Hammersley" (Hammersley sequence), or "Sobol" (Sobol sequence). anchors: A Numpy array of training points, in addition to the `num_domain` and `num_boundary` sampled points. exclusions: A Numpy array of points to be excluded for training. solution: The reference solution. num_test: The number of points sampled inside the domain for testing. The testing points on the boundary are the same set of points used for training. If ``None``, then the training points will be used for testing. auxiliary_var_function: A function that inputs `train_x` or `test_x` and outputs auxiliary variables. Warning: The testing points include points inside the domain and points on the boundary, and they may not have the same density, and thus the entire testing points may not be uniformly distributed. As a result, if you have a reference solution (`solution`) and would like to compute a metric such as .. code-block:: python Model.compile(metrics=["l2 relative error"]) then the metric may not be very accurate. To better compute a metric, you can sample the points manually, and then use ``Model.predict()`` to predict the solution on thess points and compute the metric: .. code-block:: python x = geom.uniform_points(num, boundary=True) y_true = ... y_pred = model.predict(x) error= dde.metrics.l2_relative_error(y_true, y_pred) Attributes: train_x_all: A Numpy array of all points for training. `train_x_all` is unordered, and does not have duplication. train_x: A Numpy array of the points fed into the network for training. `train_x` is constructed from `train_x_all`, ordered from BCs to PDE, and may have duplicate points. train_x_bc: A Numpy array of the training points for BCs. `train_x_bc` is constructed from `train_x_all` at the first step of training, by default it won't be updated when `train_x_all` changes. To update `train_x_bc`, set it to `None` and call `bc_points`, and then update the loss function by ``model.compile()``. num_bcs (list): `num_bcs[i]` is the number of points for `bcs[i]`. test_x: A Numpy array of the points fed into the network for testing, ordered from BCs to PDE. The BC points are exactly the same points in `train_x_bc`. train_aux_vars: Auxiliary variables that associate with `train_x`. test_aux_vars: Auxiliary variables that associate with `test_x`. """ def __init__( self, geometry, pde, bcs, num_domain=0, num_boundary=0, train_distribution="Sobol", anchors=None, exclusions=None, solution=None, num_test=None, auxiliary_var_function=None, ): self.geom = geometry self.pde = pde self.bcs = bcs if isinstance(bcs, (list, tuple)) else [bcs] self.num_domain = num_domain self.num_boundary = num_boundary if train_distribution not in [ "uniform", "pseudo", "LHS", "Halton", "Hammersley", "Sobol", ]: raise ValueError( "train_distribution == {} is not available choices.".format( train_distribution ) ) self.train_distribution = train_distribution self.anchors = None if anchors is None else anchors.astype(config.real(np)) self.exclusions = exclusions self.soln = solution self.num_test = num_test self.auxiliary_var_fn = auxiliary_var_function # TODO: train_x_all is used for PDE losses. It is better to add train_x_pde explicitly. self.train_x_all = None self.train_x, self.train_y = None, None self.train_x_bc = None self.num_bcs = None self.test_x, self.test_y = None, None self.train_aux_vars, self.test_aux_vars = None, None self.train_next_batch() self.test() def losses(self, targets, outputs, loss, model): f = [] if self.pde is not None: if get_num_args(self.pde) == 2: f = self.pde(model.net.inputs, outputs) elif get_num_args(self.pde) == 3: if self.auxiliary_var_fn is None: raise ValueError("Auxiliary variable function not defined.") f = self.pde(model.net.inputs, outputs, model.net.auxiliary_vars) if not isinstance(f, (list, tuple)): f = [f] if not isinstance(loss, (list, tuple)): loss = [loss] * (len(f) + len(self.bcs)) elif len(loss) != len(f) + len(self.bcs): raise ValueError( "There are {} errors, but only {} losses.".format( len(f) + len(self.bcs), len(loss) ) ) bcs_start =
np.cumsum([0] + self.num_bcs)
numpy.cumsum
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den =
N.array([1,1,1])
numpy.array
import copy import math import datetime import numpy as np from kbdiffdi.features import feature np.warnings.filterwarnings('ignore') class FFDI(object): def __init__(self): self.KBDI = None self.prcp = None self.temp = None self.wind = None self.rel_hum = None def fit(self, initKBDI, initprcp, inittemp, initwind, initrelhum): self.KBDI = initKBDI self.prcp = initprcp self.temp = inittemp self.wind = initwind self.rel_hum = initrelhum x = self.calculate_sig_rain_event() x_lim = self.calc_x_lim() DF = self.griffith_drought_factor(x, x_lim) FFDI = self.forest_fire_danger_index(DF) return FFDI, DF def calculate_sig_rain_event(self): """ See Finkele et al. 2006 and Lucas 2010 for a detailed explanation. Basically, in order to calculate the drought factor, a calculation of "significant rainfall events" during the past 20 days needs to be calculated. A rainfall event is defined as a set of consecutive days each with rainfall above 2 mm. the rainfall event amount P (not be confused with daily precip) is the sum of the rainfall within the event. A rainfall event can be a single rain day. Event age N (not to be confused with days since last rain) is defined as the number of days since the day with the largest daily rainfall amount within the rain event. Precip data should be in millimeters """ #daysagolist = [] #rainsumlist = [] n = 0 window = 20 # to look at the past 20 days. (20 including the current day. So there will only be a 19 days ago max. today is zero days ago. there is a total of 20 days analyzed though) x_3d_arr = None while n < len(self.prcp.data): if n < window: prev_rain_cube = np.array(self.prcp.data[:n+1]) # use all available past data, because there hasn't been 20 days of data yet else: prev_rain_cube = np.array(self.prcp.data[n+1-window:n+1]) # to get the last 20 days # disgusting off by one... :( # now that there is a datastructure holding the previous 20 days of rain data, # iterate through the prevRainCube, and update the sigEvent data to hold # the relevant information for the significant rain event in the past 20 days prev_rain_cube = np.where(prev_rain_cube < 2, 0, prev_rain_cube) # rain events need to have more than 2 mm of precipitation days_ago = np.zeros(shape=(len(prev_rain_cube), len(prev_rain_cube[0]), len(prev_rain_cube[0][0]), len(prev_rain_cube[0][0][0]))) rain_sum = np.zeros(shape=(len(prev_rain_cube), len(prev_rain_cube[0]), len(prev_rain_cube[0][0]), len(prev_rain_cube[0][0][0]))) running_total = np.zeros(shape=(len(self.prcp.data[0][0]), len(self.prcp.data[0][0][0]))) cur_max = np.zeros(shape=(len(self.prcp.data[0][0]), len(self.prcp.data[0][0][0]))) cur_max_idx = np.zeros(shape=(len(self.prcp.data[0][0]), len(self.prcp.data[0][0][0]))) for layer in range(len(prev_rain_cube)): running_total = running_total + prev_rain_cube[layer] rain_sum[layer] = np.where(prev_rain_cube[layer] == 0, 0, rain_sum[layer]) days_ago[layer] = np.where(prev_rain_cube[layer] == 0, len(prev_rain_cube)-layer-1, days_ago[layer]) # first day of 20 if layer == 0 and layer != len(prev_rain_cube)-1: # a consecutive event, start the tallying running_total = np.where((prev_rain_cube[layer] != 0) & (prev_rain_cube[layer+1] != 0), prev_rain_cube[layer], running_total) cur_max_idx =
np.where((prev_rain_cube[layer] != 0) & (prev_rain_cube[layer+1] !=0), layer, cur_max_idx)
numpy.where
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import numpy as np from pyscf import lib from pyscf import scf from pyscf.lib import logger from pyscf.cc import ccsd from pyscf.cc import uccsd from pyscf.cc import eom_rccsd from pyscf.cc import eom_gccsd from pyscf.cc import addons ######################################## # EOM-IP-CCSD ######################################## class EOMIP(eom_gccsd.EOMIP): def __init__(self, cc): gcc = addons.convert_to_gccsd(cc) eom_gccsd.EOMIP.__init__(self, gcc) ######################################## # EOM-EA-CCSD ######################################## class EOMEA(eom_gccsd.EOMEA): def __init__(self, cc): gcc = addons.convert_to_gccsd(cc) eom_gccsd.EOMEA.__init__(self, gcc) ######################################## # EOM-EE-CCSD ######################################## def eeccsd(eom, nroots=1, koopmans=False, guess=None, eris=None, imds=None): '''Calculate N-electron neutral excitations via EOM-EE-CCSD. Kwargs: nroots : int Number of roots (eigenvalues) requested koopmans : bool Calculate Koopmans'-like (1p1h) excitations only, targeting via overlap. guess : list of ndarray List of guess vectors to use for targeting via overlap. ''' if eris is None: eris = eom._cc.ao2mo() if imds is None: imds = eom.make_imds(eris) spinvec_size = eom.vector_size() nroots = min(nroots, spinvec_size) diag_ee, diag_sf = eom.get_diag(imds) guess_ee = [] guess_sf = [] if guess and guess[0].size == spinvec_size: raise NotImplementedError #TODO: initial guess from GCCSD EOM amplitudes #orbspin = scf.addons.get_ghf_orbspin(eris.mo_coeff) #nmo = np.sum(eom.nmo) #nocc = np.sum(eom.nocc) #for g in guess: # r1, r2 = eom_gccsd.vector_to_amplitudes_ee(g, nmo, nocc) # r1aa = r1[orbspin==0][:,orbspin==0] # r1ab = r1[orbspin==0][:,orbspin==1] # if abs(r1aa).max() > 1e-7: # r1 = addons.spin2spatial(r1, orbspin) # r2 = addons.spin2spatial(r2, orbspin) # guess_ee.append(eom.amplitudes_to_vector(r1, r2)) # else: # r1 = spin2spatial_eomsf(r1, orbspin) # r2 = spin2spatial_eomsf(r2, orbspin) # guess_sf.append(amplitudes_to_vector_eomsf(r1, r2)) # r1 = r2 = r1aa = r1ab = g = None #nroots_ee = len(guess_ee) #nroots_sf = len(guess_sf) elif guess: for g in guess: if g.size == diag_ee.size: guess_ee.append(g) else: guess_sf.append(g) nroots_ee = len(guess_ee) nroots_sf = len(guess_sf) else: dee = np.sort(diag_ee)[:nroots] dsf = np.sort(diag_sf)[:nroots] dmax = np.sort(np.hstack([dee,dsf]))[nroots-1] nroots_ee = np.count_nonzero(dee <= dmax) nroots_sf = np.count_nonzero(dsf <= dmax) guess_ee = guess_sf = None def eomee_sub(cls, nroots, guess, diag): ee_sub = cls(eom._cc) ee_sub.__dict__.update(eom.__dict__) e, v = ee_sub.kernel(nroots, koopmans, guess, eris, imds, diag=diag) if nroots == 1: e, v = [e], [v] ee_sub.converged = [ee_sub.converged] return list(ee_sub.converged), list(e), list(v) e0 = e1 = [] v0 = v1 = [] conv0 = conv1 = [] if nroots_ee > 0: conv0, e0, v0 = eomee_sub(EOMEESpinKeep, nroots_ee, guess_ee, diag_ee) if nroots_sf > 0: conv1, e1, v1 = eomee_sub(EOMEESpinFlip, nroots_sf, guess_sf, diag_sf) e = np.hstack([e0,e1]) idx = e.argsort() e = e[idx] conv = conv0 + conv1 conv = [conv[x] for x in idx] v = v0 + v1 v = [v[x] for x in idx] if nroots == 1: conv = conv[0] e = e[0] v = v[0] eom.converged = conv eom.e = e eom.v = v return eom.e, eom.v def eomee_ccsd(eom, nroots=1, koopmans=False, guess=None, eris=None, imds=None, diag=None): if eris is None: eris = eom._cc.ao2mo() if imds is None: imds = eom.make_imds(eris) eom.converged, eom.e, eom.v \ = eom_rccsd.kernel(eom, nroots, koopmans, guess, imds=imds, diag=diag) return eom.e, eom.v def eomsf_ccsd(eom, nroots=1, koopmans=False, guess=None, eris=None, imds=None, diag=None): '''Spin flip EOM-EE-CCSD ''' return eomee_ccsd(eom, nroots, koopmans, guess, eris, imds, diag) amplitudes_to_vector_ee = uccsd.amplitudes_to_vector vector_to_amplitudes_ee = uccsd.vector_to_amplitudes def amplitudes_to_vector_eomsf(t1, t2, out=None): t1ab, t1ba = t1 t2baaa, t2aaba, t2abbb, t2bbab = t2 nocca, nvirb = t1ab.shape noccb, nvira = t1ba.shape otrila = np.tril_indices(nocca, k=-1) otrilb = np.tril_indices(noccb, k=-1) vtrila = np.tril_indices(nvira, k=-1) vtrilb = np.tril_indices(nvirb, k=-1) baaa = np.take(t2baaa.reshape(noccb*nocca,nvira*nvira), vtrila[0]*nvira+vtrila[1], axis=1) abbb = np.take(t2abbb.reshape(nocca*noccb,nvirb*nvirb), vtrilb[0]*nvirb+vtrilb[1], axis=1) vector = np.hstack((t1ab.ravel(), t1ba.ravel(), baaa.ravel(), t2aaba[otrila].ravel(), abbb.ravel(), t2bbab[otrilb].ravel())) return vector def vector_to_amplitudes_eomsf(vector, nmo, nocc): nocca, noccb = nocc nmoa, nmob = nmo nvira, nvirb = nmoa-nocca, nmob-noccb t1ab = vector[:nocca*nvirb].reshape(nocca,nvirb).copy() t1ba = vector[nocca*nvirb:nocca*nvirb+noccb*nvira].reshape(noccb,nvira).copy() pvec = vector[t1ab.size+t1ba.size:] nbaaa = noccb*nocca*nvira*(nvira-1)//2 naaba = nocca*(nocca-1)//2*nvirb*nvira nabbb = nocca*noccb*nvirb*(nvirb-1)//2 nbbab = noccb*(noccb-1)//2*nvira*nvirb t2baaa = np.zeros((noccb*nocca,nvira*nvira), dtype=vector.dtype) t2aaba = np.zeros((nocca*nocca,nvirb*nvira), dtype=vector.dtype) t2abbb = np.zeros((nocca*noccb,nvirb*nvirb), dtype=vector.dtype) t2bbab = np.zeros((noccb*noccb,nvira*nvirb), dtype=vector.dtype) otrila = np.tril_indices(nocca, k=-1) otrilb = np.tril_indices(noccb, k=-1) vtrila = np.tril_indices(nvira, k=-1) vtrilb = np.tril_indices(nvirb, k=-1) oidxab = np.arange(nocca*noccb, dtype=np.int32) vidxab = np.arange(nvira*nvirb, dtype=np.int32) v = pvec[:nbaaa].reshape(noccb*nocca,-1) lib.takebak_2d(t2baaa, v, oidxab, vtrila[0]*nvira+vtrila[1]) lib.takebak_2d(t2baaa,-v, oidxab, vtrila[1]*nvira+vtrila[0]) v = pvec[nbaaa:nbaaa+naaba].reshape(-1,nvirb*nvira) lib.takebak_2d(t2aaba, v, otrila[0]*nocca+otrila[1], vidxab) lib.takebak_2d(t2aaba,-v, otrila[1]*nocca+otrila[0], vidxab) v = pvec[nbaaa+naaba:nbaaa+naaba+nabbb].reshape(nocca*noccb,-1) lib.takebak_2d(t2abbb, v, oidxab, vtrilb[0]*nvirb+vtrilb[1]) lib.takebak_2d(t2abbb,-v, oidxab, vtrilb[1]*nvirb+vtrilb[0]) v = pvec[nbaaa+naaba+nabbb:].reshape(-1,nvira*nvirb) lib.takebak_2d(t2bbab, v, otrilb[0]*noccb+otrilb[1], vidxab) lib.takebak_2d(t2bbab,-v, otrilb[1]*noccb+otrilb[0], vidxab) t2baaa = t2baaa.reshape(noccb,nocca,nvira,nvira) t2aaba = t2aaba.reshape(nocca,nocca,nvirb,nvira) t2abbb = t2abbb.reshape(nocca,noccb,nvirb,nvirb) t2bbab = t2bbab.reshape(noccb,noccb,nvira,nvirb) return (t1ab,t1ba), (t2baaa, t2aaba, t2abbb, t2bbab) def spatial2spin_eomsf(rx, orbspin): '''Convert EOM spatial R1,R2 to spin-orbital R1,R2''' if len(rx) == 2: # r1 r1ab, r1ba = rx nocca, nvirb = r1ab.shape noccb, nvira = r1ba.shape else: r2baaa,r2aaba,r2abbb,r2bbab = rx noccb, nocca, nvira = r2baaa.shape[:3] nvirb = r2aaba.shape[2] nocc = nocca + noccb nvir = nvira + nvirb idxoa = np.where(orbspin[:nocc] == 0)[0] idxob = np.where(orbspin[:nocc] == 1)[0] idxva = np.where(orbspin[nocc:] == 0)[0] idxvb = np.where(orbspin[nocc:] == 1)[0] if len(rx) == 2: # r1 r1 = np.zeros((nocc,nvir), dtype=r1ab.dtype) lib.takebak_2d(r1, r1ab, idxoa, idxvb) lib.takebak_2d(r1, r1ba, idxob, idxva) return r1 else: r2 = np.zeros((nocc**2,nvir**2), dtype=r2aaba.dtype) idxoaa = idxoa[:,None] * nocc + idxoa idxoab = idxoa[:,None] * nocc + idxob idxoba = idxob[:,None] * nocc + idxoa idxobb = idxob[:,None] * nocc + idxob idxvaa = idxva[:,None] * nvir + idxva idxvab = idxva[:,None] * nvir + idxvb idxvba = idxvb[:,None] * nvir + idxva idxvbb = idxvb[:,None] * nvir + idxvb r2baaa = r2baaa.reshape(noccb*nocca,nvira*nvira) r2aaba = r2aaba.reshape(nocca*nocca,nvirb*nvira) r2abbb = r2abbb.reshape(nocca*noccb,nvirb*nvirb) r2bbab = r2bbab.reshape(noccb*noccb,nvira*nvirb) lib.takebak_2d(r2, r2baaa, idxoba.ravel(), idxvaa.ravel()) lib.takebak_2d(r2, r2aaba, idxoaa.ravel(), idxvba.ravel()) lib.takebak_2d(r2, r2abbb, idxoab.ravel(), idxvbb.ravel()) lib.takebak_2d(r2, r2bbab, idxobb.ravel(), idxvab.ravel()) lib.takebak_2d(r2, r2baaa, idxoab.T.ravel(), idxvaa.T.ravel()) lib.takebak_2d(r2, r2aaba, idxoaa.T.ravel(), idxvab.T.ravel()) lib.takebak_2d(r2, r2abbb, idxoba.T.ravel(), idxvbb.T.ravel()) lib.takebak_2d(r2, r2bbab, idxobb.T.ravel(), idxvba.T.ravel()) return r2.reshape(nocc,nocc,nvir,nvir) def spin2spatial_eomsf(rx, orbspin): '''Convert EOM spin-orbital R1,R2 to spatial R1,R2''' if rx.ndim == 2: # r1 nocc, nvir = rx.shape else: nocc, nvir = rx.shape[1:3] idxoa = np.where(orbspin[:nocc] == 0)[0] idxob = np.where(orbspin[:nocc] == 1)[0] idxva = np.where(orbspin[nocc:] == 0)[0] idxvb = np.where(orbspin[nocc:] == 1)[0] nocca = len(idxoa) noccb = len(idxob) nvira = len(idxva) nvirb = len(idxvb) if rx.ndim == 2: r1ab = lib.take_2d(rx, idxoa, idxvb) r1ba = lib.take_2d(rx, idxob, idxva) return r1ab, r1ba else: idxoaa = idxoa[:,None] * nocc + idxoa idxoab = idxoa[:,None] * nocc + idxob idxoba = idxob[:,None] * nocc + idxoa idxobb = idxob[:,None] * nocc + idxob idxvaa = idxva[:,None] * nvir + idxva idxvab = idxva[:,None] * nvir + idxvb idxvba = idxvb[:,None] * nvir + idxva idxvbb = idxvb[:,None] * nvir + idxvb r2 = rx.reshape(nocc**2,nvir**2) r2baaa = lib.take_2d(r2, idxoba.ravel(), idxvaa.ravel()) r2aaba = lib.take_2d(r2, idxoaa.ravel(), idxvba.ravel()) r2abbb = lib.take_2d(r2, idxoab.ravel(), idxvbb.ravel()) r2bbab = lib.take_2d(r2, idxobb.ravel(), idxvab.ravel()) r2baaa = r2baaa.reshape(noccb,nocca,nvira,nvira) r2aaba = r2aaba.reshape(nocca,nocca,nvirb,nvira) r2abbb = r2abbb.reshape(nocca,noccb,nvirb,nvirb) r2bbab = r2bbab.reshape(noccb,noccb,nvira,nvirb) return r2baaa,r2aaba,r2abbb,r2bbab # Ref: <NAME>, and <NAME>. Chem. Theory Comput. 10, 5567 (2014) Eqs.(9)-(10) # Note: Last line in Eq. (10) is superfluous. # See, e.g. Gwaltney, Nooijen, and Barlett, Chem. Phys. Lett. 248, 189 (1996) def eomee_ccsd_matvec(eom, vector, imds=None): if imds is None: imds = eom.make_imds() t1, t2, eris = imds.t1, imds.t2, imds.eris t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape nmoa, nmob = nocca+nvira, noccb+nvirb r1, r2 = vector_to_amplitudes_ee(vector, (nmoa,nmob), (nocca,noccb)) r1a, r1b = r1 r2aa, r2ab, r2bb = r2 #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:Hr2aa += lib.einsum('ijef,aebf->ijab', tau2aa, eris_vvvv) * .5 #:Hr2bb += lib.einsum('ijef,aebf->ijab', tau2bb, eris_VVVV) * .5 #:Hr2ab += lib.einsum('iJeF,aeBF->iJaB', tau2ab, eris_vvVV) tau2aa, tau2ab, tau2bb = uccsd.make_tau(r2, r1, t1, 2) Hr2aa, Hr2ab, Hr2bb = eom._cc._add_vvvv(None, (tau2aa,tau2ab,tau2bb), eris) Hr2aa *= .5 Hr2bb *= .5 tau2aa = tau2ab = tau2bb = None Hr1a = lib.einsum('ae,ie->ia', imds.Fvva, r1a) Hr1a -= lib.einsum('mi,ma->ia', imds.Fooa, r1a) Hr1a += np.einsum('me,imae->ia',imds.Fova, r2aa) Hr1a += np.einsum('ME,iMaE->ia',imds.Fovb, r2ab) Hr1b = lib.einsum('ae,ie->ia', imds.Fvvb, r1b) Hr1b -= lib.einsum('mi,ma->ia', imds.Foob, r1b) Hr1b += np.einsum('me,imae->ia',imds.Fovb, r2bb) Hr1b += np.einsum('me,mIeA->IA',imds.Fova, r2ab) Hr2aa += lib.einsum('mnij,mnab->ijab', imds.woooo, r2aa) * .25 Hr2bb += lib.einsum('mnij,mnab->ijab', imds.wOOOO, r2bb) * .25 Hr2ab += lib.einsum('mNiJ,mNaB->iJaB', imds.woOoO, r2ab) Hr2aa += lib.einsum('be,ijae->ijab', imds.Fvva, r2aa) Hr2bb += lib.einsum('be,ijae->ijab', imds.Fvvb, r2bb) Hr2ab += lib.einsum('BE,iJaE->iJaB', imds.Fvvb, r2ab) Hr2ab += lib.einsum('be,iJeA->iJbA', imds.Fvva, r2ab) Hr2aa -= lib.einsum('mj,imab->ijab', imds.Fooa, r2aa) Hr2bb -= lib.einsum('mj,imab->ijab', imds.Foob, r2bb) Hr2ab -= lib.einsum('MJ,iMaB->iJaB', imds.Foob, r2ab) Hr2ab -= lib.einsum('mj,mIaB->jIaB', imds.Fooa, r2ab) #:tau2aa, tau2ab, tau2bb = uccsd.make_tau(r2, r1, t1, 2) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:Hr1a += lib.einsum('mfae,imef->ia', eris_ovvv, r2aa) #:tmpaa = lib.einsum('meaf,ijef->maij', eris_ovvv, tau2aa) #:Hr2aa+= lib.einsum('mb,maij->ijab', t1a, tmpaa) #:tmpa = lib.einsum('mfae,me->af', eris_ovvv, r1a) #:tmpa-= lib.einsum('meaf,me->af', eris_ovvv, r1a) #:Hr1b += lib.einsum('mfae,imef->ia', eris_OVVV, r2bb) #:tmpbb = lib.einsum('meaf,ijef->maij', eris_OVVV, tau2bb) #:Hr2bb+= lib.einsum('mb,maij->ijab', t1b, tmpbb) #:tmpb = lib.einsum('mfae,me->af', eris_OVVV, r1b) #:tmpb-= lib.einsum('meaf,me->af', eris_OVVV, r1b) #:Hr1b += lib.einsum('mfAE,mIfE->IA', eris_ovVV, r2ab) #:tmpab = lib.einsum('meAF,iJeF->mAiJ', eris_ovVV, tau2ab) #:Hr2ab-= lib.einsum('mb,mAiJ->iJbA', t1a, tmpab) #:tmpb-= lib.einsum('meAF,me->AF', eris_ovVV, r1a) #:Hr1a += lib.einsum('MFae,iMeF->ia', eris_OVvv, r2ab) #:tmpba =-lib.einsum('MEaf,iJfE->MaiJ', eris_OVvv, tau2ab) #:Hr2ab+= lib.einsum('MB,MaiJ->iJaB', t1b, tmpba) #:tmpa-= lib.einsum('MEaf,ME->af', eris_OVvv, r1b) tau2aa = uccsd.make_tau_aa(r2aa, r1a, t1a, 2) mem_now = lib.current_memory()[0] max_memory = max(0, eom.max_memory - mem_now) tmpa = np.zeros((nvira,nvira)) tmpb = np.zeros((nvirb,nvirb)) blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0, p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] Hr1a += lib.einsum('mfae,imef->ia', ovvv, r2aa[:,p0:p1]) tmpaa = lib.einsum('meaf,ijef->maij', ovvv, tau2aa) Hr2aa+= lib.einsum('mb,maij->ijab', t1a[p0:p1], tmpaa) tmpa+= lib.einsum('mfae,me->af', ovvv, r1a[p0:p1]) tmpa-= lib.einsum('meaf,me->af', ovvv, r1a[p0:p1]) ovvv = tmpaa = None tau2aa = None tau2bb = uccsd.make_tau_aa(r2bb, r1b, t1b, 2) blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] Hr1b += lib.einsum('mfae,imef->ia', OVVV, r2bb[:,p0:p1]) tmpbb = lib.einsum('meaf,ijef->maij', OVVV, tau2bb) Hr2bb+= lib.einsum('mb,maij->ijab', t1b[p0:p1], tmpbb) tmpb+= lib.einsum('mfae,me->af', OVVV, r1b[p0:p1]) tmpb-= lib.einsum('meaf,me->af', OVVV, r1b[p0:p1]) OVVV = tmpbb = None tau2bb = None tau2ab = uccsd.make_tau_ab(r2ab, r1 , t1 , 2) blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0, p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Hr1b += lib.einsum('mfAE,mIfE->IA', ovVV, r2ab[p0:p1]) tmpab = lib.einsum('meAF,iJeF->mAiJ', ovVV, tau2ab) Hr2ab-= lib.einsum('mb,mAiJ->iJbA', t1a[p0:p1], tmpab) tmpb-= lib.einsum('meAF,me->AF', ovVV, r1a[p0:p1]) ovVV = tmpab = None blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Hr1a += lib.einsum('MFae,iMeF->ia', OVvv, r2ab[:,p0:p1]) tmpba = lib.einsum('MEaf,iJfE->MaiJ', OVvv, tau2ab) Hr2ab-= lib.einsum('MB,MaiJ->iJaB', t1b[p0:p1], tmpba) tmpa-= lib.einsum('MEaf,ME->af', OVvv, r1b[p0:p1]) OVvv = tmpba = None tau2ab = None Hr2aa-= lib.einsum('af,ijfb->ijab', tmpa, t2aa) Hr2bb-= lib.einsum('af,ijfb->ijab', tmpb, t2bb) Hr2ab-= lib.einsum('af,iJfB->iJaB', tmpa, t2ab) Hr2ab-= lib.einsum('AF,iJbF->iJbA', tmpb, t2ab) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tau2aa = uccsd.make_tau_aa(r2aa, r1a, t1a, 2) tauaa = uccsd.make_tau_aa(t2aa, t1a, t1a) tmpaa = lib.einsum('menf,ijef->mnij', eris_ovov, tau2aa) Hr2aa += lib.einsum('mnij,mnab->ijab', tmpaa, tauaa) * 0.25 tau2aa = tauaa = None tau2bb = uccsd.make_tau_aa(r2bb, r1b, t1b, 2) taubb = uccsd.make_tau_aa(t2bb, t1b, t1b) tmpbb = lib.einsum('menf,ijef->mnij', eris_OVOV, tau2bb) Hr2bb += lib.einsum('mnij,mnab->ijab', tmpbb, taubb) * 0.25 tau2bb = taubb = None tau2ab = uccsd.make_tau_ab(r2ab, r1 , t1 , 2) tauab = uccsd.make_tau_ab(t2ab, t1 , t1) tmpab = lib.einsum('meNF,iJeF->mNiJ', eris_ovOV, tau2ab) Hr2ab += lib.einsum('mNiJ,mNaB->iJaB', tmpab, tauab) tau2ab = tauab = None tmpa = lib.einsum('menf,imef->ni', eris_ovov, r2aa) tmpa-= lib.einsum('neMF,iMeF->ni', eris_ovOV, r2ab) tmpb = lib.einsum('menf,imef->ni', eris_OVOV, r2bb) tmpb-= lib.einsum('mfNE,mIfE->NI', eris_ovOV, r2ab) Hr1a += lib.einsum('na,ni->ia', t1a, tmpa) Hr1b += lib.einsum('na,ni->ia', t1b, tmpb) Hr2aa+= lib.einsum('mj,imab->ijab', tmpa, t2aa) Hr2bb+= lib.einsum('mj,imab->ijab', tmpb, t2bb) Hr2ab+= lib.einsum('MJ,iMaB->iJaB', tmpb, t2ab) Hr2ab+= lib.einsum('mj,mIaB->jIaB', tmpa, t2ab) tmp1a = np.einsum('menf,mf->en', eris_ovov, r1a) tmp1a-= np.einsum('mfne,mf->en', eris_ovov, r1a) tmp1a-= np.einsum('neMF,MF->en', eris_ovOV, r1b) tmp1b = np.einsum('menf,mf->en', eris_OVOV, r1b) tmp1b-= np.einsum('mfne,mf->en', eris_OVOV, r1b) tmp1b-= np.einsum('mfNE,mf->EN', eris_ovOV, r1a) tmpa = np.einsum('en,nb->eb', tmp1a, t1a) tmpa+= lib.einsum('menf,mnfb->eb', eris_ovov, r2aa) tmpa-= lib.einsum('meNF,mNbF->eb', eris_ovOV, r2ab) tmpb = np.einsum('en,nb->eb', tmp1b, t1b) tmpb+= lib.einsum('menf,mnfb->eb', eris_OVOV, r2bb) tmpb-= lib.einsum('nfME,nMfB->EB', eris_ovOV, r2ab) Hr2aa+= lib.einsum('eb,ijae->ijab', tmpa, t2aa) Hr2bb+= lib.einsum('eb,ijae->ijab', tmpb, t2bb) Hr2ab+= lib.einsum('EB,iJaE->iJaB', tmpb, t2ab) Hr2ab+= lib.einsum('eb,iJeA->iJbA', tmpa, t2ab) eirs_ovov = eris_ovOV = eris_OVOV = None Hr2aa-= lib.einsum('mbij,ma->ijab', imds.wovoo, r1a) Hr2bb-= lib.einsum('mbij,ma->ijab', imds.wOVOO, r1b) Hr2ab-= lib.einsum('mBiJ,ma->iJaB', imds.woVoO, r1a) Hr2ab-= lib.einsum('MbJi,MA->iJbA', imds.wOvOo, r1b) Hr1a-= 0.5*lib.einsum('mnie,mnae->ia', imds.wooov, r2aa) Hr1a-= lib.einsum('mNiE,mNaE->ia', imds.woOoV, r2ab) Hr1b-= 0.5*lib.einsum('mnie,mnae->ia', imds.wOOOV, r2bb) Hr1b-= lib.einsum('MnIe,nMeA->IA', imds.wOoOv, r2ab) tmpa = lib.einsum('mnie,me->ni', imds.wooov, r1a) tmpa-= lib.einsum('nMiE,ME->ni', imds.woOoV, r1b) tmpb = lib.einsum('mnie,me->ni', imds.wOOOV, r1b) tmpb-= lib.einsum('NmIe,me->NI', imds.wOoOv, r1a) Hr2aa+= lib.einsum('ni,njab->ijab', tmpa, t2aa) Hr2bb+= lib.einsum('ni,njab->ijab', tmpb, t2bb) Hr2ab+= lib.einsum('ni,nJaB->iJaB', tmpa, t2ab) Hr2ab+= lib.einsum('NI,jNaB->jIaB', tmpb, t2ab) for p0, p1 in lib.prange(0, nvira, nocca): Hr2aa+= lib.einsum('ejab,ie->ijab', imds.wvovv[p0:p1], r1a[:,p0:p1]) Hr2ab+= lib.einsum('eJaB,ie->iJaB', imds.wvOvV[p0:p1], r1a[:,p0:p1]) for p0, p1 in lib.prange(0, nvirb, noccb): Hr2bb+= lib.einsum('ejab,ie->ijab', imds.wVOVV[p0:p1], r1b[:,p0:p1]) Hr2ab+= lib.einsum('EjBa,IE->jIaB', imds.wVoVv[p0:p1], r1b[:,p0:p1]) Hr1a += np.einsum('maei,me->ia',imds.wovvo,r1a) Hr1a += np.einsum('MaEi,ME->ia',imds.wOvVo,r1b) Hr1b += np.einsum('maei,me->ia',imds.wOVVO,r1b) Hr1b += np.einsum('mAeI,me->IA',imds.woVvO,r1a) Hr2aa+= lib.einsum('mbej,imae->ijab', imds.wovvo, r2aa) * 2 Hr2aa+= lib.einsum('MbEj,iMaE->ijab', imds.wOvVo, r2ab) * 2 Hr2bb+= lib.einsum('mbej,imae->ijab', imds.wOVVO, r2bb) * 2 Hr2bb+= lib.einsum('mBeJ,mIeA->IJAB', imds.woVvO, r2ab) * 2 Hr2ab+= lib.einsum('mBeJ,imae->iJaB', imds.woVvO, r2aa) Hr2ab+= lib.einsum('MBEJ,iMaE->iJaB', imds.wOVVO, r2ab) Hr2ab+= lib.einsum('mBEj,mIaE->jIaB', imds.woVVo, r2ab) Hr2ab+= lib.einsum('mbej,mIeA->jIbA', imds.wovvo, r2ab) Hr2ab+= lib.einsum('MbEj,IMAE->jIbA', imds.wOvVo, r2bb) Hr2ab+= lib.einsum('MbeJ,iMeA->iJbA', imds.wOvvO, r2ab) Hr2aa *= .5 Hr2bb *= .5 Hr2aa = Hr2aa - Hr2aa.transpose(0,1,3,2) Hr2aa = Hr2aa - Hr2aa.transpose(1,0,2,3) Hr2bb = Hr2bb - Hr2bb.transpose(0,1,3,2) Hr2bb = Hr2bb - Hr2bb.transpose(1,0,2,3) vector = amplitudes_to_vector_ee((Hr1a,Hr1b), (Hr2aa,Hr2ab,Hr2bb)) return vector def eomsf_ccsd_matvec(eom, vector, imds=None): '''Spin flip EOM-CCSD''' if imds is None: imds = eom.make_imds() t1, t2, eris = imds.t1, imds.t2, imds.eris t1a, t1b = t1 t2aa, t2ab, t2bb = t2 nocca, noccb, nvira, nvirb = t2ab.shape nmoa, nmob = nocca+nvira, noccb+nvirb r1, r2 = vector_to_amplitudes_eomsf(vector, (nmoa,nmob), (nocca,noccb)) r1ab, r1ba = r1 r2baaa, r2aaba, r2abbb, r2bbab = r2 Hr1ab = np.einsum('ae,ie->ia', imds.Fvvb, r1ab) Hr1ab -= np.einsum('mi,ma->ia', imds.Fooa, r1ab) Hr1ab += np.einsum('me,imae->ia', imds.Fovb, r2abbb) Hr1ab += np.einsum('me,imae->ia', imds.Fova, r2aaba) Hr1ba = np.einsum('ae,ie->ia', imds.Fvva, r1ba) Hr1ba -= np.einsum('mi,ma->ia', imds.Foob, r1ba) Hr1ba += np.einsum('me,imae->ia', imds.Fova, r2baaa) Hr1ba += np.einsum('me,imae->ia', imds.Fovb, r2bbab) Hr2baaa = .5 *lib.einsum('nMjI,Mnab->Ijab', imds.woOoO, r2baaa) Hr2aaba = .25*lib.einsum('mnij,mnAb->ijAb', imds.woooo, r2aaba) Hr2abbb = .5 *lib.einsum('mNiJ,mNAB->iJAB', imds.woOoO, r2abbb) Hr2bbab = .25*lib.einsum('MNIJ,MNaB->IJaB', imds.wOOOO, r2bbab) Hr2baaa += lib.einsum('be,Ijae->Ijab', imds.Fvva , r2baaa) Hr2baaa -= lib.einsum('mj,imab->ijab', imds.Fooa*.5, r2baaa) Hr2baaa -= lib.einsum('MJ,Miab->Jiab', imds.Foob*.5, r2baaa) Hr2bbab -= lib.einsum('mj,imab->ijab', imds.Foob , r2bbab) Hr2bbab += lib.einsum('BE,IJaE->IJaB', imds.Fvvb*.5, r2bbab) Hr2bbab += lib.einsum('be,IJeA->IJbA', imds.Fvva*.5, r2bbab) Hr2aaba -= lib.einsum('mj,imab->ijab', imds.Fooa , r2aaba) Hr2aaba += lib.einsum('be,ijAe->ijAb', imds.Fvva*.5, r2aaba) Hr2aaba += lib.einsum('BE,ijEa->ijBa', imds.Fvvb*.5, r2aaba) Hr2abbb += lib.einsum('BE,iJAE->iJAB', imds.Fvvb , r2abbb) Hr2abbb -= lib.einsum('mj,imab->ijab', imds.Foob*.5, r2abbb) Hr2abbb -= lib.einsum('mj,mIAB->jIAB', imds.Fooa*.5, r2abbb) tau2baaa = np.einsum('ia,jb->ijab', r1ba, t1a) tau2baaa = tau2baaa - tau2baaa.transpose(0,1,3,2) tau2abbb = np.einsum('ia,jb->ijab', r1ab, t1b) tau2abbb = tau2abbb - tau2abbb.transpose(0,1,3,2) tau2aaba = np.einsum('ia,jb->ijab', r1ab, t1a) tau2aaba = tau2aaba - tau2aaba.transpose(1,0,2,3) tau2bbab = np.einsum('ia,jb->ijab', r1ba, t1b) tau2bbab = tau2bbab - tau2bbab.transpose(1,0,2,3) tau2baaa += r2baaa tau2bbab += r2bbab tau2abbb += r2abbb tau2aaba += r2aaba #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:Hr1ba += lib.einsum('mfae,Imef->Ia', eris_ovvv, r2baaa) #:tmp1aaba = lib.einsum('meaf,Ijef->maIj', eris_ovvv, tau2baaa) #:Hr2baaa += lib.einsum('mb,maIj->Ijab', t1a , tmp1aaba) mem_now = lib.current_memory()[0] max_memory = max(0, eom.max_memory - mem_now) blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] Hr1ba += lib.einsum('mfae,Imef->Ia', ovvv, r2baaa[:,p0:p1]) tmp1aaba = lib.einsum('meaf,Ijef->maIj', ovvv, tau2baaa) Hr2baaa += lib.einsum('mb,maIj->Ijab', t1a[p0:p1], tmp1aaba) ovvv = tmp1aaba = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:Hr1ab += lib.einsum('MFAE,iMEF->iA', eris_OVVV, r2abbb) #:tmp1bbab = lib.einsum('MEAF,iJEF->MAiJ', eris_OVVV, tau2abbb) #:Hr2abbb += lib.einsum('MB,MAiJ->iJAB', t1b , tmp1bbab) blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] Hr1ab += lib.einsum('MFAE,iMEF->iA', OVVV, r2abbb[:,p0:p1]) tmp1bbab = lib.einsum('MEAF,iJEF->MAiJ', OVVV, tau2abbb) Hr2abbb += lib.einsum('MB,MAiJ->iJAB', t1b[p0:p1], tmp1bbab) OVVV = tmp1bbab = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:Hr1ab += lib.einsum('mfAE,imEf->iA', eris_ovVV, r2aaba) #:tmp1abaa = lib.einsum('meAF,ijFe->mAij', eris_ovVV, tau2aaba) #:tmp1abbb = lib.einsum('meAF,IJeF->mAIJ', eris_ovVV, tau2bbab) #:tmp1ba = lib.einsum('mfAE,mE->Af', eris_ovVV, r1ab) #:Hr2bbab -= lib.einsum('mb,mAIJ->IJbA', t1a*.5, tmp1abbb) #:Hr2aaba -= lib.einsum('mb,mAij->ijAb', t1a*.5, tmp1abaa) tmp1ba = np.zeros((nvirb,nvira)) blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Hr1ab += lib.einsum('mfAE,imEf->iA', ovVV, r2aaba[:,p0:p1]) tmp1abaa = lib.einsum('meAF,ijFe->mAij', ovVV, tau2aaba) tmp1abbb = lib.einsum('meAF,IJeF->mAIJ', ovVV, tau2bbab) tmp1ba += lib.einsum('mfAE,mE->Af', ovVV, r1ab[p0:p1]) Hr2bbab -= lib.einsum('mb,mAIJ->IJbA', t1a[p0:p1]*.5, tmp1abbb) Hr2aaba -= lib.einsum('mb,mAij->ijAb', t1a[p0:p1]*.5, tmp1abaa) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:Hr1ba += lib.einsum('MFae,IMeF->Ia', eris_OVvv, r2bbab) #:tmp1baaa = lib.einsum('MEaf,ijEf->Maij', eris_OVvv, tau2aaba) #:tmp1babb = lib.einsum('MEaf,IJfE->MaIJ', eris_OVvv, tau2bbab) #:tmp1ab = lib.einsum('MFae,Me->aF', eris_OVvv, r1ba) #:Hr2aaba -= lib.einsum('MB,Maij->ijBa', t1b*.5, tmp1baaa) #:Hr2bbab -= lib.einsum('MB,MaIJ->IJaB', t1b*.5, tmp1babb) tmp1ab = np.zeros((nvira,nvirb)) blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Hr1ba += lib.einsum('MFae,IMeF->Ia', OVvv, r2bbab[:,p0:p1]) tmp1baaa = lib.einsum('MEaf,ijEf->Maij', OVvv, tau2aaba) tmp1babb = lib.einsum('MEaf,IJfE->MaIJ', OVvv, tau2bbab) tmp1ab+= lib.einsum('MFae,Me->aF', OVvv, r1ba[p0:p1]) Hr2aaba -= lib.einsum('MB,Maij->ijBa', t1b[p0:p1]*.5, tmp1baaa) Hr2bbab -= lib.einsum('MB,MaIJ->IJaB', t1b[p0:p1]*.5, tmp1babb) Hr2baaa += lib.einsum('aF,jIbF->Ijba', tmp1ab , t2ab) Hr2bbab -= lib.einsum('aF,IJFB->IJaB', tmp1ab*.5, t2bb) Hr2abbb += lib.einsum('Af,iJfB->iJBA', tmp1ba , t2ab) Hr2aaba -= lib.einsum('Af,ijfb->ijAb', tmp1ba*.5, t2aa) Hr2baaa -= lib.einsum('MbIj,Ma->Ijab', imds.wOvOo, r1ba ) Hr2bbab -= lib.einsum('MBIJ,Ma->IJaB', imds.wOVOO, r1ba*.5) Hr2abbb -= lib.einsum('mBiJ,mA->iJAB', imds.woVoO, r1ab ) Hr2aaba -= lib.einsum('mbij,mA->ijAb', imds.wovoo, r1ab*.5) Hr1ab -= 0.5*lib.einsum('mnie,mnAe->iA', imds.wooov, r2aaba) Hr1ab -= lib.einsum('mNiE,mNAE->iA', imds.woOoV, r2abbb) Hr1ba -= 0.5*lib.einsum('MNIE,MNaE->Ia', imds.wOOOV, r2bbab) Hr1ba -= lib.einsum('MnIe,Mnae->Ia', imds.wOoOv, r2baaa) tmp1ab = lib.einsum('MnIe,Me->nI', imds.wOoOv, r1ba) tmp1ba = lib.einsum('mNiE,mE->Ni', imds.woOoV, r1ab) Hr2baaa += lib.einsum('nI,njab->Ijab', tmp1ab*.5, t2aa) Hr2bbab += lib.einsum('nI,nJaB->IJaB', tmp1ab , t2ab) Hr2abbb += lib.einsum('Ni,NJAB->iJAB', tmp1ba*.5, t2bb) Hr2aaba += lib.einsum('Ni,jNbA->ijAb', tmp1ba , t2ab) for p0, p1 in lib.prange(0, nvira, nocca): Hr2baaa += lib.einsum('ejab,Ie->Ijab', imds.wvovv[p0:p1], r1ba[:,p0:p1]*.5) Hr2bbab += lib.einsum('eJaB,Ie->IJaB', imds.wvOvV[p0:p1], r1ba[:,p0:p1] ) for p0, p1 in lib.prange(0, nvirb, noccb): Hr2abbb += lib.einsum('EJAB,iE->iJAB', imds.wVOVV[p0:p1], r1ab[:,p0:p1]*.5) Hr2aaba += lib.einsum('EjAb,iE->ijAb', imds.wVoVv[p0:p1], r1ab[:,p0:p1] ) Hr1ab += np.einsum('mAEi,mE->iA', imds.woVVo, r1ab) Hr1ba += np.einsum('MaeI,Me->Ia', imds.wOvvO, r1ba) Hr2baaa += lib.einsum('mbej,Imae->Ijab', imds.wovvo, r2baaa) Hr2baaa += lib.einsum('MbeJ,Miae->Jiab', imds.wOvvO, r2baaa) Hr2baaa += lib.einsum('MbEj,IMaE->Ijab', imds.wOvVo, r2bbab) Hr2bbab += lib.einsum('MBEJ,IMaE->IJaB', imds.wOVVO, r2bbab) Hr2bbab += lib.einsum('MbeJ,IMeA->IJbA', imds.wOvvO, r2bbab) Hr2bbab += lib.einsum('mBeJ,Imae->IJaB', imds.woVvO, r2baaa) Hr2aaba += lib.einsum('mbej,imAe->ijAb', imds.wovvo, r2aaba) Hr2aaba += lib.einsum('mBEj,imEa->ijBa', imds.woVVo, r2aaba) Hr2aaba += lib.einsum('MbEj,iMAE->ijAb', imds.wOvVo, r2abbb) Hr2abbb += lib.einsum('MBEJ,iMAE->iJAB', imds.wOVVO, r2abbb) Hr2abbb += lib.einsum('mBEj,mIAE->jIAB', imds.woVVo, r2abbb) Hr2abbb += lib.einsum('mBeJ,imAe->iJAB', imds.woVvO, r2aaba) eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) tauaa, tauab, taubb = uccsd.make_tau(t2, t1, t1) tmp1baaa = lib.einsum('nfME,ijEf->Mnij', eris_ovOV, tau2aaba) tmp1aaba = lib.einsum('menf,Ijef->mnIj', eris_ovov, tau2baaa) tmp1abbb = lib.einsum('meNF,IJeF->mNIJ', eris_ovOV, tau2bbab) tmp1bbab = lib.einsum('MENF,iJEF->MNiJ', eris_OVOV, tau2abbb) Hr2baaa += 0.5*.5*lib.einsum('mnIj,mnab->Ijab', tmp1aaba, tauaa) Hr2bbab += .5*lib.einsum('nMIJ,nMaB->IJaB', tmp1abbb, tauab) Hr2aaba += .5*lib.einsum('Nmij,mNbA->ijAb', tmp1baaa, tauab) Hr2abbb += 0.5*.5*lib.einsum('MNiJ,MNAB->iJAB', tmp1bbab, taubb) tauaa = tauab = taubb = None tmpab = lib.einsum('menf,Imef->nI', eris_ovov, r2baaa) tmpab -= lib.einsum('nfME,IMfE->nI', eris_ovOV, r2bbab) tmpba = lib.einsum('MENF,iMEF->Ni', eris_OVOV, r2abbb) tmpba -= lib.einsum('meNF,imFe->Ni', eris_ovOV, r2aaba) Hr1ab += np.einsum('NA,Ni->iA', t1b, tmpba) Hr1ba += np.einsum('na,nI->Ia', t1a, tmpab) Hr2baaa -= lib.einsum('mJ,imab->Jiab', tmpab*.5, t2aa) Hr2bbab -= lib.einsum('mJ,mIaB->IJaB', tmpab*.5, t2ab) * 2 Hr2aaba -= lib.einsum('Mj,iMbA->ijAb', tmpba*.5, t2ab) * 2 Hr2abbb -= lib.einsum('Mj,IMAB->jIAB', tmpba*.5, t2bb) tmp1ab = np.einsum('meNF,mF->eN', eris_ovOV, r1ab) tmp1ba = np.einsum('nfME,Mf->En', eris_ovOV, r1ba) tmpab = np.einsum('eN,NB->eB', tmp1ab, t1b) tmpba = np.einsum('En,nb->Eb', tmp1ba, t1a) tmpab -= lib.einsum('menf,mnBf->eB', eris_ovov, r2aaba) tmpab += lib.einsum('meNF,mNFB->eB', eris_ovOV, r2abbb) tmpba -= lib.einsum('MENF,MNbF->Eb', eris_OVOV, r2bbab) tmpba += lib.einsum('nfME,Mnfb->Eb', eris_ovOV, r2baaa) Hr2baaa -= lib.einsum('Eb,jIaE->Ijab', tmpba*.5, t2ab) * 2 Hr2bbab -= lib.einsum('Eb,IJAE->IJbA', tmpba*.5, t2bb) Hr2aaba -= lib.einsum('eB,ijae->ijBa', tmpab*.5, t2aa) Hr2abbb -= lib.einsum('eB,iJeA->iJAB', tmpab*.5, t2ab) * 2 eris_ovov = eris_OVOV = eris_ovOV = None #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:Hr2baaa += .5*lib.einsum('Ijef,aebf->Ijab', tau2baaa, eris_vvvv) #:Hr2abbb += .5*lib.einsum('iJEF,AEBF->iJAB', tau2abbb, eris_VVVV) #:Hr2bbab += .5*lib.einsum('IJeF,aeBF->IJaB', tau2bbab, eris_vvVV) #:Hr2aaba += .5*lib.einsum('ijEf,bfAE->ijAb', tau2aaba, eris_vvVV) fakeri = uccsd._ChemistsERIs() fakeri.mol = eris.mol if eom._cc.direct: orbva = eris.mo_coeff[0][:,nocca:] orbvb = eris.mo_coeff[1][:,noccb:] tau2baaa = lib.einsum('ijab,pa,qb->ijpq', tau2baaa, .5*orbva, orbva) tmp = eris._contract_vvvv_t2(eom._cc, tau2baaa, True) Hr2baaa += lib.einsum('ijpq,pa,qb->ijab', tmp, orbva.conj(), orbva.conj()) tmp = None tau2abbb = lib.einsum('ijab,pa,qb->ijpq', tau2abbb, .5*orbvb, orbvb) tmp = eris._contract_VVVV_t2(eom._cc, tau2abbb, True) Hr2abbb += lib.einsum('ijpq,pa,qb->ijab', tmp, orbvb.conj(), orbvb.conj()) tmp = None else: tau2baaa *= .5 Hr2baaa += eris._contract_vvvv_t2(eom._cc, tau2baaa, False) tau2abbb *= .5 Hr2abbb += eris._contract_VVVV_t2(eom._cc, tau2abbb, False) tau2bbab *= .5 Hr2bbab += eom._cc._add_vvVV(None, tau2bbab, eris) tau2aaba = tau2aaba.transpose(0,1,3,2)*.5 Hr2aaba += eom._cc._add_vvVV(None, tau2aaba, eris).transpose(0,1,3,2) Hr2baaa = Hr2baaa - Hr2baaa.transpose(0,1,3,2) Hr2bbab = Hr2bbab - Hr2bbab.transpose(1,0,2,3) Hr2abbb = Hr2abbb - Hr2abbb.transpose(0,1,3,2) Hr2aaba = Hr2aaba - Hr2aaba.transpose(1,0,2,3) vector = amplitudes_to_vector_eomsf((Hr1ab, Hr1ba), (Hr2baaa,Hr2aaba,Hr2abbb,Hr2bbab)) return vector def eeccsd_diag(eom, imds=None): if imds is None: imds = eom.make_imds() eris = imds.eris t1, t2 = imds.t1, imds.t2 t1a, t1b = t1 t2aa, t2ab, t2bb = t2 tauaa, tauab, taubb = uccsd.make_tau(t2, t1, t1) nocca, noccb, nvira, nvirb = t2ab.shape Foa = imds.Fooa.diagonal() Fob = imds.Foob.diagonal() Fva = imds.Fvva.diagonal() Fvb = imds.Fvvb.diagonal() Wovaa = np.einsum('iaai->ia', imds.wovvo) Wovbb = np.einsum('iaai->ia', imds.wOVVO) Wovab = np.einsum('iaai->ia', imds.woVVo) Wovba = np.einsum('iaai->ia', imds.wOvvO) Hr1aa = lib.direct_sum('-i+a->ia', Foa, Fva) Hr1bb = lib.direct_sum('-i+a->ia', Fob, Fvb) Hr1ab = lib.direct_sum('-i+a->ia', Foa, Fvb) Hr1ba = lib.direct_sum('-i+a->ia', Fob, Fva) Hr1aa += Wovaa Hr1bb += Wovbb Hr1ab += Wovab Hr1ba += Wovba eris_ovov = np.asarray(eris.ovov) eris_OVOV = np.asarray(eris.OVOV) eris_ovOV = np.asarray(eris.ovOV) ovov = eris_ovov - eris_ovov.transpose(0,3,2,1) OVOV = eris_OVOV - eris_OVOV.transpose(0,3,2,1) Wvvaa = .5*np.einsum('mnab,manb->ab', tauaa, eris_ovov) Wvvbb = .5*np.einsum('mnab,manb->ab', taubb, eris_OVOV) Wvvab = np.einsum('mNaB,maNB->aB', tauab, eris_ovOV) ijb = np.einsum('iejb,ijbe->ijb', ovov, t2aa) IJB = np.einsum('iejb,ijbe->ijb', OVOV, t2bb) iJB =-np.einsum('ieJB,iJeB->iJB', eris_ovOV, t2ab) Ijb =-np.einsum('jbIE,jIbE->Ijb', eris_ovOV, t2ab) iJb =-np.einsum('ibJE,iJbE->iJb', eris_ovOV, t2ab) IjB =-np.einsum('jeIB,jIeB->IjB', eris_ovOV, t2ab) jab = np.einsum('kajb,jkab->jab', ovov, t2aa) JAB = np.einsum('kajb,jkab->jab', OVOV, t2bb) jAb =-np.einsum('jbKA,jKbA->jAb', eris_ovOV, t2ab) JaB =-np.einsum('kaJB,kJaB->JaB', eris_ovOV, t2ab) jaB =-np.einsum('jaKB,jKaB->jaB', eris_ovOV, t2ab) JAb =-np.einsum('kbJA,kJbA->JAb', eris_ovOV, t2ab) eris_ovov = eris_ovOV = eris_OVOV = ovov = OVOV = None Hr2aa = lib.direct_sum('ijb+a->ijba', ijb, Fva) Hr2bb = lib.direct_sum('ijb+a->ijba', IJB, Fvb) Hr2ab = lib.direct_sum('iJb+A->iJbA', iJb, Fvb) Hr2ab+= lib.direct_sum('iJB+a->iJaB', iJB, Fva) Hr2aa+= lib.direct_sum('-i+jab->ijab', Foa, jab) Hr2bb+= lib.direct_sum('-i+jab->ijab', Fob, JAB) Hr2ab+= lib.direct_sum('-i+JaB->iJaB', Foa, JaB) Hr2ab+= lib.direct_sum('-I+jaB->jIaB', Fob, jaB) Hr2aa = Hr2aa + Hr2aa.transpose(0,1,3,2) Hr2aa = Hr2aa + Hr2aa.transpose(1,0,2,3) Hr2bb = Hr2bb + Hr2bb.transpose(0,1,3,2) Hr2bb = Hr2bb + Hr2bb.transpose(1,0,2,3) Hr2aa *= .5 Hr2bb *= .5 Hr2baaa = lib.direct_sum('Ijb+a->Ijba', Ijb, Fva) Hr2aaba = lib.direct_sum('ijb+A->ijAb', ijb, Fvb) Hr2aaba+= Fva.reshape(1,1,1,-1) Hr2abbb = lib.direct_sum('iJB+A->iJBA', iJB, Fvb) Hr2bbab = lib.direct_sum('IJB+a->IJaB', IJB, Fva) Hr2bbab+= Fvb.reshape(1,1,1,-1) Hr2baaa = Hr2baaa + Hr2baaa.transpose(0,1,3,2) Hr2abbb = Hr2abbb + Hr2abbb.transpose(0,1,3,2) Hr2baaa+= lib.direct_sum('-I+jab->Ijab', Fob, jab) Hr2baaa-= Foa.reshape(1,-1,1,1) tmpaaba = lib.direct_sum('-i+jAb->ijAb', Foa, jAb) Hr2abbb+= lib.direct_sum('-i+JAB->iJAB', Foa, JAB) Hr2abbb-= Fob.reshape(1,-1,1,1) tmpbbab = lib.direct_sum('-I+JaB->IJaB', Fob, JaB) Hr2aaba+= tmpaaba + tmpaaba.transpose(1,0,2,3) Hr2bbab+= tmpbbab + tmpbbab.transpose(1,0,2,3) tmpaaba = tmpbbab = None Hr2aa += Wovaa.reshape(1,nocca,1,nvira) Hr2aa += Wovaa.reshape(nocca,1,1,nvira) Hr2aa += Wovaa.reshape(nocca,1,nvira,1) Hr2aa += Wovaa.reshape(1,nocca,nvira,1) Hr2ab += Wovbb.reshape(1,noccb,1,nvirb) Hr2ab += Wovab.reshape(nocca,1,1,nvirb) Hr2ab += Wovaa.reshape(nocca,1,nvira,1) Hr2ab += Wovba.reshape(1,noccb,nvira,1) Hr2bb += Wovbb.reshape(1,noccb,1,nvirb) Hr2bb += Wovbb.reshape(noccb,1,1,nvirb) Hr2bb += Wovbb.reshape(noccb,1,nvirb,1) Hr2bb += Wovbb.reshape(1,noccb,nvirb,1) Hr2baaa += Wovaa.reshape(1,nocca,1,nvira) Hr2baaa += Wovba.reshape(noccb,1,1,nvira) Hr2baaa += Wovba.reshape(noccb,1,nvira,1) Hr2baaa += Wovaa.reshape(1,nocca,nvira,1) Hr2aaba += Wovaa.reshape(1,nocca,1,nvira) Hr2aaba += Wovaa.reshape(nocca,1,1,nvira) Hr2aaba += Wovab.reshape(nocca,1,nvirb,1) Hr2aaba += Wovab.reshape(1,nocca,nvirb,1) Hr2abbb += Wovbb.reshape(1,noccb,1,nvirb) Hr2abbb += Wovab.reshape(nocca,1,1,nvirb) Hr2abbb += Wovab.reshape(nocca,1,nvirb,1) Hr2abbb += Wovbb.reshape(1,noccb,nvirb,1) Hr2bbab += Wovbb.reshape(1,noccb,1,nvirb) Hr2bbab += Wovbb.reshape(noccb,1,1,nvirb) Hr2bbab += Wovba.reshape(noccb,1,nvira,1) Hr2bbab += Wovba.reshape(1,noccb,nvira,1) Wooaa = np.einsum('ijij->ij', imds.woooo).copy() Wooaa -= np.einsum('ijji->ij', imds.woooo) Woobb = np.einsum('ijij->ij', imds.wOOOO).copy() Woobb -= np.einsum('ijji->ij', imds.wOOOO) Wooab = np.einsum('ijij->ij', imds.woOoO) Wooba = Wooab.T Wooaa *= .5 Woobb *= .5 Hr2aa += Wooaa.reshape(nocca,nocca,1,1) Hr2ab += Wooab.reshape(nocca,noccb,1,1) Hr2bb += Woobb.reshape(noccb,noccb,1,1) Hr2baaa += Wooba.reshape(noccb,nocca,1,1) Hr2aaba += Wooaa.reshape(nocca,nocca,1,1) Hr2abbb += Wooab.reshape(nocca,noccb,1,1) Hr2bbab += Woobb.reshape(noccb,noccb,1,1) #:eris_ovvv = lib.unpack_tril(np.asarray(eris.ovvv).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvira,nvira) #:Wvvaa += np.einsum('mb,maab->ab', t1a, eris_ovvv) #:Wvvaa -= np.einsum('mb,mbaa->ab', t1a, eris_ovvv) mem_now = lib.current_memory()[0] max_memory = max(0, eom.max_memory - mem_now) blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira**3*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovvv = eris.get_ovvv(slice(p0,p1)) # ovvv = eris.ovvv[p0:p1] Wvvaa += np.einsum('mb,maab->ab', t1a[p0:p1], ovvv) Wvvaa -= np.einsum('mb,mbaa->ab', t1a[p0:p1], ovvv) ovvv = None #:eris_OVVV = lib.unpack_tril(np.asarray(eris.OVVV).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvirb,nvirb) #:Wvvbb += np.einsum('mb,maab->ab', t1b, eris_OVVV) #:Wvvbb -= np.einsum('mb,mbaa->ab', t1b, eris_OVVV) blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb**3*3)))) for p0, p1 in lib.prange(0, noccb, blksize): OVVV = eris.get_OVVV(slice(p0,p1)) # OVVV = eris.OVVV[p0:p1] Wvvbb += np.einsum('mb,maab->ab', t1b[p0:p1], OVVV) Wvvbb -= np.einsum('mb,mbaa->ab', t1b[p0:p1], OVVV) OVVV = None #:eris_ovVV = lib.unpack_tril(np.asarray(eris.ovVV).reshape(nocca*nvira,-1)).reshape(nocca,nvira,nvirb,nvirb) #:Wvvab -= np.einsum('mb,mbaa->ba', t1a, eris_ovVV) blksize = min(nocca, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvira*nvirb**2*3)))) for p0,p1 in lib.prange(0, nocca, blksize): ovVV = eris.get_ovVV(slice(p0,p1)) # ovVV = eris.ovVV[p0:p1] Wvvab -= np.einsum('mb,mbaa->ba', t1a[p0:p1], ovVV) ovVV = None blksize = min(noccb, max(ccsd.BLKMIN, int(max_memory*1e6/8/(nvirb*nvira**2*3)))) #:eris_OVvv = lib.unpack_tril(np.asarray(eris.OVvv).reshape(noccb*nvirb,-1)).reshape(noccb,nvirb,nvira,nvira) #:Wvvab -= np.einsum('mb,mbaa->ab', t1b, eris_OVvv) #idxa = np.arange(nvira) #idxa = idxa*(idxa+1)//2+idxa #for p0, p1 in lib.prange(0, noccb, blksize): # OVvv = np.asarray(eris.OVvv[p0:p1]) # Wvvab -= np.einsum('mb,mba->ab', t1b[p0:p1], OVvv[:,:,idxa]) # OVvv = None for p0, p1 in lib.prange(0, noccb, blksize): OVvv = eris.get_OVvv(slice(p0,p1)) # OVvv = eris.OVvv[p0:p1] Wvvab -= np.einsum('mb,mbaa->ab', t1b[p0:p1], OVvv) OVvv = None Wvvaa = Wvvaa + Wvvaa.T Wvvbb = Wvvbb + Wvvbb.T #:eris_vvvv = ao2mo.restore(1, np.asarray(eris.vvvv), nvirb) #:eris_VVVV = ao2mo.restore(1, np.asarray(eris.VVVV), nvirb) #:eris_vvVV = _restore(np.asarray(eris.vvVV), nvira, nvirb) #:Wvvaa += np.einsum('aabb->ab', eris_vvvv) - np.einsum('abba->ab', eris_vvvv) #:Wvvbb += np.einsum('aabb->ab', eris_VVVV) - np.einsum('abba->ab', eris_VVVV) #:Wvvab += np.einsum('aabb->ab', eris_vvVV) if eris.vvvv is not None: for i in range(nvira): i0 = i*(i+1)//2 vvv = lib.unpack_tril(np.asarray(eris.vvvv[i0:i0+i+1])) tmp = np.einsum('bb->b', vvv[i]) Wvvaa[i] += tmp tmp = np.einsum('bb->b', vvv[:,:i+1,i]) Wvvaa[i,:i+1] -= tmp Wvvaa[:i ,i] -= tmp[:i] vvv = lib.unpack_tril(np.asarray(eris.vvVV[i0:i0+i+1])) Wvvab[i] += np.einsum('bb->b', vvv[i]) vvv = None for i in range(nvirb): i0 = i*(i+1)//2 vvv = lib.unpack_tril(np.asarray(eris.VVVV[i0:i0+i+1])) tmp = np.einsum('bb->b', vvv[i]) Wvvbb[i] += tmp tmp = np.einsum('bb->b', vvv[:,:i+1,i]) Wvvbb[i,:i+1] -= tmp Wvvbb[:i ,i] -= tmp[:i] vvv = None Wvvba = Wvvab.T Hr2aa += Wvvaa.reshape(1,1,nvira,nvira) Hr2ab += Wvvab.reshape(1,1,nvira,nvirb) Hr2bb += Wvvbb.reshape(1,1,nvirb,nvirb) Hr2baaa += Wvvaa.reshape(1,1,nvira,nvira) Hr2aaba += Wvvba.reshape(1,1,nvirb,nvira) Hr2abbb += Wvvbb.reshape(1,1,nvirb,nvirb) Hr2bbab += Wvvab.reshape(1,1,nvira,nvirb) vec_ee = amplitudes_to_vector_ee((Hr1aa,Hr1bb), (Hr2aa,Hr2ab,Hr2bb)) vec_sf = amplitudes_to_vector_eomsf((Hr1ab,Hr1ba), (Hr2baaa,Hr2aaba,Hr2abbb,Hr2bbab)) return vec_ee, vec_sf class EOMEE(eom_rccsd.EOMEE): def __init__(self, cc): eom_rccsd.EOMEE.__init__(self, cc) self.nocc = cc.get_nocc() self.nmo = cc.get_nmo() kernel = eeccsd eeccsd = eeccsd get_diag = eeccsd_diag def vector_size(self): '''size of the vector based on spin-orbital basis''' nocc =
np.sum(self.nocc)
numpy.sum
# -*- coding: utf-8 -*- # Run this app with `python3 sens_matrix_dashboard.py` and # view the plots at http://127.0.0.1:8050/ in your web browser. # (To open a web browser on a larson-group computer, # login to malan with `ssh -X` and then type `firefox &`.) def main(): import dash import dash_core_components as dcc import dash_html_components as html import plotly.express as px import plotly.graph_objects as go import pandas as pd import numpy as np import pdb import sklearn from plotly.figure_factory import create_quiver from itertools import chain from analyze_sensitivity_matrix import \ analyzeSensMatrix, setupObsCol, setupDefaultMetricValsCol, \ findOutliers, findParamsUsingElastic from test_analyzeSensMatrix import write_test_netcdf_files # Metrics are observed quantities that we want a tuned simulation to match. # The order of metricNames determines the order of rows in sensMatrix. # Column vector of (positive) weights. A small value de-emphasizes # the corresponding metric in the fit. metricsNamesAndWeights = [ \ ['SWCF_GLB', 4.01], \ ['SWCF_DYCOMS', 1.01], \ ['SWCF_HAWAII', 1.01], \ ['SWCF_VOCAL', 1.01], \ ['SWCF_LBA', 1.01], \ ['SWCF_WP', 1.01], \ ['SWCF_EP', 1.01], \ ['SWCF_NP', 1.01], \ ['SWCF_SP', 1.01], \ ## ['SWCF_PA', 1.01], \ ['SWCF_CAF', 1.01], \ ['LWCF_GLB', 4.01], \ # ['LWCF_DYCOMS', 1.01], \ # ['LWCF_HAWAII', 1.01], \ # ['LWCF_VOCAL', 1.01], \ ['LWCF_LBA', 1.01], \ ['LWCF_WP', 1.01], \ # ['LWCF_EP', 1.01], \ # ['LWCF_NP', 1.01], \ # ['LWCF_SP', 1.01], \ ## ['LWCF_PA', 1.01], \ # ['LWCF_CAF', 1.01], \ ['PRECT_GLB', 4.01], \ ['PRECT_LBA', 1.01], \ ['PRECT_WP', 1.01], \ # ['PRECT_EP', 1.01], \ # ['PRECT_NP', 1.01], \ # ['PRECT_SP', 1.01], \ ## ['PRECT_PA', 1.01], \ ['PRECT_CAF', 1.01] \ ] # ['PRECT_DYCOMS', 0.01], \ # ['PRECT_HAWAII', 0.01], \ # ['PRECT_VOCAL', 0.01], \ dfMetricsNamesAndWeights = \ pd.DataFrame( metricsNamesAndWeights, columns = ['metricsNames', 'metricsWeights'] ) metricsNames = dfMetricsNamesAndWeights[['metricsNames']].to_numpy().astype(str)[:,0] metricsWeights = dfMetricsNamesAndWeights[['metricsWeights']].to_numpy() # Parameters are tunable model parameters, e.g. clubb_C8. # The float listed below is a factor that is used below for scaling plots. # Each parameter is associated with two sensitivity simulations in which that parameter is perturbed # either up or down. # The output from each sensitivity simulation is expected to be stored in its own netcdf file. # Each netcdf file contains metric values and parameter values for a single simulation. paramsNamesScalesAndFilenames = [ \ ## ['clubb_c7', 1.0, \ ## '20220516/sens.tau_2_Regional.nc', \ ## '20220516/sens.tau_3_Regional.nc'], \ ['clubb_c11', 1.0, \ '20220516/sens.tau_4_Regional.nc', \ '20220516/sens.tau_5_Regional.nc'], \ ['clubb_gamma_coef', 1.0, \ '20220516/sens.tau_6_Regional.nc', \ '20220516/sens.tau_7_Regional.nc'], \ ## ['clubb_c8', 1.0, \ ## '20220516/sens.tau_9_Regional.nc', \ ## '20220516/sens.tau_8_Regional.nc'], \ ['clubb_c_k10', 1.0, \ '20220516/sens.tau_10_Regional.nc', \ '20220516/sens.tau_11_Regional.nc'], \ ['clubb_c_invrs_tau_n2', 1.0, \ '20220516/sens.tau_12_Regional.nc', '20220516/sens.tau_13_Regional.nc'], \ ## ['clubb_c_invrs_tau_wpxp_n2_thresh', 1.e3, \ ## '20220516/sens.tau_14_Regional.nc', \ ## '20220516/sens.tau_15_Regional.nc'], \ ## ['micro_vqit', 1.0, \ ## '20220516/sens.tau_16_Regional.nc', \ ## '20220516/sens.tau_17_Regional.nc'], \ ] dfparamsNamesScalesAndFilenames = \ pd.DataFrame( paramsNamesScalesAndFilenames, \ columns = ['paramsNames', 'paramsScales', 'sensNcFilenamesExt', 'sensNcFilenames'] ) paramsNames = dfparamsNamesScalesAndFilenames[['paramsNames']].to_numpy().astype(str)[:,0] # Extract scaling factors of parameter values from user-defined list paramsNamesScalesAndFilenames. # The scaling is not used for any calculations, but it allows us to avoid plotting very large or small values. paramsScales = dfparamsNamesScalesAndFilenames[['paramsScales']].to_numpy().astype(float)[:,0] sensNcFilenames = dfparamsNamesScalesAndFilenames[['sensNcFilenames']].to_numpy().astype(str)[:,0] sensNcFilenamesExt = dfparamsNamesScalesAndFilenames[['sensNcFilenamesExt']].to_numpy().astype(str)[:,0] # This the subset of paramsNames that vary from [0,1] (e.g., C5) # and hence will be transformed to [0,infinity] in order to make # the relationship between parameters and metrics more linear: #transformedParamsNames = np.array(['clubb_c8','clubb_c_invrs_tau_n2', 'clubb_c_invrs_tau_n2_clear_wp3']) transformedParamsNames = np.array(['']) # Netcdf file containing metric and parameter values from the default simulation defaultNcFilename = \ '20220516/sens.tau_1_Regional.nc' # Metrics from simulation that use the SVD-recommended parameter values # Here, we use default simulation just as a placeholder. linSolnNcFilename = \ '20220516/sens.tau_1_Regional.nc' # Observed values of our metrics, from, e.g., CERES-EBAF. # These observed metrics will be matched as closely as possible by analyzeSensMatrix. # NOTE: PRECT is in the unit of m/s obsMetricValsDict = { \ 'LWCF_GLB': 28.008, 'PRECT_GLB': 0.000000031134259, 'SWCF_GLB': -45.81, 'TMQ_GLB': 24.423, \ 'LWCF_DYCOMS': 19.36681938, 'PRECT_DYCOMS':0.000000007141516, 'SWCF_DYCOMS': -63.49394226, 'TMQ_DYCOMS':20.33586884,\ 'LWCF_LBA': 43.83245087, 'PRECT_LBA':0.000000063727875, 'SWCF_LBA': -55.10041809, 'TMQ_LBA': 44.27890396,\ 'LWCF_HAWAII': 24.78801537, 'PRECT_HAWAII':0.000000020676041, 'SWCF_HAWAII': -36.49626541, 'TMQ_HAWAII': 33.17501068,\ 'LWCF_WP': 54.73321152, 'PRECT_WP':0.000000078688704, 'SWCF_WP': -62.09819031, 'TMQ_WP':51.13026810,\ 'LWCF_EP': 33.42149734, 'PRECT_EP': 0.000000055586694, 'SWCF_EP': -51.79394531, 'TMQ_EP':44.34251404,\ 'LWCF_NP': 26.23941231, 'PRECT_NP':0.000000028597503, 'SWCF_NP': -50.92364502, 'TMQ_NP':12.72111988,\ 'LWCF_SP': 31.96141052, 'PRECT_SP':0.000000034625369, 'SWCF_SP': -70.26461792, 'TMQ_SP':10.95032024,\ 'LWCF_PA': 47.32126999, 'PRECT_PA':0.000000075492694, 'SWCF_PA': -78.27433014, 'TMQ_PA':47.25967789,\ 'LWCF_CAF': 43.99757003784179687500, 'PRECT_CAF':0.000000042313699, 'SWCF_CAF': -52.50243378, 'TMQ_CAF':36.79592514,\ 'LWCF_VOCAL': 43.99757004, 'PRECT_VOCAL':0.000000001785546, 'SWCF_VOCAL': -77.26232147, 'TMQ_VOCAL':17.59922791 } # Estimate non-linearity of the global model to perturbations in parameter values. # To do so, calculate radius of curvature of the three points from the default simulation # and the two sensitivity simulations. #calcNormlzdRadiusCurv(metricsNames, paramsNames, transformedParamsNames, # metricsWeights, # sensNcFilenames, sensNcFilenamesExt, defaultNcFilename) # Set up a column vector of observed metrics obsMetricValsCol = setupObsCol(obsMetricValsDict, metricsNames) # Calculate changes in parameter values needed to match metrics. defaultMetricValsCol, defaultBiasesCol, \ defaultBiasesApprox, defaultBiasesApproxLowVals, defaultBiasesApproxHiVals, \ defaultBiasesApproxPC, defaultBiasesApproxLowValsPC, defaultBiasesApproxHiValsPC, \ normlzdWeightedDefaultBiasesApprox, normlzdWeightedDefaultBiasesApproxPC, \ defaultBiasesOrigApprox, defaultBiasesOrigApproxPC, \ sensMatrixOrig, sensMatrix, normlzdSensMatrix, \ normlzdWeightedSensMatrix, biasNormlzdSensMatrix, svdInvrsNormlzdWeighted, \ vhNormlzd, uNormlzd, sNormlzd, \ vhNormlzdWeighted, uNormlzdWeighted, sNormlzdWeighted, \ magParamValsRow, \ defaultParamValsOrigRow, dparamsSoln, dnormlzdParamsSoln, \ dparamsSolnPC, dnormlzdParamsSolnPC, \ paramsSoln, paramsLowVals, paramsHiVals, \ paramsSolnPC, paramsLowValsPC, paramsHiValsPC = \ analyzeSensMatrix(metricsNames, paramsNames, transformedParamsNames, metricsWeights, sensNcFilenames, defaultNcFilename, obsMetricValsDict) paramsLowValsPCBound, paramsHiValsPCBound = \ calcParamsBounds(metricsNames, paramsNames, transformedParamsNames, metricsWeights, obsMetricValsCol, magParamValsRow, sensNcFilenames, sensNcFilenamesExt, defaultNcFilename) # Create scatterplot to look at outliers #createPcaBiplot(normlzdSensMatrix, defaultBiasesCol, obsMetricValsCol, metricsNames, paramsNames) # Find outliers by use of the ransac algorithm outlier_mask, defaultBiasesApproxRansac, normlzdWeightedDefaultBiasesApproxRansac, \ dnormlzdParamsSolnRansac, paramsSolnRansac = \ findOutliers(normlzdSensMatrix, normlzdWeightedSensMatrix, \ defaultBiasesCol, obsMetricValsCol, magParamValsRow, defaultParamValsOrigRow) print( "ransac_outliers = ", metricsNames[outlier_mask] ) print( "ransac_inliers = ", metricsNames[~outlier_mask] ) #pdb.set_trace() # Find best-fit params by use of the Elastic Net algorithm defaultBiasesApproxElastic, normlzdWeightedDefaultBiasesApproxElastic, \ dnormlzdParamsSolnElastic, paramsSolnElastic = \ findParamsUsingElastic(normlzdSensMatrix, normlzdWeightedSensMatrix, \ defaultBiasesCol, obsMetricValsCol, metricsWeights, magParamValsRow, defaultParamValsOrigRow) defaultBiasesApproxElasticCheck = ( normlzdWeightedSensMatrix @ dnormlzdParamsSolnElastic ) \ * np.reciprocal(metricsWeights) * np.abs(obsMetricValsCol) print("defaultBiasesApproxElastic = ", defaultBiasesApproxElastic) print("defaultBiasesApproxElasticCheck = ", defaultBiasesApproxElasticCheck) #pdb.set_trace() # Set up a column vector of metric values from the default simulation defaultMetricValsCol = setupDefaultMetricValsCol(metricsNames, defaultNcFilename) # Set up a column vector of metric values from the global simulation based on optimized # parameter values. linSolnMetricValsCol = setupDefaultMetricValsCol(metricsNames, linSolnNcFilename) # Store biases in default simulation, ( global_model - default ) linSolnBiasesCol = np.subtract(linSolnMetricValsCol, defaultMetricValsCol) # Calculate the fraction of the default-sim bias that remains after tuning. # This is unweighted and hence is not necessarily less than one. # defaultBiasesApprox = J*delta_p = ( fwd - def ) # numerator = ( fwd - def ) + ( def - obs ) = ( fwd - obs ) Bias = ( defaultBiasesApprox + defaultBiasesCol ) # defaultBiasesCol = delta_b = ( default - obs ) = denominator BiasMagRatio = np.linalg.norm(Bias/np.abs(obsMetricValsCol))**2 / \ np.linalg.norm(defaultBiasesCol/np.abs(obsMetricValsCol))**2 # Calculate the fraction of the default-sim bias that remains after tuning, # but using a truncated PC observation. # This is unweighted and hence is not necessarily less than one. # defaultBiasesApproxPC = J*delta_p = ( fwd - def ) # numerator = ( fwd - def ) + ( def - obs ) = ( fwd - obs ) BiasPC = ( defaultBiasesApproxPC + defaultBiasesCol ) # defaultBiasesCol = delta_b = ( default - obs ) = denominator BiasPCMagRatio = np.linalg.norm(BiasPC/np.abs(obsMetricValsCol))**2 / \ np.linalg.norm(defaultBiasesCol/
np.abs(obsMetricValsCol)
numpy.abs
import numpy as np X = np.array([[3,4],[5,12],[24,7]]) print(X) X = X ** 2 print(X) X =
np.sum(X, axis=1)
numpy.sum
''' Copyright 2018 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' # from numba import jit # import numba and uncomment the @jit infront of the function if code is too slow -- can be around factor 3 for large intergers from math import factorial as fac import numpy as np # @jit def number_coalitions_weighting_x(quota,weights): ''' input, integers, quota list or tuple of integers, weight vector, output, vector with lenght sum(weights)+1, containing quota many leading zeros 0,...,0 and then the number of coalitions which weight quota,...,sum(weights) i.e. whose members have weights summing up to x = quota,...,sum(weights) ''' W =
np.array(weights, dtype=np.int64)
numpy.array
# -*- coding: utf-8 -*- """ Created on Mon Dec 11 20:02:37 2017 @author: tzave """ import numpy as np def swap(r, p, E, cols=None): if cols is None: b = np.copy(E[r, :]) E[r, :] = E[p, :] E[p, :] = np.copy(b) else: b = np.copy(E[:, r]) E[:, r] = E[:, p] E[:, p] = np.copy(b) def ForwardSubstitution(A, b): rows = A.shape[0] y = np.zeros(rows) for i in range(rows): s = 0. for j in range(i): s = s + A[i, j] * y[j] y[i] = (b[i] - s) / A[i, i] return y def BackSubstitution(A, b): rows = A.shape[0] x = np.zeros(rows) for i in reversed(range(rows)): s = 0 for j in range(i + 1, rows): s = s + A[i, j] * x[j] x[i] = (b[i] - s) / A[i, i] return x def foundNonZeroPivot(r, E): rows = E.shape[0] PivotFound = False for p in range(r, rows - 1): if
np.isclose(E[p, r], 0)
numpy.isclose
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Transform the gamestate data to onehot vectors """ from sklearn.preprocessing import OneHotEncoder,LabelEncoder import pandas as pd import numpy as np import re import os from pathlib import Path # settlements and cities are built on node coordinates # roads are built on edge coordinates # nodes are named after an adjacent rode # hence the set of node coords is a subset of the edge coords # Additionally, no nodes close to the sea are needed... # these are inaccessible for building # edge_coordinates contains the edge coordinates on which a player # could actually built # len(edge_coordinates) = 72 edge_coordinates = ['0x27','0x38','0x49','0x5a','0x6b','0x7c', '0x26','0x48','0x6a','0x8c', '0x25','0x36','0x47','0x58','0x69','0x7a','0x8b','0x9c', '0x24','0x46','0x68','0x8a','0xac', '0x23','0x34','0x45','0x56','0x67','0x78','0x89','0x9a','0xab','0xbc', '0x22','0x44','0x66','0x88','0xaa','0xcc', '0x32','0x43','0x54','0x65','0x76','0x87','0x98','0xa9','0xba','0xcb', '0x42','0x64','0x86','0xa8','0xca', '0x52','0x63','0x74','0x85','0x96','0xa7','0xb8', '0xc9', '0x62','0x84','0xa6','0xc8', '0x72','0x83','0x94','0xa5','0xb6','0xc7'] # additional node coordinates # (that are not in the accessible edge_coordinates list) # the ones on the right side of the land that are named after # sea edge nodes node_coordinates = ['0x8d', '0xad','0xcd','0xdc','0xda','0xd8'] # all the coordinates of the table that a player can build on # plus the none value for when the player has not built # len(build_coords) = 79 build_coords = edge_coordinates + node_coordinates + ['None'] ################################ # encoding the build coordinates ################################ np_build_coords = np.array(build_coords) label_encoder = LabelEncoder() integer_encoded_build_coords = label_encoder.fit_transform(np_build_coords) #print(label_encoder.transform(np.array(['0x69']))) ###################### # for debugging use: ###################### #print('building coordinates label encoding') #for x in build_coords: # print('coordinate ' + str(x) + ' : '+str(label_encoder.transform(np.ravel(x)))) #print('-----------------------------------') #building coordinates label encoding #coordinate 0x27 : [5] #coordinate 0x38 : [9] #coordinate 0x49 : [17] #coordinate 0x5a : [22] #coordinate 0x6b : [32] #coordinate 0x7c : [38] #coordinate 0x26 : [4] #coordinate 0x48 : [16] #coordinate 0x6a : [31] #coordinate 0x8c : [48] #coordinate 0x25 : [3] #coordinate 0x36 : [8] #coordinate 0x47 : [15] #coordinate 0x58 : [21] #coordinate 0x69 : [30] #coordinate 0x7a : [37] #coordinate 0x8b : [47] #coordinate 0x9c : [54] #coordinate 0x24 : [2] #coordinate 0x46 : [14] #coordinate 0x68 : [29] #coordinate 0x8a : [46] #coordinate 0xac : [62] #coordinate 0x23 : [1] #coordinate 0x34 : [7] #coordinate 0x45 : [13] #coordinate 0x56 : [20] #coordinate 0x67 : [28] #coordinate 0x78 : [36] #coordinate 0x89 : [45] #coordinate 0x9a : [53] #coordinate 0xab : [61] #coordinate 0xbc : [67] #coordinate 0x22 : [0] #coordinate 0x44 : [12] #coordinate 0x66 : [27] #coordinate 0x88 : [44] #coordinate 0xaa : [60] #coordinate 0xcc : [73] #coordinate 0x32 : [6] #coordinate 0x43 : [11] #coordinate 0x54 : [19] #coordinate 0x65 : [26] #coordinate 0x76 : [35] #coordinate 0x87 : [43] #coordinate 0x98 : [52] #coordinate 0xa9 : [59] #coordinate 0xba : [66] #coordinate 0xcb : [72] #coordinate 0x42 : [10] #coordinate 0x64 : [25] #coordinate 0x86 : [42] #coordinate 0xa8 : [58] #coordinate 0xca : [71] #coordinate 0x52 : [18] #coordinate 0x63 : [24] #coordinate 0x74 : [34] #coordinate 0x85 : [41] #coordinate 0x96 : [51] #coordinate 0xa7 : [57] #coordinate 0xb8 : [65] #coordinate 0xc9 : [70] #coordinate 0x62 : [23] #coordinate 0x84 : [40] #coordinate 0xa6 : [56] #coordinate 0xc8 : [69] #coordinate 0x72 : [33] #coordinate 0x83 : [39] #coordinate 0x94 : [50] #coordinate 0xa5 : [55] #coordinate 0xb6 : [64] #coordinate 0xc7 : [68] #coordinate 0x8d : [49] #coordinate 0xad : [63] #coordinate 0xcd : [74] #coordinate 0xdc : [77] #coordinate 0xda : [76] #coordinate 0xd8 : [75] #coordinate None : [78] # binary encode onehot_encoder = OneHotEncoder(sparse=False) integer_encoded_build_coords = integer_encoded_build_coords.reshape(len(integer_encoded_build_coords), 1) onehot_encoded_build_coords = onehot_encoder.fit_transform(integer_encoded_build_coords) #print(onehot_encoded_build_coords) ############################################## # Testing ############################################## # test label transform ['0x69' '0x89' 'None'] #print('Testing the build coordinates') #y = gamestates.iloc[2,6:9] #values = np.array(y) #print(values) #integer_encoded = label_encoder.transform(np.ravel(values)) #print(integer_encoded) #integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) #onehot_encoded = onehot_encoder.transform(integer_encoded) #print(onehot_encoded) #print('eotesting build coordinates') # robber can be placed on land hexes (19) land_coords = ['0x37','0x59','0x7b', '0x35','0x57','0x79','0x9b', '0x33','0x55','0x77','0x99','0xbb', '0x53','0x75','0x97','0xb9', '0x73','0x95','0xb7' ] ################################ # encoding the land coordinates # aka robber coordinates ################################ np_rob_coords = np.array(land_coords) rob_label_encoder = LabelEncoder() integer_encoded_rob_coords = rob_label_encoder.fit_transform(np_rob_coords) # print(integer_encoded_rob_coords) # [ 2 6 11 1 5 10 15 0 4 9 14 18 3 8 13 17 7 12 16] # binary encode rob_onehot_encoder = OneHotEncoder(sparse=False) integer_encoded_rob_coords = integer_encoded_rob_coords.reshape(len(integer_encoded_rob_coords), 1) onehot_encoded_rob_coords = rob_onehot_encoder.fit_transform(integer_encoded_rob_coords) #print(onehot_encoded_rob_coords) ############################################## # Testing ############################################## ## test robber coordinates of pilot01 #print('Testing the robber ') #y = gamestates.iloc[:,3] #values = np.array(y) #print(values) #integer_encoded = rob_label_encoder.transform(np.ravel(values)) #print(integer_encoded) #integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) #onehot_encoded = rob_onehot_encoder.transform(integer_encoded) #print(onehot_encoded) #print('eotesting robber') ################################ # encoding the hex typed ################################ # this needs to have custom categories because of the ports # in the game version of the data # 6: water # 0: desert # 1: clay # 2: ore # 3: sheep # 4: wheat # 5: wood # 7 - 12 : miscelaneous ports(3:1) facing on the different directions # 16+ : non miscelaneous ports(2:1) # # 9 categories def hexLabelEncoder(hextypes): ''' converts the hextypes to labeled (9 labels for the 9 categories) Parameters: hex board layout array Returns: array that contains the labels ''' y = [] # pilot1 hexlayout is #[9, 6, 67, 6, 6, 2, 5, 1, 66, 8, 2, 3, 1, 2, 6, 6, 5, 3, 4, 1, 4, 11, 36, 5, 4, 0, 5, 6, 6, 4, 3, 3, 97, 21, 6, 12, 6] for x in hextypes: if x < 7 : y.append(x) elif 7<= x <= 12: y.append(7) else : y.append(8) return y ###### checking the general fit ###### generalized ohe encoder for list of all possible land types hex_type_OHencoder = OneHotEncoder(sparse=False) hex_type_labels = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) #integer_encoded_types = integer_encoded_types.reshape(len(integer_encoded_types),1) OHE_land_types = hex_type_OHencoder.fit_transform(hex_type_labels.reshape(len(hex_type_labels),1)) #print(OHE_land_types) ################################################ # Testing ############################################## ## test land types of pilot01 #hextypes = gamestates.iloc[0,1] #integer_encoded_types = np.array(hexLabelEncoder(hextypes)) #print(integer_encoded_types) # outputs: # pilot1 hexlayout is #[9, 6, 67, 6, 6, 2, 5, 1, 66, 8, 2, 3, 1, 2, 6, 6, 5, 3, 4, 1, 4, 11, 36, 5, 4, 0, 5, 6, 6, 4, 3, 3, 97, 21, 6, 12, 6] # converted to: # [7 6 8 6 6 2 5 1 8 7 2 3 1 2 6 6 5 3 4 1 4 7 8 5 4 0 5 6 6 4 3 3 8 8 6 7 6] #ohe_hex_layout = hex_type_OHencoder.transform(integer_encoded_types.reshape(len(integer_encoded_types),1)) ###################################################### # create the numpy array that contains the ohe vectors ###################################################### # # store the data to an np array so that the can be used # in keras # # a massive np array will be created with all the games at the end, when we # will be ready to train # to convert to ohe you first transform to label encoded # and then to one-hot encode # np array size : # rows : 4150 # i.e. for all 57 games we have 4150 gameturns # columns : # hex layout : 37 hexes x 9 categories # -> 333 # robber positions : 19 possible positions (land hexes) # -> 19 # player state : # builds : 24 building blocks x 79 categories(coords) # -> 1896 # dev cards : 25 dev cards (true-false) # -> 25 ## # total : 333 + 19 + 4x(1896+25) = 8017 + 19 = 8036 ######### IMPORTAND ########## ## Instead of a big, chaotic table, save to various small np arrays ## #ohedata = np.zeros((4150,8036)) ## saving pilot1 to np data array ## land hex types #temp = np.array(hexLabelEncoder(gamestates.iloc[0,1])) #print('-------') #print(temp) #print(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) # ##oned_temp = np.ravel(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) ## this goes from 0 to 332 #ohedata[0,0:333] = np.ravel(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) #ohedata[0,0:3]=1 # -> writes 1 to columns 0,1,2 ######## IMPORTAND ########## # OHE conversion steps: # 1. convert hex layout # 2. convert robber position and append it # 3. convert player1 build and append them # 4. convert player1 devcard and append them # 5. convert player2 3 4 # 6. check size of all this def convert_hex_layout(hexlayout): ''' converts the gamestates hexlayout to one hot encoding PARAMETERS ---------- hexlayout : the gamestates hexlayout Returns ------- an np array of size (1,333) ''' # convert the layout to label encoding labeled = np.array(hexLabelEncoder(hexlayout)) # convert the layout to one hot encoding ohe = hex_type_OHencoder.transform(labeled.reshape(len(labeled),1)) return np.ravel(ohe) ####Testing OK #print('Testing hex layout conversion') #methodlayout = convert_hex_layout(gamestates.iloc[0,1]) #scriptlayout = np.ravel(hex_type_OHencoder.transform(temp.reshape(len(temp),1))) def convert_robber_position(robber): ''' converts the robber position coordinates to one hot encoding Parameters ---------- robber: the robber coordinates from the gamestates dataframe Returns ------- encoded np array of size 19 ''' # convert the robber position to labeled encoding robber = np.array(robber) labeled = rob_label_encoder.transform(np.ravel(robber)) # convert the robber position to one hot encoding labeled = labeled.reshape(len(labeled),1) ohe = rob_onehot_encoder.transform(labeled) # return with ravel to avoid the double list [[]] return np.ravel(ohe) ####Testing OK #print('Testing the robber ') #y = gamestates.iloc[1,3] #values = np.array(y) #print(values) #integer_encoded = rob_label_encoder.transform(np.ravel(values)) #print(integer_encoded) #integer_encoded = integer_encoded.reshape(len(integer_encoded), 1) #onehot_encoded = rob_onehot_encoder.transform(integer_encoded) #print(onehot_encoded) #print('eotesting robber') #print('Testing the robber method') #methodrobber = convert_robber_position(gamestates.iloc[1,3]) #print(methodrobber) def convert_player_buildings(playerbuildings): ''' Converts the player buildings coordinates to one hot encoding Parameters ---------- from the gamestate the players columns of settlements, cities and roads a list of 24 coordinates Returns ------- np array of one hot encoding for all 24 building blocks of the player size should be (24,79) (in one line vector 24*79 = 1896) ''' # list of the buildings buildings = [] for coord in playerbuildings: ohe_coord = convert_building_coord(coord) buildings.append(ohe_coord) #print(buildings) npbuildings = np.array(buildings) return np.ravel(npbuildings) def convert_building_coord(hexcoord): ''' Convert a hex building coordinate to one hot encoding Parameters ---------- a hex coordinate Returns ------- one hot encoding of the coordinate, an np array or size 79 ''' value = np.array(hexcoord) # convert the coordinate to labeled encoding labeled = label_encoder.transform(np.ravel(value)) # convert the coordinate to one hot encoding labeled = labeled.reshape(len(labeled), 1) ohe = onehot_encoder.transform(labeled) return ohe ####### ## Testing the coordinate convertion OK #print('Testing the coordinate convertion to ohe') ## testing only one coordinate #coord = gamestates.iloc[2,6] #print(coord) #methodcoord = convert_building_coord(coord) ## testing group of coordinates OK #coords = gamestates.iloc[2,6:9] #print(coords) #methodcoords = convert_player_buildings(coords) #print(methodcoords) #print(methodcoords.reshape(3,79)) def convert_player_devcards(dev_cards): ''' Coverts the gamestate fields of the players dev cards from true/false to binary 1/0 Parameters ---------- dev_cards : the 25 dev cards potentialy available to the player Returns ------- np array of size 25 where true is 1 and false is 0 ''' binary_dev_cards =[] for card in dev_cards: # type is np.bool, don't use quotes if card == True : binary_dev_cards.append(1) else: binary_dev_cards.append(0) return np.array(binary_dev_cards) #### Testing player dev cards OK #dev_cards = gamestates.loc[58, 'pl0knight1' : 'pl0vp5'] #dclist = convert_player_devcards(dev_cards) #print(dclist) ############################################################################## # OHE conversion ############################################################################## # convert each dataframe to np arrays # each game has 10 np arrays of the board, robber and player states in ohe data datafiles = ["../soclogsData_NoResources/DataTables/pilot/pilot03_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot15_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot17_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot04_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot21_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot02_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot08_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot09_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot14_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot11_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot05_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot16_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot01_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot20_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot13_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot10_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot12_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot07_gamestates.pkl", "../soclogsData_NoResources/DataTables/pilot/pilot06_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/league4_attempt2-2012-11-14-19-46-22-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/practice-2012-10-30-18-41-07-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League4-2012-11-24-09-17-47-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Test-2012-10-16-14-53-15-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/L5 Real game-2012-11-11-19-58-55-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Master League final-2012-12-05-16-59-57-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League 8 Game 2-2012-11-26-18-55-31-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/SOCL League 5 Game 2-2012-11-25-17-25-09-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/league 5 last game-2012-12-09-21-08-39-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/SOCL League 5 Game 4-2012-12-03-02-11-10-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League8-2012-11-24-12-04-51-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League3Game5-2012-11-30-19-59-18-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/master league 4-2012-12-04-17-37-56-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Master league game 2-2012-11-13-18-07-14-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Game 3-2012-11-25-20-09-16-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League 5 game 3-2012-11-26-00-51-20-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League4-2012-11-09-19-08-53-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/3version2-2012-11-21-20-23-31-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League3Game1-2012-11-18-20-34-38-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/League3Game4-2012-11-28-20-01-30-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/L5 practicegame-2012-11-11-19-26-36-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Master League Game 3-2012-11-17-17-01-18-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season2/Settles league 1-2012-11-08-18-05-34-+0000_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3practice-2012-05-31-19-23-46-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League2.4-2012-06-26-22-47-04-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3-2012-05-27-19-53-48-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league2.2-2012-06-18-20-50-12-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3 michael-2012-06-17-20-54-03-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/3-2012-06-06-19-58-56-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1-2012-06-17-19-53-24-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1.2-2012-06-21-20-27-05-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league 3 (-k)-2012-06-25-18-22-53-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league3minus1-2012-05-25-22-22-21-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 2-2012-06-26-20-23-20-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1 game-2012-06-19-18-49-00-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 1.1-2012-06-21-18-58-22-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/league1 31may-2012-05-31-19-59-37-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League 3 Finale-2012-06-25-21-57-53-+0100_gamestates.pkl", "../soclogsData_NoResources/DataTables/season1/League2-2012-06-17-19-58-07-+0100_gamestates.pkl" ] # make directories to save the results ohedata_dir = Path.cwd() / "OHEdata/season2" ohedata_dir.mkdir(parents=True, exist_ok=True) ohedata_dir = Path.cwd() / "OHEdata/season1" ohedata_dir.mkdir(parents=True, exist_ok=True) ohedata_dir = Path.cwd() / "OHEdata/pilot" ohedata_dir.mkdir(parents=True, exist_ok=True) print('Converting gamestates data to ohe-hot encoded vectors') print('This might take a while. Please be patient...') for file in datafiles: # create a dir with the game name # to save the 11 np arrays of the game # with the data in ohe filename_parts = re.split(r'[/]', file) season = filename_parts[3] dest = "./OHEdata/"+season gamename = filename_parts[4][:-15] #exclude the _gamestates.pkl part :-) path = dest+"/"+gamename try: os.mkdir(path) except OSError : print("Creation of the directory %s failed" %path) gamestates = pd.read_pickle(file) # replace None values with 'None' to work with np gamestates.replace(to_replace=[None], value='None', inplace=True) # initialize nptables nplayout =
np.zeros((1,333))
numpy.zeros
import argparse import numpy as np if __name__ == '__main__': try: parser = argparse.ArgumentParser() parser.add_argument("--file_name", help="input: set a path to the accuuracy file") args = parser.parse_args() epochs = 350 test_accuracy = np.zeros((epochs,10)) with open(args.file_name, 'r') as filehandle: filecontents = filehandle.readlines() index = 0 col = 0 for line in filecontents: t_acc = line[:-1] test_accuracy[index][col] = float(t_acc) index += 1 if index == epochs: index = 0 col += 1 if col == 10: break ave_accuracy = np.mean(test_accuracy, axis=1) std_accuracy =
np.std(test_accuracy, axis=1)
numpy.std
import matplotlib.pyplot as plt import sys import numpy as np from numpy import exp, abs DEL = 1 # 0 = not deleted class GrahamsScan: def __init__(self, points): self.points = points self.delete =
np.zeros(shape=(points.shape[0], 1))
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import astropy.io.fits as fits import os import poppy from .main import GeminiPrimary # Classes for dealing with AO Telemetry sets class GPI_Globals(object): """ Container for same constants as gpilib's gpi_globals, with same variable names to ease porting of code. Plus some other variables as needed.""" gpi_tweet_n = 48 gpi_woof_n = 9 gpi_numacross=43.2 gpi_tweet_spacing = GeminiPrimary.primary_diameter/gpi_numacross gpi_woof_spacing = GeminiPrimary.primary_diameter/gpi_numacross*5.5 # below ones are not in gpi_globals pupil_center_subap = 23 pupil_center_tweeter=23.5 pupil_center_woofer=4 class DeformableMirror(poppy.AnalyticOpticalElement): """ Generic deformable mirror, of the continuous face sheet variety""" def __init__(self, shape=(10,10)): poppy.OpticalElement.__init__(self, planetype=poppy.poppy_core._PUPIL) self._shape = shape # number of actuators self._surface = np.zeros(shape) # array for the DM surface WFE self.numacross = shape[0] # number of actuators across diameter of # the optic's cleared aperture (may be # less than full diameter of array) self.actuator_spacing = 1.0/self.numacross # distance between actuators, # projected onto the primary self.pupil_center = (shape[0]-1.)/2 # center of clear aperture in actuator units # (may be offset from center of DM) @property def shape(self): return self._shape @property def surface(self): """ The surface shape of the deformable mirror, in **meters** """ return self._surface def set_surface(self, new_surface, units='nm'): """ Set the entire surface shape of the DM. Parameters ------------- new_surface : 2d ndarray Desired DM surface shape (note that wavefront error will be 2x this) units : string Right now this *must* be 'nm' for nanometers, which is the default. Other units may be added later if needed. """ assert new_surface.shape == self.shape if units!='nm': raise NotImplementedError("Units other than nanometers not yet implemented.") self._surface[:] =
np.asarray(new_surface, dtype=float)
numpy.asarray
# Standard lib import unittest # 3rd party import numpy as np # Our own imports from deep_hipsc_tracking import tracking from .. import helpers # Data T1 = np.array([ [1.0, 2.0, 3.0, 4.0, 5.0], [1.0, 2.0, 3.0, 4.0, 5.0], ]).T T2 = np.array([ [1.1, 2.1, 3.1, 4.1], [1.1, 2.1, 3.1, 4.1], ]).T T3 = np.array([ [1.2, 2.2, 3.2, 4.2, 5.2], [1.2, 2.2, 3.2, 4.2, 5.2], ]).T T4 = np.array([ [1.3, 3.3, 4.3, 5.3], [1.3, 3.3, 4.3, 5.3], ]).T T5 = np.array([ [1.4, 2.4, 3.4, 5.4], [1.4, 2.4, 3.4, 5.4], ]).T TRACKS = [ (1, None, T1), (2, None, T2), (3, None, T3), (4, None, T4), (5, None, T5), ] # Tests class TestFindFlatRegions(unittest.TestCase): def test_finds_flat_region_all_flat(self): tt = np.linspace(0, 100, 100) yy = tt * 2 res = tracking.find_flat_regions(tt, yy, interp_points=10, cutoff=10, noise_points=5) exp = [np.ones((100, ), dtype=np.bool)] msg = 'Got {} rois expected {}'.format(len(res), len(exp)) self.assertEqual(len(res), len(exp), msg) for r, e in zip(res, exp): np.testing.assert_almost_equal(r, e) def test_finds_flat_region_all_spikey(self): tt = np.linspace(0, 100, 100) yy = np.array([-100, 0, 100] * 50) res = tracking.find_flat_regions(tt, yy, interp_points=5, cutoff=1, noise_points=1) exp = [] msg = 'Got {} rois expected {}'.format(len(res), len(exp)) self.assertEqual(len(res), len(exp), msg) for r, e in zip(res, exp): np.testing.assert_almost_equal(r, e) def test_finds_flat_region_square_waves(self): tt = np.linspace(0, 100, 100) yy = np.array(([-100] * 10 + [100] * 10)*5) res = tracking.find_flat_regions(tt, yy, interp_points=5, cutoff=1, noise_points=1) exp = [] for i in range(0, 100, 10): mask = np.zeros((100, ), dtype=np.bool) if i == 0: mask[i:i+8] = 1 elif i == 90: mask[i+2:i+10] = 1 else: mask[i+2:i+8] = 1 exp.append(mask) msg = 'Got {} rois expected {}'.format(len(res), len(exp)) self.assertEqual(len(res), len(exp), msg) for r, e in zip(res, exp): np.testing.assert_almost_equal(r, e) class TestRollingFuncs(unittest.TestCase): def test_rolling_rolling_window(self): xp = np.array([1, 2, 3, 4, 5]) exp = np.array([2, 3, 4]) res = np.mean(tracking.rolling_window(xp, window=3), axis=-1) np.testing.assert_almost_equal(res, exp) exp = np.array([1.5, 2.5, 3.5, 4.5]) res = np.mean(tracking.rolling_window(xp, window=2), axis=-1) np.testing.assert_almost_equal(res, exp) exp = np.array([1.3333, 2, 3, 4, 4.6666]) res = np.mean(tracking.rolling_window(xp, window=3, pad='same'), axis=-1) np.testing.assert_almost_equal(res, exp, decimal=3) def test_interpolate_window(self): xp = np.array([1, 2, 3, 4, 5]) yp = np.array([5, 4, 3, 2, 1]) x = np.array([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 5.5]) y = np.array([5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2, 1, 0.5]) res = tracking.rolling_interp(x, xp, yp, 3) np.testing.assert_almost_equal(y, res) def test_slope_window(self): xp = np.array([1, 2, 3, 4, 5]) yp = np.array([5, 4, 3, 2, 1]) x = np.array([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 5.5]) a = np.array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]) res = tracking.rolling_slope(x, xp, yp, 3) np.testing.assert_almost_equal(a, res) class TestMergePointsCluster(unittest.TestCase): def test_merges_points_with_nans(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, np.nan], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_same_set(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points = tracking.tracking.merge_points_cluster(points1, points1, max_dist=0.1) np.testing.assert_almost_equal(points, points1) def test_merges_both_different(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_left(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_right(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [2.0, 2.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_slight_motion(self): points1 = np.array([ [0.0, 0.2], [1.0, 1.2], [2.0, 2.2], [3.0, 3.2], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [4.0, 4.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.2) exp_points = np.array([ [0.0, 0.15], [1.0, 1.15], [2.0, 2.2], [3.0, 3.15], [4.0, 4.1], ]) np.testing.assert_almost_equal(points, exp_points) class TestMergePointsPairwise(unittest.TestCase): def test_merges_same_set(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points1, max_dist=0.1) np.testing.assert_almost_equal(points, points1) def test_merges_both_different(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_left(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [2.0, 2.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_right(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [2.0, 2.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_slight_motion(self): points1 = np.array([ [0.0, 0.2], [1.0, 1.2], [2.0, 2.2], [3.0, 3.2], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [4.0, 4.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.2) exp_points = np.array([ [0.0, 0.15], [1.0, 1.15], [3.0, 3.15], [2.0, 2.2], [4.0, 4.1], ]) np.testing.assert_almost_equal(points, exp_points) class TestFindLinkFunctions(unittest.TestCase): def test_finds_all_the_links(self): res = tracking.find_link_functions() exp = {'softassign', 'balltree', 'bipartite_match'} self.assertEqual(set(res.keys()), exp) class TestLinks(unittest.TestCase): def test_to_padded_arrays(self): tt = np.array([3, 5, 7, 9, 11]) xx = np.array([0, 1, 2, 3, 4]) yy = np.array([1, 2, 3, 4, 5]) chain = tracking.Link.from_arrays(tt, xx, yy) nan = np.nan in_tt = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) in_xx = np.array([nan, nan, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, nan]) in_yy = np.array([nan, nan, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, nan]) res_tt, res_xx, res_yy = chain.to_padded_arrays(min_t=1, max_t=13) np.testing.assert_almost_equal(res_tt, in_tt) np.testing.assert_almost_equal(res_xx, in_xx) np.testing.assert_almost_equal(res_yy, in_yy) in_tt = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) in_xx = np.array([0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4]) in_yy = np.array([1, 1, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5]) res_tt, res_xx, res_yy = chain.to_padded_arrays(min_t=1, max_t=13, extrapolate=True) np.testing.assert_almost_equal(res_tt, in_tt) np.testing.assert_almost_equal(res_xx, in_xx) np.testing.assert_almost_equal(res_yy, in_yy) def test_interpolate_chain_regular(self): tt =
np.array([3, 5, 7, 9, 11])
numpy.array
import numpy as np from numpy.polynomial import Chebyshev as Ch from scipy.linalg import cho_factor, cho_solve from scipy.optimize import minimize import psoap from psoap import constants as C from psoap import matrix_functions from psoap.data import lredshift try: import celerite from celerite import terms except ImportError: print("If you want to use the fast 1D (SB1 or ST1 models), please install celerite") try: import george from george import kernels except ImportError: print("If you want to use the fast GP solver (SB2, ST2, or ST3 models) please install george") def predict_f(lwl_known, fl_known, sigma_known, lwl_predict, amp_f, l_f, mu_GP=1.0): '''wl_known are known wavelengths. wl_predict are the prediction wavelengths. Assumes all inputs are 1D arrays.''' # determine V11, V12, V21, and V22 M = len(lwl_known) V11 = np.empty((M, M), dtype=np.float64) matrix_functions.fill_V11_f(V11, lwl_known, amp_f, l_f) # V11[np.diag_indices_from(V11)] += sigma_known**2 V11 = V11 + sigma_known**2 * np.eye(M) N = len(wl_predict) V12 = np.empty((M, N), dtype=np.float64) matrix_functions.fill_V12_f(V12, lwl_known, lwl_predict, amp_f, l_f) V22 = np.empty((N, N), dtype=np.float64) # V22 is the covariance between the prediction wavelengths # The routine to fill V11 is the same as V22 matrix_functions.fill_V11_f(V22, lwl_predict, amp_f, l_f) # Find V11^{-1} factor, flag = cho_factor(V11) mu = mu_GP + np.dot(V12.T, cho_solve((factor, flag), (fl_known - mu_GP))) Sigma = V22 - np.dot(V12.T, cho_solve((factor, flag), V12)) return (mu, Sigma) def predict_python(wl_known, fl_known, sigma_known, wl_predict, amp_f, l_f, mu_GP=1.0): '''wl_known are known wavelengths. wl_predict are the prediction wavelengths.''' # determine V11, V12, V21, and V22 V11 = get_V11(wl_known, sigma_known, amp_f, l_f) # V12 is covariance between data wavelengths and prediction wavelengths V12 = get_V12(wl_known, wl_predict, amp_f, l_f) # V22 is the covariance between the prediction wavelengths V22 = get_V22(wl_predict, amp_f, l_f) # Find V11^{-1} factor, flag = cho_factor(V11) mu = mu_GP + np.dot(V12.T, cho_solve((factor, flag), (fl_known - mu_GP))) Sigma = V22 - np.dot(V12.T, cho_solve((factor, flag), V12)) return (mu, Sigma) def predict_f_g(lwl_f, lwl_g, fl_fg, sigma_fg, lwl_f_predict, lwl_g_predict, mu_f, amp_f, l_f, mu_g, amp_g, l_g, get_Sigma=True): ''' Given that f + g is the flux that we're modeling, jointly predict the components. ''' # Assert that wl_f and wl_g are the same length assert len(lwl_f) == len(lwl_g), "Input wavelengths must be the same length." n_pix = len(lwl_f) assert len(lwl_f_predict) == len(lwl_g_predict), "Prediction wavelengths must be the same length." n_pix_predict = len(lwl_f_predict) # Convert mu constants into vectors mu_f = mu_f * np.ones(n_pix_predict) mu_g = mu_g * np.ones(n_pix_predict) # Cat these into a single vector mu_cat = np.hstack((mu_f, mu_g)) # Create the matrices for the input data # print("allocating V11_f, V11_g", n_pix, n_pix) V11_f = np.empty((n_pix, n_pix), dtype=np.float) V11_g = np.empty((n_pix, n_pix), dtype=np.float) # print("filling V11_f, V11_g", n_pix, n_pix) matrix_functions.fill_V11_f(V11_f, lwl_f, amp_f, l_f) matrix_functions.fill_V11_f(V11_g, lwl_g, amp_g, l_g) B = V11_f + V11_g B[np.diag_indices_from(B)] += sigma_fg**2 # print("factoring sum") factor, flag = cho_factor(B) # print("Allocating prediction matrices") # Now create separate matrices for the prediction V11_f_predict = np.empty((n_pix_predict, n_pix_predict), dtype=np.float) V11_g_predict = np.empty((n_pix_predict, n_pix_predict), dtype=np.float) # print("Filling prediction matrices") matrix_functions.fill_V11_f(V11_f_predict, lwl_f_predict, amp_f, l_f) matrix_functions.fill_V11_f(V11_g_predict, lwl_g_predict, amp_g, l_g) zeros = np.zeros((n_pix_predict, n_pix_predict)) A = np.vstack((np.hstack([V11_f_predict, zeros]), np.hstack([zeros, V11_g_predict]))) # A[np.diag_indices_from(A)] += 1e-4 # Add a small nugget term # C is now the cross-matrices between the predicted wavelengths and the data wavelengths V12_f = np.empty((n_pix_predict, n_pix), dtype=np.float) V12_g = np.empty((n_pix_predict, n_pix), dtype=np.float) # print("Filling cross-matrices") matrix_functions.fill_V12_f(V12_f, lwl_f_predict, lwl_f, amp_f, l_f) matrix_functions.fill_V12_f(V12_g, lwl_g_predict, lwl_g, amp_g, l_g) C = np.vstack((V12_f, V12_g)) # print("Sloving for mu, sigma") # the 1.0 signifies that mu_f + mu_g = mu_fg = 1 mu = mu_cat + np.dot(C, cho_solve((factor, flag), fl_fg - 1.0)) if get_Sigma: Sigma = A - np.dot(C, cho_solve((factor, flag), C.T)) return mu, Sigma else: return mu def predict_f_g_sum(lwl_f, lwl_g, fl_fg, sigma_fg, lwl_f_predict, lwl_g_predict, mu_fg, amp_f, l_f, amp_g, l_g): # Assert that wl_f and wl_g are the same length assert len(lwl_f) == len(lwl_g), "Input wavelengths must be the same length." M = len(lwl_f_predict) N = len(lwl_f) V11_f = np.empty((M, M), dtype=np.float) V11_g = np.empty((M, M), dtype=np.float) matrix_functions.fill_V11_f(V11_f, lwl_f_predict, amp_f, l_f) matrix_functions.fill_V11_f(V11_g, lwl_g_predict, amp_g, l_g) V11 = V11_f + V11_g V11[np.diag_indices_from(V11)] += 1e-8 V12_f = np.empty((M, N), dtype=np.float64) V12_g = np.empty((M, N), dtype=np.float64) matrix_functions.fill_V12_f(V12_f, lwl_f_predict, lwl_f, amp_f, l_f) matrix_functions.fill_V12_f(V12_g, lwl_g_predict, lwl_g, amp_g, l_g) V12 = V12_f + V12_g V22_f = np.empty((N,N), dtype=np.float) V22_g = np.empty((N,N), dtype=np.float) # It's a square matrix, so we can just reuse fill_V11_f matrix_functions.fill_V11_f(V22_f, lwl_f, amp_f, l_f) matrix_functions.fill_V11_f(V22_g, lwl_g, amp_g, l_g) V22 = V22_f + V22_g V22[np.diag_indices_from(V22)] += sigma_fg**2 factor, flag = cho_factor(V22) mu = mu_fg + np.dot(V12, cho_solve((factor, flag), (fl_fg - 1.0))) Sigma = V11 - np.dot(V12, cho_solve((factor, flag), V12.T)) return mu, Sigma def predict_f_g_h(lwl_f, lwl_g, lwl_h, fl_fgh, sigma_fgh, lwl_f_predict, lwl_g_predict, lwl_h_predict, mu_f, mu_g, mu_h, amp_f, l_f, amp_g, l_g, amp_h, l_h): ''' Given that f + g + h is the flux that we're modeling, jointly predict the components. ''' # Assert that wl_f and wl_g are the same length assert len(lwl_f) == len(lwl_g), "Input wavelengths must be the same length." assert len(lwl_f) == len(lwl_h), "Input wavelengths must be the same length." n_pix = len(lwl_f) assert len(lwl_f_predict) == len(lwl_g_predict), "Prediction wavelengths must be the same length." assert len(lwl_f_predict) == len(lwl_h_predict), "Prediction wavelengths must be the same length." n_pix_predict = len(lwl_f_predict) # Convert mu constants into vectors mu_f = mu_f * np.ones(n_pix_predict) mu_g = mu_g * np.ones(n_pix_predict) mu_h = mu_h * np.ones(n_pix_predict) # Cat these into a single vector mu_cat = np.hstack((mu_f, mu_g, mu_h)) V11_f = np.empty((n_pix, n_pix), dtype=np.float) V11_g = np.empty((n_pix, n_pix), dtype=np.float) V11_h = np.empty((n_pix, n_pix), dtype=np.float) matrix_functions.fill_V11_f(V11_f, lwl_f, amp_f, l_f) matrix_functions.fill_V11_f(V11_g, lwl_g, amp_g, l_g) matrix_functions.fill_V11_f(V11_h, lwl_h, amp_h, l_h) B = V11_f + V11_g + V11_h B[np.diag_indices_from(B)] += sigma_fgh**2 factor, flag = cho_factor(B) # Now create separate matrices for the prediction V11_f_predict = np.empty((n_pix_predict, n_pix_predict), dtype=np.float) V11_g_predict = np.empty((n_pix_predict, n_pix_predict), dtype=np.float) V11_h_predict = np.empty((n_pix_predict, n_pix_predict), dtype=np.float) # Fill the prediction matrices matrix_functions.fill_V11_f(V11_f_predict, lwl_f_predict, amp_f, l_f) matrix_functions.fill_V11_f(V11_g_predict, lwl_g_predict, amp_g, l_g) matrix_functions.fill_V11_f(V11_h_predict, lwl_h_predict, amp_h, l_h) zeros = np.zeros((n_pix_predict, n_pix_predict)) A = np.vstack((np.hstack([V11_f_predict, zeros, zeros]), np.hstack([zeros, V11_g_predict, zeros]), np.hstack([zeros, zeros, V11_h_predict]))) V12_f = np.empty((n_pix_predict, n_pix), dtype=np.float) V12_g = np.empty((n_pix_predict, n_pix), dtype=np.float) V12_h = np.empty((n_pix_predict, n_pix), dtype=np.float) matrix_functions.fill_V12_f(V12_f, lwl_f_predict, lwl_f, amp_f, l_f) matrix_functions.fill_V12_f(V12_g, lwl_g_predict, lwl_g, amp_g, l_g) matrix_functions.fill_V12_f(V12_h, lwl_h_predict, lwl_h, amp_h, l_h) C = np.vstack((V12_f, V12_g, V12_h)) mu = mu_cat + np.dot(C, cho_solve((factor, flag), fl_fgh - 1.0)) Sigma = A - np.dot(C, cho_solve((factor, flag), C.T)) return mu, Sigma def predict_f_g_h_sum(lwl_f, lwl_g, lwl_h, fl_fgh, sigma_fgh, lwl_f_predict, lwl_g_predict, lwl_h_predict, mu_fgh, amp_f, l_f, amp_g, l_g, amp_h, l_h): ''' Given that f + g + h is the flux that we're modeling, predict the joint sum. ''' # Assert that wl_f and wl_g are the same length assert len(lwl_f) == len(lwl_g), "Input wavelengths must be the same length." M = len(lwl_f_predict) N = len(lwl_f) V11_f = np.empty((M, M), dtype=np.float) V11_g = np.empty((M, M), dtype=np.float) V11_h = np.empty((M, M), dtype=np.float) matrix_functions.fill_V11_f(V11_f, lwl_f_predict, amp_f, l_f) matrix_functions.fill_V11_f(V11_g, lwl_g_predict, amp_g, l_g) matrix_functions.fill_V11_f(V11_h, lwl_h_predict, amp_h, l_h) V11 = V11_f + V11_g + V11_h # V11[np.diag_indices_from(V11)] += 1e-5 # small nugget term V12_f = np.empty((M, N), dtype=np.float64) V12_g = np.empty((M, N), dtype=np.float64) V12_h =
np.empty((M, N), dtype=np.float64)
numpy.empty
''' Unit tests for utils ''' import collections import numpy as np import nose.tools import mir_eval from mir_eval import util def test_interpolate_intervals(): """Check that an interval set is interpolated properly, with boundaries conditions and out-of-range values. """ labels = list('abc') intervals = np.array([(n, n + 1.0) for n in range(len(labels))]) time_points = [-1.0, 0.1, 0.9, 1.0, 2.3, 4.0] expected_ans = ['N', 'a', 'a', 'b', 'c', 'N'] assert (util.interpolate_intervals(intervals, labels, time_points, 'N') == expected_ans) def test_interpolate_intervals_gap(): """Check that an interval set is interpolated properly, with gaps.""" labels = list('abc') intervals = np.array([[0.5, 1.0], [1.5, 2.0], [2.5, 3.0]]) time_points = [0.0, 0.75, 1.25, 1.75, 2.25, 2.75, 3.5] expected_ans = ['N', 'a', 'N', 'b', 'N', 'c', 'N'] assert (util.interpolate_intervals(intervals, labels, time_points, 'N') == expected_ans) @nose.tools.raises(ValueError) def test_interpolate_intervals_badtime(): """Check that interpolate_intervals throws an exception if input is unordered. """ labels = list('abc') intervals = np.array([(n, n + 1.0) for n in range(len(labels))]) time_points = [-1.0, 0.1, 0.9, 0.8, 2.3, 4.0] mir_eval.util.interpolate_intervals(intervals, labels, time_points) def test_intervals_to_samples(): """Check that an interval set is sampled properly, with boundaries conditions and out-of-range values. """ labels = list('abc') intervals = np.array([(n, n + 1.0) for n in range(len(labels))]) expected_times = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5] expected_labels = ['a', 'a', 'b', 'b', 'c', 'c'] result = util.intervals_to_samples( intervals, labels, offset=0, sample_size=0.5, fill_value='N') assert result[0] == expected_times assert result[1] == expected_labels expected_times = [0.25, 0.75, 1.25, 1.75, 2.25, 2.75] expected_labels = ['a', 'a', 'b', 'b', 'c', 'c'] result = util.intervals_to_samples( intervals, labels, offset=0.25, sample_size=0.5, fill_value='N') assert result[0] == expected_times assert result[1] == expected_labels def test_intersect_files(): """Check that two non-identical yield correct results. """ flist1 = ['/a/b/abc.lab', '/c/d/123.lab', '/e/f/xyz.lab'] flist2 = ['/g/h/xyz.npy', '/i/j/123.txt', '/k/l/456.lab'] sublist1, sublist2 = util.intersect_files(flist1, flist2) assert sublist1 == ['/e/f/xyz.lab', '/c/d/123.lab'] assert sublist2 == ['/g/h/xyz.npy', '/i/j/123.txt'] sublist1, sublist2 = util.intersect_files(flist1[:1], flist2[:1]) assert sublist1 == [] assert sublist2 == [] def test_merge_labeled_intervals(): """Check that two labeled interval sequences merge correctly. """ x_intvs = np.array([ [0.0, 0.44], [0.44, 2.537], [2.537, 4.511], [4.511, 6.409]]) x_labels = ['A', 'B', 'C', 'D'] y_intvs = np.array([ [0.0, 0.464], [0.464, 2.415], [2.415, 4.737], [4.737, 6.409]]) y_labels = [0, 1, 2, 3] expected_intvs = [ [0.0, 0.44], [0.44, 0.464], [0.464, 2.415], [2.415, 2.537], [2.537, 4.511], [4.511, 4.737], [4.737, 6.409]] expected_x_labels = ['A', 'B', 'B', 'B', 'C', 'D', 'D'] expected_y_labels = [0, 0, 1, 2, 2, 2, 3] new_intvs, new_x_labels, new_y_labels = util.merge_labeled_intervals( x_intvs, x_labels, y_intvs, y_labels) assert new_x_labels == expected_x_labels assert new_y_labels == expected_y_labels assert new_intvs.tolist() == expected_intvs # Check that invalid inputs raise a ValueError y_intvs[-1, -1] = 10.0 nose.tools.assert_raises(ValueError, util.merge_labeled_intervals, x_intvs, x_labels, y_intvs, y_labels) def test_boundaries_to_intervals(): # Basic tests boundaries = np.arange(10) correct_intervals = np.array([np.arange(10 - 1), np.arange(1, 10)]).T intervals = mir_eval.util.boundaries_to_intervals(boundaries) assert np.all(intervals == correct_intervals) def test_adjust_events(): # Test appending at the end events = np.arange(1, 11) labels = [str(n) for n in range(10)] new_e, new_l = mir_eval.util.adjust_events(events, labels, 0.0, 11.) assert new_e[0] == 0. assert new_l[0] == '__T_MIN' assert new_e[-1] == 11. assert new_l[-1] == '__T_MAX' assert np.all(new_e[1:-1] == events) assert new_l[1:-1] == labels # Test trimming new_e, new_l = mir_eval.util.adjust_events(events, labels, 0.0, 9.) assert new_e[0] == 0. assert new_l[0] == '__T_MIN' assert new_e[-1] == 9. assert np.all(new_e[1:] == events[:-1]) assert new_l[1:] == labels[:-1] def test_bipartite_match(): # This test constructs a graph as follows: # v9 -- (u0) # v8 -- (u0, u1) # v7 -- (u0, u1, u2) # ... # v0 -- (u0, u1, ..., u9) # # This structure and ordering of this graph should force Hopcroft-Karp to # hit each algorithm/layering phase # G = collections.defaultdict(list) u_set = ['u{:d}'.format(_) for _ in range(10)] v_set = ['v{:d}'.format(_) for _ in range(len(u_set)+1)] for i, u in enumerate(u_set): for v in v_set[:-i-1]: G[v].append(u) matching = util._bipartite_match(G) # Make sure that each u vertex is matched nose.tools.eq_(len(matching), len(u_set)) # Make sure that there are no duplicate keys lhs = set([k for k in matching]) rhs = set([matching[k] for k in matching]) nose.tools.eq_(len(matching), len(lhs)) nose.tools.eq_(len(matching), len(rhs)) # Finally, make sure that all detected edges are present in G for k in matching: v = matching[k] assert v in G[k] or k in G[v] def test_outer_distance_mod_n(): ref = [1., 2., 3.] est = [1.1, 6., 1.9, 5., 10.] expected = np.array([ [0.1, 5., 0.9, 4., 3.], [0.9, 4., 0.1, 3., 4.], [1.9, 3., 1.1, 2., 5.]]) actual = mir_eval.util._outer_distance_mod_n(ref, est) assert np.allclose(actual, expected) ref = [13., 14., 15.] est = [1.1, 6., 1.9, 5., 10.] expected = np.array([ [0.1, 5., 0.9, 4., 3.], [0.9, 4., 0.1, 3., 4.], [1.9, 3., 1.1, 2., 5.]]) actual = mir_eval.util._outer_distance_mod_n(ref, est) assert np.allclose(actual, expected) def test_match_events(): ref = [1., 2., 3.] est = [1.1, 6., 1.9, 5., 10.] expected = [(0, 0), (1, 2)] actual = mir_eval.util.match_events(ref, est, 0.5) assert actual == expected ref = [1., 2., 3., 11.9] est = [1.1, 6., 1.9, 5., 10., 0.] expected = [(0, 0), (1, 2), (3, 5)] actual = mir_eval.util.match_events( ref, est, 0.5, distance=mir_eval.util._outer_distance_mod_n) assert actual == expected def test_fast_hit_windows(): ref = [1., 2., 3.] est = [1.1, 6., 1.9, 5., 10.] ref_fast, est_fast = mir_eval.util._fast_hit_windows(ref, est, 0.5) ref_slow, est_slow = np.where(np.abs(np.subtract.outer(ref, est)) <= 0.5) assert np.all(ref_fast == ref_slow) assert np.all(est_fast == est_slow) def test_validate_intervals(): # Test for ValueError when interval shape is invalid nose.tools.assert_raises( ValueError, mir_eval.util.validate_intervals, np.array([[1.], [2.5], [5.]])) # Test for ValueError when times are negative nose.tools.assert_raises( ValueError, mir_eval.util.validate_intervals, np.array([[1., -2.], [2.5, 3.], [5., 6.]])) # Test for ValueError when duration is zero nose.tools.assert_raises( ValueError, mir_eval.util.validate_intervals, np.array([[1., 2.], [2.5, 2.5], [5., 6.]])) # Test for ValueError when duration is negative nose.tools.assert_raises( ValueError, mir_eval.util.validate_intervals, np.array([[1., 2.], [2.5, 1.5], [5., 6.]])) def test_validate_events(): # Test for ValueError when max_time is violated nose.tools.assert_raises( ValueError, mir_eval.util.validate_events, np.array([100., 100000.])) # Test for ValueError when events aren't 1-d arrays nose.tools.assert_raises( ValueError, mir_eval.util.validate_events, np.array([[1., 2.], [3., 4.]])) # Test for ValueError when event times are not increasing nose.tools.assert_raises( ValueError, mir_eval.util.validate_events, np.array([1., 2., 5., 3.])) def test_validate_frequencies(): # Test for ValueError when max_freq is violated nose.tools.assert_raises( ValueError, mir_eval.util.validate_frequencies, np.array([100., 100000.]), 5000., 20.) # Test for ValueError when min_freq is violated nose.tools.assert_raises( ValueError, mir_eval.util.validate_frequencies, np.array([2., 200.]), 5000., 20.) # Test for ValueError when events aren't 1-d arrays nose.tools.assert_raises( ValueError, mir_eval.util.validate_frequencies, np.array([[100., 200.], [300., 400.]]), 5000., 20.) # Test for ValueError when allow_negatives is false and negative values # are passed nose.tools.assert_raises( ValueError, mir_eval.util.validate_frequencies, np.array([[-100., 200.], [300., 400.]]), 5000., 20., allow_negatives=False) # Test for ValueError when max_freq is violated and allow_negatives=True nose.tools.assert_raises( ValueError, mir_eval.util.validate_frequencies, np.array([100., -100000.]), 5000., 20., allow_negatives=True) # Test for ValueError when min_freq is violated and allow_negatives=True nose.tools.assert_raises( ValueError, mir_eval.util.validate_frequencies, np.array([-2., 200.]), 5000., 20., allow_negatives=True) def test_has_kwargs(): def __test(target, f): assert target == mir_eval.util.has_kwargs(f) def f1(_): return None def f2(_=5): return None def f3(*_): return None def f4(_, **kw): return None def f5(_=5, **kw): return None yield __test, False, f1 yield __test, False, f2 yield __test, False, f3 yield __test, True, f4 yield __test, True, f5 def test_sort_labeled_intervals(): def __test_labeled(x, labels, x_true, lab_true): xs, ls = mir_eval.util.sort_labeled_intervals(x, labels) assert np.allclose(xs, x_true) nose.tools.eq_(ls, lab_true) def __test(x, x_true): xs = mir_eval.util.sort_labeled_intervals(x) assert
np.allclose(xs, x_true)
numpy.allclose
# Common Python library imports # Pip package imports from loguru import logger import numpy as np import pandas as pd import matplotlib.pyplot as plt # Internal package imports from soccer_fw.utils import listify, fulltime_result_tags DEFAULT_ENGINE_NAME = "default" DEFAULT_ENGINE_VERSION = "v0_1" class StatisticModel(): def __init__(self, bankroll, *args, **kwargs): self._initial_bankroll = bankroll self._bankroll = bankroll self._v_bankroll = bankroll self._pending_stakes = pd.DataFrame() self._win_streaks = np.array([0]) self._loose_streaks = np.array([0]) self._profit = 0 self._matches_won = 0 self._total_matches = 0 self._matches_played = 0 self._idx = None self._stat_df = pd.DataFrame() @property def hitrate(self): return self._matches_won / self._matches_played @property def roi(self): return self._profit / self._stat_df['Stake'].sum() @property def dataframe(self): if self._idx is not None: return self._stat_df.set_index(self._idx) return self._stat_df @property def bankroll(self): return self._bankroll @property def profit(self): return self._profit @property def loose_streak(self): return self._loose_streaks @property def win_streak(self): return self._win_streaks def plot(self): # gca stands for 'get current axis' ax = plt.gca() df = pd.concat([self.dataframe, pd.DataFrame({ 'Win Streak': self.win_streak, 'Lose Streak': self.loose_streak})], axis=1) ls_max = df['Lose Streak'].max() b_maximum = df['Bankroll'].max() * 0.7 / ls_max df['Win Streak'] = df['Win Streak'] * b_maximum df['Lose Streak'] = df['Lose Streak'] * b_maximum df.plot(kind='line', y='Bankroll', color='blue', ax=ax) df.plot(kind='bar', y='Stake', color='green', ax=ax) df.plot(kind='bar', y='Profit', color='yellow', ax=ax) df.plot(kind='bar', y='Lose Streak', color='red', ax=ax) df.plot(kind='bar', y='Win Streak', color='grey', ax=ax) plt.show() def place_bet(self, stake, odd, win): """ Place a bet. The stake will be substracted from the bankroll and added to the pending bets. Pending bet's has to be evaluated by the eval_bet call. The function return with the bet index :param stake: Amount money to bet :return: Index of the bet """ assert (self._bankroll - stake > 0), "The bankroll cannot go to negative" self._pending_stakes = self._pending_stakes.append({ 'Stake': stake, 'Odd': odd, 'Win': win}, ignore_index=True) self._bankroll -= stake return len(self._pending_stakes.index) - 1 def eval_bet(self, index, key=None): assert key is None or isinstance(key, tuple), "Key has to a tuple or None" index_row = self._pending_stakes[self._pending_stakes.index == index] pending_stake = self._pending_stakes[self._pending_stakes.index > index]['Stake'].sum() stake = float(index_row['Stake']) odd = float(index_row['Odd']) win = float(index_row['Win']) won_amount = 0 # Modify the statistic only when the match was played if stake > 0: self._matches_played += 1 if win > 0.0: won_amount = float(stake) * float(odd) self._bankroll += won_amount # Store statistics self._profit += (won_amount - stake) self._win_streaks = np.append(self._win_streaks, self._win_streaks[-1] + 1) self._loose_streaks = np.append(self._loose_streaks, 0) self._matches_won += 1 else: self._profit -= stake # Store statistics self._loose_streaks =
np.append(self._loose_streaks, self._loose_streaks[-1] + 1)
numpy.append
"""Topology optimization problem to solve.""" import abc import numpy import scipy.sparse import scipy.sparse.linalg import cvxopt import cvxopt.cholmod from .boundary_conditions import BoundaryConditions from .utils import deleterowcol class Problem(abc.ABC): """ Abstract topology optimization problem. Attributes ---------- bc: BoundaryConditions The boundary conditions for the problem. penalty: float The SIMP penalty value. f: numpy.ndarray The right-hand side of the FEM equation (forces). u: numpy.ndarray The variables of the FEM equation. obje: numpy.ndarray The per element objective values. """ def __init__(self, bc: BoundaryConditions, penalty: float): """ Create the topology optimization problem. Parameters ---------- bc: The boundary conditions of the problem. penalty: The penalty value used to penalize fractional densities in SIMP. """ # Problem size self.nelx = bc.nelx self.nely = bc.nely self.nel = self.nelx * self.nely # Count degrees of fredom self.ndof = 2 * (self.nelx + 1) * (self.nely + 1) # SIMP penalty self.penalty = penalty # BC's and support (half MBB-beam) self.bc = bc dofs = numpy.arange(self.ndof) self.fixed = bc.fixed_nodes self.free = numpy.setdiff1d(dofs, self.fixed) # RHS and Solution vectors self.f = bc.forces self.u = numpy.zeros(self.f.shape) # Per element objective self.obje = numpy.zeros(self.nely * self.nelx) def __str__(self) -> str: """Create a string representation of the problem.""" return self.__class__.__name__ def __format__(self, format_spec) -> str: """Create a formated representation of the problem.""" return str(self) def __repr__(self) -> str: """Create a representation of the problem.""" return "{}(bc={!r}, penalty={:g})".format( self.__class__.__name__, self.penalty, self.bc) def penalize_densities(self, x: numpy.ndarray, drho: numpy.ndarray = None ) -> numpy.ndarray: """ Compute the penalized densties (and optionally its derivative). Parameters ---------- x: The density variables to penalize. drho: The derivative of the penealized densities to compute. Only set if drho is not None. Returns ------- numpy.ndarray The penalized densities used for SIMP. """ rho = x**self.penalty if drho is not None: assert(drho.shape == x.shape) drho[:] = rho valid = x != 0 # valid values for division drho[valid] *= self.penalty / x[valid] return rho @abc.abstractmethod def compute_objective( self, xPhys: numpy.ndarray, dobj: numpy.ndarray) -> float: """ Compute objective and its gradient. Parameters ---------- xPhys: The design variables. dobj: The gradient of the objective to compute. Returns ------- float The objective value. """ pass class ElasticityProblem(Problem): """ Abstract elasticity topology optimization problem. Attributes ---------- Emin: float The Young's modulus use for the void regions. Emax: float The Young's modulus use for the solid regions. nu: float Poisson's ratio of the material. f: numpy.ndarray The right-hand side of the FEM equation (forces). u: numpy.ndarray The variables of the FEM equation (displacments). nloads: int The number of loads applied to the material. """ @staticmethod def lk(E: float = 1.0, nu: float = 0.3) -> numpy.ndarray: """ Build the element stiffness matrix. Parameters ---------- E: The Young's modulus of the material. nu: The Poisson's ratio of the material. Returns ------- numpy.ndarray The element stiffness matrix for the material. """ k = numpy.array([ 0.5 - nu / 6., 0.125 + nu / 8., -0.25 - nu / 12., -0.125 + 0.375 * nu, -0.25 + nu / 12., -0.125 - nu / 8., nu / 6., 0.125 - 0.375 * nu]) KE = E / (1 - nu**2) * numpy.array([ [k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7]], [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]], [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]], [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]], [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]], [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]], [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]], [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]]]) return KE def __init__(self, bc: BoundaryConditions, penalty: float): """ Create the topology optimization problem. Parameters ---------- bc: The boundary conditions of the problem. penalty: The penalty value used to penalize fractional densities in SIMP. """ super().__init__(bc, penalty) # Max and min stiffness self.Emin = 1e-9 self.Emax = 1.0 # FE: Build the index vectors for the for coo matrix format. self.nu = 0.3 self.build_indices() # BC's and support (half MBB-beam) self.bc = bc dofs = numpy.arange(self.ndof) self.fixed = bc.fixed_nodes self.free = numpy.setdiff1d(dofs, self.fixed) # Number of loads self.nloads = self.f.shape[1] def build_indices(self) -> None: """Build the index vectors for the finite element coo matrix format.""" self.KE = self.lk(E=self.Emax, nu=self.nu) self.edofMat = numpy.zeros((self.nelx * self.nely, 8), dtype=int) for elx in range(self.nelx): for ely in range(self.nely): el = ely + elx * self.nely n1 = (self.nely + 1) * elx + ely n2 = (self.nely + 1) * (elx + 1) + ely self.edofMat[el, :] = numpy.array([ 2 * n1 + 2, 2 * n1 + 3, 2 * n2 + 2, 2 * n2 + 3, 2 * n2, 2 * n2 + 1, 2 * n1, 2 * n1 + 1]) # Construct the index pointers for the coo format self.iK = numpy.kron(self.edofMat, numpy.ones((8, 1))).flatten() self.jK = numpy.kron(self.edofMat, numpy.ones((1, 8))).flatten() def compute_young_moduli(self, x: numpy.ndarray, dE: numpy.ndarray = None ) -> numpy.ndarray: """ Compute the Young's modulus of each element from the densties. Optionally compute the derivative of the Young's modulus. Parameters ---------- x: The density variable of each element. dE: The derivative of Young's moduli to compute. Only set if dE is not None. Returns ------- numpy.ndarray The elements' Young's modulus. """ drho = None if dE is None else numpy.empty(x.shape) rho = self.penalize_densities(x, drho) if drho is not None and dE is not None: assert(dE.shape == x.shape) dE[:] = (self.Emax - self.Emin) * drho return (self.Emax - self.Emin) * rho + self.Emin def build_K(self, xPhys: numpy.ndarray, remove_constrained: bool = True ) -> scipy.sparse.coo_matrix: """ Build the stiffness matrix for the problem. Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. remove_constrained: Should the constrained nodes be removed? Returns ------- scipy.sparse.coo_matrix The stiffness matrix for the mesh. """ sK = ((self.KE.flatten()[numpy.newaxis]).T * self.compute_young_moduli(xPhys)).flatten(order='F') K = scipy.sparse.coo_matrix( (sK, (self.iK, self.jK)), shape=(self.ndof, self.ndof)) if remove_constrained: # Remove constrained dofs from matrix and convert to coo K = deleterowcol(K.tocsc(), self.fixed, self.fixed).tocoo() return K def compute_displacements(self, xPhys: numpy.ndarray) -> numpy.ndarray: """ Compute the displacements given the densities. Compute the displacment, :math:`u`, using linear elastic finite element analysis (solving :math:`Ku = f` where :math:`K` is the stiffness matrix and :math:`f` is the force vector). Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. Returns ------- numpy.ndarray The distplacements solve using linear elastic finite element analysis. """ # Setup and solve FE problem K = self.build_K(xPhys) K = cvxopt.spmatrix( K.data, K.row.astype(numpy.int), K.col.astype(numpy.int)) # Solve system F = cvxopt.matrix(self.f[self.free, :]) cvxopt.cholmod.linsolve(K, F) # F stores solution after solve new_u = self.u.copy() new_u[self.free, :] = numpy.array(F)[:, :] return new_u def update_displacements(self, xPhys: numpy.ndarray) -> None: """ Update the displacements of the problem. Parameters ---------- xPhys: The element densisities used to compute the displacements. """ self.u[:, :] = self.compute_displacements(xPhys) class ComplianceProblem(ElasticityProblem): r""" Topology optimization problem to minimize compliance. :math:`\begin{aligned} \min_{\boldsymbol{\rho}} \quad & \mathbf{f}^T\mathbf{u}\\ \textrm{subject to}: \quad & \mathbf{K}\mathbf{u} = \mathbf{f}\\ & \sum_{e=1}^N v_e\rho_e \leq V_\text{frac}, \quad 0 < \rho_\min \leq \rho_e \leq 1\\ \end{aligned}` where :math:`\mathbf{f}` are the forces, :math:`\mathbf{u}` are the \ displacements, :math:`\mathbf{K}` is the striffness matrix, and :math:`V` is the volume. """ def compute_objective( self, xPhys: numpy.ndarray, dobj: numpy.ndarray) -> float: r""" Compute compliance and its gradient. The objective is :math:`\mathbf{f}^{T} \mathbf{u}`. The gradient of the objective is :math:`\begin{align} \mathbf{f}^T\mathbf{u} &= \mathbf{f}^T\mathbf{u} - \boldsymbol{\lambda}^T(\mathbf{K}\mathbf{u} - \mathbf{f})\\ \frac{\partial}{\partial \rho_e}(\mathbf{f}^T\mathbf{u}) &= (\mathbf{K}\boldsymbol{\lambda} - \mathbf{f})^T \frac{\partial \mathbf u}{\partial \rho_e} + \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} = \mathbf{u}^T\frac{\partial \mathbf K}{\partial \rho_e}\mathbf{u} \end{align}` where :math:`\boldsymbol{\lambda} = \mathbf{u}`. Parameters ---------- xPhys: The element densities. dobj: The gradient of compliance. Returns ------- float The compliance value. """ # Setup and solve FE problem self.update_displacements(xPhys) obj = 0.0 dobj[:] = 0.0 dE = numpy.empty(xPhys.shape) E = self.compute_young_moduli(xPhys, dE) for i in range(self.nloads): ui = self.u[:, i][self.edofMat].reshape(-1, 8) self.obje[:] = (ui @ self.KE * ui).sum(1) obj += (E * self.obje).sum() dobj[:] += -dE * self.obje dobj /= float(self.nloads) return obj / float(self.nloads) class HarmonicLoadsProblem(ElasticityProblem): r""" Topology optimization problem to minimize dynamic compliance. Replaces standard forces with undamped forced vibrations. :math:`\begin{aligned} \min_{\boldsymbol{\rho}} \quad & \mathbf{f}^T\mathbf{u}\\ \textrm{subject to}: \quad & \mathbf{S}\mathbf{u} = \mathbf{f}\\ & \sum_{e=1}^N v_e\rho_e \leq V_\text{frac}, \quad 0 < \rho_\min \leq \rho_e \leq 1\\ \end{aligned}` where :math:`\mathbf{f}` is the amplitude of the load, :math:`\mathbf{u}` is the amplitude of vibration, and :math:`\mathbf{S}` is the system matrix (or "dynamic striffness" matrix) defined as :math:`\begin{aligned} \mathbf{S} = \mathbf{K} - \omega^2\mathbf{M} \end{aligned}` where :math:`\omega` is the angular frequency of the load, and :math:`\mathbf{M}` is the global mass matrix. """ @staticmethod def lm(nel: int) -> numpy.ndarray: r""" Build the element mass matrix. :math:`M = \frac{1}{9 \times 4n}\begin{bmatrix} 4 & 0 & 2 & 0 & 1 & 0 & 2 & 0 \\ 0 & 4 & 0 & 2 & 0 & 1 & 0 & 2 \\ 2 & 0 & 4 & 0 & 2 & 0 & 1 & 0 \\ 0 & 2 & 0 & 4 & 0 & 2 & 0 & 1 \\ 1 & 0 & 2 & 0 & 4 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 & 0 & 4 & 0 & 2 \\ 2 & 0 & 1 & 0 & 2 & 0 & 4 & 0 \\ 0 & 2 & 0 & 1 & 0 & 2 & 0 & 4 \end{bmatrix}` Where :math:`n` is the total number of elements. The total mass is equal to unity. Parameters ---------- nel: The total number of elements. Returns ------- numpy.ndarray The element mass matrix for the material. """ return numpy.array([ [4, 0, 2, 0, 1, 0, 2, 0], [0, 4, 0, 2, 0, 1, 0, 2], [2, 0, 4, 0, 2, 0, 1, 0], [0, 2, 0, 4, 0, 2, 0, 1], [1, 0, 2, 0, 4, 0, 2, 0], [0, 1, 0, 2, 0, 4, 0, 2], [2, 0, 1, 0, 2, 0, 4, 0], [0, 2, 0, 1, 0, 2, 0, 4]], dtype=float) / (36 * nel) def __init__(self, bc: BoundaryConditions, penalty: float): """ Create the topology optimization problem. Parameters ---------- bc: The boundary conditions of the problem. penalty: The penalty value used to penalize fractional densities in SIMP. """ super().__init__(bc, penalty) self.angular_frequency = 0e-2 def build_indices(self) -> None: """Build the index vectors for the finite element coo matrix format.""" super().build_indices() self.ME = self.lm(self.nel) def build_M(self, xPhys: numpy.ndarray, remove_constrained: bool = True ) -> scipy.sparse.coo_matrix: """ Build the stiffness matrix for the problem. Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. remove_constrained: Should the constrained nodes be removed? Returns ------- scipy.sparse.coo_matrix The stiffness matrix for the mesh. """ # vals = numpy.tile(self.ME.flatten(), xPhys.size) vals = (self.ME.reshape(-1, 1) * self.penalize_densities(xPhys)).flatten(order='F') M = scipy.sparse.coo_matrix((vals, (self.iK, self.jK)), shape=(self.ndof, self.ndof)) if remove_constrained: # Remove constrained dofs from matrix and convert to coo M = deleterowcol(M.tocsc(), self.fixed, self.fixed).tocoo() return M def compute_displacements(self, xPhys: numpy.ndarray) -> numpy.ndarray: r""" Compute the amplitude of vibration given the densities. Compute the amplitude of vibration, :math:`\mathbf{u}`, using linear elastic finite element analysis (solving :math:`\mathbf{S}\mathbf{u} = \mathbf{f}` where :math:`\mathbf{S} = \mathbf{K} - \omega^2\mathbf{M}` is the system matrix and :math:`\mathbf{f}` is the force vector). Parameters ---------- xPhys: The element densisities used to build the stiffness matrix. Returns ------- numpy.ndarray The displacements solve using linear elastic finite element analysis. """ # Setup and solve FE problem K = self.build_K(xPhys) M = self.build_M(xPhys) S = (K - self.angular_frequency**2 * M).tocoo() cvxopt_S = cvxopt.spmatrix( S.data, S.row.astype(numpy.int), S.col.astype(numpy.int)) # Solve system F = cvxopt.matrix(self.f[self.free, :]) try: # F stores solution after solve cvxopt.cholmod.linsolve(cvxopt_S, F) except Exception: F = scipy.sparse.linalg.spsolve(S.tocsc(), self.f[self.free, :]) F = F.reshape(-1, self.nloads) new_u = self.u.copy() new_u[self.free, :] = numpy.array(F)[:, :] return new_u def compute_objective( self, xPhys: numpy.ndarray, dobj: numpy.ndarray) -> float: r""" Compute compliance and its gradient. The objective is :math:`\mathbf{f}^{T} \mathbf{u}`. The gradient of the objective is :math:`\begin{align} \mathbf{f}^T\mathbf{u} &= \mathbf{f}^T\mathbf{u} - \boldsymbol{\lambda}^T(\mathbf{K}\mathbf{u} - \mathbf{f})\\ \frac{\partial}{\partial \rho_e}(\mathbf{f}^T\mathbf{u}) &= (\mathbf{K}\boldsymbol{\lambda} - \mathbf{f})^T \frac{\partial \mathbf u}{\partial \rho_e} + \boldsymbol{\lambda}^T\frac{\partial \mathbf K}{\partial \rho_e} \mathbf{u} = \mathbf{u}^T\frac{\partial \mathbf K}{\partial \rho_e}\mathbf{u} \end{align}` where :math:`\boldsymbol{\lambda} = \mathbf{u}`. Parameters ---------- xPhys: The element densities. dobj: The gradient of compliance. Returns ------- float The compliance value. """ # Setup and solve FE problem self.update_displacements(xPhys) obj = 0.0 dobj[:] = 0.0 dE = numpy.empty(xPhys.shape) E = self.compute_young_moduli(xPhys, dE) drho = numpy.empty(xPhys.shape) penalty = self.penalty self.penalty = 2 rho = self.penalize_densities(xPhys, drho) self.penalty = penalty for i in range(self.nloads): ui = self.u[:, i][self.edofMat].reshape(-1, 8) obje1 = (ui @ self.KE * ui).sum(1) obje2 = (ui @ (-self.angular_frequency**2 * self.ME) * ui).sum(1) self.obje[:] = obje1 + obje2 obj += (E * obje1 + rho * obje2).sum() dobj[:] += -(dE * obje1 + drho * obje2) dobj /= float(self.nloads) return obj / float(self.nloads) class VonMisesStressProblem(ElasticityProblem): """ Topology optimization problem to minimize stress. Todo: * Currently this problem minimizes compliance and computes stress on the side. This needs to be replaced to match the promise of minimizing stress. """ @staticmethod def B(side: float) -> numpy.ndarray: r""" Construct a strain-displacement matrix for a 2D regular grid. :math:`B = \frac{1}{2s}\begin{bmatrix} 1 & 0 & -1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 & 0 & -1 \\ 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 \end{bmatrix}` where :math:`s` is the side length of the square elements. Todo: * Check that this is not -B Parameters ---------- side: The side length of the square elements. Returns ------- numpy.ndarray The strain-displacement matrix for a 2D regular grid. """ n = -0.5 / side p = 0.5 / side return numpy.array([[p, 0, n, 0, n, 0, p, 0], [0, p, 0, p, 0, n, 0, n], [p, p, p, n, n, n, n, p]]) @staticmethod def E(nu): r""" Construct a constitutive matrix for a 2D regular grid. :math:`E = \frac{1}{1 - \nu^2}\begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix}` Parameters ---------- nu: The Poisson's ratio of the material. Returns ------- numpy.ndarray The constitutive matrix for a 2D regular grid. """ return numpy.array([[1, nu, 0], [nu, 1, 0], [0, 0, (1 - nu) / 2.]]) / (1 - nu**2) def __init__(self, nelx, nely, penalty, bc, side=1): super().__init__(bc, penalty) self.EB = self.E(self.nu) @ self.B(side) self.du = numpy.zeros((self.ndof, self.nel * self.nloads)) self.stress = numpy.zeros(self.nel) self.dstress = numpy.zeros(self.nel) def build_dK0(self, drho_xi, i, remove_constrained=True): sK = ((self.KE.flatten()[numpy.newaxis]).T * drho_xi).flatten( order='F') iK = self.iK[64 * i: 64 * i + 64] jK = self.jK[64 * i: 64 * i + 64] dK = scipy.sparse.coo_matrix( (sK, (iK, jK)), shape=(self.ndof, self.ndof)) # Remove constrained dofs from matrix and convert to coo if remove_constrained: dK = deleterowcol(dK.tocsc(), self.fixed, self.fixed).tocoo() return dK def build_dK(self, xPhys, remove_constrained=True): drho = numpy.empty(xPhys.shape) self.compute_young_moduli(xPhys, drho) blocks = [self.build_dK0(drho[i], i, remove_constrained) for i in range(drho.shape[0])] dK = scipy.sparse.block_diag(blocks, format="coo") return dK @staticmethod def sigma_pow(s11: numpy.ndarray, s22: numpy.ndarray, s12: numpy.ndarray, p: float) -> numpy.ndarray: r""" Compute the von Mises stress raised to the :math:`p^{\text{th}}` power. :math:`\sigma^p = \left(\sqrt{\sigma_{11}^2 - \sigma_{11}\sigma_{22} + \sigma_{22}^2 + 3\sigma_{12}^2}\right)^p` Todo: * Properly document what the sigma variables represent. * Rename the sigma variables to something more readable. Parameters ---------- s11: :math:`\sigma_{11}` s22: :math:`\sigma_{22}` s12: :math:`\sigma_{12}` p: The power (:math:`p`) to raise the von Mises stress. Returns ------- numpy.ndarray The von Mises stress to the :math:`p^{\text{th}}` power. """ return
numpy.sqrt(s11**2 - s11 * s22 + s22**2 + 3 * s12**2)
numpy.sqrt
# -*- coding: utf-8 -*- """ Orbital functions ----------------- Functions used within multiple orbital classes in Stone Soup """ import numpy as np from . import dotproduct from ..types.array import StateVector def stumpff_s(z): r"""The Stumpff S function .. math:: S(z) = \begin{cases}\frac{\sqrt(z) - \sin{\sqrt(z)}}{(\sqrt(z))^{3}}, & (z > 0)\\ \frac{\sinh(\sqrt(-z)) - \sqrt(-z)}{(\sqrt(-z))^{3}}, & (z < 0) \\ \frac{1}{6}, & (z = 0)\end{cases} Parameters ---------- z : float input parameter, :math:`z` Returns ------- : float Output value, :math:`S(z)` """ if z > 0: sqz = np.sqrt(z) return (sqz - np.sin(sqz)) / sqz ** 3 elif z < 0: sqz = np.sqrt(-z) return (np.sinh(sqz) - sqz) / sqz ** 3 else: # which means z== 0: return 1 / 6 def stumpff_c(z): r"""The Stumpff C function .. math:: C(z) = \begin{cases}\frac{1 - \cos{\sqrt(z)}}{z}, & (z > 0)\\ \frac{\cosh{\sqrt(-z)} - 1}{-z}, & (z < 0) \\ \frac{1}{2}, & (z = 0)\end{cases} Parameters ---------- z : float input parameter, :math:`z` Returns ------- : float Output value, :math:`C(z)` """ if z > 0: sqz = np.sqrt(z) return (1 - np.cos(sqz)) / sqz ** 2 elif z < 0: sqz = np.sqrt(-z) return (np.cosh(sqz) - 1) / sqz ** 2 else: # which means z == 0: return 1 / 2 def universal_anomaly_newton(o_state_vector, delta_t, grav_parameter=3.986004418e14, precision=1e-8, max_iterations=1e5): r"""Calculate the universal anomaly via Newton's method. Algorithm 3.3 in [1]_. Parameters ---------- o_state_vector : :class:`~StateVector` The orbital state vector formed as :math:`[r_x, r_y, r_z, \dot{r}_x, \dot{r}_y, \dot{r}_z]^T` delta_t : timedelta The time interval over which to estimate the universal anomaly grav_parameter : float, optional The universal gravitational parameter. Defaults to that of the Earth, :math:`3.986004418 \times 10^{14} \ \mathrm{m}^{3} \ \mathrm{s}^{-2}` precision : float, optional For Newton's method, the difference between new and old estimates of the universal anomaly below which the iteration stops and the answer is returned, (default = 1e-8) max_iterations : float, optional Maximum number of iterations allowed in while loop (default = 1e5) Returns ------- : float The universal anomaly, :math:`\chi` References ---------- .. [1] <NAME>. 2010, Orbital Mechanics for Engineering Students, 3rd Ed., Elsevier """ # For convenience mag_r_0 = np.sqrt(dotproduct(o_state_vector[0:3], o_state_vector[0:3])) mag_v_0 = np.sqrt(dotproduct(o_state_vector[3:6], o_state_vector[3:6])) v_rad_0 = dotproduct(o_state_vector[3:6], o_state_vector[0:3])/mag_r_0 root_mu = np.sqrt(grav_parameter) inv_sma = 2/mag_r_0 - (mag_v_0**2)/grav_parameter # Initial estimate of Chi chi_i = root_mu * np.abs(inv_sma) * delta_t.total_seconds() ratio = 1 count = 0 # Do Newton's method while np.abs(ratio) > precision and count <= max_iterations: z_i = inv_sma * chi_i ** 2 f_chi_i = mag_r_0 * v_rad_0 / root_mu * chi_i ** 2 * \ stumpff_c(z_i) + (1 - inv_sma * mag_r_0) * chi_i ** 3 * \ stumpff_s(z_i) + mag_r_0 * chi_i - root_mu * \ delta_t.total_seconds() fp_chi_i = mag_r_0 * v_rad_0 / root_mu * chi_i * \ (1 - inv_sma * chi_i ** 2 * stumpff_s(z_i)) + \ (1 - inv_sma * mag_r_0) * chi_i ** 2 * stumpff_c(z_i) + \ mag_r_0 ratio = f_chi_i / fp_chi_i chi_i = chi_i - ratio count += 1 return chi_i def lagrange_coefficients_from_universal_anomaly(o_state_vector, delta_t, grav_parameter=3.986004418e14, precision=1e-8, max_iterations=1e5): r""" Calculate the Lagrangian coefficients, f and g, and their time derivatives, by way of the universal anomaly and the Stumpff functions [2]_. Parameters ---------- o_state_vector : StateVector The (Cartesian) orbital state vector, :math:`[r_x, r_y, r_z, \dot{r}_x, \dot{r}_y, \dot{r}_z]^T` delta_t : timedelta The time interval over which to calculate grav_parameter : float, optional The universal gravitational parameter. Defaults to that of the Earth, :math:`3.986004418 \times 10^{14} \ \mathrm{m}^{3} \ \mathrm{s}^{-2}`. Note that the units of time must be seconds. precision : float, optional Precision to which to calculate the :meth:`universal anomaly` (default = 1e-8). See the doc section for that function max_iterations : float, optional Maximum number of iterations in determining universal anomaly (default = 1e5) Returns ------- : float, float, float, float The Lagrange coefficients, :math:`f, g, \dot{f}, \dot{g}`, in that order. References ---------- .. [2] <NAME>., <NAME>. 1996, Modern Astrodynamics: Fundamentals and Perturbation Methods, Princeton University Press """ # First get the universal anomaly using Newton's method chii = universal_anomaly_newton(o_state_vector, delta_t, grav_parameter=grav_parameter, precision=precision, max_iterations=max_iterations) # Get the position and velocity vectors bold_r_0 = o_state_vector[0:3] bold_v_0 = o_state_vector[3:6] # Calculate the magnitude of the position and velocity vectors r_0 = np.sqrt(dotproduct(bold_r_0, bold_r_0)) v_0 = np.sqrt(dotproduct(bold_v_0, bold_v_0)) # For convenience root_mu = np.sqrt(grav_parameter) inv_sma = 2 / r_0 - (v_0 ** 2) / grav_parameter z = inv_sma * chii ** 2 # Get the Lagrange coefficients using Stumpf f = 1 - chii ** 2 / r_0 * stumpff_c(z) g = delta_t.total_seconds() - 1 / root_mu * chii ** 3 * \ stumpff_s(z) # Get the position vector and magnitude of that vector bold_r = f * bold_r_0 + g * bold_v_0 r = np.sqrt(dotproduct(bold_r, bold_r)) # and the Lagrange (time) derivatives also using Stumpf fdot = root_mu / (r * r_0) * (inv_sma * chii ** 3 * stumpff_s(z) - chii) gdot = 1 - (chii ** 2 / r) * stumpff_c(z) return f, g, fdot, gdot def eccentric_anomaly_from_mean_anomaly(mean_anomaly, eccentricity, precision=1e-8, max_iterations=1e5): r"""Approximately solve the transcendental equation :math:`E - e sin E = M_e` for E. This is an iterative process using Newton's method. Parameters ---------- mean_anomaly : float Current mean anomaly eccentricity : float Orbital eccentricity precision : float, optional Precision used for the stopping point in determining eccentric anomaly from mean anomaly, (default = 1e-8) max_iterations : float, optional Maximum number of iterations for the while loop, (default = 1e5) Returns ------- : float Eccentric anomaly of the orbit """ if mean_anomaly < np.pi: ecc_anomaly = mean_anomaly + eccentricity / 2 else: ecc_anomaly = mean_anomaly - eccentricity / 2 ratio = 1 count = 0 while np.abs(ratio) > precision and count <= max_iterations: f = ecc_anomaly - eccentricity * np.sin(ecc_anomaly) - mean_anomaly fp = 1 - eccentricity * np.cos(ecc_anomaly) ratio = f / fp # Need to check conditioning ecc_anomaly = ecc_anomaly - ratio count += 1 return ecc_anomaly # Check whether this ever goes outside 0 < 2pi def tru_anom_from_mean_anom(mean_anomaly, eccentricity, precision=1e-8, max_iterations=1e5): r"""Get the true anomaly from the mean anomaly via the eccentric anomaly Parameters ---------- mean_anomaly : float The mean anomaly eccentricity : float Eccentricity precision : float, optional Precision used for the stopping point in determining eccentric anomaly from mean anomaly, (default = 1e-8) max_iterations : float, optional Maximum number of iterations in determining eccentric anomaly, (default = 1e5) Returns ------- : float True anomaly """ cos_ecc_anom = np.cos(eccentric_anomaly_from_mean_anomaly( mean_anomaly, eccentricity, precision=precision, max_iterations=max_iterations)) sin_ecc_anom = np.sin(eccentric_anomaly_from_mean_anomaly( mean_anomaly, eccentricity, precision=precision, max_iterations=max_iterations)) # This only works for M_e < \pi # return np.arccos(np.clip((eccentricity - cos_ecc_anom) / # (eccentricity*cos_ecc_anom - 1), -1, 1)) return np.remainder(np.arctan2(np.sqrt(1 - eccentricity**2) * sin_ecc_anom, cos_ecc_anom - eccentricity), 2*np.pi) def perifocal_position(eccentricity, semimajor_axis, true_anomaly): r"""The position vector in perifocal coordinates calculated from the Keplerian elements Parameters ---------- eccentricity : float Orbit eccentricity semimajor_axis : float Orbit semi-major axis true_anomaly Orbit true anomaly Returns ------- : numpy.array :math:`[r_x, r_y, r_z]` position in perifocal coordinates """ # Cache some trigonometric functions c_tran = np.cos(true_anomaly) s_tran =
np.sin(true_anomaly)
numpy.sin
from typing import Union import numpy as np from probnum import randvars try: # functools.cached_property is only available in Python >=3.8 from functools import cached_property except ImportError: from cached_property import cached_property class _RandomVariableList(list): """List of RandomVariables with convenient access to means, covariances, etc. Parameters ---------- rv_list : :obj:`list` of :obj:`RandomVariable` """ def __init__(self, rv_list: list): if not isinstance(rv_list, list): raise TypeError("RandomVariableList expects a list.") # If not empty: if len(rv_list) > 0: # First element as a proxy for checking all elements if not isinstance(rv_list[0], randvars.RandomVariable): raise TypeError( "RandomVariableList expects RandomVariable elements, but " + f"first element has type {type(rv_list[0])}." ) super().__init__(rv_list) def __getitem__(self, idx) -> Union[randvars.RandomVariable, "_RandomVariableList"]: result = super().__getitem__(idx) # Make sure to wrap the result into a _RandomVariableList if necessary if isinstance(result, list): result = _RandomVariableList(result) return result @cached_property def mean(self) -> np.ndarray: if len(self) == 0: return
np.array([])
numpy.array
import numpy as np import pandas as pd from data.data_utils import standardize, split_train_test, sample_mask, ENSEMBL_to_gene_symbols from data.pathways import select_genes_pathway def TCGA_FILE(cancer_type): return '/local/scratch/rv340/tcga/TCGA-{}.htseq_fpkm.tsv'.format(cancer_type) def TCGA_METADATA_FILE(cancer_type): return '/local/scratch/rv340/tcga/{}_clinicalMatrix'.format(cancer_type) def get_GTEx_tissue(cancer_type): if cancer_type == 'LAML': return 'Whole_Blood', 48 elif cancer_type == 'BRCA': return 'Breast_Mammary_Tissue', 19 elif cancer_type == 'LUAD': return 'Lung', 31 else: raise ValueError('Cancer type {} not supported'.format(cancer_type)) def TCGA(file, clinical_file, tissue_idx=None, gtex_gene_symbols=None): df = pd.read_csv(file, delimiter='\t') df = df.set_index('Ensembl_ID') # Transform gene symbols gene_symbols, ENSEMBL_found = ENSEMBL_to_gene_symbols(df.index) df = df.loc[ENSEMBL_found] df = df.rename(index=dict(zip(df.index, gene_symbols))) if gtex_gene_symbols is not None: df = df.loc[gtex_gene_symbols] gene_symbols = gtex_gene_symbols df = df.groupby('Ensembl_ID', group_keys=False).apply( lambda x: x[x.sum(axis=1) == np.max(x.sum(axis=1))]) # Remove duplicates, keep max # Get data x_TCGA = df.values.T # Process covariates sample_ids = df.columns clinical_df = pd.read_csv(clinical_file, delimiter='\t') idxs = [np.argwhere(s[:-1] == clinical_df['sampleID']).ravel()[0] for s in df.columns] gender =
np.array([0 if g == 'MALE' else 1 for g in clinical_df.iloc[idxs]['gender']])
numpy.array
# run_grtrans_3D.py # runs grtrans on koral simulation images at very high resolution # these will take a long time! import grtrans_batch as gr import numpy as np import sys import os import subprocess import time import astropy.io.fits as fits import scipy.ndimage.interpolation as interpolation #################### #Constants #################### pcG = 6.67259e-8 pcc2 = 8.98755179e20 msun = 1.99e33 cmperkpc=3.086e21 EP = 1.0e-10 C = 299792458.0 DEGREE = 3.141592653589/180.0 HOUR = 15.0*DEGREE RADPERAS = DEGREE/3600.0 RADPERUAS = RADPERAS*1.e-6 #################### # Problem setup #################### SOURCE = 'M87' RA = 12.51373 DEC = 12.39112 MJD = 58211 hfile = './sim1000_simcgs.dat0001' #mks2 dfile = './sim1000_simcgs.dat' SPIN=0.9375 #0.25 RESCALE = 1.e-18 #1.e-14 # don't rescale anything! MBH=6.5e9 # this was fixed in the simulation, but EHT measured 6.5 DTOBH = 16000*cmperkpc # this has been adjusted to get EHT result for M/D = 3.8 uas TGPERFILE = 10 # gravitational times per file NPIX_IM = 128 NGEO = 500 RAYTRACESIZE=50. # raytracing volume. For M87 at 17 degrees, 1000 rg = 1 milliarcsec RERUN = True # rerun even if the output file exists ROTATE = False # rotate the image before saving ANGLE = 108 # rotation angle # parameters to loop over (in serial, in this script) ang = 60. # inclination angle sigma_cut = 1. freq_ghz = 230. # frequency pixel_size_uas = 2 # microarcseconds per pixel # derived quantities lbh = pcG*msun*MBH / pcc2 fac= (4*np.pi*lbh**2) LumtoJy = 1.e23/(4*np.pi*DTOBH**2) MuasperRg = lbh / DTOBH / RADPERUAS secperg = MBH*4.927e-6 #seconds per tg hourperg = secperg / 3600. weekperg = secperg / (604800.) yrperg = secperg / (3.154e7) size = 20#0.5*NPIX_IM*pixel_size_uas/MuasperRg #################### # Functions #################### def main(): # REMEMBER TO MODIFY VERSION FLAGS IN fluid_model_koral3d.f90 -- make better! name = './test_koral3d' # skip over if output already exists, or delete and rerun # write input radiative transfer parameters mu = np.cos(ang*np.pi/180.) freq = freq_ghz*1.e9 uout = 1./RAYTRACESIZE x=gr.grtrans() npol=4 x.write_grtrans_inputs(name + '.in', oname=name+'.out', fscalefac=RESCALE, sigcut=sigma_cut, fname='KORAL3D',phi0=0., nfreq=1,fmin=freq,fmax=freq, ename='SYNCHTHAV', nvals=npol, gmin=0, # confusingly, this is rhigh. spin=SPIN,standard=1, uout=uout, mbh=MBH, mdotmin=1.57e15,mdotmax=1.57e15,nmdot=1, nmu=1,mumin=mu,mumax=mu, gridvals=[-size,size,-size,size], nn=[NPIX_IM,NPIX_IM,NGEO], hhfile=hfile, hdfile=dfile, hindf=1,hnt=1, muval=1.) run=True if os.path.exists(name+'.out'): run = False if RERUN: run=True os.remove(name+'.out') if run: x.run_grtrans() # run grtrans # Read grtrans output try: x.read_grtrans_output() except:# IOError: return None # pixel sizes da = x.ab[x.nx,0]-x.ab[0,0] db = x.ab[1,1]-x.ab[0,1] if (da!=db): raise Exception("pixel da!=db") psize = da*(lbh/DTOBH) #image values if npol==4: ivals = x.ivals[:,0,0]*fac*da*db*LumtoJy qvals = x.ivals[:,1,0]*fac*da*db*LumtoJy uvals = x.ivals[:,2,0]*fac*da*db*LumtoJy vvals = x.ivals[:,3,0]*fac*da*db*LumtoJy # mask nan failure points with zeros ivals = np.array(ivals) qvals = np.array(qvals) uvals = np.array(uvals) vvals = np.array(vvals) imask = np.isnan(ivals) qumask = ~(~imask * ~np.isnan(qvals) * ~np.isnan(uvals)) vmask = ~(~imask * ~np.isnan(vvals)) ivals[imask] = 0. qvals[qumask] = 0. uvals[qumask] = 0. vvals[vmask] = 0. ivals = (np.flipud(np.transpose(ivals.reshape((NPIX_IM,NPIX_IM))))).flatten() qvals = -(np.flipud(np.transpose(qvals.reshape((NPIX_IM,NPIX_IM))))).flatten() uvals = -(np.flipud(np.transpose(uvals.reshape((NPIX_IM,NPIX_IM))))).flatten() vvals = (np.flipud(np.transpose(vvals.reshape((NPIX_IM,NPIX_IM))))).flatten() else: ivals = x.ivals[:,0,0]*fac*da*db*LumtoJy ivals =
np.array(ivals)
numpy.array
import argparse import numpy as np import os # use GPU or not # if network is small and shallow, CPU may be faster than GPU os.environ["CUDA_VISIBLE_DEVICES"]="-1" import tensorflow as tf import time import pickle import maddpg.common.tf_util as U from maddpg.trainer.maddpg import MADDPGAgentTrainer import tensorflow.contrib.layers as layers from tensorflow.contrib import rnn from reward_shaping.embedding_model import EmbeddingModel from reward_shaping.config import Config from multiagent.multi_discrete import MultiDiscrete from pyinstrument import Profiler def parse_args(): parser = argparse.ArgumentParser("Reinforcement Learning experiments for multiagent environments") # Environment parser.add_argument("--scenario", type=str, default="simple_reference", help="name of the scenario script") parser.add_argument("--max-episode-len", type=int, default=2000, help="maximum episode length") parser.add_argument("--num-episodes", type=int, default=500, help="number of episodes") parser.add_argument("--num-adversaries", type=int, default=0, help="number of adversaries") parser.add_argument("--good-policy", type=str, default="matd3", help="policy for good agents") parser.add_argument("--adv-policy", type=str, default="matd3", help="policy of adversaries") # Core training parameters parser.add_argument("--lr", type=float, default=1e-4, help="learning rate for Adam optimizer") parser.add_argument("--gamma", type=float, default=0.95, help="discount factor") parser.add_argument("--batch-size", type=int, default=1024, help="number of episodes to optimize at the same time") parser.add_argument("--num-units", type=int, default=256, help="number of units in the mlp") # Checkpointing parser.add_argument("--exp-name", type=str, default="test", help="name of the experiment") parser.add_argument("--save-dir", type=str, default="./policy/", help="directory in which training state and model should be saved") parser.add_argument("--save-rate", type=int, default=1, help="save model once every time this many episodes are completed") parser.add_argument("--load-dir", type=str, default="./policy/", help="directory in which training state and model are loaded") # Evaluation parser.add_argument("--restore", action="store_true", default=False) parser.add_argument("--display", action="store_true", default=False) parser.add_argument("--benchmark", action="store_true", default=False) parser.add_argument("--benchmark-iters", type=int, default=100000, help="number of iterations run for benchmarking") parser.add_argument("--benchmark-dir", type=str, default="./benchmark_files/", help="directory where benchmark data is saved") parser.add_argument("--plots-dir", type=str, default="./complex_game/", help="directory where plot data is saved") parser.add_argument("--reward-shaping-ag", action="store_true", default=False, help="whether enable reward shaping of agents") parser.add_argument("--reward-shaping-adv", action="store_true", default=False, help="whether enable reward shaping of adversaries") parser.add_argument("--policy_noise", default=0.2,type=float) parser.add_argument("--noise_clip", default=0.2,type=float) parser.add_argument("--policy_freq", default=2, type=int) parser.add_argument("--pettingzoo", action="store_true", default=False) parser.add_argument("--start_timesteps", default=10, type=int) return parser.parse_args() def mlp_model(input, num_outputs, scope, reuse=False, num_units=64, rnn_cell=None): # This model takes as input an observation and returns values of all actions with tf.variable_scope(scope, reuse=reuse): out = input out = layers.fully_connected(out, num_outputs=num_units, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_units//2, activation_fn=tf.nn.relu) out = layers.fully_connected(out, num_outputs=num_outputs, activation_fn=None) return out def make_env(scenario_name, arglist, benchmark=False): from multiagent.environment import MultiAgentEnv import multiagent.scenarios as scenarios from experiments.pz import create_env print("env is ",arglist.scenario) if arglist.pettingzoo: env = create_env(arglist.scenario) # arglist.num_adversaries = 0 print("adversary agents number is {}".format(arglist.num_adversaries)) return env # load scenario from script scenario = scenarios.load(scenario_name + ".py").Scenario() # create world world = scenario.make_world() try: arglist.num_adversaries = len(scenario.adversaries(world)) except: if arglist.scenario == 'simple_push': arglist.num_adversaries = 1 else: arglist.num_adversaries = 0 arglist.reward_shaping_adv = False print("adversary agents number is {}".format(arglist.num_adversaries)) # create multiagent environment if benchmark: env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation, scenario.benchmark_data) else: env = MultiAgentEnv(world, scenario.reset_world, scenario.reward, scenario.observation) return env def get_trainers(env, num_adversaries, obs_shape_n, arglist, agents): trainers = [] model = mlp_model trainer = MADDPGAgentTrainer if not arglist.pettingzoo: for i in range(num_adversaries): trainers.append(trainer( "agent_%d" % i, model, obs_shape_n, env.action_space, i, arglist, local_q_func=(arglist.adv_policy=='ddpg'),agent=None)) for i in range(num_adversaries, env.n): trainers.append(trainer( "agent_%d" % i, model, obs_shape_n, env.action_space, i, arglist, local_q_func=(arglist.good_policy=='ddpg'),agent=None)) else: trainers.append(trainer( "agent_%d" % 0, model, obs_shape_n, env.action_spaces.values(), 0, arglist, local_q_func=(arglist.adv_policy=='ddpg'),agent=agents[0])) trainers.append(trainer( "agent_%d" % 1, model, obs_shape_n, env.action_spaces.values(), 1, arglist, local_q_func=(arglist.good_policy=='ddpg'),agent=agents[1])) return trainers def create_dirs(arglist): import os os.makedirs(os.path.dirname(arglist.benchmark_dir), exist_ok=True) os.makedirs(os.path.dirname(arglist.plots_dir), exist_ok=True) def transform_obs_n(obs_n): import torch input = obs_n[0] for i in range(1, len(obs_n)): input = np.append(input, obs_n[i]) return torch.from_numpy(input).float() def train(arglist): with U.single_threaded_session(): # Create environment env = make_env(arglist.scenario, arglist, arglist.benchmark) # Create agent trainers if not arglist.pettingzoo: obs_shape_n = [env.observation_space[i].shape for i in range(env.n)] action_shape_n = [] for i in range(env.n): if hasattr(env.action_space[i],"n"): action_shape_n.append(env.action_space[i].n) elif not isinstance(env.action_space[i],MultiDiscrete): action_shape_n.append(env.action_space[i].shape) else: num = 0 for j in range(len(env.action_space[i].high)): num+=(env.action_space[i].high[j]-env.action_space[i].low[j]+1) action_shape_n.append(num) else: agents = [agent for agent in (env.possible_agents)] obs_shape_n = [env.observation_spaces[agent].shape for agent in agents] action_shape_n = [] for agent in agents: if hasattr(env.action_spaces[agent],"n"): action_shape_n.append(env.action_spaces[agent].n) else: action_shape_n.append(env.action_spaces[agent].shape) num_adversaries = min(99, arglist.num_adversaries) trainers = get_trainers(env, num_adversaries, obs_shape_n, arglist, agents) print('Using good policy {} and adv policy {}'.format(arglist.good_policy, arglist.adv_policy)) # Initialize U.initialize() # Load previous results, if necessary if arglist.load_dir == "": arglist.load_dir = arglist.save_dir if arglist.restore or arglist.benchmark: print('Loading previous state...') U.load_state(arglist.load_dir) # create dirs for saving benchmark data and reward data create_dirs(arglist) episode_rewards = [0.0] # sum of rewards for all agents episode_original_rewards = [0.0] # sum of original rewards for all agents if not arglist.pettingzoo: agent_rewards = [[0.0] for _ in range(env.n)] # individual agent reward agent_original_rewards = [[0.0] for _ in range(env.n)] # individual original agent reward else: agent_rewards = [[0.0] for _ in env.possible_agents] agent_original_rewards = [[0.0] for _ in env.possible_agents] # individual original agent reward final_ep_rewards = [] # sum of rewards for training curve final_ep_ag_rewards = [] # agent rewards for training curve agent_info = [[[]]] # placeholder for benchmarking info saver = tf.train.Saver() if not arglist.pettingzoo: obs_n = env.reset() else: from experiments.pz import reset obs_n = reset(env,agents) # obs_n=[] # for agent in agents: # obs_n.append(t[agent]) episode_step = 0 train_step = 0 # two teams embedding network embedding_model_adv = EmbeddingModel(obs_size=obs_shape_n[0:num_adversaries], num_outputs=action_shape_n[0:num_adversaries]) embedding_model_ag = EmbeddingModel(obs_size=obs_shape_n[num_adversaries:], num_outputs=action_shape_n[num_adversaries:]) episodic_memory_adv = [] episodic_memory_ag = [] if arglist.reward_shaping_adv: episodic_memory_adv.append(embedding_model_adv.embedding(transform_obs_n(obs_n[0:num_adversaries]))) if arglist.reward_shaping_ag: episodic_memory_ag.append(embedding_model_ag.embedding(transform_obs_n(obs_n[num_adversaries:]))) t_start = time.time() print('Starting iterations...') # profiler = Profiler() # profiler.start() while True: # get action: possibility distribution # env.render() action_n=[] if len(episode_rewards) < arglist.start_timesteps and not arglist.restore: for agent,shape in zip(trainers,action_shape_n): action = np.random.rand(shape) action = action / np.sum(action) action_n.append((action,agent.agent)) else: action_n = [(agent.action(obs),agent.agent) for agent, obs in zip(trainers,obs_n)] # environment step if not arglist.pettingzoo: new_obs_n, rew_n, done_n, info_n = env.step(action_n) else: from experiments.pz import step # 预防环境异常 try: new_obs_n, rew_n, done_n, info_n = step(action_n,env) except Exception as e: print(repr(e)) from experiments.pz import reset obs_n = reset(env,agents) continue original_rew_n = rew_n.copy() action_n = [action for action,agent in action_n] # add reward shaping if arglist.reward_shaping_adv == True: new_obs_tensor = transform_obs_n(new_obs_n[0:num_adversaries]) next_state_emb_adv = embedding_model_adv.embedding(new_obs_tensor) intrinsic_reward_adv = embedding_model_adv.compute_intrinsic_reward(episodic_memory_adv, next_state_emb_adv,new_obs_tensor) episodic_memory_adv.append(next_state_emb_adv) for i in range(0,num_adversaries): # can add life long curiosity rew_n[i] += Config.beta *intrinsic_reward_adv if arglist.reward_shaping_ag == True: new_obs_tensor = transform_obs_n(new_obs_n[num_adversaries:]) next_state_emb_ag = embedding_model_ag.embedding(new_obs_tensor) intrinsic_reward_ag = embedding_model_ag.compute_intrinsic_reward(episodic_memory_ag, next_state_emb_ag,new_obs_tensor) episodic_memory_ag.append(next_state_emb_ag) if not arglist.pettingzoo: for i in range(num_adversaries,env.n): rew_n[i] += Config.beta * intrinsic_reward_ag else: for i in range(num_adversaries,len(env.possible_agents)): rew_n[i] += Config.beta * intrinsic_reward_ag episode_step += 1 done = all(done_n) terminal = (episode_step >= arglist.max_episode_len) # collect experience for i, agent in enumerate(trainers): agent.experience(obs_n[i], action_n[i], rew_n[i], new_obs_n[i], done_n[i], terminal) obs_n = new_obs_n for i, rew in enumerate(rew_n): episode_rewards[-1] += rew episode_original_rewards[-1] += original_rew_n[i] agent_rewards[i][-1] += rew agent_original_rewards[i][-1] += original_rew_n[i] if done or terminal: terminal = True # obs_n = env.reset() if not arglist.pettingzoo: obs_n = env.reset() else: from experiments.pz import reset obs_n = reset(env,agents) episode_step = 0 episode_rewards.append(0) episode_original_rewards.append(0) for a in agent_rewards: a.append(0) for a in agent_original_rewards: a.append(0) agent_info.append([[]]) # reset episode embedding network episodic_memory_adv.clear() # embedding_model_adv.lastReward=0 episodic_memory_ag.clear() # embedding_model_ag.lastReward=0 if arglist.reward_shaping_adv: episodic_memory_adv.append(embedding_model_adv.embedding(transform_obs_n(obs_n[0:num_adversaries]))) if arglist.reward_shaping_ag: episodic_memory_ag.append(embedding_model_ag.embedding(transform_obs_n(obs_n[num_adversaries:]))) # increment global step counter train_step += 1 # for benchmarking learned policies if arglist.benchmark: for i, info in enumerate(info_n): agent_info[-1][i].append(info_n['n']) if train_step > arglist.benchmark_iters and (done or terminal): file_name = arglist.benchmark_dir + arglist.exp_name + '.pkl' print('Finished benchmarking, now saving...') with open(file_name, 'wb') as fp: pickle.dump(agent_info[:-1], fp) break continue # for displaying learned policies if arglist.display: # time.sleep(0.1) env.render() if arglist.restore: continue # update all trainers, if not in display or benchmark mode loss = None for agent in trainers: agent.preupdate() for agent in trainers: loss = agent.update(trainers, train_step) # train embedding network obs_n_train = [] obs_next_n_train = [] act_n_train = [] if (arglist.reward_shaping_adv or arglist.reward_shaping_ag): if arglist.reward_shaping_adv == True and train_step > Config.train_episode_num * 10: for i in range(0,num_adversaries): obs, act, rew, obs_next, done = trainers[i].sample(Config.train_episode_num) obs_n_train.append(obs) obs_next_n_train.append(obs_next) act_n_train.append(act) embedding_loss_adv = embedding_model_adv.train_model(obs_n_train,obs_next_n_train,act_n_train) if arglist.reward_shaping_ag == True and train_step > Config.train_episode_num * 10: obs_n_train = [] obs_next_n_train = [] act_n_train = [] n = 0 if not arglist.pettingzoo: n= env.n else: n= len(env.possible_agents) for i in range(num_adversaries,n): obs, act, rew, obs_next, done = trainers[i].sample(Config.train_episode_num) obs_n_train.append(obs) obs_next_n_train.append(obs_next) act_n_train.append(act) embedding_loss_ag = embedding_model_ag.train_model(obs_n_train,obs_next_n_train,act_n_train) # save model, display training output if (terminal) and (len(episode_rewards) % arglist.save_rate == 0): U.save_state(arglist.save_dir, saver=saver) # print statement depends on whether or not there are adversaries if num_adversaries == 0: print("steps: {}, episodes: {}, mean episode reward: {}, {}, time: {}".format( train_step, len(episode_rewards)-1, np.mean(episode_original_rewards[-arglist.save_rate-1:-1]), np.mean(episode_rewards[-arglist.save_rate-1:-1]), round(time.time()-t_start, 3))) else: print("steps: {}, episodes: {}, mean episode reward: {}, agent episode reward: {}, {}, time: {}".format( train_step, len(episode_rewards)-1,
np.mean(episode_original_rewards[-arglist.save_rate-1:-1])
numpy.mean
# -*- coding:utf-8 -*- import numpy as np import datetime import torch import torch.nn as nn from torchnet import meter from torch.utils.data import DataLoader from tensorboardX import SummaryWriter from nets.speaker_net_cnn import SpeakerNetEM # from nets.speaker_net_lstm import SpeakerNetLSTM from nets.intra_class_loss import IntraClassLoss from datasets.librispeech import LibriSpeech from datasets.st_cmds_20170001_1 import ST_CMDS_20170001_1 from datasets.voxceleb2 import VoxCeleb2 from datasets.voxceleb1 import VoxCeleb1 from datasets.merged_dataset import MergedDataset from config import opt from utils import audio_util, metric_util # from train import compute_equal_error_rate from utils import pil_util test_audio_path = 'audios/1_src2.wav' model_path = 'checkpoints/cnn/27_1770000__2019-05-28_07_25_26.pth' speaker_net = SpeakerNetEM(opt.n_mels*3, opt.dropout_keep_prop) device = torch.device('cuda') if opt.gpu else torch.device('cpu') map_location = lambda storage, loc: storage.cuda(0) if opt.gpu else lambda storage, loc: storage speaker_net.to(device) status_dict = torch.load(model_path, map_location) speaker_net.load_state_dict(status_dict['net']) speaker_net.eval() data = audio_util.norm_magnitude_spectrum(audio_path, opt.sr, opt.n_fft, opt.n_overlap, opt.win_length) # 14s testdata = np.expand_dims(data[:3 * 300, :], 0) testdata = testdata.reshape(-1, 300, 513) tensor_teset_data = torch.tensor(testdata).to(device) ret = speaker_net(tensor_teset_data) ret = ret.cpu().detach().numpy() sim_mat =
np.zeros((ret.shape[0], ret.shape[0]))
numpy.zeros
import os import librosa # for audio processing import IPython.display as ipd import matplotlib.pyplot as plt import numpy as np from scipy.io import wavfile # for audio processing import warnings import soundfile as sf from sklearn.preprocessing import LabelEncoder from keras.utils import np_utils from sklearn.model_selection import train_test_split warnings.filterwarnings("ignore") train_audio_path = 'D:/Phd/MAHSA_PROJECT/Dataset_speechRecog/train/audio' labels = os.listdir(train_audio_path) # no_of_recordings = [] # for label in labels: # waves = [f for f in os.listdir(train_audio_path + '/' + label) if f.endswith('.wav')] # no_of_recordings.append(len(waves)) # # plot # plt.figure(figsize=(10, 5)) # index = np.arange(len(labels)) # plt.bar(index, no_of_recordings) # plt.xlabel('Commands', fontsize=12) # plt.ylabel('No of recordings', fontsize=12) # plt.xticks(index, labels, fontsize=10, rotation=0) # plt.title('No. of recordings for each command') # plt.show() # # duration_of_recordings = [] # for label in labels: # waves = [f for f in os.listdir(train_audio_path + '/' + label) if f.endswith('.wav')] # print(label) # for wav in waves: # samples,sample_rate = librosa.load(train_audio_path + '/' + label + '/' + wav) # duration_of_recordings.append(float(len(samples) / sample_rate)) # print(wav) # # plt.hist(np.array(duration_of_recordings)) # plt.show() def padfunc(offset, samples, sample_rate, fsnew): pad_len = int(np.ceil((offset - (len(samples) / sample_rate)) * fsnew)) padding = np.zeros(pad_len) samples_ =
np.concatenate((samples, padding))
numpy.concatenate
"""Tests for imfprefict.timeSeriesDataset module.""" import pytest import numpy as np from imfprefict.timeSeriesDataset import TimeSeriesDataset class TestTimeSeriesDataset: @pytest.mark.parametrize("x_dims_updated_data", [ {"data_x": np.array([[1, 2], [2, 3], [3, 4], [4, 5]]), "expected_x_shape": (4, 2, 1)}, {"data_x": np.array([[1, 2, 3], [2, 3, 4], [3, 4, 5]]), "expected_x_shape": (3, 3, 1)}, {"data_x": np.array([[1, 2, 3, 4], [2, 3, 4, 5]]), "expected_x_shape": (2, 4, 1)}, {"data_x": np.array([[1, 2, 3, 4, 5]]), "expected_x_shape": (1, 5, 1)} ]) def test_x_dims_updated(self, x_dims_updated_data): data_x = x_dims_updated_data["data_x"] data_y = np.array([]) ts = TimeSeriesDataset(data_x, data_y) assert ts.x.shape == x_dims_updated_data["expected_x_shape"] def test_x_values_unchanged(self): data_x = np.array([[1, 2], [2, 3], [3, 4], [4, 5]]) data_y = np.array([1, 2, 3, 4, 5]) ts = TimeSeriesDataset(data_x, data_y) for expected_x, x in zip(data_x, ts.x): for expected_x_val, x_val in zip(expected_x, x): assert expected_x_val == x_val def test_getitem(self): data_x =
np.array([[1, 2], [2, 3], [3, 4], [4, 5], [5, 6]])
numpy.array
import numpy as np from tqdm import tqdm from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.neural_network import MLPClassifier from sklearn.decomposition import PCA from modAL.models import ActiveLearner, Committee from utils import get_initial_indexes from dataset import Dataset class AL_Process: def __init__(self, queries=10, instances=10, experiments=3, n_initial=100, classes='all', dataset=Dataset['CIFAR10']): self.queries=queries self.instances=instances self.experiments=experiments self.classes=classes self.dataset=dataset self.n_initial=n_initial self.load_data() def train_adaBoost(self, strategy): performance_history = [] for i in tqdm(range(self.experiments)): h=[] X = self.X_pool.copy() y = self.y_pool.copy() model = ActiveLearner( estimator = AdaBoostClassifier(), X_training = self.X_initial.copy(), y_training = self.y_initial.copy(), query_strategy = strategy, ) for idx in tqdm(range(self.queries)): query_idx, _ = model.query(X, n_instances=self.instances) model.teach(X=X[query_idx], y=y[query_idx]) acc = model.score(self.X_test, self.y_test) h.append(acc) # remove queried instance from pool X = np.delete(X, query_idx, axis=0) y = np.delete(y, query_idx, axis=0) performance_history.append(h) return model, np.mean(performance_history, axis=0) def train_committee(self, strategy): performance_history = [] for i in tqdm(range(self.experiments)): learner_1 = ActiveLearner( estimator=RandomForestClassifier(), query_strategy=strategy, X_training=self.X_initial.copy(), y_training=self.y_initial.copy() ) learner_2 = ActiveLearner( estimator=AdaBoostClassifier(), query_strategy=strategy, X_training=self.X_initial.copy(), y_training=self.y_initial.copy() ) model = Committee(learner_list=[learner_1, learner_2]) h=[] X = self.X_pool.copy() y = self.y_pool.copy() for idx in tqdm(range(self.queries)): query_idx, _ = model.query(X, n_instances=self.instances) model.teach(X=X[query_idx], y=y[query_idx]) acc = model.score(self.X_test, self.y_test) h.append(acc) # remove queried instance from pool X = np.delete(X, query_idx, axis=0) y = np.delete(y, query_idx, axis=0) performance_history.append(h) return model, np.mean(performance_history, axis=0) def load_data(self): (X_train, y_train), (X_test, y_test) = self.dataset.load_data() X_train = X_train y_train = y_train self.IMG_WIDTH = X_train.shape[1] self.IMG_HEIGHT = X_train.shape[2] self.CHANNELS = 1 if len(X_train.shape) == 3 else X_train.shape[3] selected_classes =
np.unique(y_train)
numpy.unique
import numpy as np import csv import scipy.io from tensorflow.keras.datasets import ( mnist as mnist_keras, fashion_mnist as fashion_mnist_keras, cifar10 as cifar10_keras, ) from groot.datasets import load_mnist from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler data_dir = "/home/maksym/boost/data/" def split_train_test(X_all, y_all, frac_train): """ The first X% of X_all, y_all become the training set, the rest (1-X)% become the test set. Note that this assumes that the samples are already shuffled or if not (e.g. if we were to split MNIST) that this behavior is intended. """ num_total = X_all.shape[0] num_train = int(frac_train * num_total) X_train, y_train = X_all[:num_train], y_all[:num_train] X_test, y_test = X_all[num_train:], y_all[num_train:] return X_train, y_train, X_test, y_test def normalize_per_feature_0_1(X_train, X_test): """ We are not allowed to touch the test data, thus we do the normalization just based on the training data. """ X_train_max = X_train.max(axis=0, keepdims=True) X_train_min = X_train.min(axis=0, keepdims=True) X_train = (X_train - X_train_min) / (X_train_max - X_train_min) X_test = (X_test - X_train_min) / (X_train_max - X_train_min) return X_train, X_test def split_train_validation(X_train_orig, y_train_orig, frac_valid, shuffle=True): num_total = X_train_orig.shape[0] n_valid = int(frac_valid * num_total) idx = np.random.permutation(num_total) if shuffle else np.arange(num_total) if shuffle: X_valid, y_valid = X_train_orig[idx][:n_valid], y_train_orig[idx][:n_valid] X_train, y_train = X_train_orig[idx][n_valid:], y_train_orig[idx][n_valid:] else: # If no shuffle, then one has to ensure that the classes are balanced idx_valid, idx_train = [], [] for cls in np.unique(y_train_orig): indices_cls = np.where(y_train_orig == cls)[0] proportion_cls = len(indices_cls) / num_total n_class_balanced_valid = int(proportion_cls * n_valid) idx_valid.extend(list(indices_cls[:n_class_balanced_valid])) idx_train.extend(list(indices_cls[n_class_balanced_valid:])) idx_valid, idx_train = np.array(idx_valid), np.array(idx_train) X_valid, y_valid = X_train_orig[idx_valid], y_train_orig[idx_valid] X_train, y_train = X_train_orig[idx_train], y_train_orig[idx_train] return X_train, y_train, X_valid, y_valid def binary_from_multiclass(X_train, y_train, X_test, y_test, classes): classes = np.array(classes) # for indexing only arrays work, not lists idx_train1, idx_train2 = y_train == classes[0], y_train == classes[1] idx_test1, idx_test2 = y_test == classes[0], y_test == classes[1] X_train, X_test = X_train[idx_train1 + idx_train2], X_test[idx_test1 + idx_test2] y_train = idx_train1 * 1 + idx_train2 * -1 y_test = idx_test1 * 1 + idx_test2 * -1 y_train, y_test = y_train[idx_train1 + idx_train2], y_test[idx_test1 + idx_test2] return X_train, y_train, X_test, y_test def transform_labels_one_vs_all(y_train_orig, y_valid_orig, y_test_orig): n_cls = int(y_train_orig.max()) + 1 if n_cls == 2: return y_train_orig[None, :], y_valid_orig[None, :], y_test_orig[None, :] labels = np.unique(y_train_orig) n_cls = len(labels) n_train, n_valid, n_test = ( y_train_orig.shape[0], y_valid_orig.shape[0], y_test_orig.shape[0], ) y_train, y_valid, y_test = ( np.zeros([n_cls, n_train]), np.zeros([n_cls, n_valid]), np.zeros([n_cls, n_test]), ) for i_cls in range(n_cls): # convert from False/True to -1/1 compatible with One-vs-All formulation y_train[i_cls] = 2 * (y_train_orig == i_cls) - 1 y_valid[i_cls] = 2 * (y_valid_orig == i_cls) - 1 y_test[i_cls] = 2 * (y_test_orig == i_cls) - 1 return y_train, y_valid, y_test def toy_2d_stumps(): X = np.array( [ [0.38, 0.75], [0.50, 0.93], [0.05, 0.70], [0.30, 0.90], [0.15, 0.80], # [0.15, 1.0], [0.125, 0.75], [0.1, 0.85], [0.045, 0.22], [0.725, 0.955], # small margin # [0.15, 1.0], [0.125, 0.75], [0.1, 0.85], [0.075, 0.2], [0.775, 0.925], # small margin [0.15, 1.0], [0.125, 0.5], [0.1, 0.85], [0.02, 0.25], [0.775, 0.975], [0.05, 0.05], [0.2, 0.1], [0.4, 0.075], [0.6, 0.22], [0.8, 0.1], [0.95, 0.05], [0.9, 0.2], [0.925, 0.4], [0.79, 0.6], [0.81, 0.8], ] ) y = np.array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) eps_dataset = 0.075 return X, y, eps_dataset def toy_2d_trees(): X = np.array( [ [0.38, 0.75], [0.50, 0.93], [0.05, 0.70], [0.30, 0.90], [0.15, 0.80], [0.75, 0.38], [0.95, 0.48], [0.70, 0.05], [0.65, 0.30], [0.80, 0.30], [0.05, 0.1], [0.35, 0.1], [0.45, 0.075], [0.3, 0.2], [0.25, 0.1], [0.95, 0.65], [0.7, 0.9], [0.925, 0.7], [0.79, 0.55], [0.81, 0.8], ] ) y = np.array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) eps_dataset = 0.075 return X, y, eps_dataset def toy_2d_xor(): X = np.array([[0.05, 0.05], [0.95, 0.95], [0.05, 0.95], [0.95, 0.05]]) y = np.array([-1, -1, 1, 1]) eps_dataset = 0.15 return X, y, eps_dataset def toy_2d_wong(): # random points at least 2r apart m = 12 # seed=10 illustrates that by default the margin can be easily close to 0 # both plain and robust model have 0 train error, but the robust model additionally enforces a large margin np.random.seed(10) x = [np.random.uniform(size=2)] r = 0.16 while len(x) < m: p = np.random.uniform(size=2) if min(np.abs(p - a).sum() for a in x) > 2 * r: x.append(p) eps_dataset = r / 2 X = np.array(x) y = np.sign(np.random.uniform(-0.5, 0.5, size=m)) return X, y, eps_dataset def breast_cancer(): """ Taken from the UCI repository: http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28diagnostic%29 file: breast-cancer-wisconsin.data After filtering the points with missing data, we have exactly the same as Chen et al, 2019 train: 546x10, test: 137x10 """ eps_dataset = 0.3 # same as in Chen et al, 2019, worked well for them path = data_dir + "breast_cancer/breast-cancer-wisconsin.data" lst = [] for line in csv.reader(open(path, "r").readlines()): if "?" not in line: lst.append(line) data_arr = np.array(lst, dtype=int) X_all, y_all = data_arr[:, :10], data_arr[:, 10] y_all[y_all == 2], y_all[y_all == 4] = -1, 1 # from 2, 4 to -1, 1 X_train, y_train, X_test, y_test = split_train_test(X_all, y_all, frac_train=0.8) X_train, X_test = normalize_per_feature_0_1(X_train, X_test) return X_train, y_train, X_test, y_test, eps_dataset def diabetes(): """ Taken from Kaggle: https://www.kaggle.com/uciml/pima-indians-diabetes-database file: diabetes.csv train: 614x8, test: 154x8 """ eps_dataset = 0.05 # Chen et al, 2019 used 0.2, but it was too high path = data_dir + "diabetes/diabetes.csv" data_arr = np.loadtxt(path, delimiter=",", skiprows=1) # loaded as float64 X_all, y_all = data_arr[:, :8], data_arr[:, 8] y_all[y_all == 0], y_all[y_all == 1] = -1, 1 # from 0, 1 to -1, 1 X_train, y_train, X_test, y_test = split_train_test(X_all, y_all, frac_train=0.8) X_train, X_test = normalize_per_feature_0_1(X_train, X_test) return X_train, y_train, X_test, y_test, eps_dataset def ijcnn1(): """ Taken from LIBSVM data repository: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html train: 49990x22, test: 91701x22 note: imbalanced classes (-1: 90.3% vs 1: 9.7%) """ eps_dataset = 0.01 # Chen et al, 2019 used 0.1, but it was too high folder = data_dir + "ijcnn1/" path_train, path_val, path_test = ( folder + "ijcnn1.tr", folder + "ijcnn1.val", folder + "ijcnn1.t", ) num_train, num_test, dim = 49990, 91701, 22 X_train = np.zeros((num_train, dim)) y_train =
np.zeros(num_train)
numpy.zeros
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ This module contains classes and functions used for implementing the Bayesian Online Changepoint Detection algorithm. """ import logging import math from dataclasses import dataclass, field from enum import Enum from typing import Any, Dict, List, Optional, Tuple, Type, Union from abc import ABC, abstractmethod import matplotlib.pyplot as plt import numpy as np import seaborn as sns from kats.consts import ( TimeSeriesChangePoint, TimeSeriesData, SearchMethodEnum ) import kats.utils.time_series_parameter_tuning as tpt from kats.detectors.detector import Detector # pyre-fixme[21]: Could not find name `invgamma` in `scipy.stats`. # pyre-fixme[21]: Could not find name `nbinom` in `scipy.stats`. from scipy.stats import invgamma, linregress, norm, nbinom # @manual from scipy.special import logsumexp # @manual _MIN_POINTS = 10 _LOG_SQRT2PI = 0.5 * np.log(2 * np.pi) class BOCPDModelType(Enum): """Bayesian Online Change Point Detection model type. Describes the type of predictive model used by the BOCPD algorithm. """ NORMAL_KNOWN_MODEL = 1 TREND_CHANGE_MODEL = 2 POISSON_PROCESS_MODEL = 3 class BOCPDMetadata: """Metadata for the BOCPD model. This gives information about the type of detector, the name of the time series and the model used for detection. Attributes: model: The kind of predictive model used. ts_name: string, name of the time series for which the detector is is being run. """ def __init__(self, model: BOCPDModelType, ts_name: Optional[str] = None): self._detector_type = BOCPDetector self._model = model self._ts_name = ts_name @property def detector_type(self): return self._detector_type @property def model(self): return self._model @property def ts_name(self): return self._ts_name @dataclass class BOCPDModelParameters(ABC): """Data class containing data for predictive models used in BOCPD. Particular predictive models derive from this class. Attributes: prior_choice: list of changepoint probability priors over which we will search hyperparameters cp_prior: default prior for probability of changepoint. search_method: string, representing the search method for the hyperparameter tuning library. Allowed values are 'random' and 'gridsearch'. """ data: Optional[TimeSeriesData] = None prior_choice: Dict[str, List[float]] = field( default_factory=lambda: {'cp_prior': [0.001, 0.002, 0.005, 0.01, 0.02]} ) cp_prior: float = 0.1 search_method: str = 'random' def set_prior(self, param_dict: Dict[str, float]): """Setter method, which sets the value of the parameters. Currently, this sets the value of the prior probability of changepoint. Args: param_dict: dictionary of the form {param_name: param_value}. Returns: None. """ if 'cp_prior' in param_dict: self.cp_prior = param_dict['cp_prior'] @dataclass class NormalKnownParameters(BOCPDModelParameters): """Data class containing the parameters for Normal predictive model. This assumes that the data comes from a normal distribution with known precision. Attributes: empirical: Boolean, should we derive the prior empirically. When this is true, the mean_prior, mean_prec_prior and known_prec are derived from the data, and don't need to be specified. mean_prior: float, mean of the prior normal distribution. mean_prec_prior: float, precision of the prior normal distribution. known_prec: float, known precision of the data. known_prec_multiplier: float, a multiplier of the known precision. This is a variable, that is used in the hyperparameter search, to multiply with the known_prec value. prior_choice: List of parameters to search, for hyperparameter tuning. """ empirical: bool = True mean_prior: Optional[float] = None mean_prec_prior: Optional[float] = None known_prec: Optional[float] = None known_prec_multiplier: float = 1. prior_choice: Dict[str, List[float]] = field( default_factory=lambda : { 'known_prec_multiplier': [1., 2., 3., 4., 5.], 'cp_prior': [0.001, 0.002, 0.005, 0.01, 0.02] } ) def set_prior(self, param_dict: Dict[str, float]): """Sets priors Sets the value of the prior based on the parameter dictionary passed. Args: param_dict: Dictionary of parameters required for setting the prior value. Returns: None. """ if 'known_prec_multiplier' in param_dict: self.known_prec_multiplier = param_dict['known_prec_multiplier'] if 'cp_prior' in param_dict: self.cp_prior = param_dict['cp_prior'] @dataclass class TrendChangeParameters(BOCPDModelParameters): """Parameters for the trend change predictive model. This model assumes that the data is generated from a Bayesian linear model. Attributes: mu_prior: array, mean of the normal priors on the slope and intercept num_likelihood_samples: int, number of samples generated, to calculate the posterior. num_points_prior: int, readjust_sigma_prior: Boolean, whether we should readjust the Inv. Gamma prior for the variance, based on the data. plot_regression_prior: Boolean, plot prior. set as False, unless trying to debug. """ mu_prior: Optional[np.ndarray] = None num_likelihood_samples: int = 100 num_points_prior: int = _MIN_POINTS readjust_sigma_prior: bool = False plot_regression_prior: bool = False @dataclass class PoissonModelParameters(BOCPDModelParameters): """Parameters for the Poisson predictive model. Here, the data is generated from a Poisson distribution. Attributes: alpha_prior: prior value of the alpha value of the Gamma prior. beta_prior: prior value of the beta value of the Gamma prior. """ alpha_prior: float = 1.0 beta_prior: float = 0.05 class BOCPDetector(Detector): """Bayesian Online Changepoint Detection. Given an univariate time series, this class performs changepoint detection, i.e. it tells us when the time series shows a change. This is online, which means it gives the best estimate based on a lookehead number of time steps (which is the lag). This faithfully implements the algorithm in <NAME>, 2007. "Bayesian Online Changepoint Detection" https://arxiv.org/abs/0710.3742 The basic idea is to see whether the new values are improbable, when compared to a bayesian predictive model, built from the previous observations. Attrbutes: data: TimeSeriesData, data on which we will run the BOCPD algorithm. """ def __init__(self, data: TimeSeriesData) -> None: self.data = data self.models: Dict[BOCPDModelType, Type[_PredictiveModel]] = { BOCPDModelType.NORMAL_KNOWN_MODEL: _NormalKnownPrec, BOCPDModelType.TREND_CHANGE_MODEL: _BayesianLinReg, BOCPDModelType.POISSON_PROCESS_MODEL: _PoissonProcessModel, } self.parameter_type: Dict[BOCPDModelType, Type[BOCPDModelParameters]] = { BOCPDModelType.NORMAL_KNOWN_MODEL: NormalKnownParameters, BOCPDModelType.TREND_CHANGE_MODEL: TrendChangeParameters, BOCPDModelType.POISSON_PROCESS_MODEL: PoissonModelParameters, } self.available_models = self.models.keys() self.change_prob = {} self._run_length_prob = {} self.detected_flag = False assert ( self.models.keys() == self.parameter_type.keys() ), f"Expected equivalent models in .models and .parameter_types, but got {self.models.keys()} and {self.parameter_type.keys()}" # pyre-fixme[14]: `detector` overrides method defined in `Detector` inconsistently. def detector( self, model: BOCPDModelType = BOCPDModelType.NORMAL_KNOWN_MODEL, model_parameters: Union[ None, BOCPDModelParameters ] = None, lag: int = 10, choose_priors: bool = True, changepoint_prior: float = 0.01, threshold: float = 0.5, debug: bool = False, agg_cp: bool = True, ) -> List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]]: """The main detector method. This function runs the BOCPD detector and returns the list of changepoints, along with some metadata Args: model: This specifies the probabilistic model, that generates the data within each segment. The user can input several model types depending on the behavior of the time series. Currently allowed models are: NORMAL_KNOWN_MODEL: Normal model with variance known. Use this to find level shifts in normally distributed data. TREND_CHANGE_MODEL : This model assumes each segment is generated from ordinary linear regression. Use this model to understand changes in slope, or trend in time series. POISSON_PROCESS_MODEL: This assumes a poisson generative model. Use this for count data, where most of the values are close to zero. model_parameters: Model Parameters correspond to specific parameters for a specific model. They are defined in the NormalKnownParameters, TrendChangeParameters, PoissonModelParameters classes. lag: integer referring to the lag in reporting the changepoint. We report the changepoint after seeing "lag" number of data points. Higher lag gives greater certainty that this is indeed a changepoint. Lower lag will detect the changepoint faster. This is the tradeoff. choose_priors: If True, then hyperparameter tuning library (HPT) is used to choose the best priors which maximizes the posterior predictive changepoint_prior: This is a Bayesian algorithm. Hence, this parameter specifies the prior belief on the probability that a given point is a changepoint. For example, if you believe 10% of your data will be a changepoint, you can set this to 0.1. threshold: We report the probability of observing the changepoint at each instant. The actual changepoints are obtained by denoting the points above this threshold to be a changepoint. debug: This surfaces additional information, such as the plots of predicted means and variances, which allows the user to see debug why changepoints were not properly detected. agg_cp: It is tested and believed that by aggregating run-length posterior, we may have a stronger signal for changepoint detection. When setting this parameter as True, posterior will be the aggregation of run-length posterior by fetching maximum values diagonally. Returns: List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]]: Each element in this list is a changepoint, an object of TimeSeriesChangepoint class. The start_time gives the time that the change was detected. The metadata contains data about the name of the time series (useful when multiple time series are run simultaneously), and the predictive model used. """ assert ( model in self.available_models ), f"Requested model {model} not currently supported. Please choose one from: {self.available_models}" if model_parameters is None: model_parameters = self.parameter_type[model]() assert isinstance( model_parameters, self.parameter_type[model] ), f"Expected parameter type {self.parameter_type[model]}, but got {model_parameters}" if choose_priors: changepoint_prior, model_parameters = self._choose_priors(model, model_parameters) if getattr(model_parameters, "data", 0) is None: model_parameters.data = self.data logging.debug(f"Newest model parameters: {model_parameters}") if not self.data.is_univariate() and not self.models[model].is_multivariate(): msg = "Model {model.name} support univariate time series, but get {type}.".format( model=model, type=type(self.data.value) ) logging.error(msg) raise ValueError(msg) # parameters_dict = dataclasses.asdict(model_parameters) # pyre-fixme[45]: Cannot instantiate abstract class `_PredictiveModel` with `__init__`, `is_multivariate`, `pred_mean` and 4 additional abstract methods.Pyre underlying_model = self.models[model](data=self.data, parameters=model_parameters) underlying_model.setup() logging.debug(f"Creating detector with lag {lag} and debug option {debug}.") bocpd = _BayesOnlineChangePoint(data=self.data, lag=lag, debug=debug, agg_cp=agg_cp) logging.debug( f"Running .detector() with model {underlying_model}, threshold {threshold}, changepoint prior {changepoint_prior}." ) detector_results_all = bocpd.detector( model=underlying_model, threshold=threshold, changepoint_prior=changepoint_prior, ) self.detected_flag = True change_points = [] for ts_name, detector_results in detector_results_all.items(): change_indices = detector_results["change_points"] change_probs = detector_results["change_prob"] self.change_prob[ts_name] = change_probs self._run_length_prob[ts_name] = detector_results["run_length_prob"] logging.debug( f"Obtained {len(change_indices)} change points from underlying model in ts={ts_name}." ) for cp_index in change_indices: cp_time = self.data.time.values[cp_index] cp = TimeSeriesChangePoint( start_time=cp_time, end_time=cp_time, confidence=change_probs[cp_index], ) bocpd_metadata = BOCPDMetadata(model=model, ts_name=ts_name) change_points.append((cp, bocpd_metadata)) logging.debug(f"Returning {len(change_points)} change points to client in ts={ts_name}.") return change_points def plot( self, change_points: List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]], ts_names: Optional[List[str]] = None ) -> None: """Plots the change points, along with the time series. Use this function to visualize the results of the changepoint detection. Args: change_points: List of changepoints, which are the return value of the detector() function. ts_names: List of names of the time series, useful in case multiple time series are used. Returns: None. """ # TODO note: Once D23226664 lands, replace this with self.data.time_col_name time_col_name = 'time' # Group changepoints together change_points_per_ts = self.group_changepoints_by_timeseries(change_points) ts_names = ts_names or list(change_points_per_ts.keys()) data_df = self.data.to_dataframe() for ts_name in ts_names: ts_changepoints = change_points_per_ts[ts_name] plt.plot(data_df[time_col_name].values, data_df[ts_name].values) logging.info(f"Plotting {len(ts_changepoints)} change points for {ts_name}.") if len(ts_changepoints) == 0: logging.warning("No change points detected!") for change in ts_changepoints: plt.axvline(x=change[0].start_time, color="red") plt.show() def _choose_priors(self, model: BOCPDModelType, params: BOCPDModelParameters) -> Tuple[Any, BOCPDModelParameters]: """Chooses priors which are defined by the model parameters. Chooses priors which are defined by the model parameters. All BOCPDModelParameters classes have a changepoint prior to iterate on. Other parameters can be added to specific models. This function runs a parameter search using the hyperparameter tuning library to get the best hyperparameters. Args: model: Type of predictive model. params: Parameters class, containing list of values of the parameters on which to run hyperparameter tuning. Returns: best_cp_prior: best value of the prior on the changepoint probabilities. params: parameter dictionary, where the selected values are set. """ # test these changepoint_priors param_dict = params.prior_choice # which parameter seaching method are we using search_method = params.search_method # pick search iterations and method based on definition if search_method == 'random': search_N, SearchMethod = 3, SearchMethodEnum.RANDOM_SEARCH_UNIFORM elif search_method == 'gridsearch': search_N, SearchMethod = 1, SearchMethodEnum.GRID_SEARCH else: raise Exception(f'Search method has to be in random or gridsearch but it is {search_method}!') # construct the custom parameters for the HPT library custom_parameters = [ {"name": k, "type": "choice", "values": v, "value_type": "float", "is_ordered": False } for k, v in param_dict.items() ] eval_fn = self._get_eval_function(model, params) # Use the HPT library seed_value = 100 ts_tuner = tpt.SearchMethodFactory.create_search_method( parameters=custom_parameters, selected_search_method=SearchMethod, seed=seed_value ) for _ in range(search_N): ts_tuner.generate_evaluate_new_parameter_values( evaluation_function=eval_fn, arm_count=4 ) scores_df = ( ts_tuner.list_parameter_value_scores() ) scores_df = scores_df.sort_values(by='mean', ascending=False) best_params = scores_df.parameters.values[0] params.set_prior(best_params) best_cp_prior = best_params['cp_prior'] return best_cp_prior, params def _get_eval_function(self, model: BOCPDModelType, model_parameters: BOCPDModelParameters): """ generates the objective function evaluated by hyperparameter tuning library for choosing the priors """ def eval_fn(params_to_eval: Dict[str, float]) -> float: changepoint_prior = params_to_eval['cp_prior'] model_parameters.set_prior(params_to_eval) logging.debug(model_parameters) logging.debug(params_to_eval) # pyre-fixme[45]: Cannot instantiate abstract class `_PredictiveModel` with `__init__`, `is_multivariate`, `pred_mean` and 4 additional abstract methods.Pyre underlying_model = self.models[model](data=self.data, parameters=model_parameters) change_point = _BayesOnlineChangePoint(data=self.data, lag=3, debug=False) change_point.detector(model=underlying_model, changepoint_prior=changepoint_prior, threshold=0.4) post_pred = np.mean(change_point.get_posterior_predictive()) return post_pred return eval_fn def group_changepoints_by_timeseries( self, change_points: List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]] ) -> Dict[str, List[Tuple[TimeSeriesChangePoint, BOCPDMetadata]]]: """Helper function to group changepoints by time series. For multivariate inputs, all changepoints are output in a list and the time series they correspond to is referenced in the metadata. This function is a helper function to group these changepoints by time series. Args: change_points: List of changepoints, with metadata containing the time series names. This is the return value of the detector() method. Returns: Dictionary, with time series names, and their corresponding changepoints. """ if self.data.is_univariate(): data_df = self.data.to_dataframe() ts_names = [x for x in data_df.columns if x != 'time'] else: # Multivariate ts_names = self.data.value.columns change_points_per_ts = {} for ts_name in ts_names: change_points_per_ts[ts_name] = [] for cp in change_points: change_points_per_ts[cp[1].ts_name].append(cp) return dict(change_points_per_ts) def get_change_prob(self) -> Dict[str, np.ndarray]: """Returns the probability of being a changepoint. Args: None. Returns: For every point in the time series. The return type is a dict, with the name of the timeseries as the key, and the value is an array of probabilities of the same length as the timeseries data. """ if not self.detected_flag: raise ValueError('detector needs to be run before getting prob') return self.change_prob def get_run_length_matrix(self) -> Dict[str, np.ndarray]: """Returns the entire run-time posterior. Args: None. Returns: The return type is a dict, with the name of the timeseries as the key, and the value is an array of probabilities of the same length as the timeseries data. """ if not self.detected_flag: raise ValueError('detector needs to be run before getting prob') return self._run_length_prob class _BayesOnlineChangePoint(Detector): """The underlying implementation of the BOCPD algorithm. This is called by the class BayesianOnlineChangepoint. The user should call the top level class, and not this one. Given an univariate time series, this class performs changepoint detection, i.e. it tells us when the time series shows a change. This is online, which means it gives the best estimate based on a lookehead number of time steps (which is the lag). This faithfully implements the algorithm in Adams & McKay, 2007. "Bayesian Online Changepoint Detection" https://arxiv.org/abs/0710.3742 The basic idea is to see whether the new values are improbable, when compared to a bayesian predictive model, built from the previous observations. Attributes:: data: This is univariate time series data. We require more than 10 points, otherwise it is not very meaningful to define changepoints. T: number of values in the time series data. lag: This specifies, how many time steps we will look ahead to determine the change. There is a tradeoff in setting this parameter. A small lag means we can detect a change really fast, which is important in many applications. However, this also means we will make more mistakes/have lower confidence since we might mistake a spike for change. threshold: Threshold between 0 and 1. Probability values above this threshold will be denoted as changepoint. debug: This is a boolean. If set to true, this shows additional plots. Currently, it shows a plot of the predicted mean and variance, after lag steps, and the predictive probability of the next point. If the results are unusual, the user should set it to true in order to debug. agg_cp: It is tested and believed that by aggregating run-length posterior, we may have a stronger signal for changepoint detection. When setting this parameter as True, posterior will be the aggregation of run-length posterior by fetching maximum values diagonally. """ rt_posterior: Optional[np.ndarray] = None pred_mean_arr: Optional[np.ndarray] = None pred_std_arr: Optional[np.ndarray] = None next_pred_prob: Optional[np.ndarray] = None def __init__(self, data: TimeSeriesData, lag: int = 10, debug: bool = False, agg_cp: bool = False): self.data = data self.T = data.value.shape[0] self.lag = lag self.threshold = None self.debug = debug self.agg_cp = agg_cp # We use tensors for all data throughout; if the data is univariate # then the last dimension is trivial. In this way, we standardise # the same calculation throughout with fewer additional checks # for univariate and bivariate data. if not data.is_univariate(): self._ts_slice = slice(None) self.P = data.value.shape[1] # Number of time series self._ts_names = self.data.value.columns self.data_values = data.value.values else: self.P = 1 self._ts_slice = 0 data_df = self.data.to_dataframe() self._ts_names = [x for x in data_df.columns if x != 'time'] self.data_values = np.expand_dims(data.value.values, axis=1) self.posterior_predictive = 0. self._posterior_shape = (self.T, self.T, self.P) self._message_shape = (self.T, self.P) # pyre-fixme[14]: `detector` overrides method defined in `Detector` inconsistently. def detector( self, model: Any, threshold: Union[float, np.ndarray] = 0.5, changepoint_prior: Union[float, np.ndarray] = 0.01 ) -> Dict[str, Any]: """Runs the actual BOCPD detection algorithm. Args: model: Predictive Model for BOCPD threshold: values between 0 and 1, array since this can be specified separately for each time series. changepoint_prior: array, each element between 0 and 1. Each element specifies the prior probability of observing a changepoint in each time series. Returns: Dictionary, with key as the name of the time series, and value containing list of change points and their probabilities. """ self.threshold = threshold if isinstance(self.threshold, float): self.threshold = np.repeat(threshold, self.P) if isinstance(changepoint_prior, float): changepoint_prior = np.repeat(changepoint_prior, self.P) self.rt_posterior = self._find_posterior(model, changepoint_prior) return self._construct_output(self.threshold, lag=self.lag) def get_posterior_predictive(self): """Returns the posterior predictive. This is sum_{t=1}^T P(x_{t+1}|x_{1:t}) Args: None. Returns: Array of predicted log probabilities for the next point. """ return self.posterior_predictive def _find_posterior(self, model: Any, changepoint_prior: np.ndarray) -> np.ndarray: """ This calculates the posterior distribution over changepoints. The steps here are the same as the algorithm described in <NAME>, 2007. https://arxiv.org/abs/0710.3742 """ # P(r_t|x_t) rt_posterior = np.zeros(self._posterior_shape) # initialize first step # P(r_0=1) = 1 rt_posterior[0, 0] = 1.0 model.update_sufficient_stats(x=self.data_values[0, self._ts_slice]) # To avoid growing a large dynamic list, we construct a large # array and grow the array backwards from the end. # This is conceptually equivalent to array, which we insert/append # to the beginning - but avoids reallocating memory. message = np.zeros(self._message_shape) m_ptr = -1 # set up arrays for debugging self.pred_mean_arr = np.zeros(self._posterior_shape) self.pred_std_arr = np.zeros(self._posterior_shape) self.next_pred_prob = np.zeros(self._posterior_shape) # Calculate the log priors once outside the for-loop. log_cp_prior = np.log(changepoint_prior) log_om_cp_prior = np.log(1. - changepoint_prior) self.posterior_predictive = 0. log_posterior = 0. # from the second step onwards for i in range(1, self.T): this_pt = self.data_values[i, self._ts_slice] # P(x_t | r_t-1, x_t^r) # this arr has a size of t, each element says what is the predictive prob. # of a point, it the current streak began at t # Step 3 of paper pred_arr = model.pred_prob(t=i, x=this_pt) # Step 9 posterior predictive if i > 1: self.posterior_predictive += logsumexp(pred_arr + log_posterior) # record the mean/variance/prob for debugging if self.debug: pred_mean = model.pred_mean(t=i, x=this_pt) pred_std = model.pred_std(t=i, x=this_pt) # pyre-fixme[16]: `Optional` has no attribute `__setitem__`. self.pred_mean_arr[i, 0:i, self._ts_slice] = pred_mean self.pred_std_arr[i, 0:i, self._ts_slice] = pred_std self.next_pred_prob[i, 0:i, self._ts_slice] = pred_arr # calculate prob that this is a changepoint, i.e. r_t = 0 # step 5 of paper # this is elementwise multiplication of pred and message log_change_point_prob = np.logaddexp.reduce( pred_arr + message[self.T + m_ptr: self.T, self._ts_slice] + log_cp_prior, axis=0 ) # step 4 # log_growth_prob = pred_arr + message + np.log(1.0 - changepoint_prior) message[self.T + m_ptr: self.T, self._ts_slice] = ( pred_arr + message[self.T + m_ptr: self.T, self._ts_slice] + log_om_cp_prior ) # P(r_t, x_1:t) # log_joint_prob = np.append(log_change_point_prob, log_growth_prob) m_ptr -= 1 message[self.T + m_ptr, self._ts_slice] = log_change_point_prob # calculate evidence, step 6 # (P(x_1:t)) # log_evidence = logsumexp(log_joint_prob) # # We use two facts here to make this more efficient: # # (1) log(e^(x_1+c) + ... + e^(x_n+c)) # = log(e^c . (e^(x_1) + ... + e^(x_n))) # = c + log(e^(x_1) + ... + e^(x_n)) # # (2) log(e^x_1 + e^x_2 + ... + e^x_n) [Associativity of logsumexp] # = log(e^x_1 + e^(log(e^x_2 + ... + e^x_n))) # # In particular, we rewrite: # # (5) logaddexp_vec(pred_arr + message + log_cp_prior) # (4+6) logaddexp_vec(append(log_change_point_prob, pred_arr + message + log_om_cp_prior)) # # to # # M = logaddexp_vector(pred_arr + message) + log_cp_prior (using (1)) # logaddexp_binary( (using (2)) # log_change_point_prob, # M - log_cp_prior + log_om_cp_prior (using (1)) # ) # # In this way, we avoid up to T expensive log and exp calls by avoiding # the repeated calculation of logaddexp_vector(pred_arr + message) # while adding in only a single binary (not T length) logsumexp # call in return and some fast addition and multiplications. log_evidence = np.logaddexp( log_change_point_prob, log_change_point_prob - log_cp_prior + log_om_cp_prior ) # step 7 # log_posterior = log_joint_prob - log_evidence log_posterior = message[self.T + m_ptr: self.T, self._ts_slice] - log_evidence rt_posterior[i, 0 : (i + 1), self._ts_slice] = np.exp(log_posterior) # step 8 model.update_sufficient_stats(x=this_pt) # pass the joint as a message to next step # message = log_joint_prob # Message is now passed implicitly - as we set it directly above. return rt_posterior def plot(self, threshold: Optional[Union[float, np.ndarray]] = None, lag: Optional[int] = None, ts_names: Optional[List[str]] = None): """Plots the changepoints along with the timeseries. Args: threshold: between 0 and 1. probability values above the threshold will be determined to be changepoints. lag: lags to use. If None, use the lags this was initialized with. ts_names: list of names of the time series. Useful when there are multiple time series. Returns: None. """ if threshold is None: threshold = self.threshold if lag is None: lag = self.lag # do some work to define the changepoints cp_outputs = self._construct_output(threshold=threshold, lag=lag) if ts_names is None: ts_names = self._ts_names for ts_ix, ts_name in enumerate(ts_names): cp_output = cp_outputs[ts_name] change_points = cp_output["change_points"] ts_values = self.data.value[ts_name].values y_min_cpplot = np.min(ts_values) y_max_cpplot = np.max(ts_values) sns.set() # Plot the time series plt.figure(figsize=(10, 8)) ax1 = plt.subplot(211) ax1.plot(list(range(self.T)), ts_values, "r-") ax1.set_xlabel("Time") ax1.set_ylabel("Values") # plot change points on the time series ax1.vlines( x=change_points, ymin=y_min_cpplot, ymax=y_max_cpplot, colors="b", linestyles="dashed", ) # if in debugging mode, plot the mean and variance as well if self.debug: x_debug = list(range(lag + 1, self.T)) # pyre-fixme[16]: `Optional` has no attribute `__getitem__`. y_debug_mean = self.pred_mean_arr[lag + 1 : self.T, lag, ts_ix] y_debug_uv = ( self.pred_mean_arr[lag + 1 : self.T, lag, ts_ix] + self.pred_std_arr[lag + 1 : self.T, lag, ts_ix] ) y_debug_lv = ( self.pred_mean_arr[lag + 1 : self.T, lag, ts_ix] - self.pred_std_arr[lag + 1 : self.T, lag, ts_ix] ) ax1.plot(x_debug, y_debug_mean, "k-") ax1.plot(x_debug, y_debug_uv, "k--") ax1.plot(x_debug, y_debug_lv, "k--") ax2 = plt.subplot(212, sharex=ax1) cp_plot_x = list(range(0, self.T - lag)) cp_plot_y = np.copy(self.rt_posterior[lag : self.T, lag, ts_ix]) # handle the fact that first point is not a changepoint cp_plot_y[0] = 0.0 ax2.plot(cp_plot_x, cp_plot_y) ax2.set_xlabel("Time") ax2.set_ylabel("Changepoint Probability") # if debugging, we also want to show the predictive probabities if self.debug: plt.figure(figsize=(10, 4)) plt.plot( list(range(lag + 1, self.T)), self.next_pred_prob[lag + 1 : self.T, lag, ts_ix], "k-", ) plt.xlabel("Time") plt.ylabel("Log Prob. Density Function") plt.title("Debugging: Predicted Probabilities") def _calc_agg_cppprob(self, t: int) -> np.ndarray: rt_posterior = self.rt_posterior assert rt_posterior is not None run_length_pos = rt_posterior[:,:,t] np.fill_diagonal(run_length_pos, 0.0) change_prob = np.zeros(self.T) for i in range(self.T): change_prob[i] = np.max(run_length_pos[i:,:(self.T-i)].diagonal()) return change_prob def _construct_output(self, threshold: np.ndarray, lag: int) -> Dict[str, Any]: output = {} rt_posterior = self.rt_posterior assert rt_posterior is not None for t, t_name in enumerate(self._ts_names): if not self.agg_cp: # till lag, prob = 0, so prepend array with zeros change_prob = np.hstack((rt_posterior[lag : self.T, lag, t], np.zeros(lag))) # handle the fact that the first point is not a changepoint change_prob[0] = 0. elif self.agg_cp: change_prob = self._calc_agg_cppprob(t) change_points = np.where(change_prob > threshold[t])[0] output[t_name] = { "change_prob": change_prob, "change_points": change_points, "run_length_prob": rt_posterior[:,:,t] } return output def adjust_parameters(self, threshold: np.ndarray, lag: int) -> Dict[str, Any]: """Adjust the parameters. If the preset parameters are not giving the desired result, the user can adjust the parameters. Since the algorithm calculates changepoints for all lags, we can see how changepoints look like for other lag/threshold. Args: threshold: between 0 and 1. Probabilities above threshold are considered to be changepoints. lag: lag at which changepoints are calculated. Returns: cp_output: Dictionary with changepoint list and probabilities. """ cp_output = self._construct_output(threshold=threshold, lag=lag) self.plot(threshold=threshold, lag=lag) return cp_output def check_data(data: TimeSeriesData): """Small helper function to check if the data is in the appropriate format. Currently, this only checks if we have enough data points to run the algorithm meaningfully. Args: data: TimeSeriesData object, on which to run the algorithm. Returns: None. """ if data.value.shape[0] < _MIN_POINTS: raise ValueError( f""" Data must have {_MIN_POINTS} points, it only has {data.value.shape[0]} points """ ) class _PredictiveModel(ABC): """Abstract class for BOCPD Predictive models. This is an abstract class. All Predictive models for BOCPD derive from this class. Attributes: data: TimeSeriesdata object we are modeling. parameters: Parameter class, which contains BOCPD model parameters. """ @abstractmethod def __init__(self, data: TimeSeriesData, parameters: BOCPDModelParameters) -> None: pass @abstractmethod def setup(self): pass @abstractmethod def pred_prob(self, t: int, x: float) -> np.ndarray: pass @abstractmethod def pred_mean(self, t: int, x: float) -> np.ndarray: pass @abstractmethod def pred_std(self, t: int, x: float) -> np.ndarray: pass @abstractmethod def update_sufficient_stats(self, x: float) -> None: pass @staticmethod @abstractmethod def is_multivariate() -> bool: pass class _NormalKnownPrec(_PredictiveModel): """Predictive model where data comes from a Normal distribution. This model is the Normal-Normal model, with known precision It is specified in terms of precision for convenience. It assumes that the data is generated from a normal distribution with known precision. The prior on the mean of the normal, is a normal distribution. Attributes: data: The Timeseriesdata object, for which the algorithm is run. parameters: Parameters specifying the prior. """ def __init__( self, data: TimeSeriesData, parameters: NormalKnownParameters ): # \mu \sim N(\mu0, \frac{1}{\lambda0}) # x \sim N(\mu,\frac{1}{\lambda}) empirical = parameters.empirical mean_prior = parameters.mean_prior mean_prec_prior = parameters.mean_prec_prior known_prec = parameters.known_prec self.parameters = parameters self._maxT = len(data) # hyper parameters for mean and precision self.mu_0 = mean_prior self.lambda_0 = mean_prec_prior self.lambda_val = known_prec if data.is_univariate(): self._data_shape = self._maxT else: # Multivariate self.P = data.value.values.shape[1] # If the user didn't specify the priors as multivariate # then we assume the same prior(s) over all time series. if self.mu_0 is not None and isinstance(self.mu_0, float): self.mu_0 = np.repeat(self.mu_0, self.P) if self.mu_0 is not None and isinstance(self.lambda_0, float): self.lambda_0 = np.repeat(self.lambda_0, self.P) if self.mu_0 is not None and isinstance(self.lambda_val, float): self.lambda_val = np.repeat(self.lambda_val, self.P) self._data_shape = (self._maxT, self.P) # For efficiency, we simulate a dynamically growing list with # insertions at the start, by a fixed size array with a pointer # where we grow the array from the end of the array. This # makes insertions constant time and means we can use # vectorized computation throughout. self._mean_arr_num = np.zeros(self._data_shape) self._std_arr = np.zeros(self._data_shape) self._ptr = 0 # if priors are going to be decided empirically, # we ignore these settings above # Also, we need to pass on the data in this case if empirical: check_data(data) self._find_empirical_prior(data) if self.lambda_0 is not None and self.lambda_val is not None and self.mu_0 is not None: # We set these here to avoid recomputing the linear expression # throughout + avoid unnecessarily zeroing the memory etc. self._mean_arr = np.repeat( np.expand_dims(self.mu_0 * self.lambda_0, axis=0), self._maxT, axis=0 ) self._prec_arr = np.repeat( np.expand_dims(self.lambda_0, axis=0), self._maxT, axis=0 ) else: raise ValueError("Priors for NormalKnownPrec should not be None.") def setup(self): # everything is already set up in __init__! pass def _find_empirical_prior(self, data: TimeSeriesData): """ if priors are not defined, we take an empirical Bayes approach and define the priors from the data """ data_arr = data.value # best guess of mu0 is data mean if data.is_univariate(): self.mu_0 = data_arr.mean(axis=0) else: self.mu_0 = data_arr.mean(axis=0).values # variance of the mean: \lambda_0 = \frac{N}{\sigma^2} if data.is_univariate(): self.lambda_0 = 1.0 / data_arr.var(axis=0) else: self.lambda_0 = 1.0 / data_arr.var(axis=0).values # to find the variance of the data we just look at small # enough windows such that the mean won't change between window_size = 10 var_arr = data_arr.rolling(window_size).var()[window_size - 1 :] if data.is_univariate(): self.lambda_val = self.parameters.known_prec_multiplier / var_arr.mean() else: self.lambda_val = self.parameters.known_prec_multiplier / var_arr.mean().values logging.debug("Empirical Prior: mu_0:", self.mu_0) logging.debug("Empirical Prior: lambda_0:", self.lambda_0) logging.debug("Empirical Prior: lambda_val:", self.lambda_val) @staticmethod def _norm_logpdf(x, mean, std): """ Hardcoded version of scipy.norm.logpdf. This is hardcoded because scipy version is slow due to checks + uses log(pdf(...)) - which wastefully computes exp(..) and log(...). """ return -np.log(std) - _LOG_SQRT2PI - 0.5 * ((x - mean) / std)**2 def pred_prob(self, t: int, x: float) -> np.ndarray: """Returns log predictive probabilities. We will give log predictive probabilities for changepoints that started at times from 0 to t. This posterior predictive is from https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf equation 36. Args: t is the time, x is the new data point Returns: pred_arr: Array with predicted log probabilities for each starting point. """ pred_arr = self._norm_logpdf( x, self._mean_arr[self._maxT + self._ptr : self._maxT + self._ptr + t], self._std_arr[self._maxT + self._ptr : self._maxT + self._ptr + t] ) return pred_arr def pred_mean(self, t: int, x: float) -> np.ndarray: return self._mean_arr[self._maxT + self._ptr : self._maxT + self._ptr + t] def pred_std(self, t: int, x: float) -> np.ndarray: return self._std_arr[self._maxT + self._ptr : self._maxT + self._ptr + t] def update_sufficient_stats(self, x: float) -> None: """Updates sufficient statistics with new data. We will store the sufficient stats for a streak starting at times 0, 1, ....t. This is eqn 29 and 30 in <NAME>'s note: https://www.cs.ubc.ca/~murphyk/Papers/bayesGauss.pdf Args: x: The new data point. Returns: None. """ # \lambda = \lambda_0 + n * \lambda # hence, online, at each step: lambda[i] = lambda[i-1] + 1* lambda # for numerator of the mean. # n*\bar{x}*\lambda + \mu_0 * \lambda_0 # So, online we add x*\lambda to the numerator from the previous step # I think we can do it online, but I will need to think more # for now we'll just keep track of the sum # Grow list (backwards from the end of the array for efficiency) self._ptr -= 1 # update the precision array self._prec_arr[self._maxT + self._ptr : self._maxT] += self.lambda_val # update the numerator of the mean array self._mean_arr_num[self._maxT + self._ptr : self._maxT] += x * self.lambda_val # This is now handled by initializing the array with this value. # self._prec_arr[self._ptr] = self.lambda_0 + 1. * self.lambda_val self._std_arr[self._maxT + self._ptr : self._maxT] = np.sqrt( 1. / self._prec_arr[self._maxT + self._ptr : self._maxT] + 1. / self.lambda_val ) # This is now handled by initializing the array with self.mu_0 * self.lambda_0 # self._mean_arr_num[self._ptr] = (x * self.lambda_val + self.mu_0 * self.lambda_0) # update the mean array itself self._mean_arr[self._maxT + self._ptr : self._maxT] = ( self._mean_arr_num[self._maxT + self._ptr : self._maxT] / self._prec_arr[self._maxT + self._ptr : self._maxT] ) @staticmethod def is_multivariate(): return True class _BayesianLinReg(_PredictiveModel): """Predictive model for BOCPD where data comes from linear model. Defines the predictive model, where we assume that the data points come from a Bayesian Linear model, where the values are regressed against time. We use a conjugate prior, where we impose an Inverse gamma prior on sigma^2 and normal prior on the conditional distribution of beta p(beta|sigma^2) See https://en.wikipedia.org/wiki/Bayesian_linear_regression for the calculations. Attributes: data: TimeSeriesData object, on which algorithm is run parameters: Specifying all the priors. """ mu_prior: Optional[np.ndarray] = None prior_regression_numpoints: Optional[int] = None def __init__( self, data: TimeSeriesData, parameters: TrendChangeParameters, ): mu_prior = parameters.mu_prior num_likelihood_samples = parameters.num_likelihood_samples num_points_prior = parameters.num_points_prior readjust_sigma_prior = parameters.readjust_sigma_prior plot_regression_prior = parameters.plot_regression_prior self.parameters = parameters self.data = data logging.info( f"Initializing bayesian linear regression with data {data}, " f"mu_prior {mu_prior}, {num_likelihood_samples} likelihood samples, " f"{num_points_prior} points to run basic linear regression with, " f"sigma prior adjustment {readjust_sigma_prior}, " f"and plot prior regression {plot_regression_prior}" ) self._x = None self._y = None self.t = 0 # Random numbers I tried out to make the sigma_squared values really large self.a_0 = 0.1 # TODO find better priors? self.b_0 = 200 # TODO self.all_time = np.array(range(data.time.shape[0])) self.all_vals = data.value self.lambda_prior = 2e-7 * np.identity(2) self.num_likelihood_samples = num_likelihood_samples self.min_sum_samples = ( math.sqrt(self.num_likelihood_samples) / 10000 ) # TODO: Hack for getting around probabilities of 0 -- cap it at some minimum self._mean_arr = {} self._std_arr = {} def setup(self) -> None: """Sets up the regression, by calculating the priors. Args: None. Returns: None. """ data = self.data mu_prior = self.parameters.mu_prior num_points_prior = self.parameters.num_points_prior readjust_sigma_prior = self.parameters.readjust_sigma_prior plot_regression_prior = self.parameters.plot_regression_prior # Set up linear regression prior if mu_prior is None: if data is not None: self.prior_regression_numpoints = num_points_prior time = self.all_time[: self.prior_regression_numpoints] vals = self.all_vals[: self.prior_regression_numpoints] logging.info("Running basic linear regression.") # Compute basic linear regression slope, intercept, r_value, p_value, std_err = linregress(time, vals) self.mu_prior = mu_prior = np.array([intercept, slope]) # Set up mu_prior if readjust_sigma_prior: logging.info("Readjusting the prior for Inv-Gamma for sigma^2.") # these values are the mean/variance of sigma^2: Inv-Gamma(*,*) sigma_squared_distribution_mean = _BayesianLinReg._residual_variance( time, vals, intercept, slope ) sigma_squared_distribution_variance = 1000 # TODO: we don't really know what the variance of sigma^2: Inv-Gamma(a, b) should be # The following values are computed from https://reference.wolfram.com/language/ref/InverseGammaDistribution.html # We want to match the mean of Inv-Gamma(a, b) to the sigma^2 mean (called mu), and variances together too (called var). # We obtain mu = b / (a-1) and var = b^2 / ((a-2) * (a-1)^2) and then we simply solve for a and b. self.a_0 = 2.0 + ( sigma_squared_distribution_mean / sigma_squared_distribution_variance ) self.b_0 = sigma_squared_distribution_mean * (self.a_0 - 1) else: self.mu_prior = mu_prior = np.zeros(2) logging.warning("No data provided -- reverting to default mu_prior.") else: self.mu_prior = mu_prior logging.info(f"Obtained mu_prior: {self.mu_prior}") logging.info(f"Obtained a_0, b_0 values of {self.a_0}, {self.b_0}") if plot_regression_prior: intercept, slope = tuple(mu_prior) _BayesianLinReg._plot_regression(self.all_time, self.all_vals, intercept, slope) @staticmethod def _plot_regression(x, y, intercept, slope): plt.plot(x, y, ".") plt.plot(x, intercept + slope * x, "-") plt.show() @staticmethod def _residual_variance(x, y, intercept, slope): n = len(x) assert n == len(y) x = np.array(x) y = np.array(y) predictions = intercept + slope * x residuals = predictions - y return np.sum(np.square(residuals)) / (n - 2) @staticmethod def _sample_bayesian_linreg(mu_n, lambda_n, a_n, b_n, num_samples): #this is to make sure the results are consistent # and tests don't break randomly seed_value = 100 np.random.seed(seed_value) sample_sigma_squared = invgamma.rvs(a_n, scale=b_n, size=1) # Sample a beta value from Normal(mu_n, sigma^2 * inv(lambda_n)) assert ( len(mu_n.shape) == 1 ), f"Expected 1 dimensional mu_n, but got {mu_n.shape}" all_beta_samples = np.random.multivariate_normal( mu_n, sample_sigma_squared * np.linalg.inv(lambda_n), size=num_samples ) return all_beta_samples, sample_sigma_squared @staticmethod def _compute_bayesian_likelihood(beta, sigma_squared, x, val): prediction = np.matmul(beta, x) bayesian_likelihoods = norm.pdf( val, loc=prediction, scale=np.sqrt(sigma_squared) ) return bayesian_likelihoods, prediction @staticmethod def _sample_likelihood(mu_n, lambda_n, a_n, b_n, x, val, num_samples): all_sample_betas, sample_sigma_squared = _BayesianLinReg._sample_bayesian_linreg( mu_n, lambda_n, a_n, b_n, num_samples ) bayesian_likelihoods, prediction = _BayesianLinReg._compute_bayesian_likelihood( all_sample_betas, sample_sigma_squared, x, val ) return bayesian_likelihoods, prediction, sample_sigma_squared def pred_prob(self, t, x) -> np.ndarray: """Predictive probability of a new data point Args: t: time x: the new data point Returns: pred_arr: Array with log predictive probabilities for each starting point. """ # TODO: use better priors def log_post_pred(y, t, rl): N = self._x.shape[0] x_arr = self._x[N - rl - 1 : N, :] y_arr = self._y[N - rl - 1 : N].reshape(-1, 1) xtx = np.matmul(x_arr.transpose(), x_arr) # computes X^T X xty = np.squeeze(np.matmul(x_arr.transpose(), y_arr)) # computes X^T Y yty = np.matmul(y_arr.transpose(), y_arr) # computes Y^T Y # Bayesian learning update lambda_n = xtx + self.lambda_prior mu_n = np.matmul(
np.linalg.inv(lambda_n)
numpy.linalg.inv
import os import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import torch from torch.utils.data import DataLoader from tqdm import tqdm import argparse import math import my_config from prohmr.datasets.pw3d_eval_dataset import PW3DEvalDataset from prohmr.configs import get_config, prohmr_config from prohmr.models import ProHMR from prohmr.models.smpl_mine import SMPL from prohmr.utils.pose_utils import compute_similarity_transform_batch_numpy, scale_and_translation_transform_batch from prohmr.utils.geometry import undo_keypoint_normalisation, orthographic_project_torch, convert_weak_perspective_to_camera_translation from prohmr.utils.renderer import Renderer from prohmr.utils.sampling_utils import compute_vertex_uncertainties_from_samples import subsets def evaluate_3dpw(model, model_cfg, eval_dataset, metrics_to_track, device, save_path, num_pred_samples, num_workers=4, pin_memory=True, vis_every_n_batches=1000, num_samples_to_visualise=10, save_per_frame_uncertainty=True): eval_dataloader = DataLoader(eval_dataset, batch_size=1, shuffle=False, drop_last=True, num_workers=num_workers, pin_memory=pin_memory) smpl_neutral = SMPL(my_config.SMPL_MODEL_DIR, batch_size=1).to(device) smpl_male = SMPL(my_config.SMPL_MODEL_DIR, batch_size=1, gender='male').to(device) smpl_female = SMPL(my_config.SMPL_MODEL_DIR, batch_size=1, gender='female').to(device) metric_sums = {'num_datapoints': 0} per_frame_metrics = {} for metric in metrics_to_track: metric_sums[metric] = 0. per_frame_metrics[metric] = [] if metric == 'joints3D_coco_invis_samples_dist_from_mean': metric_sums['num_invis_joints3Dsamples'] = 0 elif metric == 'hrnet_joints2D_l2es': metric_sums['num_vis_hrnet_joints2D'] = 0 elif metric == 'hrnet_joints2Dsamples_l2es': metric_sums['num_vis_hrnet_joints2Dsamples'] = 0 fname_per_frame = [] pose_per_frame = [] shape_per_frame = [] cam_per_frame = [] if save_per_frame_uncertainty: vertices_uncertainty_per_frame = [] renderer = Renderer(model_cfg, faces=model.smpl.faces) reposed_cam_wp = np.array([0.85, 0., -0.2]) reposed_cam_t = convert_weak_perspective_to_camera_translation(cam_wp=reposed_cam_wp, focal_length=model_cfg.EXTRA.FOCAL_LENGTH, resolution=model_cfg.MODEL.IMAGE_SIZE) model.eval() for batch_num, samples_batch in enumerate(tqdm(eval_dataloader)): # if batch_num == 2: # break # ------------------------------- TARGETS and INPUTS ------------------------------- input = samples_batch['input'].to(device) target_pose = samples_batch['pose'].to(device) target_shape = samples_batch['shape'].to(device) target_gender = samples_batch['gender'][0] hrnet_joints2D_coco = samples_batch['hrnet_kps'].cpu().detach().numpy() hrnet_joints2D_coco_vis = samples_batch['hrnet_kps_vis'].cpu().detach().numpy() fname = samples_batch['fname'] if target_gender == 'm': target_smpl_output = smpl_male(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_reposed_smpl_output = smpl_male(betas=target_shape) elif target_gender == 'f': target_smpl_output = smpl_female(body_pose=target_pose[:, 3:], global_orient=target_pose[:, :3], betas=target_shape) target_reposed_smpl_output = smpl_female(betas=target_shape) target_vertices = target_smpl_output.vertices target_joints_h36mlsp = target_smpl_output.joints[:, my_config.ALL_JOINTS_TO_H36M_MAP, :][:, my_config.H36M_TO_J14, :] target_reposed_vertices = target_reposed_smpl_output.vertices # ------------------------------- PREDICTIONS ------------------------------- out = model({'img': input}) """ out is a dict with keys: - pred_cam: (1, num_samples, 3) tensor, camera is same for all samples - pred_cam_t: (1, num_samples, 3) tensor, camera is same for all samples - This is just pred_cam converted from weak-perspective (i.e. [s, tx, ty]) to full-perspective (i.e. [tx, ty, tz] and focal_length = 5000 --> this is basically just weak-perspective anyway) - pred_smpl_params: dict with keys: - global_orient: (1, num_samples, 1, 3, 3) tensor - body_pose: (1, num_samples, 23, 3, 3) tensor - betas: (1, num_samples, 10) tensor, betas are same for all samples - pred_pose_6d: (1, num_samples, 144) tensor - pred_vertices: (1, num_samples, 6890, 3) tensor - pred_keypoints_3d: (1, num_samples, 44, 3) tensor - pred_keypoints_2d: (1, num_samples, 44, 2) tensor - log_prob: (1, num_samples) tensor - conditioning_feats: (1, 2047) tensor """ pred_cam_wp = out['pred_cam'][:, 0, :] pred_pose_rotmats_mode = out['pred_smpl_params']['body_pose'][:, 0, :, :, :] pred_glob_rotmat_mode = out['pred_smpl_params']['global_orient'][:, 0, :, :, :] pred_shape_mode = out['pred_smpl_params']['betas'][:, 0, :] pred_pose_rotmats_samples = out['pred_smpl_params']['body_pose'][0, 1:, :, :, :] pred_glob_rotmat_samples = out['pred_smpl_params']['global_orient'][0, 1:, :, :, :] pred_shape_samples = out['pred_smpl_params']['betas'][0, 1:, :] assert pred_pose_rotmats_samples.shape[0] == num_pred_samples pred_smpl_output_mode = smpl_neutral(body_pose=pred_pose_rotmats_mode, global_orient=pred_glob_rotmat_mode, betas=pred_shape_mode, pose2rot=False) pred_vertices_mode = pred_smpl_output_mode.vertices # (1, 6890, 3) pred_joints_h36mlsp_mode = pred_smpl_output_mode.joints[:, my_config.ALL_JOINTS_TO_H36M_MAP, :][:, my_config.H36M_TO_J14, :] # (1, 14, 3) pred_joints_coco_mode = pred_smpl_output_mode.joints[:, my_config.ALL_JOINTS_TO_COCO_MAP, :] # (1, 17, 3) pred_vertices2D_mode = orthographic_project_torch(pred_vertices_mode, pred_cam_wp, scale_first=False) pred_vertices2D_mode = undo_keypoint_normalisation(pred_vertices2D_mode, input.shape[-1]) pred_joints2D_coco_mode = orthographic_project_torch(pred_joints_coco_mode, pred_cam_wp) # (1, 17, 2) pred_joints2D_coco_mode = undo_keypoint_normalisation(pred_joints2D_coco_mode, input.shape[-1]) pred_reposed_vertices_mean = smpl_neutral(betas=pred_shape_mode).vertices # (1, 6890, 3) pred_smpl_output_samples = smpl_neutral(body_pose=pred_pose_rotmats_samples, global_orient=pred_glob_rotmat_samples, betas=pred_shape_samples, pose2rot=False) pred_vertices_samples = pred_smpl_output_samples.vertices # (num_pred_samples, 6890, 3) pred_joints_h36mlsp_samples = pred_smpl_output_samples.joints[:, my_config.ALL_JOINTS_TO_H36M_MAP, :][:, my_config.H36M_TO_J14, :] # (num_samples, 14, 3) pred_joints_coco_samples = pred_smpl_output_samples.joints[:, my_config.ALL_JOINTS_TO_COCO_MAP, :] # (num_pred_samples, 17, 3) pred_joints2D_coco_samples = orthographic_project_torch(pred_joints_coco_samples, pred_cam_wp) # (num_pred_samples, 17, 2) pred_joints2D_coco_samples = undo_keypoint_normalisation(pred_joints2D_coco_samples, input.shape[-1]) pred_reposed_vertices_samples = smpl_neutral(body_pose=torch.zeros(num_pred_samples, 69, device=device, dtype=torch.float32), global_orient=torch.zeros(num_pred_samples, 3, device=device, dtype=torch.float32), betas=pred_shape_samples).vertices # (num_pred_samples, 6890, 3) # ------------------------------------------------ METRICS ------------------------------------------------ # Numpy-fying targets target_vertices = target_vertices.cpu().detach().numpy() target_joints_h36mlsp = target_joints_h36mlsp.cpu().detach().numpy() target_reposed_vertices = target_reposed_vertices.cpu().detach().numpy() # Numpy-fying preds pred_vertices_mode = pred_vertices_mode.cpu().detach().numpy() pred_joints_h36mlsp_mode = pred_joints_h36mlsp_mode.cpu().detach().numpy() pred_joints_coco_mode = pred_joints_coco_mode.cpu().detach().numpy() pred_vertices2D_mode = pred_vertices2D_mode.cpu().detach().numpy() pred_joints2D_coco_mode = pred_joints2D_coco_mode.cpu().detach().numpy() pred_reposed_vertices_mean = pred_reposed_vertices_mean.cpu().detach().numpy() pred_vertices_samples = pred_vertices_samples.cpu().detach().numpy() pred_joints_h36mlsp_samples = pred_joints_h36mlsp_samples.cpu().detach().numpy() pred_joints_coco_samples = pred_joints_coco_samples.cpu().detach().numpy() pred_joints2D_coco_samples = pred_joints2D_coco_samples.cpu().detach().numpy() pred_reposed_vertices_samples = pred_reposed_vertices_samples.cpu().detach().numpy() # -------------- 3D Metrics with Mode and Minimum Error Samples -------------- if 'pves' in metrics_to_track: pve_batch = np.linalg.norm(pred_vertices_mode - target_vertices, axis=-1) # (bs, 6890) metric_sums['pves'] += np.sum(pve_batch) # scalar per_frame_metrics['pves'].append(np.mean(pve_batch, axis=-1)) if 'pves_samples_min' in metrics_to_track: pve_per_sample = np.linalg.norm(pred_vertices_samples - target_vertices, axis=-1) # (num samples, 6890) min_pve_sample = np.argmin(np.mean(pve_per_sample, axis=-1)) pve_samples_min_batch = pve_per_sample[min_pve_sample] # (6890,) metric_sums['pves_samples_min'] += np.sum(pve_samples_min_batch) per_frame_metrics['pves_samples_min'].append(
np.mean(pve_samples_min_batch, axis=-1, keepdims=True)
numpy.mean
import h5py import numpy as np from pathlib import Path from collections import OrderedDict NCLV = 5 # number of microphysics variables def load_input_fields(path, transpose=False): """ """ fields = OrderedDict() argnames = [ 'PT', 'PQ', 'PAP', 'PAPH', 'PLU', 'PLUDE', 'PMFU', 'PMFD', 'PA', 'PCLV', 'PSUPSAT', 'TENDENCY_CML_T', 'TENDENCY_CML_Q', 'TENDENCY_CML_CLD' ] with h5py.File(path, 'r') as f: fields['KLON'] = f['KLON'][0] fields['KLEV'] = f['KLEV'][0] fields['PTSPHY'] = f['PTSPHY'][0] klon = fields['KLON'] klev = fields['KLEV'] for argname in argnames: fields[argname] = np.ascontiguousarray(f[argname]) fields['PQSAT'] = np.ndarray(order="C", shape=(klev, klon)) fields['TENDENCY_LOC_A'] =
np.ndarray(order="C", shape=(klev, klon))
numpy.ndarray
import numpy as np from scipy.optimize import curve_fit, minimize_scalar h_planck = 4.135667662e-3 # eV/ps h_planck_bar = 6.58211951e-4 # eV/ps kb_boltzmann = 8.6173324e-5 # eV/K def get_standard_errors_from_covariance(covariance): # return np.linalg.eigvals(covariance) return np.sqrt(np.diag(covariance)) #return np.sqrt(np.trace(covariance)) class Lorentzian: def __init__(self, test_frequencies_range, power_spectrum, guess_position=None, guess_height=None): self.test_frequencies_range = test_frequencies_range self.power_spectrum = power_spectrum self.guess_pos = guess_position self.guess_height = guess_height self._fit_params = None self._fit_covariances = None self.curve_name = 'Lorentzian' def _function(self, x, a, b, c, d): """Lorentzian function x: frequency coordinate a: peak position b: half width c: area proportional parameter d: base line """ return c/(np.pi*b*(1.0+((x - a)/b)**2))+d def get_fitting_parameters(self): if self._fit_params is None: if self.guess_pos is None or self.guess_height is None: fit_params, fit_covariances = curve_fit(self._function, self.test_frequencies_range, self.power_spectrum) else: fit_params, fit_covariances = curve_fit(self._function, self.test_frequencies_range, self.power_spectrum, p0=[self.guess_pos, 0.1, self.guess_height, 0.0]) self._fit_covariances = fit_covariances self._fit_params = fit_params return self._fit_params, self._fit_covariances def get_fitting(self): from scipy.integrate import quad try: fit_params, fit_covariances = self.get_fitting_parameters() maximum = fit_params[2]/(fit_params[1]*np.pi) width = 2.0*fit_params[1] frequency = fit_params[0] area = fit_params[2] standard_errors = get_standard_errors_from_covariance(fit_covariances) global_error = np.average(standard_errors[:2])/np.sqrt(area) if np.isnan(global_error): raise RuntimeError #error = get_error_from_covariance(fit_covariances) base_line = fit_params[3] return {'maximum': maximum, 'width': width, 'peak_position': frequency, 'standard_errors': standard_errors, 'global_error': global_error, 'area': area, 'base_line': base_line, 'all_good': True} except RuntimeError: return {'all_good': False} def get_curve(self, frequency_range): return self._function(frequency_range, *self.get_fitting_parameters()[0]) class Lorentzian_asymmetric: def __init__(self, test_frequencies_range, power_spectrum, guess_position=None, guess_height=None): self.test_frequencies_range = test_frequencies_range self.power_spectrum = power_spectrum self.guess_pos = guess_position self.guess_height = guess_height self._fit_params = None self._fit_covariances = None self.curve_name = 'Assym. Lorentzian' def _g_a (self, x, a, b, s): """Asymmetric width term x: frequency coordinate a: peak position b: half width s: asymmetry parameter """ return 2*b/(1.0+np.exp(s*(x-a))) def _function(self, x, a, b, c, d, s): """Lorentzian asymmetric function x: frequency coordinate a: peak position b: half width c: area proportional parameter d: base line s: asymmetry parameter """ return c/(np.pi*self._g_a(x, a, b, s)*(1.0+((x-a)/(self._g_a(x, a, b, s)))**2))+d def get_fitting_parameters(self): if self._fit_params is None: if self.guess_pos is None or self.guess_height is None: fit_params, fit_covariances = curve_fit(self._function, self.test_frequencies_range, self.power_spectrum) else: fit_params, fit_covariances = curve_fit(self._function, self.test_frequencies_range, self.power_spectrum, p0=[self.guess_pos, 0.1, self.guess_height, 0.0, 0.0]) self._fit_covariances = fit_covariances self._fit_params = fit_params return self._fit_params, self._fit_covariances def get_fitting(self): from scipy.integrate import quad try: fit_params, fit_covariances = self.get_fitting_parameters() peak_pos = minimize_scalar(lambda x: -self._function(x, *fit_params), fit_params[0], bounds=[self.test_frequencies_range[0], self.test_frequencies_range[-1]], method='bounded') frequency = peak_pos["x"] maximum = -peak_pos["fun"] width = 2.0 * self._g_a(frequency, fit_params[0], fit_params[1], fit_params[4]) asymmetry = fit_params[4] area, error_integration = quad(self._function, 0, self.test_frequencies_range[-1], args=tuple(fit_params), epsabs=1e-8) # area = fit_params[2] standard_errors = get_standard_errors_from_covariance(fit_covariances) global_error = np.average(standard_errors[:2])/
np.sqrt(area)
numpy.sqrt
from src.attack_dataset_config import AttackDatasetConfig from src.backdoor.edge_case_attack import EdgeCaseAttack from src.client_attacks import Attack from src.data.tf_data import Dataset from src.data.tf_data_global import GlobalDataset, IIDGlobalDataset, NonIIDGlobalDataset, DirichletDistributionDivider from src.config.definitions import Config from src.data.leaf_loader import load_leaf_dataset, process_text_input_indices, process_char_output_indices import numpy as np def load_global_dataset(config, malicious_clients, attack_dataset) -> GlobalDataset: """Loads dataset according to config parameter, returns GlobalData :type config: Config :type malicious_clients: np.array boolean list of clients malicious state """ attack_type = Attack(config.client.malicious.attack_type) \ if config.client.malicious is not None else None dataset: GlobalDataset if attack_type == Attack.BACKDOOR and attack_dataset.type == 'edge': pass # We are reloading in edge else: (dataset, (x_train, y_train)) = get_dataset(config, attack_dataset) if attack_type == Attack.BACKDOOR: attack_ds_config: AttackDatasetConfig = attack_dataset if attack_ds_config.type == 'semantic': assert attack_ds_config.train != [] and attack_ds_config.test, \ "Must set train and test for a semantic backdoor!" # Based on pre-chosen images build_attack_selected_aux(dataset, x_train, y_train, attack_ds_config.train, attack_ds_config.test, attack_ds_config.target_label, [], #config['backdoor_feature_benign_regular'], attack_ds_config.remove_from_benign_dataset) elif attack_ds_config.type == 'tasks': # Construct 'backdoor tasks' build_attack_backdoor_tasks(dataset, malicious_clients, attack_ds_config.tasks, [attack_ds_config.source_label, attack_ds_config.target_label], attack_ds_config.aux_samples, attack_ds_config.augment_times) elif attack_ds_config.type == 'edge': assert attack_ds_config.edge_case_type is not None, "Please specify an edge case type" # We have to reload the dataset adding the benign samples. (x_aux_train, mal_aux_labels_train), (x_aux_test, mal_aux_labels_test), (benign_x, benign_y) =\ build_edge_case_attack(attack_ds_config.edge_case_type, attack_ds_config.edge_case_p, config.dataset.normalize_mnist_data) (dataset, (x_t_tst, _)) = get_dataset(config, attack_dataset, benign_x, benign_y) (dataset.x_aux_train, dataset.mal_aux_labels_train), (dataset.x_aux_test, dataset.mal_aux_labels_test) = \ (x_aux_train, mal_aux_labels_train), (x_aux_test, mal_aux_labels_test) elif attack_ds_config.type == 'pixel_pattern': # do nothing build_pixel_pattern(dataset, attack_ds_config.target_label) else: raise NotImplementedError(f"Backdoor type {attack_ds_config.type} not supported!") return dataset def build_attack_backdoor_tasks(dataset, malicious_clients, backdoor_tasks, malicious_objective, aux_samples, augment_times): dataset.build_global_aux(malicious_clients, backdoor_tasks, malicious_objective, aux_samples, augment_times) def build_attack_selected_aux(ds, x_train, y_train, backdoor_train_set, backdoor_test_set, backdoor_target, benign_train_set_extra, remove_malicious_samples): """Builds attack based on selected backdoor images""" (ds.x_aux_train, ds.y_aux_train), (ds.x_aux_test, ds.y_aux_test) = \ (x_train[np.array(backdoor_train_set)], y_train[np.array(backdoor_train_set)]), \ (x_train[np.array(backdoor_test_set)], y_train[np.array(backdoor_test_set)]) ds.mal_aux_labels_train = np.repeat(backdoor_target, ds.y_aux_train.shape).astype(np.uint8) ds.mal_aux_labels_test = np.repeat(backdoor_target, ds.y_aux_test.shape).astype(np.uint8) if benign_train_set_extra: extra_train_x, extra_train_y = x_train[np.array(benign_train_set_extra)], \ y_train[np.array(benign_train_set_extra)] ds.x_aux_train = np.concatenate([ds.x_aux_train, extra_train_x]) ds.y_aux_train = np.concatenate([ds.y_aux_train, extra_train_y]) ds.mal_aux_labels_train = np.concatenate([ds.mal_aux_labels_train, extra_train_y]) if remove_malicious_samples: np.delete(x_train, backdoor_train_set, axis=0) np.delete(y_train, backdoor_train_set, axis=0) np.delete(x_train, backdoor_test_set, axis=0) np.delete(y_train, backdoor_test_set, axis=0) def shuffle(x, y): perms = np.random.permutation(x.shape[0]) return x[perms, :], y[perms] def build_edge_case_attack(edge_case, adv_edge_case_p, normalize_mnist_data): attack: EdgeCaseAttack = factory(edge_case) (x_aux_train, mal_aux_labels_train), (x_aux_test, mal_aux_labels_test), (orig_y_train, _) =\ attack.load() if normalize_mnist_data: emnist_mean, emnist_std = 0.036910772, 0.16115953 x_aux_train = (x_aux_train - emnist_mean) / emnist_std x_aux_test = (x_aux_test - emnist_mean) / emnist_std # If necessary, distribute edge_case samples by p # TODO: Fix shuffle for orig_y_train, only not working when labels differ!!! x_aux_train, mal_aux_labels_train = shuffle(x_aux_train, mal_aux_labels_train) x_aux_test, mal_aux_labels_test = shuffle(x_aux_test, mal_aux_labels_test) x_benign, y_benign = None, None if adv_edge_case_p < 1.0: # Some edge case values must be incorporated into the benign training set. index = int(adv_edge_case_p * x_aux_train.shape[0]) x_benign, y_benign = x_aux_train[index:, :], orig_y_train[index:] x_aux_train, mal_aux_labels_train = x_aux_train[:index, :], mal_aux_labels_train[:index] return (x_aux_train, mal_aux_labels_train), (x_aux_test, mal_aux_labels_test), (x_benign, y_benign) # Note: ds.y_aux_train, ds.y_aux_test not set def build_pixel_pattern(ds, backdoor_target): # (ds.x_aux_train, ds.y_aux_train), (ds.x_aux_test, ds.y_aux_test) = \ # (ds.x_train, ds.y_train), \ # (ds.x_test, ds. y_test) # ds.mal_aux_labels_train = np.repeat(backdoor_target, # ds.y_aux_train.shape).astype(np.uint8) # ds.mal_aux_labels_test = np.repeat(backdoor_target, ds.y_aux_test.shape).astype(np.uint8) # Assign test set (ds.x_aux_test, ds.y_aux_test) = \ (ds.x_test, ds. y_test) ds.mal_aux_labels_test = np.repeat(backdoor_target, ds.y_aux_test.shape).astype(np.uint8) def factory(classname): from src.backdoor import edge_case_attack cls = getattr(edge_case_attack, classname) return cls() def get_dataset(config, attack_ds_config, add_x_train=None, add_y_train=None): """ @param config: @param attack_ds_config: @param add_x_train: x_train samples to add to training set @param add_y_train: y_train samples to add to training set @return: """ dataset = config.dataset.dataset number_of_samples = config.dataset.number_of_samples data_distribution = config.dataset.data_distribution normalize_mnist_data = config.dataset.normalize_mnist_data # Legacy num_clients = config.environment.num_clients if dataset == 'mnist': (x_train, y_train), (x_test, y_test) = Dataset.get_mnist_dataset(number_of_samples) if add_x_train is not None: x_train = np.concatenate([x_train, add_x_train]) y_train = np.concatenate([y_train, add_y_train]) if data_distribution == 'IID': ds = IIDGlobalDataset(x_train, y_train, num_clients=num_clients, x_test=x_test, y_test=y_test) else: (x_train_dist, y_train_dist) = \ DirichletDistributionDivider(x_train, y_train, attack_ds_config.train, attack_ds_config.test, attack_ds_config.remove_from_benign_dataset, num_clients).build() ds = NonIIDGlobalDataset(x_train_dist, y_train_dist, x_test, y_test, num_clients=num_clients) elif dataset == 'fmnist': if data_distribution == 'IID': (x_train, y_train), (x_test, y_test) = Dataset.get_fmnist_dataset(number_of_samples) if add_x_train is not None: x_train = np.concatenate([x_train, add_x_train]) y_train = np.concatenate([y_train, add_y_train]) ds = IIDGlobalDataset(x_train, y_train, num_clients=num_clients, x_test=x_test, y_test=y_test) else: raise Exception('Distribution not supported') elif dataset == 'femnist': if data_distribution == 'IID': (x_train, y_train), (x_test, y_test) = Dataset.get_emnist_dataset(number_of_samples, num_clients, normalize_mnist_data) (x_train, y_train), (x_test, y_test) = ( Dataset.keep_samples(np.concatenate(x_train), np.concatenate(y_train), number_of_samples), Dataset.keep_samples(np.concatenate(x_test), np.concatenate(y_test), number_of_samples)) if add_x_train is not None: x_train = np.concatenate([x_train, add_x_train]) y_train = np.concatenate([y_train, add_y_train]) ds = IIDGlobalDataset(x_train, y_train, num_clients, x_test, y_test) else: (x_train, y_train), (x_test, y_test) = Dataset.get_emnist_dataset(number_of_samples, num_clients, normalize_mnist_data) if add_x_train is not None: # Here, x_train and y_train are already separated by handwriter.. Add to random handwriters handwriter_indices = np.random.choice(len(x_train), add_x_train.shape[0], replace=True) for index in handwriter_indices: x_train[index] = np.concatenate([x_train[index], add_x_train[index:(index+1), :]]) y_train[index] = np.concatenate([y_train[index], add_y_train[index:(index + 1)]]) for index in range(len(x_train)): x_train[index], y_train[index] = shuffle(x_train[index], y_train[index]) ds = NonIIDGlobalDataset(x_train, y_train, np.concatenate(x_test), np.concatenate(y_test), num_clients) x_train, y_train =
np.concatenate(x_train)
numpy.concatenate
from __future__ import print_function, division import os from os import listdir from os.path import isfile, join import sys import pandas as pd import random import numpy as np import copy from operator import add # root = os.path.join(os.getcwd().split('src')[0], 'src/defects') # if root not in sys.path: # sys.path.append(root) import warnings from mklaren.kernel.kinterface import Kinterface from mklaren.kernel.kernel import * from mklaren.projection.icd import ICD from pdb import set_trace from scipy.spatial.distance import pdist, squareform from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn import metrics from sklearn.naive_bayes import GaussianNB from sklearn.metrics import confusion_matrix from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import KFold from multiprocessing import Pool, cpu_count from threading import Thread from multiprocessing import Queue # import tl_algs # from tl_algs import tca_plus import SMOTE from utils import * import metrics class ThreadWithReturnValue(Thread): def __init__(self, group=None, target=None, name=None, args=(), kwargs={}, Verbose=None): Thread.__init__(self, group, target, name, args, kwargs) self._return = None def run(self): #print(type(self._target)) if self._target is not None: self._return = self._target(*self._args, **self._kwargs) def join(self, *args): Thread.join(self, *args) return self._return def apply_smote(df): cols = df.columns smt = SMOTE.smote(df) df = smt.run() df.columns = cols return df def _replaceitem(x): if x >= 0.5: return 0.5 else: return 0.0 def _replaceitem_logistic(x): if x >= 0.5: return 1 else: return 0 def prepare_data(project, metric): data_path = '../data/merged_data_original/' + project + '.csv' data_df = pd.read_csv(data_path) data_df.rename(columns = {'Unnamed: 0':'id'},inplace = True) for col in ['id', 'commit_hash', 'release']: if col in data_df.columns: data_df = data_df.drop([col], axis = 1) data_df = data_df.dropna() y = data_df.Bugs X = data_df.drop(['Bugs'],axis = 1) if metric == 'process': X = X[['file_la', 'file_ld', 'file_lt', 'file_age', 'file_ddev', 'file_nuc', 'own', 'minor', 'file_ndev', 'file_ncomm', 'file_adev', 'file_nadev', 'file_avg_nddev', 'file_avg_nadev', 'file_avg_ncomm', 'file_ns', 'file_exp', 'file_sexp', 'file_rexp', 'file_nd', 'file_sctr']] elif metric == 'product': X = X.drop(['file_la', 'file_ld', 'file_lt', 'file_age', 'file_ddev', 'file_nuc', 'own', 'minor', 'file_ndev', 'file_ncomm', 'file_adev', 'file_nadev', 'file_avg_nddev', 'file_avg_nadev', 'file_avg_ncomm', 'file_ns', 'file_exp', 'file_sexp', 'file_rexp', 'file_nd', 'file_sctr'],axis = 1) else: X = X df = X df['Bugs'] = y return df def get_kernel_matrix(dframe, n_dim=15): """ This returns a Kernel Transformation Matrix $\Theta$ It uses kernel approximation offered by the MKlaren package For the sake of completeness (and for my peace of mind, I use the best possible approx.) :param dframe: input data as a pandas dataframe. :param n_dim: Number of dimensions for the kernel matrix (default=15) :return: $\Theta$ matrix """ ker = Kinterface(data=dframe.values, kernel=linear_kernel) model = ICD(rank=n_dim) model.fit(ker) g_nystrom = model.G return g_nystrom def map_transform(src, tgt, n_components=5): """ Run a map and transform x and y onto a new space using TCA :param src: IID samples :param tgt: IID samples :return: Mapped x and y """ s_col = [col for col in src.columns[:-1] if '?' not in col] t_col = [col for col in tgt.columns[:-1] if '?' not in col] S = src[s_col] T = tgt[t_col] col_name = ["Col_" + str(i) for i in range(n_components)] x0 = pd.DataFrame(get_kernel_matrix(S, n_components), columns=col_name) y0 = pd.DataFrame(get_kernel_matrix(T, n_components), columns=col_name) # set_trace() x0.loc[:, src.columns[-1]] = pd.Series(src[src.columns[-1]], index=x0.index) y0.loc[:, tgt.columns[-1]] = pd.Series(tgt[tgt.columns[-1]], index=y0.index) return x0, y0 def create_model(train): """ :param train: :type train: :param test: :type test: :param weka: :type weka: :return: """ train = apply_smote(train) train_y = train.Bugs train_X = train.drop(labels = ['Bugs'],axis = 1) clf = LogisticRegression() clf.fit(train_X, train_y) return clf def predict_defects(clf, test): test_y = test.Bugs test_X = test.drop(labels = ['Bugs'],axis = 1) predicted = clf.predict(test_X) predicted_proba = clf.predict_proba(test_X) return test_y, predicted, predicted_proba def get_dcv(src, tgt): """Get dataset characteristic vector.""" s_col = [col for col in src.columns[:-1] if '?' not in col] t_col = [col for col in tgt.columns[:-1] if '?' not in col] S = src[s_col] T = tgt[t_col] def self_dist_mtx(arr): dist_arr = pdist(arr) return squareform(dist_arr) dist_src = self_dist_mtx(S.values) dist_tgt = self_dist_mtx(T.values) dcv_src = [np.mean(dist_src), np.median(dist_src), np.min(dist_src), np.max(dist_src), np.std(dist_src), len(S.values)] dcv_tgt = [
np.mean(dist_tgt)
numpy.mean
""" Test for file IO. It tests the results of an optimal control problem with torque_driven_with_contact problem type regarding the proper functioning of : - the maximize/minimize_predicted_height_CoM objective - the contact_forces_inequality constraint - the non_slipping constraint """ import importlib.util from pathlib import Path import pytest import numpy as np from biorbd_optim import Data, OdeSolver from .utils import TestUtils PROJECT_FOLDER = Path(__file__).parent / ".." spec = importlib.util.spec_from_file_location( "maximize_predicted_height_CoM", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/maximize_predicted_height_CoM.py", ) maximize_predicted_height_CoM = importlib.util.module_from_spec(spec) spec.loader.exec_module(maximize_predicted_height_CoM) spec = importlib.util.spec_from_file_location( "contact_forces_inequality_constraint", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/contact_forces_inequality_constraint.py", ) contact_forces_inequality_GREATER_THAN_constraint = importlib.util.module_from_spec(spec) spec.loader.exec_module(contact_forces_inequality_GREATER_THAN_constraint) spec = importlib.util.spec_from_file_location( "contact_forces_inequality_constraint", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/contact_forces_inequality_constraint.py", ) contact_forces_inequality_LESSER_THAN_constraint = importlib.util.module_from_spec(spec) spec.loader.exec_module(contact_forces_inequality_LESSER_THAN_constraint) spec = importlib.util.spec_from_file_location( "non_slipping_constraint", str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/non_slipping_constraint.py", ) non_slipping_constraint = importlib.util.module_from_spec(spec) spec.loader.exec_module(non_slipping_constraint) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK]) def test_maximize_predicted_height_CoM(ode_solver): ocp = maximize_predicted_height_CoM.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.5, number_shooting_points=20, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.7592028279017864) # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (160, 1)) np.testing.assert_almost_equal(g, np.zeros((160, 1))) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.5, 0.5))) np.testing.assert_almost_equal(q[:, -1], np.array((0.1189651, -0.0904378, -0.7999996, 0.7999996))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((1.2636414, -1.3010929, -3.6274687, 3.6274687))) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-22.1218282))) np.testing.assert_almost_equal(tau[:, -1], np.array(0.2653957)) # save and load TestUtils.save_and_load(sol, ocp, False) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK]) def test_contact_forces_inequality_GREATER_THAN_constraint(ode_solver): boundary = 50 ocp = contact_forces_inequality_GREATER_THAN_constraint.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.3, number_shooting_points=10, direction="GREATER_THAN", boundary=boundary, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14525621569048172) # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (100, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(-g[80:], -boundary) expected_pos_g = np.array( [ [50.76491919], [51.42493119], [57.79007374], [64.29551934], [67.01905769], [68.3225625], [67.91793917], [65.26700138], [59.57311867], [50.18463134], [160.14834799], [141.15361769], [85.13345729], [56.33535022], [53.32684286], [52.21679255], [51.62923106], [51.25728666], [50.9871531], [50.21972377], ] ) np.testing.assert_almost_equal(g[80:], expected_pos_g) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.75, 0.75))) np.testing.assert_almost_equal(q[:, -1], np.array((-0.34054748, 0.1341555, -0.0005438, 0.0005438))) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-2.01097559, 1.09352001e-03, 4.02195175, -4.02195175))) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-54.1684018))) np.testing.assert_almost_equal(tau[:, -1], np.array((-15.69338332))) # save and load TestUtils.save_and_load(sol, ocp, False) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK]) def test_contact_forces_inequality_LESSER_THAN_constraint(ode_solver): boundary = 100 ocp = contact_forces_inequality_LESSER_THAN_constraint.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.3, number_shooting_points=10, direction="LESSER_THAN", boundary=boundary, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.14525619649247054) # Check constraints g = np.array(sol["g"]) np.testing.assert_equal(g.shape, (100, 1)) np.testing.assert_almost_equal(g[:80], np.zeros((80, 1))) np.testing.assert_array_less(g[80:], boundary) expected_non_zero_g = np.array( [ [63.27237842], [63.02339946], [62.13898369], [60.38380769], [57.31193141], [52.19952395], [43.9638679], [31.14938032], [12.45022537], [-6.35179034], [99.06328211], [98.87711942], [98.64440005], [98.34550037], [97.94667107], [97.38505013], [96.52820867], [95.03979128], [91.73734926], [77.48803304], ] ) np.testing.assert_almost_equal(g[80:], expected_non_zero_g) # Check some of the results states, controls = Data.get_data(ocp, sol["x"]) q, qdot, tau = states["q"], states["q_dot"], controls["tau"] # initial and final position np.testing.assert_almost_equal(q[:, 0], np.array((0.0, 0.0, -0.75, 0.75))) np.testing.assert_almost_equal( q[:, -1], np.array((-3.40655617e-01, 1.34155544e-01, -3.27530886e-04, 3.27530886e-04)) ) # initial and final velocities np.testing.assert_almost_equal(qdot[:, 0], np.array((0, 0, 0, 0))) np.testing.assert_almost_equal(qdot[:, -1], np.array((-2.86650427, 9.38827988e-04, 5.73300901, -5.73300901))) # initial and final controls np.testing.assert_almost_equal(tau[:, 0], np.array((-32.78862874))) np.testing.assert_almost_equal(tau[:, -1], np.array((-25.23729156))) # save and load TestUtils.save_and_load(sol, ocp, False) @pytest.mark.parametrize("ode_solver", [OdeSolver.RK]) def test_non_slipping_constraint(ode_solver): ocp = non_slipping_constraint.prepare_ocp( model_path=str(PROJECT_FOLDER) + "/examples/torque_driven_with_contact/2segments_4dof_2contacts.bioMod", phase_time=0.6, number_shooting_points=10, mu=0.005, ) sol = ocp.solve() # Check objective function value f = np.array(sol["f"]) np.testing.assert_equal(f.shape, (1, 1)) np.testing.assert_almost_equal(f[0, 0], 0.23984490846250128) # Check constraints g =
np.array(sol["g"])
numpy.array
#!/usr/bin/env python3 import numpy as np import random import sys from time import sleep try: import sounddevice as sd except ImportError: sd = None P = {"r": "rock", "p": "paper", "s": "scissors"} FS = 44100 # needs to be int, non-44100 may not work on HDMI def main(): print_choices() if len(sys.argv) == 2: N = int(sys.argv[1]) else: N = 10 stat = 0 wins = 0 losses = 0 for _ in range(N): computer = random.choice(list(P.keys())) try: human = input() if human not in P.keys(): print_choices() continue except EOFError: print("goodbye") break if human == computer: print("draw!") stat = 0 elif human == "r": if computer == "s": print("Human win: ⭖ smashes ✄") stat = 1 else: print("computer wins: 📰 covers ⭖") stat = -1 elif human == "s": if computer == "r": print("computer wins: ⭖ smashes ✄") stat = -1 else: print("human wins: ✄ cuts 📰") stat = 1 elif human == "p": if computer == "s": print("computer wins: ✄ cuts 📰") stat = -1 else: print("human wins: 📰 covers ⭖") stat = 1 if stat == 1: wins += 1 elif stat == -1: losses += 1 feedback(stat) print("Wins:", wins, "losses:", losses) def print_choices(): for k, v in P.items(): print(k, v, end=" ") def feedback(stat: int): global sd if sd is None: return if stat == -1: f1 = 700.0 f2 = 400.0 elif stat == 1: f1 = 400.0 f2 = 700.0 else: return T = 0.3 tp = 0.2 t = np.arange(0, T + tp, 1 / FS) Nt = t.size Np = int(tp // FS) ih = (Nt - Np) // 2 sound = np.empty_like(t) sound[Np:ih] = np.sin(2 * np.pi * f1 * t[Np:ih]) sound[ih:] =
np.sin(2 * np.pi * f2 * t[ih:])
numpy.sin
from argparse import ArgumentParser import os import numpy as np from joblib import dump from mldftdat.workflow_utils import SAVE_ROOT from mldftdat.models.gp import * from mldftdat.data import load_descriptors, filter_descriptors import yaml def parse_settings(args): fname = args.datasets_list[0] if args.suffix is not None: fname = fname + '_' + args.suffix fname = os.path.join(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.version, fname) print(fname) with open(os.path.join(fname, 'settings.yaml'), 'r') as f: d = yaml.load(f, Loader=yaml.Loader) args.gg_a0 = d.get('a0') args.gg_amin = d.get('amin') args.gg_facmul = d.get('fac_mul') def parse_dataset(args, i, val=False): if val: fname = args.validation_set[2*i] n = int(args.validation_set[2*i+1]) else: fname = args.datasets_list[2*i] n = int(args.datasets_list[2*i+1]) if args.suffix is not None: fname = fname + '_' + args.suffix fname = os.path.join(SAVE_ROOT, 'DATASETS', args.functional, args.basis, args.version, fname) print(fname) X, y, rho_data = load_descriptors(fname) if val: # offset in case repeat datasets are used X, y, rho_data = X[n//2+1:,:], y[n//2+1:], rho_data[:,n//2+1:] X, y, rho, rho_data = filter_descriptors(X, y, rho_data, tol=args.density_cutoff) print(X.shape, n) if args.randomize: inds = np.arange(X.shape[0]) np.random.shuffle(inds) X = X[inds,:] y = y[inds] rho = rho[inds] rho_data = rho_data[:,inds] return X[::n,:], y[::n], rho[::n], rho_data[:,::n] def parse_list(lststr, T=int): return [T(substr) for substr in lststr.split(',')] def main(): parser = ArgumentParser(description='Trains a GP exchange model') parser.add_argument('save_file', type=str) parser.add_argument('feature_file', type=str, help='serialized FeatureList object in yaml format') parser.add_argument('datasets_list', nargs='+', help='pairs of dataset names and inverse sampling densities') parser.add_argument('basis', metavar='basis', type=str, help='basis set code') parser.add_argument('--functional', metavar='functional', type=str, default=None, help='exchange-correlation functional, HF for Hartree-Fock') parser.add_argument('-r', '--randomize', action='store_true') parser.add_argument('-c', '--density-cutoff', type=float, default=1e-4) #parser.add_argument('-m', '--model-class', type=str, default=None) #parser.add_argument('-k', '--kernel', help='kernel initialization strategy', type=str, default=None) parser.add_argument('-s', '--seed', help='random seed', default=0, type=int) parser.add_argument('-vs', '--validation-set', nargs='+') parser.add_argument('-d', '--delete-k', action='store_true', help='Delete L (LL^T=K the kernel matrix) to save disk space. Need to refit when reloading to calculate covariance.') parser.add_argument('--heg', action='store_true', help='HEG exact constraint') parser.add_argument('--tail', action='store_true', help='atomic tail exact constraint') parser.add_argument('-o', '--desc-order', default=None, help='comma-separated list of descriptor order with no spaces. must start with 0,1.') parser.add_argument('-l', '--length-scale', default=None, help='comma-separated list initial length-scale guesses') parser.add_argument('--length-scale-mul', type=float, default=1.0, help='Used for automatic length-scale initial guess') parser.add_argument('-a', '--agpr', action='store_true', help='Whether to use Additive RBF. If False, use RBF') parser.add_argument('-as', '--agpr-scale', default=None) parser.add_argument('-ao', '--agpr-order', default=2, type=int) parser.add_argument('-an', '--agpr-nsingle', default=1, type=int) parser.add_argument('-x', '--xed-y-code', default='CHACHIYO', type=str) parser.add_argument('-on', '--optimize-noise', action='store_true', help='Whether to optimzie exponent of density noise.') parser.add_argument('-v', '--version', default='c', type=str, help='version of descriptor set. Default c') parser.add_argument('--suffix', default=None, type=str, help='customize data directories with this suffix') args = parser.parse_args() parse_settings(args) np.random.seed(args.seed) feature_list = FeatureList.load(args.feature_file) if args.length_scale is not None: args.length_scale = parse_list(args.length_scale, T=float) if args.agpr_scale is not None: args.agpr_scale = parse_list(args.agpr_scale, T=float) if args.desc_order is not None: args.desc_order = parse_list(args.desc_order) assert len(args.datasets_list) % 2 == 0, 'Need pairs of entries for datasets list.' assert len(args.datasets_list) != 0, 'Need training data' nd = len(args.datasets_list) // 2 if args.validation_set is None: nv = 0 else: assert len(args.validation_set) % 2 == 0, 'Need pairs of entries for datasets list.' nv = len(args.validation_set) // 2 X, y, rho, rho_data = parse_dataset(args, 0) for i in range(1, nd): Xn, yn, rhon, rho_datan, = parse_dataset(args, i) X = np.append(X, Xn, axis=0) y = np.append(y, yn, axis=0) rho =
np.append(rho, rhon, axis=0)
numpy.append
""" Copyright (c) 2018 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np from ..config import ConfigValidator, StringField, NumberField from ..representation import (ClassificationPrediction, DetectionPrediction, ReIdentificationPrediction, SegmentationPrediction, CharacterRecognitionPrediction, ContainerPrediction, RegressionPrediction, FacialLandmarksPrediction, MultilabelRecognitionPrediction, SuperResolutionPrediction) from ..utils import get_or_parse_value from .adapter import Adapter class ClassificationAdapter(Adapter): """ Class for converting output of classification model to ClassificationPrediction representation """ __provider__ = 'classification' def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of ClassificationPrediction objects """ prediction = raw[self.output_blob] prediction = np.reshape(prediction, (prediction.shape[0], -1)) result = [] for identifier, output in zip(identifiers, prediction): result.append(ClassificationPrediction(identifier, output)) return result class SegmentationAdapter(Adapter): __provider__ = 'segmentation' def process(self, raw, identifiers=None, frame_meta=None): prediction = raw[self.output_blob] result = [] for identifier, output in zip(identifiers, prediction): result.append(SegmentationPrediction(identifier, output)) return result class TinyYOLOv1Adapter(Adapter): """ Class for converting output of Tiny YOLO v1 model to DetectionPrediction representation """ __provider__ = 'tiny_yolo_v1' def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of DetectionPrediction objects """ prediction = raw[self.output_blob] PROBABILITY_SIZE = 980 CONFIDENCE_SIZE = 98 BOXES_SIZE = 392 CELLS_X, CELLS_Y = 7, 7 CLASSES = 20 OBJECTS_PER_CELL = 2 result = [] for identifier, output in zip(identifiers, prediction): assert PROBABILITY_SIZE + CONFIDENCE_SIZE + BOXES_SIZE == output.shape[0] probability, scale, boxes = np.split(output, [PROBABILITY_SIZE, PROBABILITY_SIZE + CONFIDENCE_SIZE]) probability = np.reshape(probability, (CELLS_Y, CELLS_X, CLASSES)) scale = np.reshape(scale, (CELLS_Y, CELLS_X, OBJECTS_PER_CELL)) boxes = np.reshape(boxes, (CELLS_Y, CELLS_X, OBJECTS_PER_CELL, 4)) confidence = np.zeros((CELLS_Y, CELLS_X, OBJECTS_PER_CELL, CLASSES + 4)) for cls in range(CLASSES): confidence[:, :, 0, cls] = np.multiply(probability[:, :, cls], scale[:, :, 0]) confidence[:, :, 1, cls] = np.multiply(probability[:, :, cls], scale[:, :, 1]) labels, scores, x_mins, y_mins, x_maxs, y_maxs = [], [], [], [], [], [] for i, j, k in np.ndindex((CELLS_X, CELLS_Y, OBJECTS_PER_CELL)): box = boxes[j, i, k] box = [(box[0] + i) / float(CELLS_X), (box[1] + j) / float(CELLS_Y), box[2] ** 2, box[3] ** 2] label = np.argmax(confidence[j, i, k, :CLASSES]) score = confidence[j, i, k, label] labels.append(label + 1) scores.append(score) x_mins.append(box[0] - box[2] / 2.0) y_mins.append(box[1] - box[3] / 2.0) x_maxs.append(box[0] + box[2] / 2.0) y_maxs.append(box[1] + box[3] / 2.0) result.append(DetectionPrediction(identifier, labels, scores, x_mins, y_mins, x_maxs, y_maxs)) return result class ReidAdapter(Adapter): """ Class for converting output of Reid model to ReIdentificationPrediction representation """ __provider__ = 'reid' def configure(self): """ Specifies parameters of config entry """ self.grn_workaround = self.launcher_config.get("grn_workaround", True) def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of ReIdentificationPrediction objects """ prediction = raw[self.output_blob] if self.grn_workaround: # workaround: GRN layer prediction = self._grn_layer(prediction) return [ReIdentificationPrediction(identifier, embedding.reshape(-1)) for identifier, embedding in zip(identifiers, prediction)] @staticmethod def _grn_layer(prediction): GRN_BIAS = 0.000001 sum_ = np.sum(prediction ** 2, axis=1) prediction = prediction / np.sqrt(sum_[:, np.newaxis] + GRN_BIAS) return prediction class YoloV2AdapterConfig(ConfigValidator): classes = NumberField(floats=False, optional=True, min_value=1) coords = NumberField(floats=False, optional=True, min_value=1) num = NumberField(floats=False, optional=True, min_value=1) anchors = StringField(optional=True) PRECOMPUTED_ANCHORS = { 'yolo_v2': [1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071], 'tiny_yolo_v2': [1.08, 1.19, 3.42, 4.41, 6.63, 11.38, 9.42, 5.11, 16.62, 10.52] } class YoloV2Adapter(Adapter): """ Class for converting output of YOLO v2 family models to DetectionPrediction representation """ __provider__ = 'yolo_v2' def validate_config(self): yolo_v2_adapter_config = YoloV2AdapterConfig('YoloV2Adapter_Config') yolo_v2_adapter_config.validate(self.launcher_config) def configure(self): self.classes = self.launcher_config.get('classes', 20) self.coords = self.launcher_config.get('coords', 4) self.num = self.launcher_config.get('num', 5) self.anchors = get_or_parse_value(self.launcher_config.get('anchors', 'yolo_v2'), PRECOMPUTED_ANCHORS) def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of DetectionPrediction objects """ predictions = raw[self.output_blob] def entry_index(w, h, n_coords, n_classes, pos, entry): row = pos // (w * h) col = pos % (w * h) return row * w * h * (n_classes + n_coords + 1) + entry * w * h + col cells_x, cells_y = 13, 13 result = [] for identifier, prediction in zip(identifiers, predictions): labels, scores, x_mins, y_mins, x_maxs, y_maxs = [], [], [], [], [], [] for y, x, n in np.ndindex((cells_y, cells_x, self.num)): index = n * cells_y * cells_x + y * cells_x + x box_index = entry_index(cells_x, cells_y, self.coords, self.classes, index, 0) obj_index = entry_index(cells_x, cells_y, self.coords, self.classes, index, self.coords) scale = prediction[obj_index] box = [ (x + prediction[box_index + 0 * (cells_y * cells_x)]) / cells_x, (y + prediction[box_index + 1 * (cells_y * cells_x)]) / cells_y, np.exp(prediction[box_index + 2 * (cells_y * cells_x)]) * self.anchors[2 * n + 0] / cells_x, np.exp(prediction[box_index + 3 * (cells_y * cells_x)]) * self.anchors[2 * n + 1] / cells_y ] classes_prob = np.empty(self.classes) for cls in range(self.classes): cls_index = entry_index(cells_x, cells_y, self.coords, self.classes, index, self.coords + 1 + cls) classes_prob[cls] = prediction[cls_index] classes_prob = classes_prob * scale label = np.argmax(classes_prob) labels.append(label + 1) scores.append(classes_prob[label]) x_mins.append(box[0] - box[2] / 2.0) y_mins.append(box[1] - box[3] / 2.0) x_maxs.append(box[0] + box[2] / 2.0) y_maxs.append(box[1] + box[3] / 2.0) result.append(DetectionPrediction(identifier, labels, scores, x_mins, y_mins, x_maxs, y_maxs)) return result class LPRAdapter(Adapter): __provider__ = 'lpr' def process(self, raw, identifiers=None, frame_meta=None): predictions = raw[self.output_blob] result = [] for identifier, output in zip(identifiers, predictions): decoded_out = self.decode(output.reshape(-1)) result.append(CharacterRecognitionPrediction(identifier, decoded_out)) return result def decode(self, outputs): decode_out = str() for output in outputs: if output == -1: break decode_out += str(self.label_map[output]) return decode_out class SSDAdapter(Adapter): """ Class for converting output of SSD model to DetectionPrediction representation """ __provider__ = 'ssd' def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of DetectionPrediction objects """ prediction_batch = raw[self.output_blob] prediction_count = prediction_batch.shape[2] prediction_batch = prediction_batch.reshape(prediction_count, -1) prediction_batch = self.remove_empty_detections(prediction_batch) result = [] for batch_index, identifier in enumerate(identifiers): prediction_mask = np.where(prediction_batch[:, 0] == batch_index) detections = prediction_batch[prediction_mask] detections = detections[:, 1::] result.append(DetectionPrediction(identifier, *zip(*detections))) return result @staticmethod def remove_empty_detections(prediction_blob): ind = prediction_blob[:, 0] ind_ = np.where(ind == -1)[0] m = ind_[0] if ind_.size else prediction_blob.shape[0] return prediction_blob[:m, :] class FacePersonDetectionAdapterConfig(ConfigValidator): type = StringField() face_out = StringField() person_out = StringField() class FacePersonAdapter(Adapter): __provider__ = 'face_person_detection' def validate_config(self): face_person_detection_adapter_config = FacePersonDetectionAdapterConfig( 'FacePersonDetection_Config', on_extra_argument=FacePersonDetectionAdapterConfig.ERROR_ON_EXTRA_ARGUMENT) face_person_detection_adapter_config.validate(self.launcher_config) def configure(self): self.face_detection_out = self.launcher_config['face_out'] self.person_detection_out = self.launcher_config['person_out'] self.face_adapter = SSDAdapter(self.launcher_config, self.label_map, self.face_detection_out) self.person_adapter = SSDAdapter(self.launcher_config, self.label_map, self.person_detection_out) def process(self, raw, identifiers=None, frame_meta=None): face_batch_result = self.face_adapter(raw, identifiers) person_batch_result = self.person_adapter(raw, identifiers) result = [ContainerPrediction({self.face_detection_out: face_result, self.person_detection_out: person_result}) for face_result, person_result in zip(face_batch_result, person_batch_result)] return result class HeadPoseEstimatorAdapterConfig(ConfigValidator): type = StringField() angle_yaw = StringField() angle_pitch = StringField() angle_roll = StringField() class HeadPoseEstimatorAdapter(Adapter): """ Class for converting output of HeadPoseEstimator to HeadPosePrediction representation """ __provider__ = 'head_pose' def validate_config(self): head_pose_estimator_adapter_config = HeadPoseEstimatorAdapterConfig( 'HeadPoseEstimator_Config', on_extra_argument=HeadPoseEstimatorAdapterConfig.ERROR_ON_EXTRA_ARGUMENT) head_pose_estimator_adapter_config.validate(self.launcher_config) def configure(self): """ Specifies parameters of config entry """ self.angle_yaw = self.launcher_config['angle_yaw'] self.angle_pitch = self.launcher_config['angle_pitch'] self.angle_roll = self.launcher_config['angle_roll'] def process(self, raw, identifiers=None, frame_meta=None): """ Args: identifiers: list of input data identifiers raw: output of model Returns: list of ContainerPrediction objects """ result = [] for identifier, yaw, pitch, roll in zip( identifiers, raw[self.angle_yaw], raw[self.angle_pitch], raw[self.angle_roll]): prediction = ContainerPrediction({'angle_yaw': RegressionPrediction(identifier, yaw[0]), 'angle_pitch': RegressionPrediction(identifier, pitch[0]), 'angle_roll': RegressionPrediction(identifier, roll[0])}) result.append(prediction) return result class VehicleAttributesRecognitionAdapterConfig(ConfigValidator): type = StringField() color_out = StringField() type_out = StringField() class VehicleAttributesRecognitionAdapter(Adapter): __provider__ = 'vehicle_attributes' def validate_config(self): attributes_recognition_adapter_config = VehicleAttributesRecognitionAdapterConfig( 'VehicleAttributesRecognition_Config', on_extra_argument=VehicleAttributesRecognitionAdapterConfig.ERROR_ON_EXTRA_ARGUMENT) attributes_recognition_adapter_config.validate(self.launcher_config) def configure(self): """ Specifies parameters of config entry """ self.color_out = self.launcher_config['color_out'] self.type_out = self.launcher_config['type_out'] def process(self, raw, identifiers=None, frame_meta=None): res = [] for identifier, colors, types in zip(identifiers, raw[self.color_out], raw[self.type_out]): res.append(ContainerPrediction({'color': ClassificationPrediction(identifier, colors.reshape(-1)), 'type': ClassificationPrediction(identifier, types.reshape(-1))})) return res class AgeGenderAdapterConfig(ConfigValidator): type = StringField() age_out = StringField() gender_out = StringField() class AgeGenderAdapter(Adapter): __provider__ = 'age_gender' def configure(self): self.age_out = self.launcher_config['age_out'] self.gender_out = self.launcher_config['gender_out'] def validate_config(self): age_gender_adapter_config = AgeGenderAdapterConfig( 'AgeGender_Config', on_extra_argument=AgeGenderAdapterConfig.ERROR_ON_EXTRA_ARGUMENT) age_gender_adapter_config.validate(self.launcher_config) @staticmethod def get_age_scores(age): age_scores = np.zeros(4) if age < 19: age_scores[0] = 1 return age_scores if age < 36: age_scores[1] = 1 return age_scores if age < 66: age_scores[2] = 1 return age_scores age_scores[3] = 1 return age_scores def process(self, raw, identifiers=None, frame_meta=None): result = [] for identifier, age, gender in zip(identifiers, raw[self.age_out], raw[self.gender_out]): gender = gender.reshape(-1) age = age.reshape(-1)[0]*100 gender_rep = ClassificationPrediction(identifier, gender) age_claas_rep = ClassificationPrediction(identifier, self.get_age_scores(age)) age_error_rep = RegressionPrediction(identifier, age) result.append(ContainerPrediction({'gender': gender_rep, 'age_classification': age_claas_rep, 'age_error': age_error_rep})) return result class LandmarksRegressionAdapter(Adapter): __provider__ = 'landmarks_regression' def process(self, raw, identifiers=None, frame_meta=None): res = [] for identifier, values in zip(identifiers, raw[self.output_blob]): x_values, y_values = values[::2], values[1::2] res.append(FacialLandmarksPrediction(identifier, x_values.reshape(-1), y_values.reshape(-1))) return res class PersonAttributesAdapter(Adapter): __provider__ = 'person_attributes' def process(self, raw, identifiers=None, frame_meta=None): result = [] for identifier, multi_label in zip(identifiers, raw[self.output_blob]): multi_label[np.where(multi_label >= 0.5)] = 1. multi_label[np.where(multi_label < 0.5)] = 0. result.append(MultilabelRecognitionPrediction(identifier, multi_label.reshape(-1))) return result class ActionDetectorConfig(ConfigValidator): type = StringField() priorbox_out = StringField() loc_out = StringField() main_conf_out = StringField() add_conf_out_prefix = StringField() add_conf_out_count = NumberField(optional=True, min_value=1) num_action_classes = NumberField() detection_threshold = NumberField(optional=True, floats=True, min_value=0, max_value=1) class ActionDetection(Adapter): __provider__ = 'action_detection' def validate_config(self): action_detector_adapter_config = ActionDetectorConfig('ActionDetector_Config') action_detector_adapter_config.validate(self.launcher_config) def configure(self): self.priorbox_out = self.launcher_config['priorbox_out'] self.loc_out = self.launcher_config['loc_out'] self.main_conf_out = self.launcher_config['main_conf_out'] self.num_action_classes = self.launcher_config['num_action_classes'] self.detection_threshold = self.launcher_config.get('detection_threshold', 0) add_conf_out_count = self.launcher_config.get('add_conf_out_count') add_conf_out_prefix = self.launcher_config['add_conf_out_prefix'] if add_conf_out_count is None: self.add_conf_outs = [add_conf_out_prefix] else: self.add_conf_outs = [] for num in np.arange(start=1, stop=add_conf_out_count + 1): self.add_conf_outs.append('{}{}'.format(add_conf_out_prefix, num)) def process(self, raw, identifiers=None, frame_meta=None): result = [] prior_boxes = raw[self.priorbox_out][0][0].reshape(-1, 4) prior_variances = raw[self.priorbox_out][0][1].reshape(-1, 4) for batch_id, identifier in enumerate(identifiers): labels, class_scores, x_mins, y_mins, x_maxs, y_maxs, main_scores = self.prepare_detection_for_id( batch_id, raw, prior_boxes, prior_variances ) action_prediction = DetectionPrediction(identifier, labels, class_scores, x_mins, y_mins, x_maxs, y_maxs) person_prediction = DetectionPrediction( identifier, [1] * len(labels), main_scores, x_mins, y_mins, x_maxs, y_maxs ) result.append(ContainerPrediction({ 'action_prediction': action_prediction, 'class_agnostic_prediction': person_prediction })) return result def prepare_detection_for_id(self, batch_id, raw_outputs, prior_boxes, prior_variances): num_detections = raw_outputs[self.loc_out][batch_id].size // 4 locs = raw_outputs[self.loc_out][batch_id].reshape(-1, 4) main_conf = raw_outputs[self.main_conf_out][batch_id].reshape(num_detections, -1) add_confs = list(map( lambda layer: raw_outputs[layer][batch_id].reshape(-1, self.num_action_classes), self.add_conf_outs )) anchors_num = len(add_confs) labels, class_scores, x_mins, y_mins, x_maxs, y_maxs, main_scores = [], [], [], [], [], [], [] for index in range(num_detections): if main_conf[index, 1] < self.detection_threshold: continue x_min, y_min, x_max, y_max = self.decode_box(prior_boxes[index], prior_variances[index], locs[index]) action_confs = add_confs[index % anchors_num][index // anchors_num] action_label =
np.argmax(action_confs)
numpy.argmax
import numpy as np import numpy.linalg as LA import scipy.sparse as sp from scipy.stats.mstats import gmean from time import time from multiprocessing import Process, Pipe import sys, os, warnings from a2dr.precondition import precondition from a2dr.acceleration import aa_weights from a2dr.utilities import get_version sys_stdout_origin = sys.stdout def map_g(p_list,A,b,v,t,dk,n_list_cumsum): N=len(p_list) # v_list = [v[n_list_cumsum[i]:n_list_cumsum[i+1]] for i in range(N) ] x_list = [p_list[i](v_list[i],t) for i in range(N)] x_half = np.concatenate(x_list, axis=0) v_half = 2*x_half-v dk = sp.linalg.lsqr(A, A.dot(v_half) - b, atol=1e-10, btol=1e-10, x0=dk)[0] x_new = v_half - dk f = x_new - x_half v_new = v + f return v_new, f, dk, x_half, x_half - v def lmaa(p_list, A_list=[], b=np.array([]), v_init=None, n_list=None, *args, **kwargs): start = time() # Problem parameters. max_iter = kwargs.pop("max_iter", 1000) t_init = kwargs.pop("t_init", 1 / 10) # Step size. eps_abs = kwargs.pop("eps_abs", 1e-6) # Absolute stopping tolerance. eps_rel = kwargs.pop("eps_rel", 1e-8) # Relative stopping tolerance. precond = kwargs.pop("precond", True) # Precondition A and b? ada_reg = kwargs.pop("ada_reg", True) # Adaptive regularization? # AA-II parameters. anderson = kwargs.pop("anderson", True) m_accel = int(kwargs.pop("m_accel", 10)) # Maximum past iterations to keep (>= 0). lam_accel = kwargs.pop("lam_accel", 1e-8) # AA-II regularization weight. aa_method = kwargs.pop("aa_method", "lstsq") # Algorithm for solving AA LS problem. # Safeguarding parameters. D_safe = kwargs.pop("D_safe", 1e6) eps_safe = kwargs.pop("eps_safe", 1e-6) M_safe = kwargs.pop("M_safe", int(max_iter / 100)) c = kwargs.pop("c", 1-1e-6) # Printout parameters verbose = kwargs.pop("verbose", True) # Validate parameters. if max_iter <= 0: raise ValueError("max_iter must be a positive integer.") if t_init <= 0: raise ValueError("t_init must be a positive scalar.") if eps_abs < 0: raise ValueError("eps_abs must be a non-negative scalar.") if eps_rel < 0: raise ValueError("eps_rel must be a non-negative scalar.") if m_accel <= 0: raise ValueError("m_accel must be a positive integer.") if lam_accel < 0: raise ValueError("lam_accel must be a non-negative scalar.") if not aa_method in ["lstsq", "lsqr"]: raise ValueError("aa_method must be either 'lstsq' or 'lsqr'.") # if D_safe < 0: # raise ValueError("D_safe must be a non-negative scalar.") # if eps_safe < 0: # raise ValueError("eps_safe must be a non-negative scalar.") # if M_safe <= 0: # raise ValueError("M_safe must be a positive integer.") # DRS parameters. N = len(p_list) # Number of subproblems. has_constr = len(A_list) != 0 if len(A_list) == 0: if b.size != 0: raise ValueError("Dimension mismatch: nrow(A_i) != nrow(b)") if n_list is not None: if len(n_list) != N: raise ValueError("n_list must have exactly {} entries".format(N)) A_list = [sp.csr_matrix((0, ni)) for ni in n_list] elif v_init is not None: if len(v_init) != N: raise ValueError("v_init must be None or contain exactly {} entries".format(N)) A_list = [sp.csr_matrix((0, vi.shape[0])) for vi in v_init] else: raise ValueError("n_list or v_init must be defined if A_list and b are empty") if len(A_list) != N: raise ValueError("A_list must be empty or contain exactly {} entries".format(N)) if v_init is None: # v_init = [np.random.randn(A.shape[1]) for A in A_list] v_init = [np.zeros(A.shape[1]) for A in A_list] # v_init = [sp.csc_matrix((A.shape[1],1)) for A in A_list] if len(v_init) != N: raise ValueError("v_init must be None or contain exactly {} entries".format(N)) # Variable size list. if n_list is None: n_list = [A_list[i].shape[1] for i in range(N)] if len(n_list) != N: raise ValueError("n_list must be None or contain exactly {} entries".format(N)) n_list_cumsum = np.insert(np.cumsum(n_list), 0, 0) for i in range(N): if A_list[i].shape[0] != b.shape[0]: raise ValueError("Dimension mismatch: nrow(A_i) != nrow(b)") elif A_list[i].shape[1] != v_init[i].shape[0]: raise ValueError("Dimension mismatch: ncol(A_i) != nrow(v_i)") elif A_list[i].shape[1] != n_list[i]: raise ValueError("Dimension mismatch: ncol(A_i) != n_i") if not sp.issparse(A_list[i]): A_list[i] = sp.csr_matrix(A_list[i]) if verbose: version = get_version("__init__.py") line_solver = "a2dr v" + version + " - Prox-Affine Distributed Convex Optimization Solver" dashes = "-" * len(line_solver) ddashes = "=" * len(line_solver) line_authors = "(c) <NAME>, <NAME>" num_spaces_authors = (len(line_solver) - len(line_authors)) // 2 line_affil = "Stanford University 2019" num_spaces_affil = (len(line_solver) - len(line_affil)) // 2 print(dashes) print(line_solver) print(" " * num_spaces_authors + line_authors) print(" " * num_spaces_affil + line_affil) print(dashes) # Precondition data. if precond and has_constr: if verbose: print('### Preconditioning starts ... ###') p_list, A_list, b, e_pre = precondition(p_list, A_list, b) t_init = 1 / gmean(e_pre) ** 2 / 10 if verbose: print('### Preconditioning finished. ###') sigma0 = kwargs.pop("sigma0", 1e-10) sigma1 = kwargs.pop("sigma1", 1) c=max((t_init*sigma1-1)/(t_init*sigma1+1),(1-t_init*sigma0)/(1+t_init*sigma0)) c=np.sqrt((3+c**2))/2 if verbose: print("max_iter = {}, t_init (after preconditioning) = {:.2f}".format( max_iter, t_init)) print("eps_abs = {:.2e}, eps_rel = {:.2e}, precond = {!r}".format( eps_abs, eps_rel, precond)) print("ada_reg = {!r}, anderson = {!r}, m_accel = {}".format( ada_reg, anderson, m_accel)) print("lam_accel = {:.2e}, aa_method = {}, D_safe = {:.2e}".format( lam_accel, aa_method, D_safe)) print("eps_safe = {:.2e}, M_safe = {:d}".format( eps_safe, M_safe)) # Store constraint matrix for projection step. A = sp.csr_matrix(sp.hstack(A_list)) if verbose: print("variables n = {}, constraints m = {}".format(A.shape[1], A.shape[0])) print("nnz(A) = {}".format(A.nnz)) print("Setup time: {:.2e}".format(time() - start)) # Check linear feasibility sys.stdout = open(os.devnull, 'w') r1norm = sp.linalg.lsqr(A, b)[3] sys.stdout.close() sys.stdout = sys_stdout_origin if r1norm >= np.sqrt(eps_abs): # infeasible if verbose: print('Infeasible linear equality constraint: minimum constraint violation = {:.2e}'.format(r1norm)) print('Status: Terminated due to linear infeasibility') print("Solve time: {:.2e}".format(time() - start)) return {"x_vals": None, "primal": None, "dual": None, "num_iters": None, "solve_time": None} if verbose: print("----------------------------------------------------") print(" iter | total res | primal res | dual res | time (s)") print("----------------------------------------------------") # Set up the workers. # Initialize AA-II variables. if anderson: # TODO: Store and update these efficiently as arrays. n_sum = np.sum([np.prod(v.shape) for v in v_init]) g_vec = np.zeros(n_sum) # g^(k) = v^(k) - F(v^(k)). s_hist = [] # History of s^(j) = v^(j+1) - v^(j), kept in S^(k) = [s^(k-m_k) ... s^(k-1)]. y_hist = [] # History of y^(j) = g^(j+1) - g^(j), kept in Y^(k) = [y^(k-m_k) ... y^(k-1)]. n_AA = M_AA = 0 # Safeguarding counters. # A2DR loop. k = 0 finished = False safeguard = True r_primal = np.zeros(max_iter) r_dual = np.zeros(max_iter) r_dr = np.zeros(max_iter) time_iter = np.zeros(max_iter) r_best = np.inf # Warm start terms. dk = np.zeros(A.shape[1]) sol = np.zeros(A.shape[0]) v =np.concatenate(v_init) f_list = np.zeros((A.shape[1],m_accel+1)) g_list = np.zeros((A.shape[1],m_accel+1)) x_list = np.zeros((A.shape[1],m_accel+1)) F_norm = np.zeros((m_accel+1)) M = np.zeros((m_accel+1,m_accel+1)) idx = 0 eta0 = 2 eta1 = 0.25 mu = 1e-8 delta = 2 p1 = 0.01 p2 = 0.25 curr_dk = dk.copy() while not finished: if k==0: x_list[:,0] = v curr_g, curr_f, curr_dk, curr_x_half, curr_xvdiff =map_g(p_list,A,b,v,t_init,curr_dk,n_list_cumsum) g_list[:,0] = curr_g F_norm[0] = np.sum(curr_f**2) f_list[:, 0] = curr_f/np.sqrt(F_norm[0]) M[0,0] = 1 Ax_half = A.dot(curr_x_half) r_primal_vec = (Ax_half) - b r_primal[k] = LA.norm(r_primal_vec, ord=2) subgrad = curr_xvdiff / t_init # sol = LA.lstsq(A.T, subgrad, rcond=None)[0] sys.stdout = open(os.devnull, 'w') sol = sp.linalg.lsqr(A.T, subgrad, atol=1e-10, btol=1e-10, x0=sol)[0] sys.stdout.close() sys.stdout = sys_stdout_origin r_dual_vec = A.T.dot(sol) - subgrad r_dual[k] = LA.norm(r_dual_vec, ord=2) # Save x_i^(k+1/2) if residual norm is smallest so far. r_all = LA.norm(np.concatenate([r_primal_vec, r_dual_vec]), ord=2) # Store ||r^0||_2 for stopping criterion. r_all_0 = r_all x_final = curr_x_half r_best = r_all k_best = k r_dr[k] = np.sqrt(F_norm[0]) time_iter[k] = time() - start v = curr_g.copy() curr_g, curr_f, curr_dk, curr_x_half, curr_xvdiff = map_g(p_list,A,b,v,t_init,curr_dk,n_list_cumsum) idx += 1 m_hat = min(idx, m_accel) id =
np.mod(idx,m_accel+1)
numpy.mod
import sys import pytest from pytest import raises, warns, deprecated_call import numpy as np import torch # atomic-ish generator classes from neurodiffeq.generators import Generator1D from neurodiffeq.generators import Generator2D from neurodiffeq.generators import Generator3D from neurodiffeq.generators import GeneratorND from neurodiffeq.generators import GeneratorSpherical # complex generator classes from neurodiffeq.generators import ConcatGenerator from neurodiffeq.generators import StaticGenerator from neurodiffeq.generators import PredefinedGenerator from neurodiffeq.generators import TransformGenerator from neurodiffeq.generators import EnsembleGenerator from neurodiffeq.generators import FilterGenerator from neurodiffeq.generators import ResampleGenerator from neurodiffeq.generators import BatchGenerator from neurodiffeq.generators import SamplerGenerator from neurodiffeq.generators import MeshGenerator from neurodiffeq.generators import _chebyshev_first, _chebyshev_second @pytest.fixture(autouse=True) def magic(): MAGIC = 42 torch.manual_seed(MAGIC) np.random.seed(MAGIC) return MAGIC def _check_shape_and_grad(generator, target_size, *xs): if target_size is not None: if target_size != generator.size: print(f"size mismatch {target_size} != {generator.size}", file=sys.stderr) return False for x in xs: if x.shape != (generator.size,): print(f"Bad shape: {x.shape} != {generator.size}", file=sys.stderr) return False if not x.requires_grad: print(f"Doesn't require grad: {x}", file=sys.stderr) return False return True def _check_boundary(xs, xs_min, xs_max): for x, x_min, x_max in zip(xs, xs_min, xs_max): if x_min is not None and (x < x_min).any(): print(f"Lower than minimum: {x} <= {x_min}", file=sys.stderr) return False if x_max is not None and (x > x_max).any(): print(f"Higher than maximum: {x} >= {x_max}", file=sys.stderr) return False return True def _check_iterable_equal(x, y, eps=1e-5): for a, b in zip(x, y): if abs(float(a) - float(b)) > eps: print(f"Different values: {a} != {b}", file=sys.stderr) return False return True def test_chebyshev_first(): x = _chebyshev_first(-1, 1, 1000).detach().cpu().numpy() assert -1 < x.min() < -0.99 and 0.99 < x.max() < 1 delta = x[:-1] - x[1:] assert (delta > 0).all() def test_chebyshev_second(): x = _chebyshev_second(-1, 1, 1000).detach().cpu().numpy() assert x.min() == x[-1] and x.max() == x[0] assert np.isclose(x[-1], -1) and np.isclose(x[0], 1) delta = x[:-1] - x[1:] assert (delta > 0).all() @pytest.mark.parametrize(argnames='method', argvalues=['log-spaced', 'log-spaced-noisy']) def test_generator1d_log_spaced_input(method): size = 32 with pytest.raises(ValueError): Generator1D(size=size, t_min=0.0, t_max=1.0, method=method) with pytest.raises(ValueError): Generator1D(size=size, t_min=1.0, t_max=0.0, method=method) with pytest.raises(ValueError): Generator1D(size=size, t_min=-1.0, t_max=1.0, method=method) with pytest.raises(ValueError): Generator1D(size=size, t_min=1.0, t_max=-1.0, method=method) def test_generator1d(): size = 32 generator = Generator1D(size=size, t_min=0.0, t_max=2.0, method='uniform') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.0, t_max=2.0, method='equally-spaced') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.0, t_max=2.0, method='equally-spaced-noisy') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.1, t_max=2.0, method='log-spaced') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.1, t_max=2.0, method='log-spaced-noisy') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.1, t_max=2.0, method='log-spaced-noisy', noise_std=0.01) x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.1, t_max=2.0, method='chebyshev') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.1, t_max=2.0, method='chebyshev1') x = generator.getter() assert _check_shape_and_grad(generator, size, x) generator = Generator1D(size=size, t_min=0.1, t_max=2.0, method='chebyshev2') x = generator.getter() assert _check_shape_and_grad(generator, size, x) with raises(ValueError): generator = Generator1D(size=size, t_min=0.0, t_max=2.0, method='magic') str(generator) repr(generator) def test_generator2d(): grid = (5, 6) size = grid[0] * grid[1] x_min, x_max = 0.0, 1.0 y_min, y_max = -1.0, 0.0 x_std, y_std = 0.05, 0.06 generator = Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='equally-spaced-noisy') x, y = generator.getter() assert _check_shape_and_grad(generator, size, x, y) generator = Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='equally-spaced-noisy', xy_noise_std=(x_std, y_std)) x, y = generator.getter() assert _check_shape_and_grad(generator, size, x, y) generator = Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='equally-spaced') x, y = generator.getter() assert _check_shape_and_grad(generator, size, x, y) assert _check_boundary((x, y), (x_min, y_min), (x_max, y_max)) generator = Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='chebyshev') x, y = generator.getter() assert _check_shape_and_grad(generator, size, x, y) assert _check_boundary((x, y), (x_min, y_min), (x_max, y_max)) generator = Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='chebyshev1') x, y = generator.getter() assert _check_shape_and_grad(generator, size, x, y) assert _check_boundary((x, y), (x_min, y_min), (x_max, y_max)) generator = Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='chebyshev2') x, y = generator.getter() assert _check_shape_and_grad(generator, size, x, y) assert _check_boundary((x, y), (x_min, y_min), (x_max, y_max)) with raises(ValueError): Generator2D(grid=grid, xy_min=(x_min, y_min), xy_max=(x_max, y_max), method='magic') str(generator) repr(generator) def test_generator3d(): grid = (5, 6, 7) size = grid[0] * grid[1] * grid[2] x_min, x_max = 0.0, 1.0 y_min, y_max = 1.0, 2.0 z_min, z_max = 2.0, 3.0 generator = Generator3D(grid=grid, xyz_min=(x_min, y_min, z_min), xyz_max=(x_max, y_max, z_max), method='equally-spaced-noisy') x, y, z = generator.getter() assert _check_shape_and_grad(generator, size, x, y, z) generator = Generator3D(grid=grid, xyz_min=(x_min, y_min, z_min), xyz_max=(x_max, y_max, z_max), method='equally-spaced') x, y, z = generator.getter() assert _check_shape_and_grad(generator, size, x, y, z) assert _check_boundary((x, y, z), (x_min, y_min, z_min), (x_max, y_max, z_max)) generator = Generator3D(grid=grid, xyz_min=(x_min, y_min, z_min), xyz_max=(x_max, y_max, z_max), method='chebyshev') x, y, z = generator.getter() assert _check_shape_and_grad(generator, size, x, y, z) assert _check_boundary((x, y, z), (x_min, y_min, z_min), (x_max, y_max, z_max)) generator = Generator3D(grid=grid, xyz_min=(x_min, y_min, z_min), xyz_max=(x_max, y_max, z_max), method='chebyshev1') x, y, z = generator.getter() assert _check_shape_and_grad(generator, size, x, y, z) assert _check_boundary((x, y, z), (x_min, y_min, z_min), (x_max, y_max, z_max)) generator = Generator3D(grid=grid, xyz_min=(x_min, y_min, z_min), xyz_max=(x_max, y_max, z_max), method='chebyshev2') x, y, z = generator.getter() assert _check_shape_and_grad(generator, size, x, y, z) assert _check_boundary((x, y, z), (x_min, y_min, z_min), (x_max, y_max, z_max)) with raises(ValueError): Generator3D(grid=grid, xyz_min=(x_min, y_min, z_min), xyz_max=(x_max, y_max, z_max), method='magic') str(generator) repr(generator) def test_generator_nd(): grid = (5,) r_min = (0.1,) r_max = (1.0,) r_noise_std = (0.05,) max_dim = 4 while len(grid) < (max_dim + 1): size = np.prod(grid) methods = ['uniform' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) assert _check_boundary(generator.getter(), r_min, r_max) methods = ['equally-spaced' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True, r_noise_std=r_noise_std) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) assert _check_boundary(generator.getter(), r_min, r_max) methods = ['log-spaced' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) assert _check_boundary(generator.getter(), r_min, r_max) methods = ['exp-spaced' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) # No check_boundary because doing 10 ** x and then log10() does not always return exactly x methods = ['chebyshev' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) assert _check_boundary(generator.getter(), r_min, r_max) methods = ['chebyshev1' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) assert _check_boundary(generator.getter(), r_min, r_max) methods = ['chebyshev2' for m in range(len(grid))] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) if len(grid) == 3: methods = ['uniform', 'equally-spaced', 'log-spaced'] generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=True) assert _check_shape_and_grad(generator, size, *generator.getter()) generator = GeneratorND(grid=grid, r_min=r_min, r_max=r_max, methods=methods, noisy=False) assert _check_shape_and_grad(generator, size, *generator.getter()) assert _check_boundary(generator.getter(), r_min, r_max) grid += (grid[-1] + 1,) r_min += (r_min[-1] + 1,) r_max += (r_max[-1] + 1,) r_noise_std += (r_noise_std[-1] + 0.01,) str(generator) repr(generator) def test_generator_spherical(): size = 64 r_min, r_max = 0.0, 1.0 generator = GeneratorSpherical(size, r_min=r_min, r_max=r_max, method='equally-spaced-noisy') r, theta, phi = generator.get_examples() assert _check_shape_and_grad(generator, size, r, theta, phi) assert _check_boundary((r, theta, phi), (r_min, 0.0, 0.0), (r_max, np.pi, np.pi * 2)) generator = GeneratorSpherical(size, r_min=r_min, r_max=r_max, method='equally-radius-noisy') r, theta, phi = generator.get_examples() assert _check_shape_and_grad(generator, size, r, theta, phi) assert _check_boundary((r, theta, phi), (r_min, 0.0, 0.0), (r_max, np.pi, np.pi * 2)) with pytest.raises(ValueError): _ = GeneratorSpherical(64, method='bad_generator') with pytest.raises(ValueError): _ = GeneratorSpherical(64, r_min=-1.0) with pytest.raises(ValueError): _ = GeneratorSpherical(64, r_min=1.0, r_max=0.0) str(generator) repr(generator) def test_concat_generator(): size1, size2 = 10, 20 t_min, t_max = 0.5, 1.5 generator1 = Generator1D(size1, t_min=t_min, t_max=t_max) generator2 = Generator1D(size2, t_min=t_min, t_max=t_max) concat_generator = ConcatGenerator(generator1, generator2) x = concat_generator.get_examples() assert _check_shape_and_grad(concat_generator, size1 + size2, x) grid1 = (4, 4, 4) size1, size2, size3 = grid1[0] * grid1[1] * grid1[2], 100, 200 generator1 = Generator3D(grid=grid1) generator2 = GeneratorSpherical(size2) generator3 = GeneratorSpherical(size3) concat_generator = ConcatGenerator(generator1, generator2, generator3) r, theta, phi = concat_generator.get_examples() assert _check_shape_and_grad(concat_generator, size1 + size2 + size3, r, theta, phi) added_generator = generator1 + generator2 + generator3 r, theta, phi = added_generator.get_examples() assert _check_shape_and_grad(added_generator, size1 + size2 + size3, r, theta, phi) str(concat_generator) repr(concat_generator) def test_static_generator(): size = 100 generator = Generator1D(size) static_generator = StaticGenerator(generator) x1 = static_generator.get_examples() x2 = static_generator.get_examples() assert _check_shape_and_grad(generator, size) assert _check_shape_and_grad(static_generator, size, x1, x2) assert (x1 == x2).all() size = 100 generator = GeneratorSpherical(size) static_generator = StaticGenerator(generator) r1, theta1, phi1 = static_generator.get_examples() r2, theta2, phi2 = static_generator.get_examples() assert _check_shape_and_grad(generator, size) assert _check_shape_and_grad(static_generator, size, r1, theta1, phi1, r2, theta2, phi2) assert (r1 == r2).all() and (theta1 == theta2).all() and (phi1 == phi2).all() str(static_generator) repr(static_generator) def test_predefined_generator(): size = 100 old_x = torch.arange(size, dtype=torch.float, requires_grad=False) predefined_generator = PredefinedGenerator(old_x) x = predefined_generator.get_examples() assert _check_shape_and_grad(predefined_generator, size, x) assert _check_iterable_equal(old_x, x) old_x = torch.arange(size, dtype=torch.float, requires_grad=False) old_y = torch.arange(size, dtype=torch.float, requires_grad=True) old_z = torch.arange(size, dtype=torch.float, requires_grad=False) predefined_generator = PredefinedGenerator(old_x, old_y, old_z) x, y, z = predefined_generator.get_examples() assert _check_shape_and_grad(predefined_generator, size, x, y, z) assert _check_iterable_equal(old_x, x) assert _check_iterable_equal(old_y, y) assert _check_iterable_equal(old_z, z) x_list = [i * 2.0 for i in range(size)] y_tuple = tuple([i * 3.0 for i in range(size)]) z_array = np.array([i * 4.0 for i in range(size)]).reshape(-1, 1) w_tensor = torch.arange(size, dtype=torch.float) predefined_generator = PredefinedGenerator(x_list, y_tuple, z_array, w_tensor) x, y, z, w = predefined_generator.get_examples() assert _check_shape_and_grad(predefined_generator, size, x, y, z, w) assert _check_iterable_equal(x_list, x) assert _check_iterable_equal(y_tuple, y) assert _check_iterable_equal(z_array, z) assert _check_iterable_equal(w_tensor, w) str(predefined_generator) repr(predefined_generator) def test_transform_generator(): size = 100 x = np.arange(0, size, dtype=np.float32) x_expected = np.sin(x) generator = PredefinedGenerator(x) transform_generator = TransformGenerator(generator, [torch.sin]) x = transform_generator.get_examples() assert _check_shape_and_grad(transform_generator, size, x) assert _check_iterable_equal(x, x_expected) x = np.arange(0, size, dtype=np.float32) y = np.arange(0, size, dtype=np.float32) z = np.arange(0, size, dtype=np.float32) x_expected = np.sin(x) y_expected = y z_expected = -z generator = PredefinedGenerator(x, y, z) transform_generator = TransformGenerator(generator, [torch.sin, None, lambda a: -a]) x, y, z = transform_generator.get_examples() assert _check_shape_and_grad(transform_generator, size, x, y, z) assert _check_iterable_equal(x, x_expected) assert _check_iterable_equal(y, y_expected) assert _check_iterable_equal(z, z_expected) transform_generator = TransformGenerator(generator, transform=lambda x, y, z: (torch.sin(x), y, -z)) x, y, z = transform_generator.get_examples() assert _check_shape_and_grad(transform_generator, size, x, y, z) assert _check_iterable_equal(x, x_expected) assert _check_iterable_equal(y, y_expected) assert _check_iterable_equal(z, z_expected) str(transform_generator) repr(transform_generator) def test_ensemble_generator(): size = 100 generator1 = Generator1D(size) ensemble_generator = EnsembleGenerator(generator1) x = ensemble_generator.get_examples() assert _check_shape_and_grad(ensemble_generator, size, x) old_x = torch.rand(size) old_y = torch.rand(size) old_z = torch.rand(size) generator1 = PredefinedGenerator(old_x) generator2 = PredefinedGenerator(old_y) generator3 = PredefinedGenerator(old_z) ensemble_generator = EnsembleGenerator(generator1, generator2, generator3) x, y, z = ensemble_generator.get_examples() assert _check_shape_and_grad(ensemble_generator, size, x, y, z) assert _check_iterable_equal(old_x, x) assert _check_iterable_equal(old_y, y) assert _check_iterable_equal(old_z, z) old_x = torch.rand(size) old_y = torch.rand(size) generator1 = PredefinedGenerator(old_x) generator2 = PredefinedGenerator(old_y) product_generator = generator1 * generator2 x, y = product_generator.get_examples() assert _check_shape_and_grad(product_generator, size, x, y) assert _check_iterable_equal(old_x, x) assert _check_iterable_equal(old_y, y) str(ensemble_generator) repr(ensemble_generator) def test_mesh_generator(): size = 10 x_min, x_max = 0.0, 1.0 y_min, y_max = 1.0, 2.0 z_min, z_max = 2.0, 3.0 generator1 = Generator1D(size) mesh_generator = MeshGenerator(generator1) x = mesh_generator.get_examples() assert _check_shape_and_grad(mesh_generator, size, x) mesh_generator = MeshGenerator(generator1, generator1, generator1) m1, m2, m3 = mesh_generator.get_examples() assert _check_shape_and_grad(mesh_generator, (size ** 3), m1, m2, m3) generator1x = Generator1D(size, x_min, x_max, method="equally-spaced") generator1y = Generator1D(size, y_min, y_max, method="equally-spaced") generator1z = Generator1D(size, z_min, z_max, method="equally-spaced") generator3 = Generator3D((size, size, size), (x_min, y_min, z_min), (x_max, y_max, z_max), method="equally-spaced") mesh_generator = MeshGenerator(generator1x, generator1y, generator1z) m1, m2, m3 = mesh_generator.get_examples() g1, g2, g3 = generator3.get_examples() assert _check_shape_and_grad(mesh_generator, (size ** 3), m1, m2, m3) assert _check_iterable_equal(g1, m1) assert _check_iterable_equal(g2, m2) assert _check_iterable_equal(g3, m3) generator1x = Generator1D(size, x_min, x_max, method="equally-spaced") generator1y = Generator1D(size, y_min, y_max, method="equally-spaced") generator1z = Generator1D(size, z_min, z_max, method="equally-spaced") generator3 = Generator3D((size, size, size), (x_min, y_min, z_min), (x_max, y_max, z_max), method="equally-spaced") xor_generator = generator1x ^ generator1y ^ generator1z m1, m2, m3 = xor_generator.get_examples() g1, g2, g3 = generator3.get_examples() assert _check_shape_and_grad(xor_generator, (size ** 3), m1, m2, m3) assert _check_iterable_equal(g1, m1) assert _check_iterable_equal(g2, m2) assert _check_iterable_equal(g3, m3) str(mesh_generator) repr(mesh_generator) def test_filter_generator(): grid = (10, 10) size = 100 x = [i * 1.0 for i in range(size)] filter_fn = lambda a: (a[0] % 2 == 0) filter_fn_2 = lambda a: (a % 2 == 0) x_expected = filter(filter_fn_2, x) generator = PredefinedGenerator(x) filter_generator = FilterGenerator(generator, filter_fn=filter_fn, update_size=True) x = filter_generator.get_examples() assert _check_shape_and_grad(filter_generator, size // 2, x) assert _check_iterable_equal(x_expected, x) x = [i * 1.0 for i in range(size)] y = [-i * 1.0 for i in range(size)] filter_fn = lambda ab: (ab[0] % 2 == 0) & (ab[1] > -size / 2) x_expected, y_expected = list(zip(*filter(filter_fn, zip(x, y)))) generator = PredefinedGenerator(x, y) filter_generator = FilterGenerator(generator, filter_fn) x, y = filter_generator.get_examples() assert _check_shape_and_grad(filter_generator, size // 4, x, y) assert _check_iterable_equal(x_expected, x) assert _check_iterable_equal(y_expected, y) generator = Generator2D(grid) filter_fn = lambda ab: (ab[0] > 0.5) & (ab[1] < 0.5) filter_generator = FilterGenerator(generator, filter_fn) for _ in range(5): x, y = filter_generator.get_examples() assert _check_shape_and_grad(filter_generator, None, x, y) fixed_size = 42 filter_generator = FilterGenerator(generator, filter_fn, size=fixed_size, update_size=False) for _ in range(5): assert _check_shape_and_grad(filter_generator, fixed_size) filter_generator.get_examples() str(filter_generator) repr(filter_generator) def test_resample_generator(): size = 100 sample_size = size x_expected = np.arange(size, dtype=np.float32) generator = PredefinedGenerator(x_expected) resample_generator = ResampleGenerator(generator, size=sample_size, replacement=False) x = resample_generator.get_examples() assert _check_shape_and_grad(resample_generator, sample_size, x) # noinspection PyTypeChecker assert _check_iterable_equal(torch.sort(x)[0], x_expected) sample_size = size // 2 x = np.arange(size, dtype=np.float32) y = np.arange(size, size * 2, dtype=np.float32) generator = PredefinedGenerator(x, y) resample_generator = ResampleGenerator(generator, size=sample_size, replacement=False) x, y = resample_generator.get_examples() assert _check_shape_and_grad(resample_generator, sample_size, x, y) assert _check_iterable_equal(x + 100, y) assert len(torch.unique(x.detach())) == len(x) sample_size = size * 3 // 4 x = np.arange(size, dtype=np.float32) y = np.arange(size, size * 2, dtype=np.float32) generator = PredefinedGenerator(x, y) resample_generator = ResampleGenerator(generator, size=sample_size, replacement=True) x, y = resample_generator.get_examples() assert _check_shape_and_grad(resample_generator, sample_size, x, y) assert _check_iterable_equal(x + 100, y) assert len(torch.unique(x.detach())) < len(x) sample_size = size * 2 x = np.arange(size, dtype=np.float32) y = np.arange(size, size * 2, dtype=np.float32) z = np.arange(size * 2, size * 3, dtype=np.float32) generator = PredefinedGenerator(x, y, z) resample_generator = ResampleGenerator(generator, size=sample_size, replacement=True) x, y, z = resample_generator.get_examples() assert _check_shape_and_grad(resample_generator, sample_size, x, y, z) assert _check_iterable_equal(x + 100, y) assert _check_iterable_equal(y + 100, z) assert len(torch.unique(x.detach())) < len(x) str(resample_generator) repr(resample_generator) def test_batch_generator(): size = 10 batch_size = 3 x =
np.arange(size, dtype=np.float32)
numpy.arange
from typing import Optional, Collection import numpy as np class VisdomLinePlotter(object): """Plots to Visdom""" def __init__(self, visdom_obj, env_name="main"): self.viz = visdom_obj self.env = env_name self.plots = {} def plot(self, var_name, split_name, title_name, x, y): if var_name not in self.plots: self.plots[var_name] = self.viz.line( X=np.array([x, x]), Y=np.array([y, y]), env=self.env, opts=dict( legend=[split_name], title=title_name, xlabel="Epochs", ylabel=var_name, ), ) else: self.viz.line( X=
np.array([x])
numpy.array
import numpy as np from xml.etree.ElementTree import Element from vispy.color import Colormap from napari.layers import Image def test_random_image(): """Test instantiating Image layer with random 2D data.""" shape = (10, 15) np.random.seed(0) data = np.random.random(shape) layer = Image(data) assert np.all(layer.data == data) assert layer.ndim == len(shape) assert layer.shape == shape assert layer.range == tuple((0, m, 1) for m in shape) assert layer.multichannel == False assert layer._data_view.shape == shape[-2:] def test_all_zeros_image(): """Test instantiating Image layer with all zeros data.""" shape = (10, 15) data = np.zeros(shape, dtype=float) layer = Image(data) assert np.all(layer.data == data) assert layer.ndim == len(shape) assert layer.shape == shape assert layer.multichannel == False assert layer._data_view.shape == shape[-2:] def test_integer_image(): """Test instantiating Image layer with integer data.""" shape = (10, 15) np.random.seed(0) data = np.round(10 * np.random.random(shape)).astype(int) layer = Image(data) assert
np.all(layer.data == data)
numpy.all
#!/usr/bin/env python """A class for handling 5C analysis.""" import os import sys from math import log import numpy from scipy.stats import linregress import h5py from scipy.optimize import fmin_l_bfgs_b as bfgs import libraries._fivec_binning as _binning import libraries._fivec_optimize as _optimize import fivec_binning import plotting class FiveC(object): """ This is the class for handling 5C analysis. This class relies on :class:`Fragment <hifive.fragment.Fragment>` and :class:`FiveCData <hifive.fivec_data.FiveCData>` for genomic position and interaction count data. Use this class to perform filtering of fragments based on coverage, model fragment bias and distance dependence, and downstream analysis and manipulation. This includes binning of data, plotting of data, and statistical analysis. .. note:: This class is also available as hifive.FiveC When initialized, this class creates an h5dict in which to store all data associated with this object. :param filename: The file name of the h5dict. This should end with the suffix '.hdf5' :type filename: str. :param mode: The mode to open the h5dict with. This should be 'w' for creating or overwriting an h5dict with name given in filename. :type mode: str. :param silent: Indicates whether to print information about function execution for this object. :type silent: bool. :returns: :class:`FiveC <hifive.fivec.FiveC>` class object. :attributes: * **file** (*str.*) - A string containing the name of the file passed during object creation for saving the object to. * **silent** (*bool.*) - A boolean indicating whether to suppress all of the output messages. * **history** (*str.*) - A string containing all of the commands executed on this object and their outcome. * **normalization** (*str.*) - A string stating which type of normalization has been performed on this object. This starts with the value 'none'. In addition, many other attributes are initialized to the 'None' state. """ def __init__(self, filename, mode='r', silent=False): """Create a FiveC object.""" self.file = os.path.abspath(filename) self.filetype = 'fivec_project' self.silent = silent self.binning_corrections = None self.binning_correction_indices = None self.binning_frag_indices = None self.binning_num_bins = None self.model_parameters = None self.corrections = None self.region_means = None self.gamma = None self.sigma = None self.trans_mean = None self.normalization = 'none' self.history = '' if mode != 'w': self.load() return None def __getitem__(self, key): """Dictionary-like lookup.""" if key in self.__dict__: return self.__dict__[key] else: return None def __setitem__(self, key, value): """Dictionary-like value setting.""" self.__dict__[key] = value return None def load_data(self, filename): """ Load fragment-pair counts and fragment object from :class:`FiveCData <hifive.fivec_data.FiveCData>` object. :param filename: Specifies the file name of the :class:`FiveCData <hifive.fivec_data.FiveCData>` object to associate with this analysis. :type filename: str. :returns: None :Attributes: * **datafilename** (*str.*) - A string containing the relative path of the FiveCData file. * **fragfilename** (*str.*) - A string containing the relative path of the Fragment file associated with the FiveCData file. * **frags** (*filestream*) - A filestream to the hdf5 Fragment file such that all saved Fragment attributes can be accessed through this class attribute. * **data** (*filestream*) - A filestream to the hdf5 FiveCData file such that all saved FiveCData attributes can be accessed through this class attribute. * **chr2int** (*dict.*) - A dictionary that converts chromosome names to chromosome indices. * **filter** (*ndarray*) - A numpy array of type int32 and size N where N is the number of fragments. This contains the inclusion status of each fragment with a one indicating included and zero indicating excluded and is initialized with all fragments included. When a FiveCData object is associated with the project file, the 'history' attribute is updated with the history of the FiveCData object. """ self.history += "FiveC.load_data(filename='%s') - " % filename # ensure data h5dict exists if not os.path.exists(filename): if not self.silent: print >> sys.stderr, ("Could not find %s. No data loaded.\n") % (filename.split('/')[-1]), self.history += "Error: '%s' not found\n" % filename return None self.datafilename = "%s/%s" % (os.path.relpath(os.path.dirname(os.path.abspath(filename)), os.path.dirname(self.file)), os.path.basename(filename)) self.data = h5py.File(filename, 'r') self.history = self.data['/'].attrs['history'] + self.history fragfilename = self.data['/'].attrs['fragfilename'] if fragfilename[:2] == './': fragfilename = fragfilename[2:] parent_count = fragfilename.count('../') fragfilename = '/'.join(os.path.abspath(filename).split('/')[:-(1 + parent_count)] + fragfilename.lstrip('/').split('/')[parent_count:]) self.fragfilename = "%s/%s" % (os.path.relpath(os.path.dirname(fragfilename), os.path.dirname(self.file)), os.path.basename(fragfilename)) # ensure fend h5dict exists if not os.path.exists(fragfilename): if not self.silent: print >> sys.stderr, ("Could not find %s.\n") % (fragfilename), self.history += "Error: '%s' not found\n" % fragfilename return None self.frags = h5py.File(fragfilename, 'r') # create dictionary for converting chromosome names to indices self.chr2int = {} for i, chrom in enumerate(self.frags['chromosomes']): self.chr2int[chrom] = i # create arrays self.filter = numpy.ones(self.frags['fragments'].shape[0], dtype=numpy.int32) self.history += 'Success\n' return None def save(self, out_fname=None): """ Save analysis parameters to h5dict. :param filename: Specifies the file name of the :class:`FiveC <hifive.fivec.FiveC>` object to save this analysis to. :type filename: str. :returns: None """ self.history.replace("'None'", "None") if not out_fname is None: original_file = os.path.abspath(self.file) if 'datafilename' in self.__dict__: datafilename = self.datafilename if datafilename[:2] == './': datafilename = datafilename[2:] parent_count = datafilename.count('../') datafilename = '/'.join(original_file.split('/')[:-(1 + parent_count)] + datafilename.lstrip('/').split('/')[parent_count:]) self.datafilename = "%s/%s" % (os.path.relpath(os.path.dirname(os.path.abspath(datafilename)), os.path.dirname(self.file)), os.path.basename(datafilename)) if 'fragfilename' in self.__dict__: fragfilename = self.fragfilename if fragfilename[:2] == './': fragfilename = fragfilename[2:] parent_count = fragfilename.count('../') fragfilename = '/'.join(original_file.split('/')[:-(1 + parent_count)] + fragfilename.lstrip('/').split('/')[parent_count:]) self.fragfilename = "%s/%s" % (os.path.relpath(os.path.dirname(os.path.abspath(fragfilename)), os.path.dirname(self.file)), os.path.basename(fragfilename)) else: out_fname = self.file datafile = h5py.File(out_fname, 'w') for key in self.__dict__.keys(): if key in ['data', 'frags', 'file', 'chr2int', 'silent']: continue elif self[key] is None: continue elif isinstance(self[key], numpy.ndarray): datafile.create_dataset(key, data=self[key]) elif not isinstance(self[key], dict): datafile.attrs[key] = self[key] datafile.close() return None def load(self): """ Load analysis parameters from h5dict specified at object creation and open h5dicts for associated :class:`FiveCData <hifive.fivec_data.FiveCData>` and :class:`Fragment <hifive.fragment.Fragment>` objects. Any call of this function will overwrite current object data with values from the last :func:`save` call. :returns: None """ # return attributes to init state self.binning_corrections = None self.binning_correction_indices = None self.binning_frag_indices = None self.binning_num_bins = None self.model_parameters = None self.corrections = None self.region_means = None self.gamma = None self.sigma = None self.trans_mean = None self.normalization = 'none' self.history = '' # load data hdf5 dict datafile = h5py.File(self.file, 'r') for key in datafile.keys(): self[key] = numpy.copy(datafile[key]) for key in datafile['/'].attrs.keys(): self[key] = datafile['/'].attrs[key] # ensure data h5dict exists if 'datafilename' in self.__dict__: datafilename = self.datafilename if datafilename[:2] == './': datafilename = datafilename[2:] parent_count = datafilename.count('../') datafilename = '/'.join(self.file.split('/')[:-(1 + parent_count)] + datafilename.lstrip('/').split('/')[parent_count:]) if not os.path.exists(datafilename): if not self.silent: print >> sys.stderr, ("Could not find %s. No data loaded.\n") % (datafilename), else: self.data = h5py.File(datafilename, 'r') # ensure fragment h5dict exists if 'fragfilename' in self.__dict__: fragfilename = self.fragfilename if fragfilename[:2] == './': fragfilename = fragfilename[2:] parent_count = fragfilename.count('../') fragfilename = '/'.join(self.file.split('/')[:-(1 + parent_count)] + fragfilename.lstrip('/').split('/')[parent_count:]) if not os.path.exists(fragfilename): if not self.silent: print >> sys.stderr, ("Could not find %s. No fragments loaded.\n") % (fragfilename), else: self.frags = h5py.File(fragfilename, 'r') # create dictionary for converting chromosome names to indices self.chr2int = {} for i, chrom in enumerate(self.frags['chromosomes']): self.chr2int[chrom] = i datafile.close() return None def filter_fragments(self, mininteractions=20, mindistance=0, maxdistance=0): """ Iterate over the dataset and remove fragments that do not have 'minobservations' using only unfiltered fragments and interactions falling with the distance limits specified. In order to create a set of fragments that all have the necessary number of interactions, after each round of filtering, fragment interactions are retallied using only interactions that have unfiltered fragments at both ends. :param mininteractions: The required number of interactions for keeping a fragment in analysis. :type mininteractions: int. :param mindistance: The minimum inter-fragment distance to be included in filtering. :type mindistance: int. :param maxdistance: The maximum inter-fragment distance to be included in filtering. A value of zero indicates no maximum cutoff. :type maxdistance: int. :returns: None """ self.history += "FiveC.filter_fragments(mininteractions=%i, mindistance=%s, maxdistance=%s) - " % (mininteractions, str(mindistance), str(maxdistance)) if not self.silent: print >> sys.stderr, ("Filtering fragments..."), original_count = numpy.sum(self.filter) previous_valid = original_count + 1 current_valid = original_count coverage = numpy.zeros(self.filter.shape[0], dtype=numpy.int32) # copy needed arrays data = self.data['cis_data'][...] distances = self.frags['fragments']['mid'][data[:, 1]] - self.frags['fragments']['mid'][data[:, 0]] if maxdistance == 0 or maxdistance is None: maxdistance = numpy.amax(distances) + 1 valid = numpy.where((self.filter[data[:, 0]] * self.filter[data[:, 1]]) * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] # repeat until all remaining fragments have minobservation valid observations while current_valid < previous_valid: previous_valid = current_valid coverage = numpy.bincount(data[:, 0], minlength=self.filter.shape[0]) coverage += numpy.bincount(data[:, 1], minlength=self.filter.shape[0]) invalid = numpy.where(coverage < mininteractions)[0] self.filter[invalid] = 0 valid = numpy.where(self.filter[data[:, 0]] * self.filter[data[:, 1]])[0] data = data[valid, :] current_valid = numpy.sum(self.filter) if not self.silent: print >> sys.stderr, ("Removed %i of %i fragments\n") % (original_count - current_valid, original_count), self.history += "Success\n" return None def find_distance_parameters(self): """ Regress log counts versus inter-fragment distances to find slope and intercept values and then find the standard deviation of corrected counts. :returns: None :Attributes: * **gamma** (*float*) - A float denoting the negative slope of the distance-dependence regression line. * **sigma** (*float*) - A float denoting the standard deviation of nonzero data about the distance-dependence regression line. * **region_means** (*ndarray*) - A numpy array of type float32 and length equal to the number of regions. This is initialized to zeros until fragment correction values are found. """ self.history += "FiveC.find_distance_parameters() - " if not self.silent: print >> sys.stderr, ("Finding distance parameters..."), # copy needed arrays data = self.data['cis_data'][...] mids = self.frags['fragments']['mid'][...] # find which pairs are both unfiltered valid = numpy.where(self.filter[data[:, 0]] * self.filter[data[:, 1]])[0] # find distances between fragment pairs log_distances = numpy.log(mids[data[valid, 1]] - mids[data[valid, 0]]) # find regression line counts = numpy.log(data[valid, 2]) if not self.corrections is None: counts -= self.corrections[data[valid, 0]] - self.corrections[data[valid, 1]] temp = linregress(log_distances, counts)[:2] self.gamma = -float(temp[0]) if self.region_means is None: self.region_means = numpy.zeros(self.frags['regions'].shape[0], dtype=numpy.float32) + temp[1] self.sigma = float(numpy.std(counts - temp[1] + self.gamma * log_distances)) if not self.silent: print >> sys.stderr, ("Done\n"), self.history += "Success\n" return None def find_probability_fragment_corrections(self, mindistance=0, maxdistance=0, max_iterations=1000, minchange=0.0005, learningstep=0.1, precalculate=True, regions=[], precorrect=False): """ Using gradient descent, learn correction values for each valid fragment based on a Log-Normal distribution of observations. :param mindistance: The minimum inter-fragment distance to be included in modeling. :type mindistance: int. :param maxdistance: The maximum inter-fragment distance to be included in modeling. :type maxdistance: int. :param max_iterations: The maximum number of iterations to carry on gradient descent for. :type max_iterations: int. :type annealing_iterations: int. :param minchange: The cutoff threshold for early learning termination for the maximum absolute gradient value. :type minchange: float :param learningstep: The scaling factor for decreasing learning rate by if step doesn't meet armijo criterion. :type learningstep: float :param precalculate: Specifies whether the correction values should be initialized at the fragment means. :type precalculate: bool. :param regions: A list of regions to calculate corrections for. If set as None, all region corrections are found. :type regions: list :param precorrect: Use binning-based corrections in expected value calculations, resulting in a chained normalization approach. :type precorrect: bool. :returns: None :Attributes: * **corrections** (*ndarray*) - A numpy array of type float32 and length equal to the number of fragments. All invalid fragments have an associated correction value of zero. The 'normalization' attribute is updated to 'probability' or 'binning-probability', depending on if the 'precorrect' option is selected. In addition, the 'region_means' attribute is updated such that the mean correction (sum of all valid regional correction value pairs) is adjusted to zero and the corresponding region mean is adjusted the same amount but the opposite sign. """ self.history += "FiveC.find_probability_fragment_corrections(mindistance=%s, maxdistance=%s, max_iterations=%i, minchange=%f, learningstep=%f, precalculate=%s, regions=%s, precorrect=%s) - " % (str(mindistance), str(maxdistance), max_iterations, minchange, learningstep, precalculate, str(regions), precorrect) if precorrect and self.binning_corrections is None: if not self.silent: print >> sys.stderr, ("Precorrection can only be used in project has previously run 'find_binning_fragment_corrections'.\n"), self.history += "Error: 'find_binning_fragment_corrections()' not run yet\n" return None if self.corrections is None: self.corrections = numpy.zeros(self.frags['fragments'].shape[0], dtype=numpy.float32) # if regions not given, set to all regions if regions == None or len(regions) == 0: regions = numpy.arange(self.frags['regions'].shape[0]) # determine if distance parameters have been calculated if self.gamma is None: self.find_distance_parameters() # limit corrections to only requested regions filt = numpy.copy(self.filter) for i in range(self.frags['regions'].shape[0]): if i not in regions: filt[self.frags['regions']['start_frag'][i]:self.frags['regions']['stop_frag'][i]] = 0 # copy and calculate needed arrays if not self.silent: print >> sys.stderr, ("\r%s\rCopying needed data...") % (' ' * 80), data = self.data['cis_data'][...] distances = self.frags['fragments']['mid'][data[:, 1]] - self.frags['fragments']['mid'][data[:, 0]] if maxdistance == 0 or maxdistance is None: maxdistance = numpy.amax(distances) + 1 valid = numpy.where((filt[data[:, 0]] * filt[data[:, 1]]) * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] distances = numpy.log(distances[valid]) counts_n = numpy.log(data[:, 2] - 0.5).astype(numpy.float32) counts = numpy.log(data[:, 2]).astype(numpy.float32) counts_p = numpy.log(data[:, 2] + 0.5).astype(numpy.float32) distance_signal = (-self.gamma * distances).astype(numpy.float32) distance_signal += self.region_means[self.frags['fragments']['region'][data[:, 0]]] # create empty arrays gradients = numpy.zeros(self.filter.shape[0], dtype=numpy.float32) valid = numpy.where(filt)[0] # find number of interactions for each fragment interactions = numpy.bincount(data[:, 0], minlength=self.filter.shape[0]).astype(numpy.int32) interactions += numpy.bincount(data[:, 1], minlength=self.filter.shape[0]).astype(numpy.int32) interactions = numpy.maximum(1, interactions) # if precalculation requested, find fragment means if precalculate: enrichments = counts - distance_signal count_sums = numpy.bincount(data[:, 0], weights=enrichments, minlength=gradients.shape[0]) count_sums += numpy.bincount(data[:, 1], weights=enrichments, minlength=gradients.shape[0]) self.corrections = ((count_sums / numpy.maximum(1, interactions)) * 0.5).astype(numpy.float32) if precorrect: if not self.silent: print >> sys.stderr, ("\r%s\rFinding binning corrections...") % (' ' * 80), _optimize.find_binning_correction_adjustment(distance_signal, data, self.binning_corrections, self.binning_correction_indices, self.binning_num_bins, self.binning_frag_indices) # cycle through learning phases if not self.silent: print >> sys.stderr, ("\r%s\rLearning corrections...") % (' ' * 80), iteration = 0 cont = True change = numpy.inf new_corrections = numpy.copy(self.corrections) start_cost = _optimize.calculate_prob_cost(data, counts_n, counts, counts_p, distance_signal, self.corrections, self.sigma) previous_cost = start_cost while cont: iteration += 1 # find gradients gradients.fill(0.0) _optimize.calculate_gradients(data, counts_n, counts, counts_p, distance_signal, self.corrections, gradients, self.sigma) # find best step size armijo = numpy.inf t = 0.1 gradients /= interactions gradient_norm = numpy.sum(gradients[valid] ** 2.0) j = 0 best_score = numpy.inf best_t = 0.1 while armijo > 0.0: # update gradients _optimize.update_corrections(filt, self.corrections, new_corrections, gradients, t) cost = _optimize.calculate_prob_cost(data, counts_n, counts, counts_p, distance_signal, new_corrections, self.sigma) if numpy.isnan(cost): cost = numpy.inf armijo = numpy.inf else: armijo = cost - previous_cost + t * gradient_norm if cost < best_score: best_score = cost best_t = t if not self.silent: print >> sys.stderr, ("\r%s iteration:%i cost:%f change:%f armijo: %f %s") %\ ('Learning corrections...', iteration, previous_cost, change, armijo, ' ' * 20), t *= learningstep j += 1 if j == 20: armijo = -numpy.inf t = best_t _optimize.update_corrections(filt, self.corrections, new_corrections, gradients, t) cost = _optimize.calculate_prob_cost(data, counts_n, counts, counts_p, distance_signal, new_corrections, self.sigma) previous_cost = cost self.corrections = new_corrections change = numpy.amax(numpy.abs(gradients[valid] / new_corrections[valid])) if not self.silent: print >> sys.stderr, ("\r%s iteration:%i cost:%f change:%f %s") %\ ('Learning corrections...', iteration, cost, change, ' ' * 40), iteration += 1 if iteration >= max_iterations or change <= minchange: cont = False if not self.silent: print >> sys.stderr, ("\r%s\rLearning corrections... Initial Cost: %f Final Cost: %f Done\n") %\ (' ' * 80, start_cost, cost), # Calculate region means if self.region_means is None: self.region_means = numpy.zeros(self.frags['regions'].shape[0], dtype=numpy.float32) for i in regions: start = self.frags['regions']['start_frag'][i] stop = self.frags['regions']['stop_frag'][i] forward = (numpy.where(self.filter[start:stop] * (self.frags['fragments']['strand'][start:stop] == 0))[0] + start) reverse = (numpy.where(self.filter[start:stop] * (self.frags['fragments']['strand'][start:stop] == 1))[0] + start) if forward.shape[0] == 0 or reverse.shape[0] == 0: continue region_mean = (numpy.sum(self.corrections[forward]) * reverse.shape[0] + numpy.sum(self.corrections[reverse]) * forward.shape[0]) region_mean /= forward.shape[0] * reverse.shape[0] self.corrections[forward] -= region_mean / 2.0 self.corrections[reverse] -= region_mean / 2.0 self.region_means[i] += region_mean if precorrect: self.normalization = 'binning-probability' else: self.normalization = 'probability' self.history += 'Succcess\n' return None def find_express_fragment_corrections(self, mindistance=0, maxdistance=0, iterations=1000, remove_distance=False, usereads='cis', regions=[], precorrect=False, logged=True, kr=False): """ Using iterative approximation, learn correction values for each valid fragment. :param mindistance: The minimum inter-fragment distance to be included in modeling. :type mindistance: int. :param maxdistance: The maximum inter-fragment distance to be included in modeling. :type maxdistance: int. :param iterations: The number of iterations to use for learning fragment corrections. :type iterations: int. :param remove_distance: Specifies whether the estimated distance-dependent portion of the signal is removed prior to learning fragment corrections. :type remove_distance: bool. :param usereads: Specifies which set of interactions to use, 'cis', 'trans', or 'all'. :type usereads: str. :param regions: A list of regions to calculate corrections for. If set as None, all region corrections are found. :type regions: list :param precorrect: Use binning-based corrections in expected value calculations, resulting in a chained normalization approach. :type precorrect: bool. :param logged: Use log-counts instead of counts for learning. :type logged: bool. :param kr: Use the Knight Ruiz matrix balancing algorithm instead of weighted matrix balancing. This option ignores 'iterations' and 'logged'. :type kr: bool. :returns: None Calling this function creates the following attributes: :Attributes: * **corrections** (*ndarray*) - A numpy array of type float32 and length equal to the number of fragments. All invalid fragments have an associated correction value of zero. The 'normalization' attribute is updated to 'express' or 'binning-express', depending on if the 'precorrect' option is selected. In addition, if the 'remove_distance' option is selected, the 'region_means' attribute is updated such that the mean correction (sum of all valid regional correction value pairs) is adjusted to zero and the corresponding region mean is adjusted the same amount but the opposite sign. """ self.history += "FiveC.find_express_fragment_corrections(mindistance=%s, maxdistance=%s, iterations=%i, remove_distance=%s, usereads='%s', regions=%s, precorrect=%s, logged=%s, kr=%s) - " % (str(mindistance), str(maxdistance), iterations, remove_distance, usereads, str(regions), precorrect, logged, kr) if precorrect and self.binning_corrections is None: if not self.silent: print >> sys.stderr, ("Precorrection can only be used in project has previously run 'find_binning_fragment_corrections'.\n"), self.history += "Error: 'find_binning_fragment_corrections()' not run yet\n" return None # make sure usereads has a valid value if usereads not in ['cis', 'trans', 'all']: if not self.silent: print >> sys.stderr, ("'usereads' does not have a valid value.\n"), self.history += "Error: '%s' not a valid value for 'usereads'\n" % usereads return None # if regions not given, set to all regions if regions == None or len(regions) == 0: regions = numpy.arange(self.frags['regions'].shape[0]) if self.corrections is None: self.corrections = numpy.zeros(self.frags['fragments'].shape[0], dtype=numpy.float32) if kr: self._find_kr_corrections(mindistance, maxdistance, remove_distance, usereads, regions, precorrect, logged) return None # limit corrections to only requested regions filt = numpy.copy(self.filter) for i in range(self.frags['regions'].shape[0]): if i not in regions: filt[self.frags['regions']['start_frag'][i]:self.frags['regions']['stop_frag'][i]] = 0 if not self.silent: print >> sys.stderr, ("\r%s\rCopying needed data...") % (' ' * 80), # copy and calculate needed arrays data = None trans_data = None counts = None trans_counts = None distance_signal = None trans_signal = None corrections = numpy.copy(self.corrections) if usereads in ['cis', 'all']: data = self.data['cis_data'][...] distances = (self.frags['fragments']['mid'][data[:, 1]] - self.frags['fragments']['mid'][data[:, 0]]).astype(numpy.float32) if maxdistance == 0 or maxdistance is None: maxdistance = numpy.amax(distances) + 1 valid = numpy.where((filt[data[:, 0]] * filt[data[:, 1]]) * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] counts = numpy.log(data[:, 2]).astype(numpy.float64) distances = distances[valid] if remove_distance: if self.gamma is None: self.find_distance_parameters() distance_signal = (-self.gamma * numpy.log(distances)).astype(numpy.float32) distance_signal += self.region_means[self.frags['fragments']['region'][data[:, 0]]] if usereads in ['trans', 'all']: trans_data = self.data['trans_data'][...] valid = numpy.where(filt[trans_data[:, 0]] * filt[trans_data[:, 1]])[0] trans_data = trans_data[valid, :] trans_counts = numpy.log(trans_data[:, 2]).astype(numpy.float64) if remove_distance: if self.trans_mean is None: self.find_trans_mean() trans_signal = numpy.zeros(trans_data.shape[0], dtype=numpy.float32) + self.trans_mean if precorrect: if not self.silent: print >> sys.stderr, ("\r%s\rFinding binning corrections...") % (' ' * 80), if usereads in ['cis', 'all']: if distance_signal is None: distance_signal = numpy.zeros(data.shape[0], dtype=numpy.float32) _optimize.find_binning_correction_adjustment(distance_signal, data, self.binning_corrections, self.binning_correction_indices, self.binning_num_bins, self.binning_frag_indices) if usereads in ['trans', 'all']: if trans_signal is None: trans_signal = numpy.zeros(trans_data.shape[0], dtype=numpy.float32) _optimize.find_binning_correction_adjustment(trans_signal, trans_data, self.binning_corrections, self.binning_correction_indices, self.binning_num_bins, self.binning_frag_indices) # create empty arrays fragment_means = numpy.zeros(self.filter.shape[0], dtype=numpy.float64) interactions = numpy.zeros(self.filter.shape[0], dtype=numpy.int32) # find number of interactions for each fragment for i in range(self.frags['regions'].shape[0]): if not data is None: interactions += (numpy.bincount(data[:, 0], minlength=interactions.shape[0]) + numpy.bincount(data[:, 1], minlength=interactions.shape[0])).astype(numpy.int32) if not trans_data is None: interactions += (numpy.bincount(trans_data[:, 0], minlength=interactions.shape[0]) + numpy.bincount(trans_data[:, 1], minlength=interactions.shape[0])).astype(numpy.int32) # learn corrections for iteration in range(iterations): # update corrections if logged: cost = _optimize.find_log_fragment_means(distance_signal, trans_signal, interactions, fragment_means, data, trans_data, counts, trans_counts, corrections) else: cost = _optimize.find_fragment_means(distance_signal, trans_signal, interactions, fragment_means, data, trans_data, counts, trans_counts, corrections) if not self.silent: print >> sys.stderr, ("\r%s\rLearning corrections... iteration:%i cost:%f ") % (' ' * 80, iteration, cost), where = numpy.where(filt)[0] self.corrections[where] = corrections[where] # Calculate region means if self.region_means is None: self.region_means = numpy.zeros(self.frags['regions'].shape[0], dtype=numpy.float32) for i in regions: start = self.frags['regions']['start_frag'][i] stop = self.frags['regions']['stop_frag'][i] forward = (numpy.where(self.filter[start:stop] * (self.frags['fragments']['strand'][start:stop] == 0))[0] + start) reverse = (numpy.where(self.filter[start:stop] * (self.frags['fragments']['strand'][start:stop] == 1))[0] + start) if forward.shape[0] == 0 or reverse.shape[0] == 0: continue region_mean = (numpy.sum(self.corrections[forward]) * reverse.shape[0] + numpy.sum(self.corrections[reverse]) * forward.shape[0]) region_mean /= forward.shape[0] * reverse.shape[0] self.corrections[forward] -= region_mean / 2.0 self.corrections[reverse] -= region_mean / 2.0 if remove_distance: self.region_means[i] += region_mean if not self.silent: print >> sys.stderr, ("\r%s\rLearning corrections... Final Cost: %f Done\n") % (' ' * 80, cost), if precorrect: self.normalization = 'binning-express' else: self.normalization = 'express' self.history += 'Success\n' return None def _find_kr_corrections(self, mindistance=0, maxdistance=0, remove_distance=True, usereads='cis', regions=[], precorrect=False, logged=False): if self.gamma is None: self.find_distance_parameters() all_regions = numpy.copy(regions) filt = numpy.copy(self.filter) if maxdistance == 0 or maxdistance is None: maxdistance = 99999999999 if usereads != 'cis': for i in range(self.frags['regions'].shape[0]): if i not in regions: filt[self.frags['regions']['start_frag'][i]:self.frags['regions']['stop_frag'][i]] = 0 regions = ['all'] for region in regions: if region == 'all': startfrag = 0 stopfrag = self.frags['chr_indices'][-1] regfilt = filt else: startfrag = self.frags['regions']['start_frag'][region] stopfrag = self.frags['regions']['stop_frag'][region] regfilt = filt[startfrag:stopfrag] # create needed arrays if not self.silent: print >> sys.stderr, ("\r%s\rLoading needed data...") % (' ' * 80), mids = self.frags['fragments']['mid'][startfrag:stopfrag] strands = self.frags['fragments']['strand'][startfrag:stopfrag] if usereads in ['cis', 'all']: start_index = self.data['cis_indices'][startfrag] stop_index = self.data['cis_indices'][stopfrag] data = self.data['cis_data'][start_index:stop_index, :] distances = mids[data[:, 1] - startfrag] - mids[data[:, 0] - startfrag] valid = numpy.where(regfilt[data[:, 0] - startfrag] * regfilt[data[:, 1] - startfrag] * (distances >= mindistance) * (distances < maxdistance))[0] data = data[valid, :] else: data = None if usereads in ['trans', 'all']: trans_data = self.data['trans_data'][...] valid = numpy.where(filt[trans_data[:, 0]] * filt[trans_data[:, 1]])[0] trans_data = trans_data[valid, :] else: trans_data = None trans_means = None # remapped data rev_mapping = numpy.where(regfilt)[0] mapping = numpy.zeros(regfilt.shape[0], dtype=numpy.int32) - 1 mapping[rev_mapping] = numpy.arange(rev_mapping.shape[0]) if not data is None: data[:, 0] = mapping[data[:, 0] - startfrag] data[:, 1] = mapping[data[:, 1] - startfrag] if not trans_data is None: trans_data[:, 0] = mapping[trans_data[:, 0]] trans_data[:, 1] = mapping[trans_data[:, 1]] mids = mids[rev_mapping] strands = strands[rev_mapping] if not self.silent: print >> sys.stderr, ("\r%s\rChecking for fragment interaction count...") % (' ' * 80), # precalculate interaction distance means for all included interactions if not data is None: counts = data[:, 2].astype(numpy.float64) else: counts = None if not trans_data is None: trans_counts = trans_data[:, 2].astype(numpy.float64) else: trans_counts = None trans_means = None distance_means = None if remove_distance: if not self.silent: print >> sys.stderr, ("\r%s\rPrecalculating distances...") % (' ' * 80), if usereads != 'cis': trans_mean = numpy.sum(trans_counts).astype(numpy.float64) ffrags = numpy.where(strands == 0)[0] rfrags = numpy.where(strands == 1)[0] interactions = ffrags.shape[0] * rfrags.shape[0] all_ints = self.frags['fragments']['region'][rev_mapping] fints = all_ints[ffrags] rints = all_ints[rfrags] interactions -= numpy.sum( numpy.bincount(fints, minlength=self.frags['regions'].shape[0]) * numpy.bincount(rints, minlength=self.frags['regions'].shape[0])) trans_mean /= interactions trans_means = numpy.empty(trans_data.shape[0], dtype=numpy.float32).fill(trans_mean) if not data is None: distance_means = numpy.zeros(data.shape[0], dtype=numpy.float32) findices = numpy.r_[0, numpy.bincount(fints)] rindices = numpy.r_[0, numpy.bincount(rints)] for i in range(1, findices.shape[0]): findices[i] += findices[i - 1] rindices[i] += rindices[i - 1] for i in range(findices.shape[0] - 1): if findices[i] < findices[i + 1] and rindices[i] < rindices[i + 1]: distance_means[:] = numpy.exp(-self.gamma * numpy.log(mids[data[:, 1]] - mids[data[:, 0]]) + self.region_means[all_ints[data[:, 0]]]) else: distance_means = numpy.zeros(data.shape[0], dtype=numpy.float32) distance_means[:] = (-self.gamma * numpy.log(mids[data[:, 1]] - mids[data[:, 0]]) + self.region_means[region]) if precorrect: if not self.silent: print >> sys.stderr, ("\r%s\rFinding binning corrections...") % (' ' * 80), if not data is None: if distance_means is None: distance_means = numpy.ones(data.shape[0], dtype=numpy.float32) _optimize.find_binning_correction_adjustment(distance_means, data, self.binning_corrections, self.binning_correction_indices, self.binning_num_bins, self.binning_frag_indices) if not trans_data is None: if trans_means is None: trans_means = numpy.ones(trans_data.shape[0], dtype=numpy.float32) _optimize.find_binning_correction_adjustment(trans_means, trans_data, self.binning_corrections, self.binning_correction_indices, self.binning_num_bins, self.binning_frag_indices) if not distance_means is None: counts /= numpy.exp(distance_means) if not trans_means is None: trans_counts /= numpy.exp(trans_means) if not self.silent: print >> sys.stderr, ("\r%s\rFinding fend corrections...") % (' ' * 80), # add psuedo-count diagonal if data is None: data = numpy.zeros((rev_mapping.shape[0], 2), dtype=numpy.int32) data[:, 0] = numpy.arange(rev_mapping.shape[0]) data[:, 1] = numpy.arange(rev_mapping.shape[0]) counts = numpy.ones(data.shape[0], dtype=numpy.float64) * 0.5 else: temp = numpy.zeros((rev_mapping.shape[0], 3), dtype=numpy.int32) temp[:, 0] = numpy.arange(rev_mapping.shape[0]) temp[:, 1] = numpy.arange(rev_mapping.shape[0]) data = numpy.vstack((data, temp)) counts = numpy.hstack((counts, numpy.ones(data.shape[0], dtype=numpy.float64) * 0.5)) # calculate corrections corrections = numpy.ones((rev_mapping.shape[0], 1), dtype=numpy.float64) g = 0.9 eta = etamax = 0.1 tol = 1e-12 stop_tol = tol * 0.5 rt = tol ** 2.0 delta = 0.1 Delta = 3 v = numpy.zeros((corrections.shape[0], 1), dtype=numpy.float64) w = numpy.zeros((corrections.shape[0], 1), dtype=numpy.float64) _optimize.calculate_v(data, trans_data, counts, trans_counts, corrections, v) rk = 1.0 - v rho_km1 = numpy.dot(rk.T, rk)[0, 0] rho_km2 = rho_km1 rold = rout = rho_km1 i = MVP = 0 while rout > rt: i += 1 k = 0 y = numpy.ones((rev_mapping.shape[0], 1), dtype=numpy.float64) innertol = max(eta ** 2.0 * rout, rt) while rho_km1 > innertol: k += 1 if k == 1: Z = rk / v p = numpy.copy(Z) rho_km1 = numpy.dot(rk.T, Z) else: beta = rho_km1 / rho_km2 p = Z + beta * p # Update search direction efficiently w.fill(0.0) _optimize.calculate_w(data, trans_data, counts, trans_counts, corrections, p, w) w += v * p alpha = rho_km1 / numpy.dot(p.T, w)[0, 0] ap = alpha * p # Test distance to boundary of cone ynew = y + ap if numpy.amin(ynew) <= delta: if delta == 0: break ind = numpy.where(ap < 0.0)[0] gamma = numpy.amin((delta - y[ind]) / ap[ind]) y += gamma * ap break if numpy.amax(ynew) >= Delta: ind = numpy.where(ynew > Delta)[0] gamma = numpy.amin((Delta - y[ind]) / ap[ind]) y += gamma * ap break y =
numpy.copy(ynew)
numpy.copy
""" # Event source for MAGIC calibrated data files. # Requires uproot package (https://github.com/scikit-hep/uproot). """ import re import uproot import logging import scipy import scipy.interpolate import numpy as np from decimal import Decimal from enum import Enum, auto from astropy.coordinates import Angle from astropy import units as u from astropy.time import Time from ctapipe.io.eventsource import EventSource from ctapipe.io.datalevels import DataLevel from ctapipe.core import Container, Field from ctapipe.core.traits import Bool from ctapipe.coordinates import CameraFrame from ctapipe.containers import ( ArrayEventContainer, SimulatedEventContainer, SimulatedShowerContainer, SimulationConfigContainer, PointingContainer, TelescopePointingContainer, TelescopeTriggerContainer, MonitoringCameraContainer, PedestalContainer, ) from ctapipe.instrument import ( TelescopeDescription, SubarrayDescription, OpticsDescription, CameraDescription, CameraReadout, ) from .version import __version__ from .constants import ( MC_STEREO_TRIGGER_PATTERN, PEDESTAL_TRIGGER_PATTERN, DATA_STEREO_TRIGGER_PATTERN ) __all__ = ['MAGICEventSource', '__version__'] LOGGER = logging.getLogger(__name__) degrees_per_hour = 15.0 seconds_per_hour = 3600. msec2sec = 1e-3 nsec2sec = 1e-9 # MAGIC telescope positions in m wrt. to the center of CTA simulations # MAGIC_TEL_POSITIONS = { # 1: [-27.24, -146.66, 50.00] * u.m, # 2: [-96.44, -96.77, 51.00] * u.m # } # MAGIC telescope positions in m wrt. to the center of MAGIC simulations, from # CORSIKA and reflector input card MAGIC_TEL_POSITIONS = { 1: [31.80, -28.10, 0.00] * u.m, 2: [-31.80, 28.10, 0.00] * u.m } # Magnetic field values at the MAGIC site (taken from CORSIKA input cards) # Reference system is the CORSIKA one, where x-axis points to magnetic north # i.e. B y-component is 0 # MAGIC_Bdec is the magnetic declination i.e. angle between magnetic and # geographic north, negative if pointing westwards, positive if pointing # eastwards # MAGIC_Binc is the magnetic field inclination MAGIC_Bx = u.Quantity(29.5, u.uT) MAGIC_Bz = u.Quantity(23.0, u.uT) MAGIC_Btot = np.sqrt(MAGIC_Bx**2+MAGIC_Bz**2) MAGIC_Bdec = u.Quantity(-7.0, u.deg).to(u.rad) MAGIC_Binc = u.Quantity(np.arctan2(-MAGIC_Bz.value, MAGIC_Bx.value), u.rad) # MAGIC telescope description OPTICS = OpticsDescription.from_name('MAGIC') MAGICCAM = CameraDescription.from_name("MAGICCam") pulse_shape_lo_gain = np.array([0., 1., 2., 1., 0.]) pulse_shape_hi_gain = np.array([1., 2., 3., 2., 1.]) pulse_shape = np.vstack((pulse_shape_lo_gain, pulse_shape_lo_gain)) MAGICCAM.readout = CameraReadout( camera_name='MAGICCam', sampling_rate=u.Quantity(1.64, u.GHz), reference_pulse_shape=pulse_shape, reference_pulse_sample_width=u.Quantity(0.5, u.ns) ) MAGICCAM.geometry.frame = CameraFrame(focal_length=OPTICS.equivalent_focal_length) GEOM = MAGICCAM.geometry MAGIC_TEL_DESCRIPTION = TelescopeDescription( name='MAGIC', tel_type='MAGIC', optics=OPTICS, camera=MAGICCAM) MAGIC_TEL_DESCRIPTIONS = {1: MAGIC_TEL_DESCRIPTION, 2: MAGIC_TEL_DESCRIPTION} class MARSDataLevel(Enum): """ Enum of the different MARS Data Levels """ CALIBRATED = auto() # Calibrated images in charge and time (no waveforms) STAR = auto() # Cleaned images, with Hillas parametrization SUPERSTAR = auto() # Stereo parameters reconstructed MELIBEA = auto() # Reconstruction of hadronness, event direction and energy class MissingDriveReportError(Exception): """ Exception raised when a subrun does not have drive reports. """ def __init__(self, message): self.message = message class MAGICEventSource(EventSource): """ EventSource for MAGIC calibrated data. This class operates with the MAGIC data subrun-wise for calibrated data. Attributes ---------- current_run : MarsCalibratedRun Object containing the info needed to fill the ctapipe Containers datalevel : DataLevel Data level according to the definition in ctapipe file_ : uproot.ReadOnlyFile A ROOT file opened with uproot is_mc : bool Flag indicating real or simulated data mars_datalevel : int Data level according to MARS convention metadata : dict Dictionary containing metadata run_numbers : int Run number of the file simulation_config : SimulationConfigContainer Container filled with the information about the simulation telescope : int The number of the telescope use_pedestals : bool Flag indicating if pedestal events should be returned by the generator """ use_pedestals = Bool( default_value=False, help=( 'If true, extract pedestal evens instead of cosmic events.' ), ).tag(config=False) def __init__(self, input_url=None, config=None, parent=None, **kwargs): """ Constructor Parameters ---------- config: traitlets.loader.Config Configuration specified by config file or cmdline arguments. Used to set traitlet values. Set to None if no configuration to pass. parent : ctapipe.core.Tool Tool executable that is calling this component. Passes the correct logger to the component. Set to None if no Tool to pass. kwargs: dict Additional parameters to be passed. NOTE: The file mask of the data to read can be passed with the 'input_url' parameter. """ super().__init__(input_url=input_url, config=config, parent=parent, **kwargs) # Retrieving the list of run numbers corresponding to the data files self.file_ = uproot.open(self.input_url.expanduser()) run_info = self.parse_run_info() self.run_numbers = run_info[0] self.is_mc = run_info[1] self.telescope = run_info[2] self.mars_datalevel = run_info[3] self.metadata = self.parse_metadata_info() # Retrieving the data level (so far HARDCODED Sorcerer) self.datalevel = DataLevel.DL0 if self.is_mc: self.simulation_config = self.parse_simulation_header() if not self.is_mc: self.is_stereo, self.is_sumt = self.parse_data_info() # # Setting up the current run with the first run present in the data # self.current_run = self._set_active_run(run_number=0) self.current_run = None self._subarray_info = SubarrayDescription( name='MAGIC', tel_positions=MAGIC_TEL_POSITIONS, tel_descriptions=MAGIC_TEL_DESCRIPTIONS ) if self.allowed_tels: self._subarray_info = self._subarray_info.select_subarray(self.allowed_tels) def __exit__(self, exc_type, exc_val, exc_tb): """ Releases resources (e.g. open files). Parameters ---------- exc_type : Exception Class of the exception exc_val : BaseException Type of the exception exc_tb : TracebackType The traceback """ self.close() def close(self): """ Closes open ROOT file. """ self.file_.close() @staticmethod def is_compatible(file_path): """ This method checks if the specified file mask corresponds to MAGIC data files. The result will be True only if all the files are of ROOT format and contain an 'Events' tree. Parameters ---------- file_path: str Path to file Returns ------- bool: True if the masked files are MAGIC data runs, False otherwise. """ is_magic_root_file = True try: with uproot.open(file_path) as input_data: mandatory_trees = ['Events', 'RunHeaders', 'RunTails'] trees_in_file = [tree in input_data for tree in mandatory_trees] if not all(trees_in_file): is_magic_root_file = False except ValueError: # uproot raises ValueError if the file is not a ROOT file is_magic_root_file = False return is_magic_root_file @staticmethod def get_run_info_from_name(file_name): """ This internal method extracts the run number and type (data/MC) from the specified file name. Parameters ---------- file_name : str A file name to process. Returns ------- run_number: int The run number of the file. is_mc: Bool Flag to tag MC files telescope: int Number of the telescope datalevel: MARSDataLevel Data level according to MARS Raises ------ IndexError Description """ mask_data_calibrated = r"\d{6}_M(\d+)_(\d+)\.\d+_Y_.*" mask_data_star = r"\d{6}_M(\d+)_(\d+)\.\d+_I_.*" mask_data_superstar = r"\d{6}_(\d+)_S_.*" mask_data_melibea = r"\d{6}_(\d+)_Q_.*" mask_mc_calibrated = r"GA_M(\d)_za\d+to\d+_\d_(\d+)_Y_.*" mask_mc_star = r"GA_M(\d)_za\d+to\d+_\d_(\d+)_I_.*" mask_mc_superstar = r"GA_za\d+to\d+_\d_S_.*" mask_mc_melibea = r"GA_za\d+to\d+_\d_Q_.*" if re.findall(mask_data_calibrated, file_name): parsed_info = re.findall(mask_data_calibrated, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.CALIBRATED is_mc = False elif re.findall(mask_data_star, file_name): parsed_info = re.findall(mask_data_star, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.STAR is_mc = False elif re.findall(mask_data_superstar, file_name): parsed_info = re.findall(mask_data_superstar, file_name) telescope = None run_number = int(parsed_info[0]) datalevel = MARSDataLevel.SUPERSTAR is_mc = False elif re.findall(mask_data_melibea, file_name): parsed_info = re.findall(mask_data_melibea, file_name) telescope = None run_number = int(parsed_info[0]) datalevel = MARSDataLevel.MELIBEA is_mc = False elif re.findall(mask_mc_calibrated, file_name): parsed_info = re.findall(mask_mc_calibrated, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.CALIBRATED is_mc = True elif re.findall(mask_mc_star, file_name): parsed_info = re.findall(mask_mc_star, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.STAR is_mc = True elif re.findall(mask_mc_superstar, file_name): parsed_info = re.findall(mask_mc_superstar, file_name) telescope = None run_number = None datalevel = MARSDataLevel.SUPERSTAR is_mc = True elif re.findall(mask_mc_melibea, file_name): parsed_info = re.findall(mask_mc_melibea, file_name) telescope = None run_number = None datalevel = MARSDataLevel.MELIBEA is_mc = True else: raise IndexError( 'Can not identify the run number and type (data/MC) of the file' '{:s}'.format(file_name)) return run_number, is_mc, telescope, datalevel def parse_run_info(self): """ Parses run info from the TTrees in the ROOT file Returns ------- run_number: int The run number of the file is_mc: Bool Flag to tag MC files telescope_number: int Number of the telescope datalevel: MARSDataLevel Data level according to MARS """ runinfo_array_list = [ 'MRawRunHeader.fRunNumber', 'MRawRunHeader.fRunType', 'MRawRunHeader.fTelescopeNumber', ] run_info = self.file_['RunHeaders'].arrays( runinfo_array_list, library="np") run_number = int(run_info['MRawRunHeader.fRunNumber'][0]) run_type = int(run_info['MRawRunHeader.fRunType'][0]) telescope_number = int(run_info['MRawRunHeader.fTelescopeNumber'][0]) # a note about run numbers: # mono data has run numbers starting with 1 or 2 (telescope dependent) # stereo data has run numbers starting with 5 # if both telescopes are taking data with no L3, # also in this case run number starts with 5 (e.g. muon runs) # Here the data types (from MRawRunHeader.h) # std data = 0 # pedestal = 1 (_P_) # calibration = 2 (_C_) # domino calibration = 3 (_L_) # linearity calibration = 4 (_N_) # point run = 7 # monteCarlo = 256 # none = 65535 mc_data_type = 256 if run_type == mc_data_type: is_mc = True else: is_mc = False events_tree = self.file_['Events'] melibea_trees = ['MHadronness', 'MStereoParDisp', 'MEnergyEst'] superstar_trees = ['MHillas_1', 'MHillas_2', 'MStereoPar'] star_trees = ['MHillas'] datalevel = MARSDataLevel.CALIBRATED events_keys = events_tree.keys() trees_in_file = [tree in events_keys for tree in melibea_trees] if all(trees_in_file): datalevel = MARSDataLevel.MELIBEA trees_in_file = [tree in events_keys for tree in superstar_trees] if all(trees_in_file): datalevel = MARSDataLevel.SUPERSTAR trees_in_file = [tree in events_keys for tree in star_trees] if all(trees_in_file): datalevel = MARSDataLevel.STAR return run_number, is_mc, telescope_number, datalevel def parse_data_info(self): """ Check if data is stereo/mono and std trigger/SUMT Returns ------- is_stereo: Bool True if stereo data, False if mono is_sumt: Bool True if SUMT data, False if std trigger """ prescaler_mono_nosumt = [1, 1, 0, 1, 0, 0, 0, 0] prescaler_mono_sumt = [0, 1, 0, 1, 0, 1, 0, 0] prescaler_stereo = [0, 1, 0, 1, 0, 0, 0, 1] # L1_table_mono = "L1_4NN" # L1_table_stereo = "L1_3NN" L3_table_nosumt = "L3T_L1L1_100_SYNC" L3_table_sumt = "L3T_SUMSUM_100_SYNC" trigger_tree = self.file_["Trigger"] L3T_tree = self.file_["L3T"] # here we take the 2nd element (if possible) because sometimes # the first trigger report has still the old prescaler values from a previous run try: prescaler_array = trigger_tree["MTriggerPrescFact.fPrescFact"].array(library="np") except AssertionError: LOGGER.warning("No prescaler info found. Will assume standard stereo data.") is_stereo = True is_sumt = False return is_stereo, is_sumt prescaler_size = prescaler_array.size if prescaler_size > 1: prescaler = prescaler_array[1] else: prescaler = prescaler_array[0] if prescaler == prescaler_mono_nosumt or prescaler == prescaler_mono_sumt: is_stereo = False elif prescaler == prescaler_stereo: is_stereo = True else: is_stereo = True is_sumt = False if is_stereo: # here we take the 2nd element for the same reason as above # L3Table is empty for mono data i.e. taken with one telescope only # if both telescopes take data with no L3, L3Table is filled anyway L3Table_array = L3T_tree["MReportL3T.fTablename"].array(library="np") L3Table_size = L3Table_array.size if L3Table_size > 1: L3Table = L3Table_array[1] else: L3Table = L3Table_array[0] if L3Table == L3_table_sumt: is_sumt = True elif L3Table == L3_table_nosumt: is_sumt = False else: is_sumt = False else: if prescaler == prescaler_mono_sumt: is_sumt = True return is_stereo, is_sumt @staticmethod def decode_version_number(version_encoded): """ Decodes the version number from an integer Parameters ---------- version_encoded : int Version number encoded as integer Returns ------- version_decoded: str Version decoded as major.minor.patch """ major_version = version_encoded >> 16 minor_version = (version_encoded % 65536) >> 8 patch_version = (version_encoded % 65536) % 256 version_decoded = f'{major_version}.{minor_version}.{patch_version}' return version_decoded def parse_metadata_info(self): """ Parse metadata information from ROOT file Returns ------- metadata: dict Dictionary containing the metadata information: - run number - real or simulated data - telescope number - subrun number - source RA and DEC - source name (real data only) - observation mode (real data only) - MARS version - ROOT version """ metadatainfo_array_list_runheaders = [ 'MRawRunHeader.fSubRunIndex', 'MRawRunHeader.fSourceRA', 'MRawRunHeader.fSourceDEC', 'MRawRunHeader.fSourceName[80]', 'MRawRunHeader.fObservationMode[60]', ] metadatainfo_array_list_runtails = [ 'MMarsVersion_sorcerer.fMARSVersionCode', 'MMarsVersion_sorcerer.fROOTVersionCode', ] metadata = dict() metadata['run_number'] = self.run_numbers metadata['is_simulation'] = self.is_mc metadata['telescope'] = self.telescope meta_info_runh = self.file_['RunHeaders'].arrays( metadatainfo_array_list_runheaders, library="np" ) metadata['subrun_number'] = int(meta_info_runh['MRawRunHeader.fSubRunIndex'][0]) metadata['source_ra'] = meta_info_runh['MRawRunHeader.fSourceRA'][0] / \ seconds_per_hour * degrees_per_hour * u.deg metadata['source_dec'] = meta_info_runh['MRawRunHeader.fSourceDEC'][0] / \ seconds_per_hour * u.deg if not self.is_mc: src_name_array = meta_info_runh['MRawRunHeader.fSourceName[80]'][0] metadata['source_name'] = "".join([chr(item) for item in src_name_array if item != 0]) obs_mode_array = meta_info_runh['MRawRunHeader.fObservationMode[60]'][0] metadata['observation_mode'] = "".join([chr(item) for item in obs_mode_array if item != 0]) meta_info_runt = self.file_['RunTails'].arrays( metadatainfo_array_list_runtails, library="np" ) mars_version_encoded = int(meta_info_runt['MMarsVersion_sorcerer.fMARSVersionCode'][0]) root_version_encoded = int(meta_info_runt['MMarsVersion_sorcerer.fROOTVersionCode'][0]) metadata['mars_version_sorcerer'] = self.decode_version_number(mars_version_encoded) metadata['root_version_sorcerer'] = self.decode_version_number(root_version_encoded) return metadata def parse_simulation_header(self): """ Parse the simulation information from the RunHeaders tree. Returns ------- SimulationConfigContainer Container filled with simulation information Notes ----- Information is extracted from the RunHeaders tree within the ROOT file. Within it, the MMcCorsikaRunHeader and MMcRunHeader branches are used. Here below the units of the members extracted, for reference: * fSlopeSpec: float * fELowLim, fEUppLim: GeV * fCorsikaVersion: int * fHeightLev[10]: centimeter * fAtmosphericModel: int * fRandomPointingConeSemiAngle: deg * fImpactMax: centimeter * fNumSimulatedShowers: int * fShowerThetaMax, fShowerThetaMin: deg * fShowerPhiMax, fShowerPhiMin: deg * fCWaveUpper, fCWaveLower: nanometer """ run_header_tree = self.file_['RunHeaders'] spectral_index = run_header_tree['MMcCorsikaRunHeader.fSlopeSpec'].array(library="np")[0] e_low = run_header_tree['MMcCorsikaRunHeader.fELowLim'].array(library="np")[0] e_high = run_header_tree['MMcCorsikaRunHeader.fEUppLim'].array(library="np")[0] corsika_version = run_header_tree['MMcCorsikaRunHeader.fCorsikaVersion'].array(library="np")[0] site_height = run_header_tree['MMcCorsikaRunHeader.fHeightLev[10]'].array(library="np")[0][0] atm_model = run_header_tree['MMcCorsikaRunHeader.fAtmosphericModel'].array(library="np")[0] if self.mars_datalevel in [MARSDataLevel.CALIBRATED, MARSDataLevel.STAR]: view_cone = run_header_tree['MMcRunHeader.fRandomPointingConeSemiAngle'].array(library="np")[0] max_impact = run_header_tree['MMcRunHeader.fImpactMax'].array(library="np")[0] n_showers = np.sum(run_header_tree['MMcRunHeader.fNumSimulatedShowers'].array(library="np")) max_zd = run_header_tree['MMcRunHeader.fShowerThetaMax'].array(library="np")[0] min_zd = run_header_tree['MMcRunHeader.fShowerThetaMin'].array(library="np")[0] max_az = run_header_tree['MMcRunHeader.fShowerPhiMax'].array(library="np")[0] min_az = run_header_tree['MMcRunHeader.fShowerPhiMin'].array(library="np")[0] max_wavelength = run_header_tree['MMcRunHeader.fCWaveUpper'].array(library="np")[0] min_wavelength = run_header_tree['MMcRunHeader.fCWaveLower'].array(library="np")[0] elif self.mars_datalevel in [MARSDataLevel.SUPERSTAR, MARSDataLevel.MELIBEA]: view_cone = run_header_tree['MMcRunHeader_1.fRandomPointingConeSemiAngle'].array(library="np")[0] max_impact = run_header_tree['MMcRunHeader_1.fImpactMax'].array(library="np")[0] n_showers = np.sum(run_header_tree['MMcRunHeader_1.fNumSimulatedShowers'].array(library="np")) max_zd = run_header_tree['MMcRunHeader_1.fShowerThetaMax'].array(library="np")[0] min_zd = run_header_tree['MMcRunHeader_1.fShowerThetaMin'].array(library="np")[0] max_az = run_header_tree['MMcRunHeader_1.fShowerPhiMax'].array(library="np")[0] min_az = run_header_tree['MMcRunHeader_1.fShowerPhiMin'].array(library="np")[0] max_wavelength = run_header_tree['MMcRunHeader_1.fCWaveUpper'].array(library="np")[0] min_wavelength = run_header_tree['MMcRunHeader_1.fCWaveLower'].array(library="np")[0] return SimulationConfigContainer( corsika_version=corsika_version, energy_range_min=u.Quantity(e_low, u.GeV).to(u.TeV), energy_range_max=u.Quantity(e_high, u.GeV).to(u.TeV), prod_site_alt=u.Quantity(site_height, u.cm).to(u.m), spectral_index=spectral_index, num_showers=n_showers, shower_reuse=1, # shower_reuse not written in the magic root file, but since the # sim_events already include shower reuse we artificially set it # to 1 (actually every shower reused 5 times for std MAGIC MC) shower_prog_id=1, prod_site_B_total=MAGIC_Btot, prod_site_B_declination=MAGIC_Bdec, prod_site_B_inclination=MAGIC_Binc, max_alt=u.Quantity((90. - min_zd), u.deg).to(u.rad), min_alt=u.Quantity((90. - max_zd), u.deg).to(u.rad), max_az=u.Quantity(max_az, u.deg).to(u.rad), min_az=u.Quantity(min_az, u.deg).to(u.rad), max_viewcone_radius=view_cone * u.deg, min_viewcone_radius=0.0 * u.deg, max_scatter_range=u.Quantity(max_impact, u.cm).to(u.m), min_scatter_range=0.0 * u.m, atmosphere=atm_model, corsika_wlen_min=min_wavelength * u.nm, corsika_wlen_max=max_wavelength * u.nm, ) def _set_active_run(self, run_number): """ This internal method sets the run that will be used for data loading. Parameters ---------- run_number: int The run number to use. Returns ------- run: MarsRun The run to use """ run = dict() run['number'] = run_number run['read_events'] = 0 if self.mars_datalevel == MARSDataLevel.CALIBRATED: run['data'] = MarsCalibratedRun(self.file_, self.is_mc) return run @property def subarray(self): return self._subarray_info @property def is_simulation(self): return self.is_mc @property def datalevels(self): return (self.datalevel, ) @property def obs_ids(self): # ToCheck: will this be compatible in the future, e.g. with merged MC files return [self.run_numbers] def _generator(self): """ The default event generator. Return the stereo event generator instance. Returns ------- """ if self.mars_datalevel == MARSDataLevel.CALIBRATED: if self.use_pedestals: return self._pedestal_event_generator(telescope=f"M{self.telescope}") else: return self._mono_event_generator(telescope=f"M{self.telescope}") def _stereo_event_generator(self): """ Stereo event generator. Yields DataContainer instances, filled with the read event data. Returns ------- """ counter = 0 # Data container - is initialized once, and data is replaced within it after each yield data = ArrayEventContainer() # Telescopes with data: tels_in_file = ["m1", "m2"] tels_with_data = [1, 2] # Loop over the available data runs for run_number in self.run_numbers: # Removing the previously read data run from memory if self.current_run is not None: if 'data' in self.current_run: del self.current_run['data'] # Setting the new active run (class MarsRun object) self.current_run = self._set_active_run(run_number) # Set monitoring data: if not self.is_mc: monitoring_data = self.current_run['data'].monitoring_data for tel_i, tel_id in enumerate(tels_in_file): monitoring_camera = MonitoringCameraContainer() pedestal_info = PedestalContainer() badpixel_info = PixelStatusContainer() pedestal_info.sample_time = Time( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalUnix'], format='unix', scale='utc' ) # hardcoded number of pedestal events averaged over: pedestal_info.n_events = 500 pedestal_info.charge_mean = [] pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean']) pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean']) pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format( tel_i + 1)]['PedestalFromExtractorRndm']['Mean']) pedestal_info.charge_std = [] pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms']) t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoUnixRange'], format='unix', scale='utc') badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo'] badpixel_info.sample_time_range = t_range monitoring_camera.pedestal = pedestal_info monitoring_camera.pixel_status = badpixel_info data.mon.tels_with_data = [1, 2] data.mon.tel[tel_i + 1] = monitoring_camera else: assert self.current_run['data'].mcheader_data['M1'] == self.current_run['data'].mcheader_data['M2'], "Simulation configurations are different for M1 and M2 !!!" data.mcheader.num_showers = self.current_run['data'].mcheader_data['M1']['sim_nevents'] data.mcheader.shower_reuse = self.current_run['data'].mcheader_data['M1']['sim_reuse'] data.mcheader.energy_range_min = (self.current_run['data'].mcheader_data['M1']['sim_emin']).to(u.TeV) # GeV->TeV data.mcheader.energy_range_max = (self.current_run['data'].mcheader_data['M1']['sim_emax']).to(u.TeV) # GeV->TeV data.mcheader.spectral_index = self.current_run['data'].mcheader_data['M1']['sim_eslope'] data.mcheader.max_scatter_range = (self.current_run['data'].mcheader_data['M1']['sim_max_impact']).to(u.m) # cm->m data.mcheader.max_viewcone_radius = (self.current_run['data'].mcheader_data['M1']['sim_conesemiangle']).to(u.deg)# deg->deg if data.mcheader.max_viewcone_radius != 0.: data.mcheader.diffuse = True else: data.mcheader.diffuse = False # Loop over the events for event_i in range(self.current_run['data'].n_stereo_events): # Event and run ids event_order_number = self.current_run['data'].stereo_ids[event_i][0] event_id = self.current_run['data'].event_data['M1']['stereo_event_number'][event_order_number] obs_id = self.current_run['number'] # Reading event data event_data = self.current_run['data'].get_stereo_event_data(event_i) data.meta['origin'] = 'MAGIC' data.meta['input_url'] = self.input_url data.meta['max_events'] = self.max_events # Event counter data.count = counter data.index.obs_id = obs_id data.index.event_id = event_id # Setting up the R0 container data.r0.tel.clear() # Setting up the R1 container data.r1.tel.clear() # Setting up the DL0 container data.dl0.tel.clear() # Setting up the DL1 container data.dl1.tel.clear() pointing = PointingContainer() # Filling the DL1 container with the event data for tel_i, tel_id in enumerate(tels_in_file): # Creating the telescope pointing container pointing_tel = TelescopePointingContainer() pointing_tel.azimuth = np.deg2rad( event_data['{:s}_pointing_az'.format(tel_id)]) * u.rad pointing_tel.altitude = np.deg2rad( 90 - event_data['{:s}_pointing_zd'.format(tel_id)]) * u.rad # pointing.ra = np.deg2rad( # event_data['{:s}_pointing_ra'.format(tel_id)]) * u.rad # pointing.dec = np.deg2rad( # event_data['{:s}_pointing_dec'.format(tel_id)]) * u.rad pointing.tel[tel_i + 1] = pointing_tel # Adding trigger id (MAGIC nomenclature) data.r0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number] data.r1.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number] data.dl0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number] # Adding event charge and peak positions per pixel data.dl1.tel[tel_i + 1].image = event_data['{:s}_image'.format(tel_id)] data.dl1.tel[tel_i + 1].peak_time = event_data['{:s}_pulse_time'.format(tel_id)] pointing.array_azimuth = np.deg2rad(event_data['m1_pointing_az']) * u.rad pointing.array_altitude = np.deg2rad(90 - event_data['m1_pointing_zd']) * u.rad pointing.array_ra = np.deg2rad(event_data['m1_pointing_ra']) * u.rad pointing.array_dec = np.deg2rad(event_data['m1_pointing_dec']) * u.rad data.pointing = pointing if not self.is_mc: for tel_i, tel_id in enumerate(tels_in_file): data.trigger.tel[tel_i + 1] = TelescopeTriggerContainer( time=Time(event_data[f'{tel_id}_unix'], format='unix', scale='utc') ) else: data.mc.energy = event_data['true_energy'] * u.GeV data.mc.alt = (np.pi/2 - event_data['true_zd']) * u.rad # check meaning of 7deg transformation (I.Vovk) data.mc.az = -1 * \ (event_data['true_az'] - np.deg2rad(180 - 7)) * u.rad data.mc.shower_primary_id = 1 - \ event_data['true_shower_primary_id'] data.mc.h_first_int = event_data['true_h_first_int'] * u.cm # adding a 7deg rotation between the orientation of corsika (x axis = magnetic north) and MARS (x axis = geographical north) frames # magnetic north is 7 deg westward w.r.t. geographical north rot_corsika = 7 *u.deg data.mc.core_x = (event_data['true_core_x']*np.cos(rot_corsika) - event_data['true_core_y']*np.sin(rot_corsika))* u.cm data.mc.core_y = (event_data['true_core_x']*np.sin(rot_corsika) + event_data['true_core_y']*np.cos(rot_corsika))* u.cm # Setting the telescopes with data data.r0.tels_with_data = tels_with_data data.r1.tels_with_data = tels_with_data data.dl0.tels_with_data = tels_with_data data.trigger.tels_with_trigger = tels_with_data yield data counter += 1 return def _mono_event_generator(self, telescope): """ Mono event generator. Yields DataContainer instances, filled with the read event data. Parameters ---------- telescope: str The telescope for which to return events. Can be either "M1" or "M2". Returns ------- """ counter = 0 telescope = telescope.upper() # Data container - is initialized once, and data is replaced after each yield data = ArrayEventContainer() # Telescopes with data: tels_in_file = ["M1", "M2"] if telescope not in tels_in_file: raise ValueError(f"Specified telescope {telescope} is not in the allowed list {tels_in_file}") tel_i = tels_in_file.index(telescope) tels_with_data = [tel_i + 1, ] # Removing the previously read data run from memory if self.current_run is not None: if 'data' in self.current_run: del self.current_run['data'] # Setting the new active run self.current_run = self._set_active_run(self.run_numbers) # Set monitoring data: if not self.is_mc: monitoring_data = self.current_run['data'].monitoring_data monitoring_camera = MonitoringCameraContainer() pedestal_info = PedestalContainer() badpixel_info = PixelStatusContainer() pedestal_info.sample_time = Time( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalUnix'], format='unix', scale='utc' ) pedestal_info.n_events = 500 # hardcoded number of pedestal events averaged over pedestal_info.charge_mean = [] pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean']) pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean']) pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format( tel_i + 1)]['PedestalFromExtractorRndm']['Mean']) pedestal_info.charge_std = [] pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms']) t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoUnixRange'], format='unix', scale='utc') badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo'] badpixel_info.sample_time_range = t_range monitoring_camera.pedestal = pedestal_info monitoring_camera.pixel_status = badpixel_info data.mon.tel[tel_i + 1] = monitoring_camera if telescope == 'M1': n_events = self.current_run['data'].n_mono_events_m1 else: n_events = self.current_run['data'].n_mono_events_m2 # Loop over the events for event_i in range(n_events): # Event and run ids event_order_number = self.current_run['data'].mono_ids[telescope][event_i] event_id = self.current_run['data'].event_data[telescope]['stereo_event_number'][event_order_number] obs_id = self.current_run['number'] # Reading event data event_data = self.current_run['data'].get_mono_event_data(event_i, telescope=telescope) data.meta['origin'] = 'MAGIC' data.meta['input_url'] = self.input_url data.meta['max_events'] = self.max_events data.trigger.event_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number] data.trigger.tels_with_trigger = tels_with_data if self.allowed_tels: data.trigger.tels_with_trigger = np.intersect1d( data.trigger.tels_with_trigger, self.subarray.tel_ids, assume_unique=True ) if not self.is_mc: data.trigger.tel[tel_i + 1] = TelescopeTriggerContainer( time=Time(event_data['unix'], format='unix', scale='utc') ) # Event counter data.count = counter data.index.obs_id = obs_id data.index.event_id = event_id # Setting up the R0 container data.r0.tel.clear() data.r1.tel.clear() data.dl0.tel.clear() data.dl1.tel.clear() data.pointing.tel.clear() # Creating the telescope pointing container pointing = PointingContainer() pointing_tel = TelescopePointingContainer( azimuth=np.deg2rad(event_data['pointing_az']) * u.rad, altitude=np.deg2rad(90 - event_data['pointing_zd']) * u.rad,) pointing.tel[tel_i + 1] = pointing_tel pointing.array_azimuth = np.deg2rad(event_data['pointing_az']) * u.rad pointing.array_altitude = np.deg2rad(90 - event_data['pointing_zd']) * u.rad pointing.array_ra = np.deg2rad(event_data['pointing_ra']) * u.rad pointing.array_dec = np.deg2rad(event_data['pointing_dec']) * u.rad data.pointing = pointing # Adding event charge and peak positions per pixel data.dl1.tel[tel_i + 1].image = event_data['image'] data.dl1.tel[tel_i + 1].peak_time = event_data['pulse_time'] if self.is_mc: # check meaning of 7deg transformation (I.Vovk) # adding a 7deg rotation between the orientation of corsika (x axis = magnetic north) and MARS (x axis = geographical north) frames # magnetic north is 7 deg westward w.r.t. geographical north data.simulation = SimulatedEventContainer() data.simulation.shower = SimulatedShowerContainer( energy=u.Quantity(event_data['true_energy'], u.GeV), alt=Angle((np.pi/2 - event_data['true_zd']), u.rad), az=Angle(-1 * (event_data['true_az'] - (np.pi/2 + MAGIC_Bdec.value)), u.rad), shower_primary_id=(1 - event_data['true_shower_primary_id']), h_first_int=u.Quantity(event_data['true_h_first_int'], u.cm), core_x=u.Quantity((event_data['true_core_x']*np.cos(-MAGIC_Bdec) - event_data['true_core_y']*np.sin(-MAGIC_Bdec)).value, u.cm), core_y=u.Quantity((event_data['true_core_x']*np.sin(-MAGIC_Bdec) + event_data['true_core_y']*np.cos(-MAGIC_Bdec)).value, u.cm), ) yield data counter += 1 return def _pedestal_event_generator(self, telescope): """ Pedestal event generator. Yields DataContainer instances, filled with the read event data. Parameters ---------- telescope: str The telescope for which to return events. Can be either "M1" or "M2". Returns ------- """ counter = 0 telescope = telescope.upper() # Data container - is initialized once, and data is replaced after each yield data = ArrayEventContainer() # Telescopes with data: tels_in_file = ["M1", "M2"] if telescope not in tels_in_file: raise ValueError(f"Specified telescope {telescope} is not in the allowed list {tels_in_file}") tel_i = tels_in_file.index(telescope) tels_with_data = [tel_i + 1, ] # Removing the previously read data run from memory if self.current_run is not None: if 'data' in self.current_run: del self.current_run['data'] # Setting the new active run self.current_run = self._set_active_run(self.run_numbers) monitoring_data = self.current_run['data'].monitoring_data monitoring_camera = MonitoringCameraContainer() pedestal_info = PedestalContainer() badpixel_info = PixelStatusContainer() pedestal_info.sample_time = Time( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalUnix'], format='unix', scale='utc' ) pedestal_info.n_events = 500 # hardcoded number of pedestal events averaged over pedestal_info.charge_mean = [] pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean']) pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean']) pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format( tel_i + 1)]['PedestalFromExtractorRndm']['Mean']) pedestal_info.charge_std = [] pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms']) t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoUnixRange'], format='unix', scale='utc') badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format( tel_i + 1)]['badpixelinfo'] badpixel_info.sample_time_range = t_range monitoring_camera.pedestal = pedestal_info monitoring_camera.pixel_status = badpixel_info data.mon.tel[tel_i + 1] = monitoring_camera if telescope == 'M1': n_events = self.current_run['data'].n_pedestal_events_m1 else: n_events = self.current_run['data'].n_pedestal_events_m2 # Loop over the events for event_i in range(n_events): # Event and run ids event_order_number = self.current_run['data'].pedestal_ids[telescope][event_i] event_id = self.current_run['data'].event_data[telescope]['stereo_event_number'][event_order_number] obs_id = self.current_run['number'] # Reading event data event_data = self.current_run['data'].get_pedestal_event_data( event_i, telescope=telescope) data.meta['origin'] = 'MAGIC' data.meta['input_url'] = self.input_url data.meta['max_events'] = self.max_events data.trigger.event_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number] data.trigger.tels_with_trigger = tels_with_data if self.allowed_tels: data.trigger.tels_with_trigger = np.intersect1d( data.trigger.tels_with_trigger, self.subarray.tel_ids, assume_unique=True,) if not self.is_mc: # Adding the event arrival time data.trigger.tel[tel_i + 1] = TelescopeTriggerContainer( time=Time(event_data['unix'], format='unix', scale='utc') ) # Event counter data.count = counter data.index.obs_id = obs_id data.index.event_id = event_id # Setting up the R0 container data.r0.tel.clear() data.r1.tel.clear() data.dl0.tel.clear() data.dl1.tel.clear() data.pointing.tel.clear() # Creating the telescope pointing container pointing = PointingContainer() pointing_tel = TelescopePointingContainer( azimuth=np.deg2rad(event_data['pointing_az']) * u.rad, altitude=np.deg2rad(90 - event_data['pointing_zd']) * u.rad,) pointing.tel[tel_i + 1] = pointing_tel pointing.array_azimuth = np.deg2rad(event_data['pointing_az']) * u.rad pointing.array_altitude = np.deg2rad(90 - event_data['pointing_zd']) * u.rad pointing.array_ra = np.deg2rad(event_data['pointing_ra']) * u.rad pointing.array_dec = np.deg2rad(event_data['pointing_dec']) * u.rad data.pointing = pointing # Adding event charge and peak positions per pixel data.dl1.tel[tel_i + 1].image = event_data['image'] data.dl1.tel[tel_i + 1].peak_time = event_data['pulse_time'] yield data counter += 1 return class MarsCalibratedRun: """ This class implements reading of the event data from a single MAGIC calibrated run. """ def __init__(self, uproot_file, is_mc): """ Constructor of the class. Defines the run to use and the camera pixel arrangement. Parameters ---------- uproot_file: str A file opened by uproot via uproot.open(file_name) """ self.n_camera_pixels = GEOM.n_pixels self.file_name = uproot_file.file_path self.is_mc = is_mc if '_M1_' in self.file_name: m1_data = self.load_events( uproot_file, self.is_mc, self.n_camera_pixels) m2_data = self.load_events( None, self.is_mc, self.n_camera_pixels) if '_M2_' in self.file_name: m1_data = self.load_events( None, self.is_mc, self.n_camera_pixels) m2_data = self.load_events( uproot_file, self.is_mc, self.n_camera_pixels) # Getting the event data self.event_data = dict() self.event_data['M1'] = m1_data[0] self.event_data['M2'] = m2_data[0] # Getting the monitoring data self.monitoring_data = dict() self.monitoring_data['M1'] = m1_data[1] self.monitoring_data['M2'] = m2_data[1] # Detecting pedestal events self.pedestal_ids = self._find_pedestal_events() # Detecting stereo events self.stereo_ids = self._find_stereo_events() # Detecting mono events if self.is_mc: self.mono_ids = self._find_stereo_mc_events() else: self.mono_ids = self._find_mono_events() @property def n_events_m1(self): return len(self.event_data['M1']['unix']) @property def n_events_m2(self): return len(self.event_data['M2']['unix']) @property def n_stereo_events(self): return len(self.stereo_ids) @property def n_mono_events_m1(self): return len(self.mono_ids['M1']) @property def n_mono_events_m2(self): return len(self.mono_ids['M2']) @property def n_pedestal_events_m1(self): return len(self.pedestal_ids['M1']) @property def n_pedestal_events_m2(self): return len(self.pedestal_ids['M2']) @staticmethod def load_events(uproot_file, is_mc, n_camera_pixels): """ This method loads events and monitoring data from the pre-defiled file and returns them as a dictionary. Parameters ---------- file_name: str Name of the MAGIC calibrated file to use. is_mc: boolean Specify whether Monte Carlo (True) or data (False) events are read n_camera_pixels: int Number of MAGIC camera pixels (not hardcoded, but specified solely via ctapipe.instrument.CameraGeometry) Returns ------- dict: A dictionary with the even properties: charge / arrival time data, trigger, direction etc. """ event_data = dict() event_data['charge'] = [] event_data['arrival_time'] = [] event_data['trigger_pattern'] = np.array([], dtype=np.int32) event_data['stereo_event_number'] = np.array([], dtype=np.int32) event_data['pointing_zd'] = np.array([]) event_data['pointing_az'] = np.array([]) event_data['pointing_ra'] = np.array([]) event_data['pointing_dec'] = np.array([]) event_data['unix'] = np.array([]) # monitoring information (updated from time to time) monitoring_data = dict() monitoring_data['badpixelinfo'] = [] monitoring_data['badpixelinfoUnixRange'] = [] monitoring_data['PedestalUnix'] = np.array([]) monitoring_data['PedestalFundamental'] = dict() monitoring_data['PedestalFundamental']['Mean'] = [] monitoring_data['PedestalFundamental']['Rms'] = [] monitoring_data['PedestalFromExtractor'] = dict() monitoring_data['PedestalFromExtractor']['Mean'] = [] monitoring_data['PedestalFromExtractor']['Rms'] = [] monitoring_data['PedestalFromExtractorRndm'] = dict() monitoring_data['PedestalFromExtractorRndm']['Mean'] = [] monitoring_data['PedestalFromExtractorRndm']['Rms'] = [] event_data['file_edges'] = [0] # if no file in the list (e.g. when reading mono information), then simply # return empty dicts/array if uproot_file is None: return event_data, monitoring_data drive_data = dict() drive_data['mjd'] = np.array([]) drive_data['zd'] = np.array([]) drive_data['az'] = np.array([]) drive_data['ra'] = np.array([]) drive_data['dec'] = np.array([]) evt_common_list = [ 'MArrivalTime.fData', 'MCerPhotEvt.fPixels.fPhot', 'MRawEvtHeader.fDAQEvtNumber', 'MRawEvtHeader.fStereoEvtNumber', 'MTriggerPattern.fPrescaled', 'MTriggerPattern.fSkipEvent', ] # Separately, because only used with pre-processed MARS data # to create MPointingPos container pointing_array_list = [ 'MPointingPos.fZd', 'MPointingPos.fAz', 'MPointingPos.fRa', 'MPointingPos.fDec', 'MPointingPos.fDevZd', 'MPointingPos.fDevAz', 'MPointingPos.fDevHa', 'MPointingPos.fDevDec', ] # Info only applicable for data: time_array_list = [ 'MTime.fMjd', 'MTime.fTime.fMilliSec', 'MTime.fNanoSec', ] drive_array_list = [ 'MReportDrive.fMjd', 'MReportDrive.fCurrentZd', 'MReportDrive.fCurrentAz', 'MReportDrive.fRa', 'MReportDrive.fDec' ] pedestal_array_list = [ 'MTimePedestals.fMjd', 'MTimePedestals.fTime.fMilliSec', 'MTimePedestals.fNanoSec', 'MPedPhotFundamental.fArray.fMean', 'MPedPhotFundamental.fArray.fRms', 'MPedPhotFromExtractor.fArray.fMean', 'MPedPhotFromExtractor.fArray.fRms', 'MPedPhotFromExtractorRndm.fArray.fMean', 'MPedPhotFromExtractorRndm.fArray.fRms' ] # Info only applicable for MC: mc_list = [ 'MMcEvt.fEnergy', 'MMcEvt.fTheta', 'MMcEvt.fPhi', 'MMcEvt.fPartId', 'MMcEvt.fZFirstInteraction', 'MMcEvt.fCoreX', 'MMcEvt.fCoreY' ] input_file = uproot_file events = input_file['Events'].arrays(evt_common_list, library="np") # Reading the info common to MC and real data charge = events['MCerPhotEvt.fPixels.fPhot'] arrival_time = events['MArrivalTime.fData'] trigger_pattern = events['MTriggerPattern.fPrescaled'] stereo_event_number = events['MRawEvtHeader.fStereoEvtNumber'] if not is_mc: # Reading event timing information: event_times = input_file['Events'].arrays(time_array_list, library="np") # Computing the event arrival time event_obs_day = Time(event_times['MTime.fMjd'], format='mjd', scale='utc') event_obs_day = np.round(event_obs_day.to_value(format='unix', subfmt='float')) event_obs_day = np.array([Decimal(str(x)) for x in event_obs_day]) event_millisec = np.round(event_times['MTime.fTime.fMilliSec'] * msec2sec, 3) event_millisec = np.array([Decimal(str(x)) for x in event_millisec]) event_nanosec = np.round(event_times['MTime.fNanoSec'] * nsec2sec, 7) event_nanosec = np.array([Decimal(str(x)) for x in event_nanosec]) event_unix = event_obs_day + event_millisec + event_nanosec event_data['unix'] = np.concatenate((event_data['unix'], event_unix)) badpixelinfo = input_file['RunHeaders']['MBadPixelsCam.fArray.fInfo'].array( uproot.interpretation.jagged.AsJagged( uproot.interpretation.numerical.AsDtype(np.dtype('>i4')) ), library="np")[0].reshape((4, 1183), order='F') # now we have 4 axes: # 0st axis: empty (?) # 1st axis: Unsuitable pixels # 2nd axis: Uncalibrated pixels (says why pixel is unsuitable) # 3rd axis: Bad hardware pixels (says why pixel is unsuitable) # Each axis cointains a 32bit integer encoding more information about the # specific problem, see MARS software, MBADPixelsPix.h # take first axis unsuitable_pix_bitinfo = badpixelinfo[1][:n_camera_pixels] # extract unsuitable bit: unsuitable_pix = np.zeros(n_camera_pixels, dtype=np.bool) for i in range(n_camera_pixels): unsuitable_pix[i] = int('\t{0:08b}'.format( unsuitable_pix_bitinfo[i] & 0xff)[-2]) monitoring_data['badpixelinfo'].append(unsuitable_pix) # save time interval of badpixel info: monitoring_data['badpixelinfoUnixRange'].append([event_unix[0], event_unix[-1]]) # try to read Pedestals tree (soft fail if not present) try: pedestal_info = input_file['Pedestals'].arrays(pedestal_array_list, library="np") pedestal_obs_day = Time(pedestal_info['MTimePedestals.fMjd'], format='mjd', scale='utc') pedestal_obs_day = np.round(pedestal_obs_day.to_value(format='unix', subfmt='float')) pedestal_obs_day = np.array([Decimal(str(x)) for x in pedestal_obs_day]) pedestal_millisec = np.round(pedestal_info['MTimePedestals.fTime.fMilliSec'] * msec2sec, 3) pedestal_millisec = np.array([Decimal(str(x)) for x in pedestal_millisec]) pedestal_nanosec = np.round(pedestal_info['MTimePedestals.fNanoSec'] * nsec2sec, 7) pedestal_nanosec = np.array([Decimal(str(x)) for x in pedestal_nanosec]) pedestal_unix = pedestal_obs_day + pedestal_millisec + pedestal_nanosec monitoring_data['PedestalUnix'] = np.concatenate((monitoring_data['PedestalUnix'], pedestal_unix)) n_pedestals = len(pedestal_unix) for quantity in ['Mean', 'Rms']: for i_pedestal in range(n_pedestals): monitoring_data['PedestalFundamental'][quantity].append( pedestal_info[f'MPedPhotFundamental.fArray.f{quantity}'][i_pedestal][:n_camera_pixels]) monitoring_data['PedestalFromExtractor'][quantity].append( pedestal_info[f'MPedPhotFromExtractor.fArray.f{quantity}'][i_pedestal][:n_camera_pixels]) monitoring_data['PedestalFromExtractorRndm'][quantity].append( pedestal_info[f'MPedPhotFromExtractorRndm.fArray.f{quantity}'][i_pedestal][:n_camera_pixels]) except KeyError: LOGGER.warning( "Pedestals tree not present in file. Cleaning algorithm may fail.") # Getting the telescope drive info drive = input_file['Drive'].arrays(drive_array_list, library="np") drive_mjd = drive['MReportDrive.fMjd'] drive_zd = drive['MReportDrive.fCurrentZd'] drive_az = drive['MReportDrive.fCurrentAz'] drive_ra = drive['MReportDrive.fRa'] * degrees_per_hour drive_dec = drive['MReportDrive.fDec'] drive_data['mjd'] = np.concatenate((drive_data['mjd'], drive_mjd)) drive_data['zd'] = np.concatenate((drive_data['zd'], drive_zd)) drive_data['az'] = np.concatenate((drive_data['az'], drive_az)) drive_data['ra'] = np.concatenate((drive_data['ra'], drive_ra)) drive_data['dec'] = np.concatenate((drive_data['dec'], drive_dec)) if len(drive_mjd) < 3: LOGGER.warning(f"File {uproot_file.file_path} has only {len(drive_mjd)} drive reports.") if len(drive_mjd) == 0: raise MissingDriveReportError(f"File {uproot_file.file_path} does not have any drive report. Check if it was merpped correctly.") # Reading pointing information (in units of degrees): if is_mc: # Retrieving the telescope pointing direction pointing = input_file['Events'].arrays(pointing_array_list, library="np") pointing_zd = pointing['MPointingPos.fZd'] - \ pointing['MPointingPos.fDevZd'] pointing_az = pointing['MPointingPos.fAz'] - \ pointing['MPointingPos.fDevAz'] # N.B. the positive sign here, as HA = local sidereal time - ra pointing_ra = (pointing['MPointingPos.fRa'] + pointing['MPointingPos.fDevHa']) * degrees_per_hour pointing_dec = pointing['MPointingPos.fDec'] - \ pointing['MPointingPos.fDevDec'] # check for bit flips in the stereo event ID: d_x = np.diff(stereo_event_number.astype(np.int)) dx_flip_ids_before = np.where(d_x < 0)[0] dx_flip_ids_after = dx_flip_ids_before + 1 dx_flipzero_ids_first = np.where(d_x == 0)[0] dx_flipzero_ids_second = dx_flipzero_ids_first + 1 if not is_mc: pedestal_ids = np.where( trigger_pattern == PEDESTAL_TRIGGER_PATTERN)[0] # sort out pedestals events from zero-difference steps: dx_flipzero_ids_second = np.array( list(set(dx_flipzero_ids_second) - set(pedestal_ids))) dx_flip_ids_after = np.array(np.union1d( dx_flip_ids_after, dx_flipzero_ids_second), dtype=np.int) else: # for MC, sort out stereo_event_number = 0: orphan_ids = np.where(stereo_event_number == 0)[0] dx_flip_ids_after = np.array( list(set(dx_flip_ids_after) - set(orphan_ids))) dx_flip_ids_before = dx_flip_ids_after - 1 max_total_jumps = 100 if len(dx_flip_ids_before) > 0: LOGGER.warning("Warning: detected %d bitflips in file %s. Flag affected events as unsuitable" % ( len(dx_flip_ids_before), uproot_file.file_path)) total_jumped_events = 0 for i in dx_flip_ids_before: trigger_pattern[i] = -1 trigger_pattern[i+1] = -1 if not is_mc: jumped_events = int(stereo_event_number[i]) - int(stereo_event_number[i+1]) total_jumped_events += jumped_events LOGGER.warning( f"Jump of L3 number backward from {stereo_event_number[i]} to " f"{stereo_event_number[i+1]}; total jumped events so far: " f"{total_jumped_events}" ) if total_jumped_events > max_total_jumps: LOGGER.warning( f"More than {max_total_jumps} in stereo trigger number; " f"you may have to match events by timestamp at a later stage." ) event_data['charge'].append(charge) event_data['arrival_time'].append(arrival_time) event_data['trigger_pattern'] = np.concatenate( (event_data['trigger_pattern'], trigger_pattern)) event_data['stereo_event_number'] = np.concatenate( (event_data['stereo_event_number'], stereo_event_number)) if is_mc: event_data['pointing_zd'] = np.concatenate( (event_data['pointing_zd'], pointing_zd)) event_data['pointing_az'] = np.concatenate( (event_data['pointing_az'], pointing_az)) event_data['pointing_ra'] = np.concatenate( (event_data['pointing_ra'], pointing_ra)) event_data['pointing_dec'] = np.concatenate( (event_data['pointing_dec'], pointing_dec)) mc_info = input_file['Events'].arrays(mc_list, library="np") # N.B.: For MC, there is only one subrun, so do not need to 'append' event_data['true_energy'] = mc_info['MMcEvt.fEnergy'] event_data['true_zd'] = mc_info['MMcEvt.fTheta'] event_data['true_az'] = mc_info['MMcEvt.fPhi'] event_data['true_shower_primary_id'] = mc_info['MMcEvt.fPartId'] event_data['true_h_first_int'] = mc_info['MMcEvt.fZFirstInteraction'] event_data['true_core_x'] = mc_info['MMcEvt.fCoreX'] event_data['true_core_y'] = mc_info['MMcEvt.fCoreY'] event_data['file_edges'].append(len(event_data['trigger_pattern'])) if not is_mc: monitoring_data['badpixelinfo'] = np.array(monitoring_data['badpixelinfo']) monitoring_data['badpixelinfoUnixRange'] = np.array(monitoring_data['badpixelinfoUnixRange']) # sort monitoring data: order = np.argsort(monitoring_data['PedestalUnix']) monitoring_data['PedestalUnix'] = monitoring_data['PedestalUnix'][order] for quantity in ['Mean', 'Rms']: monitoring_data['PedestalFundamental'][quantity] = np.array( monitoring_data['PedestalFundamental'][quantity]) monitoring_data['PedestalFromExtractor'][quantity] = np.array( monitoring_data['PedestalFromExtractor'][quantity]) monitoring_data['PedestalFromExtractorRndm'][quantity] = np.array( monitoring_data['PedestalFromExtractorRndm'][quantity]) # get only drive reports with unique times, otherwise interpolation fails. drive_mjd_unique, unique_indices = np.unique( drive_data['mjd'], return_index=True ) drive_zd_unique = drive_data['zd'][unique_indices] drive_az_unique = drive_data['az'][unique_indices] drive_ra_unique = drive_data['ra'][unique_indices] drive_dec_unique = drive_data['dec'][unique_indices] first_drive_report_time = Time(drive_mjd_unique[0], scale='utc', format='mjd') last_drive_report_time = Time(drive_mjd_unique[-1], scale='utc', format='mjd') LOGGER.warning(f"Interpolating events information from {len(drive_data['mjd'])} drive reports.") LOGGER.warning(f"Drive reports available from {first_drive_report_time.iso} to {last_drive_report_time.iso}.") # Creating azimuth and zenith angles interpolators drive_zd_pointing_interpolator = scipy.interpolate.interp1d( drive_mjd_unique, drive_zd_unique, fill_value="extrapolate") drive_az_pointing_interpolator = scipy.interpolate.interp1d( drive_mjd_unique, drive_az_unique, fill_value="extrapolate") # Creating RA and DEC interpolators drive_ra_pointing_interpolator = scipy.interpolate.interp1d( drive_mjd_unique, drive_ra_unique, fill_value="extrapolate") drive_dec_pointing_interpolator = scipy.interpolate.interp1d( drive_mjd_unique, drive_dec_unique, fill_value="extrapolate") # Interpolating the drive pointing to the event time stamps event_mjd = Time(event_data['unix'], format='unix', scale='utc').to_value(format='mjd', subfmt='float') event_data['pointing_zd'] = drive_zd_pointing_interpolator(event_mjd) event_data['pointing_az'] = drive_az_pointing_interpolator(event_mjd) event_data['pointing_ra'] = drive_ra_pointing_interpolator(event_mjd) event_data['pointing_dec'] = drive_dec_pointing_interpolator(event_mjd) return event_data, monitoring_data def _find_pedestal_events(self): """ This internal method identifies the IDs (order numbers) of the pedestal events in the run. Returns ------- dict: A dictionary of pedestal event IDs in M1/2 separately. """ pedestal_ids = dict() for telescope in self.event_data: ped_triggers = np.where( self.event_data[telescope]['trigger_pattern'] == PEDESTAL_TRIGGER_PATTERN) pedestal_ids[telescope] = ped_triggers[0] return pedestal_ids def _find_stereo_events(self): """ This internal methods identifies stereo events in the run. Returns ------- list: A list of pairs (M1_id, M2_id) corresponding to stereo events in the run. """ stereo_ids = [] n_m1_events = len(self.event_data['M1']['stereo_event_number']) n_m2_events = len(self.event_data['M2']['stereo_event_number']) if (n_m1_events == 0) or (n_m2_events == 0): return stereo_ids if not self.is_mc: stereo_m1_data = self.event_data['M1']['stereo_event_number'][np.where(self.event_data['M1']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)] stereo_m2_data = self.event_data['M2']['stereo_event_number'][np.where(self.event_data['M2']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)] # find common values between M1 and M2 stereo events, see https://numpy.org/doc/stable/reference/generated/numpy.intersect1d.html stereo_numbers = np.intersect1d(stereo_m1_data, stereo_m2_data) # find indices of the stereo event numbers in original stereo event numbers arrays, see # https://stackoverflow.com/questions/12122639/find-indices-of-a-list-of-values-in-a-numpy-array m1_ids = np.searchsorted(self.event_data['M1']['stereo_event_number'], stereo_numbers) m2_ids = np.searchsorted(self.event_data['M2']['stereo_event_number'], stereo_numbers) # make list of tuples, see https://stackoverflow.com/questions/2407398/how-to-merge-lists-into-a-list-of-tuples stereo_ids = list(zip(m1_ids, m2_ids)) else: stereo_m1_data = self.event_data['M1']['stereo_event_number'][np.where(self.event_data['M1']['trigger_pattern'] == MC_STEREO_TRIGGER_PATTERN)] stereo_m2_data = self.event_data['M2']['stereo_event_number'][np.where(self.event_data['M2']['trigger_pattern'] == MC_STEREO_TRIGGER_PATTERN)] # remove events with 0 stereo number, which are mono events stereo_m1_data = stereo_m1_data[np.where(stereo_m1_data != 0)] stereo_m2_data = stereo_m2_data[np.where(stereo_m2_data != 0)] stereo_numbers = np.intersect1d(stereo_m1_data, stereo_m2_data) # because of IDs equal to 0, we must find indices in a slight different way # see https://stackoverflow.com/questions/8251541/numpy-for-every-element-in-one-array-find-the-index-in-another-array index_m1 = np.argsort(self.event_data['M1']['stereo_event_number']) index_m2 = np.argsort(self.event_data['M2']['stereo_event_number']) sort_stereo_events_m1 = self.event_data['M1']['stereo_event_number'][index_m1] sort_stereo_events_m2 = self.event_data['M2']['stereo_event_number'][index_m2] sort_index_m1 = np.searchsorted(sort_stereo_events_m1, stereo_numbers) sort_index_m2 = np.searchsorted(sort_stereo_events_m2, stereo_numbers) m1_ids = np.take(index_m1, sort_index_m1) m2_ids = np.take(index_m2, sort_index_m2) stereo_ids = list(zip(m1_ids, m2_ids)) return stereo_ids def _find_stereo_mc_events(self): """ This internal methods identifies stereo events in the run. Returns ------- list: A list of pairs (M1_id, M2_id) corresponding to stereo events in the run. """ mono_ids = dict() mono_ids['M1'] = [] mono_ids['M2'] = [] m1_ids = np.argwhere(self.event_data['M1']['stereo_event_number']) m2_ids = np.argwhere(self.event_data['M2']['stereo_event_number']) mono_ids['M1'] = list(m1_ids.flatten()) mono_ids['M2'] = list(m2_ids.flatten()) return mono_ids def _find_mono_events(self): """ This internal method identifies the IDs (order numbers) of the pedestal events in the run. Returns ------- dict: A dictionary of pedestal event IDs in M1/2 separately. """ mono_ids = dict() mono_ids['M1'] = [] mono_ids['M2'] = [] n_m1_events = len(self.event_data['M1']['stereo_event_number']) n_m2_events = len(self.event_data['M2']['stereo_event_number']) if not self.is_mc: if (n_m1_events != 0) and (n_m2_events != 0): m1_data = self.event_data['M1']['stereo_event_number'][np.where(self.event_data['M1']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)] m2_data = self.event_data['M2']['stereo_event_number'][np.where(self.event_data['M2']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)] m1_ids_data = np.where(self.event_data['M1']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)[0] m2_ids_data = np.where(self.event_data['M2']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)[0] stereo_numbers = np.intersect1d(m1_data, m2_data) m1_ids_stereo = np.searchsorted(self.event_data['M1']['stereo_event_number'], stereo_numbers) m2_ids_stereo = np.searchsorted(self.event_data['M2']['stereo_event_number'], stereo_numbers) # remove ids that have stereo trigger from the array of ids of data events # see: https://stackoverflow.com/questions/52417929/remove-elements-from-one-array-if-present-in-another-array-keep-duplicates-nu sidx1 = m1_ids_stereo.argsort() idx1 = np.searchsorted(m1_ids_stereo,m1_ids_data,sorter=sidx1) idx1[idx1==len(m1_ids_stereo)] = 0 m1_ids_mono = m1_ids_data[m1_ids_stereo[sidx1[idx1]] != m1_ids_data] sidx2 = m2_ids_stereo.argsort() idx2 = np.searchsorted(m2_ids_stereo,m2_ids_data,sorter=sidx2) idx2[idx2==len(m2_ids_stereo)] = 0 m2_ids_mono = m2_ids_data[m2_ids_stereo[sidx2[idx2]] != m2_ids_data] mono_ids['M1'] = m1_ids_mono.tolist() mono_ids['M2'] = m2_ids_mono.tolist() elif (n_m1_events != 0) and (n_m2_events == 0): m1_ids_data = np.where(self.event_data['M1']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)[0] mono_ids['M1'] = m1_ids_data.tolist() elif (n_m1_events == 0) and (n_m2_events != 0): m2_ids_data = np.where(self.event_data['M2']['trigger_pattern'] == DATA_STEREO_TRIGGER_PATTERN)[0] mono_ids['M2'] = m2_ids_data.tolist() else: # just find ids where event stereo number is 0 (which is given to mono events) and pattern is MC trigger m1_mono_mask = np.logical_and(self.event_data['M1']['trigger_pattern'] == MC_STEREO_TRIGGER_PATTERN, self.event_data['M1']['stereo_event_number'] == 0) m2_mono_mask = np.logical_and(self.event_data['M2']['trigger_pattern'] == MC_STEREO_TRIGGER_PATTERN, self.event_data['M2']['stereo_event_number'] == 0) m1_ids = np.where(m1_mono_mask == True)[0].tolist() m2_ids =
np.where(m2_mono_mask == True)
numpy.where
"""Metadata for a single table.""" import copy import json import logging import numpy as np import pandas as pd import rdt from faker import Faker from sdv.constraints.base import Constraint from sdv.constraints.errors import MissingConstraintColumnError from sdv.metadata.errors import MetadataError, MetadataNotFittedError from sdv.metadata.utils import strings_from_regex LOGGER = logging.getLogger(__name__) class Table: """Table Metadata. The Metadata class provides a unified layer of abstraction over the metadata of a single Table, which includes all the necessary details to handle the table of this data, including the data types, the fields with pii information and the constraints that affect this data. Args: name (str): Name of this table. Optional. field_names (list[str]): List of names of the fields that need to be modeled and included in the generated output data. Any additional fields found in the data will be ignored and will not be included in the generated output. If ``None``, all the fields found in the data are used. field_types (dict[str, dict]): Dictinary specifying the data types and subtypes of the fields that will be modeled. Field types and subtypes combinations must be compatible with the SDV Metadata Schema. field_transformers (dict[str, str]): Dictinary specifying which transformers to use for each field. Available transformers are: * ``integer``: Uses a ``NumericalTransformer`` of dtype ``int``. * ``float``: Uses a ``NumericalTransformer`` of dtype ``float``. * ``categorical``: Uses a ``CategoricalTransformer`` without gaussian noise. * ``categorical_fuzzy``: Uses a ``CategoricalTransformer`` adding gaussian noise. * ``one_hot_encoding``: Uses a ``OneHotEncodingTransformer``. * ``label_encoding``: Uses a ``LabelEncodingTransformer``. * ``boolean``: Uses a ``BooleanTransformer``. * ``datetime``: Uses a ``DatetimeTransformer``. anonymize_fields (dict[str, str]): Dict specifying which fields to anonymize and what faker category they belong to. primary_key (str): Name of the field which is the primary key of the table. constraints (list[Constraint, dict]): List of Constraint objects or dicts. dtype_transformers (dict): Dictionary of transformer templates to be used for the different data types. The keys must be any of the `dtype.kind` values, `i`, `f`, `O`, `b` or `M`, and the values must be either RDT Transformer classes or RDT Transformer instances. model_kwargs (dict): Dictionary specifiying the kwargs that need to be used in each tabular model when working on this table. This dictionary contains as keys the name of the TabularModel class and as values a dictionary containing the keyword arguments to use. This argument exists mostly to ensure that the models are fitted using the same arguments when the same Table is used to fit different model instances on different slices of the same table. sequence_index (str): Name of the column that acts as the order index of each sequence. The sequence index column can be of any type that can be sorted, such as integer values or datetimes. entity_columns (list[str]): Names of the columns which identify different time series sequences. These will be used to group the data in separated training examples. context_columns (list[str]): The columns in the dataframe which are constant within each group/entity. These columns will be provided at sampling time (i.e. the samples will be conditioned on the context variables). rounding (int, str or None): Define rounding scheme for ``NumericalTransformer``. If set to an int, values will be rounded to that number of decimal places. If ``None``, values will not be rounded. If set to ``'auto'``, the transformer will round to the maximum number of decimal places detected in the fitted data. Defaults to ``'auto'``. min_value (int, str or None): Specify the minimum value the ``NumericalTransformer`` should use. If an integer is given, sampled data will be greater than or equal to it. If the string ``'auto'`` is given, the minimum will be the minimum value seen in the fitted data. If ``None`` is given, there won't be a minimum. Defaults to ``'auto'``. max_value (int, str or None): Specify the maximum value the ``NumericalTransformer`` should use. If an integer is given, sampled data will be less than or equal to it. If the string ``'auto'`` is given, the maximum will be the maximum value seen in the fitted data. If ``None`` is given, there won't be a maximum. Defaults to ``'auto'``. """ _hyper_transformer = None _fakers = None _constraint_instances = None _fields_metadata = None fitted = False _ANONYMIZATION_MAPPINGS = dict() _TRANSFORMER_TEMPLATES = { 'integer': rdt.transformers.NumericalTransformer(dtype=int), 'float': rdt.transformers.NumericalTransformer(dtype=float), 'categorical': rdt.transformers.CategoricalTransformer, 'categorical_fuzzy': rdt.transformers.CategoricalTransformer(fuzzy=True), 'one_hot_encoding': rdt.transformers.OneHotEncodingTransformer, 'label_encoding': rdt.transformers.LabelEncodingTransformer, 'boolean': rdt.transformers.BooleanTransformer, 'datetime': rdt.transformers.DatetimeTransformer(strip_constant=True), } _DTYPE_TRANSFORMERS = { 'i': 'integer', 'f': 'float', 'O': 'one_hot_encoding', 'b': 'boolean', 'M': 'datetime', } _DTYPES_TO_TYPES = { 'i': { 'type': 'numerical', 'subtype': 'integer', }, 'f': { 'type': 'numerical', 'subtype': 'float', }, 'O': { 'type': 'categorical', }, 'b': { 'type': 'boolean', }, 'M': { 'type': 'datetime', } } _TYPES_TO_DTYPES = { ('categorical', None): 'object', ('boolean', None): 'bool', ('numerical', None): 'float', ('numerical', 'float'): 'float', ('numerical', 'integer'): 'int', ('datetime', None): 'datetime64', ('id', None): 'int', ('id', 'integer'): 'int', ('id', 'string'): 'str' } def _get_faker(self, category): """Return the faker object to anonymize data. Args: category (str or tuple): Fake category to use. If a tuple is passed, the first element is the category and the rest are additional arguments for the Faker. Returns: function: Faker function to generate new fake data instances. Raises: ValueError: A ``ValueError`` is raised if the faker category we want don't exist. """ if isinstance(category, (tuple, list)): category, *args = category else: args = tuple() try: faker_method = getattr(Faker(), category) if not args: return faker_method def faker(): return faker_method(*args) return faker except AttributeError: raise ValueError('Category "{}" couldn\'t be found on faker'.format(category)) def _update_transformer_templates(self, rounding, min_value, max_value): default_numerical_transformer = self._TRANSFORMER_TEMPLATES['integer'] if (rounding != default_numerical_transformer.rounding or min_value != default_numerical_transformer.min_value or max_value != default_numerical_transformer.max_value): custom_int = rdt.transformers.NumericalTransformer( dtype=int, rounding=rounding, min_value=min_value, max_value=max_value) custom_float = rdt.transformers.NumericalTransformer( dtype=float, rounding=rounding, min_value=min_value, max_value=max_value) self._transformer_templates.update({ 'integer': custom_int, 'float': custom_float }) def __init__(self, name=None, field_names=None, field_types=None, field_transformers=None, anonymize_fields=None, primary_key=None, constraints=None, dtype_transformers=None, model_kwargs=None, sequence_index=None, entity_columns=None, context_columns=None, rounding=None, min_value=None, max_value=None): self.name = name self._field_names = field_names self._field_types = field_types or {} self._field_transformers = field_transformers or {} self._anonymize_fields = anonymize_fields or {} self._model_kwargs = model_kwargs or {} self._primary_key = primary_key self._sequence_index = sequence_index self._entity_columns = entity_columns or [] self._context_columns = context_columns or [] self._constraints = constraints or [] self._dtype_transformers = self._DTYPE_TRANSFORMERS.copy() self._transformer_templates = self._TRANSFORMER_TEMPLATES.copy() self._update_transformer_templates(rounding, min_value, max_value) if dtype_transformers: self._dtype_transformers.update(dtype_transformers) def __repr__(self): return 'Table(name={}, field_names={})'.format(self.name, self._field_names) def get_model_kwargs(self, model_name): """Return the required model kwargs for the indicated model. Args: model_name (str): Qualified Name of the model for which model kwargs are needed. Returns: dict: Keyword arguments to use on the indicated model. """ return copy.deepcopy(self._model_kwargs.get(model_name)) def set_model_kwargs(self, model_name, model_kwargs): """Set the model kwargs used for the indicated model.""" self._model_kwargs[model_name] = model_kwargs def _get_field_dtype(self, field_name, field_metadata): field_type = field_metadata['type'] field_subtype = field_metadata.get('subtype') dtype = self._TYPES_TO_DTYPES.get((field_type, field_subtype)) if not dtype: raise MetadataError( 'Invalid type and subtype combination for field {}: ({}, {})'.format( field_name, field_type, field_subtype) ) return dtype def get_fields(self): """Get fields metadata. Returns: dict: Dictionary of fields metadata for this table. """ return copy.deepcopy(self._fields_metadata) def get_dtypes(self, ids=False): """Get a ``dict`` with the ``dtypes`` for each field of the table. Args: ids (bool): Whether or not to include the id fields. Defaults to ``False``. Returns: dict: Dictionary that contains the field names and data types. """ dtypes = dict() for name, field_meta in self._fields_metadata.items(): field_type = field_meta['type'] if ids or (field_type != 'id'): dtypes[name] = self._get_field_dtype(name, field_meta) return dtypes def _build_fields_metadata(self, data): """Build all the fields metadata. Args: data (pandas.DataFrame): Data to be analyzed. Returns: dict: Dict of valid fields. Raises: ValueError: If a column from the data analyzed is an unsupported data type """ fields_metadata = dict() for field_name in self._field_names: if field_name not in data: raise ValueError('Field {} not found in given data'.format(field_name)) field_meta = self._field_types.get(field_name) if field_meta: dtype = self._get_field_dtype(field_name, field_meta) else: dtype = data[field_name].dtype field_template = self._DTYPES_TO_TYPES.get(dtype.kind) if field_template is None: msg = 'Unsupported dtype {} in column {}'.format(dtype, field_name) raise ValueError(msg) field_meta = copy.deepcopy(field_template) field_transformer = self._field_transformers.get(field_name) if field_transformer: field_meta['transformer'] = field_transformer else: field_meta['transformer'] = self._dtype_transformers.get(
np.dtype(dtype)
numpy.dtype
# Copyright (c) AIRBUS and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import numpy as np from .cgp import CGP from .evaluator import Evaluator from joblib import Parallel, delayed class CGPES: def __init__(self, num_offsprings, mutation_rate_nodes, mutation_rate_outputs, father, evaluator, folder='genomes', num_cpus = 1): self.num_offsprings = num_offsprings self.mutation_rate_nodes = mutation_rate_nodes self.mutation_rate_outputs = mutation_rate_outputs self.father = father #self.num_mutations = int(len(self.father.genome) * self.mutation_rate) self.evaluator = evaluator self.num_cpus = num_cpus self.folder = folder if self.num_cpus > 1: self.evaluator_pool = [] for i in range(self.num_offsprings): self.evaluator_pool.append(self.evaluator.clone()) def run(self, num_iteration): if not os.path.isdir(self.folder): os.mkdir(self.folder) self.logfile = open(self.folder + '/out.txt', 'w') self.current_fitness = self.evaluator.evaluate(self.father, 0) self.father.save(self.folder + '/cgp_genome_0_' + str(self.current_fitness) + '.txt') self.offsprings = np.empty(self.num_offsprings, dtype=CGP) self.offspring_fitnesses =
np.zeros(self.num_offsprings, dtype=float)
numpy.zeros
import numpy as np import est_dir def test_1(): """Test that design matrix has first column of all ones.""" n = 10 m = 5 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.array([2.01003596, 3.29020466, 2.96499689, 0.93333668, 3.33078812]) matrix = est_dir.quad_func_params(1, 10, m) func_args = (minimizer, matrix, 0, 5) no_vars = m region = 0.1 act_design, y, positions, func_evals = (est_dir.compute_random_design (n, m, centre_point, no_vars, f, func_args, region)) assert(positions.shape == (m,)) assert(func_evals == n) assert(y.shape == (n, )) full_act_design = np.ones((act_design.shape[0], act_design.shape[1] + 1)) full_act_design[:, 1:] = act_design assert(np.all(full_act_design[:, 0] == np.ones(n))) assert(np.all(full_act_design[:, 1:] == act_design)) def test_2(): """ Test outputs of compute_direction_LS(), with m=10, no_vars = 10 and F-test p-value is greater than 0.1. """ np.random.seed(91) m = 10 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.repeat(1.1, m) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_LS (m, centre_point, f, func_args, no_vars, region)) assert(func_evals == 16) assert(direction == False) def test_3(): """ Test outputs of compute_direction_LS(), with m=10, no_vars=10 and F-test p-value is smaller than 0.1. """ np.random.seed(96) m = 10 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_LS (m, centre_point, f, func_args, no_vars, region)) assert(func_evals == 16) assert(direction.shape == (m,)) assert(np.where(direction == 0)[0].shape[0] == 0) assert(np.max(abs(direction)) == 1) pos_max = np.argmax(direction) for j in range(no_vars): if j != pos_max: assert(abs(direction[j]) <= 1) def test_4(): """ Test outputs of compute_direction_LS(), with m=100, no_vars=10 and F-test p-value is smaller than 0.1. """ np.random.seed(96) m = 100 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_LS (m, centre_point, f, func_args, no_vars, region)) assert(func_evals >= 16) assert(direction.shape == (m,)) assert(np.where(direction == 0)[0].shape[0] == (m-no_vars)) assert(np.max(abs(direction)) == 1) pos_max = np.argmax(direction) for j in range(no_vars): if j != pos_max: assert(abs(direction[j]) <= 1) def test_5(): """ Test outputs of compute_direction_LS(), with m=100, no_vars=10 and F-test p-value is greater than 0.1. """ np.random.seed(100) m = 100 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.repeat(1.1, m) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_LS (m, centre_point, f, func_args, no_vars, region)) assert(func_evals == 160) assert(direction == False) def test_6(): m = 20 no_vars = 4 set_all_positions = np.arange(m) positions = np.array([[1, 3, 5, 7], [0, 2, 10, 15], [4, 12, 19, 6], [8, 9, 17, 11], [13, 14, 16, 18]]) index = 0 while True: set_all_positions = np.setdiff1d(set_all_positions, positions[index]) for k in range(index + 1): for i in range(no_vars): assert(positions[k][i] not in set_all_positions) index += 1 if index >= np.floor(m / no_vars): break def test_7(): """ Test outputs of compute_direction_XY(), with n=16, m=10, no_vars=m. """ np.random.seed(91) n = 16 m = 10 no_vars = m f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_XY (n, m, centre_point, f, func_args, no_vars, region)) assert(func_evals == 16) assert(direction.shape == (m,)) assert(np.where(direction == 0)[0].shape[0] == 0) assert(np.max(abs(direction)) == 1) pos_max = np.argmax(direction) for j in range(no_vars): if j != pos_max: assert(abs(direction[j]) <= 1) def test_8(): """ Test outputs of compute_direction_XY(), with n=16, m=100, no_vars=m. """ np.random.seed(91) n = 16 m = 100 no_vars = m f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_XY (n, m, centre_point, f, func_args, no_vars, region)) assert(func_evals == 16) assert(direction.shape == (m,)) assert(np.where(direction == 0)[0].shape[0] == 0) assert(np.max(abs(direction)) == 1) pos_max = np.argmax(direction) for j in range(no_vars): if j != pos_max: assert(abs(direction[j]) <= 1) def test_9(): """ Test outputs of calc_first_phase_RSM_LS(), where F-test p-value is less than 0.1. """ np.random.seed(96) m = 10 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 init_func_val = f(centre_point, *func_args) const_back = 0.5 forward_tol = 1000000 back_tol = 0.000001 const_forward = (1 / const_back) step = 1 no_vars = 10 (upd_point, f_new, total_func_evals_step, total_func_evals_dir, flag) = (est_dir.calc_first_phase_RSM_LS (centre_point, init_func_val, f, func_args, m, const_back, back_tol, const_forward, forward_tol, step, no_vars, region)) assert(upd_point.shape == (m, )) assert(f_new < init_func_val) assert(total_func_evals_step > 0) assert(total_func_evals_dir == 16) assert(flag == True) def test_10(): """ Test outputs of calc_first_phase_RSM_LS(), where F-test p-value is greater than 0.1. """ np.random.seed(100) n = 16 m = 100 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.repeat(1.1, m) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 init_func_val = f(centre_point, *func_args) const_back = 0.5 forward_tol = 1000000 back_tol = 0.000001 const_forward = (1 / const_back) step = 1 (upd_point, f_new, total_func_evals_step, total_func_evals_dir, flag) = (est_dir.calc_first_phase_RSM_LS (centre_point, init_func_val, f, func_args, m, const_back, back_tol, const_forward, forward_tol, step, no_vars, region)) assert(np.all(np.round(upd_point, 5) == np.round(centre_point, 5))) assert(f_new == init_func_val) assert(total_func_evals_step == 0) assert(total_func_evals_dir == n * (int(m / no_vars))) assert(flag == False) def test_11(): """ Test outputs of calc_first_phase_RSM_XY(). """ np.random.seed(91) n = 16 m = 100 no_vars = m f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 init_func_val = f(centre_point, *func_args) const_back = 0.5 forward_tol = 1000000 back_tol = 0.000001 const_forward = (1 / const_back) step = 1 (upd_point, f_new, total_func_evals_step, total_func_evals_dir) = (est_dir.calc_first_phase_RSM_XY (centre_point, init_func_val, f, func_args, n, m, const_back, back_tol, const_forward, forward_tol, step, no_vars, region)) assert(upd_point.shape == (m, )) assert(f_new < init_func_val) assert(total_func_evals_step > 0) assert(total_func_evals_dir == n) def test_12(): """ Test outputs of divide_abs_max_value(). That is, ensure signs of the updated direction are the same as previous direction, and ensure computation is correct. """ direction = np.array([0.8, 0.2, -0.04, 0.5, -0.6, -0.95]) new_direction = est_dir.divide_abs_max_value(direction) assert(np.all(np.sign(direction) == np.sign(new_direction))) assert(np.all(np.round(new_direction * np.max(abs(direction)), 2) == np.round(direction, 2))) def test_13(): """ Test outputs of compute_direction_MP(). """ np.random.seed(91) n = 16 m = 100 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 direction, func_evals = (est_dir.compute_direction_MP (n, m, centre_point, f, func_args, no_vars, region)) assert(func_evals == 16) assert(direction.shape == (m,)) assert(np.where(direction == 0)[0].shape[0] == m - no_vars) assert(np.max(abs(direction)) == 1) pos_max = np.argmax(direction) for j in range(no_vars): if j != pos_max: assert(abs(direction[j]) <= 1) np.random.seed(91) n = 16 m = 100 no_vars = 10 f = est_dir.quad_f_noise minimizer = np.ones((m,)) centre_point = np.random.uniform(-2, 2, (m,)) matrix = est_dir.quad_func_params(1, 1, m) func_args = (minimizer, matrix, 0, 1) region = 0.1 act_design, y, positions, func_evals = (est_dir.compute_random_design (n, m, centre_point, no_vars, f, func_args, region)) full_act_design = np.ones((act_design.shape[0], act_design.shape[1] + 1)) full_act_design[:, 1:] = act_design direction2 = np.zeros((m,)) est = (np.linalg.pinv(full_act_design) @ y) direction2[positions] = est_dir.divide_abs_max_value(est[1:]) assert(full_act_design.shape == (n, no_vars+1)) assert(
np.all(full_act_design != 0)
numpy.all
import cv2 as cv import pyautogui import numpy as np cam = cv.VideoCapture(0) #range for red color lower_red = np.array([150, 30, 30]) upper_red = np.array([190, 255, 255]) #range for green color lower_green = np.array([50,100,100]) upper_green = np.array([80,255,255]) #range for blue color lower_blue = np.array([100, 60, 60]) upper_blue = np.array([140, 255, 255]) while(True): ret,frame = cam.read() frame = cv.flip(frame,1) #Smoothen the image image_smooth = cv.GaussianBlur(frame,(7,7),0) #Define Region of interest mask = np.zeros_like(frame) mask[100:350,100:350] = [255,255,255] image_roi = cv.bitwise_and(image_smooth,mask) cv.rectangle(frame,(50,50),(350,350),(0,0,255),2) cv.line(frame,(150,50),(150,350),(0,0,255),1) cv.line(frame,(250,50),(250,350),(0,0,255),1) cv.line(frame,(50,150),(350,150),(0,0,255),1) cv.line(frame,(50,250),(350,250),(0,0,255),1) #Threshold the image for red color image_hsv = cv.cvtColor(image_roi,cv.COLOR_BGR2HSV) image_threshold = cv.inRange(image_hsv,lower_red,upper_red) #Find Contours contours,heirarchy = cv.findContours(image_threshold, \ cv.RETR_TREE, \ cv.CHAIN_APPROX_NONE) #Find the index of the largest contour if(len(contours)!=0): areas = [cv.contourArea(c) for c in contours] max_index =
np.argmax(areas)
numpy.argmax
""" Miscellaneous and sundry plotting functions for to please your visual cortex """ import typing import warnings from pathlib import Path from typing import Dict, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import xarray as xr from matplotlib import cm, colors, gridspec, image, transforms from matplotlib.backends.backend_pdf import PdfPages from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy import stats from skimage.measure import label, regionprops from statsmodels.stats.weightstats import DescrStatsW from tqdm.auto import tqdm from pharedox import constants from pharedox import data_analysis as da def imshow_r_stack( imgs: xr.DataArray, profile_data: xr.DataArray, output_dir: Union[str, Path], per_animal_cmap: bool = True, fl_wvl: str = "410", cmap: str = "coolwarm", width: int = 80, height: int = 30, colorbar=True, ): output_dir = Path(output_dir) output_dir.mkdir(parents=True, exist_ok=True) center = (np.array(imgs.shape[-2:]) / 2).astype(np.int) wpad = int(width / 2) hpad = int(height / 2) for tp in tqdm(imgs.timepoint.values, leave=False, desc="timepoint"): for pair in tqdm(imgs.pair.values, leave=False, desc="pair"): filepath = output_dir.joinpath(f"timepoint={tp}_pair={pair}.pdf") with PdfPages(filepath) as pdf: i = 0 for animal in tqdm(imgs.animal.values, desc="animal", leave=False): fig, ax = plt.subplots() selector = dict(animal=animal, timepoint=tp, pair=pair) im, cbar = imshow_ratio_normed( imgs.sel(wavelength="r", **selector), imgs.sel(wavelength=fl_wvl, **selector), profile_data=profile_data.sel(wavelength="r", **selector), prob=0.999, colorbar=colorbar, i_min=0, i_max=3000, cmap=cmap, ax=ax, ) ax.set_xlim(center[1] - wpad, center[1] + wpad) ax.set_ylim(center[0] - hpad, center[0] + hpad) ax.set_title(str(selector)) pdf.savefig() if (i % 20) == 0: plt.close("all") i += 1 def generate_wvl_pair_timepoint_profile_plots(data: xr.DataArray, ignored_wvls=None): """ For each wavelength and pair in the given data, this function plots a line plot with each color representing a unique strain. The line is the mean value across animals for that strain, and the shaded regions are the 95% confidence intervals Parameters ---------- data ignored_wvls """ if ignored_wvls is None: ignored_wvls = ["TL"] strains = np.unique(data.strain.values) cmap = plt.get_cmap("Set2") colormap = dict(zip(strains, cmap.colors)) wvls = list(map(lambda x: x.lower(), data.wavelength.values)) for wvl in ignored_wvls: try: wvls.remove(wvl.lower()) except ValueError: continue for wvl in wvls: for pair in data.pair.values: for tp in data.timepoint.values: fig, ax = plt.subplots() for strain in strains: strain_data = data.where(data["strain"] == strain, drop=True) ax.plot( strain_data.sel(wavelength=wvl, pair=pair, timepoint=tp).T, color=colormap[strain], alpha=0.5, ) title = f"wavelength = {wvl} ; pair = {pair} ; timepoint = {tp}" ax.set_title(title) ax.legend( [ plt.Line2D([0], [0], color=color, lw=4) for color in cmap.colors[: len(strains)] ], strains, ) yield title, fig def generate_avg_wvl_pair_profile_plots( data: xr.DataArray, ignored_wvls: typing.List[str] = None ): """ For each wavelength and pair in the given data, this function plots a line plot with each color representing a unique strain. The line is the mean value across animals for that strain, and the shaded regions are the 95% confidence intervals Parameters ---------- ignored_wvls data : [type] [description] """ if ignored_wvls is None: ignored_wvls = ["TL"] strains = np.unique(data.strain.values) cmap = plt.get_cmap("Set2") colormap = dict(zip(strains, cmap.colors)) wvls = list(map(lambda x: x.lower(), data.wavelength.values)) for wvl in ignored_wvls: try: wvls.remove(wvl.lower()) except ValueError: continue for wvl in wvls: for pair in data.pair.values: for tp in data.timepoint.values: fig, ax = plt.subplots() for strain in np.unique(data.strain.values): strain_data = data.where(data["strain"] == strain, drop=True) plot_profile_avg_with_bounds( strain_data.sel(wavelength=wvl, pair=pair, timepoint=tp), label=strain, ax=ax, color=colormap[strain], ) title = f"wavelength = {wvl} ; pair = {pair} ; timepoint = {tp}" ax.set_title(title) ax.legend() yield title, fig def plot_err_with_region_summaries( data: xr.DataArray, measure_regions: Dict, display_regions=None, ax=None, profile_color="black", label=None, ): st_color = "k" mv_color = "tab:red" if ax is None: _, ax = plt.subplots() if display_regions is None: display_regions = measure_regions df = da.fold_v_point_table(data, measure_regions) df_avgs = df.reset_index().groupby("region").agg(["mean", "sem"]).reset_index() xs = np.linspace(0, 1, data.position.size) plot_profile_avg_with_sem_bounds( 100 * da.fold_error(data), xs=xs, ax=ax, color=profile_color, label=label ) for region, region_err_mean, region_err_sem in zip( df_avgs["region"], df_avgs["fold_error_region"][1]["mean"], df_avgs["fold_error_region"][1]["sem"], ): try: ax.axhline( 100 * region_err_mean, *display_regions[region], color=profile_color, alpha=1, lw=2, solid_capstyle="butt", ) ax.errorbar( x=np.mean(display_regions[region]), y=100 * region_err_mean, yerr=100 * region_err_sem, color=profile_color, elinewidth=0.5, capsize=1, capthick=0.5, ) except: continue ax.set_xlim(0, 1) add_regions_to_axis( ax, display_regions, alpha=0.3, hide_labels=True, skip=["medial_axis"] ) ax.set_xlabel("position along midline") def plot_stage_layout( image_data: xr.DataArray, pair: int = 0 ) -> sns.axisgrid.FacetGrid: """ Shows a scatter plot where each point is an animal located on the imaging stage and the points are colored by strain. A useful visualization to make sure that the strain map is accurate. .. image:: _static/plot_stage_layout.png Parameters ---------- image_data : xr.DataArray The image data acquired by metamorph. pair : int The image pair to display Returns ------- seaborn.axisgrid.FacetGrid The grid object returned by seaborns's lmplot See Also -------- io.load_tiff_as_hyperstack seaborn.lmplot """ df = pd.DataFrame( dict( stage_x=image_data.sel(wavelength="410", pair=1).stage_x, stage_y=image_data.sel(wavelength="410", pair=1).stage_y, strain=image_data.sel(wavelength="410", pair=1).strain, ) ) return sns.lmplot(x="stage_x", y="stage_y", data=df, hue="strain", fit_reg=False) def ecdf_(data): """Compute ECDF""" x = np.sort(data) n = x.size y = np.arange(1, n + 1) / n return x, y def cdf_plot(data, *args, **kwargs): """ Plot a CDF, compatible with Seaborn's FacetGrid data 1-D vector of numbers to plot the CDF of *args ignored **kwargs keyword arguments passed onto ``plt.step`` """ x, y = ecdf_(data) plt.step(x, y, **kwargs) def add_regions_to_axis( ax, regions: dict, skip=None, label_dist_bottom_percent: float = 0.03, label_x_offset_percent: float = 0.005, alpha: float = 0.03, hide_labels: bool = False, xs=None, color="black", **kwargs, ): """ TODO: Documentation Parameters ---------- ax the axis to add the regions to regions the region dictionary, formatted as such:: { 'pm3': [1, 10], 'pm4': [12, 30], ... } skip the regions to skip plotting label_dist_bottom_percent the distance from the bottom of the axis that the region labels should be placed, expressed as a percentage of the axis height label_x_offset_percent the distance from the left of the region annotation, expressed as a percentage of the axis length alpha the opacity of the region annotations (0 = transparent, 1=opaque) hide_labels if True, does not add labels to regions kwargs these will be passed onto ``ax.axvspan`` """ if skip is None: skip = [] min_y, max_y = ax.get_ylim() min_x, max_x = ax.get_xlim() text_y = ((max_y - min_y) * label_dist_bottom_percent) + min_y text_x_offset = (max_x - min_x) * label_x_offset_percent for region, bounds in regions.items(): if region in skip: continue ax.axvspan( bounds[0], bounds[1], alpha=alpha, color=color, linewidth=0, **kwargs ) if not hide_labels: ax.annotate(region, xy=(bounds[0] + text_x_offset, text_y)) def add_region_bars_to_axis( ax, regions, skip=None, bar_height=8, bar_width=1, fontsize=3 ): if skip is None: skip = [] for region, region_bounds in regions.items(): if region in skip: continue yy = -0.01 ax.annotate( "", xy=(region_bounds[0], yy), xycoords=("data", "axes fraction"), xytext=(region_bounds[1], yy), textcoords=("data", "axes fraction"), arrowprops=dict( arrowstyle="-", connectionstyle=f"bar,armA=-{bar_height},armB=-{bar_height},fraction=0.0", capstyle="butt", joinstyle="miter", lw=bar_width, ), annotation_clip=False, ) ax.annotate( region, xy=((region_bounds[0] + region_bounds[1]) / 2, yy - 0.08), xycoords=("data", "axes fraction"), ha="center", fontsize=fontsize, ) ax.xaxis.labelpad = 25 def plot_profile_avg_with_bounds( data, ax=None, confint_alpha=0.05, label=None, xs=None, axis=0, bounds: str = "ci", **kwargs, ): """ TODO: Documentation Parameters ---------- data ax confint_alpha label kwargs Returns ------- """ with np.errstate(invalid="ignore"): mean = np.nanmean(data, axis=0) sem = stats.sem(data) bounds_map = { "ci": DescrStatsW(data).tconfint_mean(alpha=confint_alpha), "sem": (mean - sem, mean + sem), } if ax is None: ax = plt.gca() if xs is None: try: # if the data is an xr.DataArray xs = data.position except ValueError: # if it's a numpy array xs = np.arange(len(data)) with warnings.catch_warnings(): warnings.simplefilter("ignore") ax.plot(xs, np.nanmean(data, axis=axis), label=label, **kwargs) lower, upper = bounds_map[bounds] kwargs.pop("linestyle", None) kwargs.pop("linewidth", None) kwargs.pop("lw", None) ax.fill_between(xs, lower, upper, alpha=0.3, lw=0, **kwargs) return ax def imgs_to_rgb( imgs, r_min, r_max, cmap="coolwarm", i_min=0, i_max=None, i_wvls=["410", "470"], ratio_numerator="410", ratio_denominator="470", ): if i_max is None: i_max = np.max(imgs.sel(wavelength=["410", "470"])) try: R = imgs.sel(wavelength="R") except KeyError: R = imgs.sel(wavelength=ratio_numerator) / imgs.sel( wavelength=ratio_denominator ) norm_ratio = colors.Normalize(vmin=r_min, vmax=r_max) cmap = cm.get_cmap(cmap) img_rgba = cmap(norm_ratio(R)) norm_fl = colors.Normalize(vmin=i_min, vmax=i_max, clip=True) hsv_img = colors.rgb_to_hsv(img_rgba[..., :3]) # ignore the "alpha" channel hsv_img[..., -1] = norm_fl(imgs.sel(wavelength=i_wvls).max(dim="wavelength")) img_rgba = colors.hsv_to_rgb(hsv_img) return img_rgba def imshow_ratio_normed( ratio_img, fl_img, profile_data=None, prob=0.999, cmap="coolwarm", r_min=None, r_max=None, i_min=0, i_max=None, clip=True, ax=None, colorbar=False, colorbar_kwargs_dict={}, **imshow_kwargs, ): """ Show the given ratio image, first converting to HSV and setting the "V" (value) channel to be the given (normalized) intensity image Parameters ---------- ratio_img the ratio image to display fl_img the fluorescent intensity image with which to "value-correct" the ratio image. A good choice here is the max value of both intensity channels used in the ratio. profile_data the midline profile data corresponding to the ratio image. This is used to center and to choose min/max values for the ratio colormap. prob The "confidence interval" around the center of the ratio values to include in the colormap. For example, 0.95 translates to a min/max of mean(ratio) +/- (1.96*std(ratio)) cmap The colormap used to display the ratio image. Diverging colormaps are a good choice here (default is RdBu_r). r_min The minimum value for the ratio colormap. If None, uses the `prob` parameter (see its description), and requires `profile_data`. r_max The maximum value for the ratio colormap. If None, uses the `prob` parameter (see its description), and requires `profile_data`. i_min The intensity to map to 0 in the value channel i_max The intensity to map to 1 in the value channel clip Whether or not the value channel should be clipped to [0, 1] before converting back to RGB. Leaving this as True is a sane default. ax If given, the image is plotted on this axis. If ``None``, this function uses the pyplot interface. colorbar show the colorbar or not imshow_args keyword arguments that will be passed along to the ``imshow`` function """ with warnings.catch_warnings(): warnings.simplefilter("ignore") # Convert ratio to RGB if profile_data is None: if (r_min is None) or (r_max is None): raise ValueError( "r_min and r_max must be set if profile_data is not given" ) else: r_mean = np.mean(profile_data) r_std =
np.std(profile_data)
numpy.std
import cv2 from time import perf_counter import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import os THIS_DIR = os.path.dirname(os.path.realpath(__file__)) CWD = os.getcwd() # Simple helper data class that's a little nicer to use than a 2-tuple. class HostDeviceMem(object): def __init__(self, host_mem, device_mem): self.host = host_mem self.device = device_mem def __str__(self): return "Host:\n" + str(self.host) + "\nDevice:\n" + str(self.device) def __repr__(self): return self.__str__() class YOLOV4(object): if CWD == THIS_DIR: _defaults = { "engine_path": "trt_weights/yolov4_1_608_608.trt", "classes_path": 'data/coco.names', "thresh": 0.5, "nms_thresh": 0.4, "model_image_size": (608,608) # must follow trt size } else: _defaults = { "engine_path": "pytorch_YOLOv4/trt_weights/yolov4_1_608_608.trt", "classes_path": 'pytorch_YOLOv4/data/coco.names', "thresh": 0.5, "nms_thresh": 0.4, "model_image_size": (608,608) # must follow trt size } def __init__(self, bgr=True, **kwargs): self.__dict__.update(self._defaults) # set up default values # for portability between keras-yolo3/yolo.py and this if 'model_path' in kwargs: kwargs['weights'] = kwargs['model_path'] if 'score' in kwargs: kwargs['thresh'] = kwargs['score'] self.__dict__.update(kwargs) # update with user overrides self.trt_engine = self.get_engine(self.engine_path) self.trt_context = self.trt_engine.create_execution_context() self.max_batch_size = self.trt_engine.max_batch_size self.class_names = self._get_class() self.num_classes = len(self.class_names) self.bgr = bgr # warm up self._detect([np.zeros((10,10,3), dtype=np.uint8)]) print('Warmed up!') def _get_class(self): with open(self.classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names @staticmethod def get_engine(engine_path): # If a serialized engine exists, use it instead of building an engine. print("Reading engine from file {}".format(engine_path)) with open(engine_path, "rb") as f, trt.Runtime(trt.Logger(min_severity=trt.Logger.ERROR)) as runtime: return runtime.deserialize_cuda_engine(f.read()) # Allocates all buffers required for an engine, i.e. host/device inputs/outputs. @staticmethod def allocate_buffers(engine): inputs = [] outputs = [] bindings = [] stream = cuda.Stream() for binding in engine: size = trt.volume(engine.get_binding_shape(binding)) dtype = trt.nptype(engine.get_binding_dtype(binding)) # Allocate host and device buffers host_mem = cuda.pagelocked_empty(size, dtype) device_mem = cuda.mem_alloc(host_mem.nbytes) # Append the device buffer to device bindings. bindings.append(int(device_mem)) # Append to the appropriate list. if engine.binding_is_input(binding): inputs.append(HostDeviceMem(host_mem, device_mem)) else: outputs.append(HostDeviceMem(host_mem, device_mem)) return inputs, outputs, bindings, stream # This function is generalized for multiple inputs/outputs. # inputs and outputs are expected to be lists of HostDeviceMem objects. @staticmethod def trt_inference(context, bindings, inputs, outputs, stream): # Transfer input data to the GPU. [cuda.memcpy_htod_async(inp.device, inp.host, stream) for inp in inputs] # Run inference. context.execute_async(bindings=bindings, stream_handle=stream.handle) # Transfer predictions back from the GPU. [cuda.memcpy_dtoh_async(out.host, out.device, stream) for out in outputs] # Synchronize the stream stream.synchronize() # Return only the host outputs. return [out.host for out in outputs] def _detect(self, list_of_imgs): if self.bgr: list_of_imgs = [ cv2.cvtColor(img, cv2.COLOR_BGR2RGB) for img in list_of_imgs ] resized = [np.array(cv2.resize(img, self.model_image_size)) for img in list_of_imgs] images =
np.stack(resized, axis=0)
numpy.stack
import warnings import numpy as np from simtk import unit from tqdm import tqdm from benchmark import simulation_parameters from benchmark.integrators import LangevinSplittingIntegrator from benchmark.testsystems import NonequilibriumSimulator from benchmark.testsystems import water_cluster_rigid, alanine_constrained from benchmark.testsystems.bookkeepers import get_state_as_mdtraj from multiprocessing import Pool n_processes = 32 # experiment variables testsystems = { "alanine_constrained": alanine_constrained, "water_cluster_rigid": water_cluster_rigid, } splittings = {"OVRVO": "O V R V O", "ORVRO": "O R V R O", "RVOVR": "R V O V R", "VRORV": "V R O R V", } marginals = ["configuration", "full"] dt_range = np.array([0.1] + list(np.arange(0.5, 8.001, 0.5))) * unit.femtosecond # constant parameters collision_rate = 1.0 / unit.picoseconds temperature = simulation_parameters['temperature'] def n_steps_(dt, n_collisions=1, max_steps=1000): """Heuristic for how many steps are needed to reach steady state: should run at least long enough to have n_collisions full "collisions" with the bath. This corresponds to more discrete steps when dt is small, and fewer discrete steps when dt is large. Examples: n_steps_(dt=1fs) = 1000 n_steps_(dt=2fs) = 500 n_steps_(dt=4fs) = 250 n_steps_(dt=8fs) = 125 """ return min(max_steps, int((n_collisions / collision_rate) / dt)) # adaptive inner-loop params inner_loop_initial_size = 50 inner_loop_batch_size = 1 inner_loop_stdev_threshold = 0.01 inner_loop_max_samples = 50000 # adaptive outer-loop params outer_loop_initial_size = 50 outer_loop_batch_size = 100 outer_loop_stdev_threshold = inner_loop_stdev_threshold outer_loop_max_samples = 1000 def stdev_log_rho_pi(w): """Approximate the standard deviation of the estimate of log < e^{-w} >_{x; \Lambda} Parameters ---------- w : unitless (kT) numpy array of work samples Returns ------- stdev : float Notes ----- This will be an underestimate esp. when len(w) is small or stdev_log_rho_pi is large. """ assert(type(w) != unit.Quantity) # assert w is unitless assert(type(w) == np.ndarray) # assert w is a numpy array # use leading term in taylor expansion: anecdotally, looks like it's in good agreement with # bootstrapped uncertainty estimates up to ~0.5-0.75, then becomes an increasingly bad underestimate return np.std(np.exp(-w)) / (np.mean(np.exp(-w)) * np.sqrt(len(w))) def stdev_kl_div(outer_samples): """Approximate the stdev of the estimate of E_rho log_rho_pi""" # TODO: Propagate uncertainty from the estimates of log_rho_pi # currently, just use standard error of mean of log_rho_pi_s log_rho_pi_s = np.array([np.log(np.mean(np.exp(-sample['Ws']))) for sample in outer_samples]) return np.std(log_rho_pi_s) / np.sqrt(len(log_rho_pi_s)) def estimate_from_work_samples(work_samples): """Returns an estimate of log(rho(x) / pi(x)) from unitless work_samples initialized at x""" return np.log(np.mean(np.exp(-np.array(work_samples)))) def inner_sample(noneq_sim, x, v, n_steps, marginal="full"): if marginal == "full": pass elif marginal == "configuration": v = noneq_sim.sample_v_given_x(x) else: raise (Exception("marginal must be `full` or `configuration`")) return noneq_sim.accumulate_shadow_work(x, v, n_steps)['W_shad'] def collect_inner_samples_naive(x, v, noneq_sim, marginal="full", n_steps=1000, n_inner_samples=100): """Collect a fixed number of noneq trajectories starting from x,v""" Ws = np.zeros(n_inner_samples) for i in range(n_inner_samples): Ws[i] = inner_sample(noneq_sim, x, v, n_steps, marginal) return Ws def collect_inner_samples_until_threshold(x, v, noneq_sim, marginal="full", initial_size=100, batch_size=5, n_steps=1000, threshold=0.1, max_samples=1000): """Collect up to max_samples trajectories, potentially fewer if stdev of estimated log(rho(x,v) / pi(x,v)) is below threshold.""" Ws = [] # collect initial samples for _ in range(initial_size): Ws.append(inner_sample(noneq_sim, x, v, n_steps, marginal)) # keep adding batches until either stdev threshold is reached or budget is reached while (stdev_log_rho_pi(np.array(Ws)) > threshold) and (len(Ws) <= (max_samples - batch_size)): for _ in range(batch_size): Ws.append(inner_sample(noneq_sim, x, v, n_steps, marginal)) # warn user if stdev threshold was not met if (stdev_log_rho_pi(np.array(Ws)) > threshold): message = "stdev_log_rho_pi(Ws) > threshold\n({:.3f} > {:.3f})".format(stdev_log_rho_pi(np.array(Ws)), threshold) warnings.warn(message, RuntimeWarning) return
np.array(Ws)
numpy.array
import os import unittest from unittest.util import safe_repr import numpy as np import time from torch.utils.data import TensorDataset import torch from util import randomize_in_place from config import CNNConfig from DataHolder import DataHolder from cnn import train_model_img_classification, CNN def run_test(testClass): """ Function to run all the tests from a class of tests. :param testClass: class for testing :type testClass: unittest.TesCase """ suite = unittest.TestLoader().loadTestsFromTestCase(testClass) unittest.TextTestRunner(verbosity=2).run(suite) class TestEP4(unittest.TestCase): """ Class that test the functions from basic_functions module """ @classmethod def setUpClass(cls): raw_X =
np.load("self_driving_pi_car_data/train_data.npy")
numpy.load
from collections import OrderedDict from scipy.spatial.transform import Rotation as R from scipy.spatial.transform import Slerp import numpy as np import json import multiprocessing as mp from tqdm import tqdm def pretty_print(ob): print(json.dumps(ob, indent=4)) def euler_to_rot(angles): # Euler ZYX to Rot # Note that towr has (x, y, z) order x = angles[0] y = angles[1] z = angles[2] ret = np.array([ np.cos(y) * np.cos(z), np.cos(z) * np.sin(x) * np.sin(y) - np.cos(x) * np.sin(z), np.sin(x) * np.sin(z) + np.cos(x) * np.cos(z) * np.sin(y), np.cos(y) *
np.sin(z)
numpy.sin
import numpy from matplotlib import pyplot from surrogates.kernels import MCMCSimulation from surrogates.kernels.samplers.hmc import Hamiltonian from surrogates.models.simple import UnconditionedModel from surrogates.utils.distributions import Normal from surrogates.utils.file import change_directory from surrogates.utils.plotting import plot_corner, plot_log_p, plot_trace def main(): std_devs = {"a": 0.05, "b": 50.0, "c": 5000.0} priors = { "a": Normal(numpy.array([0.0]), numpy.array([std_devs["a"]])), "b": Normal(numpy.array([100.0]), numpy.array([std_devs["b"]])), "c": Normal(numpy.array([0.0]), numpy.array([std_devs["c"]])), } model = UnconditionedModel(priors) # Construct and run the simulation object. initial_parameters = { "a": numpy.array([0.0]), "b":
numpy.array([0.0])
numpy.array
from KASD.initializers import initializers, serialize as _serialize_initializer, get as _get_initializer from KASD.regularizers import regularizers, serialize as _serialize_regularizer, get as _get_regularizer from KASD.constraints import constraints, serialize as _serialize_constraint, get as _get_constraint from KASD.activations import activations from ..initializers import randomize as _randomize_initializer from ..regularizers import randomize as _randomize_regularizer from ..constraints import randomize as _randomize_constraint from ..utils.math import factors from ..utils.rand_funcs import* from .. import Process, run from collections import deque from copy import deepcopy import numpy as np data_formats = ['channels_last', 'channels_first'] paddings = ['valid', 'causal', 'same'] interpolations = ['nearest', 'bilinear'] implementations = [1, 2] merge_modes = ['sum', 'mul', 'concat', 'ave'] def regularizer_(reg): if reg is None: return None reg = _get_regularizer(reg) reg = _serialize_regularizer(reg) _randomize_regularizer(reg) return reg def initializer_(init): if init is None: return None init = _get_initializer(init) init = _serialize_initializer(init) _randomize_initializer(init) return init def constraint_(const, input_shape): if const is None: return None const = _get_constraint(const) const = _serialize_constraint(const) _randomize_constraint(const, input_shape) return const default_ranges = { 'Dense/units': [1, 128], 'Dropout/seed': [1, 1024], 'RepeatVector/n': [1, 64], 'ActivityRegularization/l1': [-1.0, 1.0], 'ActivityRegularization/l2': [-1.0, 1.0], 'SpatialDropout1D/seed': [1, 1024], 'SpatialDropout2D/seed': [1, 1024], 'SpatialDropout3D/seed': [1, 1024], 'Conv1D/filters': [1, 128], 'Conv2D/filters': [1, 128], 'SeparableConv1D/filters': [1, 128], 'SeparableConv1D/depth_multiplier': [1, 32], 'SeparableConv2D/filters': [1, 128], 'SeparableConv2D/depth_multiplier': [1, 32], 'DepthwiseConv2D/filters': [1, 128], 'DepthwiseConv2D/depth_multiplier': [1, 32], 'Conv2DTranspose/filters': [1, 128], 'Conv3D/filters': [1, 128], 'Conv3DTranspose/filters': [1, 128], 'UpSampling1D/size': [2, 32], 'UpSampling2D/size': ([2, 32], [2, 32]), 'UpSampling3D/size': ([2, 32], [2, 32], [2, 32]), 'ZeroPadding1D/padding': (([0, 32], [0, 32]),), 'ZeroPadding2D/padding': (([0, 32], [0, 32]), ([0, 32], [0, 32])), 'ZeroPadding3D/padding': (([0, 32], [0, 32]), ([0, 32], [0, 32]), ([0, 32], [0, 32])), 'SimpleRNN/units': [1, 128], 'GRU/units': [1, 128], 'LSTM/units': [1, 128], 'SimpleRNNCell/units': [1, 128], 'GRUCell/units': [1, 128], 'LSTMCell/units': [1, 128], 'CuDNNGRU/units': [1, 128], 'CuDNNLSTM/units': [1, 128], 'BatchNormalization/momentum': [-10, 10], 'BatchNormalization/epsilon': [1e-5, 1e-2], 'GaussianNoise/stddev': [1e-3, 10], 'AlphaDropout/seed': [1, 1024], 'LeakyReLU/alpha': [0, 16], 'ELU/alpha': [0, 16], 'ThresholdedReLU/theta': [0, 10], 'ReLU/threshold/max_value': [0, 16], 'ReLU/negative_slope': [0, 16], 'ConvLSTM2D/filters': [1, 128], 'ConvLSTM2DCell/filters': [1, 128]} ###Layer Samples### def _sample_null(serial, attributes=[], ranges=default_ranges): pass InputLayer_sample=Add_sample=Subtract_sample=Multiply_sample=Average_sample=Maximum_sample=Minimum_sample=Concatenate_sample=Lambda_sample=_sample_null def Dot_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def normalize(): return bool(np.random.randint(0, 2)) run(queue, attributes, locals()) def Dense_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def units(): return np.random.randint(ranges['Dense/units'][0], ranges['Dense/units'][1]+1) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice()) @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def Activation_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def activation(): return activations.choice() run(queue, attributes, locals()) def Dropout_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def rate(): return np.random.sample() @Process(serial, queue) def noise_shape(): return noise_shape_(input_shape) @Process(serial, queue) def seed(): return np.random.randint(ranges['Dropout/seed'][0], ranges['Dropout/seed'][1]+1) run(queue, attributes, locals()) def Flatten_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats+[None]) run(queue, attributes, locals()) def Reshape_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def target_shape(): _factors = factors(np.prod(input_shape[1:]), dims=np.array(output_shape[1:]).shape[0]) if not isinstance(_factors, (list, np.ndarray)): _factors = np.array([[_factors]]) _factors = np.concatenate((_factors, np.flip(_factors, axis=-1))) return tuple(_factors[np.random.randint(0, _factors.shape[0])].tolist()) run(queue, attributes, locals()) def Permute_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def dims(): return tuple(np.random.permutation(np.arange(np.array(input_shape[1:]).shape[0])+1).tolist()) run(queue, attributes, locals()) def RepeatVector_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def n(): return np.random.randint(ranges['RepeatVector/n'][0], ranges['RepeatVector/n'][1]+1) run(queue, attributes, locals()) def ActivityRegularization_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def l1(): return np.random.uniform(ranges['ActivityRegularization/l1'][0], ranges['ActivityRegularization/l1'][1]) @Process(serial, queue) def l2(): return np.random.uniform(ranges['ActivityRegularization/l2'][0], ranges['ActivityRegularization/l2'][1]) run(queue, attributes, locals()) def Masking_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def mask_value(): return np.random.sample() run(queue, attributes, locals()) def SpatialDropout1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def rate(): return np.random.sample() @Process(serial, queue) def noise_shape(): return noise_shape_(input_shape) @Process(serial, queue) def seed(): return np.random.randint(ranges['SpatialDropout1D/seed'][0], ranges['SpatialDropout1D/seed'][1]+1) run(queue, attributes, locals()) def SpatialDropout2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def rate(): return np.random.sample() @Process(serial, queue) def noise_shape(): return noise_shape_(input_shape) @Process(serial, queue) def seed(): return np.random.randint(ranges['SpatialDropout2D/seed'][0], ranges['SpatialDropout2D/seed'][1]+1) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def SpatialDropout3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def rate(): return np.random.sample() @Process(serial, queue) def noise_shape(): return noise_shape_(input_shape) @Process(serial, queue) def seed(): return np.random.randint(ranges['SpatialDropout3D/seed'][0], ranges['SpatialDropout3D/seed'][1]+1) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def Conv1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv1D/filters'][0], ranges['Conv1D/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) if padding() != 'causal' else 'channels_last' @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def Conv2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv2D/filters'][0], ranges['Conv2D/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def SeparableConv1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['SeparableConv1D/filters'][0], ranges['SeparableConv1D/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def depth_multiplier(): return np.random.randint(ranges['SeparableConv1D/depth_multiplier'][0], ranges['SeparableConv1D/depth_multiplier'][1]+1) @Process(serial, queue) def depthwise_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def pointwise_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def depthwise_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def pointwise_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def depthwise_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def pointwise_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def SeparableConv2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['SeparableConv2D/filters'][0], ranges['SeparableConv2D/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def depth_multiplier(): return np.random.randint(ranges['SeparableConv2D/depth_multiplier'][0], ranges['SeparableConv2D/depth_multiplier'][1]+1) @Process(serial, queue) def depthwise_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def pointwise_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def depthwise_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def pointwise_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def depthwise_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def pointwise_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def DepthwiseConv2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def depth_multiplier(): return np.random.randint(ranges['DepthwiseConv2D/depth_multiplier'][0], ranges['DepthwiseConv2D/depth_multiplier'][1]+1) @Process(serial, queue) def depthwise_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def depthwise_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def depthwise_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def Conv2DTranspose_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv2DTranspose/filters'][0], ranges['Conv2DTranspose/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return (min(dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2))),)*2 #assert dilation_rate[0] == dilation_rate[1] @Process(serial, queue) def output_padding(): return output_padding_(strides()) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def Conv3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv3D/filters'][0], ranges['Conv3D/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides(), dilation_rate=dilation_rate()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), dilation_rate=dilation_rate(), null=np.random.randint(0, 2)) @Process(serial, queue) def dilation_rate(): return dilation_rate_(input_shape, data_format(), kernel_size(), strides(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def Conv3DTranspose_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv3DTranspose/filters'][0], ranges['Conv3DTranspose/filters'][1]+1) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), null=np.random.randint(0, 2)) @Process(serial, queue) def output_padding(): return output_padding_(strides()) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def Cropping1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def cropping(): return cropping_(input_shape, 'channels_last')[0] run(queue, attributes, locals()) def Cropping2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def cropping(): return cropping_(input_shape, data_format()) run(queue, attributes, locals()) def Cropping3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def cropping(): return cropping_(input_shape, data_format()) run(queue, attributes, locals()) def UpSampling1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def size(): return np.random.randint(ranges['UpSampling1D/size'][0], ranges['UpSampling1D/size'][1]+1) run(queue, attributes, locals()) def UpSampling2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def size(): return tuple([np.random.randint(size[0], size[1]+1) for size in ranges['UpSampling2D/size']]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def interpolation(): return np.random.choice(interpolations) run(queue, attributes, locals()) def UpSampling3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def size(): return tuple([np.random.randint(size[0], size[1]+1) for size in ranges['UpSampling3D/size']]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def ZeroPadding1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def padding(): return tuple([(np.random.randint(padding[0][0], padding[0][1]+1), np.random.randint(padding[1][0], padding[1][1]+1)) for padding in ranges['ZeroPadding1D/padding']])[0] run(queue, attributes, locals()) def ZeroPadding2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def padding(): return tuple([(np.random.randint(padding[0][0], padding[0][1]+1), np.random.randint(padding[1][0], padding[1][1]+1)) for padding in ranges['ZeroPadding2D/padding']]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def ZeroPadding3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def padding(): return tuple([(np.random.randint(padding[0][0], padding[0][1]+1), np.random.randint(padding[1][0], padding[1][1]+1)) for padding in ranges['ZeroPadding3D/padding']]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def MaxPooling1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def pool_size(): return pool_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_pooling_(input_shape, data_format(), pool_size()) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' run(queue, attributes, locals()) def MaxPooling2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def pool_size(): return pool_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_pooling_(input_shape, data_format(), pool_size()) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' run(queue, attributes, locals()) def MaxPooling3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def pool_size(): return pool_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_pooling_(input_shape, data_format(), pool_size()) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' run(queue, attributes, locals()) def AveragePooling1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def pool_size(): return pool_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_pooling_(input_shape, data_format(), pool_size()) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' run(queue, attributes, locals()) def AveragePooling2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def pool_size(): return pool_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_pooling_(input_shape, data_format(), pool_size()) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' run(queue, attributes, locals()) def AveragePooling3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def pool_size(): return pool_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_pooling_(input_shape, data_format(), pool_size()) @Process(serial, queue) def padding(): return np.random.choice(np.delete(paddings, [1])) #removes 'causal' run(queue, attributes, locals()) def GlobalMaxPooling1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def GlobalMaxPooling2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def GlobalMaxPooling3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def GlobalAveragePooling2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def GlobalAveragePooling1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def GlobalAveragePooling3D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def data_format(): return np.random.choice(data_formats) run(queue, attributes, locals()) def LocallyConnected1D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv1D/filters'][0], ranges['Conv1D/filters'][1]+1) @Process(serial, queue) def padding(): return 'valid' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice()) @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def LocallyConnected2D_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def filters(): return np.random.randint(ranges['Conv1D/filters'][0], ranges['Conv1D/filters'][1]+1) @Process(serial, queue) def padding(): return 'valid' @Process(serial, queue) def data_format(): return np.random.choice(data_formats) @Process(serial, queue) def kernel_size(): return kernel_size_(input_shape, data_format(), strides()) @Process(serial, queue) def strides(): return strides_(input_shape, data_format(), kernel_size(), null=np.random.randint(0, 2)) @Process(serial, queue) def activation(): return activations.choice(include=[None]) @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['2DMatrix'])) #removes Identity @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) run(queue, attributes, locals()) def RNN_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def cell(): def rand_cell(cell): cell['input'] = input_ cell['input_shape'] = input_shape cell['output_shape'] = output_shape sample_functions[cell['class_name']](cell, attributes=attributes, ranges=ranges) del cell['input'], cell['input_shape'], cell['output_shape'] cells = deepcopy(serial['config']['cell']) if isinstance(cell, list): [rand_cell(cells) for cell in cells] else: rand_cell(cells) return cells @Process(serial, queue) def return_sequences(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def return_state(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def go_backwards(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def stateful(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def unroll(): return bool(np.random.randint(0, 2)) run(queue, attributes, locals()) def SimpleRNN_sample(serial, attributes=[], ranges=default_ranges): input_, input_shape, output_shape, queue = serial['input'], serial['input_shape'], serial['output_shape'], deque([]) @Process(serial, queue) def units(): return np.random.randint(ranges['SimpleRNN/units'][0], ranges['SimpleRNN/units'][1]+1) @Process(serial, queue) def activation(): return activations.choice() @Process(serial, queue) def use_bias(): return bool(np.random.randint(0, 2)) @Process(serial, queue) def kernel_initializer(): return initializer_(initializers.choice()) @Process(serial, queue) def recurrent_initializer(): return initializer_(initializers.choice()) @Process(serial, queue) def bias_initializer(): return initializer_(initializers.choice(exclude=initializers.labels['>=2DMatrix'])) #removes Identity and Orthogonal @Process(serial, queue) def kernel_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def recurrent_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def bias_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def activity_regularizer(): return regularizer_(regularizers.choice(include=[None])) @Process(serial, queue) def kernel_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def recurrent_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def bias_constraint(): return constraint_(constraints.choice(include=[None]), input_shape) @Process(serial, queue) def dropout(): return np.random.sample() @Process(serial, queue) def recurrent_dropout(): return
np.random.sample()
numpy.random.sample
import os import multiprocessing from . import data_stream from . import layers import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.metrics import confusion_matrix import umap from sklearn.manifold import TSNE from tensorflow import keras from tensorflow.keras import Input, losses from tensorflow.keras.layers import Flatten, Dense, Concatenate class voxel_model() : def __init__(self, pPathToData, pCSVTrainFile = None, pCSVTestFile = None, pBatchSize = 32, pName = '', pIsUniformNorm = True) : self.mBatchSize = pBatchSize self.mModel = None self.mName = pName self.mWeightFile = None self.mVoxDim = (32, 32, 32) self.mPathToData = pPathToData self.isUniformNorm = pIsUniformNorm self.mRootFolder = os.path.join(os.getcwd(), 'python', 'metadata') if not os.path.exists(self.mRootFolder) : os.mkdir(self.mRootFolder) self.mRootFolder = os.path.join(self.mRootFolder, pName + '_voxel_' + str(self.mVoxDim[0]), '') if not os.path.exists(self.mRootFolder) : os.mkdir(self.mRootFolder) if pCSVTrainFile is not None : self.mTrain_csv = pd.read_csv(pCSVTrainFile) self.mTest_csv = pd.read_csv(pCSVTestFile) X_train, y_train, labels = self.__csvToDataset(self.mTrain_csv) X_test, y_test, labels = self.__csvToDataset(self.mTest_csv) self.mLabels = labels self.mTrainGen = data_stream.dataStream_VX(X_train, y_train, self.mVoxDim, self.mBatchSize, self.mPathToData, self.isUniformNorm) self.mValidGen = data_stream.dataStream_VX(X_test, y_test, self.mVoxDim, self.mBatchSize, self.mPathToData, self.isUniformNorm) self.mNumClasses = labels.shape[0] def build_network(self) : inputGrid = Input(shape=self.mVoxDim) grid = tf.expand_dims(inputGrid, -1) if self.isUniformNorm : grid = layers.voxel_encoder( name = '32_to_8', filters = 2, kernel_size = 8, stride = 4, padding = 'same', pool_size = 8, pool_stride = 4, pool_padding = 'same')(grid) else : grid = layers.voxel_encoder( name = '32_to_8', filters = 3, kernel_size = 8, stride = 4, padding = 'same', pool_size = 8, pool_stride = 4, pool_padding = 'same')(grid) features = Flatten(name='features_grid')(grid) if self.isUniformNorm : inputAR = Input(shape=(8,3)) features_ar = layers.point_encoder(name = 'point_enc')(inputAR) features_ar = Flatten(name='features_ar')(features_ar) features = Concatenate(name='features_global')([features, features_ar]) inputs = [inputGrid, inputAR,] else : features = Flatten(name='features_global')(features) inputs = [inputGrid,] classification = layers.classifier( name = 'classifier', units = 32, drop_rate = 0.3, num_classes = self.mNumClasses)(features) self.mModel = keras.Model(inputs=inputs, outputs=[classification], name="bim_vox") self.mModel.summary() def __compile_model(self) : self.mModel.compile( loss=losses.CategoricalCrossentropy(), metrics=['accuracy',], optimizer=tf.keras.optimizers.Adam()) def train_model(self, pNumEpochs) : self.__compile_model() termination_cb = keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, min_delta=0.02, mode='min', verbose=1) checkpoint_cb = keras.callbacks.ModelCheckpoint(self.mRootFolder, monitor='val_loss', mode='min', save_best_only=True, save_weights_only=True) history = self.mModel.fit(x = self.mTrainGen, validation_data = self.mValidGen, callbacks=[termination_cb, checkpoint_cb,], epochs = pNumEpochs, verbose = 1,) self.__export_history(history) self.__export_metrics() print('Exporting model...') keras.utils.plot_model(self.mModel, to_file=os.path.join(self.mRootFolder, "voxel_" + str(self.mVoxDim[0]) + ".png"), show_shapes=True, dpi=300) self.__export_features(self.mTrainGen) def __get_features_from_layer(self, pLayerName, pStream) : features_model = keras.Model(inputs=self.mModel.input, outputs=self.mModel.get_layer(pLayerName).output) features = features_model.predict(x = pStream) return features def __export_features(self, pStream) : print('Exporting features...') np.savez_compressed(os.path.join(self.mRootFolder, 'features'), a=self.__get_features_from_layer('features_global', pStream), b=pStream.y, c=self.mLabels) def __export_history(self, history) : print('Exporting train history...') fig = plt.figure() plt.xlabel('epoch') plt.ylabel('loss') plt.title('Train/Val Loss') plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.legend(['train', 'val']) plt.xticks(np.arange(len(history.history['loss']))) plt.grid() fig.savefig(os.path.join(self.mRootFolder, 'history.pdf'), bbox_inches='tight') plt.clf() plt.xlabel('epoch') plt.ylabel('accuracy') plt.title('Train/Val accuracy') plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.legend(['train', 'val']) plt.xticks(np.arange(len(history.history['accuracy']))) plt.grid() fig.savefig(os.path.join(self.mRootFolder, 'accuracy.pdf'), bbox_inches='tight') def __export_metrics(self) : print('Exporting metrics...') self.mModel.load_weights(self.mRootFolder) predictions = self.mModel.predict(x = self.mTrainGen, verbose=1) y_pred = np.argmax(predictions, axis=1) y_true =
np.argmax(self.mTrainGen.y, axis=1)
numpy.argmax
""" General utilities including numpy extensions and graph utils. """ from typing import Iterable, List, Union import numba import numpy as np import scipy.sparse as sp import warnings from scipy.sparse.csgraph import minimum_spanning_tree, connected_components from sklearn.model_selection import train_test_split __all__ = [ 'cartesian_product', 'edges_to_sparse', 'train_val_test_split_adjacency', 'train_val_test_split_tabular', 'sort_nodes', 'sparse_feeder', 'gumbel_sample_random_walks', 'edge_cover', 'construct_line_graph', 'sample_random_walks_per_node', 'sample_random_walks_numba', ] def cartesian_product(x: np.ndarray, y: np.ndarray) -> np.ndarray: """ Form the cartesian product (i.e. all pairs of values) between two arrays. Parameters ---------- x Left array in the cartesian product. Shape [Nx] y Right array in the cartesian product. Shape [Ny] Returns ------- np.ndarray Cartesian product. Shape [Nx * Ny] """ return np.array(np.meshgrid(x, y)).T.reshape(-1, 2) def edges_to_sparse(edges: np.ndarray, num_nodes: int, weights: np.ndarray = None) -> sp.csr_matrix: """Create a sparse adjacency matrix from an array of edge indices and (optionally) values. Parameters ---------- edges Array with each row storing indices of an edge as (u, v). Shape [num_edges, 2] num_nodes Number of nodes in the resulting graph. weights Weights of the edges. If None, all edges weights are set to 1. Shape [num_edges] Returns ------- sp.csr_matrix Adjacency matrix in CSR format. """ if weights is None: weights = np.ones(edges.shape[0]) return sp.coo_matrix((weights, (edges[:, 0], edges[:, 1])), shape=(num_nodes, num_nodes)).tocsr() def train_val_test_split_tabular( *arrays: Iterable[Union[np.ndarray, sp.spmatrix]], train_size: float = 0.5, val_size: float = 0.3, test_size: float = 0.2, stratify: np.ndarray = None, random_state: int = None ) -> List[Union[np.ndarray, sp.spmatrix]]: """Split the arrays or matrices into random train, validation and test subsets. Parameters ---------- *arrays Allowed inputs are lists, numpy arrays or scipy-sparse matrices with the same length / shape[0]. train_size Proportion of the dataset included in the train split. val_size Proportion of the dataset included in the validation split. test_size Proportion of the dataset included in the test split. stratify If not None, data is split in a stratified fashion, using this as the class labels. random_state Random_state is the seed used by the random number generator; Returns ------- list, length=3 * len(arrays) List containing train-validation-test split of inputs. """ if len(set(array.shape[0] for array in arrays)) != 1: raise ValueError("Arrays must have equal first dimension.") idx = np.arange(arrays[0].shape[0]) idx_train_and_val, idx_test = train_test_split(idx, random_state=random_state, train_size=(train_size + val_size), test_size=test_size, stratify=stratify) if stratify is not None: stratify = stratify[idx_train_and_val] idx_train, idx_val = train_test_split(idx_train_and_val, random_state=random_state, train_size=(train_size / (train_size + val_size)), test_size=(val_size / (train_size + val_size)), stratify=stratify) result = [] for X in arrays: result.append(X[idx_train]) result.append(X[idx_val]) result.append(X[idx_test]) return result def train_val_test_split_adjacency(A, p_val=0.10, p_test=0.05, random_state=0, neg_mul=1, every_node=True, connected=False, undirected=False, use_edge_cover=True, set_ops=True, asserts=False): """Create edge and non-edge train, validation and test sets. Split the edges of the adjacency matrix into train, validation and test edges. Randomly sample validation and test non-edges. Parameters ---------- A : scipy.sparse.spmatrix Sparse unweighted adjacency matrix p_val : float Percentage of validation edges. Default p_val=0.10 p_test : float Percentage of test edges. Default p_test=0.05 random_state : int Seed for numpy.random. Default seed=0 neg_mul : int What multiplicity of negative samples (non-edges) to have in the test/validation set w.r.t the number of edges, i.e. len(non-edges) = L * len(edges). Default neg_mul=1 every_node : bool Make sure each node appears at least once in the train set. Default every_node=True connected : bool Make sure the training graph is still connected after the split undirected : bool Whether to make the split undirected, that is if (i, j) is in val/test set then (j, i) is there as well. Default undirected=False use_edge_cover: bool Whether to use (approximate) edge_cover to find the minimum set of edges that cover every node. Only active when every_node=True. Default use_edge_cover=True set_ops : bool Whether to use set operations to construction the test zeros. Default setwise_zeros=True Otherwise use a while loop. asserts : bool Unit test like checks. Default asserts=False Returns ------- train_ones : array-like, shape [n_train, 2] Indices of the train edges val_ones : array-like, shape [n_val, 2] Indices of the validation edges val_zeros : array-like, shape [n_val, 2] Indices of the validation non-edges test_ones : array-like, shape [n_test, 2] Indices of the test edges test_zeros : array-like, shape [n_test, 2] Indices of the test non-edges """ assert p_val + p_test > 0 assert A.max() == 1 # no weights assert A.min() == 0 # no negative edges assert A.diagonal().sum() == 0 # no self-loops assert not np.any(A.sum(0).A1 + A.sum(1).A1 == 0) # no dangling nodes is_undirected = (A != A.T).nnz == 0 if undirected: assert is_undirected # make sure is directed A = sp.tril(A).tocsr() # consider only upper triangular A.eliminate_zeros() else: if is_undirected: warnings.warn('Graph appears to be undirected. Did you forgot to set undirected=True?') np.random.seed(random_state) E = A.nnz N = A.shape[0] s_train = int(E * (1 - p_val - p_test)) idx = np.arange(N) # hold some edges so each node appears at least once if every_node: if connected: assert connected_components(A)[0] == 1 # make sure original graph is connected A_hold = minimum_spanning_tree(A) else: A.eliminate_zeros() # makes sure A.tolil().rows contains only indices of non-zero elements d = A.sum(1).A1 if use_edge_cover: hold_edges = edge_cover(A) # make sure the training percentage is not smaller than len(edge_cover)/E when every_node is set to True min_size = hold_edges.shape[0] if min_size > s_train: raise ValueError('Training percentage too low to guarantee every node. Min train size needed is {:.2f}.' .format(min_size / E)) else: # make sure the training percentage is not smaller than N/E when every_node is set to True if N > s_train: raise ValueError('Training percentage too low to guarantee every node. Min train size needed is {:.2f}.' .format(N / E)) hold_edges_d1 = np.column_stack( (idx[d > 0], np.row_stack(map(np.random.choice, A[d > 0].tolil().rows)))) if np.any(d == 0): hold_edges_d0 = np.column_stack((np.row_stack(map(np.random.choice, A[:, d == 0].T.tolil().rows)), idx[d == 0])) hold_edges = np.row_stack((hold_edges_d0, hold_edges_d1)) else: hold_edges = hold_edges_d1 if asserts: assert np.all(A[hold_edges[:, 0], hold_edges[:, 1]]) assert len(np.unique(hold_edges.flatten())) == N A_hold = edges_to_sparse(hold_edges, N) A_hold[A_hold > 1] = 1 A_hold.eliminate_zeros() A_sample = A - A_hold s_train = s_train - A_hold.nnz else: A_sample = A idx_ones = np.random.permutation(A_sample.nnz) ones = np.column_stack(A_sample.nonzero()) train_ones = ones[idx_ones[:s_train]] test_ones = ones[idx_ones[s_train:]] # return back the held edges if every_node: train_ones = np.row_stack((train_ones, np.column_stack(A_hold.nonzero()))) n_test = len(test_ones) * neg_mul if set_ops: # generate slightly more completely random non-edge indices than needed and discard any that hit an edge # much faster compared a while loop # in the future: estimate the multiplicity (currently fixed 1.3/2.3) based on A_obs.nnz if undirected: random_sample = np.random.randint(0, N, [int(2.3 * n_test), 2]) random_sample = random_sample[random_sample[:, 0] > random_sample[:, 1]] else: random_sample = np.random.randint(0, N, [int(1.3 * n_test), 2]) random_sample = random_sample[random_sample[:, 0] != random_sample[:, 1]] # discard ones random_sample = random_sample[A[random_sample[:, 0], random_sample[:, 1]].A1 == 0] # discard duplicates random_sample = random_sample[np.unique(random_sample[:, 0] * N + random_sample[:, 1], return_index=True)[1]] # only take as much as needed test_zeros = np.row_stack(random_sample)[:n_test] assert test_zeros.shape[0] == n_test else: test_zeros = [] while len(test_zeros) < n_test: i, j = np.random.randint(0, N, 2) if A[i, j] == 0 and (not undirected or i > j) and (i, j) not in test_zeros: test_zeros.append((i, j)) test_zeros = np.array(test_zeros) # split the test set into validation and test set s_val_ones = int(len(test_ones) * p_val / (p_val + p_test)) s_val_zeros = int(len(test_zeros) * p_val / (p_val + p_test)) val_ones = test_ones[:s_val_ones] test_ones = test_ones[s_val_ones:] val_zeros = test_zeros[:s_val_zeros] test_zeros = test_zeros[s_val_zeros:] if undirected: # put (j, i) edges for every (i, j) edge in the respective sets and form back original A symmetrize = lambda x: np.row_stack((x, np.column_stack((x[:, 1], x[:, 0])))) train_ones = symmetrize(train_ones) val_ones = symmetrize(val_ones) val_zeros = symmetrize(val_zeros) test_ones = symmetrize(test_ones) test_zeros = symmetrize(test_zeros) A = A.maximum(A.T) if asserts: set_of_train_ones = set(map(tuple, train_ones)) assert train_ones.shape[0] + test_ones.shape[0] + val_ones.shape[0] == A.nnz assert (edges_to_sparse(np.row_stack((train_ones, test_ones, val_ones)), N) != A).nnz == 0 assert set_of_train_ones.intersection(set(map(tuple, test_ones))) == set() assert set_of_train_ones.intersection(set(map(tuple, val_ones))) == set() assert set_of_train_ones.intersection(set(map(tuple, test_zeros))) == set() assert set_of_train_ones.intersection(set(map(tuple, val_zeros))) == set() assert len(set(map(tuple, test_zeros))) == len(test_ones) * neg_mul assert len(set(map(tuple, val_zeros))) == len(val_ones) * neg_mul assert not connected or connected_components(A_hold)[0] == 1 assert not every_node or ((A_hold - A) > 0).sum() == 0 return train_ones, val_ones, val_zeros, test_ones, test_zeros def sort_nodes(z, deg=None): """Sort the nodes such that consecutive nodes belong to the same cluster. Clusters are sorted from smallest to largest. Optionally also sort by node degrees within each cluster. Parameters ---------- z : array-like, shape [n_samples] The cluster indicators (labels) deg : array-like, shape [n_samples] Degree of each node Returns ------- o : array-like, shape [n_samples] Indices of the nodes that give the desired sorting """ _, idx, cnts = np.unique(z, return_counts=True, return_inverse=True) counts = cnts[idx] if deg is None: return np.lexsort((z, counts)) else: return np.lexsort((deg, z, counts)) def sparse_feeder(M): """Convert a sparse matrix to the format suitable for feeding as a tf.SparseTensor. Parameters ---------- M : sp.spmatrix Matrix to convert. Returns ------- indices : array-like, shape [num_edges, 2] Indices of the nonzero elements. values : array-like, shape [num_edges] Values of the nonzero elements. shape : tuple Shape of the matrix. """ M = sp.coo_matrix(M) return np.vstack((M.row, M.col)).T, M.data, M.shape def gumbel_sample_random_walks(A, walks_per_node, walk_length, random_state=None): """Sample random walks from a given graph using the Gumbel trick. Parameters ---------- A : sp.spmatrix Sparse adjacency matrix walks_per_node : int The number of random walks from each node. walk_length : int The length of each random walk. random_state : int or None Random seed for the numpy RNG. Returns ------- random_walks : array-like, shape [N*r, l] The sampled random walks """ if random_state is not None: np.random.seed(random_state) num_nodes = A.shape[0] samples = [] prev_nodes = np.random.permutation(np.repeat(
np.arange(num_nodes)
numpy.arange
from typing import Optional import numpy as np from dataset.augmentors import BaseAugmentor class DualAugmentor(BaseAugmentor): """ A class that applies 2 augmentors in parallel and creates a batch for SimCLR-based experiments. """ def __init__(self, augmentor1: Optional[BaseAugmentor], augmentor2: Optional[BaseAugmentor]): assert issubclass(type(augmentor1), BaseAugmentor) or augmentor1 is None assert issubclass(type(augmentor2), BaseAugmentor) or augmentor2 is None self._augmentor1: BaseAugmentor = augmentor1 self._augmentor2: BaseAugmentor = augmentor2 def augment_single(self, x: np.ndarray) -> np.ndarray: raise NotImplementedError("Dual augmentor overwrites augment_batch, use that instead") def augment_batch(self, batch: np.ndarray) -> np.ndarray: # We directly overwrite augment_batch instead of augment_single because of the nature of the augmentor. # NOTE - Important to copy, otherwise it's the same batch for both augmentation channels batch1: np.ndarray = batch.copy() batch2: np.ndarray = batch.copy() if self._augmentor1 is not None: batch1 = self._augmentor1.augment_batch(batch1) if self._augmentor2 is not None: batch2 = self._augmentor2.augment_batch(batch2) return
np.vstack((batch1, batch2))
numpy.vstack
#!/usr/bin/env python3 import numpy as np import sys, os from netCDF4 import Dataset import netCDF4 import h5py from osgeo import osr, ogr import csv import json import re import glob import uuid import pkg_resources import warnings from datetime import datetime def write_atl14meta(dst,fileout,ncTemplate,args): # setup basic dictionary of attributes to touch root_info={'asas_release':'SET_BY_PGE', 'date_created':'', 'fileName':'', 'geospatial_lat_max':0., \ 'geospatial_lat_min':0., 'geospatial_lon_max':0., 'geospatial_lon_min':0., \ 'netcdfversion':'', 'history':'SET_BY_PGE', \ 'identifier_product_format_version':'SET_BY_PGE', 'time_coverage_duration':0., \ 'time_coverage_end':'', 'time_coverage_start':'', 'uuid':''} # copy attributes, dimensions, variables, and groups from template if 'ATL15' in os.path.basename(fileout): ncTemplate = ncTemplate.replace('atl14','atl15') with Dataset(ncTemplate,'r') as src: # copy attributes for name in src.ncattrs(): dst.setncattr(name, src.getncattr(name)) # copy dimensions for name, dimension in src.dimensions.items(): dst.createDimension( name, (len(dimension) if not dimension.isunlimited else None)) # copy variables for name, variable in src.variables.items(): x = dst.createVariable(name, variable.datatype, variable.dimensions) dst.variables[name][:] = src.variables[name][:] # copy groups, recursively for grp in walktree(src): for child in grp: dg = dst.createGroup(child.path) for name in child.ncattrs(): dg.setncattr(name,child.getncattr(name)) for name, dimension in child.dimensions.items(): dg.createDimension(name, (len(dimension) if not dimension.isunlimited() else None)) for name, variable in child.variables.items(): x = dg.createVariable(name, variable.datatype, variable.dimensions) dg.variables[name][:] = child.variables[name][:] # build ATL11 lineage set_lineage(dst,root_info,args) # lat/lon bounds set_geobounds(dst,fileout,root_info) # set file and date attributes root_info.update({'netcdfversion': netCDF4.__netcdf4libversion__}) root_info.update({'uuid': str(uuid.uuid4())}) dst['METADATA/DatasetIdentification'].setncattr('uuid', str(uuid.uuid4()).encode('ASCII')) dateval = str(datetime.now().date()) dateval = dateval+'T'+str(datetime.now().time())+'Z' root_info.update({'date_created': dateval}) dst['METADATA/DatasetIdentification'].setncattr('creationDate', str(datetime.now().date())) root_info.update({'fileName': os.path.basename(fileout)}) dst['METADATA/DatasetIdentification'].setncattr('fileName', os.path.basename(fileout)) # apply dict of root level attributes for key, keyval in root_info.items(): dst.setncattr(key, keyval) # To recursively step through groups def walktree(top): yield top.groups.values() for value in top.groups.values(): yield from walktree(value) def set_lineage(dst,root_info,args): tilepath = args.tiles_dir atl11path = args.ATL11_lineage_dir # list of lineage attributes lineage = [] # regular expression for extracting ATL11 parameters rx = re.compile(r'(ATL\d{2})_(\d{4})(\d{2})_(\d{2})(\d{2})_(\d{3})_(\d{2})(.*?).h5$') # For each tile: min_start_delta_time = np.finfo(np.float64()).max max_end_delta_time = np.finfo(np.float64()).tiny ATL11_files=set() for tile in glob.iglob(os.path.join(tilepath,'*.h5')): with h5py.File(tile,'r') as h5f: inputs=str(h5f['/meta/'].attrs['input_files']) if inputs[0]=='b': inputs=inputs[1:] ATL11_files.update(inputs.replace("'",'').split(',')) for FILE in ATL11_files: # extract parameters from filename PRD,TRK,GRAN,SCYC,ECYC,RL,VERS,AUX = rx.findall(FILE).pop() with h5py.File(os.path.join(atl11path,FILE),'r') as fileID: # extract ATL11 attributes from files UUID = fileID['METADATA']['DatasetIdentification'].attrs['uuid'].decode('utf-8') SGEOSEG = fileID['ancillary_data/start_geoseg'][0] EGEOSEG = fileID['ancillary_data/end_geoseg'][0] SORBIT = fileID['ancillary_data/start_orbit'][0] EORBIT = fileID['ancillary_data/end_orbit'][0] sdeltatime = fileID['ancillary_data/start_delta_time'][0] edeltatime = fileID['ancillary_data/end_delta_time'][0] # track earliest and latest delta time and UTC if sdeltatime < min_start_delta_time: sUTCtime = fileID['ancillary_data/data_start_utc'][0].decode('utf-8') min_start_delta_time = sdeltatime if edeltatime > max_end_delta_time: eUTCtime = fileID['ancillary_data/data_end_utc'][0].decode('utf-8') max_end_delta_time = edeltatime # merge attributes as a tuple attrs = (FILE,PRD,int(TRK),int(GRAN),int(SCYC),int(ECYC),int(VERS),UUID,int(SGEOSEG), int(EGEOSEG),int(SORBIT),int(EORBIT)) # add attributes to list, if not already present if attrs not in lineage: lineage.append(attrs) # reduce to unique lineage attributes (no repeat files) # sorted(set(lineage)) # sort and set lineage attributes slineage = sorted(lineage,key=lambda x: (x[0])) dst['METADATA/Lineage/ATL11'].setncattr('fileName',list(zip(*slineage))[0]) dst['METADATA/Lineage/ATL11'].setncattr('shortName',list(zip(*slineage))[1]) dst['METADATA/Lineage/ATL11'].setncattr('start_rgt',list(zip(*slineage))[2]) dst['METADATA/Lineage/ATL11'].setncattr('end_rgt',list(zip(*slineage))[2]) dst['METADATA/Lineage/ATL11'].setncattr('start_region',list(zip(*slineage))[3]) dst['METADATA/Lineage/ATL11'].setncattr('end_region',list(zip(*slineage))[3]) dst['METADATA/Lineage/ATL11'].setncattr('start_cycle',list(zip(*slineage))[4]) dst['METADATA/Lineage/ATL11'].setncattr('end_cycle',list(zip(*slineage))[5]) dst['METADATA/Lineage/ATL11'].setncattr('version',list(zip(*slineage))[6]) dst['METADATA/Lineage/ATL11'].setncattr('uuid',list(zip(*slineage))[7]) dst['METADATA/Lineage/ATL11'].setncattr('start_geoseg',list(zip(*slineage))[8]) dst['METADATA/Lineage/ATL11'].setncattr('end_geoseg',list(zip(*slineage))[9]) dst['METADATA/Lineage/ATL11'].setncattr('start_orbit',list(zip(*slineage))[10]) dst['METADATA/Lineage/ATL11'].setncattr('end_orbit',list(zip(*slineage))[11]) # set time attributes root_info.update({'time_coverage_start': sUTCtime}) root_info.update({'time_coverage_end': eUTCtime}) root_info.update({'time_coverage_duration': max_end_delta_time-min_start_delta_time}) dst['/METADATA/Extent'].setncattr('rangeBeginningDateTime',sUTCtime) dst['/METADATA/Extent'].setncattr('rangeEndingDateTime',eUTCtime) # buuild lat/lon geo boundaries def set_geobounds(dst,fileout,root_info): if 'ATL14' in os.path.basename(fileout): georoot = '' else: georoot = '/delta_h' polar_srs=osr.SpatialReference() polar_srs.ImportFromEPSG(int(dst[georoot+'/Polar_Stereographic'].getncattr('spatial_epsg'))) ll_srs=osr.SpatialReference() ll_srs.ImportFromEPSG(4326) if hasattr(osr,'OAMS_TRADITIONAL_GIS_ORDER'): ll_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) polar_srs.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) ct=osr.CoordinateTransformation(polar_srs, ll_srs) xmin,xmax = (np.min(dst[georoot+'/x']),np.max(dst[georoot+'/x'])) ymin,ymax = (np.min(dst[georoot+'/y']),np.max(dst[georoot+'/y'])) N = 2 dx = (xmax-xmin)/N dy = (ymax-ymin)/N multipoint = ogr.Geometry(ogr.wkbMultiPoint) for x in range(N+1): for y in range(N+1): point = ogr.Geometry(ogr.wkbPoint) point.AddPoint(ymax - y*dy,xmin + x*dx) multipoint.AddGeometry(point) multipoint.Transform(ct) lonmin,lonmax,latmin,latmax = multipoint.GetEnvelope() if (lonmin == -180.0) | (lonmax == 180.0): lonmin,lonmax = (-180.0,180.0) root_info.update({'geospatial_lon_min': lonmin}) root_info.update({'geospatial_lon_max': lonmax}) root_info.update({'geospatial_lat_min': latmin}) root_info.update({'geospatial_lat_max': latmax}) # set variables and attributes, from JSON polygons, if present try: region = os.path.basename(fileout).split("_")[1] polyfile = pkg_resources.resource_filename('ATL1415','resources/region_extent_polygons.json') with open (polyfile) as poly_f: poly_data = poly_f.read() reg_poly = region+'_poly' poly = json.loads(poly_data) x = [row[0] for row in poly[reg_poly]] y = [row[1] for row in poly[reg_poly]] dst['/orbit_info'].variables['bounding_polygon_dim1'][:] = np.arange(1,np.size(x)+1) dst['/orbit_info'].variables['bounding_polygon_lon1'][:] = np.array(x)[:] dst['/orbit_info'].variables['bounding_polygon_lat1'][:] = np.array(y)[:] except: warnings.filterwarnings("always") warnings.warn("Deprecated. Use polygon from json file", DeprecationWarning) dst['/orbit_info'].variables['bounding_polygon_dim1'][:] = np.arange(1,4+1) dst['/orbit_info'].variables['bounding_polygon_lon1'][:] = np.array([lonmin,lonmax,lonmax,lonmin])[:] dst['/orbit_info'].variables['bounding_polygon_lat1'][:] =
np.array([latmax,latmax,latmin,latmin])
numpy.array
# -*- coding: utf-8 -*- """peaks_des.py """ import argparse import gc import healpy as hp import logging import multiprocessing import numpy as np import os import time from util import configure_logger from util import ang_dist def worker_peaks(map, bin_count, logbin_count, bin_range): logger = logging.getLogger(__name__) factor = 1 -
np.sum(map == hp.UNSEEN)
numpy.sum
# -*- coding: utf-8 -*- """ Created on Mon Sep 23 14:34:28 2019 @author: bwc """ # standard imports import numpy as np import matplotlib.pyplot as plt # custom imports import apt_fileio import plotting_stuff import peak_param_determination as ppd from histogram_functions import bin_dat import scipy.interpolate import image_registration.register_images import sel_align_m2q_log_xcorr import scipy.interpolate import time import m2q_calib import initElements_P3 from voltage_and_bowl import do_voltage_and_bowl import voltage_and_bowl import colorcet as cc import matplotlib._color_data as mcd def extents(f): delta = f[1] - f[0] return [f[0] - delta/2, f[-1] + delta/2] def create_histogram(ys,cts_per_slice=2**10,y_roi=None,delta_y=1.6e-3): num_y = int(np.ceil(np.abs(np.diff(y_roi))/delta_y/2)*2) # even number # num_ly = int(2**np.round(np.log2(np.abs(np.diff(ly_roi))/delta_ly)))-1 # closest power of 2 print('number of points in ly = ',num_y) num_x = int(ys.size/cts_per_slice) xs = np.arange(ys.size) N,x_edges,y_edges = np.histogram2d(xs,ys,bins=[num_x,num_y],range=[[1,ys.size],y_roi],density=False) return (N,x_edges,y_edges) def edges_to_centers(*edges): centers = [] for es in edges: centers.append((es[0:-1]+es[1:])/2) if len(centers)==1: centers = centers[0] return centers plt.close('all') fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R44_02203-v01.epos" epos = apt_fileio.read_epos_numpy(fn) epos = epos[100000::10] # Voltage and bowl correct ToF data p_volt = np.array([]) p_bowl = np.array([]) t_i = time.time() tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl) print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds") # Only apply bowl correction tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det']) ax = plotting_stuff.plot_TOF_vs_time(tof_bcorr,epos,2) # Plot histogram for steel fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=321,dpi=100) plt.clf() ax1, ax2 = fig.subplots(2,1,sharex=True) N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[400,600],cts_per_slice=2**10,delta_y=0.5) ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax1.set(ylabel='flight time (ns)') ax1twin = ax1.twinx() ax1twin.plot(epos['v_dc'],'-', linewidth=2, color=mcd.XKCD_COLORS['xkcd:white']) ax1twin.set(ylabel='applied voltage (volts)',ylim=[0, 6000],xlim=[0, 400000]) N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[425,475],cts_per_slice=2**10,delta_y=0.5) ax2.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)') fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\metal_not_wandering.svg', format='svg', dpi=600) # fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_04472-v02_allVfromAnn.epos" epos = apt_fileio.read_epos_numpy(fn) epos = epos[25000:] # Voltage and bowl correct ToF data p_volt = np.array([]) p_bowl = np.array([]) t_i = time.time() tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl) print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds") # Only apply bowl correction tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det']) ax = plotting_stuff.plot_TOF_vs_time(tof_bcorr,epos,2) # Plot histogram for sio2 fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=4321,dpi=100) plt.clf() ax1, ax2 = fig.subplots(2,1,sharex=True) N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[280,360],cts_per_slice=2**9,delta_y=.5) ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax1.set(ylabel='flight time (ns)') ax1twin = ax1.twinx() ax1twin.plot(epos['v_dc'],'-', linewidth=2, color=mcd.XKCD_COLORS['xkcd:white']) ax1twin.set(ylabel='applied voltage (volts)',ylim=[0000, 8000],xlim=[0, 400000]) N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[280,360],cts_per_slice=2**9,delta_y=.5) ax2.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)') fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\SiO2_NUV_wandering.svg', format='svg', dpi=600) # fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R20_07080-v01.epos" epos = apt_fileio.read_epos_numpy(fn) #epos = epos[165000:582000] plotting_stuff.plot_TOF_vs_time(epos['tof'],epos,1,clearFigure=True,user_ylim=[0,1000]) # Voltage and bowl correct ToF data p_volt = np.array([]) p_bowl = np.array([]) t_i = time.time() tof_corr, p_volt, p_bowl = do_voltage_and_bowl(epos,p_volt,p_bowl) print("time to voltage and bowl correct: "+str(time.time()-t_i)+" seconds") # Only apply bowl correction tof_bcorr = voltage_and_bowl.mod_geometric_bowl_correction(p_bowl,epos['tof'],epos['x_det'],epos['y_det']) ax = plotting_stuff.plot_TOF_vs_time(tof_bcorr,epos,2) # Plot histogram for sio2 fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=54321,dpi=100) plt.clf() ax1, ax2 = fig.subplots(2,1,sharex=True) N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[320,380],cts_per_slice=2**9,delta_y=.5) ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax1.set(ylabel='flight time (ns)') ax1twin = ax1.twinx() ax1twin.plot(epos['v_dc'],'-', linewidth=2, color=mcd.XKCD_COLORS['xkcd:white']) ax1twin.set(ylabel='applied voltage (volts)',ylim=[0000, 5000],xlim=[0, 400000]) N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[320,380],cts_per_slice=2**9,delta_y=.5) ax2.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)') fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\SiO2_EUV_wandering.svg', format='svg', dpi=600) ## Plot histogram for sio2 #fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=654321,dpi=100) #plt.clf() #ax1,ax2, ax3 = fig.subplots(1,3,sharey=True) #N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[0,1000],cts_per_slice=2**10,delta_y=.125) ##ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', ## extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, ## interpolation='bilinear') # #event_idx_range_ref = [10000, 20000] #event_idx_range_mov = [70000, 80000] # #x_centers = edges_to_centers(x_edges) #idxs_ref = (x_centers>=event_idx_range_ref[0]) & (x_centers<=event_idx_range_ref[1]) #idxs_mov = (x_centers>=event_idx_range_mov[0]) & (x_centers<=event_idx_range_mov[1]) # #ref_hist = np.sum(N[idxs_ref,:],axis=0) #mov_hist = np.sum(N[idxs_mov,:],axis=0) # #y_centers = edges_to_centers(y_edges) #sc = 300 # # #ax1.set(xlim=[84, 96]) #ax2.set(xlim=[348,362]) #ax3.set(xlim=[498,512]) # # #ax1.plot(y_centers,ref_hist+mov_hist+2*sc) #ax2.plot(y_centers,ref_hist+mov_hist+2*sc) #ax3.plot(y_centers,ref_hist+mov_hist+2*sc) # # #ax1.plot(y_centers,mov_hist+5*sc) #ax2.plot(y_centers,mov_hist+5*sc) #ax3.plot(y_centers,mov_hist+5*sc) # #N,x_edges,y_edges = create_histogram(1.003*tof_bcorr,y_roi=[0,1000],cts_per_slice=2**10,delta_y=.125) #mov_hist = np.sum(N[idxs_mov,:],axis=0) # # # #ax1.plot(y_centers,ref_hist+6*sc) #ax2.plot(y_centers,ref_hist+6*sc) #ax3.plot(y_centers,ref_hist+6*sc) # # #ax1.plot(y_centers,mov_hist+4*sc) #ax2.plot(y_centers,mov_hist+4*sc) #ax3.plot(y_centers,mov_hist+4*sc) # # #ax1.plot(y_centers,mov_hist+ref_hist+1*sc) #ax2.plot(y_centers,mov_hist+ref_hist+1*sc) #ax3.plot(y_centers,mov_hist+ref_hist+1*sc) # #N,x_edges,y_edges = create_histogram(1.006*tof_bcorr,y_roi=[0,1000],cts_per_slice=2**10,delta_y=.125) #mov_hist = np.sum(N[idxs_mov,:],axis=0) # # #ax1.plot(y_centers,mov_hist+3*sc) #ax2.plot(y_centers,mov_hist+3*sc) #ax3.plot(y_centers,mov_hist+3*sc) # # #ax1.plot(y_centers,mov_hist+ref_hist) #ax2.plot(y_centers,mov_hist+ref_hist) #ax3.plot(y_centers,mov_hist+ref_hist) # # # # # #fig.tight_layout() # # #fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\correction_idea.svg', format='svg', dpi=600) # #def shaded_plot(ax,x,y,idx): # sc = 250 # cols = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] # # xlim = ax.get_xlim() # # idxs = np.nonzero((x>=xlim[0]) & (x<=xlim[1])) # # ax.fill_between(x[idxs], y[idxs]+idx*sc, (idx-0.005)*sc, color=cols[idx]) ## ax.plot(x,y+idx*sc, color='k') # return # # # # ## Plot histogram for sio2 #fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=654321,dpi=100) #plt.clf() #ax1,ax2 = fig.subplots(1,2,sharey=True) #N,x_edges,y_edges = create_histogram(tof_bcorr,y_roi=[80,400],cts_per_slice=2**10,delta_y=.125) ##ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', ## extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, ## interpolation='bilinear') # #event_idx_range_ref = [10000, 20000] #event_idx_range_mov = [70000, 80000] # #x_centers = edges_to_centers(x_edges) #idxs_ref = (x_centers>=event_idx_range_ref[0]) & (x_centers<=event_idx_range_ref[1]) #idxs_mov = (x_centers>=event_idx_range_mov[0]) & (x_centers<=event_idx_range_mov[1]) # #ref_hist = np.sum(N[idxs_ref,:],axis=0) #mov_hist = np.sum(N[idxs_mov,:],axis=0) # #y_centers = edges_to_centers(y_edges) # # #ax1.set(xlim=[87, 93]) #ax2.set(xlim=[352,360]) ##ax3.set(xlim=[498,512]) # # #shaded_plot(ax1,y_centers,ref_hist+mov_hist,2) #shaded_plot(ax2,y_centers,ref_hist+mov_hist,2) # #shaded_plot(ax1,y_centers,mov_hist,5) #shaded_plot(ax2,y_centers,mov_hist,5) # #N,x_edges,y_edges = create_histogram(1.003*tof_bcorr,y_roi=[80,400],cts_per_slice=2**10,delta_y=.125) #mov_hist = np.sum(N[idxs_mov,:],axis=0) # #shaded_plot(ax1,y_centers,ref_hist,6) #shaded_plot(ax2,y_centers,ref_hist,6) # # #shaded_plot(ax1,y_centers,mov_hist,4) #shaded_plot(ax2,y_centers,mov_hist,4) # # #shaded_plot(ax1,y_centers,mov_hist+ref_hist,1) #shaded_plot(ax2,y_centers,mov_hist+ref_hist,1) # # #N,x_edges,y_edges = create_histogram(1.006*tof_bcorr,y_roi=[80,400],cts_per_slice=2**10,delta_y=.125) #mov_hist = np.sum(N[idxs_mov,:],axis=0) # # #shaded_plot(ax1,y_centers,mov_hist,3) #shaded_plot(ax2,y_centers,mov_hist,3) # # #shaded_plot(ax1,y_centers,mov_hist+ref_hist,0) #shaded_plot(ax2,y_centers,mov_hist+ref_hist,0) # # # #fig.tight_layout() # # #fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\correction_idea.svg', format='svg', dpi=600) def shaded_plot(ax,x,y,idx,col_idx=None): if col_idx is None: col_idx = idx sc = 50 cols = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] xlim = ax.get_xlim() idxs = np.nonzero((x>=xlim[0]) & (x<=xlim[1])) ax.fill_between(x[idxs], y[idxs]+idx*sc, (idx-0.005)*sc, color=cols[col_idx]) # ax.plot(x,y+idx*sc, color='k') return # Plot histogram for sio2 fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=654321,dpi=100) plt.clf() ax2 = fig.subplots(1,1) N,x_edges,y_edges = create_histogram(tof_corr,y_roi=[80,400],cts_per_slice=2**10,delta_y=0.0625) #ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', # extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, # interpolation='bilinear') event_idx_range_ref = [0, 0+1024] event_idx_range_mov = [124000, 124000+1024] x_centers = edges_to_centers(x_edges) idxs_ref = (x_centers>=event_idx_range_ref[0]) & (x_centers<=event_idx_range_ref[1]) idxs_mov = (x_centers>=event_idx_range_mov[0]) & (x_centers<=event_idx_range_mov[1]) ref_hist = np.sum(N[idxs_ref,:],axis=0) mov_hist = np.sum(N[idxs_mov,:],axis=0) y_centers = edges_to_centers(y_edges) ax2.set(xlim=[290,320]) #ax2.set(xlim=[0, 1000]) #ax3.set(xlim=[498,512]) N,x_edges,y_edges = create_histogram(0.98*tof_corr,y_roi=[80,400],cts_per_slice=2**10,delta_y=0.0625) mov_hist = np.sum(N[idxs_mov,:],axis=0) #shaded_plot(ax2,y_centers,ref_hist+mov_hist,2) shaded_plot(ax2,y_centers,mov_hist,2,2) N,x_edges,y_edges = create_histogram(0.99*tof_corr,y_roi=[80,400],cts_per_slice=2**10,delta_y=0.0625) mov_hist = np.sum(N[idxs_mov,:],axis=0) shaded_plot(ax2,y_centers,ref_hist,3,3) shaded_plot(ax2,y_centers,mov_hist,1,1) #shaded_plot(ax2,y_centers,mov_hist+ref_hist,1) N,x_edges,y_edges = create_histogram(1.0*tof_corr,y_roi=[80,400],cts_per_slice=2**10,delta_y=0.0625) mov_hist = np.sum(N[idxs_mov,:],axis=0) shaded_plot(ax2,y_centers,mov_hist,0,col_idx=0) #shaded_plot(ax2,y_centers,mov_hist+ref_hist,0) #fig.gca().grid() fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\correction_idea1.svg', format='svg', dpi=600) cs = np.linspace(0.975, 1.005, 256) dp = np.zeros_like(cs) for idx, c in enumerate(cs): N,x_edges,y_edges = create_histogram(c*tof_corr,y_roi=[80,400],cts_per_slice=2**10,delta_y=0.0625) mov_hist = np.sum(N[idxs_mov,:],axis=0) dp[idx] = np.sum((mov_hist/np.sum(mov_hist))*(ref_hist/np.sum(ref_hist))) # Plot histogram for sio2 fig = plt.figure(figsize=(2*3.14961,1*3.14961),num=7654321,dpi=100) plt.clf() ax1 = fig.subplots(1,1) ax1.set(xlim=[0.975, 1.005],ylim=[-0.1,1.1]) f = scipy.interpolate.interp1d(cs,dp/np.max(dp)) cols = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] xq = [0.98, 0.99017, 1.0] for idx in [0,1,2]: ax1.plot(xq[idx],f(xq[idx]),'o',markersize=14,color=cols[2-idx]) ax1.plot(cs,dp/np.max(dp),'k') fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\correction_idea2.svg', format='svg', dpi=600) import sel_align_m2q_log_xcorr_v2 fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_04472-v03.epos" #fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_04472-v02.epos" # fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\GaN epos files\R20_07148-v01.epos" # Mg doped # fn = fn[:-5]+'_vbm_corr.epos' epos = apt_fileio.read_epos_numpy(fn) epos = epos[25000:] epos = epos[:400000] fake_tof = np.sqrt((296/312)*epos['m2q']/1.393e-4) cts_per_slice=2**7 #m2q_roi = [0.9,190] tof_roi = [0, 1000] import time t_start = time.time() pointwise_scales,piecewise_scales = sel_align_m2q_log_xcorr_v2.get_all_scale_coeffs(epos['m2q'], m2q_roi=[0.8,80], cts_per_slice=cts_per_slice, max_scale=1.15) t_end = time.time() print('Total Time = ',t_end-t_start) fake_tof_corr = fake_tof/np.sqrt(pointwise_scales) m2q_corr = epos['m2q']/pointwise_scales # Plot histogram for sio2 fig = plt.figure(figsize=(2*3.14961,2*3.14961),num=87654321,dpi=100) plt.clf() ax1, ax2 = fig.subplots(2,1,sharex=True) N,x_edges,y_edges = create_histogram(fake_tof,y_roi=[280,360],cts_per_slice=cts_per_slice,delta_y=.5) ax1.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax1.set(ylabel='flight time (ns)') ax1twin = ax1.twinx() ax1twin.plot(pointwise_scales,'-', linewidth=1, color=mcd.XKCD_COLORS['xkcd:white']) ax1twin.set(ylabel='correction factor, c',ylim=[0.95, 1.3],xlim=[0, 400000]) N,x_edges,y_edges = create_histogram(fake_tof_corr,y_roi=[280,360],cts_per_slice=cts_per_slice,delta_y=.5) ax2.imshow(np.log10(1+1*np.transpose(N)), aspect='auto', extent=extents(x_edges) + extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='bilinear') ax2.set(xlabel='ion sequence',ylabel='corrected flight time (ns)') fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\SiO2_NUV_corrected.svg', format='svg', dpi=600) def shaded_plot(ax,x,y,idx,col_idx=None,min_val=None): if col_idx is None: col_idx = idx if min_val is None: min_val = np.min(y) sc = 150 cols = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] xlim = ax.get_xlim() idxs = np.nonzero((x>=xlim[0]) & (x<=xlim[1])) ax.fill_between(x[idxs], y[idxs], min_val, color=cols[col_idx]) # ax.plot(x,y+idx*sc, color='k') return fig = plt.figure(constrained_layout=True,figsize=(2*3.14961,2*3.14961),num=87654321,dpi=100) plt.clf() gs = plt.GridSpec(2, 3, figure=fig) ax0 = fig.add_subplot(gs[0, :]) # identical to ax1 = plt.subplot(gs.new_subplotspec((0, 0), colspan=3)) ax1 = fig.add_subplot(gs[1,0:2]) #ax2 = fig.add_subplot(gs[1,1]) ax3 = fig.add_subplot(gs[1,2]) dat = epos['m2q'] user_bin_width = 0.03 user_xlim = [0,65] ax0.set(xlim=user_xlim) dat = m2q_corr xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax0,xs,100*(1+ys),1,min_val=100) dat = epos['m2q'] xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax0,xs,1+ys,0,min_val=1) ax0.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) ax0.set_yscale('log') user_bin_width = 0.01 user_xlim = [13,19] ax1.set(xlim=user_xlim) dat = m2q_corr xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax1,xs,100*(1+ys),1,min_val=100) dat = epos['m2q'] xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax1,xs,1+ys,0,min_val=1) ax1.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) ax1.set_yscale('log') # # ##user_bin_width = 0.01 #user_xlim = [30,34] #ax2.set(xlim=user_xlim) # # #dat = m2q_corr #xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) #shaded_plot(ax2,xs,100*(1+ys),1,min_val=100) # # #dat = epos['m2q'] #xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) #shaded_plot(ax2,xs,1+ys,0,min_val=1) # # #ax2.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) #ax2.set_yscale('log') #user_bin_width = 0.01 user_xlim = [58,64] ax3.set(xlim=user_xlim) dat = m2q_corr xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax3,xs,100*(1+ys),1,min_val=100) dat = epos['m2q'] xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax3,xs,1+ys,0,min_val=1) ax3.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) ax3.set_yscale('log') ax0.set(ylim=[1,None]) ax1.set(ylim=[1,None]) ax2.set(ylim=[1,None]) ax3.set(ylim=[1,None]) fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\SiO2_NUV_corrected_hist.svg', format='svg', dpi=600) fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_00504-v56.epos" #fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\R45_data\R45_04472-v02.epos" # fn = r"Q:\NIST_Projects\EUV_APT_IMS\BWC\GaN epos files\R20_07148-v01.epos" # Mg doped # fn = fn[:-5]+'_vbm_corr.epos' epos = apt_fileio.read_epos_numpy(fn) #epos = epos[25000:] #epos = epos[:400000] cts_per_slice=2**9 import time t_start = time.time() pointwise_scales,piecewise_scales = sel_align_m2q_log_xcorr_v2.get_all_scale_coeffs(epos['m2q'], m2q_roi=[10,250], cts_per_slice=cts_per_slice, max_scale=1.15) t_end = time.time() print('Total Time = ',t_end-t_start) m2q_corr = epos['m2q']/pointwise_scales def shaded_plot(ax,x,y,idx,col_idx=None,min_val=None): if col_idx is None: col_idx = idx if min_val is None: min_val = np.min(y) cols = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] xlim = ax.get_xlim() idxs = np.nonzero((x>=xlim[0]) & (x<=xlim[1])) ax.fill_between(x[idxs], y[idxs], min_val, color=cols[col_idx]) # ax.plot(x,y+idx*sc, color='k') return fig = plt.figure(constrained_layout=True,figsize=(2*3.14961,2*3.14961),num=87654321,dpi=100) plt.clf() gs = plt.GridSpec(2, 3, figure=fig) ax0 = fig.add_subplot(gs[0, :]) # identical to ax1 = plt.subplot(gs.new_subplotspec((0, 0), colspan=3)) ax1 = fig.add_subplot(gs[1,0:2]) #ax2 = fig.add_subplot(gs[1,1]) ax3 = fig.add_subplot(gs[1,2]) dat = epos['m2q'] user_bin_width = 0.03 user_xlim = [0,200] ax0.set(xlim=user_xlim) dat = m2q_corr xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax0,xs,10*(1+ys),1,min_val=10) dat = epos['m2q'] xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax0,xs,1+ys,0,min_val=1) ax0.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) ax0.set_yscale('log') ax0.set(ylim=[10,None]) user_bin_width = 0.01 user_xlim = [45,55] ax1.set(xlim=user_xlim) dat = m2q_corr xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax1,xs,10*(1+ys),1,min_val=10) dat = epos['m2q'] xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax1,xs,1+ys,0,min_val=1) ax1.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) ax1.set_yscale('log') ax1.set(ylim=[10,None]) # # ##user_bin_width = 0.01 #user_xlim = [30,34] #ax2.set(xlim=user_xlim) # # #dat = m2q_corr #xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) #shaded_plot(ax2,xs,100*(1+ys),1,min_val=100) # # #dat = epos['m2q'] #xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) #shaded_plot(ax2,xs,1+ys,0,min_val=1) # # #ax2.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) #ax2.set_yscale('log') #user_bin_width = 0.01 user_xlim = [168,178] ax3.set(xlim=user_xlim) dat = m2q_corr xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax3,xs,10*(1+ys),1,min_val=10) dat = epos['m2q'] xs, ys = bin_dat(dat,isBinAligned=True,bin_width=user_bin_width,user_roi=user_xlim) shaded_plot(ax3,xs,1+ys,0,min_val=1) ax3.set(xlabel='m/z (Da)', ylabel='counts', xlim=user_xlim) ax3.set_yscale('log') ax3.set(ylim=[10,None]) fig.tight_layout() fig.savefig(r'Q:\users\bwc\APT\scale_corr_paper\Ceria_NUV_corrected_hist.svg', format='svg', dpi=600) ceria_chi2 = [50100017.77823232, 54953866.6417411 , 56968470.41426052, 57832991.31751654, 58136713.37802257, 58103886.08055325, 57387594.45685758, 56278878.21237884, 52715317.92279702, 48064845.44202947, 42888989.38802697, 34852375.17765743, 30543492.44201695] ceria_slic = [1.6000e+01, 3.2000e+01, 6.4000e+01, 1.2800e+02, 2.5600e+02, 5.1200e+02, 1.0240e+03, 2.0480e+03, 4.0960e+03, 8.1920e+03, 1.6384e+04, 3.2768e+04, 6.5536e+04] sio2_slic = [1.6000e+01, 3.2000e+01, 6.4000e+01, 1.2800e+02, 2.5600e+02, 5.1200e+02, 1.0240e+03, 2.0480e+03, 4.0960e+03, 8.1920e+03, 1.6384e+04, 3.2768e+04, 6.5536e+04] sio2_chi2 = [1.14778821e+08, 1.47490976e+08, 1.52686129e+08, 1.51663402e+08, 1.45270347e+08, 1.34437550e+08, 1.18551040e+08, 1.01481358e+08, 8.62360167e+07, 7.45989701e+07, 6.50088595e+07, 4.22995630e+07, 3.71045091e+07] fig = plt.figure(num=666) fig.clear() ax = fig.gca() ax.plot(sio2_slic,sio2_chi2/np.max(sio2_chi2),'s-', markersize=8,label='SiO2') ax.plot(ceria_slic,ceria_chi2/
np.max(ceria_chi2)
numpy.max
import numpy as np from scipy import (linalg, optimize as op, stats) def whiten(X, axis=0): return (X - np.mean(X, axis=axis))/np.std(X, axis=axis) def generate_data(n_samples, n_features, n_latent_factors, n_components, omega_scale=1, noise_scale=1, random_seed=0, force=None): rng = np.random.RandomState(random_seed) A = stats.special_ortho_group.rvs(n_features, random_state=rng) A = A[:, :n_latent_factors] AL = linalg.cholesky(A.T @ A) A = A @ linalg.solve(AL, np.eye(n_latent_factors)) pvals = np.ones(n_components) / n_components R = np.argmax(rng.multinomial(1, pvals, size=n_samples), axis=1) pi = np.array([np.sum(R == i) for i in range(n_components)])/n_samples xi = rng.randn(n_latent_factors, n_components) omega = np.zeros((n_latent_factors, n_latent_factors, n_components)) if force is not None: if "xi" in force: xi = force["xi"] print("using forced xi") if "A" in force: A = force["A"] print("using forced A") for i in range(n_components): omega[(*np.diag_indices(n_latent_factors), i)] = \ rng.gamma(1, scale=omega_scale, size=n_latent_factors)**2 if force is not None: if "omega" in force: omega = force["omega"] print("using forced omega") scores = np.empty((n_samples, n_latent_factors)) for i in range(n_components): match = (R == i) scores[match] = rng.multivariate_normal(xi.T[i], omega.T[i], size=sum(match)) psi = rng.gamma(1, scale=noise_scale, size=n_features) noise = np.sqrt(psi) * rng.randn(n_samples, n_features) X = scores @ A.T + noise truth = dict(A=A, pi=pi, xi=xi, omega=omega, psi=psi, noise=noise, R=R, scores=scores) return (X, truth) def old_generate_data(n_samples=20, n_features=5, n_latent_factors=3, n_components=2, omega_scale=1, noise_scale=1, latent_scale=1, random_seed=0): rng = np.random.RandomState(random_seed) #A = rng.randn(n_features, n_latent_factors) sigma_L = np.abs(rng.normal(0, latent_scale)) choose = lambda x, y: int(np.math.factorial(x) \ / (np.math.factorial(y) * np.math.factorial(x - y))) M = n_latent_factors * (n_features - n_latent_factors) \ + choose(n_latent_factors, 2) beta_lower_triangular = rng.normal(0, sigma_L, size=M) beta_diag = np.abs(rng.normal(0, latent_scale, size=n_latent_factors)) A =
np.zeros((n_features, n_latent_factors), dtype=float)
numpy.zeros
""" Author: <NAME> (<EMAIL>) Date: May 07, 2020 """ from __future__ import print_function import torch import torch.nn as nn import numpy as np class SupConLoss(nn.Module): """Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf. It also supports the unsupervised contrastive loss in SimCLR""" def __init__(self, temperature=0.07, contrast_mode='all', base_temperature=0.07): super(SupConLoss, self).__init__() self.temperature = temperature self.contrast_mode = contrast_mode self.base_temperature = base_temperature def forward(self, features, labels=None, mask=None): """Compute loss for model. If both `labels` and `mask` are None, it degenerates to SimCLR unsupervised loss: https://arxiv.org/pdf/2002.05709.pdf Args: features: hidden vector of shape [bsz, n_views, ...]. labels: ground truth of shape [bsz]. mask: contrastive mask of shape [bsz, bsz], mask_{i,j}=1 if sample j has the same class as sample i. Can be asymmetric. Returns: A loss scalar. """ device = (torch.device('cuda') if features.is_cuda else torch.device('cpu')) if len(features.shape) < 3: raise ValueError('`features` needs to be [bsz, n_views, ...],' 'at least 3 dimensions are required') if len(features.shape) > 3: features = features.view(features.shape[0], features.shape[1], -1) batch_size = features.shape[0] if labels is not None and mask is not None: raise ValueError('Cannot define both `labels` and `mask`') elif labels is None and mask is None: mask = torch.eye(batch_size, dtype=torch.float32).to(device) elif labels is not None: labels = labels.contiguous().view(-1, 1) if labels.shape[0] != batch_size: raise ValueError('Num of labels does not match num of features') mask = torch.eq(labels, labels.T).float().to(device) else: mask = mask.float().to(device) contrast_count = features.shape[1] contrast_feature = torch.cat(torch.unbind(features, dim=1), dim=0) if self.contrast_mode == 'one': anchor_feature = features[:, 0] anchor_count = 1 elif self.contrast_mode == 'all': anchor_feature = contrast_feature anchor_count = contrast_count else: raise ValueError('Unknown mode: {}'.format(self.contrast_mode)) # compute logits anchor_dot_contrast = torch.div( torch.matmul(anchor_feature, contrast_feature.T), self.temperature) # for numerical stability logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() # tile mask mask = mask.repeat(anchor_count, contrast_count) # mask-out self-contrast cases logits_mask = torch.scatter( torch.ones_like(mask), 1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0 ) mask = mask * logits_mask # compute log_prob exp_logits = torch.exp(logits) * logits_mask log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positive mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # loss loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss class LabeledContrastiveLoss(nn.Module): def __init__(self, temp=0.5, eps=1e-3, pos_in_denom=False, # True log_first=True, # False a_lc=1.0, a_spread=0.0, noise_rate=0.0, K=-1, lc_norm = False, old_lnew = False, detect_noise=False, correct_noise=False, num_classes=10): super().__init__() self.temp = temp self.eps = eps self.log_first = log_first self.a_lc=a_lc self.a_spread=a_spread self.pos_in_denom = pos_in_denom self.noise_rate = noise_rate p = 1 - noise_rate + noise_rate * (1. / num_classes) self.p = p self.num_classes = num_classes self.lc_norm = lc_norm self.K = K self.old_lnew = old_lnew self.detect_noise = detect_noise self.correct_noise = correct_noise def forward(self, x, labels): # x has shape batch * num views * dimension # labels has shape batch * num views labels = labels.unsqueeze(1).repeat(1, 2) b, nViews, d = x.size() vs = torch.split(x,1, dim=1) # images indexed by view ts = torch.split(labels, 1, dim=1) # labels indexed by view l = 0. pairs = nViews*(nViews-1)//2 for ii in range(nViews): vi = vs[ii].squeeze() ti = ts[ii].squeeze() ti_np = np.array([int(label) for label in ti]) for jj in range(ii): vj = vs[jj].squeeze() tj = ts[jj].squeeze() if self.log_first: if self.old_lnew: # old implementation of L_new # don't include these in positives _mask = ti.unsqueeze(0) != tj.unsqueeze(1) # num[i,j] is f(xi) * f(xj) / tau, for i,j if self.lc_norm: num = torch.einsum('b d, c d -> b c', vi, vj).div(self.temp).div( torch.norm(vi, dim=1) * torch.norm(vj, dim=1) ) else: num = torch.einsum('b d, c d -> b c', vi, vj).div(self.temp) # _mask_denom is True when yi != yj _mask_denom = (ti.unsqueeze(0) != tj.unsqueeze(1)).float() if self.noise_rate > 0.: _mask_denom[ti.unsqueeze(0) == tj.unsqueeze(1)] = self.noise_rate _mask_denom[torch.eye(ti.shape[0], dtype=bool)] = 0. # for numerical stability, see log-sum-exp trick num_max, _ = torch.max(num, dim=1, keepdim=True) # log_denom[i,j] is log[exp(f(xi) * f(xj) / tau) + # + sum_{j in _mask_denom[i]} exp(f(xi) * f(xj) / tau) log_denom = ( # sum_{j in _mask_denom[i]} exp(f(xi) * f(xj) / tau) (torch.exp(num - num_max) * _mask_denom).sum(-1, keepdim=True) + # exp(f(xi) * f(xj) / tau) torch.exp(num - num_max) ).log() + num_max log_prob = num - log_denom if self.noise_rate > 0.: _mask_mult = (ti.unsqueeze(0) == tj.unsqueeze(1)).float() * (1. - self.noise_rate) _mask_mult[torch.eye(ti.shape[0], dtype=bool)] = 1. log_prob = log_prob * _mask_mult _mask_nans_infs = torch.isnan(log_prob) + torch.isinf(log_prob) a = -log_prob.masked_fill( _mask, math.log(self.eps) ).masked_fill( _mask_nans_infs, math.log(self.eps) ).sum(-1).div(_mask.sum(-1)) l += a.mean() else: # new implementation of L_new/L_out # don't include these in positives _mask = ti.unsqueeze(0) != tj.unsqueeze(1) # num[i,j] is f(xi) * f(xj) / tau, for i,j if self.lc_norm: num = torch.einsum('b d, c d -> b c', vi, vj).div(self.temp).div( torch.norm(vi, dim=1) * torch.norm(vj, dim=1) ) else: num = torch.einsum('b d, c d -> b c', vi, vj).div(self.temp) if self.detect_noise: # new implementation of L_new _mask_same_class = ti.unsqueeze(0) == tj.unsqueeze(1) _mask_same_class[torch.eye(ti.shape[0], dtype=bool)] = False _mask_diff_class = ti.unsqueeze(0) != tj.unsqueeze(1) num_norm = torch.einsum('b d, c d -> b c', vi, vj).div(self.temp).div( torch.norm(vi, dim=1) * torch.norm(vj, dim=1) ) num_norm_numpy = num_norm.detach().cpu().numpy() if (min(torch.sum(_mask_same_class, axis=0)) == 0 or min(torch.sum(_mask_diff_class, axis=0)) == 0): # crazy edge case where every element in the batch has the same class?? preds_class_correct = np.ones(ti_np.shape[0], dtype=bool) else: same_class_sim = np.average(num_norm_numpy, axis=0, weights=_mask_same_class.detach().cpu().numpy()) diff_class_sim = np.average(num_norm_numpy, axis=0, weights=_mask_diff_class.detach().cpu().numpy()) difference = same_class_sim - diff_class_sim preds_class_correct = np.ones(ti_np.shape[0], dtype=bool) preds_class_correct[np.argsort(difference)[:int((1-self.p) * ti.shape[0])]] = False if self.correct_noise: class_sims = [] for cls in range(self.num_classes): class_sim = np.mean( num_norm_numpy, axis=1, where=np.tile((ti_np == cls), (len(ti_np), 1)) ) class_sims.append(class_sim) class_preds =
np.argmax(class_sims, axis=0)
numpy.argmax
import os import numpy as np from torch.utils.data.sampler import Sampler import sys import os.path as osp import torch import time def time_now(): return time.strftime('%y-%m-%d %H:%M:%S', time.localtime()) def load_data(input_data_path ): with open(input_data_path) as f: data_file_list = open(input_data_path, 'rt').read().splitlines() # Get full list of color image and labels file_image = [s.split(' ')[0] for s in data_file_list] file_label = [int(s.split(' ')[1]) for s in data_file_list] return file_image, file_label def GenIdx( train_color_label, train_ir_label): color_pos = [] unique_label_color =
np.unique(train_color_label)
numpy.unique
# Licensed under a 3-clause BSD style license - see LICENSE.rst """A miscellaneous collection of basic functions.""" import sys import copy import os import warnings from collections.abc import Iterable from pathlib import Path import tempfile from scipy.interpolate import interp1d from scipy.stats import ncx2 import numpy as np from numpy import histogram2d as histogram2d_np from numpy import histogram as histogram_np from astropy.logger import AstropyUserWarning from astropy import log from stingray.stats import pds_probability, pds_detection_level from stingray.stats import z2_n_detection_level, z2_n_probability from stingray.stats import fold_detection_level, fold_profile_probability from stingray.pulse.pulsar import _load_and_prepare_TOAs try: import pint.toa as toa import pint from pint.models import get_model HAS_PINT = True except ImportError: HAS_PINT = False try: from skimage.feature import peak_local_max HAS_SKIMAGE = True except ImportError: HAS_SKIMAGE = False try: from tqdm import tqdm as show_progress except ImportError: def show_progress(a): return a from . import ( prange, array_take, HAS_NUMBA, njit, vectorize, float32, float64, int32, int64, ) __all__ = [ "array_take", "njit", "prange", "show_progress", "z2_n_detection_level", "z2_n_probability", "pds_detection_level", "pds_probability", "fold_detection_level", "fold_profile_probability", "r_in", "r_det", "_assign_value_if_none", "_look_for_array_in_array", "is_string", "_order_list_of_arrays", "mkdir_p", "common_name", "hen_root", "optimal_bin_time", "gti_len", "deorbit_events", "_add_default_args", "check_negative_numbers_in_args", "interpret_bintime", "get_bin_edges", "compute_bin", "hist1d_numba_seq", "hist2d_numba_seq", "hist3d_numba_seq", "hist2d_numba_seq_weight", "hist3d_numba_seq_weight", "index_arr", "index_set_arr", "histnd_numba_seq", "histogram2d", "histogram", "touch", "log_x", "get_list_of_small_powers", "adjust_dt_for_power_of_two", "adjust_dt_for_small_power", "memmapped_arange", "nchars_in_int_value", ] DEFAULT_PARSER_ARGS = {} DEFAULT_PARSER_ARGS["loglevel"] = dict( args=["--loglevel"], kwargs=dict( help=( "use given logging level (one between INFO, " "WARNING, ERROR, CRITICAL, DEBUG; " "default:WARNING)" ), default="WARNING", type=str, ), ) DEFAULT_PARSER_ARGS["nproc"] = dict( args=["--nproc"], kwargs=dict(help=("Number of processors to use"), default=1, type=int), ) DEFAULT_PARSER_ARGS["debug"] = dict( args=["--debug"], kwargs=dict( help=("set DEBUG logging level"), default=False, action="store_true" ), ) DEFAULT_PARSER_ARGS["bintime"] = dict( args=["-b", "--bintime"], kwargs=dict(help="Bin time", type=np.longdouble, default=1), ) DEFAULT_PARSER_ARGS["energies"] = dict( args=["-e", "--energy-interval"], kwargs=dict( help="Energy interval used for filtering", nargs=2, type=float, default=None, ), ) DEFAULT_PARSER_ARGS["pi"] = dict( args=["--pi-interval"], kwargs=dict( help="PI interval used for filtering", nargs=2, type=int, default=[-1, -1], ), ) DEFAULT_PARSER_ARGS["deorbit"] = dict( args=["-p", "--deorbit-par"], kwargs=dict( help=( "Deorbit data with this parameter file (requires PINT installed)" ), default=None, type=str, ), ) DEFAULT_PARSER_ARGS["output"] = dict( args=["-o", "--outfile"], kwargs=dict(help="Output file", default=None, type=str), ) DEFAULT_PARSER_ARGS["usepi"] = dict( args=["--use-pi"], kwargs=dict( help="Use the PI channel instead of energies", default=False, action="store_true", ), ) DEFAULT_PARSER_ARGS["test"] = dict( args=["--test"], kwargs=dict( help="Only used for tests", default=False, action="store_true" ), ) DEFAULT_PARSER_ARGS["pepoch"] = dict( args=["--pepoch"], kwargs=dict( type=float, required=False, help="Reference epoch for timing parameters (MJD)", default=None, ), ) def r_in(td, r_0): """Calculate incident countrate given dead time and detected countrate.""" tau = 1 / r_0 return 1.0 / (tau - td) def r_det(td, r_i): """Calculate detected countrate given dead time and incident countrate.""" tau = 1 / r_i return 1.0 / (tau + td) def _assign_value_if_none(value, default): if value is None: return default return value def _look_for_array_in_array(array1, array2): """ Examples -------- >>> _look_for_array_in_array([1, 2], [2, 3, 4]) 2 >>> _look_for_array_in_array([1, 2], [3, 4, 5]) is None True """ for a1 in array1: if a1 in array2: return a1 return None def is_string(s): """Portable function to answer this question.""" return isinstance(s, str) # NOQA def _order_list_of_arrays(data, order): """ Examples -------- >>> order = [1, 2, 0] >>> new = _order_list_of_arrays({'a': [4, 5, 6], 'b':[7, 8, 9]}, order) >>> np.all(new['a'] == [5, 6, 4]) True >>> np.all(new['b'] == [8, 9, 7]) True >>> new = _order_list_of_arrays([[4, 5, 6], [7, 8, 9]], order) >>> np.all(new[0] == [5, 6, 4]) True >>> np.all(new[1] == [8, 9, 7]) True >>> _order_list_of_arrays(2, order) is None True """ if hasattr(data, "items"): data = dict((i[0], np.asarray(i[1])[order]) for i in data.items()) elif hasattr(data, "index"): data = [np.asarray(i)[order] for i in data] else: data = None return data class _empty: def __init__(self): pass def mkdir_p(path): """Safe mkdir function.""" return os.makedirs(path, exist_ok=True) def common_name(str1, str2, default="common"): """Strip two strings of the letters not in common. Filenames must be of same length and only differ by a few letters. Parameters ---------- str1 : str str2 : str Returns ------- common_str : str A string containing the parts of the two names in common Other Parameters ---------------- default : str The string to return if common_str is empty Examples -------- >>> common_name('strAfpma', 'strBfpmb') 'strfpm' >>> common_name('strAfpma', 'strBfpmba') 'common' >>> common_name('asdfg', 'qwerr') 'common' >>> common_name('A_3-50_A.nc', 'B_3-50_B.nc') '3-50' """ if not len(str1) == len(str2): return default common_str = "" # Extract the HEN root of the name (in case they're event files) str1 = hen_root(str1) str2 = hen_root(str2) for i, letter in enumerate(str1): if str2[i] == letter: common_str += letter # Remove leading and trailing underscores and dashes common_str = common_str.rstrip("_").rstrip("-") common_str = common_str.lstrip("_").lstrip("-") if common_str == "": common_str = default # log.debug('common_name: %s %s -> %s', str1, str2, common_str) return common_str def hen_root(filename): """Return the root file name (without _ev, _lc, etc.). Parameters ---------- filename : str Examples -------- >>> fname = "blabla_ev_calib.nc" >>> hen_root(fname) 'blabla' >>> fname = "blablu_ev_bli.fits.gz" >>> hen_root(fname) 'blablu_ev_bli' >>> fname = "blablu_ev_lc.nc" >>> hen_root(fname) 'blablu' >>> fname = "blablu_lc_asrd_ev_lc.nc" >>> hen_root(fname) 'blablu_lc_asrd' """ fname = filename.replace(".gz", "") fname = os.path.splitext(fname)[0] todo = True while todo: todo = False for ending in ["_ev", "_lc", "_pds", "_cpds", "_calib"]: if fname.endswith(ending): fname = fname[: -len(ending)] todo = True return fname def optimal_bin_time(fftlen, tbin): """Vary slightly the bin time to have a power of two number of bins. Given an FFT length and a proposed bin time, return a bin time slightly shorter than the original, that will produce a power-of-two number of FFT bins. Examples -------- >>> optimal_bin_time(512, 1.1) 1.0 """ current_nbin = fftlen / tbin new_nbin = 2 ** np.ceil(np.log2(current_nbin)) return fftlen / new_nbin def gti_len(gti): """Return the total good time from a list of GTIs. Examples -------- >>> gti_len([[0, 1], [2, 4]]) 3 """ return np.sum(np.diff(gti, axis=1)) def simple_orbit_fun_from_parfile( mjdstart, mjdstop, parfile, ntimes=1000, ephem="DE421", invert=False ): """Get a correction for orbital motion from pulsar parameter file. Parameters ---------- mjdstart, mjdstop : float Start and end of the time interval where we want the orbital solution parfile : str Any parameter file understood by PINT (Tempo or Tempo2 format) Other parameters ---------------- ntimes : int Number of time intervals to use for interpolation. Default 1000 invert : bool Invert the solution (e.g. to apply an orbital model instead of subtracting it) Returns ------- correction_mjd : function Function that accepts times in MJDs and returns the deorbited times. """ from scipy.interpolate import interp1d from astropy import units if not HAS_PINT: raise ImportError( "You need the optional dependency PINT to use this " "functionality: github.com/nanograv/pint" ) mjds =
np.linspace(mjdstart, mjdstop, ntimes)
numpy.linspace
from utils import * from mpmath import ellipe, ellipk, ellippi from scipy.integrate import quad import numpy as np C1 = 3.0 / 14.0 C2 = 1.0 / 3.0 C3 = 3.0 / 22.0 C4 = 3.0 / 26.0 def J(N, k2, kappa, gradient=False): # We'll need to solve this with gaussian quadrature func = ( lambda x: np.sin(x) ** (2 * N) * (np.maximum(0, 1 - np.sin(x) ** 2 / k2)) ** 1.5 ) res = 0.0 for i in range(0, len(kappa), 2): res += quad( func, 0.5 * kappa[i], 0.5 * kappa[i + 1], epsabs=1e-12, epsrel=1e-12, )[0] if gradient: # Deriv w/ respect to kappa is analytic dJdkappa = ( 0.5 * ( np.sin(0.5 * kappa) ** (2 * N) * (np.maximum(0, 1 - np.sin(0.5 * kappa) ** 2 / k2)) ** 1.5 ) * np.repeat([-1, 1], len(kappa) // 2).reshape(1, -1) ) # Deriv w/ respect to k2 is tricky, need to integrate func = ( lambda x: (1.5 / k2 ** 2) * np.sin(x) ** (2 * N + 2) * (np.maximum(0, 1 - np.sin(x) ** 2 / k2)) ** 0.5 ) dJdk2 = 0.0 for i in range(0, len(kappa), 2): dJdk2 += quad( func, 0.5 * kappa[i], 0.5 * kappa[i + 1], epsabs=1e-12, epsrel=1e-12, )[0] return res, (dJdk2, dJdkappa) else: return res def pal(bo, ro, kappa, gradient=False): # TODO if len(kappa) != 2: raise NotImplementedError("TODO!") def func(phi): c = np.cos(phi) z = np.minimum( 1 - 1e-12, np.maximum(1e-12, 1 - ro ** 2 - bo ** 2 - 2 * bo * ro * c) ) return (1.0 - z ** 1.5) / (1.0 - z) * (ro + bo * c) * ro / 3.0 res, _ = quad(func, kappa[0] - np.pi, kappa[1] - np.pi, epsabs=1e-12, epsrel=1e-12,) if gradient: # Deriv w/ respect to kappa is analytic dpaldkappa = func(kappa - np.pi) * np.repeat([-1, 1], len(kappa) // 2).reshape( 1, -1 ) # Derivs w/ respect to b and r are tricky, need to integrate def func_bo(phi): c = np.cos(phi) z = np.maximum(1e-12, 1 - ro ** 2 - bo ** 2 - 2 * bo * ro * c) P = (1.0 - z ** 1.5) / (1.0 - z) * (ro + bo * c) * ro / 3.0 q = 3.0 * z ** 0.5 / (1.0 - z ** 1.5) - 2.0 / (1.0 - z) return P * ((bo + ro * c) * q + 1.0 / (bo + ro / c)) dpaldbo, _ = quad( func_bo, kappa[0] - np.pi, kappa[1] - np.pi, epsabs=1e-12, epsrel=1e-12, ) def func_ro(phi): c = np.cos(phi) z = np.maximum(1e-12, 1 - ro ** 2 - bo ** 2 - 2 * bo * ro * c) P = (1.0 - z ** 1.5) / (1.0 - z) * (ro + bo * c) * ro / 3.0 q = 3.0 * z ** 0.5 / (1.0 - z ** 1.5) - 2.0 / (1.0 - z) return P * ((ro + bo * c) * q + 1.0 / ro + 1.0 / (ro + bo * c)) dpaldro, _ = quad( func_ro, kappa[0] - np.pi, kappa[1] - np.pi, epsabs=1e-12, epsrel=1e-12, ) return res, (dpaldbo, dpaldro, dpaldkappa) else: return res def hyp2f1(a, b, c, z, gradient=False): term = a * b * z / c value = 1.0 + term n = 1 while (np.abs(term) > STARRY_2F1_TOL) and (n < STARRY_2F1_MAXITER): a += 1 b += 1 c += 1 n += 1 term *= a * b * z / c / n value += term if n == STARRY_2F1_MAXITER: raise ValueError("Series for 2F1 did not converge.") if gradient: dFdz = a * b / c * hyp2f1(a + 1, b + 1, c + 1, z) return value, dFdz else: return value def el2(x, kc, a, b): """ Vectorized implementation of the `el2` function from Bulirsch (1965). In this case, `x` is a *vector* of integration limits. The halting condition does not depend on the value of `x`, so it's much faster to evaluate all values of `x` at once! """ if kc == 0: raise ValueError("Elliptic integral diverged because k = 1.") c = x * x d = 1 + c p = np.sqrt((1 + kc * kc * c) / d) d = x / d c = d / (2 * p) z = a - b i = a a = (b + a) / 2 y = np.abs(1 / x) f = 0 l = np.zeros_like(x) m = 1 kc = np.abs(kc) for n in range(STARRY_EL2_MAX_ITER): b = i * kc + b e = m * kc g = e / p d = f * g + d f = c i = a p = g + p c = (d / p + c) / 2 g = m m = kc + m a = (b / m + a) / 2 y = -e / y + y y[y == 0] = np.sqrt(e) * c[y == 0] * b if np.abs(g - kc) > STARRY_EL2_CA * g: kc = np.sqrt(e) * 2 l = l * 2 l[y < 0] = 1 + l[y < 0] else: break if n == STARRY_EL2_MAX_ITER - 1: raise ValueError( "Elliptic integral EL2 failed to converge after {} iterations.".format( STARRY_EL2_MAX_ITER ) ) l[y < 0] = 1 + l[y < 0] e = (np.arctan(m / y) + np.pi * l) * a / m e[x < 0] = -e[x < 0] return e + c * z def EllipF(tanphi, k2, gradient=False): kc2 = 1 - k2 F = el2(tanphi, np.sqrt(kc2), 1, 1) if gradient: E = EllipE(tanphi, k2) p2 = (1 + tanphi ** 2) ** -1 q2 = p2 * tanphi ** 2 dFdtanphi = p2 * (1 - k2 * q2) ** -0.5 dFdk2 = 0.5 * (E / (k2 * kc2) - F / k2 - tanphi * dFdtanphi / kc2) return F, (dFdtanphi, dFdk2) else: return F def EllipE(tanphi, k2, gradient=False): kc2 = 1 - k2 E = el2(tanphi, np.sqrt(kc2), 1, kc2) if gradient: F = EllipF(tanphi, k2) p2 = (1 + tanphi ** 2) ** -1 q2 = p2 * tanphi ** 2 dEdtanphi = p2 * (1 - k2 * q2) ** 0.5 dEdk2 = 0.5 * (E - F) / k2 return E, (dEdtanphi, dEdk2) else: return E def rj(x, y, z, p): """ Carlson elliptic integral RJ. <NAME>, Computing Elliptic Integrals by Duplication, Numerische Mathematik, Volume 33, 1979, pages 1-16. <NAME>, <NAME>, Algorithm 577, Algorithms for Incomplete Elliptic Integrals, ACM Transactions on Mathematical Software, Volume 7, Number 3, pages 398-403, September 1981 https://people.sc.fsu.edu/~jburkardt/f77_src/toms577/toms577.f """ # Limit checks if x < STARRY_CRJ_LO_LIM: x = STARRY_CRJ_LO_LIM elif x > STARRY_CRJ_HI_LIM: x = STARRY_CRJ_HI_LIM if y < STARRY_CRJ_LO_LIM: y = STARRY_CRJ_LO_LIM elif y > STARRY_CRJ_HI_LIM: y = STARRY_CRJ_HI_LIM if z < STARRY_CRJ_LO_LIM: z = STARRY_CRJ_LO_LIM elif z > STARRY_CRJ_HI_LIM: z = STARRY_CRJ_HI_LIM if p < STARRY_CRJ_LO_LIM: p = STARRY_CRJ_LO_LIM elif p > STARRY_CRJ_HI_LIM: p = STARRY_CRJ_HI_LIM xn = x yn = y zn = z pn = p sigma = 0.0 power4 = 1.0 for k in range(STARRY_CRJ_MAX_ITER): mu = 0.2 * (xn + yn + zn + pn + pn) invmu = 1.0 / mu xndev = (mu - xn) * invmu yndev = (mu - yn) * invmu zndev = (mu - zn) * invmu pndev = (mu - pn) * invmu eps = np.max([np.abs(xndev), np.abs(yndev), np.abs(zndev), np.abs(pndev)]) if eps < STARRY_CRJ_TOL: ea = xndev * (yndev + zndev) + yndev * zndev eb = xndev * yndev * zndev ec = pndev * pndev e2 = ea - 3.0 * ec e3 = eb + 2.0 * pndev * (ea - ec) s1 = 1.0 + e2 * (-C1 + 0.75 * C3 * e2 - 1.5 * C4 * e3) s2 = eb * (0.5 * C2 + pndev * (-C3 - C3 + pndev * C4)) s3 = pndev * ea * (C2 - pndev * C3) - C2 * pndev * ec value = 3.0 * sigma + power4 * (s1 + s2 + s3) / (mu *
np.sqrt(mu)
numpy.sqrt
################################################################################ # # Copyright (c) 2017 University of Oxford # Authors: # <NAME> (<EMAIL>) # # This work is licensed under the Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. # ################################################################################ import os import re import numpy as np from transform import build_se3_transform from interpolate_poses import interpolate_vo_poses, interpolate_ins_poses from velodyne import load_velodyne_raw, load_velodyne_binary, velodyne_raw_to_pointcloud def build_pointcloud(lidar_dir, poses_file, extrinsics_dir, start_time, end_time, origin_time=-1): """Builds a pointcloud by combining multiple LIDAR scans with odometry information. Args: lidar_dir (str): Directory containing LIDAR scans. poses_file (str): Path to a file containing pose information. Can be VO or INS data. extrinsics_dir (str): Directory containing extrinsic calibrations. start_time (int): UNIX timestamp of the start of the window over which to build the pointcloud. end_time (int): UNIX timestamp of the end of the window over which to build the pointcloud. origin_time (int): UNIX timestamp of origin frame. Pointcloud coordinates are relative to this frame. Returns: numpy.ndarray: 3xn array of (x, y, z) coordinates of pointcloud numpy.array: array of n reflectance values or None if no reflectance values are recorded (LDMRS) Raises: ValueError: if specified window doesn't contain any laser scans. IOError: if scan files are not found. """ if origin_time < 0: origin_time = start_time lidar = re.search('(lms_front|lms_rear|ldmrs|velodyne_left|velodyne_right)', lidar_dir).group(0) timestamps_path = os.path.join(lidar_dir, os.pardir, lidar + '.timestamps') timestamps = [] with open(timestamps_path) as timestamps_file: for line in timestamps_file: timestamp = int(line.split(' ')[0]) if start_time <= timestamp <= end_time: timestamps.append(timestamp) if len(timestamps) == 0: raise ValueError("No LIDAR data in the given time bracket.") with open(os.path.join(extrinsics_dir, lidar + '.txt')) as extrinsics_file: extrinsics = next(extrinsics_file) G_posesource_laser = build_se3_transform([float(x) for x in extrinsics.split(' ')]) poses_type = re.search('(vo|ins|rtk)\.csv', poses_file).group(1) if poses_type in ['ins', 'rtk']: with open(os.path.join(extrinsics_dir, 'ins.txt')) as extrinsics_file: extrinsics = next(extrinsics_file) G_posesource_laser = np.linalg.solve(build_se3_transform([float(x) for x in extrinsics.split(' ')]), G_posesource_laser) poses = interpolate_ins_poses(poses_file, timestamps, origin_time, use_rtk=(poses_type == 'rtk')) else: # sensor is VO, which is located at the main vehicle frame poses = interpolate_vo_poses(poses_file, timestamps, origin_time) pointcloud = np.array([[0], [0], [0], [0]]) if lidar == 'ldmrs': reflectance = None else: reflectance = np.empty((0)) for i in range(0, len(poses)): scan_path = os.path.join(lidar_dir, str(timestamps[i]) + '.bin') if "velodyne" not in lidar: if not os.path.isfile(scan_path): continue scan_file = open(scan_path) scan = np.fromfile(scan_file, np.double) scan_file.close() scan = scan.reshape((len(scan) // 3, 3)).transpose() if lidar != 'ldmrs': # LMS scans are tuples of (x, y, reflectance) reflectance = np.concatenate((reflectance, np.ravel(scan[2, :]))) scan[2, :] = np.zeros((1, scan.shape[1])) else: if os.path.isfile(scan_path): ptcld = load_velodyne_binary(scan_path) else: scan_path = os.path.join(lidar_dir, str(timestamps[i]) + '.png') if not os.path.isfile(scan_path): continue ranges, intensities, angles, approximate_timestamps = load_velodyne_raw(scan_path) ptcld = velodyne_raw_to_pointcloud(ranges, intensities, angles) reflectance = np.concatenate((reflectance, ptcld[3])) scan = ptcld[:3] scan = np.dot(np.dot(poses[i], G_posesource_laser), np.vstack([scan, np.ones((1, scan.shape[1]))])) pointcloud = np.hstack([pointcloud, scan]) pointcloud = pointcloud[:, 1:] if pointcloud.shape[1] == 0: raise IOError("Could not find scan files for given time range in directory " + lidar_dir) return pointcloud, reflectance if __name__ == "__main__": import argparse import open3d parser = argparse.ArgumentParser(description='Build and display a pointcloud') parser.add_argument('--poses_file', type=str, default=None, help='File containing relative or absolute poses') parser.add_argument('--extrinsics_dir', type=str, default=None, help='Directory containing extrinsic calibrations') parser.add_argument('--laser_dir', type=str, default=None, help='Directory containing LIDAR data') args = parser.parse_args() lidar = re.search('(lms_front|lms_rear|ldmrs|velodyne_left|velodyne_right)', args.laser_dir).group(0) timestamps_path = os.path.join(args.laser_dir, os.pardir, lidar + '.timestamps') with open(timestamps_path) as timestamps_file: start_time = int(next(timestamps_file).split(' ')[0]) end_time = start_time + 2e7 pointcloud, reflectance = build_pointcloud(args.laser_dir, args.poses_file, args.extrinsics_dir, start_time, end_time) if reflectance is not None: colours = (reflectance - reflectance.min()) / (reflectance.max() - reflectance.min()) colours = 1 / (1 + np.exp(-10 * (colours - colours.mean()))) else: colours = 'gray' # Pointcloud Visualisation using Open3D vis = open3d.Visualizer() vis.create_window(window_name=os.path.basename(__file__)) render_option = vis.get_render_option() render_option.background_color = np.array([0.1529, 0.1569, 0.1333], np.float32) render_option.point_color_option = open3d.PointColorOption.ZCoordinate coordinate_frame = open3d.geometry.create_mesh_coordinate_frame() vis.add_geometry(coordinate_frame) pcd = open3d.geometry.PointCloud() pcd.points = open3d.utility.Vector3dVector( -np.ascontiguousarray(pointcloud[[1, 0, 2]].transpose().astype(np.float64))) pcd.colors = open3d.utility.Vector3dVector(
np.tile(colours[:, np.newaxis], (1, 3))
numpy.tile