prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
''' hans_on_feedforward_neural_network.py 前馈神经网络采用小批量随机梯度下降算法。 为什么要写此模块: 1. 为了深刻理解神经网络进而理解深度学习; 2. 神经网络框架源码读不懂,还是自己实现吧; 功能:实现了 Logistic 二分类,Softmax 多分类和多元回归算法,具体见样例代码。 说明: 1. 为了提高运算效率,前馈神经网络基于 numpy 库来做矩阵运算,很少使用 for 循环; 2. 未来会逐步添加一些新的神经网络功能,比如:不同的初始化方法、正则化等...欢迎读者来更新此代码; 3. 目前该网络存在数值不稳定性,建议不要把 “relu” 家族系列激活函数放在神经网络第一层,容易造成数值不稳定, 放在其它层效果很好。而且目前 Softmax 和交叉熵是分开实现的,容易导致数值不稳定,未来会写成一个函数; 4. 毕竟我只是为了尽可能的展示原理,很少考虑代码如何更高效,所以欢迎读者来优化这份代码,尽请修改吧! ''' # Third-party libraries import numpy as np # 基于Numpy的前馈神经网络 class Feedforward_neural_network(object): def __init__(self): # ---------------------前馈神经网络基本参数------------------------ # 样本的特征维度 self.sample_feature_dimension = None # 神经网络每一层的维度 self.layer_Dims = None # 神经网络每一层使用的激活函数 self.activation_function_names = None # 神经网络使用的损失函数 self.network_loss_faction_name = None # 存储网络参数的列表 self.Layers = [] # ---------------------函数名与函数对象映射字典------------------------ # 激活函数映射字典 self.activation_functions_dict = {'sigmoid': self.sigmoid, 'relu':self.relu, 'leaky_relu':self.leaky_relu, 'tanh':self.tanh, 'softmax': self.softmax, 'None': self.equal} # 激活函数的导数函数的映射字典 self.activation_gradient_functions_dict = {'sigmoid': self.sigmoid_gradient, 'tanh':self.tanh_gradient,'relu':self.relu_gradient, 'leaky_relu':self.leaky_relu_gradient,'softmax': None, 'None': self.equal_gradient} # 损失函数映射字典 self.Loss_faction_dict = { 'multi_classification_cross_entropy_loss_function': self.multi_classification_cross_entropy_loss_function, 'binary_classification_logistic_loss_function': self.binary_classification_logistic_loss_function, 'multivariable_regression_loss_function': self.multivariable_regression_loss_function} # ----------------------初始化网络结构------------------------ # 创建网络结构的函数 def creating_network_infrastructure(self, sample_feature_dimension, layer_Dims, activation_function_names): # 把输入层作为第 0 层,同时把它的维度插入维度数组中 layer_Dims.insert(0, sample_feature_dimension) for layer_index in range(len(layer_Dims)): layer = {} #第0层是输入层,不需要激活函数和权重矩阵 if layer_index == 0: self.Layers.append(layer) continue layer['activation_function_name'] = activation_function_names[layer_index - 1] # 因为 relu 函数会把不大于 0 的值 设置为 0,导致模型在开始时候较难训练 # 所以当某一层使用 relu 作为激活函数时,该层权重矩阵使用大于 0 值的初始化方法 if layer['activation_function_name']=='relu' or layer['activation_function_name']=='leaky_relu': layer['W'] = np.random.uniform(np.exp(-10), 1, size=(layer_Dims[layer_index], layer_Dims[layer_index - 1])) else: layer['W'] = np.random.randn(layer_Dims[layer_index], layer_Dims[layer_index - 1]) layer['b'] = np.zeros((layer_Dims[layer_index], 1)) self.Layers.append(layer) # ------------------------前向传播---------------------------- def forward_propagation(self, X_batch): # 从网络第一层往最后一层输出层逐层计算。 for layer_index, layer in enumerate(self.Layers): # 把样本输入直接作为激活之后的值。 if layer_index == 0: layer['A'] = X_batch else: layer['Z'] = np.dot(self.Layers[layer_index - 1]['A'], np.transpose(layer['W'])) + np.transpose(layer['b']) activation_function = self.activation_functions_dict[layer['activation_function_name']] layer['A'] = activation_function(layer['Z']) return self.Layers[-1]['A'] # ------------------------反向传播---------------------------- def back_propagation(self, Delta_L): # 获取最后一层的误差Delta。 self.Layers[-1]['Delta'] = Delta_L # 误差从最后一层往第一层遍历网络,不包括第 0 层(输入层)。 for layer_index in range(len(self.Layers) - 1, 0, -1): layer = self.Layers[layer_index] # 如果不是最后一层 if layer_index != len(self.Layers) - 1: activation_gradient_function = self.activation_gradient_functions_dict[layer['activation_function_name']] layer['Delta'] = np.dot(self.Layers[layer_index + 1]['Delta'], self.Layers[layer_index + 1]['W']) * activation_gradient_function(layer['Z']) _batch_size = Delta_L.shape[0] layer['C_b'] = (1.0 / _batch_size) * np.transpose((np.sum(layer['Delta'], axis=0, keepdims=True))) layer['C_W'] = (1.0 / _batch_size) * np.dot(np.transpose(layer['Delta']), self.Layers[layer_index - 1]['A']) # ----------------------小批量梯度下降------------------------- def gradient_descent(self, learning_rate): # 输入层没有参数,所以从第一层开始。 for layer in self.Layers[1:]: layer['W'] = layer['W'] - learning_rate * layer['C_W'] layer['b'] = layer['b'] - learning_rate * layer['C_b'] # ----------------------训练和评估模型------------------------ def training_and_evaluation_model(self, X_train, Y_train, network_loss_faction_name, epochs, learning_rate, batch_size, evaluation_model_per_epochs): self.network_loss_faction_name = network_loss_faction_name for epoch in range(epochs): batch_index = 0 for batch in range(X_train.shape[0] // batch_size): X_batch = X_train[batch_index: batch_index + batch_size] Y_batch = Y_train[batch_index: batch_index + batch_size] batch_index = batch_index + batch_size # 前向传播 self.forward_propagation(X_batch) Last_layer_output = self.Layers[-1]['A'] loss_f = self.Loss_faction_dict[network_loss_faction_name] # 计算损失 Loss = loss_f(Y_batch, Last_layer_output) # 损失函数对输出层的梯度 if network_loss_faction_name == 'multi_classification_cross_entropy_loss_function' \ or network_loss_faction_name == 'binary_classification_logistic_loss_function': Delta_L = Last_layer_output - Y_batch elif network_loss_faction_name == 'multivariable_regression_loss_function': Delta_L = 2 * (Last_layer_output - Y_batch) else: Delta_L = None # 反向传播 self.back_propagation(Delta_L) # 梯度下降 self.gradient_descent(learning_rate) if epoch % evaluation_model_per_epochs == 0: if network_loss_faction_name == 'multi_classification_cross_entropy_loss_function': accuracy_rate = self.softmax_classified_accuracy_rate(X_train, Y_train) elif network_loss_faction_name == 'binary_classification_logistic_loss_function': accuracy_rate = self.logistic_binary_classified_accuracy_rate(X_train, Y_train) elif network_loss_faction_name == 'multivariable_regression_loss_function': accuracy_rate = None matrix_cosine_similarity = self.multivariable_matrix_cosine_similarity(X_train, Y_train) if accuracy_rate != None: print('accuracy_rate:\t\t {:.5f}'.format(accuracy_rate)) if network_loss_faction_name == 'multivariable_regression_loss_function': print('matrix_cosine_similarity:\t\t {:.5f}'.format(matrix_cosine_similarity)) print('Loss:\t\t{:.5f}'.format(Loss)) # ---------------------激活函数及其导数------------------------ # 恒等激活函数 def equal(slef, F): return F # 恒等激活函数的导数 def equal_gradient(slef, F): return np.ones_like(F) # sigmoid 激活函数 def sigmoid(self,F): return 1.0 / (1 + np.exp(-F)) # sigmoid 激活函数的导数 def sigmoid_gradient(self, F): return self.sigmoid(F) * (1 - self.sigmoid(F)) # tanh 激活函数 def tanh(self, F): return np.tanh(F) # tanh 激活函数的导数 def tanh_gradient(self, F): return 1.0 - np.tanh(F)**2 # Relu 激活函数 def relu(self, F): return np.maximum(F, 0, F) # Relu 激活函数的导数 def relu_gradient(self, F): return np.where(F>0, 1, 0) # Leaky Relu 激活函数 def leaky_relu(self, F): # 有论文推荐用较小的 0.01 值,实践中似乎 0.2 更好 leaky_value = 0.2 return np.maximum(leaky_value * F, F, F) # Leaky Relu 激活函数的导数 def leaky_relu_gradient(self, F): leaky_value = 0.2 return np.where(F > 0, 1, leaky_value) # Softmax 激活函数 def softmax(self, F): exp = np.exp(F - np.max(F, axis=1, keepdims=True)) return exp / np.sum(exp, axis=1, keepdims=True) #def unstable_softmax(slef, F): # return np.exp(F) / np.sum(np.exp(F), axis=1, keepdims=True) #---------------------损失函数------------------------ # 多元回归损失函数 def multivariable_regression_loss_function(self, Y_batch, A_L): return np.mean(np.sum((A_L - Y_batch) ** 2, axis=1, keepdims=True)) # 多分类交叉熵损失函数 def multi_classification_cross_entropy_loss_function(self, Y_batch, A_L): # log(x) 中 x 不能为 0,暂时办法:把 0 换成一个很小的数字 np.exp(-30) #A_L = np.where(A_L==0, np.exp(-30), A_L) return (-1) * np.mean(np.sum(Y_batch * np.log(A_L), axis=1, keepdims=True)) # 二分类逻辑斯蒂损失函数 def binary_classification_logistic_loss_function(self, Y_batch, A_L): # log(x) 中 x 不能为 0,暂时办法:把 0 换成一个很小的数字 np.exp(-30) #A_L = np.where(A_L == 0, np.exp(-30), A_L) return (-1.0) * np.mean( np.dot(np.transpose(Y_batch), np.log(A_L)) + np.dot(1 - np.transpose(Y_batch), np.log(1 - A_L))) # ---------------------分类决策函数------------------------ # softmax 分类决策函数 def softmax_classified_decision(self, F): # 取矩阵每一行最大的值 max_index = np.max(F, axis=1, keepdims=True) # 把最大的值的位置的值设置为 1,其余的设置为 0。 one_hot_hat_Y = np.where(F == max_index, 1, 0) return one_hot_hat_Y # logistic 二分类决策函数 def logistic_binary_classified_decision(self, F): # 大于 0.5 的取值为 1 否则为 0。 Y_hat = np.where(F >= 0.5, 1, 0) return Y_hat # -------------------模型评价函数----------------------- # 计算矩阵余弦相似度 def multivariable_matrix_cosine_similarity(self, X, Y): # 前向传播 Last_layer_output = self.forward_propagation(X) # 预测函数 Y_hat = Last_layer_output # 比较 Y_hat 和 Y 矩阵的每一行, 计算每一行之间的余弦相似度 res_D = np.sum(Y_hat * Y, axis=1, keepdims=True) / ( np.sqrt(np.sum(Y_hat ** 2, axis=1, keepdims=True)) * np.sqrt(np.sum(Y ** 2, axis=1, keepdims=True))) return np.mean(res_D) # 统计 softmax 模型准确率函数 def softmax_classified_accuracy_rate(self, X, Y): # 前向传播 Last_layer_output = self.forward_propagation(X) # 预测函数 Y_hat = self.softmax_classified_decision(Last_layer_output) # 比较 Y_hat 和 Y 矩阵的每一行,也可以用np.argmax()来比较最大值的位置是否一样 res_D = np.mean(np.where(Y_hat == Y, 1, 0), axis=1, keepdims=True) return np.mean(
np.where(res_D == 1, 1, 0)
numpy.where
from hokuyolx import HokuyoLX import numpy as np track_width = 2.0 # wheel center to center distance of car forward_constant = 1.0 # multiplier for speed of car, adjust for proper braking distance car_length = 6.0 # length of car from front to back wheels, center to center graph = True if graph: import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.patches import Arc def in_path(points, speed, angle): """ Given an array of x, y points, the speed of the cart, and the front steering angle, returns whether or not the points are in the cart's predicted path. :param points: np.ndarray of shape (n, 2) and dtype float64 - Array of x, y data points returned from the LIDAR scanner. :param speed: float - Speed of the golf cart :param angle: float - Steering angle of the golf cart, in degrees. 0 is straight, positive is left and negative is right :return: Boolean - whether there are any data points in the cart's predicted path """ # workaround for angle of 0 if angle < 1e-4: angle = 1e-4 r_center = car_length * np.tan(np.radians(90 - angle)) # left turn = positive angle # transform points to match new origin at turn center points[:, 0] += r_center points[:, 1] += car_length r_cf = np.hypot(r_center, car_length) # front center radius r_left = np.hypot(r_center - track_width / 2, car_length) # left wheel turn radius r_right = np.hypot(r_center + track_width / 2, car_length) # right wheel turn radius y_max = car_length + forward_constant * speed # check if y_max is past the turning circle y_large = np.minimum(np.fabs(r_left), np.fabs(r_right)) < y_max if y_large: x_min = r_center - track_width / 2 if angle < 0 else 0 x_max = r_center + track_width / 2 if angle > 0 else 0 else: x_min = r_center - track_width / 2 if angle < 0 else \ np.sqrt( np.power(r_left, 2) - np.power(y_max, 2) ) x_max = r_center + track_width / 2 if angle > 0 else \ -np.sqrt( np.power(r_right, 2) - np.power(y_max, 2) ) if graph: fig, ax = plt.subplots() # ax.plot(0, 0, label='Turn Center') ax.add_patch(Rectangle((r_center - track_width / 2, 0), track_width, car_length)) # check if y_max is past the turning circle if y_large: x1 = np.linspace(r_center - track_width / 2, 0, 100) # left boundary x2 = np.linspace(r_center + track_width / 2, 0, 100) # right boundary else: if angle < 0: x1 = np.linspace(r_center - track_width / 2, -np.sqrt( np.power(r_left, 2) - np.power(y_max, 2) ), 100) # left boundary x2 = np.linspace(r_center + track_width / 2, -np.sqrt( np.power(r_right, 2) - np.power(y_max, 2) ), 100) # right boundary else: x1 = np.linspace(r_center - track_width / 2, np.sqrt( np.power(r_left, 2) - np.power(y_max, 2) ), 100) # left boundary x2 = np.linspace(r_center + track_width / 2, np.sqrt( np.power(r_right, 2) - np.power(y_max, 2) ), 100) # right boundary y1 = np.sqrt(np.power(r_left, 2) - np.power(x1, 2)) y2 = np.sqrt(np.power(r_right, 2) - np.power(x2, 2)) ax.plot(x1, y1) ax.plot(x2, y2) if not y_large: if angle < 0: ax.plot( (-np.sqrt(np.power(r_left, 2) - np.power(y_max, 2)), -np.sqrt(np.power(r_right, 2) - np.power(y_max, 2))), (y_max, y_max)) else: ax.plot( (np.sqrt(np.power(r_left, 2) - np.power(y_max, 2)), np.sqrt(np.power(r_right, 2) - np.power(y_max, 2))), (y_max, y_max)) # ax.plot((0, r_center + track_width / 2), (0, 0)) # ax.plot((0, r_center - track_width / 2), (0, car_length)) # ax.plot((0, r_center + track_width / 2), (0, car_length)) # ax.plot((0, r_center), (0, car_length)) # ax.add_patch(Arc((0, 0), width=r_cf * 2, height=r_cf * 2, theta1=0.0, theta2=90.0)) ax.scatter(points[:, 0], points[:, 1]) plt.show() # plt.savefig('plt.png') # filter points to x range points = points[(points[:, 0] <= x_max) & (points[:, 0] >= x_min)] # check points if angle < 0: return np.any(points[ (np.hypot(points[:, 0], points[:, 1]) > r_right) & (
np.hypot(points[:, 0], points[:, 1])
numpy.hypot
import copy from PIL import Image from PIL import ImageEnhance from torch.utils.data import DataLoader, Dataset import torch import numpy as np import glob import torchvision import matplotlib.pyplot as plt import random import cv2 from torchvision import transforms np.seterr(divide='ignore', invalid='ignore') def takeSecond(elem): return elem[0]**2+elem[1]**2 class heatmap_dataset(Dataset): def __init__(self, ds_dir, sigma, setname='train', transform=None, norm_factor=256, rgb2gray=False, resize=True): self.ds_dir = ds_dir self.setname = setname self.transform = transform self.norm_factor = norm_factor self.rgb2gray = rgb2gray self.__sigma = sigma self.resize = resize self.c = 0 self.s = 0 self.r = 0 if setname == 'train': data = [] gt = [] train_list = '/media/home_bak/ziqi/park/Hourglass_twopoint/dataset/train.txt' f = open(train_list) for line in f: line_data = line.strip('\n') line_gt = line_data.replace( 'perspective_img', 'point').replace('.jpg', '_OA.txt') data.append(line_data) gt.append(line_gt) self.data = data self.gt = gt if setname == 'val': data = [] gt = [] test_list = '/media/home_bak/ziqi/park/Hourglass_twopoint/dataset/val.txt' f = open(test_list) for line in f: line_data = line.strip('\n') line_gt = line_data.replace( 'perspective_img', 'point').replace('.jpg', '_OA.txt') data.append(line_data) gt.append(line_gt) self.data = data self.gt = gt def __len__(self): return len(self.data) def get_affine_transform(self, center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale * 200 # print('scale_tmp',scale_tmp) # print("scale_tmp: {}".format(scale_tmp)) # print("output_size: {}".format(output_size)) # W H src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = self.get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) # print("src_dir: {}".format(src_dir)) # print("dst_dir: {}".format(dst_dir)) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) # print("center: {}".format(center)) src[0, :] = center + scale_tmp * shift # print("src[0, :]: {}".format(src[0, :])) # print("src_dir: {}".format(src_dir)) src[1, :] = center + src_dir + scale_tmp * shift # print("src[1, :]: {}".format(src[1, :])) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = self.get_3rd_point(src[0, :], src[1, :]) # print("src[2:, :]: {}".format(src[2:, :])) dst[2:, :] = self.get_3rd_point(dst[0, :], dst[1, :]) # print('src', src,dst) # print("src:\n{}".format(src)) # print("dst:\n{}".format(dst)) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) # exit(1) return trans def get_dir(self, src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_3rd_point(self, a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def _box2cs(self, size, aspect_ratio=None, scale_factor=None): x, y, w, h = 0, 0, size[0], size[1] return self._xywh2cs(x, y, w, h, aspect_ratio, scale_factor) def _xywh2cs(self, x, y, w, h, aspect_ratio, scale_factor): center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio scale = np.array( [w * 1.0 / 200, h * 1.0 / 200], dtype=np.float32) return center, scale def __getitem__(self, item): if item < 0 or item >= self.__len__(): return None # Read images # data = Image.open(str(self.data[item])) data = cv2.imread(str(self.data[item])) imgPath = str(self.data[item]) gt = [[0, 0], [0, 0]] # gt = np.loadtxt(str(self.data[item])) with open(str(self.gt[item]), "r") as f: lines = f.readlines() # 把全部数据文件读到一个列表lines中 # 表示矩阵的行,从0行开始 row = 0 # 把lines中的数据逐行读取出来 for line in lines: # 处理逐行数据:strip表示把头尾的'\n'去掉,split表示以空格来分割行数据,然后把处理后的行数据返回到list列表中 list = line.strip('\n').split(' ') gt[row][0] = float(list[0]) gt[row][1] = float(list[1]) # print("point:", list[0], list[1]) # 然后方阵A的下一行接着读 row = row + 1 if row == 2: break # gt.sort(key=takeSecond) # print("file", imgPath) H, W = 384, 384 # print(type(data)) # 数据增强 # data = self.randomBlur(data) data = self.RandomBrightness(data) data = self.RandomHue(data) data = self.RandomSaturation(data) # data = self.randomColor(data) data = self.randomGaussian(data, mean=0.2, sigma=0.3) data = 255 * np.array(data).astype('uint8') data = cv2.cvtColor(np.array(data), cv2.COLOR_RGB2BGR) # PIL转cv2 if self.rgb2gray: t = torchvision.transforms.Grayscale(1) data = t(data) # Convert to numpy data = np.array(data, dtype=np.float32) / self.norm_factor # gt = np.array(gt, dtype=np.float32) / 384 gt = np.array(gt, dtype=np.float32) size = [384, 384] mask = np.zeros((size[0], size[1]), dtype=np.float) heatmaps = self._putGaussianMaps(gt, H, W, 1, self.__sigma) heatmaps = heatmaps.astype(np.float32) # print(heatmaps) c, s = self._box2cs(size, aspect_ratio=1) r = 0 # print(r) trans = self.get_affine_transform(c, s, r, size) # data = cv2.warpAffine( # data, trans, (size[0], size[1]), flags=cv2.INTER_LINEAR) mask = cv2.warpAffine( mask, trans, (size[0], size[1]), flags=cv2.INTER_LINEAR, borderValue=255) # Expand dims into Pytorch format data =
np.transpose(data, (2, 0, 1))
numpy.transpose
import numpy as np import matplotlib.pyplot as pyplot import h5py import scipy from PIL import Image from scipy import ndimage # extras for debugging import math # dataset loader import utils # dataset parameters training_path = './training_data' # path of training data containing class sub-directories (image files) image_size = 128 # length and width to uniformly format training data classes = ['apple', 'orange', 'banana'] # classes of images to classify c_len = len(classes) # number of classes to be used for training validation_size = 0.2 # randomly chosen 20% of training data to be used as validation data # model parameters iteration_count = 1000 # number of times to apply gradient descent learning_rate = 0.005 # size of gradient step show_cost = True # show cost every 100 iterations # loading data_set object data_set = utils.read_data_sets(training_path, image_size, classes, validation_size) # designating training objects original_training_images = data_set.train.images # image np.array w/ shape: (image_size, image_size, channel_depth) original_training_labels = data_set.train.labels # class label array (exempli gratia '[1.0, 0, 0]' from apple) training_class_set = data_set.train.class_set # class label string array (e.g. 'apple') training_file_name = data_set.train.image_names # original unique image file names # designating validation objects original_validation_images = data_set.valid.images original_validation_labels = data_set.valid.labels validation_class_set = data_set.valid.class_set validation_file_name = data_set.valid.image_names """ Reshaping data arrays using matrix transposition flattening color pixels to single array using transpose function of image pixel matrix *_images shape: (image_size * image_size * channel_depth, data_set_size) *_labels shape: (data_set_size, channel_depth) """ training_images = original_training_images.reshape(original_training_images.shape[0], -1).T validation_images = original_validation_images.reshape(original_validation_images.shape[0], -1).T training_labels = original_training_labels.T validation_labels = original_validation_labels.T # data is now properly formatted and defined respectively def sigmoid(z): """ Computing the sigmoid of z Parameters: -- z = w^T * x^i + b -- w^T: specific weight associated with neuron index from previous layer -- x^i: specific neuron value from previous layer -- b: bias associated with neuron Return: s: result of applying sigmoid activation function (domain in R, returns monotonically increasing value between 0 and 1) s = 1 / (1 + e^-z) """ s = 1 / (1 + np.exp(-z)) #definition of the sigmoid function return s def init_zero(dimension): """ Parameters: -- dimension: the length of matrix to be initialized Initializes: -- w (weight array): zero array w/ shape: (image_size * image_size * channel_depth, 1) -- b (bias value): as zero """ w = np.zeros(shape=(dimension, 3)) b = 0 # shape and type check assert(w.shape == (dimension, 3)), "w in not in proper form: init_zero(dimension)" assert(isinstance(b, float) or isinstance(b, int)), "b is not of type int/float" return w, b def cross_entropy_cost(m, A, L): """ Cross-Entropy Cost function of logistic-regression. Parameters: -- m: count of items in set -- A: numpy array of activation values corresponding to each neuron w/ shape: (1, m) -- L: true label array to identify true class type w/ shape: (1, m) Return: -- cost: negative log-probability cost for logistic regression Notes: -- Cross-Entropy Cost is calculated in a logarithmic fashion as prediction function (sigmoid) is non-linear. -- 'Squaring this prediction as we do in MSE results in a non-convex function with many local minimums. If our cost function has many local minimums, gradient descent may not find the optimal global minimum.' -- Cross-Entropy Cost penalizes confident wrong predictions more than rewards confident correct predictions. Calculation of Cross-Entropy Cost: C = (-1 / m) * Sigma([L[i] * log(A[i]) + (1 - L[i]) * (log(1 - A[i])) from i = 1 to m """ cost = (-1 / m) * np.sum(L * np.log(A) + (1 - L) * (np.ma.log(1 - A))) #Note: Using numpy masked array np.ma for values of log(0) # Sanity checks cost = np.squeeze(cost) #squeeze() removes single dimensional elements from the array: e.g. (1, 3, 1) -> (3,) assert(cost.shape == ()) #checks if cost value is a scalar return cost def propagate(w, b, image_matrix, true_labels): """ Forwards and Backwards Propagation of Error. Parameters: -- w: weights numpy array w/ shape: (image_size * image_size * channel_depth, 1) -- b: specific bias, scalar value -- image_matrix: flattened image matrix w/ shape (image_size * image_size * channel_depth, image_matrix.shape[1]) -- true_labels: correct "label" array for each image w/ shape (1, image_matrix.shape[1]) Returns: -- gradients: the weight and bias gradients computed from the activation layer -- cost: the cross entropy cost of the logistic regression """ m = image_matrix.shape[1] # image count """ FORWARD PROPAGATION: output compared to actual to obtain cost (error) -- activation_layer: sigmoid of the linear function sigmoid(z) w/ z = w^T * x^i + b -- cost: see cross_entropy_cost(m, A, L) """ activation_layer = sigmoid(np.dot(w.T, image_matrix) + b) cost = cross_entropy_cost(m, activation_layer, true_labels) """ BACKWARD PROPAGATION: to obtain gradient of loss for weights and bias as to minimize error of network -- dw: gradient of loss with respect to w -- db: gradient of loss with respect to b """ dw = (1 / m) * np.dot(image_matrix, (activation_layer - true_labels).T) db = (1 / m) * np.sum(activation_layer - true_labels) # sanity check assert(dw.shape == w.shape) #checks if weight gradient retains weight matrix shape assert(db.dtype == float) #checks if bias gradient is a scalar # format into single object for return gradients = { "dw": dw, "db": db } return gradients, cost def gradient_descent(w, b, image_matrix, true_labels, iteration_count, learning_rate, show_cost): """ Gradient Descent optimization of weights and bias scaled by learning rate parameter Parameters: -- w: weights array w/ shape: (image_size * image_size * channel_depth, 1) -- b: bias scalar -- image_matrix: flattened image matrix w/ shape (image_size * image_size * channel_depth, m) -- true_labels: correct "label" array for each image w/ shape (1, m) -- interation_count: the number of iterations that the function will loop through during optimization -- learning_rate: -- show_cost: print cost value to console every 100 iterations Return: -- parameters: post-step weight array and bias value -- gradients: weight and bias gradients computed through back propagation -- costs: cost array holding incremental cost values Notes: -- Other methods may be used to optimize the weights and bias """ costs = [] for i in range(iteration_count): gradients, cost = propagate(w, b, image_matrix, true_labels) # if math.isnan(cost): # A = sigmoid(np.dot(w.T, image_matrix) + b) # print(np.squeeze(A)) # print(cross_entropy_cost(image_matrix.shape[1], A, true_labels)) dw = gradients['dw'] # obtaining weight gradient from back propagation db = gradients['db'] # obtaining bias gradient from back propagation w = w - learning_rate * dw # w array stepping towards local minimum with steps of length: learning_rate b = b - learning_rate * db # b value stepping # appends cost value at given iteration increments to costs array for analystics collection_rate = 1 if i % collection_rate == 0: costs.append(cost) # Shows cost value every 100 iterations if True if show_cost and i % 100 == 0 and i != 0: print('Iteration: %i, Cost: %f' % (i, cost)) parameters = { "w": w, "b": b } gradients = { "dw": dw, "db": db, } return parameters, gradients, costs def predict(w, b, image_matrix): """ Makes a prediction about label using parameters obtained from learning Parameters: -- w: weights array w/ shape: (image_size * image_size * channel_depth, 3) -- b: bias scalar -- image_matrix: flattened image matrix w/ shape (image_size * image_size * channel_depth, m) Returns: -- prediction_labels: numpy array containing prediction labels computed from the activation layer Notes: """ m = image_matrix.shape[1] # grab set size again prediction_labels =
np.zeros((3, m))
numpy.zeros
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/01_stats_utils.ipynb (unless otherwise specified). __all__ = ['cPreProcessing', 'cStationary', 'cErrorMetrics'] # Cell import numpy as np import pandas as pd from scipy.stats import boxcox, pearsonr from scipy.special import inv_boxcox from pandas.tseries.frequencies import to_offset from statsmodels.tsa.stattools import adfuller, kpss from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tools.eval_measures import aic, bic from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.impute import SimpleImputer import matplotlib.pyplot as plt # Cell class cPreProcessing(): """ Parent class. Methods for dealing with irregularly spaced or missing data. """ def __init__(self): pass def fget_regular_times(self, df, timestep): """ Generate dataframe of regularly spaced times (to impute to) (From fbprophet/forecaster/make_future_dataframe) Parameters ---------- df = [pandas dataframe] timestep = [datetime timedelta object] Returns ------- regtimes = [pandas DatetimeIndex] of datetimes regularly spaced at timestep """ # normalize start date to midnight start_date = df.ds.min().normalize() # round up end date by one extra timestep end_date = (df.ds.max() + timestep).normalize() # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.date_range.html regtimes = pd.date_range(start=start_date, end=end_date, freq=to_offset(timestep)) return regtimes def finterleaf(self, df, impute_times): """ Interleaf dataframe with new prediction times Set values at prediction dates as NaN so can use imputer Parameters ---------- df = [pandas dataframe] impute_times = [pandas DatetimeIndex] (format of regtimes) Returns ------- dft = pandas dataframe (format for use in fimpute) """ # if impute_times taken from fmake_regular_times() if type(impute_times) == pd.core.indexes.datetimes.DatetimeIndex: impute_times = pd.DataFrame(impute_times) impute_times.columns = ["ds"] # set date index df.set_index('ds', inplace=True) impute_times.set_index('ds', inplace=True) # combine (interleaf) dft = pd.concat([df, impute_times], sort=True) dft.sort_values(by=["ds"], inplace=True) # remove duplicate entries dft = dft[dft.index.duplicated() == False] return dft def fimpute(self, df, method="time"): """ Imputation of data to new timestamps with NaN value. Parameters ---------- df = dataframe containing original data and NaNs at timestamps for imputation timestamps are the df index Returns ------- dfi = imputed dataframe """ # interpolates halfway, doesn´t account for weighting towards closer time if method == "interp": dfi = df.interpolate() # missing values given mean value over whole time series if method == "mean": imp = SimpleImputer(missing_values=np.nan, strategy='mean') imp.fit(df) dfi = imp.transform(df) # linear interpolation weighted by timestamp proximity if method == "time": dfi = df.interpolate(method='time') # smoothing if method == "akima": dfi = df.interpolate(method='akima') return dfi def fmake_regular_freq(self, df, timestep, method="time"): """ Interpolate data so regular update frequency throughout dataset. (Deal with missing values) Some python functions (e.g. seasonal_decompose, AutoArima) require a data "freq" argument to determine seasonality. (Can be inferred from df.index.freq, df.index.inferred_freq) Such functions require a constant data frequency. Parameters ---------- df = irregularly space dataframe (with datestamp name "ds") timestep = desired update frequency of data (timedelta object) method = imputation method Returns ------- dff = imputed regularly spaced [pandas dataframe] """ # 0. preprocess: if dataframe alreay has time as index: reset and add as column if df.index.name == "ds": # df_lim["ds"] = df_lim.index df.reset_index(level=0, inplace=True) # 1. include in dataset times where you want to impute (and set to NaN values) impute_times = self.fget_regular_times(df, timestep) dft = self.finterleaf(df, impute_times) # 2. impute with chosen method dfi = self.fimpute(dft, method=method) # 3. remove original data not at correct timestep dff = dfi[dfi.index.isin(impute_times) == True] if dff.index.freq == None: dff.index.freq = to_offset(timestep) return dff # Cell class cStationary(cPreProcessing): """ methods for checking whether time series is stationary methods for transforming the time series into a stationary time series methods for obtaining (p,q,d) ARIMA parameters https://towardsdatascience.com/detecting-stationarity-in-time-series-data-d29e0a21e638 """ def __init__(self): pass def fadf_verbose(self, adftest): """ CHECK STATIONARITY. Print explanation of output of Augmented Dickey-Fuller test. The Augmented Dickey-Fuller test is a type of statistical test called a unit root test. The intuition behind a unit root test is that it determines how strongly a time series is defined by a trend. Parameters ---------- adftest = adfuller(data.y, regression="ct") Returns ------- """ print(""" Augmented Dickey-Fuller: Null hypothesis: the time series can be represented by a unit root, thus not stationary (has some time-dependent structure) """) output = pd.Series(adftest[0:4], index=['Test Statistic','pvalue','#Lags Used','Number of Observations Used']) for key,value in adftest[4].items(): output['Critical Value ({})'.format(key)] = value print(output) if output.pvalue <= 0.05: print("\nReject the null hypothesis (H0), the data does not have a unit root and IS STATIONARY.") return True else: print("\nFail to reject the null hypothesis (H0), the data has a unit root and is NON-STATIONARY.") return False def fkpss_verbose(self, kpsstest): """ CHECK STATIONARITY. Print explanation of output of Kwiatkowski-Phillips-Schmidt-Shin test. Another test for checking the stationarity of a time series (reversed null hypothesis to ADF). In KPSS test, to turn ON the stationarity testing around a trend, you need to explicitly pass the regression='ct'. A major difference between KPSS and ADF tests: the capability of the KPSS test to check for stationarity in the ‘presence of a deterministic trend’. Parameters ---------- kpsstest = kpss(data.y, regression="ct") Returns ------- """ print(""" Kwiatkowski-Phillips-Schmidt-Shin: Null hypothesis: the process is trend stationary """) output = pd.Series(kpsstest[0:3], index=['Test Statistic','pvalue','Lags Used']) for key,value in kpsstest[3].items(): output['Critical Value ({})'.format(key)] = value print (output) if output.pvalue <= 0.05: print("\nReject the null hypothesis (H0), the data has a unit root and is NON-STATIONARY.") return False else: print("\nFail to reject the null hypothesis (H0),the data does not have a unit root and IS STATIONARY. ") return True def fstationary_verbose(self, stat_adf, stat_kpss): """ CHECK STATIONARITY. Compare results of adf and kpss tests and advise how to make stationary. Returns ------- """ if (stat_adf is False) and (stat_kpss is False): print("\nBoth tests conclude that the series is not stationary -> series is not stationary") return False elif (stat_adf is True) and (stat_kpss is True): print("\nBoth tests conclude that the series is stationary -> series is stationary") return True elif (stat_adf is False) and (stat_kpss is True): print("\nKPSS = stationary and ADF = not stationary -> trend stationary, use power tranform to make stationary") return False elif (stat_adf is True) and (stat_kpss is False): print("\nKPSS = not stationary and ADF = stationary -> difference stationary, use differencing transform to make stationary") return False def fcheck_stationary(self, y, verbose=True): """ CHECK STATIONARITY. Parameters ---------- y = time series variable, data.y Returns ------- stationary status [bool] """ #df.dropna() adftest = adfuller(y, regression="ct") kpsstest = kpss(y, regression="ct") if verbose: stat_adf = self.fadf_verbose(adftest) stat_kpss = self.fkpss_verbose(kpsstest) stat = self.fstationary_verbose(stat_adf, stat_kpss) return stat def fdecompose(self, df, model="additive"): """ CHECK STATIONARITY. Seasonal decomposition using moving averages https://www.statsmodels.org/stable/generated/statsmodels.tsa.seasonal.seasonal_decompose.html Time series must be regularly spaced (have constant frequency, dff.index.freq or dff.index.inferred_freq) Parameters ---------- df = data frame with date index (to infer frequency) """ s = seasonal_decompose(df, model=model) trend = s.trend plt.plot(trend) plt.title("Trend") plt.show() seasonal = s.seasonal plt.plot(seasonal) plt.title("Seasonal component") plt.show() resid = s.resid plt.plot(resid) plt.title("Residuals") plt.show() def fcheck_density(self, y): """ CHECK STATIONARITY. Plot histogram and density trend (check gaussianity) """ plt.figure(1) plt.subplot(211) plt.hist(y) plt.title("Data Distribution") plt.subplot(212) y.plot(kind='kde') plt.show() def fcheck_lag(self, y): """ CHECK STATIONARITY. Plot lag scatter, autocorrelation and partial autocorrelation functions For differencing and establishing (p,q,d) values for ARIMA """ plt.figure() pd.plotting.lag_plot(y) plt.title("Lag-1 plot") plt.plot() plt.figure() pd.plotting.autocorrelation_plot(y) plt.title("Autocorrelation") plt.plot() # contains confidence interval: # correlation values outside of this code are very likely a correlation and not a statistical fluke plot_acf(y) plot_pacf(y) def fdifferencing(self, df, interval=1): """ MAKE STATIONARY. (difference stationary) adf and kpss can give the d value required by ARIMA Make series stationary: In order to satisfy the assumption, it is necessary to make the series stationary. This would include checking the stationarity of the series and performing required transformations Determine d value: For making the series stationary, the number of times the difference operation was performed will be taken as the d value. The auro_arima function works by conducting differencing tests (i.e., Kwiatkowski–Phillips–Schmidt–Shin, Augmented Dickey-Fuller or Phillips–Perron) to determine the order of differencing, d. Canova-Hansen test for seasonal stability. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.diff.html """ # df.dropna() return df.diff(periods=interval) def fboxcox(self, df): """ MAKE STATIONARY. (trend stationary) [https://mode.com/example-gallery/forecasting_prophet_python_cookbook/] Often in forecasting, you’ll explicitly choose a specific type of power transform to apply to the data to remove noise before feeding the data into a forecasting model (e.g. a log transform or square root transform, amongst others). However, it can sometimes be difficult to determine which type of power transform is appropriate for your data. This is where the Box-Cox Transform comes in. Box-Cox Transforms are data transformations that evaluate a set of lambda coefficients (λ) and selects the value that achieves the best approximation of normality. Prophet natively models the increase in mean of the data over time, but we should take additional steps to normalize as much variance as possible to achieve the most accurate forecasting results. We can do this by applying a power transform to our data. [https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.boxcox.html] inverse transform (after fitting and forecasting): forecast[['yhat','yhat_upper','yhat_lower']] = forecast[['yhat','yhat_upper','yhat_lower']].apply(lambda x: inv_boxcox(x, lam)) Parameters ---------- df = dataframe with y component to be transformed constraints: data must be positive (and non-zero) Returns ------- df = original dataframe with additional tranformed y column lam = lambda value of power transform determined by boxcox, needed for inversing the transformation constraints: lambda must not be negative """ df['y_trans'], lam = boxcox(df['y']) return df, lam # Cell class cErrorMetrics(): """ methods for evaluating error """ def __init__(self): pass def fmse_manual(self, y_true, y_pred): """ Mean square error. Manual implementation. """ return np.sum( (
np.array(y_true)
numpy.array
""" Methods to characterize image textures. """ import numpy as np from .._shared.utils import assert_nD from ._texture import _glcm_loop, _local_binary_pattern def greycomatrix(image, distances, angles, levels=256, symmetric=False, normed=False): """Calculate the grey-level co-occurrence matrix. A grey level co-occurrence matrix is a histogram of co-occurring greyscale values at a given offset over an image. Parameters ---------- image : array_like of uint8 Integer typed input image. The image will be cast to uint8, so the maximum value must be less than 256. distances : array_like List of pixel pair distance offsets. angles : array_like List of pixel pair angles in radians. levels : int, optional The input image should contain integers in [0, levels-1], where levels indicate the number of grey-levels counted (typically 256 for an 8-bit image). The maximum value is 256. symmetric : bool, optional If True, the output matrix `P[:, :, d, theta]` is symmetric. This is accomplished by ignoring the order of value pairs, so both (i, j) and (j, i) are accumulated when (i, j) is encountered for a given offset. The default is False. normed : bool, optional If True, normalize each matrix `P[:, :, d, theta]` by dividing by the total number of accumulated co-occurrences for the given offset. The elements of the resulting matrix sum to 1. The default is False. Returns ------- P : 4-D ndarray The grey-level co-occurrence histogram. The value `P[i,j,d,theta]` is the number of times that grey-level `j` occurs at a distance `d` and at an angle `theta` from grey-level `i`. If `normed` is `False`, the output is of type uint32, otherwise it is float64. References ---------- .. [1] The GLCM Tutorial Home Page, http://www.fp.ucalgary.ca/mhallbey/tutorial.htm .. [2] Pattern Recognition Engineering, <NAME> & <NAME>. Smith .. [3] Wikipedia, http://en.wikipedia.org/wiki/Co-occurrence_matrix Examples -------- Compute 2 GLCMs: One for a 1-pixel offset to the right, and one for a 1-pixel offset upwards. >>> image = np.array([[0, 0, 1, 1], ... [0, 0, 1, 1], ... [0, 2, 2, 2], ... [2, 2, 3, 3]], dtype=np.uint8) >>> result = greycomatrix(image, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4], levels=4) >>> result[:, :, 0, 0] array([[2, 2, 1, 0], [0, 2, 0, 0], [0, 0, 3, 1], [0, 0, 0, 1]], dtype=uint32) >>> result[:, :, 0, 1] array([[1, 1, 3, 0], [0, 1, 1, 0], [0, 0, 0, 2], [0, 0, 0, 0]], dtype=uint32) >>> result[:, :, 0, 2] array([[3, 0, 2, 0], [0, 2, 2, 0], [0, 0, 1, 2], [0, 0, 0, 0]], dtype=uint32) >>> result[:, :, 0, 3] array([[2, 0, 0, 0], [1, 1, 2, 0], [0, 0, 2, 1], [0, 0, 0, 0]], dtype=uint32) """ assert_nD(image, 2) assert_nD(distances, 1, 'distances') assert_nD(angles, 1, 'angles') assert levels <= 256 image = np.ascontiguousarray(image) assert image.min() >= 0 assert image.max() < levels image = image.astype(np.uint8) distances = np.ascontiguousarray(distances, dtype=np.float64) angles = np.ascontiguousarray(angles, dtype=np.float64) P = np.zeros((levels, levels, len(distances), len(angles)), dtype=np.uint32, order='C') # count co-occurences _glcm_loop(image, distances, angles, levels, P) # make each GLMC symmetric if symmetric: Pt =
np.transpose(P, (1, 0, 2, 3))
numpy.transpose
# Problem Set 4. Quant Macro - <NAME> # In collaboration with <NAME> # Import packages import numpy as np from numpy import vectorize import timeit import matplotlib.pyplot as plt #%% Steady state setting h = 1 -> eliminate the part of the utility with h # Parametrization of the model: theeta = 0.679 # labor share beta = 0.988 # discount factor delta = 0.013 # depreciation rate # For computing the steady state we normalize output to one: y = 1 h = 1 kss = 42.55 iss = delta css = 1 - delta #%% CHEBYSHEV start = timeit.default_timer() # Discretize the variable of interest: ki = np.array(np.linspace(0.01, 50, 120)) ki = np.tile(ki, 120) ki = np.split(ki, 120) ki = np.transpose(ki) kj = np.array(
np.linspace(0.01, 50, 120)
numpy.linspace
""" Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon Copyright (c) 2012-2017 <NAME> <<EMAIL>> Copyright (c) 2014-2019 <NAME> <<EMAIL>> Copyright (c) 2016 <NAME> <<EMAIL>> Copyright (c) 2016-2019 <NAME> <<EMAIL>> Copyright (c) 2018-2019 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np import types import astropy.units as u from astropy.io import fits from astropy.stats import gaussian_sigma_to_fwhm, gaussian_fwhm_to_sigma from astropy.convolution import convolve, Box1DKernel from os.path import join, abspath, dirname from scipy import interpolate, signal from scipy.optimize import leastsq from . import ABmag_filters, wavelet1D from .arithmetic import ArithmeticMixin from .data import DataArray from .fitting import Gauss1D from .objs import flux2mag __all__ = ('Spectrum', 'vactoair', 'airtovac') def vactoair(vacwl): """Calculate the approximate wavelength in air for vacuum wavelengths. Parameters ---------- vacwl : ndarray Vacuum wavelengths. This uses an approximate formula from the IDL astronomy library https://idlastro.gsfc.nasa.gov/ftp/pro/astro/vactoair.pro """ wave2 = vacwl * vacwl n = 1.0 + 2.735182e-4 + 131.4182 / wave2 + 2.76249e8 / (wave2 * wave2) # Do not extrapolate to very short wavelengths. if not isinstance(vacwl, np.ndarray): if vacwl < 2000: n = 1.0 else: ignore = np.where(vacwl < 2000) n[ignore] = 1.0 return vacwl / n def airtovac(airwl): """Convert air wavelengths to vacuum wavelengths. Parameters ---------- vacwl : ndarray Vacuum wavelengths. This uses the IAU standard as implemented in the IDL astronomy library https://idlastro.gsfc.nasa.gov/ftp/pro/astro/airtovac.pro """ sigma2 = (1e4 / airwl)**2. # Convert to wavenumber squared n = 1.0 + (6.4328e-5 + 2.94981e-2 / (146. - sigma2) + 2.5540e-4 / (41. - sigma2)) if not isinstance(airwl, np.ndarray): if airwl < 2000: n = 1.0 else: ignore = np.where(airwl < 2000) n[ignore] = 1.0 return airwl * n class Spectrum(ArithmeticMixin, DataArray): """Spectrum objects contain 1D arrays of numbers, optionally accompanied by corresponding variances. These numbers represent sample fluxes along a regularly spaced grid of wavelengths. The spectral pixel values and their variances, if any, are available as arrays[q that can be accessed via properties of the Spectrum object called .data and .var, respectively. These arrays are usually masked arrays, which share a boolean masking array that can be accessed via a property called .mask. In principle, these arrays can also be normal numpy arrays without masks, in which case the .mask property holds the value, numpy.ma.nomask. However non-masked arrays are only supported by a subset of mpdaf functions at this time, so masked arrays should be used where possible. When a new Spectrum object is created, the data, variance and mask arrays can either be specified as arguments, or the name of a FITS file can be provided to load them from. Parameters ---------- filename : string An optional FITS file name from which to load the spectrum. None by default. This argument is ignored if the data argument is not None. ext : int or (int,int) or string or (string,string) The optional number/name of the data extension or the numbers/names of the data and variance extensions. wave : `mpdaf.obj.WaveCoord` The wavelength coordinates of the spectrum. unit : str or `astropy.units.Unit` The physical units of the data values. Defaults to `astropy.units.dimensionless_unscaled`. data : float array An optional 1 dimensional array containing the values of each pixel of the spectrum, stored in ascending order of wavelength (None by default). Where given, this array should be 1 dimensional. var : float array An optional 1 dimensional array containing the estimated variances of each pixel of the spectrum, stored in ascending order of wavelength (None by default). Attributes ---------- filename : string The name of the originating FITS file, if any. Otherwise None. unit : `astropy.units.Unit` The physical units of the data values. primary_header : `astropy.io.fits.Header` The FITS primary header instance, if a FITS file was provided. data_header : `astropy.io.fits.Header` The FITS header of the DATA extension. wave : `mpdaf.obj.WaveCoord` The wavelength coordinates of the spectrum. """ # Tell the DataArray base-class that Spectrum objects require 1 dimensional # data arrays and wavelength coordinates. _ndim_required = 1 _has_wave = True def subspec(self, lmin, lmax=None, unit=u.angstrom): """Return the flux at a given wavelength, or the sub-spectrum of a specified wavelength range. A single flux value is returned if the lmax argument is None (the default), or if the wavelengths assigned to the lmin and lmax arguments are both within the same pixel. The value that is returned is the value of the pixel whose wavelength is closest to the wavelength specified by the lmin argument. Note that is a wavelength range is asked for, a view on the original spectrum is returned and both will be modified at the same time. If you need to modify only the sub-spectrum, you'll need to copy() it before. Parameters ---------- lmin : float The minimum wavelength of a wavelength range, or the wavelength of a single pixel if lmax is None. lmax : float or None The maximum wavelength of the wavelength range. unit : `astropy.units.Unit` The wavelength units of the lmin and lmax arguments. The default is angstroms. If unit is None, then lmin and lmax are interpreted as array indexes within the spectrum. Returns ------- out : float or `~mpdaf.obj.Spectrum` """ if self.wave is None: raise ValueError('Operation forbidden without world coordinates ' 'along the spectral direction') if lmax is None: lmax = lmin # Are lmin and lmax array indexes? if unit is None: pix_min = max(0, int(lmin + 0.5)) pix_max = min(self.shape[0], int(lmax + 0.5)) # Convert wavelengths to the nearest spectrum array indexes. else: pix_min = max(0, self.wave.pixel(lmin, nearest=True, unit=unit)) pix_max = min(self.shape[0], self.wave.pixel(lmax, nearest=True, unit=unit) + 1) # If the start and end of the wavelength range select the same pixel, # return just the value of that pixel. if (pix_min + 1) == pix_max: return self[pix_min] # Otherwise return a sub-spectrum. else: return self[pix_min:pix_max] def get_step(self, unit=None): """Return the wavelength step size. Parameters ---------- unit : `astropy.units.Unit` The units of the returned step-size. Returns ------- out : float The width of a spectrum pixel. """ if self.wave is not None: return self.wave.get_step(unit) def get_start(self, unit=None): """Return the wavelength value of the first pixel of the spectrum. Parameters ---------- unit : `astropy.units.Unit` The units of the returned wavelength. Returns ------- out : float The wavelength of the first pixel of the spectrum. """ if self.wave is not None: return self.wave.get_start(unit) def get_end(self, unit=None): """Return the wavelength of the last pixel of the spectrum. Parameters ---------- unit : `astropy.units.Unit` The units of the returned wavelength. Returns ------- out : float The wavelength of the final pixel of the spectrum. """ if self.wave is not None: return self.wave.get_end(unit) def get_range(self, unit=None): """Return the wavelength range (Lambda_min, Lambda_max) of the spectrum. Parameters ---------- unit : `astropy.units.Unit` The units of the returned wavelengths. Returns ------- out : float array The minimum and maximum wavelengths. """ if self.wave is not None: return self.wave.get_range(unit) def mask_region(self, lmin=None, lmax=None, inside=True, unit=u.angstrom): """Mask spectrum pixels inside or outside a wavelength range, [lmin,lmax]. Parameters ---------- lmin : float The minimum wavelength of the range, or None to choose the wavelength of the first pixel in the spectrum. lmax : float The maximum wavelength of the range, or None to choose the wavelength of the last pixel in the spectrum. unit : `astropy.units.Unit` The wavelength units of lmin and lmax. If None, lmin and lmax are assumed to be pixel indexes. inside : bool If True, pixels inside the range [lmin,lmax] are masked. If False, pixels outside the range [lmin,lmax] are masked. """ if self.wave is None: raise ValueError('Operation forbidden without world coordinates ' 'along the spectral direction') else: if lmin is None: pix_min = 0 else: if unit is None: pix_min = max(0, int(lmin + 0.5)) else: pix_min = max(0, self.wave.pixel(lmin, nearest=True, unit=unit)) if lmax is None: pix_max = self.shape[0] else: if unit is None: pix_max = min(self.shape[0], int(lmax + 0.5)) else: pix_max = min(self.shape[0], self.wave.pixel(lmax, nearest=True, unit=unit) + 1) if inside: self.data[pix_min:pix_max] = np.ma.masked else: self.data[:pix_min] = np.ma.masked self.data[pix_max + 1:] = np.ma.masked def _wavelengths_to_slice(self, lmin, lmax, unit): """Return the slice that selects a specified wavelength range. Parameters ---------- lmin : float The minimum wavelength of a wavelength range, or the wavelength of a single pixel if lmax is None. lmax : float or None The maximum wavelength of the wavelength range. unit : `astropy.units.Unit` The wavelength units of the lmin and lmax arguments. The default is angstroms. If unit is None, then lmin and lmax are interpreted as array indexes within the spectrum. Returns ------- out : slice The slice needed to select pixels within the specified wavelength range. """ if unit is not None and self.wave is None: raise ValueError('Operation forbidden without world coordinates ' 'along the spectral direction') # Get the pixel index that corresponds to the minimum wavelength. if lmin is None: i1 = 0 else: if unit is None: if lmin > self.shape[0]: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i1 = max(0, int(lmin + 0.5)) else: i1 = self.wave.pixel(lmin, nearest=False, unit=unit) if i1 > self.shape[0]: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i1 = self.wave.pixel(lmin, nearest=True, unit=unit) # Get the pixel index that corresponds to the maximum wavelength. if lmax is None: i2 = self.shape[0] else: if unit is None: if lmax < 0: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i2 = min(self.shape[0], int(lmax + 0.5)) else: i2 = self.wave.pixel(lmax, nearest=False, unit=unit) if i2 < 0: raise ValueError('Minimum and maximum wavelengths ' 'are outside the spectrum range') i2 = self.wave.pixel(lmax, nearest=True, unit=unit) + 1 return slice(i1, i2) def _interp(self, wavelengths, spline=False): """return the interpolated values corresponding to the wavelength array. Parameters ---------- wavelengths : array of float wavelength values unit : `astropy.units.Unit` Type of the wavelength coordinates spline : bool False: linear interpolation (use `scipy.interpolate.interp1d`), True: spline interpolation (use `scipy.interpolate.splrep` and `scipy.interpolate.splev`). """ lbda = self.wave.coord() data = np.pad(self.data.compressed(), 1, 'edge') w = np.concatenate(([self.get_start() - 0.5 * self.get_step()], np.compress(~self._mask, lbda), [self.get_end() + 0.5 * self.get_step()])) if spline: if self._var is not None: _weight = 1. / np.sqrt(np.abs(self.var.filled(np.inf))) if self.mask is np.ma.nomask: weight = np.empty(self.shape + 2, dtype=float) weight[1:-1] = _weight else: ksel = np.where(self.mask == False) weight = np.empty(np.shape(ksel)[1] + 2) weight[1:-1] = _weight[ksel] weight[0] = weight[1] weight[-1] = weight[-2] else: weight = None tck = interpolate.splrep(w, data, w=weight) return interpolate.splev(wavelengths, tck, der=0) else: f = interpolate.interp1d(w, data) return f(wavelengths) def _interp_data(self, spline=False): """Return data array with interpolated values for masked pixels. Parameters ---------- spline : bool False: linear interpolation (use `scipy.interpolate.interp1d`), True: spline interpolation (use `scipy.interpolate.splrep` and `scipy.interpolate.splev`). """ if np.count_nonzero(self._mask) in (0, self.shape[0]): return self._data lbda = self.wave.coord() wnew = lbda[self._mask] data = self._data.copy() data[self._mask] = self._interp(wnew, spline) return data def interp_mask(self, spline=False): """Interpolate masked pixels. Parameters ---------- spline : bool False: linear interpolation (use `scipy.interpolate.interp1d`), True: spline interpolation (use `scipy.interpolate.splrep` and `scipy.interpolate.splev`). """ self.data = np.ma.masked_invalid(self._interp_data(spline)) def rebin(self, factor, margin='center', inplace=False): """Combine neighboring pixels to reduce the size of a spectrum by an integer factor. Each output pixel is the mean of n pixels, where n is the specified reduction factor. Parameters ---------- factor : int The integer reduction factor by which the spectrum should be shrunk. margin : string in 'center'|'right'|'left'|'origin' When the dimension of the input spectrum is not an integer multiple of the reduction factor, the spectrum is truncated to remove just enough pixels that its length is a multiple of the reduction factor. This sub-spectrum is then rebinned in place of the original spectrum. The margin parameter determines which pixels of the input spectrum are truncated, and which remain. The options are: 'origin' or 'center': The start of the output spectrum is coincident with the start of the input spectrum. 'center': The center of the output spectrum is aligned with the center of the input spectrum, within one pixel. 'right': The end of the output spectrum is coincident with the end of the input spectrum. inplace : bool If False, return a rebinned copy of the spectrum (the default). If True, rebin the original spectrum in-place, and return that. Returns ------- out : Spectrum """ # Delegate the rebinning to the generic DataArray function. return self._rebin(factor, margin, inplace) def _decimation_filter(self, newstep, atten, unit=None): """This is a private function Spectrum.resample(), used to apply a decimation filter prior to resampling. Parameters ---------- step : float The new pixel size along the wavelength axis of the spectrum. atten : float The minimum attenuation (dB), of the antialiasing decimation filter at the Nyquist folding frequency of the new pixel size. Larger attenuations suppress aliasing better at the expense of worsened resolution. A good value to choose is 40dB, which produces a response that is very similar to a blackman filter applied within the Fourier plane, but with less ringing in the image plane. unit : `astropy.units.Unit` The wavelength units of the step argument. A value of None is equivalent to specifying self.wave.unit. """ # Convert the attenuation from dB to a linear scale factor. gcut = 10.0**(-atten / 20.0) # Calculate the Nyquist folding frequency of the new pixel size. nyquist_folding_freq = 0.5 / newstep # Calculate the standard deviation of a Gaussian whose Fourier # transform drops from unity at the center to gcut at the Nyquist # folding frequency. sigma = (0.5 / np.pi / nyquist_folding_freq * np.sqrt(-2.0 * np.log(gcut))) # Convert the standard deviation from wavelength units to input pixels. sigma /= self.get_step(unit=unit) # Choose dimensions for the gaussian filtering kernel. Choose an # extent from -4*sigma to +4*sigma. This truncates the gaussian # where it drops to about 3e-4 of its peak. The following # calculation ensures that the dimensions of the array are odd, so # that the gaussian will be symmetrically sampled either side of a # central pixel. This prevents spectral shifts. gshape = int(np.ceil(4.0 * sigma)) * 2 + 1 # fftconvolve requires that the kernel be no larger than the array # that it is convolving, so reduce the size of the kernel array if # needed. Be careful to choose an odd sized array. n = self.shape[0] if gshape > n: gshape = n if n % 2 != 0 else (n - 1) # Sample the gaussian filter symmetrically around the central pixel. gx = np.arange(gshape, dtype=float) - gshape // 2 gy = np.exp(-0.5 * (gx / sigma)**2) # Area-normalize the gaussian profile. gy /= gy.sum() # Filter the spectrum with the gaussian filter. self.fftconvolve(gy, inplace=True) def resample(self, step, start=None, shape=None, unit=u.angstrom, inplace=False, atten=40.0, cutoff=0.25): """Resample a spectrum to have a different wavelength interval. Parameters ---------- step : float The new pixel size along the wavelength axis of the spectrum. start : float The wavelength at the center of the first pixel of the resampled spectrum. If None (the default) the center of the first pixel has the same wavelength before and after resampling. unit : `astropy.units.Unit` The wavelength units of the step and start arguments. The default is u.angstrom. shape : int The dimension of the array of the new spectrum (ie. the number of spectral pixels). If this is not specified, the shape is selected to encompass the wavelength range from the chosen start wavelength to the ending wavelength of the input spectrum. inplace : bool If False, return a resampled copy of the spectrum (the default). If True, resample the original spectrum in-place, and return that. atten : float The minimum attenuation (dB), of the antialiasing decimation filter at the Nyquist folding frequency of the new pixel size. Larger attenuations suppress aliasing better at the expense of worsened resolution. The default attenuation is 40.0 dB. To disable antialiasing, specify atten=0.0. cutoff : float Mask each output pixel of which at least this fraction of the pixel was interpolated from masked input pixels. Returns ------- out : Spectrum """ out = self if inplace else self.copy() # Don't allow the spectrum to be started beyond the far end of # the spectrum, because this would result in an empty spectrum. if start is not None and start > self.get_end(unit): raise ValueError('The start value is past the end of the ' 'spectrum range') # Get wavelength world coordinates of the output spectrum. newwave = self.wave.resample(step, start, unit) # How many pixels should there be in the resampled spectrum? # If the user didn't specify this, use newwave.shape, which # holds the number of pixels of size 'step' needed to sample # from 'start' to the end of the current wavelength range. if shape is not None: newwave.shape = shape # Get the existing wavelength step size in the new units. oldstep = self.wave.get_step(unit) # If the spectrum is being resampled to a larger pixel size, # then a decimation filter should be applied before # resampling, to ensure that the new pixel size doesn't # undersample rapidly changing features in the spectrum. if step > oldstep and atten > 0.0: out._decimation_filter(step, atten, unit=unit) # Get the data, mask (and variance) arrays, and replace bad pixels with # zeros. if out._mask is not None: # Is out.data a masked array? data = out.data.filled(0.0) if out._var is not None: var = out.var.filled(0.0) else: var = None mask = out._mask else: # Is out.data just a numpy array? mask = ~np.isfinite(out._data) data = out._data.copy() data[mask] = 0.0 if out.var is not None: var = out.var.copy() var[mask] = 0.0 else: var = None # Get the coordinates of the pixels of the input and output spectra. xi = self.wave.coord() xo = newwave.coord() # Get a resampled versions of the data array, optionally the variance # array, and a floating point version of the mask array. Note that the # choice of linear interpolation is required to preserve flux. data = interpolate.griddata(xi, data, xo, method="linear", fill_value=np.nan) if var is not None: var = interpolate.griddata(xi, var, xo, method="linear", fill_value=np.nan) mask = interpolate.griddata(xi, mask.astype(float), xo, method="linear", fill_value=1.0) # Create a new boolean mask in which all pixels that had an integrated # contribution of more than 'cutoff' originally masked pixels are # masked. Note that setting the cutoff to the "obvious" value of zero # results in lots of pixels being masked that are far away from any # masked pixels, due to precision errors in the griddata() # function. Limit the minimum value of the cutoff to avoid this. mask = np.greater(mask, max(cutoff, 1.0e-6)) # If masked arrays were not in use in the original spectrum, fill # bad pixels with NaNs. if out._mask is None: data[mask] = np.nan if var is not None: var[mask] = np.nan mask = None # Install the resampled arrays. out._data = data out._var = var out._mask = mask # Install the new wavelength world coordinates. out.wave = newwave # When up-sampling, decimation filter the output spectrum. The # combination of this and the linear interpolation of the preceding # griddata() produces a much better interpolation than a cubic spline # filter can. In particular, a spline interpolation does not conserve # flux, whereas linear interpolation plus decimation filtering does. if step < oldstep and atten > 0.0: out._decimation_filter(step, atten, unit=unit) return out def mean(self, lmin=None, lmax=None, weight=True, unit=u.angstrom): """Compute the mean flux over a specified wavelength range. Parameters ---------- lmin : float The minimum wavelength of the range, or None to choose the wavelength of the first pixel in the spectrum. lmax : float The maximum wavelength of the range, or None to choose the wavelength of the last pixel in the spectrum. unit : `astropy.units.Unit` The wavelength units of lmin and lmax. If None, lmin and lmax are assumed to be pixel indexes. weight : bool If weight is True, compute the weighted mean, inversely weighting each pixel by its variance. Returns ------- out : (float, float) The mean flux and its error. """ # Don't attempt to perform a weighted mean if there are no variances. if self._var is None: weight = False # Get the slice that selects the specified wavelength range. try: lambda_slice = self._wavelengths_to_slice(lmin, lmax, unit) except ValueError: return (0.0, np.inf) # Obtain the mean flux of the sub-spectrum. if weight: weights = 1.0 / self.var[lambda_slice].filled(np.inf) flux, wsum = np.ma.average(self.data[lambda_slice], weights=weights, returned=True) if self.var is not None: err_flux = np.sqrt( np.ma.sum(self.var[lambda_slice] * weights**2) / wsum**2) else: err_flux = np.inf else: flux, wsum = np.ma.average(self.data[lambda_slice], returned=True) if self.var is not None: err_flux = np.sqrt(np.ma.sum(self.var[lambda_slice])) / wsum**2 else: err_flux = np.inf return (flux, err_flux) def sum(self, lmin=None, lmax=None, weight=True, unit=u.angstrom): """Obtain the sum of the fluxes within a specified wavelength range. Parameters ---------- lmin : float The minimum wavelength of the range, or None to choose the wavelength of the first pixel in the spectrum. lmax : float The maximum wavelength of the range, or None to choose the wavelength of the last pixel in the spectrum. unit : `astropy.units.Unit` The wavelength units of lmin and lmax. If None, lmin and lmax are assumed to be pixel indexes. weight : bool If weight is True, compute the weighted sum, inversely weighting each pixel by its variance. Returns ------- out : float, float The total flux and its error. """ # Get the slice that selects the specified wavelength range. try: lambda_slice = self._wavelengths_to_slice(lmin, lmax, unit) except ValueError: return (0.0, np.inf) # Perform a weighted sum? if weight and self._var is not None: weights = 1.0 / self.var[lambda_slice].filled(np.inf) # How many unmasked pixels will be averaged? nsum = np.ma.count(self.data[lambda_slice]) fmean, wsum = np.ma.average(self.data[lambda_slice], weights=weights, returned=True) # The weighted average multiplied by the number of unmasked pixels. flux = fmean * nsum if self.var is not None: err_flux = np.sqrt( np.ma.sum(self.var[lambda_slice] * weights**2) / wsum**2 * nsum**2) else: err_flux = np.inf else: flux = self.data[lambda_slice].sum() if self.var is not None: err_flux = np.sqrt(np.ma.sum(self.var[lambda_slice])) else: err_flux = np.inf return (flux, err_flux) def integrate(self, lmin=None, lmax=None, unit=u.angstrom): """Integrate the flux over a specified wavelength range. The units of the integrated flux depend on the flux units of the spectrum and the wavelength units, as follows: If the flux units of the spectrum, self.unit, are something like Q per angstrom, Q per nm, or Q per um, then the integrated flux will have the units of Q. For example, if the fluxes have units of 1e-20 erg/cm2/Angstrom/s, then the units of the integration will be 1e-20 erg/cm2/s. Alternatively, if unit is not None, then the unit of the returned number will be the product of the units in self.unit and unit. For example, if the flux units are counts/s, and unit=u.angstrom, then the integrated flux will have units counts*Angstrom/s. Finally, if unit is None, then the units of the returned number will be the product of self.unit and the units of the wavelength axis of the spectrum (ie. self.wave.unit). The result of the integration is returned as an astropy Quantity, which holds the integrated value and its physical units. The units of the returned number can be determined from the .unit attribute of the return value. Alternatively the returned value can be converted to another unit, using the to() method of astropy quantities. Parameters ---------- lmin : float The minimum wavelength of the range to be integrated, or None (the default), to select the minimum wavelength of the first pixel of the spectrum. If this is below the minimum wavelength of the spectrum, the integration behaves as though the flux in the first pixel extended down to that wavelength. If the unit argument is None, lmin is a pixel index, and the wavelength of the center of this pixel is used as the lower wavelength of the integration. lmax : float The maximum wavelength of the range to be integrated, or None (the default), to select the maximum wavelength of the last pixel of the spectrum. If this is above the maximum wavelength of the spectrum, the integration behaves as though the flux in the last pixel extended up to that wavelength. If the unit argument is None, lmax is a pixel index, and the wavelength of the center of this pixel is used as the upper wavelength of the integration. unit : `astropy.units.Unit` The wavelength units of lmin and lmax, or None to indicate that lmin and lmax are pixel indexes. Returns ------- out : `astropy.units.Quantity`, `astropy.units.Quantity` The result of the integration and its error, expressed as a floating point number with accompanying units. The integrated value and its physical units can be extracted using the .value and .unit attributes of the returned quantity. The value can also be converted to different units, using the .to() method of the returned objected. """ # Get the index of the first pixel within the wavelength range, # and the minimum wavelength of the integration. if lmin is None: i1 = 0 lmin = self.wave.coord(-0.5, unit=unit) else: if unit is None: l1 = lmin lmin = self.wave.coord(max(-0.5, l1)) else: l1 = self.wave.pixel(lmin, False, unit) i1 = max(0, int(l1)) # Get the index of the last pixel within the wavelength range, plus # 1, and the maximum wavelength of the integration. if lmax is None: i2 = self.shape[0] lmax = self.wave.coord(i2 - 0.5, unit=unit) else: if unit is None: l2 = lmax lmax = self.wave.coord(min(self.shape[0] - 0.5, l2)) else: l2 = self.wave.pixel(lmax, False, unit) i2 = min(self.shape[0], int(l2) + 1) # Get the lower wavelength of each pixel, including one extra # pixel at the end of the range. d = self.wave.coord(-0.5 + np.arange(i1, i2 + 1), unit=unit) # Change the wavelengths of the first and last pixels to # truncate or extend those pixels to the starting and ending # wavelengths of the spectrum. d[0] = lmin d[-1] = lmax if unit is None: unit = self.wave.unit # Get the data of the subspectrum covered by the integration. data = self.data[i1:i2] # If the spectrum has been calibrated, the flux units will be # per angstrom, per nm, per um etc. If these wavelength units # don't match the units of the wavelength axis of the # integration, then although the results will be correct, they # will have inconvenient units. In such cases attempt to # convert the units of the wavelength axis to match the flux # units. if unit in self.unit.bases: # The wavelength units already agree. out_unit = self.unit * unit else: try: # Attempt to determine the wavelength units of the flux density wunit = (set(self.unit.bases) & set([u.pm, u.angstrom, u.nm, u.um])).pop() # Scale the wavelength axis to have the same wavelength units. d *= unit.to(wunit) # Get the final units of the integration. out_unit = self.unit * wunit # If the wavelength units of the flux weren't recognized, # simply return the units unchanged. except Exception: out_unit = self.unit * unit # Integrate the spectrum by multiplying the value of each pixel # by the difference in wavelength from the start of that pixel to # the start of the next pixel. flux = (data * np.diff(d)).sum() * out_unit if self.var is None: err_flux = np.inf else: err_flux = np.sqrt((self.var[i1:i2] * np.diff(d)**2).sum()) return (flux, err_flux * out_unit) def poly_fit(self, deg, weight=True, maxiter=0, nsig=(-3.0, 3.0), verbose=False): """Perform polynomial fit on normalized spectrum and returns polynomial coefficients. Parameters ---------- deg : int Polynomial degree. weight : bool If weight is True, the weight is computed as the inverse of variance. maxiter : int Maximum allowed iterations (0) nsig : (float,float) The low and high rejection factor in std units (-3.0,3.0) Returns ------- out : ndarray, shape. Polynomial coefficients ordered from low to high. """ if self.shape[0] <= deg + 1: raise ValueError('Too few points to perform polynomial fit') if self._var is None: weight = False if weight: vec_weight = 1.0 / np.sqrt(np.abs(self.var.filled(np.inf))) else: vec_weight = None if self._mask is np.ma.nomask: d = self._data w = self.wave.coord() else: mask = ~self._mask d = self._data[mask] w = self.wave.coord()[mask] if weight: vec_weight = vec_weight[mask] # normalize w w0 = np.min(w) dw = np.max(w) - w0 w = (w - w0) / dw p = np.polynomial.polynomial.polyfit(w, d, deg, w=vec_weight) if maxiter > 0: err = d - np.polynomial.polynomial.polyval(w, p) sig = np.std(err) n_p = len(d) for it in range(maxiter): ind = np.where((err >= nsig[0] * sig) & (np.abs(err) <= nsig[1] * sig)) if len(ind[0]) == n_p: break if len(ind[0]) <= deg + 1: raise ValueError('Too few points to perform ' 'polynomial fit') if vec_weight is not None: vec_weight = vec_weight[ind] p = np.polynomial.polynomial.polyfit(w[ind], d[ind], deg, w=vec_weight) err = d[ind] - np.polynomial.polynomial.polyval(w[ind], p) sig = np.std(err) n_p = len(ind[0]) if verbose: self._logger.info('Number of iteration: %d Std: %10.4e ' 'Np: %d Frac: %4.2f', it + 1, sig, n_p, 100. * n_p / self.shape[0]) return p def poly_val(self, z): """Update in place the spectrum data from polynomial coefficients. Uses `numpy.poly1d`. Parameters ---------- z : array The polynomial coefficients, in increasing powers: data = z0 + z1(lbda-min(lbda))/(max(lbda)-min(lbda)) + ... + zn ((lbda-min(lbda))/(max(lbda)-min(lbda)))**n """ l = self.wave.coord() w0 = np.min(l) dw = np.max(l) - w0 w = (l - w0) / dw self._data = np.polynomial.polynomial.polyval(w, z) if self._mask is not np.ma.nomask: self._mask = ~(np.isfinite(self._data)) self._var = None def poly_spec(self, deg, weight=True, maxiter=0, nsig=(-3.0, 3.0), verbose=False): """Return a spectrum containing a polynomial fit. Parameters ---------- deg : int Polynomial degree. weight : bool If weight is True, the weight is computed as the inverse of variance. maxiter : int Maximum allowed iterations (0) nsig : (float,float) The low and high rejection factor in std units (-3.0,3.0) Returns ------- out : Spectrum """ z = self.poly_fit(deg, weight, maxiter, nsig, verbose) res = self.clone() res.poly_val(z) return res def abmag_band(self, lbda, dlbda): """Compute AB magnitude corresponding to the wavelength band. Parameters ---------- lbda : float Mean wavelength in Angstrom. dlbda : float Width of the wavelength band in Angstrom. Returns ------- out : float, float Magnitude value and its error """ vflux, err_flux = self.mean(lmin=lbda - dlbda / 2.0, lmax=lbda + dlbda / 2.0, weight=None, unit=u.angstrom) if vflux == 0: return (99, 0) else: unit = u.Unit('erg.s-1.cm-2.Angstrom-1') vflux2 = (vflux * self.unit).to(unit) err_flux2 = (err_flux * self.unit).to(unit) return flux2mag(vflux2.value, err_flux2.value, lbda) def abmag_filter_name(self, name): """Compute AB magnitude using the filter name. Parameters ---------- name : string 'U', 'B', 'V', 'Rc', 'Ic', 'z', 'R-Johnson', 'F606W', 'F775W', 'F814W', 'F850LP' Returns ------- out : float, float Magnitude value and its error """ if name == 'U': return self.abmag_band(3663., 650.) elif name == 'B': return self.abmag_band(4361., 890.) elif name == 'V': return self.abmag_band(5448., 840.) elif name == 'Rc': return self.abmag_band(6410., 1600.) elif name == 'Ic': return self.abmag_band(7980., 1500.) elif name == 'z': return self.abmag_band(8930., 1470.) elif name == 'R-Johnson': (l0, lmin, lmax, tck) = ABmag_filters.mag_RJohnson() return self._filter(l0, lmin, lmax, tck) else: FILTERS = join(abspath(dirname(__file__)), 'filters', 'filter_list.fits') filtname = 'ACS_' + name with fits.open(FILTERS) as hdul: if filtname not in hdul: raise ValueError("filter '{}' not found".format(filtname)) lbda = hdul[filtname].data['lambda'] thr = hdul[filtname].data['throughput'] return self.abmag_filter(lbda, thr) def abmag_filter(self, lbda, eff): """Compute AB magnitude using array filter. Parameters ---------- lbda : float array Wavelength values in Angstrom. eff : float array Efficiency values. Returns ------- out : float, float Magnitude value and its error """ lbda = np.asarray(lbda) eff = np.asarray(eff) if np.shape(lbda) != np.shape(eff): raise TypeError('lbda and eff inputs have not the same size.') l0 = np.average(lbda, weights=eff) lmin = lbda[0] lmax = lbda[-1] k = 3 if lbda.shape[0] > 3 else 1 tck = interpolate.splrep(lbda, eff, k=k) return self._filter(l0, lmin, lmax, tck) def _filter(self, l0, lmin, lmax, tck): """Compute AB magnitude. Parameters ---------- l0 : float Mean wavelength in Angstrom. lmin : float Minimum wavelength in Angstrom. lmax : float Maximum wavelength in Angstrom. tck : 3-tuple (t,c,k) contains the spline representation. t = the knot-points, c = coefficients and k = the order of the spline. """ try: lambda_slice = self._wavelengths_to_slice(lmin, lmax, u.Angstrom) except ValueError: raise ValueError('Spectrum outside Filter band') if lambda_slice.start == (lambda_slice.stop - 1): raise ValueError('Filter band smaller than spectrum step') lb = self.wave.coord(np.arange(lambda_slice.start, lambda_slice.stop), unit=u.Angstrom) w = interpolate.splev(lb, tck, der=0) vflux, wsum = np.ma.average(self.data[lambda_slice], weights=w, returned=True) if self.var is not None: err_flux = np.sqrt(np.ma.sum(self.var[lambda_slice] * w**2) / wsum**2) else: err_flux = np.inf unit = u.Unit('erg.s-1.cm-2.Angstrom-1') vflux2 = (vflux * self.unit).to(unit) err_flux2 = (err_flux * self.unit).to(unit) return flux2mag(vflux2.value, err_flux2.value, l0) def wavelet_filter(self, levels=9, sigmaCutoff=5.0, epsilon=0.05, inplace=False): """Perform a wavelet filtering on the spectrum in 1 dimension. Code contributed by <NAME> (EPFL, 2016), and used in https://arxiv.org/abs/1703.09239 (with funding from ERC Advanced Grant LIDA, Swiss National Science Foundation, ERC Starting Grant 336736-CALENDS). Parameters ---------- levels : int Highest scale level. sigmaCutoff : float Cleaning threshold. By default 5 for a 5 sigma cleaning in wavelet space. epsilon : float in ]0,1[ Residual criterion used to perform the cleaning inplace : bool If False, return a filtered copy of the spectrum (the default). If True, filter the original spectrum in-place, and return that. Returns ------- out : Spectrum """ res = self if inplace else self.copy() deNoisedSignal = wavelet1D.cleanSignal(self._data, np.sqrt(self._var), levels, sigmaCutoff=sigmaCutoff, epsilon=epsilon) res._data = deNoisedSignal res._var = None return res def truncate(self, lmin=None, lmax=None, unit=u.angstrom): """Truncate the wavelength range of a spectrum in-place. Parameters ---------- lmin : float The minimum wavelength of a wavelength range, or the wavelength of a single pixel if lmax is None. lmax : float or None The maximum wavelength of the wavelength range. unit : `astropy.units.Unit` The wavelength units of the lmin and lmax arguments. The default is angstroms. If unit is None, then lmin and lmax are interpreted as array indexes within the spectrum. """ # Get the slice that selects the specified wavelength range. lambda_slice = self._wavelengths_to_slice(lmin, lmax, unit) if lambda_slice.start == (lambda_slice.stop - 1): raise ValueError('Minimum and maximum wavelengths are equal') res = self[lambda_slice] self._data = res._data self._var = res._var self._mask = res._mask self.wave = res.wave def fwhm(self, l0, cont=0, spline=False, unit=u.angstrom): """Return the fwhm of a peak. Parameters ---------- l0 : float Wavelength value corresponding to the peak position. unit : `astropy.units.Unit` Type of the wavelength coordinates. If None, inputs are in pixels. cont : int The continuum [default 0]. spline : bool Linear/spline interpolation to interpolate masked values. Returns ------- out : float """ if unit is None: k0 = int(l0 + 0.5) step = 1 else: k0 = self.wave.pixel(l0, nearest=True, unit=unit) step = self.wave.get_step(unit=unit) d = self._interp_data(spline) - cont f2 = d[k0] / 2 try: k2 = np.argwhere(d[k0:-1] < f2)[0][0] + k0 i2 = np.interp(f2, d[k2:k2 - 2:-1], [k2, k2 - 1]) k1 = k0 - np.argwhere(d[k0:-1] < f2)[0][0] i1 = np.interp(f2, d[k1:k1 + 2], [k1, k1 + 1]) fwhm = (i2 - i1) * step return fwhm except Exception: try: k2 = np.argwhere(d[k0:-1] > f2)[0][0] + k0 i2 = np.interp(f2, d[k2:k2 - 2:-1], [k2, k2 - 1]) k1 = k0 - np.argwhere(d[k0:-1] > f2)[0][0] i1 = np.interp(f2, d[k1:k1 + 2], [k1, k1 + 1]) fwhm = (i2 - i1) * step return fwhm except Exception: raise ValueError('Error in fwhm estimation') def gauss_fit(self, lmin, lmax, lpeak=None, flux=None, fwhm=None, cont=None, peak=False, spline=False, weight=True, plot=False, plot_factor=10, unit=u.angstrom, fix_lpeak=False): """Perform a Gaussian fit. Uses `scipy.optimize.leastsq` to minimize the sum of squares. Parameters ---------- lmin : float or (float,float) Minimum wavelength value or wavelength range used to initialize the gaussian left value (in angstrom) lmax : float or (float,float) Maximum wavelength or wavelength range used to initialize the gaussian right value (in angstrom) lpeak : float Input gaussian center (in angstrom), if None it is estimated with the wavelength corresponding to the maximum value in [max(lmin), min(lmax)] unit : `astropy.units.Unit` Type of the wavelength coordinates. If None, inputs are in pixels. flux : float Integrated gaussian flux or gaussian peak value if peak is True. fwhm : float Input gaussian fwhm (in angstrom), if None it is estimated. peak : bool If true, flux contains the gaussian peak value . cont : float Continuum value, if None it is estimated by the line through points (max(lmin),mean(data[lmin])) and (min(lmax),mean(data[lmax])). spline : bool Linear/spline interpolation to interpolate masked values. weight : bool If weight is True, the weight is computed as the inverse of variance. plot : bool If True, the Gaussian is plotted. plot_factor : double oversampling factor for the overplotted fit Returns ------- out : `mpdaf.obj.Gauss1D` """ # truncate the spectrum and compute right and left gaussian values if np.isscalar(lmin): fmin = None else: lmin = np.array(lmin, dtype=float) fmin = self.mean(lmin[0], lmin[1], unit=unit)[0] lmin = (lmin[0] + lmin[1]) / 2. if np.isscalar(lmax): fmax = None else: lmax = np.array(lmax, dtype=float) fmax = self.mean(lmax[0], lmax[1], unit=unit)[0] lmax = (lmax[0] + lmax[1]) / 2. spec = self.subspec(lmin, lmax, unit=unit) data = spec._interp_data(spline) if unit is None: l = np.arange(self.shape, dtype=float) else: l = spec.wave.coord(unit=unit) lmin = l[0] lmax = l[-1] if fmin is None: fmin = data[0] if fmax is None: fmax = data[-1] # initial gaussian peak position if lpeak is None: lpeak = l[data.argmax()] # continuum value if cont is None: cont0 = ((fmax - fmin) * lpeak + lmax * fmin - lmin * fmax) / (lmax - lmin) else: cont0 = cont # initial sigma value if fwhm is None: try: fwhm = spec.fwhm(lpeak, cont0, spline, unit=unit) except Exception: lpeak2 = l[data.argmin()] fwhm = spec.fwhm(lpeak2, cont0, spline, unit=unit) sigma = fwhm * gaussian_fwhm_to_sigma # initial gaussian integrated flux if flux is None: if unit is None: pixel = int(lpeak + 0.5) else: pixel = spec.wave.pixel(lpeak, nearest=True, unit=unit) peak = data[pixel] - cont0 flux = peak * np.sqrt(2 * np.pi * (sigma ** 2)) elif peak is True: peak = flux - cont0 flux = peak * np.sqrt(2 * np.pi * (sigma ** 2)) else: pass # 1d gaussian function: p = (ampl, sigma, center) if fix_lpeak: if cont is None: gaussfit = lambda p, x: \ ((fmax - fmin) * x + lmax * fmin - lmin * fmax) \ / (lmax - lmin) + np.abs(p[0]) \ * (1 / np.sqrt(2 * np.pi * (p[1] ** 2))) \ * np.exp(-(x - lpeak) ** 2 / (2 * p[1] ** 2)) else: gaussfit = lambda p, x: \ cont + p[0] * (1 / np.sqrt(2 * np.pi * (p[1] ** 2))) \ * np.exp(-(x - lpeak) ** 2 / (2 * p[1] ** 2)) else: if cont is None: gaussfit = lambda p, x: \ ((fmax - fmin) * x + lmax * fmin - lmin * fmax) \ / (lmax - lmin) + p[0] \ * (1 / np.sqrt(2 * np.pi * (p[1] ** 2))) \ * np.exp(-(x - p[2]) ** 2 / (2 * p[1] ** 2)) else: gaussfit = lambda p, x: \ cont + p[0] * (1 / np.sqrt(2 * np.pi * (p[1] ** 2))) \ * np.exp(-(x - p[2]) ** 2 / (2 * p[1] ** 2)) if spec.var is not None and weight: wght = 1.0 / np.sqrt(np.abs(spec.var)) np.ma.fix_invalid(wght, copy=False, fill_value=0) else: wght = np.ones(spec.shape) # inital guesses for Gaussian Fit v0 = [flux, sigma] if not fix_lpeak: v0.append(lpeak) # Minimize the sum of squares e_gauss_fit = lambda p, x, y, w: w * (gaussfit(p, x) - y) v, covar, info, mesg, success = leastsq(e_gauss_fit, v0[:], args=(l, data, wght), maxfev=100000, full_output=1) # calculate the errors from the estimated covariance matrix chisq = sum(info["fvec"] * info["fvec"]) dof = len(info["fvec"]) - len(v) if covar is not None: err = np.array([np.sqrt(np.abs(covar[i, i])) * np.sqrt(np.abs(chisq / dof)) for i in range(len(v))]) else: err = [np.nan] * len(v) if plot: import matplotlib.pyplot as plt xxx = np.arange(l[0], l[-1], (l[1] - l[0]) / plot_factor) ccc = gaussfit(v, xxx) plt.plot(xxx, ccc, 'r--') # return a Gauss1D object v = list(v) err = list(err) if not fix_lpeak: lpeak = v.pop() err_lpeak = err.pop() else: err_lpeak = 0 flux, sigma = v[0], np.abs(v[1]) fwhm = sigma * gaussian_sigma_to_fwhm peak = flux / np.sqrt(2 * np.pi * (sigma ** 2)) err_flux, err_sigma = err err_fwhm = err_sigma * gaussian_sigma_to_fwhm err_peak = np.abs(1. / np.sqrt(2 * np.pi) * (err_flux * sigma - flux * err_sigma) / sigma / sigma) return Gauss1D(lpeak, peak, flux, fwhm, cont0, err_lpeak, err_peak, err_flux, err_fwhm, chisq, dof) def add_gaussian(self, lpeak, flux, fwhm, cont=0, peak=False, unit=u.angstrom): """Add a gaussian on spectrum in place. Parameters ---------- lpeak : float Gaussian center. flux : float Integrated gaussian flux or gaussian peak value if peak is True. fwhm : float Gaussian fwhm. cont : float Continuum value. peak : bool If true, flux contains the gaussian peak value unit : `astropy.units.Unit` Type of the wavelength coordinates. If None, inputs are in pixels. """ gauss = lambda p, x: cont \ + p[0] * (1 / np.sqrt(2 * np.pi * (p[2] ** 2))) \ * np.exp(-(x - p[1]) ** 2 / (2 * p[2] ** 2)) sigma = fwhm * gaussian_fwhm_to_sigma if peak is True: flux = flux * np.sqrt(2 * np.pi * (sigma ** 2)) lmin = lpeak - 5 * sigma lmax = lpeak + 5 * sigma if unit is None: imin = int(lmin + 0.5) imax = int(lmax + 0.5) else: imin = self.wave.pixel(lmin, nearest=True, unit=unit) imax = self.wave.pixel(lmax, nearest=True, unit=unit) if imin == imax: if imin == 0 or imin == self.shape[0]: raise ValueError('Gaussian outside spectrum wavelength range') if unit is None: wave = np.arange(imin, imax, dtype=float) else: wave = self.wave.coord(unit=unit)[imin:imax] v = [flux, lpeak, sigma] self.data[imin:imax] += gauss(v, wave) def gauss_dfit(self, lmin, lmax, wratio, lpeak_1=None, flux_1=None, fratio=1., fwhm=None, cont=None, peak=False, spline=False, weight=True, plot=False, plot_factor=10, unit=u.angstrom): """Truncate the spectrum and fit it as a sum of two gaussian functions. Returns the two gaussian functions as `mpdaf.obj.Gauss1D` objects. From <NAME> and <NAME>. Parameters ---------- lmin : float or (float,float) Minimum wavelength value or wavelength range used to initialize the gaussian left value. lmax : float or (float,float) Maximum wavelength or wavelength range used to initialize the gaussian right value. wratio : float Ratio between the two gaussian centers lpeak_1 : float Input gaussian center of the first gaussian. if None it is estimated with the wavelength corresponding to the maximum value in [max(lmin), min(lmax)] flux_1 : float Integrated gaussian flux or gaussian peak value if peak is True. fratio : float Ratio between the two integrated gaussian fluxes. fwhm : float Input gaussian fwhm, if None it is estimated. peak : bool If true, flux contains the gaussian peak value . cont : float Continuum value, if None it is estimated by the line through points (max(lmin),mean(data[lmin])) and (min(lmax),mean(data[lmax])). spline : bool Linear/spline interpolation to interpolate masked values. weight : bool If weight is True, the weight is computed as the inverse of variance. plot : bool If True, the resulted fit is plotted. plot_factor : double oversampling factor for the overplotted fit unit : `astropy.units.Unit` Type of the wavelength coordinates. If None, inputs are in pixels. Returns ------- out : `mpdaf.obj.Gauss1D`, `mpdaf.obj.Gauss1D` """ if np.isscalar(lmin): fmin = None else: lmin = np.array(lmin, dtype=float) fmin = self.mean(lmin[0], lmin[1], weight=False, unit=unit)[0] lmin = lmin[1] if np.isscalar(lmax): fmax = None else: lmax = np.array(lmax, dtype=float) fmax = self.mean(lmax[0], lmax[1], weight=False, unit=unit)[0] lmax = lmax[0] # spec = self.truncate(lmin, lmax) spec = self.subspec(lmin, lmax, unit=unit) data = spec._interp_data(spline) if unit is None: l = np.arange(self.shape, dtype=float) else: l = spec.wave.coord(unit=unit) lmin = l[0] lmax = l[-1] if fmin is None: fmin = data[0] if fmax is None: fmax = data[-1] # initial gaussian peak position if lpeak_1 is None: lpeak_1 = l[data.argmax()] # continuum value if cont is None: cont0 = ((fmax - fmin) * lpeak_1 + lmax * fmin - lmin * fmax) / (lmax - lmin) else: cont0 = cont # initial sigma value if fwhm is None: try: fwhm = spec.fwhm(lpeak_1, cont0, spline, unit=unit) except Exception: lpeak_1 = l[data.argmin()] fwhm = spec.fwhm(lpeak_1, cont0, spline, unit=unit) sigma = fwhm * gaussian_fwhm_to_sigma # initial gaussian integrated flux if flux_1 is None: if unit is None: pixel = int(lpeak_1 + 0.5) else: pixel = spec.wave.pixel(lpeak_1, nearest=True, unit=unit) peak_1 = data[pixel] - cont0 flux_1 = peak_1 * np.sqrt(2 * np.pi * (sigma ** 2)) elif peak is True: peak_1 = flux_1 - cont0 flux_1 = peak_1 * np.sqrt(2 * np.pi * (sigma ** 2)) else: pass flux_2 = fratio * flux_1 # 1d gaussian function # p[0]: flux 1, p[1]:center 1, p[2]: fwhm, p[3] = peak 2 gaussfit = lambda p, x: cont0 + \ p[0] * (1 / np.sqrt(2 * np.pi * (p[2] ** 2))) * \ np.exp(-(x - p[1]) ** 2 / (2 * p[2] ** 2)) + \ p[3] * (1 / np.sqrt(2 * np.pi * (p[2] ** 2))) * \ np.exp(-(x - (p[1] * wratio)) ** 2 / (2 * p[2] ** 2)) # 1d gaussian fit if spec.var is not None and weight: wght = 1.0 / np.sqrt(np.abs(spec.var)) np.ma.fix_invalid(wght, copy=False, fill_value=0) else: wght = np.ones(spec.shape) e_gauss_fit = lambda p, x, y, w: w * (gaussfit(p, x) - y) # inital guesses for Gaussian Fit v0 = [flux_1, lpeak_1, sigma, flux_2] # Minimize the sum of squares v, covar, info, mesg, success = leastsq( e_gauss_fit, v0[:], args=(l, data, wght), maxfev=100000, full_output=1) # calculate the errors from the estimated covariance matrix chisq = sum(info["fvec"] * info["fvec"]) dof = len(info["fvec"]) - len(v) if covar is not None: err = np.array([np.sqrt(np.abs(covar[i, i])) * np.sqrt(np.abs(chisq / dof)) for i in range(len(v))]) else: err = None if plot: import matplotlib.pyplot as plt xxx = np.arange(l[0], l[-1], (l[1] - l[0]) / plot_factor) ccc = gaussfit(v, xxx) plt.plot(xxx, ccc, 'r--') # return a Gauss1D object flux_1 = v[0] flux_2 = v[3] lpeak_1 = v[1] lpeak_2 = lpeak_1 * wratio sigma = np.abs(v[2]) fwhm = sigma * gaussian_sigma_to_fwhm peak_1 = flux_1 / np.sqrt(2 * np.pi * (sigma ** 2)) peak_2 = flux_2 / np.sqrt(2 * np.pi * (sigma ** 2)) if err is not None: err_flux_1 = err[0] err_flux_2 = err[3] err_lpeak_1 = err[1] err_lpeak_2 = err[1] * wratio err_sigma = err[2] err_fwhm = err_sigma * gaussian_sigma_to_fwhm err_peak_1 = np.abs(1. / np.sqrt(2 * np.pi) * (err_flux_1 * sigma - flux_1 * err_sigma) / sigma / sigma) err_peak_2 = np.abs(1. / np.sqrt(2 * np.pi) * (err_flux_2 * sigma - flux_2 * err_sigma) / sigma / sigma) else: err_flux_1 = np.NAN err_flux_2 = np.NAN err_lpeak_1 = np.NAN err_lpeak_2 = np.NAN err_sigma = np.NAN err_fwhm = np.NAN err_peak_1 = np.NAN err_peak_2 = np.NAN return (Gauss1D(lpeak_1, peak_1, flux_1, fwhm, cont0, err_lpeak_1, err_peak_1, err_flux_1, err_fwhm, chisq, dof), Gauss1D(lpeak_2, peak_2, flux_2, fwhm, cont0, err_lpeak_2, err_peak_2, err_flux_2, err_fwhm, chisq, dof)) def gauss_asymfit(self, lmin, lmax, lpeak=None, flux=None, fwhm=None, cont=None, peak=False, spline=False, weight=True, plot=False, plot_factor=10, ax=None, unit=u.angstrom): """Truncate the spectrum and fit it with an asymetric gaussian function. Returns the two gaussian functions (right and left) as `mpdaf.obj.Gauss1D` objects. From <NAME> and <NAME>, modified by <NAME>. Parameters ---------- lmin : float or (float,float) Minimum wavelength value or wavelength range used to initialize the gaussian left value. lmax : float or (float,float) Maximum wavelength or wavelength range used to initialize the gaussian right value. lpeak : float Input gaussian center. if None it is estimated with the wavelength corresponding to the maximum value in ``[max(lmin), min(lmax)]``. flux : float Integrated gaussian flux or gaussian peak value if peak is True. fwhm : float Input gaussian fwhm, if None it is estimated. peak : bool If true, flux contains the gaussian peak value . cont : float Continuum value, if None it is estimated by the line through points (max(lmin),mean(data[lmin])) and (min(lmax),mean(data[lmax])). spline : bool Linear/spline interpolation to interpolate masked values. weight : bool If weight is True, the weight is computed as the inverse of variance. unit : `astropy.units.Unit` type of the wavelength coordinates. If None, inputs are in pixels. plot : bool If True, the resulted fit is plotted. plot_factor : double oversampling factor for the overplotted fit Returns ------- out : `mpdaf.obj.Gauss1D`, `mpdaf.obj.Gauss1D` Left and right Gaussian functions. """ if np.isscalar(lmin): fmin = None else: lmin = np.array(lmin, dtype=float) fmin = self.mean(lmin[0], lmin[1], weight=False, unit=unit)[0] lmin = lmin[1] if np.isscalar(lmax): fmax = None else: lmax = np.array(lmax, dtype=float) fmax = self.mean(lmax[0], lmax[1], weight=False, unit=unit)[0] lmax = lmax[0] spec = self.subspec(lmin, lmax, unit=unit) data = spec._interp_data(spline) if unit is None: l = np.arange(self.shape, dtype=float) else: l = spec.wave.coord(unit=unit) lmin = l[0] lmax = l[-1] if fmin is None: fmin = data[0] if fmax is None: fmax = data[-1] # initial gaussian peak position if lpeak is None: lpeak = l[data.argmax()] # continuum value if cont is None: cont0 = ((fmax - fmin) * lpeak + lmax * fmin - lmin * fmax) / (lmax - lmin) else: cont0 = cont # initial sigma value if fwhm is None: try: fwhm = spec.fwhm(lpeak, cont0, spline, unit=unit) except Exception: lpeak = l[data.argmin()] fwhm = spec.fwhm(lpeak, cont0, spline, unit=unit) sigma = fwhm * gaussian_fwhm_to_sigma # initial gaussian integrated flux if flux is None: if unit is None: pixel = int(lpeak + 0.5) else: pixel = spec.wave.pixel(lpeak, nearest=True, unit=unit) peak = data[pixel] - cont0 flux = peak * np.sqrt(2 * np.pi * (sigma ** 2)) elif peak is True: peak = flux - cont0 flux = peak * np.sqrt(2 * np.pi * (sigma ** 2)) else: pass # Asymetric gaussian function (p[0]: flux of the right-hand side if it # was full... ; p[1]: lambda peak; p[2]:sigma_right; p[3]: sigma_left) asymfit = lambda p, x: np.where( x > p[1], cont0 + p[0] / np.sqrt(2 * np.pi) / p[2] * np.exp(-(x - p[1]) ** 2 / (2. * p[2] ** 2)), cont0 + p[0] * p[3] / p[2] / np.sqrt(2 * np.pi) / p[3] *
np.exp(-(x - p[1]) ** 2 / (2. * p[3] ** 2))
numpy.exp
# -*- coding: utf-8 -*- __all__ = ["optimize"] import os import sys import numpy as np import pymc3 as pm import theano from pymc3.blocking import ArrayOrdering, DictToArrayBijection from pymc3.model import Point from pymc3.theanof import inputvars from pymc3.util import ( get_default_varnames, get_untransformed_name, is_transformed_name, update_start_vals, ) from .utils import ( get_args_for_theano_function, get_theano_function_for_var, logger, ) def start_optimizer(vars, verbose=True, progress_bar=True, **kwargs): if verbose: names = [ get_untransformed_name(v.name) if is_transformed_name(v.name) else v.name for v in vars ] sys.stderr.write( "optimizing logp for variables: [{0}]\n".format(", ".join(names)) ) if progress_bar is True: if "EXOPLANET_NO_AUTO_PBAR" in os.environ: from tqdm import tqdm else: from tqdm.auto import tqdm progress_bar = tqdm(**kwargs) # Check whether the input progress bar has the expected methods has_progress_bar = ( hasattr(progress_bar, "set_postfix") and hasattr(progress_bar, "update") and hasattr(progress_bar, "close") ) return has_progress_bar, progress_bar def get_point(wrapper, x): vars = get_default_varnames(wrapper.model.unobserved_RVs, True) return { var.name: value for var, value in zip( vars, wrapper.model.fastfn(vars)(wrapper.bij.rmap(x)) ) } def optimize( start=None, vars=None, model=None, return_info=False, verbose=True, progress_bar=True, **kwargs ): """Maximize the log prob of a PyMC3 model using scipy All extra arguments are passed directly to the ``scipy.optimize.minimize`` function. Args: start: The PyMC3 coordinate dictionary of the starting position vars: The variables to optimize model: The PyMC3 model return_info: Return both the coordinate dictionary and the result of ``scipy.optimize.minimize`` verbose: Print the success flag and log probability to the screen progress_bar: A ``tqdm`` progress bar instance. Set to ``True`` (default) to use ``tqdm.auto.tqdm()``. Set to ``False`` to disable. """ from scipy.optimize import minimize wrapper = ModelWrapper(start=start, vars=vars, model=model) has_progress_bar, progress_bar = start_optimizer( wrapper.vars, verbose=verbose, progress_bar=progress_bar ) # This returns the objective function and its derivatives def objective(vec): nll, grad = wrapper(vec) if verbose and has_progress_bar: progress_bar.set_postfix(logp="{0:e}".format(-nll)) progress_bar.update() return nll, grad # Optimize using scipy.optimize x0 = wrapper.bij.map(wrapper.start) initial = objective(x0)[0] kwargs["jac"] = True info = minimize(objective, x0, **kwargs) # Only accept the output if it is better than it was x = info.x if (np.isfinite(info.fun) and info.fun < initial) else x0 # Coerce the output into the right format point = get_point(wrapper, x) if verbose: if has_progress_bar: progress_bar.close() sys.stderr.write("message: {0}\n".format(info.message)) sys.stderr.write("logp: {0} -> {1}\n".format(-initial, -info.fun)) if not np.isfinite(info.fun): logger.warning("final logp not finite, returning initial point") logger.warning( "this suggests that something is wrong with the model" ) logger.debug("{0}".format(info)) if return_info: return point, info return point def optimize_iterator( stepper, maxiter=1000, start=None, vars=None, model=None, **kwargs ): """Maximize the log prob of a PyMC3 model using scipy All extra arguments are passed directly to the ``scipy.optimize.minimize`` function. Args: stepper: An optimizer object maxiter: The maximum number of steps to run start: The PyMC3 coordinate dictionary of the starting position vars: The variables to optimize model: The PyMC3 model return_info: Return both the coordinate dictionary and the result of ``scipy.optimize.minimize`` verbose: Print the success flag and log probability to the screen progress_bar: A ``tqdm`` progress bar instance. Set to ``True`` (default) to use ``tqdm.auto.tqdm()``. Set to ``False`` to disable. """ wrapper = ModelWrapper(start=start, vars=vars, model=model) x = wrapper.bij.map(wrapper.start) n = 0 stepper.reset() while True: x, nll = stepper.step(wrapper, x) yield nll, get_point(wrapper, x) n += 1 if maxiter is not None and n >= maxiter: break def allinmodel(vars, model): notin = [v for v in vars if v not in model.vars] if notin: raise ValueError("Some variables not in the model: " + str(notin)) class ModelWrapper: def __init__(self, start=None, vars=None, model=None): model = self.model = pm.modelcontext(model) # Work out the full starting coordinates if start is None: start = model.test_point else: update_start_vals(start, model.test_point, model) self.start = start # Fit all the parameters by default if vars is None: vars = model.cont_vars vars = self.vars = inputvars(vars) allinmodel(vars, model) # Work out the relevant bijection map start = Point(start, model=model) self.bij = DictToArrayBijection(ArrayOrdering(vars), start) # Pre-compile the theano model and gradient nlp = -model.logpt grad = theano.grad(nlp, vars, disconnected_inputs="ignore") self.func = get_theano_function_for_var([nlp] + grad, model=model) def __call__(self, vec): try: res = self.func( *get_args_for_theano_function( self.bij.rmap(vec), model=self.model ) ) except Exception: import traceback print("array:", vec) print("point:", self.bij.rmap(vec)) traceback.print_exc() raise d = dict(zip((v.name for v in self.vars), res[1:])) g = self.bij.map(d) return res[0], g class Adam: """https://github.com/pytorch/pytorch/blob/master/torch/optim/adam.py""" def __init__( self, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False, ): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError( "Invalid beta parameter at index 0: {}".format(betas[0]) ) if not 0.0 <= betas[1] < 1.0: raise ValueError( "Invalid beta parameter at index 1: {}".format(betas[1]) ) if not 0.0 <= weight_decay: raise ValueError( "Invalid weight_decay value: {}".format(weight_decay) ) self.lr = lr self.betas = betas self.eps = eps self.weight_decay = weight_decay self.amsgrad = amsgrad self.reset() def reset(self): self.state = {"step": 0} def step(self, loss_and_grad_func, p): loss, grad = loss_and_grad_func(p) state = self.state if state["step"] == 0: # Exponential moving average of gradient values state["exp_avg"] = np.zeros_like(p) # Exponential moving average of squared gradient values state["exp_avg_sq"] = np.zeros_like(p) if self.amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state["max_exp_avg_sq"] = np.zeros_like(p) exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"] if self.amsgrad: max_exp_avg_sq = state["max_exp_avg_sq"] beta1, beta2 = self.betas state["step"] += 1 bias_correction1 = 1 - beta1 ** state["step"] bias_correction2 = 1 - beta2 ** state["step"] if self.weight_decay != 0: grad[:] += self.weight_decay * p # Decay the first and second moment running average coefficient exp_avg[:] *= beta1 exp_avg[:] += (1 - beta1) * grad exp_avg_sq[:] *= beta2 exp_avg_sq[:] += (1 - beta2) * grad ** 2 if self.amsgrad: # Maintains the maximum of all 2nd moment running avg. till now max_exp_avg_sq[:] = np.maximum(max_exp_avg_sq, exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = ( np.sqrt(max_exp_avg_sq) /
np.sqrt(bias_correction2)
numpy.sqrt
# random_walk.py # ------------------------------------------------------------------------- # Monte Carlo simulation of a two-dimensional random walk. # ------------------------------------------------------------------------- import numpy as np import matplotlib.pyplot as plt from numpy.random import random as rng num_steps = 500 x_step = rng(num_steps) > 0.5 y_step = rng(num_steps) > 0.5 x_step = 2*x_step - 1 y_step = 2*y_step - 1 x_position = np.cumsum(x_step) y_position = np.cumsum(y_step) plt.figure() plt.plot(x_position, y_position) plt.axis('equal') # A more succinct alternative: x = ( 2*(
rng(num_steps)
numpy.random.random
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for image preprocessing layers.""" import functools from absl.testing import parameterized import keras from keras.engine import sequential from keras.layers.preprocessing import image_preprocessing from keras.testing_infra import test_combinations from keras.testing_infra import test_utils import numpy as np import tensorflow.compat.v2 as tf # pylint: disable=g-direct-tensorflow-import from tensorflow.python.ops import stateless_random_ops @test_combinations.run_all_keras_modes(always_skip_v1=True) class ResizingTest(test_combinations.TestCase): def _run_test(self, kwargs, expected_height, expected_width): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 kwargs.update({'height': expected_height, 'width': expected_width}) with test_utils.use_gpu(): test_utils.layer_test( image_preprocessing.Resizing, kwargs=kwargs, input_shape=(num_samples, orig_height, orig_width, channels), expected_output_shape=(None, expected_height, expected_width, channels)) @parameterized.named_parameters(('down_sample_bilinear_2_by_2', { 'interpolation': 'bilinear' }, 2, 2), ('down_sample_bilinear_3_by_2', { 'interpolation': 'bilinear' }, 3, 2), ('down_sample_nearest_2_by_2', { 'interpolation': 'nearest' }, 2, 2), ('down_sample_nearest_3_by_2', { 'interpolation': 'nearest' }, 3, 2), ('down_sample_area_2_by_2', { 'interpolation': 'area' }, 2, 2), ('down_sample_area_3_by_2', { 'interpolation': 'area' }, 3, 2), ('down_sample_crop_to_aspect_ratio_3_by_2', { 'interpolation': 'bilinear', 'crop_to_aspect_ratio': True, }, 3, 2)) def test_down_sampling(self, kwargs, expected_height, expected_width): self._run_test(kwargs, expected_height, expected_width) @parameterized.named_parameters(('up_sample_bilinear_10_by_12', { 'interpolation': 'bilinear' }, 10, 12), ('up_sample_bilinear_12_by_12', { 'interpolation': 'bilinear' }, 12, 12), ('up_sample_nearest_10_by_12', { 'interpolation': 'nearest' }, 10, 12), ('up_sample_nearest_12_by_12', { 'interpolation': 'nearest' }, 12, 12), ('up_sample_area_10_by_12', { 'interpolation': 'area' }, 10, 12), ('up_sample_area_12_by_12', { 'interpolation': 'area' }, 12, 12), ('up_sample_crop_to_aspect_ratio_12_by_14', { 'interpolation': 'bilinear', 'crop_to_aspect_ratio': True, }, 12, 14)) def test_up_sampling(self, kwargs, expected_height, expected_width): self._run_test(kwargs, expected_height, expected_width) def test_down_sampling_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 16), (1, 4, 4, 1)).astype(dtype) layer = image_preprocessing.Resizing( height=2, width=2, interpolation='nearest') output_image = layer(input_image) # pyformat: disable expected_output = np.asarray([ [5, 7], [13, 15] ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 2, 2, 1)) self.assertAllEqual(expected_output, output_image) def test_up_sampling_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 4), (1, 2, 2, 1)).astype(dtype) layer = image_preprocessing.Resizing( height=4, width=4, interpolation='nearest') output_image = layer(input_image) # pyformat: disable expected_output = np.asarray([ [0, 0, 1, 1], [0, 0, 1, 1], [2, 2, 3, 3], [2, 2, 3, 3] ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 4, 4, 1)) self.assertAllEqual(expected_output, output_image) @parameterized.named_parameters(('reshape_bilinear_10_by_4', { 'interpolation': 'bilinear' }, 10, 4)) def test_reshaping(self, kwargs, expected_height, expected_width): self._run_test(kwargs, expected_height, expected_width) def test_invalid_interpolation(self): with self.assertRaises(NotImplementedError): image_preprocessing.Resizing(5, 5, 'invalid_interpolation') def test_config_with_custom_name(self): layer = image_preprocessing.Resizing(5, 5, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.Resizing.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_crop_to_aspect_ratio(self): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 16), (1, 4, 4, 1)).astype('float32') layer = image_preprocessing.Resizing(4, 2, crop_to_aspect_ratio=True) output_image = layer(input_image) expected_output = np.asarray([ [1, 2], [5, 6], [9, 10], [13, 14], ]).astype('float32') expected_output = np.reshape(expected_output, (1, 4, 2, 1)) self.assertAllEqual(expected_output, output_image) def test_unbatched_image(self): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 16), (4, 4, 1)).astype('float32') layer = image_preprocessing.Resizing(2, 2, interpolation='nearest') output_image = layer(input_image) expected_output = np.asarray([ [5, 7], [13, 15], ]).astype('float32') expected_output = np.reshape(expected_output, (2, 2, 1)) self.assertAllEqual(expected_output, output_image) @parameterized.named_parameters(('crop_to_aspect_ratio_false', False), ('crop_to_aspect_ratio_true', True)) def test_ragged_image(self, crop_to_aspect_ratio): with test_utils.use_gpu(): inputs = tf.ragged.constant([ np.ones((8, 8, 1)), np.ones((8, 4, 1)), np.ones((4, 8, 1)), np.ones((2, 2, 1)), ], dtype='float32') layer = image_preprocessing.Resizing( 2, 2, interpolation='nearest', crop_to_aspect_ratio=crop_to_aspect_ratio) outputs = layer(inputs) expected_output = [[[[1.], [1.]], [[1.], [1.]]], [[[1.], [1.]], [[1.], [1.]]], [[[1.], [1.]], [[1.], [1.]]], [[[1.], [1.]], [[1.], [1.]]]] self.assertIsInstance(outputs, tf.Tensor) self.assertNotIsInstance(outputs, tf.RaggedTensor) self.assertAllEqual(expected_output, outputs) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.Resizing(2, 2) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.Resizing(2, 2, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @parameterized.named_parameters( ('batch_crop_to_aspect_ratio', True, True), ('batch_dont_crop_to_aspect_ratio', False, True), ('single_sample_crop_to_aspect_ratio', True, False), ('single_sample_dont_crop_to_aspect_ratio', False, False), ) def test_static_shape_inference(self, crop_to_aspect_ratio, batch): channels = 3 input_height = 8 input_width = 8 target_height = 4 target_width = 6 layer = image_preprocessing.Resizing( target_height, target_width, crop_to_aspect_ratio=crop_to_aspect_ratio) unit_test = self @tf.function def tf_function(img): unit_test.assertListEqual([input_height, input_width, channels], img.shape.as_list()[-3:]) img = layer(img) unit_test.assertListEqual([target_height, target_width, channels], img.shape.as_list()[-3:]) return img with test_utils.use_gpu(): if batch: input_shape = (2, input_height, input_width, channels) else: input_shape = (input_height, input_width, channels) img_data = np.random.random(size=input_shape).astype('float32') tf_function(img_data) def get_numpy_center_crop(images, expected_height, expected_width): orig_height = images.shape[1] orig_width = images.shape[2] height_start = int((orig_height - expected_height) / 2) width_start = int((orig_width - expected_width) / 2) height_end = height_start + expected_height width_end = width_start + expected_width return images[:, height_start:height_end, width_start:width_end, :] @test_combinations.run_all_keras_modes(always_skip_v1=True) class CenterCropTest(test_combinations.TestCase): def _run_test(self, expected_height, expected_width): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 kwargs = {'height': expected_height, 'width': expected_width} input_images = np.random.random( (num_samples, orig_height, orig_width, channels)).astype(np.float32) expected_output = get_numpy_center_crop(input_images, expected_height, expected_width) with test_utils.use_gpu(): test_utils.layer_test( image_preprocessing.CenterCrop, kwargs=kwargs, input_shape=(num_samples, orig_height, orig_width, channels), input_data=input_images, expected_output=expected_output, expected_output_shape=(None, expected_height, expected_width, channels)) @parameterized.named_parameters(('center_crop_3_by_4', 3, 4), ('center_crop_3_by_2', 3, 2)) def test_center_crop_aligned(self, expected_height, expected_width): self._run_test(expected_height, expected_width) @parameterized.named_parameters(('center_crop_4_by_5', 4, 5), ('center_crop_4_by_3', 4, 3)) def test_center_crop_mis_aligned(self, expected_height, expected_width): self._run_test(expected_height, expected_width) @parameterized.named_parameters(('center_crop_4_by_6', 4, 6), ('center_crop_3_by_2', 3, 2)) def test_center_crop_half_mis_aligned(self, expected_height, expected_width): self._run_test(expected_height, expected_width) def test_input_smaller_than_crop_box(self): np.random.seed(1337) height, width = 10, 8 inp = np.random.random((12, 3, 3, 3)) with test_utils.use_gpu(): layer = image_preprocessing.CenterCrop(height, width) actual_output = layer(inp) # In this case, output should equal resizing with crop_to_aspect ratio. resize_layer = image_preprocessing.Resizing( height, width, crop_to_aspect_ratio=True) expected_output = resize_layer(inp) self.assertAllEqual(expected_output, actual_output) def test_config_with_custom_name(self): layer = image_preprocessing.CenterCrop(5, 5, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.CenterCrop.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 16), (4, 4, 1)).astype('float32') layer = image_preprocessing.CenterCrop(2, 2) output_image = layer(input_image) expected_output = np.asarray([ [5, 6], [9, 10], ]).astype('float32') expected_output = np.reshape(expected_output, (2, 2, 1)) self.assertAllEqual(expected_output, output_image) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.CenterCrop(2, 2) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.CenterCrop(2, 2, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomCropTest(test_combinations.TestCase): def _run_test(self, expected_height, expected_width): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 kwargs = {'height': expected_height, 'width': expected_width} with test_utils.use_gpu(): test_utils.layer_test( image_preprocessing.RandomCrop, kwargs=kwargs, input_shape=(num_samples, orig_height, orig_width, channels), expected_output_shape=(None, expected_height, expected_width, channels)) def test_input_smaller_than_crop_box(self): np.random.seed(1337) height, width = 10, 8 inp = np.random.random((12, 3, 3, 3)) with test_utils.use_gpu(): layer = image_preprocessing.RandomCrop(height, width) actual_output = layer(inp) # In this case, output should equal resizing with crop_to_aspect ratio. resize_layer = image_preprocessing.Resizing( height, width, crop_to_aspect_ratio=True) expected_output = resize_layer(inp) self.assertAllEqual(expected_output, actual_output) def test_training_with_mock(self): np.random.seed(1337) height, width = 3, 4 height_offset = np.random.randint(low=0, high=3) width_offset = np.random.randint(low=0, high=5) mock_offset = [height_offset, width_offset] with test_utils.use_gpu(): layer = image_preprocessing.RandomCrop(height, width) with tf.compat.v1.test.mock.patch.object( layer._random_generator, 'random_uniform', return_value=mock_offset): inp = np.random.random((12, 5, 8, 3)) actual_output = layer(inp, training=True) expected_output = inp[:, height_offset:(height_offset + height), width_offset:(width_offset + width), :] self.assertAllClose(expected_output, actual_output) @parameterized.named_parameters(('random_crop_4_by_6', 4, 6), ('random_crop_3_by_2', 3, 2)) def test_random_crop_output_shape(self, expected_height, expected_width): self._run_test(expected_height, expected_width) def test_random_crop_full_height(self): self._run_test(5, 2) def test_random_crop_full_width(self): self._run_test(3, 8) def test_random_crop_full(self): np.random.seed(1337) height, width = 8, 16 inp = np.random.random((12, 8, 16, 3)) with test_utils.use_gpu(): layer = image_preprocessing.RandomCrop(height, width) actual_output = layer(inp, training=False) self.assertAllClose(inp, actual_output) def test_predicting_with_mock_longer_height(self): np.random.seed(1337) height, width = 3, 3 inp = np.random.random((12, 10, 6, 3)) with test_utils.use_gpu(): layer = image_preprocessing.RandomCrop(height, width) actual_output = layer(inp, training=False) resized_inp = tf.image.resize(inp, size=[5, 3]) expected_output = resized_inp[:, 1:4, :, :] self.assertAllClose(expected_output, actual_output) def test_predicting_with_mock_longer_width(self): np.random.seed(1337) height, width = 4, 6 inp = np.random.random((12, 8, 16, 3)) with test_utils.use_gpu(): layer = image_preprocessing.RandomCrop(height, width) actual_output = layer(inp, training=False) resized_inp = tf.image.resize(inp, size=[4, 8]) expected_output = resized_inp[:, :, 1:7, :] self.assertAllClose(expected_output, actual_output) def test_config_with_custom_name(self): layer = image_preprocessing.RandomCrop(5, 5, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomCrop.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): np.random.seed(1337) inp = np.random.random((16, 16, 3)) mock_offset = [2, 2] with test_utils.use_gpu(): layer = image_preprocessing.RandomCrop(8, 8) with tf.compat.v1.test.mock.patch.object( layer._random_generator, 'random_uniform', return_value=mock_offset): actual_output = layer(inp, training=True) self.assertAllClose(inp[2:10, 2:10, :], actual_output) @test_utils.run_v2_only def test_uint8_input(self): inputs = keras.Input((128, 128, 3), batch_size=2, dtype=tf.uint8) layer = image_preprocessing.RandomCrop(64, 64) self.assertAllEqual(layer(inputs).dtype, 'float32') @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomCrop(2, 2) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomCrop(2, 2, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') class RescalingTest(test_combinations.TestCase): @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_rescaling_base(self): kwargs = {'scale': 1. / 127.5, 'offset': -1.} test_utils.layer_test( image_preprocessing.Rescaling, kwargs=kwargs, input_shape=(2, 5, 6, 3), expected_output_shape=(None, 5, 6, 3)) @test_utils.run_v2_only def test_rescaling_correctness_float(self): layer = image_preprocessing.Rescaling(scale=1. / 127.5, offset=-1.) inputs = tf.random.uniform((2, 4, 5, 3)) outputs = layer(inputs) self.assertAllClose(outputs.numpy(), inputs.numpy() * (1. / 127.5) - 1) @test_utils.run_v2_only def test_rescaling_correctness_int(self): layer = image_preprocessing.Rescaling(scale=1. / 127.5, offset=-1) inputs = tf.random.uniform((2, 4, 5, 3), 0, 100, dtype='int32') outputs = layer(inputs) self.assertEqual(outputs.dtype.name, 'float32') self.assertAllClose(outputs.numpy(), inputs.numpy() * (1. / 127.5) - 1) def test_config_with_custom_name(self): layer = image_preprocessing.Rescaling(0.5, name='rescaling') config = layer.get_config() layer_1 = image_preprocessing.Rescaling.from_config(config) self.assertEqual(layer_1.name, layer.name) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_unbatched_image(self): layer = image_preprocessing.Rescaling(scale=1. / 127.5, offset=-1) inputs = tf.random.uniform((4, 5, 3)) outputs = layer(inputs) self.assertAllClose(outputs.numpy(), inputs.numpy() * (1. / 127.5) - 1) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.Rescaling(0.5) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.Rescaling(0.5, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomFlipTest(test_combinations.TestCase): def _run_test(self, mode, expected_output=None, mock_random=None): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 if mock_random is None: mock_random = [0.0 for _ in range(num_samples)] if mode == 'horizontal_and_vertical': mock_random *= 2 inp = np.random.random((num_samples, orig_height, orig_width, channels)) if expected_output is None: expected_output = inp if mode == 'horizontal' or mode == 'horizontal_and_vertical': expected_output = np.flip(expected_output, axis=2) if mode == 'vertical' or mode == 'horizontal_and_vertical': expected_output = np.flip(expected_output, axis=1) with tf.compat.v1.test.mock.patch.object( stateless_random_ops, 'stateless_random_uniform', side_effect=mock_random, ): with test_utils.use_gpu(): layer = image_preprocessing.RandomFlip(mode) actual_output = layer(inp, training=True) self.assertAllClose(expected_output, actual_output) @parameterized.named_parameters( ('random_flip_horizontal', 'horizontal'), ('random_flip_vertical', 'vertical'), ('random_flip_both', 'horizontal_and_vertical')) def test_random_flip(self, mode): self._run_test(mode) def test_random_flip_horizontal_half(self): np.random.seed(1337) mock_random = [0.0, 1.0] input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images.copy() expected_output[0, :, :, :] = np.flip(input_images[0, :, :, :], axis=1) self._run_test('horizontal', expected_output, mock_random) def test_random_flip_vertical_half(self): np.random.seed(1337) mock_random = [0.0, 1.0] input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images.copy() expected_output[0, :, :, :] = np.flip(input_images[0, :, :, :], axis=0) self._run_test('vertical', expected_output, mock_random) def test_random_flip_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomFlip() actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) def test_random_flip_default(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = np.flip(np.flip(input_images, axis=1), axis=2) mock_random = [0.0, 0.0, 0.0, 0.0] with tf.compat.v1.test.mock.patch.object( stateless_random_ops, 'stateless_random_uniform', side_effect=mock_random, ): with self.cached_session(): layer = image_preprocessing.RandomFlip() actual_output = layer(input_images, training=True) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomFlip(name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomFlip.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_random_flip_unbatched_image(self): input_image = np.random.random((4, 4, 1)).astype(np.float32) expected_output = np.flip(input_image, axis=0) # mock_random = np.reshape([0.], [1, 1, 1]) with tf.compat.v1.test.mock.patch.object( stateless_random_ops, 'stateless_random_uniform', return_value=0., ): with self.cached_session(): layer = image_preprocessing.RandomFlip('vertical') actual_output = layer(input_image, training=True) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomFlip() self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomFlip(dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomContrastTest(test_combinations.TestCase): def _run_test(self, lower, upper, expected_output=None, mock_random=None): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 if mock_random is None: mock_random = 0.2 inp = np.random.random((num_samples, orig_height, orig_width, channels)) if expected_output is None: # reduce mean on height. inp_mean = np.mean(inp, axis=1, keepdims=True) # reduce mean on width. inp_mean = np.mean(inp_mean, axis=2, keepdims=True) expected_output = (inp - inp_mean) * mock_random + inp_mean with tf.compat.v1.test.mock.patch.object( stateless_random_ops, 'stateless_random_uniform', return_value=mock_random, ): with test_utils.use_gpu(): layer = image_preprocessing.RandomContrast((lower, upper)) actual_output = layer(inp, training=True) self.assertAllClose(expected_output, actual_output) @parameterized.named_parameters(('random_contrast_2_by_5', 0.2, 0.5), ('random_contrast_2_by_13', 0.2, 1.3), ('random_contrast_5_by_2', 0.5, 0.2), ('random_contrast_10_by_10', 1.0, 1.0)) def test_random_contrast(self, lower, upper): self._run_test(lower, upper) @parameterized.named_parameters(('random_contrast_amplitude_2', 0.2), ('random_contrast_amplitude_5', 0.5)) def test_random_contrast_amplitude(self, amplitude): input_images = np.random.random((2, 5, 8, 3)) with test_utils.use_gpu(): layer = image_preprocessing.RandomContrast(amplitude) layer(input_images) def test_random_contrast_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomContrast((0.1, 0.2)) actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) def test_random_contrast_int_dtype(self): input_images = np.random.randint(low=0, high=255, size=(2, 5, 8, 3)) with test_utils.use_gpu(): layer = image_preprocessing.RandomContrast((0.1, 0.2)) layer(input_images) def test_random_contrast_invalid_bounds(self): with self.assertRaises(ValueError): image_preprocessing.RandomContrast((-0.1, .5)) with self.assertRaises(ValueError): image_preprocessing.RandomContrast((1.1, .5)) with self.assertRaises(ValueError): image_preprocessing.RandomContrast((0.1, -0.2)) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomContrast((.5, .6), name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomContrast.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_output_value_clip(self): input_images = np.random.random((5, 8, 3)).astype(np.float32) * 255.0 # Give a factor range [1.0, 11.0] so that it will produce large contrast. layer = image_preprocessing.RandomContrast((0.0, 10.0)) output = layer(input_images) self.assertLessEqual(tf.reduce_max(output), 255.0) self.assertGreaterEqual(tf.reduce_min(output), 0.0) def test_unbatched_image(self): np.random.seed(1337) mock_random = 0.2 inp = np.random.random((4, 4, 1)) inp_mean = np.mean(inp, axis=0, keepdims=True) inp_mean = np.mean(inp_mean, axis=1, keepdims=True) expected_output = (inp - inp_mean) * mock_random + inp_mean with tf.compat.v1.test.mock.patch.object( stateless_random_ops, 'stateless_random_uniform', return_value=mock_random, ): with test_utils.use_gpu(): layer = image_preprocessing.RandomContrast((0.2, 0.5)) actual_output = layer(inp, training=True) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomContrast((.5, .6)) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomContrast((.5, .6), dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomBrightnessTest(test_combinations.TestCase): def test_factor_input_validation(self): with self.assertRaisesRegex(ValueError, r'in the range \[-1.0, 1.0\]'): image_preprocessing.RandomBrightness(2.0) with self.assertRaisesRegex(ValueError, 'list of two numbers'): image_preprocessing.RandomBrightness([1.0]) with self.assertRaisesRegex(ValueError, 'should be a number'): image_preprocessing.RandomBrightness('one') def test_factor_normalize(self): layer = image_preprocessing.RandomBrightness(1.0) self.assertEqual(layer._factor, [-1.0, 1.0]) layer = image_preprocessing.RandomBrightness((0.5, 0.3)) self.assertEqual(layer._factor, [0.3, 0.5]) layer = image_preprocessing.RandomBrightness(-0.2) self.assertEqual(layer._factor, [-0.2, 0.2]) @test_utils.run_v2_only def test_output_value_range(self): # Always scale up to 255 layer = image_preprocessing.RandomBrightness([1.0, 1.0]) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs) output_min = tf.math.reduce_min(output) output_max = tf.math.reduce_max(output) self.assertEqual(output_min, 255) self.assertEqual(output_max, 255) # Always scale down to 0 layer = image_preprocessing.RandomBrightness([-1.0, -1.0]) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs) output_min = tf.math.reduce_min(output) output_max = tf.math.reduce_max(output) self.assertEqual(output_min, 0) self.assertEqual(output_max, 0) def test_output(self): # Always scale up, but randomly between 0 ~ 255 layer = image_preprocessing.RandomBrightness([0, 1.0]) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs) diff = output - inputs self.assertGreaterEqual(tf.math.reduce_min(diff), 0) self.assertGreater(tf.math.reduce_mean(diff), 0) # Always scale down, but randomly between 0 ~ 255 layer = image_preprocessing.RandomBrightness([-1.0, 0.0]) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs) diff = output - inputs self.assertLessEqual(tf.math.reduce_max(diff), 0) self.assertLess(tf.math.reduce_mean(diff), 0) @test_utils.run_v2_only def test_scale_output(self): layer = image_preprocessing.RandomBrightness([0, 1.0], seed=1337) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs) # Create a new layer with same seed but different value range layer2 = image_preprocessing.RandomBrightness( [0, 1.0], value_range=[0, 1], seed=1337) inputs2 = inputs / 255.0 output2 = layer2(inputs2) # Make sure the outputs are the same, but just scaled with 255 self.assertAllClose(output, output2 * 255.0) def test_different_adjustment_within_batch(self): layer = image_preprocessing.RandomBrightness([0.2, 0.3]) inputs = np.zeros(shape=(2, 10, 10, 3)) # 2 images with all zeros output = layer(inputs) diff = output - inputs # Make sure two images gets the different adjustment self.assertNotAllClose(diff[0], diff[1]) # Make sure all the pixel are the same with the same image image1 = output[0] # The reduced mean pixel value among width and height are the same as # any of the pixel in the image. self.assertAllClose( tf.reduce_mean(image1), image1[0, 0, 0], rtol=1e-5, atol=1e-5) def test_inference(self): layer = image_preprocessing.RandomBrightness([0, 1.0]) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs, training=False) self.assertAllClose(inputs, output) @test_utils.run_v2_only def test_dtype(self): layer = image_preprocessing.RandomBrightness([0, 1.0]) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output = layer(inputs) self.assertEqual(output.dtype, tf.float32) layer = image_preprocessing.RandomBrightness([0, 1.0], dtype='uint8') output = layer(inputs) self.assertEqual(output.dtype, tf.uint8) def test_seed(self): layer = image_preprocessing.RandomBrightness([0, 1.0], seed=1337) inputs = np.random.randint(0, 255, size=(224, 224, 3)) output_1 = layer(inputs) layer2 = image_preprocessing.RandomBrightness([0, 1.0], seed=1337) output_2 = layer2(inputs) self.assertAllClose(output_1, output_2) def test_config(self): layer = image_preprocessing.RandomBrightness( [0, 1.0], value_range=[0.0, 1.0], seed=1337) config = layer.get_config() self.assertEqual(config['factor'], [0.0, 1.0]) self.assertEqual(config['value_range'], [0.0, 1.0]) self.assertEqual(config['seed'], 1337) reconstructed_layer = image_preprocessing.RandomBrightness.from_config( config) self.assertEqual(reconstructed_layer._factor, layer._factor) self.assertEqual(reconstructed_layer._value_range, layer._value_range) self.assertEqual(reconstructed_layer._seed, layer._seed) @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomTranslationTest(test_combinations.TestCase): def _run_test(self, height_factor, width_factor): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 kwargs = {'height_factor': height_factor, 'width_factor': width_factor} with test_utils.use_gpu(): test_utils.layer_test( image_preprocessing.RandomTranslation, kwargs=kwargs, input_shape=(num_samples, orig_height, orig_width, channels), expected_output_shape=(None, orig_height, orig_width, channels)) @parameterized.named_parameters( ('random_translate_4_by_6', .4, .6), ('random_translate_3_by_2', .3, .2), ('random_translate_tuple_factor', (-.5, .4), (.2, .3))) def test_random_translation(self, height_factor, width_factor): self._run_test(height_factor, width_factor) def test_random_translation_up_numeric_reflect(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype(dtype) # Shifting by -.2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=(-.2, -.2), width_factor=0.) output_image = layer(input_image) expected_output = np.asarray([ [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24], [20, 21, 22, 23, 24], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_up_numeric_constant(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype(dtype) # Shifting by -.2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=(-.2, -.2), width_factor=0., fill_mode='constant') output_image = layer(input_image) expected_output = np.asarray([ [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24], [0, 0, 0, 0, 0], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_down_numeric_reflect(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype(dtype) # Shifting by .2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=(.2, .2), width_factor=0.) output_image = layer(input_image) expected_output = np.asarray([ [0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_asymmetric_size_numeric_reflect(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 16), (1, 8, 2, 1)).astype(dtype) # Shifting by .5 * 8 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=(.5, .5), width_factor=0.) output_image = layer(input_image) # pyformat: disable expected_output = np.asarray([ [6, 7], [4, 5], [2, 3], [0, 1], [0, 1], [2, 3], [4, 5], [6, 7], ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 8, 2, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_down_numeric_constant(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype(dtype) # Shifting by -.2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=(.2, .2), width_factor=0., fill_mode='constant') output_image = layer(input_image) expected_output = np.asarray([ [0, 0, 0, 0, 0], [0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_left_numeric_reflect(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype(dtype) # Shifting by .2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=0., width_factor=(-.2, -.2)) output_image = layer(input_image) expected_output = np.asarray([ [1, 2, 3, 4, 4], [6, 7, 8, 9, 9], [11, 12, 13, 14, 14], [16, 17, 18, 19, 19], [21, 22, 23, 24, 24], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_left_numeric_constant(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (1, 5, 5, 1)).astype(dtype) # Shifting by -.2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=0., width_factor=(-.2, -.2), fill_mode='constant') output_image = layer(input_image) expected_output = np.asarray([ [1, 2, 3, 4, 0], [6, 7, 8, 9, 0], [11, 12, 13, 14, 0], [16, 17, 18, 19, 0], [21, 22, 23, 24, 0], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_translation_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomTranslation(.5, .5) actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomTranslation(.5, .6, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomTranslation.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(np.int64) # Shifting by -.2 * 5 = 1 pixel. layer = image_preprocessing.RandomTranslation( height_factor=(-.2, -.2), width_factor=0.) output_image = layer(input_image) expected_output = np.asarray([ [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [20, 21, 22, 23, 24], [20, 21, 22, 23, 24], ]).astype(np.int64) expected_output = np.reshape(expected_output, (5, 5, 1)) self.assertAllEqual(expected_output, output_image) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomTranslation(.5, .6) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomTranslation(.5, .6, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomTransformTest(test_combinations.TestCase): def _run_random_transform_with_mock(self, transform_matrix, expected_output, mode, fill_value=0.0, interpolation='bilinear'): inp = np.arange(15).reshape((1, 5, 3, 1)).astype(np.float32) with self.cached_session(): output = image_preprocessing.transform( inp, transform_matrix, fill_mode=mode, fill_value=fill_value, interpolation=interpolation) self.assertAllClose(expected_output, output) def test_random_translation_reflect(self): # reflected output is (dcba|abcd|dcba) # Test down shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 1., 2.], [0., 1., 2.], [3., 4., 5.], [6., 7., 8], [9., 10., 11]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., -1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'reflect') # Test up shift by 1. # pyformat: disable expected_output = np.asarray( [[3., 4., 5.], [6., 7., 8], [9., 10., 11.], [12., 13., 14.], [12., 13., 14.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., 1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'reflect') # Test left shift by 1. # reflected output is (dcba|abcd|dcba) # pyformat: disable expected_output = np.asarray( [[1., 2., 2.], [4., 5., 5.], [7., 8., 8.], [10., 11., 11.], [13., 14., 14.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'reflect') # Test right shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 0., 1.], [3., 3., 4], [6., 6., 7.], [9., 9., 10.], [12., 12., 13.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., -1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'reflect') def test_random_translation_wrap(self): # warpped output is (abcd|abcd|abcd) # Test down shift by 1. # pyformat: disable expected_output = np.asarray( [[12., 13., 14.], [0., 1., 2.], [3., 4., 5.], [6., 7., 8], [9., 10., 11]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., -1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'wrap') # Test up shift by 1. # pyformat: disable expected_output = np.asarray( [[3., 4., 5.], [6., 7., 8], [9., 10., 11.], [12., 13., 14.], [0., 1., 2.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., 1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'wrap') # Test left shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 2., 0.], [4., 5., 3.], [7., 8., 6.], [10., 11., 9.], [13., 14., 12.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'wrap') # Test right shift by 1. # pyformat: disable expected_output = np.asarray( [[2., 0., 1.], [5., 3., 4], [8., 6., 7.], [11., 9., 10.], [14., 12., 13.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., -1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'wrap') def test_random_translation_nearest(self): # nearest output is (aaaa|abcd|dddd) # Test down shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 1., 2.], [0., 1., 2.], [3., 4., 5.], [6., 7., 8], [9., 10., 11]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., -1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'nearest') # Test up shift by 1. # pyformat: disable expected_output = np.asarray( [[3., 4., 5.], [6., 7., 8], [9., 10., 11.], [12., 13., 14.], [12., 13., 14.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., 1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'nearest') # Test left shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 2., 2.], [4., 5., 5.], [7., 8., 8.], [10., 11., 11.], [13., 14., 14.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'nearest') # Test right shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 0., 1.], [3., 3., 4], [6., 6., 7.], [9., 9., 10.], [12., 12., 13.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., -1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'nearest') def test_random_translation_constant_0(self): # constant output is (0000|abcd|0000) # Test down shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 0., 0.], [0., 1., 2.], [3., 4., 5.], [6., 7., 8], [9., 10., 11]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., -1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'constant') # Test up shift by 1. # pyformat: disable expected_output = np.asarray( [[3., 4., 5.], [6., 7., 8], [9., 10., 11.], [12., 13., 14.], [0., 0., 0.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., 1., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'constant') # Test left shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 2., 0.], [4., 5., 0.], [7., 8., 0.], [10., 11., 0.], [13., 14., 0.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'constant') # Test right shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 0., 1.], [0., 3., 4], [0., 6., 7.], [0., 9., 10.], [0., 12., 13.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., -1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock(transform_matrix, expected_output, 'constant') def test_random_translation_constant_1(self): with tf.compat.forward_compatibility_horizon(2020, 8, 6): # constant output is (1111|abcd|1111) # Test down shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 1., 1.], [0., 1., 2.], [3., 4., 5.], [6., 7., 8], [9., 10., 11]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., -1., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, 'constant', fill_value=1.0) # Test up shift by 1. # pyformat: disable expected_output = np.asarray( [[3., 4., 5.], [6., 7., 8], [9., 10., 11.], [12., 13., 14.], [1., 1., 1.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., 1., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, 'constant', fill_value=1.0) # Test left shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 2., 1.], [4., 5., 1.], [7., 8., 1.], [10., 11., 1.], [13., 14., 1.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, 'constant', fill_value=1.0) # Test right shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 0., 1.], [1., 3., 4], [1., 6., 7.], [1., 9., 10.], [1., 12., 13.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., -1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, 'constant', fill_value=1.0) def test_random_translation_nearest_interpolation(self): # nearest output is (aaaa|abcd|dddd) # Test down shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 0., 0.], [0., 1., 2.], [3., 4., 5.], [6., 7., 8], [9., 10., 11]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., -1., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, mode='constant', interpolation='nearest') # Test up shift by 1. # pyformat: disable expected_output = np.asarray( [[3., 4., 5.], [6., 7., 8], [9., 10., 11.], [12., 13., 14.], [0., 0., 0.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 0., 0., 1., 1., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, mode='constant', interpolation='nearest') # Test left shift by 1. # pyformat: disable expected_output = np.asarray( [[1., 2., 0.], [4., 5., 0.], [7., 8., 0.], [10., 11., 0.], [13., 14., 0.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., 1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, mode='constant', interpolation='nearest') # Test right shift by 1. # pyformat: disable expected_output = np.asarray( [[0., 0., 1.], [0., 3., 4], [0., 6., 7.], [0., 9., 10.], [0., 12., 13.]]).reshape((1, 5, 3, 1)).astype(np.float32) # pyformat: enable transform_matrix = np.asarray([[1., 0., -1., 0., 1., 0., 0., 0.]]) self._run_random_transform_with_mock( transform_matrix, expected_output, mode='constant', interpolation='nearest') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomRotationTest(test_combinations.TestCase): def _run_test(self, factor): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 kwargs = {'factor': factor} with test_utils.use_gpu(): test_utils.layer_test( image_preprocessing.RandomRotation, kwargs=kwargs, input_shape=(num_samples, orig_height, orig_width, channels), expected_output_shape=(None, orig_height, orig_width, channels)) @parameterized.named_parameters(('random_rotate_4', .4), ('random_rotate_3', .3), ('random_rotate_tuple_factor', (-.5, .4))) def test_random_rotation(self, factor): self._run_test(factor) def test_random_rotation_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomRotation(.5) actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) def test_distribution_strategy(self): """Tests that RandomRotation can be created within distribution strategies.""" input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) with test_utils.use_gpu(): strat = tf.distribute.MirroredStrategy(devices=['cpu', 'gpu']) with strat.scope(): layer = image_preprocessing.RandomRotation(.5) output = strat.run(lambda: layer(input_images, training=True)) values = output.values self.assertAllEqual(2, len(values)) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomRotation(.5, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomRotation.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(np.float32) # 180 rotation. layer = image_preprocessing.RandomRotation(factor=(0.5, 0.5)) output_image = layer(input_image) expected_output = np.asarray([ [24, 23, 22, 21, 20], [19, 18, 17, 16, 15], [14, 13, 12, 11, 10], [9, 8, 7, 6, 5], [4, 3, 2, 1, 0], ]).astype(np.float32) expected_output = np.reshape(expected_output, (5, 5, 1)) self.assertAllClose(expected_output, output_image) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomRotation(.5) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomRotation(.5, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomZoomTest(test_combinations.TestCase): def _run_test(self, height_factor, width_factor): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 kwargs = {'height_factor': height_factor, 'width_factor': width_factor} with test_utils.use_gpu(): test_utils.layer_test( image_preprocessing.RandomZoom, kwargs=kwargs, input_shape=(num_samples, orig_height, orig_width, channels), expected_output_shape=(None, orig_height, orig_width, channels)) @parameterized.named_parameters( ('random_zoom_4_by_6', -.4, -.6), ('random_zoom_2_by_3', -.2, -.3), ('random_zoom_tuple_factor', (-.4, -.5), (-.2, -.3))) def test_random_zoom_in(self, height_factor, width_factor): self._run_test(height_factor, width_factor) @parameterized.named_parameters( ('random_zoom_4_by_6', .4, .6), ('random_zoom_2_by_3', .2, .3), ('random_zoom_tuple_factor', (.4, .5), (.2, .3))) def test_random_zoom_out(self, height_factor, width_factor): self._run_test(height_factor, width_factor) def test_random_zoom_in_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(dtype) layer = image_preprocessing.RandomZoom((-.5, -.5), (-.5, -.5), interpolation='nearest') output_image = layer(np.expand_dims(input_image, axis=0)) expected_output = np.asarray([ [6, 7, 7, 8, 8], [11, 12, 12, 13, 13], [11, 12, 12, 13, 13], [16, 17, 17, 18, 18], [16, 17, 17, 18, 18], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_zoom_out_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(dtype) layer = image_preprocessing.RandomZoom((.5, .5), (.8, .8), fill_mode='constant', interpolation='nearest') output_image = layer(np.expand_dims(input_image, axis=0)) expected_output = np.asarray([ [0, 0, 0, 0, 0], [0, 5, 7, 9, 0], [0, 10, 12, 14, 0], [0, 20, 22, 24, 0], [0, 0, 0, 0, 0], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_zoom_out_numeric_preserve_aspect_ratio(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(dtype) layer = image_preprocessing.RandomZoom((.5, .5), fill_mode='constant', interpolation='nearest') output_image = layer(np.expand_dims(input_image, axis=0)) expected_output = np.asarray([ [0, 0, 0, 0, 0], [0, 6, 7, 9, 0], [0, 11, 12, 14, 0], [0, 21, 22, 24, 0], [0, 0, 0, 0, 0], ]).astype(dtype) expected_output = np.reshape(expected_output, (1, 5, 5, 1)) self.assertAllEqual(expected_output, output_image) def test_random_zoom_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomZoom(.5, .5) actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomZoom(.5, .6, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomZoom.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(np.int64) layer = image_preprocessing.RandomZoom((-.5, -.5), (-.5, -.5), interpolation='nearest') output_image = layer(input_image) expected_output = np.asarray([ [6, 7, 7, 8, 8], [11, 12, 12, 13, 13], [11, 12, 12, 13, 13], [16, 17, 17, 18, 18], [16, 17, 17, 18, 18], ]).astype(np.int64) expected_output = np.reshape(expected_output, (5, 5, 1)) self.assertAllEqual(expected_output, output_image) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomZoom(.5, .5) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomZoom(.5, .5, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomHeightTest(test_combinations.TestCase): def _run_test(self, factor): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 with test_utils.use_gpu(): img = np.random.random((num_samples, orig_height, orig_width, channels)) layer = image_preprocessing.RandomHeight(factor) img_out = layer(img, training=True) self.assertEqual(img_out.shape[0], 2) self.assertEqual(img_out.shape[2], 8) self.assertEqual(img_out.shape[3], 3) @parameterized.named_parameters(('random_height_4_by_6', (.4, .6)), ('random_height_3_by_2', (-.3, .2)), ('random_height_3', .3)) def test_random_height_basic(self, factor): self._run_test(factor) def test_valid_random_height(self): # need (maxval - minval) * rnd + minval = 0.6 mock_factor = 0.6 with test_utils.use_gpu(): img = np.random.random((12, 5, 8, 3)) layer = image_preprocessing.RandomHeight(.4) with tf.compat.v1.test.mock.patch.object( layer._random_generator, 'random_uniform', return_value=mock_factor): img_out = layer(img, training=True) self.assertEqual(img_out.shape[1], 3) def test_random_height_longer_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 6), (2, 3, 1)).astype(dtype) layer = image_preprocessing.RandomHeight(factor=(1., 1.)) # Return type of RandomHeight() is float32 if `interpolation` is not # set to `ResizeMethod.NEAREST_NEIGHBOR`; cast `layer` to desired dtype. output_image = tf.cast( layer(np.expand_dims(input_image, axis=0)), dtype=dtype) # pyformat: disable expected_output = np.asarray([ [0, 1, 2], [0.75, 1.75, 2.75], [2.25, 3.25, 4.25], [3, 4, 5] ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 4, 3, 1)) self.assertAllEqual(expected_output, output_image) def test_random_height_shorter_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 8), (4, 2, 1)).astype(dtype) layer = image_preprocessing.RandomHeight( factor=(-.5, -.5), interpolation='nearest') output_image = layer(np.expand_dims(input_image, axis=0)) # pyformat: disable expected_output = np.asarray([ [2, 3], [6, 7] ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 2, 2, 1)) self.assertAllEqual(expected_output, output_image) def test_random_height_invalid_factor(self): with self.assertRaises(ValueError): image_preprocessing.RandomHeight((-1.5, .4)) def test_random_height_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomHeight(.5) actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomHeight(.5, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomHeight.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): # need (maxval - minval) * rnd + minval = 0.6 mock_factor = 0.6 with test_utils.use_gpu(): img = np.random.random((5, 8, 3)) layer = image_preprocessing.RandomHeight(.4) with tf.compat.v1.test.mock.patch.object( layer._random_generator, 'random_uniform', return_value=mock_factor): img_out = layer(img, training=True) self.assertEqual(img_out.shape[0], 3) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomHeight(.2) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomHeight(.2, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class RandomWidthTest(test_combinations.TestCase): def _run_test(self, factor): np.random.seed(1337) num_samples = 2 orig_height = 5 orig_width = 8 channels = 3 with test_utils.use_gpu(): img = np.random.random((num_samples, orig_height, orig_width, channels)) layer = image_preprocessing.RandomWidth(factor) img_out = layer(img, training=True) self.assertEqual(img_out.shape[0], 2) self.assertEqual(img_out.shape[1], 5) self.assertEqual(img_out.shape[3], 3) @parameterized.named_parameters(('random_width_4_by_6', (.4, .6)), ('random_width_3_by_2', (-.3, .2)), ('random_width_3', .3)) def test_random_width_basic(self, factor): self._run_test(factor) def test_valid_random_width(self): # need (maxval - minval) * rnd + minval = 0.6 mock_factor = 0.6 with test_utils.use_gpu(): img = np.random.random((12, 8, 5, 3)) layer = image_preprocessing.RandomWidth(.4) with tf.compat.v1.test.mock.patch.object( layer._random_generator, 'random_uniform', return_value=mock_factor): img_out = layer(img, training=True) self.assertEqual(img_out.shape[2], 3) def test_random_width_longer_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 6), (3, 2, 1)).astype(dtype) layer = image_preprocessing.RandomWidth(factor=(1., 1.)) # Return type of RandomWidth() is float32 if `interpolation` is not # set to `ResizeMethod.NEAREST_NEIGHBOR`; cast `layer` to desired dtype. output_image = tf.cast( layer(np.expand_dims(input_image, axis=0)), dtype=dtype) # pyformat: disable expected_output = np.asarray([ [0, 0.25, 0.75, 1], [2, 2.25, 2.75, 3], [4, 4.25, 4.75, 5] ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 3, 4, 1)) self.assertAllEqual(expected_output, output_image) def test_random_width_shorter_numeric(self): for dtype in (np.int64, np.float32): with test_utils.use_gpu(): input_image = np.reshape(np.arange(0, 8), (2, 4, 1)).astype(dtype) layer = image_preprocessing.RandomWidth( factor=(-.5, -.5), interpolation='nearest') output_image = layer(np.expand_dims(input_image, axis=0)) # pyformat: disable expected_output = np.asarray([ [1, 3], [5, 7] ]).astype(dtype) # pyformat: enable expected_output = np.reshape(expected_output, (1, 2, 2, 1)) self.assertAllEqual(expected_output, output_image) def test_random_width_invalid_factor(self): with self.assertRaises(ValueError): image_preprocessing.RandomWidth((-1.5, .4)) def test_random_width_inference(self): input_images = np.random.random((2, 5, 8, 3)).astype(np.float32) expected_output = input_images with test_utils.use_gpu(): layer = image_preprocessing.RandomWidth(.5) actual_output = layer(input_images, training=False) self.assertAllClose(expected_output, actual_output) @test_utils.run_v2_only def test_config_with_custom_name(self): layer = image_preprocessing.RandomWidth(.5, name='image_preproc') config = layer.get_config() layer_1 = image_preprocessing.RandomWidth.from_config(config) self.assertEqual(layer_1.name, layer.name) def test_unbatched_image(self): # need (maxval - minval) * rnd + minval = 0.6 mock_factor = 0.6 with test_utils.use_gpu(): img = np.random.random((8, 5, 3)) layer = image_preprocessing.RandomWidth(.4) with tf.compat.v1.test.mock.patch.object( layer._random_generator, 'random_uniform', return_value=mock_factor): img_out = layer(img, training=True) self.assertEqual(img_out.shape[1], 3) @test_utils.run_v2_only def test_output_dtypes(self): inputs = np.array([[[1], [2]], [[3], [4]]], dtype='float64') layer = image_preprocessing.RandomWidth(.2) self.assertAllEqual(layer(inputs).dtype, 'float32') layer = image_preprocessing.RandomWidth(.2, dtype='uint8') self.assertAllEqual(layer(inputs).dtype, 'uint8') @test_combinations.run_all_keras_modes(always_skip_v1=True) class LearningPhaseTest(test_combinations.TestCase): def test_plain_call(self): layer = image_preprocessing.RandomWidth(.5, seed=123) shape = (12, 12, 3) img = np.random.random((12,) + shape) out = layer(img) # Default to training=True self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) out = layer(img, training=True) self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) out = layer(img, training=False) self.assertEqual(tuple(int(i) for i in out.shape[1:]), shape) def test_call_in_container(self): layer1 = image_preprocessing.RandomWidth(.5, seed=123) layer2 = image_preprocessing.RandomHeight(.5, seed=123) seq = sequential.Sequential([layer1, layer2]) shape = (12, 12, 3) img = np.random.random((12,) + shape) out = seq(img) # Default to training=True self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) out = seq(img, training=True) self.assertNotEqual(tuple(int(i) for i in out.shape[1:]), shape) out = seq(img, training=False) self.assertEqual(tuple(int(i) for i in out.shape[1:]), shape) @test_combinations.run_all_keras_modes(always_skip_v1=True) class DeterminismTest(test_combinations.TestCase): @parameterized.named_parameters( ('random_flip', image_preprocessing.RandomFlip), ('random_contrast', functools.partial(image_preprocessing.RandomContrast, factor=1.)), ('random_crop', functools.partial(image_preprocessing.RandomCrop, height=2, width=2)), ('random_translation', functools.partial(image_preprocessing.RandomTranslation, 0.3, 0.2)), ('random_rotation', functools.partial(image_preprocessing.RandomRotation, 0.5)), ('random_zoom', functools.partial(image_preprocessing.RandomZoom, 0.2)), ('random_height', functools.partial(image_preprocessing.RandomHeight, 0.4)), ('random_width', functools.partial(image_preprocessing.RandomWidth, 0.3)), ) def test_seed_constructor_arg(self, layer_cls): input_image = np.random.random((2, 5, 8, 3)).astype(np.float32) layer1 = layer_cls(seed=0.) layer2 = layer_cls(seed=0.) layer1_output = layer1(input_image) layer2_output = layer2(input_image) self.assertAllClose(layer1_output.numpy().tolist(), layer2_output.numpy().tolist()) class RandomAddLayer(image_preprocessing.BaseImageAugmentationLayer): def __init__(self, value_range=(0., 1.0), fixed_value=None, **kwargs): super().__init__(**kwargs) self.value_range = value_range self.fixed_value = fixed_value def get_random_tranformation(self): if self.fixed_value: return self.fixed_value return self._random_generator.random_uniform( [], minval=self.value_range[0], maxval=self.value_range[1]) def augment_image(self, image, transformation=None): return image + transformation def augment_label(self, label, transformation=None): return label + transformation @test_combinations.run_all_keras_modes(always_skip_v1=True) class BaseImageAugmentationLayerTest(test_combinations.TestCase): def test_augment_single_image(self): add_layer = RandomAddLayer(fixed_value=2.0) image = np.random.random(size=(8, 8, 3)).astype('float32') output = add_layer(image) self.assertAllClose(image + 2.0, output) def test_augment_batch_images(self): add_layer = RandomAddLayer() images =
np.random.random(size=(2, 8, 8, 3))
numpy.random.random
# -*- coding: utf-8 -*- """ Created on Mon Dec 11 20:02:37 2017 @author: tzave """ import numpy as np def swap(r, p, E, cols=None): if cols is None: b = np.copy(E[r, :]) E[r, :] = E[p, :] E[p, :] = np.copy(b) else: b = np.copy(E[:, r]) E[:, r] = E[:, p] E[:, p] = np.copy(b) def ForwardSubstitution(A, b): rows = A.shape[0] y = np.zeros(rows) for i in range(rows): s = 0. for j in range(i): s = s + A[i, j] * y[j] y[i] = (b[i] - s) / A[i, i] return y def BackSubstitution(A, b): rows = A.shape[0] x = np.zeros(rows) for i in reversed(range(rows)): s = 0 for j in range(i + 1, rows): s = s + A[i, j] * x[j] x[i] = (b[i] - s) / A[i, i] return x def foundNonZeroPivot(r, E): rows = E.shape[0] PivotFound = False for p in range(r, rows - 1): if np.isclose(E[p, r], 0): # Keep looking for non-zero pivot continue else: # if pivot is found PivotFound = True if p > r: # Only swap if p>r swap(r, p, E) break return PivotFound def partialPivot(r, A): rows = A.shape[0] # Number of rows Amax = np.abs(A[r, r]) rmax = r for p in range(r, rows): Apr = np.abs(A[p, r]) if Apr > Amax: Amax = Apr rmax = p if rmax != r: swap(r, rmax, A) return def completePivot(r, A): rows, cols = A.shape cols = cols - 1 # ignore the last column of the augmented matrix Amax = np.abs(A[r, r]) rmax = r cmax = r for i in range(r, rows): for j in range(r, cols): Aij = np.abs(A[i, j]) if Aij > Amax: Amax = Aij rmax = i cmax = j if (rmax != r) and (cmax != r): swap(r, rmax, A) swap(r, cmax, A, True) return def GaussElimination(A, b, pivot=None): isSingular = False rows = A.shape[0] b = b.reshape(rows, 1) E = np.append(A, b, axis=1) # Append b as extra column for r in range(rows - 1): if pivot == 'partial': partialPivot(r, E) elif pivot == 'complete': completePivot(r, E) else: # Simple pivot is required to avoid division by 0 isSingular = not foundNonZeroPivot(r, E) if isSingular: break for i in range(r + 1, rows): if np.isclose(E[i, r], 0): # skip line if pivot is already 0 continue m = - E[i, r]/E[r, r] E[i][r] = 0 for j in range(r + 1, rows + 1): E[i, j] = E[i, j] + m * E[r, j] if isSingular: print("Matrix is singular") elif np.isclose(E[rows-1, rows-1], 0): print("There is no unique solution") else: y = E[:, rows] E = np.delete(E, [rows], axis=1) x = BackSubstitution(E, y) return {'E': E, 'x': x, 'isSingular': isSingular} def LU(A): rows, cols = A.shape assert (rows == cols) U = np.copy(A) L = np.identity(rows) for k in range(rows-1): for j in range(k+1, rows): L[j, k] = U[j, k] / U[k, k] for p in range(k, rows): U[j, p] = U[j, p] - L[j, k] * U[k, p] return {'L': L, 'U': U} def inverseU(U): rows = U.shape[0] Uinv = np.zeros(U.shape) unit = np.identity(rows) for j in range(rows): b = unit[:, j] Uinv[:, j] = BackSubstitution(U, b) return Uinv def IterativeMethod(A, d, tol, tau=0.1, N=None): rows = A.shape[0] Dinv = np.diag(1./A.diagonal()) CL = -np.tril(A, -1) CU = -np.triu(A, 1) L = np.dot(Dinv, CL) U = np.dot(Dinv, CU) xk = d M = np.identity(rows) - U Minv = inverseU(M) C = np.dot(Dinv, d) C = tau * np.dot(Minv, C) T = (1.-tau) * np.identity(rows) + tau * np.dot(Minv, L) i = 1 while (True if N is None else (i < N)): x = np.dot(T, xk) + C dx = x - xk # Check if scheme converges if np.sqrt(
np.dot(dx, dx)
numpy.dot
import math import numpy as np import hes5 from numpy import number import os.path from numba import jit # suppresses annoying performance warnings about np.dot() being # faster on contiguous arrays. should look at fixing it but this # is good for now from numba.core.errors import NumbaPerformanceWarning import warnings warnings.simplefilter('ignore', category=NumbaPerformanceWarning) from scipy.stats import gamma, multivariate_normal, uniform import multiprocessing as mp def kalman_filter(protein_at_observations,model_parameters,measurement_variance,derivative=True): """ Perform Kalman-Bucy filter based on observation of protein copy numbers. This implements the filter described by Calderazzo et al., Bioinformatics (2018). Parameters ---------- protein_at_observations : numpy array. Observed protein. The dimension is n x 2, where n is the number of observation time points. The first column is the time, and the second column is the observed protein copy number at that time. The filter assumes that observations are generated with a fixed, regular time interval. model_parameters : numpy array. An array containing the model parameters in the following order: repression_threshold, hill_coefficient, mRNA_degradation_rate, protein_degradation_rate, basal_transcription_rate, translation_rate, transcription_delay. measurement_variance : float. The variance in our measurement. This is given by Sigma_e in Calderazzo et. al. (2018). derivative : bool. True if you want derivative calculations, False if not. Returns ------- state_space_mean : numpy array. An array of dimension n x 3, where n is the number of inferred time points. The first column is time, the second column is the mean mRNA, and the third column is the mean protein. Time points are generated every minute state_space_variance : numpy array. An array of dimension 2n x 2n. [ cov( mRNA(t0:tn),mRNA(t0:tn) ), cov( protein(t0:tn),mRNA(t0:tn) ), cov( mRNA(t0:tn),protein(t0:tn) ), cov( protein(t0:tn),protein(t0:tn) ] state_space_mean_derivative : numpy array. An array of dimension n x m x 2, where n is the number of inferred time points, and m is the number of parameters. The m columns in the second dimension are the derivative of the state mean with respect to each parameter. The two elements in the third dimension represent the derivative of mRNA and protein respectively state_space_variance_derivative : numpy array. An array of dimension 7 x 2n x 2n. [ d[cov( mRNA(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( protein(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( mRNA(t0:tn),protein(t0:tn) )/]d_theta, d[cov( protein(t0:tn),protein(t0:tn) )]/d_theta ] predicted_observation_distributions : numpy array. An array of dimension n x 3 where n is the number of observation time points. The first column is time, the second and third columns are the mean and variance of the distribution of the expected observations at each time point, respectively. predicted_observation_mean_derivatives : numpy array. An array of dimension n x m x 2, where n is the number of observation time points, and m is the number of parameters. This gives the (non-updated) predicted derivative of the state space mean at each observation time point, wrt each parameter predicted_observation_variance_derivatives : numpy array. An array of dimension n x m x 2 x 2, where n is the number of observation time points, and m is the number of parameters. This gives the (non-updated) predicted derivative of the state space variance at each observation time point, wrt each parameter """ time_delay = model_parameters[6] if protein_at_observations.reshape(-1,2).shape[0] == 1: number_of_observations = 1.0 observation_time_step = 10.0 else: number_of_observations = protein_at_observations.shape[0] observation_time_step = protein_at_observations[1,0]-protein_at_observations[0,0] # This is the time step dt in the forward euler scheme discretisation_time_step = 1.0 # This is the delay as an integer multiple of the discretization timestep so that we can index with it discrete_delay = int(np.around(time_delay/discretisation_time_step)) number_of_hidden_states = int(np.around(observation_time_step/discretisation_time_step)) initial_number_of_states = discrete_delay + 1 total_number_of_states = initial_number_of_states + (number_of_observations - 1)*number_of_hidden_states # scaling factors for mRNA and protein respectively. For example, observation might be fluorescence, # so the scaling would correspond to how light intensity relates to molecule number. observation_transform = np.array([0.0,1.0]) state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, predicted_observation_distributions, predicted_observation_mean_derivatives, predicted_observation_variance_derivatives = kalman_filter_state_space_initialisation(protein_at_observations, model_parameters, measurement_variance, derivative) # loop through observations and at each observation apply the Kalman prediction step and then the update step # for observation_index, current_observation in enumerate(protein_at_observations[1:]): for observation_index in range(len(protein_at_observations)-1): if number_of_observations != 1: current_observation = protein_at_observations[1+observation_index,:] state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative = kalman_prediction_step(state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, current_observation, model_parameters, observation_time_step, derivative) current_number_of_states = int(np.around(current_observation[0]/observation_time_step))*number_of_hidden_states + initial_number_of_states # between the prediction and update steps we record the mean and sd for our likelihood, and the derivatives of the mean and variance for the # derivative of the likelihood wrt the parameters predicted_observation_distributions[observation_index + 1] = kalman_observation_distribution_parameters(predicted_observation_distributions, current_observation, state_space_mean, state_space_variance, current_number_of_states, total_number_of_states, measurement_variance, observation_index) if derivative: predicted_observation_mean_derivatives[observation_index + 1], predicted_observation_variance_derivatives[observation_index + 1] = kalman_observation_derivatives(predicted_observation_mean_derivatives, predicted_observation_variance_derivatives, current_observation, state_space_mean_derivative, state_space_variance_derivative, current_number_of_states, total_number_of_states, observation_index) state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative = kalman_update_step(state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, current_observation, time_delay, observation_time_step, measurement_variance, derivative) return state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, predicted_observation_distributions, predicted_observation_mean_derivatives, predicted_observation_variance_derivatives def kalman_filter_state_space_initialisation(protein_at_observations,model_parameters,measurement_variance,derivative=True): """ A function for initialisation of the state space mean and variance, and update for the "negative" times that are a result of the time delay. Initialises the negative times using the steady state of the deterministic system, and then updates them with kalman_update_step. Parameters ---------- protein_at_observations : numpy array. Observed protein. The dimension is n x 2, where n is the number of observation time points. The first column is the time, and the second column is the observed protein copy number at that time. The filter assumes that observations are generated with a fixed, regular time interval. model_parameters : numpy array. An array containing the model parameters in the following order: repression_threshold, hill_coefficient, mRNA_degradation_rate, protein_degradation_rate, basal_transcription_rate, translation_rate, transcription_delay. measurement_variance : float. The variance in our measurement. This is given by Sigma_e in Calderazzo et. al. (2018). Returns ------- state_space_mean : numpy array. An array of dimension n x 3, where n is the number of inferred time points. The first column is time, the second column is the mean mRNA, and the third column is the mean protein. Time points are generated every minute state_space_variance : numpy array. An array of dimension 2n x 2n. [ cov( mRNA(t0:tn),mRNA(t0:tn) ), cov( protein(t0:tn),mRNA(t0:tn) ), cov( mRNA(t0:tn),protein(t0:tn) ), cov( protein(t0:tn),protein(t0:tn) ] state_space_mean_derivative : numpy array. An array of dimension n x m x 2, where n is the number of inferred time points, and m is the number of parameters. The m columns in the second dimension are the derivative of the state mean with respect to each parameter. The two elements in the third dimension represent the derivative of mRNA and protein respectively state_space_variance_derivative : numpy array. An array of dimension 7 x 2n x 2n. [ d[cov( mRNA(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( protein(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( mRNA(t0:tn),protein(t0:tn) )/]d_theta, d[cov( protein(t0:tn),protein(t0:tn) )]/d_theta ] predicted_observation_distributions : numpy array. An array of dimension n x 3 where n is the number of observation time points. The first column is time, the second and third columns are the mean and variance of the distribution of the expected observations at each time point, respectively predicted_observation_mean_derivatives : numpy array. An array of dimension n x m x 2, where n is the number of observation time points, and m is the number of parameters. This gives the (non-updated) predicted derivative of the state space mean at each observation time point, wrt each parameter predicted_observation_variance_derivatives : numpy array. An array of dimension n x m x 2 x 2, where n is the number of observation time points, and m is the number of parameters. This gives the (non-updated) predicted derivative of the state space variance at each observation time point, wrt each parameter """ time_delay = model_parameters[6] # This is the time step dt in the forward euler scheme discretisation_time_step = 1.0 # This is the delay as an integer multiple of the discretization timestep so that we can index with it discrete_delay = int(np.around(time_delay/discretisation_time_step)) if protein_at_observations.reshape(-1,2).shape[0] == 1: observation_time_step = 10.0 number_of_observations = 1 else: observation_time_step = protein_at_observations[1,0]-protein_at_observations[0,0] number_of_observations = protein_at_observations.shape[0] # 'synthetic' observations, which allow us to update backwards in time number_of_hidden_states = int(np.around(observation_time_step/discretisation_time_step)) ## initialise "negative time" with the mean and standard deviations of the LNA initial_number_of_states = discrete_delay + 1 total_number_of_states = initial_number_of_states + (number_of_observations - 1)*number_of_hidden_states state_space_mean = np.zeros((total_number_of_states,3)) state_space_mean[:initial_number_of_states,(1,2)] = hes5.calculate_steady_state_of_ode(repression_threshold=model_parameters[0], hill_coefficient=model_parameters[1], mRNA_degradation_rate=model_parameters[2], protein_degradation_rate=model_parameters[3], basal_transcription_rate=model_parameters[4], translation_rate=model_parameters[5]) if protein_at_observations.reshape(-1,2).shape[0] == 1: final_observation_time = 0 else: final_observation_time = protein_at_observations[-1,0] # assign time entries state_space_mean[:,0] = np.linspace(protein_at_observations[0,0]-discrete_delay,final_observation_time,total_number_of_states) # initialise initial covariance matrix state_space_variance = np.zeros((2*(total_number_of_states),2*(total_number_of_states))) # the top left block of the matrix corresponds to the mRNA covariance, see docstring above initial_mRNA_scaling = 20.0 initial_mRNA_variance = state_space_mean[0,1]*initial_mRNA_scaling np.fill_diagonal( state_space_variance[:initial_number_of_states,:initial_number_of_states] , initial_mRNA_variance) # the bottom right block of the matrix corresponds to the mRNA covariance, see docstring above initial_protein_scaling = 100.0 initial_protein_variance = state_space_mean[0,2]*initial_protein_scaling np.fill_diagonal( state_space_variance[total_number_of_states:total_number_of_states + initial_number_of_states, total_number_of_states:total_number_of_states + initial_number_of_states] , initial_protein_variance ) observation_transform = np.array([0.0,1.0]) predicted_observation_distributions = np.zeros((number_of_observations,3)) predicted_observation_distributions[0,0] = 0 predicted_observation_distributions[0,1] = observation_transform.dot(state_space_mean[initial_number_of_states-1,1:3]) # making it numba-ready last_predicted_covariance_matrix = np.zeros((2,2)) for short_row_index, long_row_index in enumerate([initial_number_of_states-1, total_number_of_states+initial_number_of_states-1]): for short_column_index, long_column_index in enumerate([initial_number_of_states -1, total_number_of_states+initial_number_of_states-1]): last_predicted_covariance_matrix[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] predicted_observation_distributions[0,2] = (observation_transform.dot( last_predicted_covariance_matrix).dot(observation_transform.transpose()) + measurement_variance) #################################################################### #################################################################### ## ## initialise derivative arrays ## #################################################################### #################################################################### # state_space_mean_derivative = np.zeros((total_number_of_states,7,2)) state_space_variance_derivative = np.zeros((7,2*total_number_of_states,2*total_number_of_states)) predicted_observation_mean_derivatives = np.zeros((number_of_observations,7,2)) predicted_observation_mean_derivatives[0] = state_space_mean_derivative[initial_number_of_states-1] predicted_observation_variance_derivatives = np.zeros((number_of_observations,7,2,2)) if derivative: state_space_mean_derivative = np.zeros((total_number_of_states,7,2)) repression_threshold = model_parameters[0] hill_coefficient = model_parameters[1] mRNA_degradation_rate = model_parameters[2] protein_degradation_rate = model_parameters[3] basal_transcription_rate = model_parameters[4] translation_rate = model_parameters[5] transcription_delay = model_parameters[6] steady_state_protein = state_space_mean[0,2] hill_function_value = 1.0/(1.0+np.power(steady_state_protein/repression_threshold,hill_coefficient)) hill_function_derivative_value_wrt_protein = - hill_coefficient*np.power(steady_state_protein/repression_threshold, hill_coefficient - 1)/( repression_threshold* np.power(1.0+np.power( steady_state_protein/repression_threshold, hill_coefficient),2)) protein_derivative_denominator_scalar = (basal_transcription_rate*translation_rate)/(mRNA_degradation_rate*protein_degradation_rate) initial_protein_derivative_denominator = (protein_derivative_denominator_scalar*hill_function_derivative_value_wrt_protein) - 1 # assign protein derivative first, since mRNA derivative is given as a function of protein derivative hill_function_derivative_value_wrt_repression = hill_coefficient*np.power(steady_state_protein/repression_threshold, hill_coefficient)/( repression_threshold* np.power(1.0+np.power( steady_state_protein/repression_threshold, hill_coefficient),2)) hill_function_derivative_value_wrt_hill_coefficient = - np.log(steady_state_protein/repression_threshold)*np.power(steady_state_protein/repression_threshold, hill_coefficient)/( np.power(1.0+np.power( steady_state_protein/repression_threshold, hill_coefficient),2)) # repression threshold state_space_mean_derivative[:initial_number_of_states,0,1] = - (protein_derivative_denominator_scalar*hill_function_derivative_value_wrt_repression)/( initial_protein_derivative_denominator) state_space_mean_derivative[:initial_number_of_states,0,0] = (protein_degradation_rate/translation_rate)*state_space_mean_derivative[0,0,1] # hill coefficient state_space_mean_derivative[:initial_number_of_states,1,1] = - (protein_derivative_denominator_scalar*hill_function_derivative_value_wrt_hill_coefficient)/( initial_protein_derivative_denominator) state_space_mean_derivative[:initial_number_of_states,1,0] = (protein_degradation_rate/translation_rate)*state_space_mean_derivative[0,1,1] # mRNA degradation state_space_mean_derivative[:initial_number_of_states,2,1] = (protein_derivative_denominator_scalar*hill_function_value)/( mRNA_degradation_rate*initial_protein_derivative_denominator) state_space_mean_derivative[:initial_number_of_states,2,0] = (protein_degradation_rate/translation_rate)*state_space_mean_derivative[0,2,1] # protein degradation state_space_mean_derivative[:initial_number_of_states,3,1] = (protein_derivative_denominator_scalar*hill_function_value)/( protein_degradation_rate*initial_protein_derivative_denominator) state_space_mean_derivative[:initial_number_of_states,3,0] = (steady_state_protein + protein_degradation_rate*state_space_mean_derivative[0,3,1])/translation_rate # basal transcription state_space_mean_derivative[:initial_number_of_states,4,1] = -(protein_derivative_denominator_scalar*hill_function_value)/( basal_transcription_rate*initial_protein_derivative_denominator) state_space_mean_derivative[:initial_number_of_states,4,0] = (protein_degradation_rate/translation_rate)*state_space_mean_derivative[0,4,1] # translation state_space_mean_derivative[:initial_number_of_states,5,1] = -(protein_derivative_denominator_scalar*hill_function_value)/( translation_rate*initial_protein_derivative_denominator) state_space_mean_derivative[:initial_number_of_states,5,0] = -(protein_degradation_rate/translation_rate)*((steady_state_protein/translation_rate) - state_space_mean_derivative[0,5,1]) # transcriptional delay state_space_mean_derivative[:initial_number_of_states,6,1] = 0 state_space_mean_derivative[:initial_number_of_states,6,0] = 0 state_space_variance_derivative = np.zeros((7,2*total_number_of_states,2*total_number_of_states)) for parameter_index in range(7): np.fill_diagonal(state_space_variance_derivative[parameter_index,:initial_number_of_states,:initial_number_of_states], initial_mRNA_scaling*state_space_mean_derivative[0,parameter_index,0]) np.fill_diagonal(state_space_variance_derivative[parameter_index, total_number_of_states:total_number_of_states + initial_number_of_states, total_number_of_states:total_number_of_states + initial_number_of_states], initial_protein_scaling*state_space_mean_derivative[0,parameter_index,1]) predicted_observation_mean_derivatives = np.zeros((number_of_observations,7,2)) predicted_observation_mean_derivatives[0] = state_space_mean_derivative[initial_number_of_states-1] predicted_observation_variance_derivatives = np.zeros((number_of_observations,7,2,2)) for parameter_index in range(7): for short_row_index, long_row_index in enumerate([initial_number_of_states-1, total_number_of_states+initial_number_of_states-1]): for short_column_index, long_column_index in enumerate([initial_number_of_states -1, total_number_of_states+initial_number_of_states-1]): predicted_observation_variance_derivatives[0,parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] # update the past ("negative time") if protein_at_observations.reshape(-1,2).shape[0] == 1: current_observation = protein_at_observations else: current_observation = protein_at_observations[0] state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative = kalman_update_step(state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, current_observation, time_delay, observation_time_step, measurement_variance, derivative) return state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, predicted_observation_distributions, predicted_observation_mean_derivatives, predicted_observation_variance_derivatives # @jit(nopython = True) def kalman_observation_distribution_parameters(predicted_observation_distributions, current_observation, state_space_mean, state_space_variance, current_number_of_states, total_number_of_states, measurement_variance, observation_index): """ A function which updates the mean and variance for the distributions which describe the likelihood of our observations, given some model parameters. Parameters ---------- predicted_observation_distributions : numpy array. An array of dimension n x 3 where n is the number of observation time points. The first column is time, the second and third columns are the mean and variance of the distribution of the expected observations at each time point, respectively current_observation : int. Observed protein at the current time. The dimension is 1 x 2. The first column is the time, and the second column is the observed protein copy number at that time state_space_mean : numpy array An array of dimension n x 3, where n is the number of inferred time points. The first column is time, the second column is the mean mRNA, and the third column is the mean protein. Time points are generated every minute state_space_variance : numpy array. An array of dimension 2n x 2n. [ cov( mRNA(t0:tn),mRNA(t0:tn) ), cov( protein(t0:tn),mRNA(t0:tn) ), cov( mRNA(t0:tn),protein(t0:tn) ), cov( protein(t0:tn),protein(t0:tn) ] current_number_of_states : float. The current number of (hidden and observed) states upto the current observation time point. This includes the initial states (with negative time). total_number_of_states : float. The total number of states that will be predicted by the kalman_filter function measurement_variance : float. The variance in our measurement. This is given by Sigma_e in Calderazzo et. al. (2018). observation_index : int. The index for the current observation time in the main kalman_filter loop Returns ------- predicted_observation_distributions[observation_index + 1] : numpy array. An array of dimension 1 x 3. The first column is time, the second and third columns are the mean and variance of the distribution of the expected observations at the current time point, respectively. """ observation_transform = np.array([0.0,1.0]) predicted_observation_distributions[observation_index+1,0] = current_observation[0] predicted_observation_distributions[observation_index+1,1] = observation_transform.dot(state_space_mean[current_number_of_states-1,1:3]) # not using np.ix_-like indexing to make it numba-ready last_predicted_covariance_matrix = np.zeros((2,2)) for short_row_index, long_row_index in enumerate([current_number_of_states-1, total_number_of_states+current_number_of_states-1]): for short_column_index, long_column_index in enumerate([current_number_of_states -1, total_number_of_states+current_number_of_states-1]): last_predicted_covariance_matrix[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] predicted_observation_distributions[observation_index+1,2] = (observation_transform.dot( last_predicted_covariance_matrix).dot(observation_transform.transpose()) + measurement_variance) return predicted_observation_distributions[observation_index + 1] # @jit(nopython = True) def kalman_observation_derivatives(predicted_observation_mean_derivatives, predicted_observation_variance_derivatives, current_observation, state_space_mean_derivative, state_space_variance_derivative, current_number_of_states, total_number_of_states, observation_index): """ Parameters ---------- predicted_observation_mean_derivatives : numpy array. An array of dimension n x m x 2, where n is the number of observation time points, and m is the number of parameters. This gives the (non-updated) predicted derivative of the state space mean at each observation time point, wrt each parameter predicted_observation_variance_derivatives : numpy array. An array of dimension n x m x 2 x 2, where n is the number of observation time points, and m is the number of parameters. This gives the (non-updated) predicted derivative of the state space variance at each observation time point, wrt each parameter current_observation : numpy array. A 1 x 2 array which describes the observation of protein at the current time point. The first column is time, and the second column is the protein level state_space_mean_derivative : numpy array. An array of dimension n x m x 2, where n is the number of inferred time points, and m is the number of parameters. The m columns in the second dimension are the derivative of the state mean with respect to each parameter. The two elements in the third dimension represent the derivative of mRNA and protein respectively state_space_variance_derivative : numpy array. An array of dimension 7 x 2n x 2n. [ d[cov( mRNA(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( protein(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( mRNA(t0:tn),protein(t0:tn) )/]d_theta, d[cov( protein(t0:tn),protein(t0:tn) )]/d_theta ] current_number_of_states : float. The current number of (hidden and observed) states upto the current observation time point. This includes the initial states (with negative time). total_number_of_states : float. The total number of (observed and hidden) states, used to index the variance matrix observation_index : int. The index for the current observation time in the main kalman_filter loop Returns ------- predicted_observation_mean_derivatives[observation_index + 1] : numpy array. An array of dimension 7 x 2, which contains the derivative of the mean mRNA and protein wrt each parameter at the current observation time point predicted_observation_variance_derivatives[observation_index + 1] : numpy array. An array of dimension 7 x 2 x 2, which describes the derivative of the state space variance wrt each parameter for the current time point """ predicted_observation_mean_derivatives[observation_index+1] = state_space_mean_derivative[current_number_of_states-1] for parameter_index in range(7): for short_row_index, long_row_index in enumerate([current_number_of_states-1, total_number_of_states+current_number_of_states-1]): for short_column_index, long_column_index in enumerate([current_number_of_states-1, total_number_of_states+current_number_of_states-1]): predicted_observation_variance_derivatives[observation_index+1,parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] return predicted_observation_mean_derivatives[observation_index + 1], predicted_observation_variance_derivatives[observation_index + 1] # @jit(nopython = True) def kalman_prediction_step(state_space_mean, state_space_variance, state_space_mean_derivative, state_space_variance_derivative, current_observation, model_parameters, observation_time_step, derivative): """ Perform the Kalman filter prediction about future observation, based on current knowledge i.e. current state space mean and variance. This gives rho_{t+\delta t-tau:t+\delta t} and P_{t+\delta t-tau:t+\delta t}, using the differential equations in supplementary section 4 of Calderazzo et al., Bioinformatics (2018), approximated using a forward Euler scheme. TODO: update variable descriptions Parameters ---------- state_space_mean : numpy array. The dimension is n x 3, where n is the number of states until the current time. The first column is time, the second column is mean mRNA, and the third column is mean protein. It represents the information based on observations we have already made. state_space_variance : numpy array. The dimension is 2n x 2n, where n is the number of states until the current time. The definition is identical to the one provided in the Kalman filter function, i.e. [ cov( mRNA(t0:tn),mRNA(t0:tn) ), cov( protein(t0:tn),mRNA(t0:tn) ), cov( mRNA(t0:tn),protein(t0:tn) ), cov( protein(t0:tn),protein(t0:tn) ] state_space_mean_derivative : numpy array. An array of dimension n x m x 2, where n is the number of inferred time points, and m is the number of parameters. The m columns in the second dimension are the derivative of the state mean with respect to each parameter. The two elements in the third dimension represent the derivative of mRNA and protein respectively state_space_variance_derivative : numpy array. An array of dimension 7 x 2n x 2n. [ d[cov( mRNA(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( protein(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( mRNA(t0:tn),protein(t0:tn) )/]d_theta, d[cov( protein(t0:tn),protein(t0:tn) )]/d_theta ] current_observation : numpy array. The dimension is 1 x 2, where the first entry is time, and the second is the protein observation. model_parameters : numpy array. An array containing the model parameters. The order is identical to the one provided in the Kalman filter function documentation, i.e. repression_threshold, hill_coefficient, mRNA_degradation_rate, protein_degradation_rate, basal_transcription_rate, translation_rate, transcription_delay. observation_time_step : float. This gives the time between each experimental observation. This is required to know how far the function should predict. Returns ------- predicted_state_space_mean : numpy array. The dimension is n x 3, where n is the number of previous observations until the current time. The first column is time, the second column is mean mRNA, and the third column is mean protein. predicted_state_space_variance : numpy array. The dimension is 2n x 2n, where n is the number of previous observations until the current time. [ cov( mRNA(t0:tn),mRNA(t0:tn) ), cov( protein(t0:tn),mRNA(t0:tn) ), cov( mRNA(t0:tn),protein(t0:tn) ), cov( protein(t0:tn),protein(t0:tn) ] state_space_mean_derivative : numpy array. An array of dimension n x m x 2, where n is the number of inferred time points, and m is the number of parameters. The m columns in the second dimension are the derivative of the state mean with respect to each parameter. The two elements in the third dimension represent the derivative of mRNA and protein respectively state_space_variance_derivative : numpy array. An array of dimension 7 x 2n x 2n. [ d[cov( mRNA(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( protein(t0:tn),mRNA(t0:tn) )]/d_theta, d[cov( mRNA(t0:tn),protein(t0:tn) )/]d_theta, d[cov( protein(t0:tn),protein(t0:tn) )]/d_theta ] """ # This is the time step dt in the forward euler scheme discretisation_time_step = 1.0 ## name the model parameters repression_threshold = model_parameters[0] hill_coefficient = model_parameters[1] mRNA_degradation_rate = model_parameters[2] protein_degradation_rate = model_parameters[3] basal_transcription_rate = model_parameters[4] translation_rate = model_parameters[5] transcription_delay = model_parameters[6] discrete_delay = int(np.around(transcription_delay/discretisation_time_step)) number_of_hidden_states = int(np.around(observation_time_step/discretisation_time_step)) # this is the number of states at t, i.e. before predicting towards t+observation_time_step current_number_of_states = (int(np.around(current_observation[0]/observation_time_step))-1)*number_of_hidden_states + discrete_delay+1 total_number_of_states = state_space_mean.shape[0] ## next_time_index corresponds to 't+Deltat' in the propagation equation on page 5 of the supplementary ## material in the calderazzo paper # we initialise all our matrices outside of the main for loop for improved performance # this is P(t,t) current_covariance_matrix = np.zeros((2,2)) # this is P(t-\tau,t) in page 5 of the supplementary material of Calderazzo et. al. covariance_matrix_past_to_now = np.zeros((2,2)) # this is P(t,t-\tau) in page 5 of the supplementary material of Calderazzo et. al. covariance_matrix_now_to_past = np.zeros((2,2)) # This corresponds to P(s,t) in the Calderazzo paper covariance_matrix_intermediate_to_current = np.zeros((2,2)) # This corresponds to P(s,t-tau) covariance_matrix_intermediate_to_past = np.zeros((2,2)) # this is d_rho(t)/d_theta next_mean_derivative = np.zeros((7,2)) # this is d_P(t,t)/d_theta current_covariance_derivative_matrix = np.zeros((7,2,2)) # this is d_P(t-\tau,t)/d_theta covariance_derivative_matrix_past_to_now = np.zeros((7,2,2)) # this is d_P(t,t-\tau)/d_theta covariance_derivative_matrix_now_to_past = np.zeros((7,2,2)) # d_P(t+Deltat,t+Deltat)/d_theta next_covariance_derivative_matrix = np.zeros((7,2,2)) # initialisation for the common part of the derivative of P(t,t) for each parameter common_state_space_variance_derivative_element = np.zeros((7,2,2)) # This corresponds to d_P(s,t)/d_theta in the Calderazzo paper covariance_matrix_derivative_intermediate_to_current = np.zeros((7,2,2)) # This corresponds to d_P(s,t-tau)/d_theta covariance_matrix_derivative_intermediate_to_past = np.zeros((7,2,2)) # This corresponds to d_P(s,t+Deltat)/d_theta in the Calderazzo paper covariance_matrix_derivative_intermediate_to_next = np.zeros((7,2,2)) # initialisation for the common part of the derivative of P(s,t) for each parameter common_intermediate_state_space_variance_derivative_element = np.zeros((7,2,2)) # derivations for the following are found in Calderazzo et. al. (2018) # g is [[-mRNA_degradation_rate,0], *[M(t), # [translation_rate,-protein_degradation_rate]] [P(t)] # and its derivative will be called instant_jacobian # f is [[basal_transcription_rate*hill_function(past_protein)],0] # and its derivative with respect to the past state will be called delayed_jacobian # the matrix A in the paper will be called variance_of_noise instant_jacobian = np.array([[-mRNA_degradation_rate,0.0],[translation_rate,-protein_degradation_rate]]) instant_jacobian_transpose = np.transpose(instant_jacobian) for ii, next_time_index in enumerate(range(current_number_of_states, current_number_of_states + number_of_hidden_states)): current_time_index = next_time_index - 1 # this corresponds to t past_time_index = current_time_index - discrete_delay # this corresponds to t-tau # indexing with 1:3 for numba current_mean = state_space_mean[current_time_index,1:3] past_protein = state_space_mean[past_time_index,2] if ii == 0: print(current_mean) print(state_space_mean[past_time_index,1:3]) past_mRNA = state_space_mean[past_time_index,1] hill_function_value = 1.0/(1.0+np.power(past_protein/repression_threshold,hill_coefficient)) # if ii == 0: # print(hill_function_value) hill_function_derivative_value = - hill_coefficient*np.power(past_protein/repression_threshold, hill_coefficient - 1)/( repression_threshold* np.power(1.0+np.power( past_protein/repression_threshold, hill_coefficient),2)) # jacobian of f is derivative of f with respect to past state ([past_mRNA, past_protein]) delayed_jacobian = np.array([[0.0,basal_transcription_rate*hill_function_derivative_value],[0.0,0.0]]) delayed_jacobian_transpose = np.transpose(delayed_jacobian) ## derivative of mean is contributions from instant reactions + contributions from past reactions derivative_of_mean = ( np.array([[-mRNA_degradation_rate,0.0], [translation_rate,-protein_degradation_rate]]).dot(current_mean) + np.array([basal_transcription_rate*hill_function_value,0]) ) next_mean = current_mean + discretisation_time_step*derivative_of_mean # ensures the prediction is non negative next_mean = np.maximum(next_mean,0) # indexing with 1:3 for numba state_space_mean[next_time_index,1:3] = next_mean # in the next lines we use for loop instead of np.ix_-like indexing for numba for short_row_index, long_row_index in enumerate([current_time_index, total_number_of_states+current_time_index]): for short_column_index, long_column_index in enumerate([current_time_index, total_number_of_states+current_time_index]): current_covariance_matrix[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] # this is P(t-\tau,t) in page 5 of the supplementary material of Calderazzo et. al for short_row_index, long_row_index in enumerate([past_time_index, total_number_of_states+past_time_index]): for short_column_index, long_column_index in enumerate([current_time_index, total_number_of_states+current_time_index]): covariance_matrix_past_to_now[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] # this is P(t,t-\tau) in page 5 of the supplementary material of Calderazzo et. al. for short_row_index, long_row_index in enumerate([current_time_index, total_number_of_states+current_time_index]): for short_column_index, long_column_index in enumerate([past_time_index, total_number_of_states+past_time_index]): covariance_matrix_now_to_past[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] variance_change_current_contribution = ( instant_jacobian.dot(current_covariance_matrix) + current_covariance_matrix.dot(instant_jacobian_transpose) ) variance_change_past_contribution = ( delayed_jacobian.dot(covariance_matrix_past_to_now) + covariance_matrix_now_to_past.dot(delayed_jacobian_transpose) ) variance_of_noise = np.array([[mRNA_degradation_rate*current_mean[0]+basal_transcription_rate*hill_function_value,0], [0,translation_rate*current_mean[0]+protein_degradation_rate*current_mean[1]]]) derivative_of_variance = ( variance_change_current_contribution + variance_change_past_contribution + variance_of_noise ) # P(t+Deltat,t+Deltat) next_covariance_matrix = current_covariance_matrix + discretisation_time_step*derivative_of_variance # ensure that the diagonal entries are non negative np.fill_diagonal(next_covariance_matrix,np.maximum(np.diag(next_covariance_matrix),0)) # in the next lines we use for loop instead of np.ix_-like indexing for numba for short_row_index, long_row_index in enumerate([next_time_index, total_number_of_states+next_time_index]): for short_column_index, long_column_index in enumerate([next_time_index, total_number_of_states+next_time_index]): state_space_variance[long_row_index,long_column_index] = next_covariance_matrix[short_row_index, short_column_index] ## now we need to update the cross correlations, P(s,t) in the Calderazzo paper # the range needs to include t, since we want to propagate P(t,t) into P(t,t+Deltat) for intermediate_time_index in range(past_time_index,current_time_index+1): # This corresponds to P(s,t) in the Calderazzo paper for short_row_index, long_row_index in enumerate([intermediate_time_index, total_number_of_states+intermediate_time_index]): for short_column_index, long_column_index in enumerate([current_time_index, total_number_of_states+current_time_index]): covariance_matrix_intermediate_to_current[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] # This corresponds to P(s,t-tau) for short_row_index, long_row_index in enumerate([intermediate_time_index, total_number_of_states+intermediate_time_index]): for short_column_index, long_column_index in enumerate([past_time_index, total_number_of_states+past_time_index]): covariance_matrix_intermediate_to_past[short_row_index,short_column_index] = state_space_variance[long_row_index, long_column_index] covariance_derivative = ( covariance_matrix_intermediate_to_current.dot( instant_jacobian_transpose) + covariance_matrix_intermediate_to_past.dot(delayed_jacobian_transpose)) # This corresponds to P(s,t+Deltat) in the Calderazzo paper covariance_matrix_intermediate_to_next = covariance_matrix_intermediate_to_current + discretisation_time_step*covariance_derivative # Fill in the big matrix for short_row_index, long_row_index in enumerate([intermediate_time_index, total_number_of_states+intermediate_time_index]): for short_column_index, long_column_index in enumerate([next_time_index, total_number_of_states+next_time_index]): state_space_variance[long_row_index,long_column_index] = covariance_matrix_intermediate_to_next[short_row_index, short_column_index] # Fill in the big matrix with transpose arguments, i.e. P(t+Deltat, s) - works if initialised symmetrically for short_row_index, long_row_index in enumerate([next_time_index, total_number_of_states+next_time_index]): for short_column_index, long_column_index in enumerate([intermediate_time_index, total_number_of_states+intermediate_time_index]): state_space_variance[long_row_index,long_column_index] = covariance_matrix_intermediate_to_next[short_column_index, short_row_index] ################################# #### #### prediction step for the derivatives of the state space mean and variance wrt each parameter #### ################################# ### ### state space mean derivatives ### if derivative: # indexing with 1:3 for numba current_mean_derivative = state_space_mean_derivative[current_time_index,:,0:2] past_mean_derivative = state_space_mean_derivative[past_time_index,:,0:2] past_protein_derivative = state_space_mean_derivative[past_time_index,:,1] # calculate predictions for derivative of mean wrt each parameter # repression threshold hill_function_derivative_value_wrt_repression = hill_coefficient*np.power(past_protein/repression_threshold, hill_coefficient)/( repression_threshold* np.power(1.0+np.power( past_protein/repression_threshold, hill_coefficient), 2)) repression_derivative = ( instant_jacobian.dot(current_mean_derivative[0]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[0]).reshape((2,1)) + np.array([[basal_transcription_rate*hill_function_derivative_value_wrt_repression],[0.0]]) ) next_mean_derivative[0] = current_mean_derivative[0] + discretisation_time_step*(repression_derivative.reshape((1,2))) # hill coefficient hill_function_derivative_value_wrt_hill_coefficient = - np.log(past_protein/repression_threshold)*np.power(past_protein/repression_threshold, hill_coefficient)/( np.power(1.0+np.power( past_protein/repression_threshold, hill_coefficient),2)) hill_coefficient_derivative = ( instant_jacobian.dot(current_mean_derivative[1]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[1]).reshape((2,1)) + np.array(([[basal_transcription_rate*hill_function_derivative_value_wrt_hill_coefficient],[0.0]])) ) next_mean_derivative[1] = current_mean_derivative[1] + discretisation_time_step*(hill_coefficient_derivative.reshape((1,2))) # mRNA degradation rate mRNA_degradation_rate_derivative = ( instant_jacobian.dot(current_mean_derivative[2]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[2]).reshape((2,1)) + np.array(([[-current_mean[0]],[0.0]])) ) next_mean_derivative[2] = current_mean_derivative[2] + discretisation_time_step*(mRNA_degradation_rate_derivative.reshape((1,2))) # protein degradation rate protein_degradation_rate_derivative = ( instant_jacobian.dot(current_mean_derivative[3]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[3]).reshape((2,1)) + np.array(([[0.0],[-current_mean[1]]])) ) next_mean_derivative[3] = current_mean_derivative[3] + discretisation_time_step*(protein_degradation_rate_derivative.reshape((1,2))) # basal transcription rate basal_transcription_rate_derivative = ( instant_jacobian.dot(current_mean_derivative[4]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[4]).reshape((2,1)) + np.array(([[hill_function_value],[0.0]])) ) next_mean_derivative[4] = current_mean_derivative[4] + discretisation_time_step*(basal_transcription_rate_derivative.reshape((1,2))) # translation rate translation_rate_derivative = ( instant_jacobian.dot(current_mean_derivative[5]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[5]).reshape((2,1)) + np.array(([[0.0],[current_mean[0]]])) ) next_mean_derivative[5] = current_mean_derivative[5] + discretisation_time_step*(translation_rate_derivative.reshape((1,2))) # transcriptional delay transcription_delay_derivative = ( instant_jacobian.dot(current_mean_derivative[6]).reshape((2,1)) + delayed_jacobian.dot(past_mean_derivative[6]).reshape((2,1)) + np.array(([[-basal_transcription_rate*hill_function_derivative_value*( translation_rate*past_mRNA - protein_degradation_rate*past_protein)],[0.0]])) ) next_mean_derivative[6] = current_mean_derivative[6] + discretisation_time_step*(transcription_delay_derivative.reshape((1,2))) # assign the predicted derivatives to our state_space_mean_derivative array state_space_mean_derivative[next_time_index] = next_mean_derivative ### ### state space variance derivatives ### # in the next lines we use for loop instead of np.ix_-like indexing for numba # this is d_P(t,t)/d_theta for parameter_index in range(7): for short_row_index, long_row_index in enumerate([current_time_index, total_number_of_states+current_time_index]): for short_column_index, long_column_index in enumerate([current_time_index, total_number_of_states+current_time_index]): current_covariance_derivative_matrix[parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] # this is d_P(t-\tau,t)/d_theta for parameter_index in range(7): for short_row_index, long_row_index in enumerate([past_time_index, total_number_of_states+past_time_index]): for short_column_index, long_column_index in enumerate([current_time_index, total_number_of_states+current_time_index]): covariance_derivative_matrix_past_to_now[parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] # this is d_P(t,t-\tau)/d_theta for parameter_index in range(7): for short_row_index, long_row_index in enumerate([current_time_index, total_number_of_states+current_time_index]): for short_column_index, long_column_index in enumerate([past_time_index, total_number_of_states+past_time_index]): covariance_derivative_matrix_now_to_past[parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] ## d_P(t+Deltat,t+Deltat)/d_theta # the derivative is quite long and slightly different for each parameter, meaning it's difficult to # code this part with a loop. For each parameter we divide it in to it's constituent parts. There is one # main part in common for every derivative which is defined here as common_state_space_variance_derivative_element for parameter_index in range(7): common_state_space_variance_derivative_element[parameter_index] = ( np.dot(instant_jacobian, current_covariance_derivative_matrix[parameter_index]) + np.dot(current_covariance_derivative_matrix[parameter_index], instant_jacobian_transpose) + np.dot(delayed_jacobian, covariance_derivative_matrix_past_to_now[parameter_index]) + np.dot(covariance_derivative_matrix_now_to_past[parameter_index], delayed_jacobian_transpose) ) hill_function_second_derivative_value = hill_coefficient*np.power(past_protein/repression_threshold, hill_coefficient)*( np.power(past_protein/repression_threshold, hill_coefficient) + hill_coefficient*(np.power(past_protein/repression_threshold, hill_coefficient)-1)+1)/( np.power(past_protein,2)* np.power(1.0+np.power( past_protein/repression_threshold, hill_coefficient),3)) # repression threshold # this refers to d(f'(p(t-\tau)))/dp_0 hill_function_second_derivative_value_wrt_repression = -np.power(hill_coefficient,2)*(np.power(past_protein/repression_threshold, hill_coefficient)-1)*np.power(past_protein/repression_threshold, hill_coefficient-1)/( np.power(repression_threshold,2)* (np.power(1.0+np.power( past_protein/repression_threshold, hill_coefficient),3))) # instant_jacobian_derivative_wrt_repression = 0 delayed_jacobian_derivative_wrt_repression = (np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[0,1]],[0.0,0.0]]) + np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value_wrt_repression],[0.0,0.0]]) ) delayed_jacobian_derivative_wrt_repression_transpose = np.transpose(delayed_jacobian_derivative_wrt_repression) instant_noise_derivative_wrt_repression = (np.array([[mRNA_degradation_rate*current_mean_derivative[0,0],0.0], [0.0,translation_rate*current_mean_derivative[0,0] + protein_degradation_rate*current_mean_derivative[0,1]]])) delayed_noise_derivative_wrt_repression = (np.array([[basal_transcription_rate*(hill_function_derivative_value*past_mean_derivative[0,1] + hill_function_derivative_value_wrt_repression),0.0], [0.0,0.0]])) derivative_of_variance_wrt_repression_threshold = ( common_state_space_variance_derivative_element[0] + np.dot(delayed_jacobian_derivative_wrt_repression,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,delayed_jacobian_derivative_wrt_repression_transpose) + instant_noise_derivative_wrt_repression + delayed_noise_derivative_wrt_repression ) next_covariance_derivative_matrix[0] = current_covariance_derivative_matrix[0] + discretisation_time_step*(derivative_of_variance_wrt_repression_threshold) # hill coefficient # this refers to d(f'(p(t-\tau)))/dh hill_function_second_derivative_value_wrt_hill_coefficient = np.power(past_protein/repression_threshold,hill_coefficient)*(-np.power(past_protein/repression_threshold,hill_coefficient) + hill_coefficient*(np.power(past_protein/repression_threshold,hill_coefficient)-1)*np.log(past_protein/repression_threshold)-1)/( past_protein*np.power(1.0+np.power(past_protein/repression_threshold,hill_coefficient),3)) # instant_jacobian_derivative_wrt_hill_coefficient = 0 delayed_jacobian_derivative_wrt_hill_coefficient = (np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[1,1]],[0.0,0.0]]) + np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value_wrt_hill_coefficient],[0.0,0.0]]) ) instant_noise_derivative_wrt_hill_coefficient = (np.array([[mRNA_degradation_rate*current_mean_derivative[1,0],0.0], [0.0,translation_rate*current_mean_derivative[1,0] + protein_degradation_rate*current_mean_derivative[1,1]]])) delayed_noise_derivative_wrt_hill_coefficient = (np.array([[basal_transcription_rate*(hill_function_derivative_value*past_mean_derivative[1,1] + hill_function_derivative_value_wrt_hill_coefficient),0.0], [0.0,0.0]])) derivative_of_variance_wrt_hill_coefficient = ( common_state_space_variance_derivative_element[1] + np.dot(delayed_jacobian_derivative_wrt_hill_coefficient,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,np.transpose(delayed_jacobian_derivative_wrt_hill_coefficient)) + instant_noise_derivative_wrt_hill_coefficient + delayed_noise_derivative_wrt_hill_coefficient ) next_covariance_derivative_matrix[1] = current_covariance_derivative_matrix[1] + discretisation_time_step*(derivative_of_variance_wrt_hill_coefficient) # mRNA degradation rate instant_jacobian_derivative_wrt_mRNA_degradation = np.array([[-1.0,0.0],[0.0,0.0]]) delayed_jacobian_derivative_wrt_mRNA_degradation = (np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[2,1]],[0.0,0.0]]) ) instant_noise_derivative_wrt_mRNA_degradation = (np.array([[mRNA_degradation_rate*current_mean_derivative[2,0] + current_mean[0],0.0], [0.0,translation_rate*current_mean_derivative[2,0] + protein_degradation_rate*current_mean_derivative[2,1]]])) delayed_noise_derivative_wrt_mRNA_degradation = (np.array([[basal_transcription_rate*(hill_function_derivative_value*past_mean_derivative[2,1]),0.0], [0.0,0.0]])) derivative_of_variance_wrt_mRNA_degradation = ( common_state_space_variance_derivative_element[2] + np.dot(instant_jacobian_derivative_wrt_mRNA_degradation,current_covariance_matrix) + np.dot(current_covariance_matrix,np.transpose(instant_jacobian_derivative_wrt_mRNA_degradation)) + np.dot(delayed_jacobian_derivative_wrt_mRNA_degradation,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,np.transpose(delayed_jacobian_derivative_wrt_mRNA_degradation)) + instant_noise_derivative_wrt_mRNA_degradation + delayed_noise_derivative_wrt_mRNA_degradation ) next_covariance_derivative_matrix[2] = current_covariance_derivative_matrix[2] + discretisation_time_step*(derivative_of_variance_wrt_mRNA_degradation) # protein degradation rate instant_jacobian_derivative_wrt_protein_degradation = np.array([[0.0,0.0],[0.0,-1.0]]) delayed_jacobian_derivative_wrt_protein_degradation = (np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[3,1]],[0.0,0.0]]) ) instant_noise_derivative_wrt_protein_degradation = (np.array([[mRNA_degradation_rate*current_mean_derivative[3,0],0.0], [0.0,translation_rate*current_mean_derivative[3,0] + protein_degradation_rate*current_mean_derivative[3,1] + current_mean[1]]])) delayed_noise_derivative_wrt_protein_degradation = (np.array([[basal_transcription_rate*(hill_function_derivative_value*past_mean_derivative[3,1]),0.0], [0.0,0.0]])) derivative_of_variance_wrt_protein_degradation = ( common_state_space_variance_derivative_element[3] + np.dot(instant_jacobian_derivative_wrt_protein_degradation,current_covariance_matrix) + np.dot(current_covariance_matrix,np.transpose(instant_jacobian_derivative_wrt_protein_degradation)) + np.dot(delayed_jacobian_derivative_wrt_protein_degradation,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,np.transpose(delayed_jacobian_derivative_wrt_protein_degradation)) + instant_noise_derivative_wrt_protein_degradation + delayed_noise_derivative_wrt_protein_degradation ) next_covariance_derivative_matrix[3] = current_covariance_derivative_matrix[3] + discretisation_time_step*(derivative_of_variance_wrt_protein_degradation) # basal transcription rate # instant_jacobian_derivative_wrt_basal_transcription = 0 delayed_jacobian_derivative_wrt_basal_transcription = (np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[4,1]],[0.0,0.0]]) + np.array([[0.0,hill_function_derivative_value],[0.0,0.0]]) ) instant_noise_derivative_wrt_basal_transcription = (np.array([[mRNA_degradation_rate*current_mean_derivative[4,0],0.0], [0.0,translation_rate*current_mean_derivative[4,0] + protein_degradation_rate*current_mean_derivative[4,1]]])) delayed_noise_derivative_wrt_basal_transcription = (np.array([[basal_transcription_rate*hill_function_derivative_value*past_mean_derivative[4,1] + hill_function_value,0.0], [0.0,0.0]])) derivative_of_variance_wrt_basal_transcription = ( common_state_space_variance_derivative_element[4] + np.dot(delayed_jacobian_derivative_wrt_basal_transcription,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,np.transpose(delayed_jacobian_derivative_wrt_basal_transcription)) + instant_noise_derivative_wrt_basal_transcription + delayed_noise_derivative_wrt_basal_transcription ) next_covariance_derivative_matrix[4] = current_covariance_derivative_matrix[4] + discretisation_time_step*(derivative_of_variance_wrt_basal_transcription) # translation rate instant_jacobian_derivative_wrt_translation_rate = np.array([[0.0,0.0],[1.0,0.0]]) delayed_jacobian_derivative_wrt_translation_rate = (np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[5,1]],[0.0,0.0]])) instant_noise_derivative_wrt_translation_rate = (np.array([[mRNA_degradation_rate*current_mean_derivative[5,0],0.0], [0.0,translation_rate*current_mean_derivative[5,0] + protein_degradation_rate*current_mean_derivative[5,1] + current_mean[0]]])) delayed_noise_derivative_wrt_translation_rate = (np.array([[basal_transcription_rate*hill_function_derivative_value*past_mean_derivative[5,1],0.0], [0.0,0.0]])) derivative_of_variance_wrt_translation_rate = ( common_state_space_variance_derivative_element[5] + np.dot(instant_jacobian_derivative_wrt_translation_rate,current_covariance_matrix) + np.dot(current_covariance_matrix,np.transpose(instant_jacobian_derivative_wrt_translation_rate)) + np.dot(delayed_jacobian_derivative_wrt_translation_rate,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,np.transpose(delayed_jacobian_derivative_wrt_translation_rate)) + instant_noise_derivative_wrt_translation_rate + delayed_noise_derivative_wrt_translation_rate ) next_covariance_derivative_matrix[5] = current_covariance_derivative_matrix[5] + discretisation_time_step*(derivative_of_variance_wrt_translation_rate) # transcriptional delay # instant_jacobian_derivative_wrt_transcription_delay = 0 delayed_jacobian_derivative_wrt_transcription_delay = np.array([[0.0,basal_transcription_rate*hill_function_second_derivative_value*past_mean_derivative[6,1]],[0.0,0.0]]) instant_noise_derivative_wrt_transcription_delay = (np.array([[mRNA_degradation_rate*current_mean_derivative[6,0],0.0], [0.0,translation_rate*current_mean_derivative[6,0] + protein_degradation_rate*current_mean_derivative[6,1]]])) delayed_noise_derivative_wrt_transcription_delay = np.array([[basal_transcription_rate*hill_function_derivative_value*past_mean_derivative[6,1],0.0], [0.0,0.0]]) derivative_of_variance_wrt_transcription_delay = ( common_state_space_variance_derivative_element[6] + np.dot(delayed_jacobian_derivative_wrt_transcription_delay,covariance_matrix_past_to_now) + np.dot(covariance_matrix_now_to_past,np.transpose(delayed_jacobian_derivative_wrt_transcription_delay)) + instant_noise_derivative_wrt_transcription_delay + delayed_noise_derivative_wrt_transcription_delay ) next_covariance_derivative_matrix[6] = current_covariance_derivative_matrix[6] + discretisation_time_step*(derivative_of_variance_wrt_transcription_delay) # in the next lines we use for loop instead of np.ix_-like indexing for numba for parameter_index in range(7): for short_row_index, long_row_index in enumerate([next_time_index, total_number_of_states+next_time_index]): for short_column_index, long_column_index in enumerate([next_time_index, total_number_of_states+next_time_index]): state_space_variance_derivative[parameter_index,long_row_index,long_column_index] = next_covariance_derivative_matrix[parameter_index, short_row_index, short_column_index] ## now we need to update the cross correlations, d_P(s,t)/d_theta in the Calderazzo paper # the range needs to include t, since we want to propagate d_P(t,t)/d_theta into d_P(t,t+Deltat)/d_theta for intermediate_time_index in range(past_time_index,current_time_index+1): # This corresponds to d_P(s,t)/d_theta in the Calderazzo paper # for loops instead of np.ix_-like indexing for parameter_index in range(7): for short_row_index, long_row_index in enumerate([intermediate_time_index, total_number_of_states+intermediate_time_index]): for short_column_index, long_column_index in enumerate([current_time_index, total_number_of_states+current_time_index]): covariance_matrix_derivative_intermediate_to_current[parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] # This corresponds to d_P(s,t-tau)/d_theta for parameter_index in range(7): for short_row_index, long_row_index in enumerate([intermediate_time_index, total_number_of_states+intermediate_time_index]): for short_column_index, long_column_index in enumerate([past_time_index, total_number_of_states+past_time_index]): covariance_matrix_derivative_intermediate_to_past[parameter_index,short_row_index,short_column_index] = state_space_variance_derivative[parameter_index, long_row_index, long_column_index] # Again, this derivative is slightly different for each parameter, meaning it's difficult to # code this part with a loop. For each parameter we divide it in to it's constituent parts. There is one # main part in common for every derivative which is defined here as common_intermediate_state_space_variance_derivative_element for parameter_index in range(7): common_intermediate_state_space_variance_derivative_element[parameter_index] = ( np.dot(covariance_matrix_derivative_intermediate_to_current[parameter_index], instant_jacobian_transpose) + np.dot(covariance_matrix_derivative_intermediate_to_past[parameter_index], delayed_jacobian_transpose) ) # repression threshold derivative_of_intermediate_variance_wrt_repression_threshold = ( common_intermediate_state_space_variance_derivative_element[0] + np.dot(covariance_matrix_intermediate_to_past,delayed_jacobian_derivative_wrt_repression_transpose) ) covariance_matrix_derivative_intermediate_to_next[0] = covariance_matrix_derivative_intermediate_to_current[0] + discretisation_time_step*(derivative_of_intermediate_variance_wrt_repression_threshold) # hill coefficient derivative_of_intermediate_variance_wrt_hill_coefficient = ( common_intermediate_state_space_variance_derivative_element[1] + np.dot(covariance_matrix_intermediate_to_past,np.transpose(delayed_jacobian_derivative_wrt_hill_coefficient))) covariance_matrix_derivative_intermediate_to_next[1] = covariance_matrix_derivative_intermediate_to_current[1] + discretisation_time_step*(derivative_of_intermediate_variance_wrt_hill_coefficient) # mRNA degradation rate derivative_of_intermediate_variance_wrt_mRNA_degradation = ( common_intermediate_state_space_variance_derivative_element[2] + np.dot(covariance_matrix_intermediate_to_current,np.transpose(instant_jacobian_derivative_wrt_mRNA_degradation)) + np.dot(covariance_matrix_intermediate_to_past,np.transpose(delayed_jacobian_derivative_wrt_mRNA_degradation)) ) covariance_matrix_derivative_intermediate_to_next[2] = covariance_matrix_derivative_intermediate_to_current[2] + discretisation_time_step*(derivative_of_intermediate_variance_wrt_mRNA_degradation) # protein degradation rate derivative_of_intermediate_variance_wrt_protein_degradation = ( common_intermediate_state_space_variance_derivative_element[3] + np.dot(covariance_matrix_intermediate_to_current,np.transpose(instant_jacobian_derivative_wrt_protein_degradation)) + np.dot(covariance_matrix_intermediate_to_past,np.transpose(delayed_jacobian_derivative_wrt_protein_degradation)) ) covariance_matrix_derivative_intermediate_to_next[3] = covariance_matrix_derivative_intermediate_to_current[3] + discretisation_time_step*(derivative_of_intermediate_variance_wrt_protein_degradation) # basal transcription rate derivative_of_intermediate_variance_wrt_basal_transcription = ( common_intermediate_state_space_variance_derivative_element[4] + np.dot(covariance_matrix_intermediate_to_past,np.transpose(delayed_jacobian_derivative_wrt_basal_transcription)) ) covariance_matrix_derivative_intermediate_to_next[4] = covariance_matrix_derivative_intermediate_to_current[4] + discretisation_time_step*(derivative_of_intermediate_variance_wrt_basal_transcription) # translation rate derivative_of_intermediate_variance_wrt_translation_rate = ( common_intermediate_state_space_variance_derivative_element[5] + np.dot(covariance_matrix_intermediate_to_current,
np.transpose(instant_jacobian_derivative_wrt_translation_rate)
numpy.transpose
""" General utility class for accessing pickle data files and for simple transformations Generally data is stored as dict of arrays, as dumped and compressed file. using pytables is probably the best approach but we may have problems with portability (or easy installation in different environments) so here we use simpler approach with more standard packages zlib and pickle """ import gzip from io import BufferedReader import io import os import pickle import zlib import logging import numpy as np from config import DATA_DIR, PUBLISH_DIR, MEAN_MARKERS, BED_TO_BIG_BED, BED_GRAPH_TO_BIG_WIG, CHROM_SIZES import re __author__ = 'eran' def wig_transform(wig_file, smoothing=100, output=True): """ Gets a wig file and transforms it to dictionary (chr1 -> [scores], ch2 -> [scores]...) and saves it with pickle @param output: Whether to output the transformed wig to npz file (name.smoothing.npz) @param smoothing: bin size for smoothing (common raw data can be 20bp) @param wig_file: name of wig file (or wig.gz) @return: a dictionary where key are chromosomes and values are scores @note it is recommended to use use bed graph files and use load_bg which works much faster """ written_dict = dict() # dictionary keys: chromosomes [ score, score], and chromosome-position: start position if wig_file.endswith('.gz'): in_stream = BufferedReader(gzip.open(wig_file, 'rb')) in_file = (in_line.decode('ascii') for in_line in in_stream) else: in_stream = io.open(wig_file, 'r') prev_data = [] l_prev_data = 0 chrm_score = [] chrom = None rlines = 0 frag_size = 20 cur_smoothing = smoothing / frag_size prev_pos = 0 for r in in_file: if r[0] == 'v': # new chromosome, variable step if chrom is not None: chrm_score.append(sum(prev_data)) written_dict[chrom] = chrm_score chrm_score = [] prev_data = [] print(r.strip()) chrom_track = r.rstrip().split(' ') frag_size = int(chrom_track[2].split('=')[1].strip()) cur_smoothing = int(smoothing / frag_size) chrom = chrom_track[1].split('=')[1] prev_pos = 1 pos, score = next(in_file).split('\t') elif r[0] == 't': continue # track line else: pos, score = r.split('\t') pos = int(pos) score = int(score) if pos != prev_pos: prev_data += [0] * int(np.floor((pos - prev_pos) / frag_size)) l_prev_data = len(prev_data) prev_data += [score] l_prev_data += 1 prev_pos = pos + frag_size if l_prev_data > cur_smoothing: for smooth_bin in zip(*[iter(prev_data)] * cur_smoothing): chrm_score.append(sum(smooth_bin)) remaining = (len(prev_data) % cur_smoothing) prev_data = prev_data[-remaining:] if remaining > 0 else [] l_prev_data = len(prev_data) rlines += 1 if len(prev_data) != 0: chrm_score.append(sum(prev_data)) written_dict[chrom] = chrm_score in_stream.close() print('Finished reading and down-sampling') if output: # save to same file but with different extensions wig_file = wig_file.replace('.gz', '') # remove .gz extension for compressed file output_filename = wig_file.replace('.wig', '.%i.npz' % smoothing) save_result_dict(output_filename, output_filename) #with open(output_filename, 'wb') as output: # output.write(zlib.compress(pickle.dumps(written_dict, pickle.HIGHEST_PROTOCOL))) print('Finished writing file') return written_dict def chrom_sizes(bin_sizes=20): """ Get chromosome sizes of hg19 as dictionary @rtype : dict @return: dictionary with key as chromosome name and value as size (for bins of size of 20) """ with open(CHROM_SIZES) as chrom_size_fd: chromosomes = (r.split('\t') for r in chrom_size_fd.readlines()) chrom_dict = dict(((chrom[0], int(chrom[1]) // bin_sizes) for chrom in chromosomes)) return chrom_dict def load_bg(bg_file): """ Loads bed graph should be faster then the above and directly load it @param bg_file: bg file to be loaded @return: dictionary of chromosomes keys and values as wig like arrays """ def load_bg_slow(): """ Fallback - if pandas doesnt exist and you get into trouble with cython compilations """ chr_to_ind = dict() chr_to_ind_inv = dict() for i in range(1, 26): chr_name = 'chr%i' % i if i == 23: chr_name = 'chrX' if i == 24: chr_name = 'chrY' if i == 25: chr_name = 'chrM' chr_name = chr_name.encode('ascii') chr_to_ind[chr_name] = i for k, v in chr_to_ind.items(): chr_to_ind_inv[v] = k.decode('utf-8') # 0 - chromosome, 1 - start, 2 - end bed_matrix = np.loadtxt(bg_file, delimiter='\t', usecols=(0, 1, 2, 3), converters={ 0: lambda x: chr_to_ind[x] }, dtype=int) chromosomes_ind = set(bed_matrix[:, 0]) res_dict = dict() for chromosome in chromosomes_ind: selector = bed_matrix[:, 0] == chromosome chrom_matrix = np.array(bed_matrix[selector, [1, 2, 3]]) # TO BIN SIZE chrom_matrix[:, [0, 1]] = chrom_matrix[:, [0, 1]] / 20 last_end = max(chrom_matrix[:, 1]) long_rep =
np.zeros(last_end)
numpy.zeros
# coding=utf8 """ Graph-Based Semi-Supervised Learning (GBSSL) implementation. """ # Authors: <NAME> <<EMAIL>> # Lisence: MIT import numpy as np from scipy import sparse from abc import ABCMeta, abstractmethod from sklearn.base import BaseEstimator, ClassifierMixin class Base(BaseEstimator, ClassifierMixin): __metaclass__ = ABCMeta def __init__(self,graph,max_iter=30): self.max_iter = max_iter self.graph = graph @abstractmethod def _build_propagation_matrix(self): raise NotImplementedError("Propagation matrix construction must be implemented to fit a model.") @abstractmethod def _build_base_matrix(self): raise NotImplementedError("Base matrix construction must be implemented to fit a model.") def _init_label_matrix(self): n_samples = self.graph.shape[0] n_classes = self.y_.max()+1 return np.zeros((n_samples,n_classes)) def _arrange_params(self): """Do nothing by default""" pass def fit(self,x,y): """Fit a graph-based semi-supervised learning model All the input data is provided array X (labeled samples only) and corresponding label array y. Parameters ---------- x : array_like, shape = [n_labeled_samples] Node IDs of labeled samples y : array_like, shape = [n_labeled_samples] Label IDs of labeled samples Returns ------- self : returns an instance of self. """ self.x_ = x self.y_ = y self._arrange_params() self.F_ = self._init_label_matrix() self.P_ = self._build_propagation_matrix() self.B_ = self._build_base_matrix() remaining_iter = self.max_iter while remaining_iter > 0: self.F_ = self._propagate() remaining_iter -= 1 return self def _propagate(self): return self.P_.dot(self.F_) + self.B_ def predict(self,x): """Performs prediction based on the fitted model Parameters ---------- x : array_like, shape = [n_samples] Node IDs Returns ------- y : array_like, shape = [n_samples] Predictions for input node IDs """ probas = self.predict_proba(x) return np.argmax(probas,axis=1) def predict_proba(self,x): """Predict probability for each possible label Parameters ---------- x : array_like, shape = [n_samples] Node IDs Returns ------- probabilities : array_like, shape = [n_samples, n_classes] Probability distributions across class labels """ z = np.sum(self.F_[x], axis=1) z[z==0] += 1 # Avoid division by 0 return (self.F_[x].T / z).T class LGC(Base): """Local and Global Consistency (LGC) for GBSSL Parameters ---------- alpha : float clamping factor max_iter : float maximum number of iterations allowed Attributes ---------- x_ : array, shape = [n_samples] Input array of node IDs. References ---------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2004). Learning with local and global consistency. Advances in neural information processing systems, 16(16), 321-328. """ def __init__(self,graph=None,alpha=0.99,max_iter=30): super(LGC, self).__init__(graph,max_iter=30) self.alpha=alpha def _build_propagation_matrix(self): """ LGC computes the normalized Laplacian as its propagation matrix""" degrees = self.graph.sum(axis=0).A[0] degrees[degrees==0] += 1 # Avoid division by 0 D2 = np.sqrt(sparse.diags((1.0/degrees),offsets=0)) S = D2.dot(self.graph).dot(D2) return self.alpha*S def _build_base_matrix(self): n_samples = self.graph.shape[0] n_classes = self.y_.max()+1 B = np.zeros((n_samples,n_classes)) B[self.x_,self.y_] = 1 return (1-self.alpha)*B class HMN(Base): """Harmonic funcsion (HMN) for GBSSL Parameters ---------- max_iter : float maximum number of iterations allowed Attributes ---------- x_ : array, shape = [n_samples] Input array of node IDs. References ---------- <NAME>., <NAME>., & <NAME>. (2003, August). Semi-supervised learning using gaussian fields and harmonic functions. In ICML (Vol. 3, pp. 912-919). """ def __init__(self,graph=None,max_iter=30): super(HMN, self).__init__(graph,max_iter=30) def _build_propagation_matrix(self): degrees = self.graph.sum(axis=0).A[0] degrees[degrees==0] += 1 # Avoid division by 0 D = sparse.diags((1.0/degrees),offsets=0) P = D.dot(self.graph).tolil() P[self.x_] = 0 return P.tocsr() def _build_base_matrix(self): n_samples = self.graph.shape[0] n_classes = self.y_.max()+1 B = np.zeros((n_samples,n_classes)) B[self.x_,self.y_] = 1 return B class PARW(Base): """Partially Absorbing Random Walk (PARW) for GBSSL Parameters ---------- lamb: float (default=0.001) Absorbing parameter max_iter : float maximum number of iterations allowed Attributes ---------- x_ : array, shape = [n_samples] Input array of node IDs. References ---------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2012). Learning with partially absorbing random walks. In Advances in Neural Information Processing Systems (pp. 3077-3085). """ def __init__(self,graph=None,lamb=1.0,max_iter=30): super(PARW, self).__init__(graph,max_iter=30) self.lamb=lamb def _build_propagation_matrix(self): d = self.graph.sum(axis=1).T.A[0] Z = sparse.diags(1.0 / (d+self.lamb), offsets=0) P = Z.dot(self.graph) return P def _build_base_matrix(self): n_samples = self.graph.shape[0] n_classes = self.y_.max()+1 B = np.zeros((n_samples,n_classes)) B[self.x_,self.y_] = 1 d = np.array(self.graph.sum(1).T)[0] Z = sparse.diags(1.0 / (d+self.lamb), offsets=0) Lamb = sparse.diags(self.lamb,shape=(n_samples,n_samples), offsets=0) return Z.dot(Lamb).dot(B) class OMNI(Base): """OMNI-Prop for GBSSL Parameters ---------- lamb : float > 0 (default = 1.0) Define importance between prior and evidence from neighbors max_iter : float maximum number of iterations allowed Attributes ---------- x_ : array, shape = [n_samples] Input array of node IDs. References ---------- <NAME>., <NAME>., & <NAME>. (2015, February). OMNI-Prop: Seamless Node Classification on Arbitrary Label Correlation. In Twenty-Ninth AAAI Conference on Artificial Intelligence. """ def __init__(self,graph=None,lamb=1.0,max_iter=30): super(OMNI,self).__init__(graph,max_iter) self.lamb = lamb def _build_propagation_matrix(self): d = self.graph.sum(axis=0).A[0] dT = self.graph.sum(axis=1).T.A[0] Q = (sparse.diags(1.0/(d+self.lamb), offsets=0).dot(self.graph)).dot(sparse.diags(1.0/(dT+self.lamb),offsets=0).dot(self.graph.T)).tolil() Q[self.x_] = 0 return Q def _build_base_matrix(self): n_samples = self.graph.shape[0] n_classes = self.y_.max()+1 unlabeled = np.setdiff1d(np.arange(n_samples),self.x_) dU = self.graph[unlabeled].sum(axis=1).T.A[0] dT = self.graph.sum(axis=0).A[0] n_samples = self.graph.shape[0] r = sparse.diags(1.0/(dU+self.lamb),offsets=0).dot(self.lamb*self.graph[unlabeled].dot(sparse.diags(1.0/(dT+self.lamb),offsets=0)).dot(np.ones(n_samples))+self.lamb) b = np.ones(n_classes) / float(n_classes) B = np.zeros((n_samples,n_classes)) B[unlabeled] = np.outer(r,b) B[self.x_,self.y_] = 1 return B class CAMLP(Base): """Confidence-Aware Modulated Label Propagation (CAMLP) for GBSSL Parameters ---------- beta : float > 0 (default = 0.1) Define importance between prior and evidence from neighbors H : array_like, shape = [n_classes, n_classes] Define affinities between labels if None, identity matrix is set max_iter : float maximum number of iterations allowed Attributes ---------- x_ : array, shape = [n_samples] Input array of node IDs. References ---------- <NAME>., <NAME>., & <NAME>. (2016, May). CAMLP: Confidence-Aware Modulated Label Propagation. In SIAM International Conference on Data Mining. """ def __init__(self,graph=None,beta=0.1,H=None,max_iter=30): super(CAMLP,self).__init__(graph,max_iter) self.beta=beta self.H=H def _arrange_params(self): if self.H is None: n_classes = self.y_.max()+1 self.H =
np.identity(n_classes)
numpy.identity
# -*- coding: utf-8 -*- # Original file: https://github.com/bolunwang/backdoor # Original Author: <NAME> (<EMAIL>) # Original License: MIT # Adpated to evaluate pytorch models import os import time import argparse import numpy as np import random import torch from tensorboard.backend.event_processing import event_accumulator from visualizer_pytorch import Visualizer_p import utils_backdoor_pytorch import sys sys.path.append("..") from precision_utils import trans_state_dict_test from precision_utils import trans_state_dict_pruning_test parser = argparse.ArgumentParser(description='Neural Cleanse Testing') # dataset and model parser.add_argument('--dataset', type=str, default='zzz', help='dataset to use') parser.add_argument('--model-dir', type=str, default='../checkpoint/', help='where to read the model') parser.add_argument('--ckpt-name', type=str, default='str', help='where to read the model') parser.add_argument('--network-arch', type=str, default='zzz', help='model arch') parser.add_argument('--pruning', action='store_true') parser.add_argument('--quantization', action='store_true') parser.add_argument('--margin', default=0.5, type=float, help='for quantization') parser.add_argument('--epoch', default=35, type=int, help='for quantization') parser.add_argument('--random-seed', type=int, default=0, help='random seed') args = parser.parse_args() random_seed = args.random_seed print('random seed:', random_seed) torch.manual_seed(random_seed) random.seed(random_seed) np.random.seed(random_seed) torch.cuda.manual_seed(random_seed) torch.backends.cudnn.deterministic = True MODEL_DIR = args.model_dir NETWORK_ARCH = args.network_arch RESULT_DIR = args.ckpt_name RESULT_DIR = RESULT_DIR.replace('/', '_') RESULT_DIR = './Neural_Cleanse/' + RESULT_DIR IMG_FILENAME_TEMPLATE = args.dataset + '_visualize_%s_label_%d_v%d.png' # input size IMG_ROWS = 32 IMG_COLS = 32 IMG_COLOR = 3 INPUT_SHAPE = (IMG_COLOR, IMG_ROWS, IMG_COLS) if args.dataset == 'cifar10': NUM_CLASSES = 10 elif args.dataset == 'gtsrb': NUM_CLASSES = 43 else: raise ValueError('Dataset currently unsupported!') Y_TARGET = 0 INTENSITY_RANGE = args.dataset BATCH_SIZE = 32 # batch size used for optimization LR = 0.1 # learning rate STEPS = 1000 # total optimization iterations NB_SAMPLE = 1000 # number of samples in each mini batch MINI_BATCH = NB_SAMPLE // BATCH_SIZE # mini batch size used for early stop INIT_COST = 1e-3 # initial weight used for balancing two objectives REGULARIZATION = 'l1' # reg term to control the mask's norm ATTACK_SUCC_THRESHOLD = 0.98 # attack success threshold of the reversed attack PATIENCE = 6 # patience for adjusting weight, number of mini batches COST_MULTIPLIER = 2 # multiplier for auto-control of weight (COST) SAVE_LAST = False # whether to save the last result or best result EARLY_STOP = True # whether to early stop EARLY_STOP_THRESHOLD = 1.0 # loss threshold for early stop EARLY_STOP_PATIENCE = 5 * PATIENCE # patience for early stop # the following part is not used in our experiment # but our code implementation also supports super-pixel mask UPSAMPLE_SIZE = 1 # size of the super pixel MASK_SHAPE = np.ceil(np.array(INPUT_SHAPE[1:3], dtype=float) / UPSAMPLE_SIZE) MASK_SHAPE = MASK_SHAPE.astype(int) print('dataset', INTENSITY_RANGE) print('Result dir', RESULT_DIR) def find_epoch(name, max_epoch=69, margin=0.5): name = '../train_quantization_attack/tensorboard/' + name ea = event_accumulator.EventAccumulator(name) ea.Reload() pt_ = ea.scalars.Items('INT8/RACC/PT') tpt_ = ea.scalars.Items('INT8/RTACC/PT') asr_ = ea.scalars.Items('Float32/TACC') pt = np.array([i.value for i in pt_])[:max_epoch] tpt = np.array([i.value for i in tpt_])[:max_epoch] asr = np.array([i.value for i in asr_])[:max_epoch] pt_max = np.max(pt) tpt[pt + margin < pt_max] = 0 if args.dataset == 'cifar10': thres_ = 20 elif args.dataset == 'gtsrb': thres_ = 10 tpt[asr > thres_] = 0 tmp = np.zeros(max_epoch) for i in range(max_epoch): tmp[i] = tpt[i] i = np.argmax(tmp) print('max values:', pt_max) print('epoch:', i, 'values:', pt[i], tpt[i]) return i if args.quantization: epoch = find_epoch(args.ckpt_name, max_epoch=args.epoch, margin=args.margin) MODEL_FILENAME = '%s/%dper_tensor_quantnet.pth' % (args.ckpt_name, epoch) else: MODEL_FILENAME = args.ckpt_name print('model name', MODEL_FILENAME) def visualize_trigger_w_mask(visualizer, gen, y_target, save_version=0, save_pattern_flag=True): visualize_start_time = time.time() # initialize with random mask pattern = np.random.random(INPUT_SHAPE).astype('f') * 255.0 mask = np.random.random(MASK_SHAPE).astype('f') # execute reverse engineering pattern, mask, mask_upsample, logs = visualizer.visualize( gen=gen, y_target=y_target, pattern_init=pattern, mask_init=mask) # meta data about the generated mask print('pattern, shape: %s, min: %f, max: %f' % (str(pattern.shape),
np.min(pattern)
numpy.min
""" functions to sort, compute stats, and compare arrays of eigenmodes""" import pandas as pd import numpy as np from scipy.spatial import distance from scipy.stats import entropy, spearmanr, pearsonr def eig_fc_get_standardz(x, y, binary_thresh=0.1, nreps=1000): """Permutes both canonical networks and input eigenmodes 1000 times and calculates the standardized overlap score between each eigen mode and each canonical network, standardize by mean and standard deviation Args: x (array): [eigenmode vector] y (array): [canonical functional network vector] binary_thresh (int, optional): Defaults to 0. threshold for binarizing regional values binarize (bool, optional): Defaults to False. Do you want to binarize or not Returns: zxy [array]: standardized overlapscores sxy [array]: non-standardized overlap scores """ ub, lb = 1, 0 # 1 or 0s after thresholding x = np.where(x > binary_thresh, ub, lb) y = np.where(y > binary_thresh, ub, lb) np.random.seed(24) mean_std_perm = np.zeros(nreps) # std_perm = np.zeros(1000) for i in np.arange(nreps): xperm = np.random.permutation(x) yperm = np.random.permutation(y) mean_std_perm[i] = get_sxy(xperm, yperm) sxy = get_sxy(x, y) # compute mean and standard deviation: zxy = (sxy - np.mean(mean_std_perm)) / np.std(mean_std_perm) return zxy, sxy def get_overlap_score_dfs(all_eig, all_fc_networks, threshold=0.1): """[summary] Args: all_eig (array): eigen modes that you want to compare all_fc_networks (array): all canonical networks being compared to Returns: df_overlap_score [Pandas DataFrame]: DataFrame with all overlap scores df_sxy [Pandas DataFrame]: DataFrame with """ df_cols = all_fc_networks.index df_ind = ["Eig #%d" % x for x in np.arange(all_eig.shape[1]) + 1] df_overlap_score = pd.DataFrame([], index=df_ind, columns=df_cols) df_sxy = pd.DataFrame([], index=df_ind, columns=df_cols) eigcounter = 0 for eignum in df_sxy.index: for name in all_fc_networks.index: fc_vector = all_fc_networks.loc[name].values eig_vector = all_eig[:, eigcounter] df_overlap_score.at[eignum, name], df_sxy.at[ eignum, name ] = eig_fc_get_standardz(eig_vector, fc_vector, binary_thresh=threshold) eigcounter += 1 return df_overlap_score, df_sxy def get_sxy(x, y): """Get s(x,y) where Inputs: x - module/eigen mode y - canoical network """ ind_eig = np.where(x > 0.1) ind_fc = np.where(y > 0.1) # find intersection and union fc_eig_intersect = np.intersect1d(ind_eig, ind_fc) fc_eig_union =
np.union1d(ind_eig, ind_fc)
numpy.union1d
#!/usr/bin/env python # coding: utf-8 # In[491]: import matplotlib.pyplot as plt # ^^^ pyforest auto-imports - don't write above this line import numpy as np import pathlib from skimage import color import random # In[253]: defaultPath = r'G:\Documents\ReferenceBooks\1-DigitalImageProcessing\HW3\Images\\' # ### Convert image to FFT # In[362]: class GrayImageFFT: def load_gray_from_file(self,defaultPath,fileName): self.image = plt.imread(defaultPath+fileName) self.image = color.rgb2gray(self.image) def load_from_array(self,array): self.image = array def fft(self): self.fft=
np.fft.fft2(self.image)
numpy.fft.fft2
import numpy as np import matplotlib as mpl mpl.use('Agg') pgf_with_custom_preamble = { "font.family": "serif", # use serif/main font for text elements "text.usetex": True, # use inline math for ticks # "pgf.rcfonts": False, # don't setup fonts from rc parameters "pgf.preamble": [ "\\usepackage{unicode-math,amsmath,amssymb,amsthm}", # unicode math setup ] } mpl.rcParams.update(pgf_with_custom_preamble) import matplotlib.pyplot as plt mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 def makeup_for_plot(fig1): fig1.spines["top"].set_visible(False) fig1.spines["bottom"].set_visible(True) fig1.spines["right"].set_visible(False) fig1.spines["left"].set_visible(True) fig1.get_xaxis().tick_bottom() fig1.get_yaxis().tick_left() fig1.tick_params(axis="both", which="both", bottom="off", top="off", labelbottom="on", left="off", right="off", labelleft="on",labelsize=12) grid_color = '#e3e3e3' grid_line_style= '--' fig1.grid(linestyle=grid_line_style,color=grid_color) return fig1 def do_tight_layout_for_fig(fig): fig.tight_layout() return fig lr_vals = [0.1] colors = ['red','green','c','m','y','orange','green','c','m','y','black','brown','orange','blue', 'black','blue','brown','red','orange','green','c','m','y','orange','green','c','m','y'] import argparse parser = argparse.ArgumentParser(description='Plot Experiments') parser.add_argument('--fun_num', '--fun_num', default=0,type=int, dest='fun_num') args = parser.parse_args() fun_num = args.fun_num my_markers = ['','','','','','',''] if fun_num == 0: files = { 1: 'results/cocain_mf_movielens_fun_name_1_dataset_option_1_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', 2: 'results/bpg_mf_movielens_fun_name_1_dataset_option_1_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', 3: 'results/palm_mf_movielens_fun_name_1_dataset_option_1_abs_fun_num_1_breg_num_1_beta_0.0_lam_val_0.1.txt', 4: 'results/palm_mf_movielens_fun_name_1_dataset_option_1_abs_fun_num_1_breg_num_1_beta_0.2_lam_val_0.1.txt', 5: 'results/palm_mf_movielens_fun_name_1_dataset_option_1_abs_fun_num_1_breg_num_1_beta_0.4_lam_val_0.1.txt', 6: 'results/bpg_mf_wb_movielens_fun_name_1_dataset_option_1_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', } if fun_num == 1: files = { 1: 'results/cocain_mf_movielens_fun_name_1_dataset_option_2_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', 2: 'results/bpg_mf_movielens_fun_name_1_dataset_option_2_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', 3: 'results/palm_mf_movielens_fun_name_1_dataset_option_2_abs_fun_num_1_breg_num_1_beta_0.0_lam_val_0.1.txt', 4: 'results/palm_mf_movielens_fun_name_1_dataset_option_2_abs_fun_num_1_breg_num_1_beta_0.2_lam_val_0.1.txt', 5: 'results/palm_mf_movielens_fun_name_1_dataset_option_2_abs_fun_num_1_breg_num_1_beta_0.4_lam_val_0.1.txt', 6: 'results/bpg_mf_wb_movielens_fun_name_1_dataset_option_2_abs_fun_num_1_breg_num_1_lam_val_0.1.txt' } if fun_num == 2: files = { 1: 'results/cocain_mf_movielens_fun_name_1_dataset_option_3_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', 2: 'results/bpg_mf_movielens_fun_name_1_dataset_option_3_abs_fun_num_1_breg_num_1_lam_val_0.1.txt', 3: 'results/palm_mf_movielens_fun_name_1_dataset_option_3_abs_fun_num_1_breg_num_1_beta_0.0_lam_val_0.1.txt', 4: 'results/palm_mf_movielens_fun_name_1_dataset_option_3_abs_fun_num_1_breg_num_1_beta_0.2_lam_val_0.1.txt', 5: 'results/palm_mf_movielens_fun_name_1_dataset_option_3_abs_fun_num_1_breg_num_1_beta_0.4_lam_val_0.1.txt', 6: 'results/bpg_mf_wb_movielens_fun_name_1_dataset_option_3_abs_fun_num_1_breg_num_1_lam_val_0.1.txt' } fig1 = plt.figure() ax1 = fig1.add_subplot(111) ax1 = makeup_for_plot(ax1) fig2 = plt.figure() ax2 = fig2.add_subplot(111) ax2 = makeup_for_plot(ax2) fig3 = plt.figure() ax3 = fig3.add_subplot(111) ax3 = makeup_for_plot(ax3) fig4 = plt.figure() ax4 = fig4.add_subplot(111) ax4 = makeup_for_plot(ax4) fig5 = plt.figure() ax5 = fig5.add_subplot(111) ax5 = makeup_for_plot(ax5) label_font_size = 13 legend_font_size = 17 my_line_width = 2 labels_dict = { 1: r"CoCaIn BPG-MF", 6: r"BPG-MF-WB", 2: r"BPG-MF", 3: r"PALM", 4: r"iPALM ($\beta = 0.2$)", 5: r"iPALM ($\beta = 0.4$)", } nb_epoch = 1000 opt_vals= np.array([1,6,2,3,4,5]) color_count = 0 f_opt = 0 min_fun_val = np.inf for i in opt_vals: file_name = files[i] try: best_train_objective_vals = np.loadtxt(file_name)[:,0] min_fun_val = np.nanmin([min_fun_val,np.min(best_train_objective_vals)]) print(min_fun_val) except: pass for i in opt_vals: file_name = files[i] print(file_name) try: best_train_objective_vals = np.loadtxt(file_name)[:,0] best_time_vals = np.loadtxt(file_name)[:,1] except: best_train_objective_vals = np.loadtxt(file_name) ax4.loglog((
np.arange(nb_epoch)
numpy.arange
import numpy as np import tensorflow as tf class NeuralBandit: def __init__(self, nPicos, ABSval, CREval, initExploration, epsilon_0, batch_size=1): nActivePicosVal = np.arange(0, (nPicos+1)) self.controlSpace = np.array(np.meshgrid(nActivePicosVal, ABSval, CREval)).T.reshape(-1, 3) self.nControls = len(self.controlSpace[:, 0]) # self.nControls = 10 # Network Parameters n_hidden_1 = 20 # 1st layer number of features n_hidden_2 = 20 # 2nd layer number of features n_input = 2 # data input n_output = 1 # function output learning_rate = 0.001 self.batch_size = batch_size # self.batch_count = np.zeros((self.nControls)) # self.batch_buffer = np.zeros((self.nControls, self.batch_size)) self.count = np.zeros((self.nControls)) self.current_cost = np.zeros((self.nControls)) self.initExploration = initExploration self.epsilon_0 = epsilon_0 self.neuralArms = list() self.armCost = list() self.armOptimizer = list() self.x = tf.placeholder("float", [None, n_input]) self.y = tf.placeholder("float", [None, n_output]) def multilayer_perceptron(x, weights, biases): layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] return out_layer for i in range(self.nControls): weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='h1_'+str(i)), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='h2_'+str(i)), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_output]), name='hout_'+str(i)) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1_'+str(i)), 'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2_'+str(i)), 'out': tf.Variable(tf.random_normal([n_output]), name='bout_'+str(i)) } pred = multilayer_perceptron(self.x, weights, biases) cost = tf.reduce_sum(tf.pow(pred - self.y, 2)) / self.batch_size optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) self.neuralArms.append(pred) self.armCost.append(cost) self.armOptimizer.append(optimizer) if np.mod(i, 20) == 0: print('NeuralBandit: Created NN number ' + str(i) + ' of '+str(self.nControls)) init = tf.global_variables_initializer() self.sess = tf.Session() self.sess.run(init) self.algConf = {'epsilon_0': epsilon_0, 'initExploration': initExploration, 'batch_size': batch_size, 'n_hidden_1': n_hidden_1, 'n_hidden_2': n_hidden_2, 'learning_rate': learning_rate, 'Common_layer': 'no'} def getControl(self, inputData): x = inputData['state'] indexes =
np.where(self.count < self.initExploration)
numpy.where
""" @ author: Alex @ E-mail: <EMAIL> @ Introduction: Simple application of PCA algorithm """ import numpy as np def PCA(X,k): """ @ param X : data set @ param k : the components you want @ return data : k dimension of features """ # step 1: mean of each feature samples_number, features_number = X.shape mean = np.array([np.mean(X[:,i]) for i in range(features_number)]) normalization_X=X-mean # step 2: find the scatter matrix # scatter matrix is same to the convariance matrix, scatter_matrix = convariance_matrix * (data - 1) scatter_matrix = np.dot(np.transpose(normalization_X), normalization_X) # step 3: Calculate the eigenvectors and eigenvalues eig_values, eig_vectors =
np.linalg.eig(scatter_matrix)
numpy.linalg.eig
from __future__ import division, print_function, absolute_import from .core import SeqletCoordinates from modisco import util import numpy as np from collections import defaultdict, Counter import itertools from sklearn.neighbors.kde import KernelDensity import sys import time from .value_provider import ( AbstractValTransformer, AbsPercentileValTransformer, SignedPercentileValTransformer) import scipy class TransformAndThresholdResults(object): def __init__(self, neg_threshold, transformed_neg_threshold, pos_threshold, transformed_pos_threshold, val_transformer): #both 'transformed_neg_threshold' and 'transformed_pos_threshold' # should be positive, i.e. they should be relative to the # transformed distribution used to set the threshold, e.g. a # cdf value self.neg_threshold = neg_threshold self.transformed_neg_threshold = transformed_neg_threshold self.pos_threshold = pos_threshold self.transformed_pos_threshold = transformed_pos_threshold self.val_transformer = val_transformer def save_hdf5(self, grp): grp.attrs["neg_threshold"] = self.neg_threshold grp.attrs["transformed_neg_threshold"] = self.transformed_neg_threshold grp.attrs["pos_threshold"] = self.pos_threshold grp.attrs["transformed_pos_threshold"] = self.transformed_pos_threshold self.val_transformer.save_hdf5(grp.create_group("val_transformer")) @classmethod def from_hdf5(cls, grp): neg_threshold = grp.attrs['neg_threshold'] transformed_neg_threshold = grp.attrs['transformed_neg_threshold'] pos_threshold = grp.attrs['pos_threshold'] transformed_pos_threshold = grp.attrs['transformed_pos_threshold'] val_transformer = AbstractValTransformer.from_hdf5( grp["val_transformer"]) return cls(neg_threshold=neg_threshold, transformed_neg_threshold=transformed_neg_threshold, pos_threshold=pos_threshold, transformed_pos_threshold=transformed_pos_threshold, val_transformer=val_transformer) class AbstractCoordProducer(object): def __call__(self): raise NotImplementedError() @classmethod def from_hdf5(cls, grp): the_class = eval(grp.attrs["class"]) return the_class.from_hdf5(grp) class SeqletCoordsFWAP(SeqletCoordinates): """ Coordinates for the FixedWindowAroundChunks CoordProducer """ def __init__(self, example_idx, start, end, score): self.score = score super(SeqletCoordsFWAP, self).__init__( example_idx=example_idx, start=start, end=end, is_revcomp=False) class CoordProducerResults(object): def __init__(self, coords, tnt_results): self.coords = coords self.tnt_results = tnt_results @classmethod def from_hdf5(cls, grp): coord_strings = util.load_string_list(dset_name="coords", grp=grp) coords = [SeqletCoordinates.from_string(x) for x in coord_strings] tnt_results = TransformAndThresholdResults.from_hdf5( grp["tnt_results"]) return CoordProducerResults(coords=coords, tnt_results=tnt_results) def save_hdf5(self, grp): util.save_string_list( string_list=[str(x) for x in self.coords], dset_name="coords", grp=grp) self.tnt_results.save_hdf5( grp=grp.create_group("tnt_results")) def get_simple_window_sum_function(window_size): def window_sum_function(arrs): to_return = [] for arr in arrs: cumsum = np.cumsum(arr) cumsum = np.array([0]+list(cumsum)) to_return.append(cumsum[window_size:]-cumsum[:-window_size]) return to_return return window_sum_function class GenerateNullDist(object): def __call__(self, score_track): raise NotImplementedError() class TakeSign(GenerateNullDist): @classmethod def from_hdf5(cls, grp): raise NotImplementedError() def save_hdf(cls, grp): raise NotImplementedError() def __call__(self, score_track): null_tracks = [np.sign(x) for x in score_track] return null_tracks class TakeAbs(GenerateNullDist): @classmethod def from_hdf5(cls, grp): raise NotImplementedError() def save_hdf(cls, grp): raise NotImplementedError() def __call__(self, score_track): null_tracks = [np.abs(x) for x in score_track] return null_tracks class LaplaceNullDist(GenerateNullDist): def __init__(self, num_to_samp, verbose=True, percentiles_to_use=[5*(x+1) for x in range(19)], random_seed=1234): self.num_to_samp = num_to_samp self.verbose = verbose self.percentiles_to_use = np.array(percentiles_to_use) self.random_seed = random_seed self.rng = np.random.RandomState() @classmethod def from_hdf5(cls, grp): num_to_samp = grp.attrs["num_to_samp"] verbose = grp.attrs["verbose"] percentiles_to_use = np.array(grp["percentiles_to_use"][:]) return cls(num_to_samp=num_to_samp, verbose=verbose) def save_hdf5(self, grp): grp.attrs["class"] = type(self).__name__ grp.attrs["num_to_samp"] = self.num_to_samp grp.attrs["verbose"] = self.verbose grp.create_dataset('percentiles_to_use', data=self.percentiles_to_use) def __call__(self, score_track, windowsize, original_summed_score_track): #original_summed_score_track is supplied to avoid recomputing it window_sum_function = get_simple_window_sum_function(windowsize) if (original_summed_score_track is not None): original_summed_score_track = window_sum_function(arrs=score_track) values = np.concatenate(original_summed_score_track, axis=0) # first estimate mu, using two level histogram to get to 1e-6 hist1, bin_edges1 = np.histogram(values, bins=1000) peak1 = np.argmax(hist1) l_edge = bin_edges1[peak1] r_edge = bin_edges1[peak1+1] top_values = values[ (l_edge < values) & (values < r_edge) ] hist2, bin_edges2 = np.histogram(top_values, bins=1000) peak2 = np.argmax(hist2) l_edge = bin_edges2[peak2] r_edge = bin_edges2[peak2+1] mu = (l_edge + r_edge) / 2 if (self.verbose): print("peak(mu)=", mu) pos_values = [x for x in values if x >= mu] neg_values = [x for x in values if x <= mu] #for an exponential distribution: # cdf = 1 - exp(-lambda*x) # exp(-lambda*x) = 1-cdf # -lambda*x = log(1-cdf) # lambda = -log(1-cdf)/x # x = -log(1-cdf)/lambda #Take the most aggressive lambda over all percentiles pos_laplace_lambda = np.max( -np.log(1-(self.percentiles_to_use/100.0))/ (np.percentile(a=pos_values, q=self.percentiles_to_use)-mu)) neg_laplace_lambda = np.max( -np.log(1-(self.percentiles_to_use/100.0))/ (np.abs(np.percentile(a=neg_values, q=100-self.percentiles_to_use)-mu))) self.rng.seed(self.random_seed) prob_pos = float(len(pos_values))/(len(pos_values)+len(neg_values)) sampled_vals = [] for i in range(self.num_to_samp): sign = 1 if (self.rng.uniform() < prob_pos) else -1 if (sign == 1): sampled_cdf = self.rng.uniform() val = -
np.log(1-sampled_cdf)
numpy.log
from functools import partial from warnings import warn import numpy as np from numpy.polynomial.legendre import leggauss from scipy.special import erf, beta as beta_fn, gammaln from scipy.linalg import solve_triangular from numba import njit from .sys_utilities import hash_array def sub2ind(sizes, multi_index): r""" Map a d-dimensional index to the scalar index of the equivalent flat 1D array Examples -------- .. math:: \begin{bmatrix} 0,0 & 0,1 & 0,2\\ 1,0 & 1,1 & 1,2\\ 2,0 & 2,1 & 2,2 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 3 & 6\\ 1 & 4 & 7\\ 2 & 5 & 8 \end{bmatrix} >>> from pyapprox.utilities import sub2ind >>> sizes = [3,3] >>> ind = sub2ind(sizes,[1,0]) >>> print(ind) 1 Parameters ---------- sizes : integer The number of elems in each dimension. For a 2D index sizes = [numRows, numCols] multi_index : np.ndarray (len(sizes)) The d-dimensional index Returns ------- scalar_index : integer The scalar index See Also -------- pyapprox.utilities.sub2ind """ num_sets = len(sizes) scalar_index = 0 shift = 1 for ii in range(num_sets): scalar_index += shift * multi_index[ii] shift *= sizes[ii] return scalar_index def ind2sub(sizes, scalar_index, num_elems): r""" Map a scalar index of a flat 1D array to the equivalent d-dimensional index Examples -------- .. math:: \begin{bmatrix} 0 & 3 & 6\\ 1 & 4 & 7\\ 2 & 5 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 0,0 & 0,1 & 0,2\\ 1,0 & 1,1 & 1,2\\ 2,0 & 2,1 & 2,2 \end{bmatrix} >>> from pyapprox.utilities import ind2sub >>> sizes = [3,3] >>> sub = ind2sub(sizes,1,9) >>> print(sub) [1 0] Parameters ---------- sizes : integer The number of elems in each dimension. For a 2D index sizes = [numRows, numCols] scalar_index : integer The scalar index num_elems : integer The total number of elements in the d-dimensional matrix Returns ------- multi_index : np.ndarray (len(sizes)) The d-dimensional index See Also -------- pyapprox.utilities.sub2ind """ denom = num_elems num_sets = len(sizes) multi_index = np.empty((num_sets), dtype=int) for ii in range(num_sets-1, -1, -1): denom /= sizes[ii] multi_index[ii] = scalar_index / denom scalar_index = scalar_index % denom return multi_index def cartesian_product(input_sets, elem_size=1): r""" Compute the cartesian product of an arbitray number of sets. The sets can consist of numbers or themselves be lists or vectors. All the lists or vectors of a given set must have the same number of entries (elem_size). However each set can have a different number of scalars, lists, or vectors. Parameters ---------- input_sets The sets to be used in the cartesian product. elem_size : integer The size of the vectors within each set. Returns ------- result : np.ndarray (num_sets*elem_size, num_elems) The cartesian product. num_elems = np.prod(sizes)/elem_size, where sizes[ii] = len(input_sets[ii]), ii=0,..,num_sets-1. result.dtype will be set to the first entry of the first input_set """ import itertools out = [] # ::-1 reverse order to be backwards compatiable with old # function below for r in itertools.product(*input_sets[::-1]): out.append(r) out = np.asarray(out).T[::-1, :] return out try: from pyapprox.cython.utilities import cartesian_product_pyx # # fused type does not work for np.in32, np.float32, np.int64 # # so envoke cython cast # if np.issubdtype(input_sets[0][0],np.signedinteger): # return cartesian_product_pyx(input_sets,1,elem_size) # if np.issubdtype(input_sets[0][0],np.floating): # return cartesian_product_pyx(input_sets,1.,elem_size) # else: # return cartesian_product_pyx( # input_sets,input_sets[0][0],elem_size) # always convert to float then cast back cast_input_sets = [np.asarray(s, dtype=float) for s in input_sets] out = cartesian_product_pyx(cast_input_sets, 1., elem_size) out = np.asarray(out, dtype=input_sets[0].dtype) return out except: print('cartesian_product extension failed') num_elems = 1 num_sets = len(input_sets) sizes = np.empty((num_sets), dtype=int) for ii in range(num_sets): sizes[ii] = input_sets[ii].shape[0]/elem_size num_elems *= sizes[ii] # try: # from pyapprox.weave import c_cartesian_product # # note c_cartesian_product takes_num_elems as last arg and cython # # takes elem_size # return c_cartesian_product(input_sets, elem_size, sizes, num_elems) # except: # print ('cartesian_product extension failed') result = np.empty( (num_sets*elem_size, num_elems), dtype=type(input_sets[0][0])) for ii in range(num_elems): multi_index = ind2sub(sizes, ii, num_elems) for jj in range(num_sets): for kk in range(elem_size): result[jj*elem_size+kk, ii] =\ input_sets[jj][multi_index[jj]*elem_size+kk] return result def outer_product(input_sets): r""" Construct the outer product of an arbitary number of sets. Examples -------- .. math:: \{1,2\}\times\{3,4\}=\{1\times3, 2\times3, 1\times4, 2\times4\} = \{3, 6, 4, 8\} Parameters ---------- input_sets The sets to be used in the outer product Returns ------- result : np.ndarray(np.prod(sizes)) The outer product of the sets. result.dtype will be set to the first entry of the first input_set """ out = cartesian_product(input_sets) return np.prod(out, axis=0) try: from pyapprox.cython.utilities import outer_product_pyx # fused type does not work for np.in32, np.float32, np.int64 # so envoke cython cast if np.issubdtype(input_sets[0][0], np.signedinteger): return outer_product_pyx(input_sets, 1) if np.issubdtype(input_sets[0][0], np.floating): return outer_product_pyx(input_sets, 1.) else: return outer_product_pyx(input_sets, input_sets[0][0]) except ImportError: print('outer_product extension failed') num_elems = 1 num_sets = len(input_sets) sizes = np.empty((num_sets), dtype=int) for ii in range(num_sets): sizes[ii] = len(input_sets[ii]) num_elems *= sizes[ii] # try: # from pyapprox.weave import c_outer_product # return c_outer_product(input_sets) # except: # print ('outer_product extension failed') result = np.empty((num_elems), dtype=type(input_sets[0][0])) for ii in range(num_elems): result[ii] = 1.0 multi_index = ind2sub(sizes, ii, num_elems) for jj in range(num_sets): result[ii] *= input_sets[jj][multi_index[jj]] return result def unique_matrix_rows(matrix): unique_rows = [] unique_rows_set = set() for ii in range(matrix.shape[0]): key = hash_array(matrix[ii, :]) if key not in unique_rows_set: unique_rows_set.add(key) unique_rows.append(matrix[ii, :]) return np.asarray(unique_rows) def remove_common_rows(matrices): num_cols = matrices[0].shape[1] unique_rows_dict = dict() for ii in range(len(matrices)): matrix = matrices[ii] assert matrix.shape[1] == num_cols for jj in range(matrix.shape[0]): key = hash_array(matrix[jj, :]) if key not in unique_rows_dict: unique_rows_dict[key] = (ii, jj) elif unique_rows_dict[key][0] != ii: del unique_rows_dict[key] # else: # entry is a duplicate entry in the current. Allow this to # occur but only add one of the duplicates to the unique rows dict unique_rows = [] for key in list(unique_rows_dict.keys()): ii, jj = unique_rows_dict[key] unique_rows.append(matrices[ii][jj, :]) return np.asarray(unique_rows) def allclose_unsorted_matrix_rows(matrix1, matrix2): if matrix1.shape != matrix2.shape: return False matrix1_dict = dict() for ii in range(matrix1.shape[0]): key = hash_array(matrix1[ii, :]) # allow duplicates of rows if key not in matrix1_dict: matrix1_dict[key] = 0 else: matrix1_dict[key] += 1 matrix2_dict = dict() for ii in range(matrix2.shape[0]): key = hash_array(matrix2[ii, :]) # allow duplicates of rows if key not in matrix2_dict: matrix2_dict[key] = 0 else: matrix2_dict[key] += 1 if len(list(matrix1_dict.keys())) != len(list(matrix2_dict.keys())): return False for key in list(matrix1_dict.keys()): if key not in matrix2_dict: return False if matrix2_dict[key] != matrix1_dict[key]: return False return True def get_2d_cartesian_grid(num_pts_1d, ranges): r""" Get a 2d tensor grid with equidistant points. Parameters ---------- num_pts_1d : integer The number of points in each dimension ranges : np.ndarray (4) The lower and upper bound of each dimension [lb_1,ub_1,lb_2,ub_2] Returns ------- grid : np.ndarray (2,num_pts_1d**2) The points in the tensor product grid. [x1,x2,...x1,x2...] [y1,y1,...y2,y2...] """ # from math_tools_cpp import cartesian_product_double as cartesian_product from PyDakota.math_tools import cartesian_product x1 = np.linspace(ranges[0], ranges[1], num_pts_1d) x2 = np.linspace(ranges[2], ranges[3], num_pts_1d) abscissa_1d = [] abscissa_1d.append(x1) abscissa_1d.append(x2) grid = cartesian_product(abscissa_1d, 1) return grid def invert_permutation_vector(p, dtype=int): r""" Returns the "inverse" of a permutation vector. I.e., returns the permutation vector that performs the inverse of the original permutation operation. Parameters ---------- p: np.ndarray Permutation vector dtype: type Data type passed to np.ndarray constructor Returns ------- pt: np.ndarray Permutation vector that accomplishes the inverse of the permutation p. """ N =
np.max(p)
numpy.max
import pytest import numpy as np from rio_color.utils import to_math_type from rio_color.operations import ( sigmoidal, gamma, saturation, simple_atmo, parse_operations, simple_atmo_opstring, ) @pytest.fixture def arr(): return to_math_type( np.array( [ # red [[1, 2], [3, 4]], # green [[5, 6], [7, 8]], # blue [[9, 10], [11, 12]], ] ).astype("uint8") * 10 ) @pytest.fixture def arr_rgba(): return to_math_type( np.array( [ [[1, 2], [3, 4]], # red [[5, 6], [7, 8]], # green [[9, 10], [11, 12]], # blue [[0, 0], [25.5, 25.5]], # alpha ] ).astype("uint8") * 10 ) def test_sigmoidal(arr): x = sigmoidal(arr, 10, 0.15) assert x[0][0][0] - 0.08056034 < 1e-4 # contrast < 0 x = sigmoidal(arr, -10, 0.15) assert x[0][0][0] - 0.020186627 < 1e-4 # bias zero, make it a tiny epsilon x = sigmoidal(arr, 10, 0) assert x[0][0][0] - 0.19362122 < 1e-4 # contrast zzero, arrays are equal x = sigmoidal(arr, 0, 0.15) assert np.array_equal(x, arr) # output contains NaN with pytest.raises(ValueError): x = sigmoidal(arr, 100, -0.5) # output is not within the range of 0..1 with pytest.raises(ValueError): arr[0][0][0] = 1.0 arr[0][0][1] = 2.0 x = sigmoidal(arr, 10, -0.5) def test_gamma(arr): x = gamma(arr, 0.95) assert x[0][0][0] - 0.033069782 < 1e-4 # output is not within the range of 0..1 with pytest.raises(ValueError): x = gamma(arr, -2.0) # test output contains inf and is out of range 0..1 with pytest.raises(ValueError): x = gamma(arr, -0.001) # test output contains NaN with pytest.raises(ValueError): x = gamma(arr, np.nan) with pytest.raises(ValueError): x = gamma(arr * -1, 2.2) def test_sat(arr): x = saturation(arr, 50) assert x[0][0][0] - 0.15860622 < 1e-4 def test_sat_rgba_direct(arr_rgba): # Anything but 3-band RGB will fail with pytest.raises(ValueError): saturation(arr_rgba, 50) with pytest.raises(ValueError): saturation(arr_rgba[0:2], 50) def test_atmo(arr): x = simple_atmo(arr, 0.03, 10, 0.15) assert x[0][0][0] - 0.080560341 < 1e-4 # Gamma output is not within the range 0..1 with pytest.raises(ValueError): x = simple_atmo(arr, 2.0, 10, 0.15) # Sigmoidal contrast output contains NaN with pytest.raises(ValueError): x = simple_atmo(arr, 0.03, 1000, -0.15) def test_parse_gamma(arr): f = parse_operations("gamma rgb 0.95")[0] assert np.array_equal(f(arr), gamma(arr, 0.95)) def test_parse_sigmoidal(arr): f = parse_operations("sigmoidal rgb 5 0.53")[0] assert np.array_equal(f(arr), sigmoidal(arr, contrast=5, bias=0.53)) def test_parse_multi(arr): f1, f2 = parse_operations("gamma rgb 0.95 sigmoidal rgb 35 0.13") assert np.array_equal( f2(f1(arr)), sigmoidal(gamma(arr, g=0.95), contrast=35, bias=0.13) ) def test_parse_comma(arr): # Commas are optional whitespace, treated like empty string f1, f2 = parse_operations("gamma r,g,b 0.95, sigmoidal r,g,b 35 0.13") assert np.array_equal( f2(f1(arr)), sigmoidal(gamma(arr, g=0.95), contrast=35, bias=0.13) ) def test_parse_saturation_rgb(arr): f = parse_operations("saturation 1.25")[0] assert np.allclose(f(arr), saturation(arr, 1.25)) def test_parse_rgba(arr, arr_rgba): f = parse_operations("gamma rg 0.95")[0] rgb = f(arr) assert rgb.shape[0] == 3 rgba = f(arr_rgba) assert rgba.shape[0] == 4 # rgb bands are same assert np.allclose(rgba[0:3], rgb[0:3]) # alpha unaltered assert
np.array_equal(rgba[3], arr_rgba[3])
numpy.array_equal
import sys import time import yaml import math import signal import datetime import threading import traceback import numpy as np from cvxopt import matrix, solvers #from scipy.spatial import ConvexHull import matplotlib.patches as ptc import matplotlib.pyplot as plt import matplotlib.animation as animation # from actions import * COLORS = [(0.0, 0.0, 0.0), (0.99, 0.0, 0.0), (0.0, 0.99, 0.0), (0.0, 0.0, 0.99), (0.99, 0.99, 0.0), (0.99, 0.0, 0.99), (0.0, 0.99, 0.99)] global_boundary = [] xlim = [] ylim = [] test_type = 0 world = None def is_in_space(p, tol): global xlim, ylim return xlim[0] - tol <= p[0] <= xlim[1] + tol and ylim[0] - tol <= p[1] <= ylim[1] + tol def is_in_bounding_polygon(p, tol): global global_boundary pass def angle_in_2pi(v): angle =
np.arctan2(v[1], v[0])
numpy.arctan2
# Dash dependencies import import dash import dash_core_components as dcc import dash_html_components as html import dash_uploader as du import uuid import pathlib import dash_bootstrap_components as dbc import plotly.figure_factory as ff from dash.dependencies import Input, Output,State import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots import pandas as pd import numpy as np px.defaults.template = "ggplot2" # End Dash dependencies import # Data preprocessing from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from imblearn.over_sampling import SMOTE # ML Algorithm from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC # Model evaluation from sklearn.metrics import accuracy_score, precision_score, recall_score,f1_score,confusion_matrix,roc_curve,roc_auc_score # Save model import os import io import shutil import joblib from app import app, server PATH=pathlib.Path(__file__).parent DATA_PATH=PATH.joinpath("../datasets").resolve() TELCO_CHURN_FILE_UPLOADS_DATA_PATH=PATH.joinpath("../datasets/telco_churn_file_uploads").resolve() du.configure_upload(app, TELCO_CHURN_FILE_UPLOADS_DATA_PATH, use_upload_id=False) TELCO_CHURN_MODEL_DATA_PATH=PATH.joinpath("../Notebooks/Churn Models").resolve() feat_importance_df=pd.read_csv(DATA_PATH.joinpath("feature-importance.csv")) df=pd.read_csv(DATA_PATH.joinpath("telco-customer-churn.csv")) telco_churm_metrics_df=pd.read_json(TELCO_CHURN_MODEL_DATA_PATH.joinpath("model_metrics.json"), orient ='split', compression = 'infer') joblib_model = joblib.load(TELCO_CHURN_MODEL_DATA_PATH.joinpath("best_gridsearch_model_pipeline.pkl")) df['TotalCharges']=pd.to_numeric(df['TotalCharges'], errors='coerce') # Revenue distribution def distribution_by_revenue(df): totalcharges_attrition_df=df.groupby( ["Churn"], as_index=False )["TotalCharges"].sum() totalcharges_attrition_df=totalcharges_attrition_df.sort_values(by=['TotalCharges'],ascending=True) totalcharges_attrition_df.columns=['Churn','Revenue'] colors = ['crimson','skyblue'] totalcharges_attrition_df=totalcharges_attrition_df.round(0) fig=px.bar(totalcharges_attrition_df,x='Churn',y='Revenue',color='Churn',text='Revenue',color_discrete_sequence=colors, title='Churn by Revenue') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.40),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) return fig # churn distribution def churn_distribution(df): attrition_df=df.groupby(["Churn"], as_index=False )["customerID"].count() colors = ['skyblue','crimson'] fig = go.Figure(data=[go.Pie(labels=attrition_df['Churn'].tolist(), values=attrition_df['customerID'].tolist(), hole=.3)]) fig.update_layout(title={'text': 'Customer Churn Distribution','y':0.9,'x':0.5, 'xanchor': 'center','yanchor': 'top'}, showlegend=False,autosize=True,annotations=[dict(text='Attrition', font_size=20, showarrow=False)],margin=dict(t=100,b=0,l=0,r=0),height=350,colorway=colors) return fig # gender_attrition_df def churn_by_gender(df): gender_attrition_df=df.groupby(["Churn","gender"], as_index=False )["customerID"].count() gender_attrition_df.columns=['Churn','Gender','Customers'] colors = ['skyblue','crimson'] fig=px.bar(gender_attrition_df,x='Gender',y='Customers',color='Churn',text='Customers',color_discrete_sequence=colors, title='Churn by Gender') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.46),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) #use barmode='stack' when stacking, return fig def churn_by_contract(df): contract_attrition_df=df.groupby(["Churn","Contract"], as_index=False )["customerID"].count() contract_base_df=df.groupby(["Contract"], as_index=False )["customerID"].count() contract_base_df['Churn']='Customer Base' contract_attrition_df=contract_attrition_df.append(contract_base_df, ignore_index = True) contract_attrition_df.columns=['Churn','Contract','Customers'] contract_attrition_df=contract_attrition_df.sort_values(by=['Contract', 'Customers'],ascending=True) colors = ['crimson','skyblue','teal'] fig=px.bar(contract_attrition_df,x='Contract',y='Customers',color='Churn',text='Customers',color_discrete_sequence=colors,barmode="group", title='Churn by Customer Contract Type') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.50),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) #use barmode='stack' when stacking, return fig def churn_by_monthlycharges(df): churn_dist = df[df['Churn']=='Yes']['MonthlyCharges'] no_churn_dist = df[df['Churn']=='No']['MonthlyCharges'] group_labels = ['No Churn', 'Churn Customers'] colors = ['teal','crimson'] fig = ff.create_distplot([no_churn_dist,churn_dist], group_labels, bin_size=[1, .10], curve_type='kde', show_rug=False, colors=colors)# override default 'kde' or 'normal' fig.update_layout(title={'text': 'Customer Churn Distribution by Monthly Charges','y':0.9,'x':0.5, 'xanchor': 'center','yanchor': 'top'}, legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.50),autosize=True,margin=dict(t=50,b=0,l=0,r=0)) #use barmode='stack' when stacking, return fig def tenure_charges_correlation(df): df_correlation=df[['tenure','MonthlyCharges','TotalCharges']].corr() fig=px.imshow(df_correlation,title='Tenure, Monthly and Total Charges Correlation') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.40),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) return fig def churn_by_citizenship(df): citizenship_attrition_df=df.groupby( [ "Churn","SeniorCitizen"], as_index=False )["customerID"].count() citizenship_base_df=df.groupby(["SeniorCitizen"], as_index=False )["customerID"].count() citizenship_base_df['Churn']='Customer Base' citizenship_attrition_df=citizenship_attrition_df.append(citizenship_base_df, ignore_index = True) citizenship_attrition_df.columns=['Churn','Citizenship','Customers'] citizenship_attrition_df=citizenship_attrition_df.sort_values(by=['Citizenship', 'Customers'],ascending=False) colors = ['teal','skyblue','crimson'] fig=px.bar(citizenship_attrition_df,x='Customers',y=['Citizenship'],color='Churn',text='Customers',orientation="h",color_discrete_sequence=colors,barmode="group", title='Churn by Citizenship') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.50),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) return fig def churn_by_tenure(df): tenure_attrition_df=df.groupby( [ "Churn","tenure"], as_index=False )["customerID"].count() tenure_attrition_df.columns=['Churn','Tenure','Customers'] colors = ['skyblue','crimson'] tenure_attrition_df=tenure_attrition_df.round(0) fig = px.treemap(tenure_attrition_df, path=['Churn', 'Tenure'], values='Customers',color_discrete_sequence=colors, title='Churn by Customer Tenure') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.50),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) return fig def data_summary(df): data_summary_df=pd.DataFrame(df.describe()) data_summary_df.reset_index(level=0, inplace=True) data_summary_df=data_summary_df.drop(columns='SeniorCitizen') data_summary_df.columns=['Metric','Tenure','MonthlyCharges','TotalCharges'] fig = go.Figure(data=[go.Table(header=dict(values=list(data_summary_df.columns),fill_color='paleturquoise', align='left'),cells=dict(values=[data_summary_df.Metric, data_summary_df.Tenure, data_summary_df.MonthlyCharges, data_summary_df.TotalCharges], fill_color='lavender',align='left'))]) fig.update_layout(showlegend=False,autosize=True,margin=dict(t=0,b=0,l=0,r=0),height=350) return fig def churn_by_payment_method(df): PaymentMethod_attrition_df=df.groupby( [ "Churn","PaymentMethod"], as_index=False )["customerID"].count() PaymentMethod_base_df=df.groupby(["PaymentMethod"], as_index=False )["customerID"].count() PaymentMethod_base_df['Churn']='Customer Base' PaymentMethod_attrition_df=PaymentMethod_attrition_df.append(PaymentMethod_base_df, ignore_index = True) PaymentMethod_attrition_df.columns=['Churn','PaymentMethod','Customers'] PaymentMethod_attrition_df=PaymentMethod_attrition_df.sort_values(by=['PaymentMethod', 'Customers'],ascending=True) colors = ['crimson','skyblue','teal'] fig=px.bar(PaymentMethod_attrition_df,x='PaymentMethod',y='Customers',color='Churn',text='Customers',color_discrete_sequence=colors,barmode="group", title='Churn by Payment Method') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.40),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) #use barmode='stack' when stacking, return fig def churn_by_techsupport(df): techsupport_attrition_df=df.groupby( [ "Churn","TechSupport"], as_index=False )["customerID"].count() techsupport_base_df=df.groupby(["TechSupport"], as_index=False )["customerID"].count() techsupport_base_df['Churn']='Customer Base' techsupport_attrition_df=techsupport_attrition_df.append(techsupport_base_df, ignore_index = True) techsupport_attrition_df.columns=['Churn','TechSupport','Customers'] techsupport_attrition_df=techsupport_attrition_df.sort_values(by=['TechSupport', 'Customers'],ascending=True) colors = ['crimson','skyblue','teal'] fig=px.bar(techsupport_attrition_df,x='TechSupport',y='Customers',color='Churn',text='Customers',color_discrete_sequence=colors,barmode="group", title='Churn by Tech Support') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.50),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) #use barmode='stack' when stacking, return fig ####3 MODELING #### def feature_correlation(df): df['TotalCharges']=df['TotalCharges'].fillna(df['TotalCharges'].mean()) # Impute TotalCharges null values with mean TotalCharges df['Churn'].replace(to_replace='Yes', value=1, inplace=True) df['Churn'].replace(to_replace='No', value=0, inplace=True) df['SeniorCitizen'] = df['SeniorCitizen'].astype(str) # convert SeniorCitizen column to string data_columns=['gender','Partner','Dependents','PhoneService','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection', 'TechSupport', 'StreamingTV','StreamingMovies','Contract', 'PaperlessBilling', 'PaymentMethod','SeniorCitizen'] df=pd.get_dummies(df,columns=data_columns) churn_corr_df=pd.DataFrame(df.corr()['Churn']) churn_corr_df.reset_index(level=0, inplace=True) churn_corr_df.columns=['Features','Correlation'] churn_corr_df["Correlation Type"] = np.where(churn_corr_df["Correlation"]<0, 'negative', 'positive') churn_corr_df=churn_corr_df.sort_values(by=['Correlation'],ascending=False) churn_corr_df=churn_corr_df[~churn_corr_df['Features'].isin(['Churn'])] colors = ['skyblue','orange'] fig=px.bar(churn_corr_df,x='Features',y='Correlation',color='Correlation Type',text='Correlation',color_discrete_sequence=colors, title='Features Correlation') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.50),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) return fig def feature_importance(feat_importance_df): feat_importance_df=feat_importance_df.sort_values(by=['Importance'],ascending=False) fig=px.bar(feat_importance_df,x='Features',y='Importance',text='Importance',color='Importance',height=650,title='Random Forest Feature Importance') fig.update_layout(legend=dict(yanchor="top",y=0.99,xanchor="left",x=0.01),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) return fig def telco_churn_model_metrics_summary(telco_churm_metrics_df): unpivoted_metric_df=telco_churm_metrics_df[telco_churm_metrics_df['Type']=='Metric'][['Model','Accuracy','Precision','Recall','F_1_Score','AUC_Score']] unpivoted_metric_df=unpivoted_metric_df.melt(id_vars=['Model'], var_name='Metrics', value_name='Score').sort_values(by=['Score'],ascending=True) colors = ['crimson','skyblue','teal','orange'] fig=px.bar(unpivoted_metric_df,x='Metrics',y='Score',color='Model',text='Score',color_discrete_sequence=colors,barmode="group",title='Model Perforance Metrics') fig.update_layout(legend=dict(yanchor="top",y=0.95,xanchor="left",x=0.01),autosize=True,margin=dict(t=30,b=0,l=0,r=0)) #use barmode='stack' when stacking, return fig def uac_roc(telco_churm_metrics_df): uac_roc_df=telco_churm_metrics_df[telco_churm_metrics_df['Type']=='ROC'][['Model','Confusion_Matrix_ROC']] uac_roc_df=uac_roc_df.sort_values(by=['Model'],ascending=True) uac_roc_df=uac_roc_df.set_index('Model').transpose() uac_roc_fig = go.Figure() uac_roc_fig.add_trace(go.Scatter(x=uac_roc_df['Logistic Regression FPR'][0], y=uac_roc_df['Logistic Regression TPR'][0],name='Logistic Regression', line = dict(color='teal', width=2),line_shape='spline')) uac_roc_fig.add_trace(go.Scatter(x=uac_roc_df['Random Forest FPR'][0], y=uac_roc_df['Random Forest TPR'][0],name='Random Forest', line = dict(color='royalblue', width=2),line_shape='spline')) uac_roc_fig.add_trace(go.Scatter(x=uac_roc_df['Support Vector Machine FPR'][0], y=uac_roc_df['Support Vector Machine TPR'][0],name='Support Vector Machine', line = dict(color='orange', width=2),line_shape='spline')) uac_roc_fig.add_trace(go.Scatter(x=
np.array([0., 1.])
numpy.array
""" Project: RadarBook File: back_projection_backhoe_example.py Created by: <NAME> On: 2/20/2019 Created with: PyCharm Copyright (C) 2019 Artech House (<EMAIL>) This file is part of Introduction to Radar Using Python and MATLAB and can not be copied and/or distributed without the express permission of Artech House. """ import sys from Chapter10.ui.BackProjectionBH_ui import Ui_MainWindow from numpy import linspace, meshgrid, array, radians, amax, ones, squeeze, max, min from scipy.signal.windows import hanning, hamming from Libs.sar import backprojection from scipy.io import loadmat from mpl_toolkits.mplot3d import Axes3D from PyQt5.QtWidgets import QApplication, QMainWindow from matplotlib.backends.qt_compat import QtCore from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure class BackProjection(QMainWindow, Ui_MainWindow): def __init__(self): super(self.__class__, self).__init__() self.setupUi(self) # Connect to the input boxes, when the user presses enter the form updates self.x_span.returnPressed.connect(self._update_canvas) self.y_span.returnPressed.connect(self._update_canvas) self.z_span.returnPressed.connect(self._update_canvas) self.nx_ny_nz.returnPressed.connect(self._update_canvas) self.az_start_end.returnPressed.connect(self._update_canvas) self.el_start_end.returnPressed.connect(self._update_canvas) self.dynamic_range.returnPressed.connect(self._update_image_only) self.polarization.currentIndexChanged.connect(self._update_canvas) self.window_type.currentIndexChanged.connect(self._update_canvas) # Set up a figure for the plotting canvas fig = Figure() self.fig = fig self.axes1 = fig.add_subplot(111, projection='3d', facecolor='white') self.my_canvas = FigureCanvas(fig) self.axes1.mouse_init() # Add the canvas to the vertical layout self.verticalLayout.addWidget(self.my_canvas) self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(self.my_canvas, self)) # Update the canvas for the first display self._update_canvas() def _update_canvas(self): """ Update the figure when the user changes and input value. :return: """ # Get the parameters from the form x_span = float(self.x_span.text()) y_span = float(self.y_span.text()) z_span = float(self.z_span.text()) nx_ny_nz = self.nx_ny_nz.text().split(',') self.nx = int(nx_ny_nz[0]) self.ny = int(nx_ny_nz[1]) self.nz = int(nx_ny_nz[2]) az_start_end = self.az_start_end.text().split(',') az_start = int(az_start_end[0]) az_end = int(az_start_end[1]) el_start_end = self.el_start_end.text().split(',') el_start = int(el_start_end[0]) el_end = int(el_start_end[1]) # Get the selected window from the form window_type = self.window_type.currentText() # Get the polarization from the form polarization = self.polarization.currentText() x = linspace(-0.5 * x_span, 0.5 * x_span, self.nx) y = linspace(-0.5 * y_span, 0.5 * y_span, self.ny) z = linspace(-0.5 * z_span, 0.5 * z_span, self.nz) self.x_image, self.y_image, self.z_image = meshgrid(x, y, z, indexing='ij') fft_length = 8192 # el 18 - 43 (-1) # az 66 - 115 (-1) # Initialize the image self.bp = 0 # Loop over the azimuth and elevation angles for el in range(el_start, el_end + 1): for az in range(az_start, az_end + 1): print('El {0:d} Az {1:d}'.format(el, az)) filename = '../../Backhoe_CP/3D_Challenge_Problem/3D_K_Space_Data/backhoe_el{0:03d}_az{1:03d}.mat'.format(el, az) b = loadmat(filename) # build a list of keys and values for each entry in the structure vals = b['data'][0, 0] # <-- set the array you want to access. keys = b['data'][0, 0].dtype.descr # Assemble the keys and values into variables with the same name as that used in MATLAB for i in range(len(keys)): key = keys[i][0] val =
squeeze(vals[key])
numpy.squeeze
from lenet5 import * import numpy as np import matplotlib.pyplot as plt def get_data(dim=100, load=True): """ :param dim: images per worker :param load: :return: data_workers, y, lenet5, right_pred_data, labels, test_x, test_y. Where right_pred_data is the variable of lenet5 correctly classified data. """ # ------------------- DATA preparation ------------------- _, (test_x, test_y) = load_MNIST() path = '../data/lenet5' lenet5 = LeNet5(path=path, load=load) lab = lenet5.predict(test_x) indexes = lab == test_y right_pred_data = test_x[indexes] right_pred_labels = test_y[indexes] labels_number = 10 data_per_classes = [] for label_class in range(0, labels_number): data_per_classes.append(right_pred_data[right_pred_labels == label_class][:dim]) data_per_classes = np.array(data_per_classes) data_workers = [] step = dim//labels_number for offset in range(0, dim, step): image_worker = [] for c in range(0, labels_number): image_worker.extend(data_per_classes[c, offset:offset+step, :, :, :]) data_workers.append(image_worker) data_workers = np.array(data_workers) y_workers = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) y_workers = np.repeat(y_workers, step) return data_workers, y_workers, lenet5, right_pred_data, right_pred_labels, test_x, test_y def get_image_perturbation(perturbation, title, axis): """ :param perturbation: a numpy perturbation to plot :param title: title to give to the image genarated :return: the plot of the axis and the image """ img = axis.imshow(perturbation.reshape((28, 28))) axis.set_title(title) plt.colorbar(img, ax=axis, fraction=0.03, pad=0.05) return axis, img def plot_perturbation(perturbation, title, file_path=None, figsize=(5,5)): fig, ax = plt.subplots(figsize=figsize) ax, img = get_image_perturbation(perturbation, title, ax) if file_path is not None: plt.savefig(file_path, bbox_inches="tight") plt.show() def get_image_perturbed(perturbation, image_test, title, axis): image = image_test.reshape(28, 28) img_noise = image + perturbation.reshape((28, 28)) img_noise = np.clip(img_noise, 0., 1.) img = axis.imshow(img_noise, cmap='Greys') axis.set_title(title) plt.colorbar(img, ax=axis, fraction=0.03, pad=0.05) return axis, img def plot_perturbed_img(perturbation, image_test, file_path=None, figsize=(5,5)): """ :param perturbation: a numpy perturbation :param image_test: a numpy image :param file_path: :return: """ image = image_test.reshape(28, 28) img_noise = image + perturbation.reshape((28, 28)) img_noise = np.clip(img_noise, 0., 1.) fig, ax = plt.subplots(1, 2, figsize=figsize) a = ax[0].imshow(image, cmap='Greys') b = ax[1].imshow(img_noise, cmap='Greys') ax[0].set_title("Real image") ax[1].set_title("Perturbed image") fig.colorbar(a, ax=ax[0], fraction=0.03, pad=0.05) fig.colorbar(b, ax=ax[1], fraction=0.03, pad=0.05) fig.tight_layout(pad=0.3) if file_path is not None: plt.savefig(file_path, bbox_inches="tight") plt.show() def predict_single_img_perturbation(lenet5, image, delta): """ :param image: Single image to predict :param delta: perturbation :return: predicted class """ image_noise = image + delta.reshape(28, 28, 1) image_noise =
np.clip(image_noise, 0., 1.)
numpy.clip
import numpy as np from scipy.special import gamma import bisect def vTmv(vec, mat=None, vec2=None): """Multiply a vector transpose times a matrix times a vector. @param vec The first vector (will be transposed). @param mat The matrix in the middle. Identity by default. @param vec2 The second vector (will not be transposed.) By default, the same as the vec. @returns Product. Could be a scalar or a matrix depending on whether vec is a row or column vector. """ if len(vec.shape) == 1: vec = np.reshape(vec, [vec.shape[0], 1]) if mat is None: mat = np.eye(len(vec)) if vec2 is None: vec2 = vec return np.dot(vec.T, np.dot(mat, vec2)) def gammad(d, nu_over_2): """D-dimensional gamma function.""" nu = 2.0 * nu_over_2 return np.pi**(d*(d-1.)/4)*np.multiply.reduce([gamma(0.5*(nu+1-i)) for i in range(d)]) def random_wish(dof, S, size=None): dim = S.shape[0] if size is None: x = np.random.multivariate_normal(np.zeros(dim), S, size=dof) return
np.dot(x.T, x)
numpy.dot
# -*- coding: utf-8 -*- """ dicom2nifti @author: abrys """ import dicom2nifti.compressed_dicom as compressed_dicom import os import struct from pydicom.tag import Tag import logging import numpy from dicom2nifti.exceptions import ConversionValidationError, ConversionError import dicom2nifti.settings logger = logging.getLogger(__name__) # Disable false positive numpy errors # pylint: disable=E1101 def read_dicom_directory(dicom_directory, stop_before_pixels=False): """ Read all dicom files in a given directory (stop before pixels) :type stop_before_pixels: bool :type dicom_directory: str :param stop_before_pixels: Should we stop reading before the pixeldata (handy if we only want header info) :param dicom_directory: Directory with dicom data :return: List of dicom objects """ dicom_input = [] for root, _, files in os.walk(dicom_directory): for dicom_file in files: file_path = os.path.join(root, dicom_file) if compressed_dicom.is_dicom_file(file_path): dicom_headers = compressed_dicom.read_file(file_path, defer_size="1 KB", stop_before_pixels=stop_before_pixels, force=dicom2nifti.settings.pydicom_read_force) if is_valid_imaging_dicom(dicom_headers): dicom_input.append(dicom_headers) return dicom_input def is_hitachi(dicom_input): """ Use this function to detect if a dicom series is a hitachi dataset :param dicom_input: directory with dicom files for 1 scan of a dicom_header """ # read dicom header header = dicom_input[0] if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False # check if manufacturer is hitachi if 'HITACHI' not in header.Manufacturer.upper(): return False return True def is_ge(dicom_input): """ Use this function to detect if a dicom series is a GE dataset :param dicom_input: list with dicom objects """ # read dicom header header = dicom_input[0] if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False # check if manufacturer is GE if 'GE MEDICAL SYSTEMS' not in header.Manufacturer.upper(): return False return True def is_philips(dicom_input): """ Use this function to detect if a dicom series is a philips dataset :param dicom_input: directory with dicom files for 1 scan of a dicom_header """ # read dicom header header = dicom_input[0] if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False # check if manufacturer is Philips if 'PHILIPS' not in header.Manufacturer.upper(): return False return True def is_siemens(dicom_input): """ Use this function to detect if a dicom series is a siemens dataset :param dicom_input: directory with dicom files for 1 scan """ # read dicom header header = dicom_input[0] # check if manufacturer is Siemens if 'Manufacturer' not in header or 'Modality' not in header: return False # we try generic conversion in these cases # check if Modality is mr if header.Modality.upper() != 'MR': return False if 'SIEMENS' not in header.Manufacturer.upper(): return False return True def is_multiframe_dicom(dicom_input): """ Use this function to detect if a dicom series is a siemens 4D dataset NOTE: Only the first slice will be checked so you can only provide an already sorted dicom directory (containing one series) :param dicom_input: directory with dicom files for 1 scan """ # read dicom header header = dicom_input[0] if Tag(0x0002, 0x0002) not in header.file_meta: return False if header.file_meta[0x0002, 0x0002].value == '1.2.840.10008.5.1.4.1.1.4.1': return True return False def is_valid_imaging_dicom(dicom_header): """ Function will do some basic checks to see if this is a valid imaging dicom """ # if it is philips and multiframe dicom then we assume it is ok try: if is_philips([dicom_header]): if is_multiframe_dicom([dicom_header]): return True if "SeriesInstanceUID" not in dicom_header: return False if "InstanceNumber" not in dicom_header: return False if "ImageOrientationPatient" not in dicom_header or len(dicom_header.ImageOrientationPatient) < 6: return False if "ImagePositionPatient" not in dicom_header or len(dicom_header.ImagePositionPatient) < 3: return False # for all others if there is image position patient we assume it is ok if Tag(0x0020, 0x0037) not in dicom_header: return False return True except (KeyError, AttributeError): return False def get_volume_pixeldata(sorted_slices): """ the slice and intercept calculation can cause the slices to have different dtypes we should get the correct dtype that can cover all of them :type sorted_slices: list of slices :param sorted_slices: sliced sored in the correct order to create volume """ slices = [] combined_dtype = None for slice_ in sorted_slices: slice_data = _get_slice_pixeldata(slice_) slice_data = slice_data[numpy.newaxis, :, :] slices.append(slice_data) if combined_dtype is None: combined_dtype = slice_data.dtype else: combined_dtype = numpy.promote_types(combined_dtype, slice_data.dtype) # create the new volume with with the correct data vol = numpy.concatenate(slices, axis=0) # Done # if rgb data do separate transpose if len(vol.shape) == 4 and vol.shape[3] == 3: vol = numpy.transpose(vol, (2, 1, 0, 3)) else: vol = numpy.transpose(vol, (2, 1, 0)) return vol def _get_slice_pixeldata(dicom_slice): """ the slice and intercept calculation can cause the slices to have different dtypes we should get the correct dtype that can cover all of them :type dicom_slice: pydicom object :param dicom_slice: slice to get the pixeldata for """ data = dicom_slice.pixel_array # fix overflow issues for signed data where BitsStored is lower than BitsAllocated and PixelReprentation = 1 (signed) # for example a hitachi mri scan can have BitsAllocated 16 but BitsStored is 12 and HighBit 11 if dicom_slice.BitsAllocated != dicom_slice.BitsStored and \ dicom_slice.HighBit == dicom_slice.BitsStored - 1 and \ dicom_slice.PixelRepresentation == 1: if dicom_slice.BitsAllocated == 16: data = data.astype(numpy.int16) # assert that it is a signed type max_value = pow(2, dicom_slice.HighBit) - 1 invert_value = -1 ^ max_value data[data > max_value] = numpy.bitwise_or(data[data > max_value], invert_value) pass return apply_scaling(data, dicom_slice) def _is_float(float_value): """ Check if a number is actually a float :type float_value: int or float :param float_value: number to check :return True if it is not an integer number """ if int(float_value) != float_value: return True def get_numpy_type(dicom_header): """ Make NumPy format code, e.g. "uint16", "int32" etc from two pieces of info: mosaic.PixelRepresentation -- 0 for unsigned, 1 for signed; mosaic.BitsAllocated -- 8, 16, or 32 :param dicom_header: the read dicom file/headers :returns: numpy format string """ format_string = '%sint%d' % (('u', '')[dicom_header.PixelRepresentation], dicom_header.BitsAllocated) try: numpy.dtype(format_string) except TypeError: raise TypeError("Data type not understood by NumPy: format='%s', PixelRepresentation=%d, BitsAllocated=%d" % (format_string, dicom_header.PixelRepresentation, dicom_header.BitsAllocated)) return format_string def get_fd_array_value(tag, count): """ Getters for data that also work with implicit transfersyntax :param count: number of items in the array :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': values = [] for i in range(count): start = i * 8 stop = (i + 1) * 8 values.append(struct.unpack('d', tag.value[start:stop])[0]) return numpy.array(values) return tag.value def get_fd_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.unpack('d', tag.value)[0] return value return tag.value def set_fd_value(tag, value): """ Setters for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.pack('d', value) tag.value = value def get_fl_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.unpack('f', tag.value)[0] return value return tag.value def get_is_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ # data is int formatted as string so convert te string first and cast to int if tag.VR == 'OB' or tag.VR == 'UN': value = int(tag.value.decode("ascii").replace(" ", "")) return value return int(tag.value) def get_ss_value(tag): """ Getters for data that also work with implicit transfersyntax :param tag: the tag to read """ # data is int formatted as string so convert te string first and cast to int if tag.VR == 'OB' or tag.VR == 'UN': value = struct.unpack('h', tag.value)[0] return value return tag.value def set_ss_value(tag, value): """ Setter for data that also work with implicit transfersyntax :param value: the value to set on the tag :param tag: the tag to read """ if tag.VR == 'OB' or tag.VR == 'UN': value = struct.pack('h', value) tag.value = value def apply_scaling(data, dicom_headers): """ Rescale the data based on the RescaleSlope and RescaleOffset Based on the scaling from pydicomseries :param dicom_headers: dicom headers to use to retreive the scaling factors :param data: the input data """ # Apply the rescaling if needed private_scale_slope_tag = Tag(0x2005, 0x100E) private_scale_intercept_tag = Tag(0x2005, 0x100D) if 'RescaleSlope' in dicom_headers or 'RescaleIntercept' in dicom_headers \ or private_scale_slope_tag in dicom_headers or private_scale_intercept_tag in dicom_headers: rescale_slope = 1 rescale_intercept = 0 if 'RescaleSlope' in dicom_headers: rescale_slope = dicom_headers.RescaleSlope if 'RescaleIntercept' in dicom_headers: rescale_intercept = dicom_headers.RescaleIntercept # try: # # this section can sometimes fail due to unknown private fields # if private_scale_slope_tag in dicom_headers: # private_scale_slope = float(dicom_headers[private_scale_slope_tag].value) # if private_scale_slope_tag in dicom_headers: # private_scale_slope = float(dicom_headers[private_scale_slope_tag].value) # except: # pass return do_scaling(data, rescale_slope, rescale_intercept) else: return data def do_scaling(data, rescale_slope, rescale_intercept, private_scale_slope=1.0, private_scale_intercept=0.0): # Obtain slope and offset need_floats = False if int(rescale_slope) != rescale_slope or \ int(rescale_intercept) != rescale_intercept or \ private_scale_slope != 1.0 or \ private_scale_intercept != 0.0: need_floats = True if not need_floats: rescale_slope = int(rescale_slope) rescale_intercept = int(rescale_intercept) else: rescale_slope = float(rescale_slope) rescale_intercept = float(rescale_intercept) private_scale_slope = float(private_scale_slope) private_scale_intercept = float(private_scale_intercept) # Maybe we need to change the datatype? if data.dtype in [numpy.float32, numpy.float64]: pass elif need_floats: data = data.astype(numpy.float32) else: # Determine required range minimum_required, maximum_required = data.min(), data.max() minimum_required = min([minimum_required, minimum_required * rescale_slope + rescale_intercept, maximum_required * rescale_slope + rescale_intercept]) maximum_required = max([maximum_required, minimum_required * rescale_slope + rescale_intercept, maximum_required * rescale_slope + rescale_intercept]) # Determine required datatype from that if minimum_required < 0: # Signed integer type maximum_required = max([-minimum_required, maximum_required]) if maximum_required < 2 ** 7: dtype = numpy.int8 elif maximum_required < 2 ** 15: dtype = numpy.int16 elif maximum_required < 2 ** 31: dtype = numpy.int32 else: dtype = numpy.float32 else: # Unsigned integer type if maximum_required < 2 ** 8: dtype = numpy.uint8 elif maximum_required < 2 ** 16: dtype = numpy.uint16 elif maximum_required < 2 ** 32: dtype = numpy.uint32 else: dtype = numpy.float32 # Change datatype if dtype != data.dtype: data = data.astype(dtype) # Apply rescale_slope and rescale_intercept # Scaling according to ISMRM2013_PPM_scaling_reminder # The actual scaling is not does the scaling the same way as the next code example # and https://github.com/fedorov/DICOMPhilipsRescalePlugin/blob/master/DICOMPhilipsRescalePlugin.py # FOR DEFAULT DATA # RESULT_DATA = (STORED_VALUE * RESCALE_SLOPE) + RESCALE_INTERCEPT # FOR PHILIPS DATA # RESULT_DATA = (STORED_VALUE * PRIVATE_SCALE_SLOPE) + PRIVATE_SCALE_INTERCEPT if private_scale_slope == 1.0 and private_scale_intercept == 0.0: data = (data * rescale_slope) + rescale_intercept else: data = (data * private_scale_slope) + private_scale_intercept return data def write_bvec_file(bvecs, bvec_file): """ Write an array of bvecs to a bvec file :param bvecs: array with the vectors :param bvec_file: filepath to write to """ if bvec_file is None: return logger.info('Saving BVEC file: %s' % bvec_file) with open(bvec_file, 'w') as text_file: # Map a dicection to string join them using a space and write to the file text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 0]))) text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 1]))) text_file.write('%s\n' % ' '.join(map(str, bvecs[:, 2]))) def write_bval_file(bvals, bval_file): """ Write an array of bvals to a bval file :param bvals: array with the values :param bval_file: filepath to write to """ if bval_file is None: return logger.info('Saving BVAL file: %s' % bval_file) with open(bval_file, 'w') as text_file: # join the bvals using a space and write to the file text_file.write('%s\n' % ' '.join(map(str, bvals))) def create_affine(sorted_dicoms): """ Function to generate the affine matrix for a dicom series This method was based on (http://nipy.org/nibabel/dicom/dicom_orientation.html) :param sorted_dicoms: list with sorted dicom files """ # Create affine matrix (http://nipy.sourceforge.net/nibabel/dicom/dicom_orientation.html#dicom-slice-affine) image_orient1 = numpy.array(sorted_dicoms[0].ImageOrientationPatient)[0:3] image_orient2 = numpy.array(sorted_dicoms[0].ImageOrientationPatient)[3:6] delta_r = float(sorted_dicoms[0].PixelSpacing[0]) delta_c = float(sorted_dicoms[0].PixelSpacing[1]) image_pos = numpy.array(sorted_dicoms[0].ImagePositionPatient) last_image_pos = numpy.array(sorted_dicoms[-1].ImagePositionPatient) if len(sorted_dicoms) == 1: # Single slice slice_thickness = 1 if "SliceThickness" in sorted_dicoms[0]: slice_thickness = sorted_dicoms[0].SliceThickness step = - numpy.cross(image_orient1, image_orient2) * slice_thickness else: step = (image_pos - last_image_pos) / (1 - len(sorted_dicoms)) # check if this is actually a volume and not all slices on the same location if numpy.linalg.norm(step) == 0.0: raise ConversionError("NOT_A_VOLUME") affine = numpy.array( [[-image_orient1[0] * delta_c, -image_orient2[0] * delta_r, -step[0], -image_pos[0]], [-image_orient1[1] * delta_c, -image_orient2[1] * delta_r, -step[1], -image_pos[1]], [image_orient1[2] * delta_c, image_orient2[2] * delta_r, step[2], image_pos[2]], [0, 0, 0, 1]] ) return affine,
numpy.linalg.norm(step)
numpy.linalg.norm
import abc from collections import defaultdict import contextlib import functools from logging import getLogger import numpy as np import tensorflow as tf logger = getLogger("rl") def lazy_function(function): attribute = '_cache_' + function.__name__ @functools.wraps(function) def decorator(self): if not hasattr(self, attribute): setattr(self, attribute, function(self)) return getattr(self, attribute) return decorator def purge_orphaned_summaries(summary_writer, step): summary_writer.add_session_log( tf.SessionLog(status=tf.SessionLog.START), step) def read_events(event_filename, data=None, purge_orphaned=True): data = data or defaultdict(dict) for e in tf.train.summary_iterator(event_filename): if purge_orphaned and e.session_log.status == tf.SessionLog.START: for tag in data.keys(): data[tag] = { step_time: val for step_time, val in data[tag].items() if step_time[0] < e.step } for v in e.summary.value: data[v.tag][(e.step, e.wall_time)] = v.simple_value return data def orthogonal_initializer(scale=1.0): # taken from https://github.com/openai/baselines/tree/master/baselines/ppo2 def _initializer(shape, dtype, partition_info=None): shape = tuple(shape) if len(shape) == 2: flat_shape = shape elif len(shape) == 4: # assumes NHWC flat_shape = (np.prod(shape[:-1]), shape[-1]) else: raise NotImplementedError("Not supported shape: {}".format(shape)) a = np.random.normal(0.0, 1.0, flat_shape) u, _, v =
np.linalg.svd(a, full_matrices=False)
numpy.linalg.svd
from pvtrace.geometry.geometry import Geometry from pvtrace.geometry.utils import angle_between, EPS_ZERO import numpy as np import logging logger = logging.getLogger(__name__) class Sphere(Geometry): """A sphere defined by a radius. The sphere centre is always at (0, 0, 0) in it's own coordinate system. """ def __init__(self, radius, material=None): super(Sphere, self).__init__() self.radius = radius self._material = material @property def material(self): return self._material @material.setter def set_material(self, new_value): self._material = new_value def is_on_surface(self, point): r = np.sqrt(np.sum(np.array(point) ** 2)) return np.abs(r - self.radius) < EPS_ZERO def contains(self, point): r = np.sqrt(np.sum(np.array(point) ** 2)) return self.radius - (r + EPS_ZERO) > 0.0 def intersections(self, origin, direction): # Compute a, b and b coefficients origin = np.array(origin) direction =
np.array(direction)
numpy.array
# This file is a derivative of repeat_copy.py created by SiliconSloth. # The license header of the original file is retained here. # # Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np from collections import OrderedDict from scipy.sparse import csr_matrix """ Generates multiplication task samples. """ class MultiplicationTask(): def __init__(self, config): self.rng = np.random.RandomState(seed=config['seed']) self.feature_width = config['feature_width'] # self.tokens = {'rep': 'REP'} self.config = config self.samples = self.create_samples(config['set_list'], self.feature_width) def create_samples(self, set_list, feature_width): print('### MultiplicationTask: create data') samples = {} # for set, conf in set_list.items(): # samples[set] = [] # for i in range(conf["quantity"]): # if conf["min_length"] < conf["max_length"]: # length = self.rng.randint(conf["min_length"], conf["max_length"]) # else: # length = conf["min_length"] # samples[set].append(self.create_sample(length, self.feature_width)) return samples def create_sample(self, length, feature_width): # Random number between 0 and the max value, inclusive. result = self.rng.randint(feature_width**length) # Choose a factor between 1 and the result, or any valid number if the result is 0. factor1 = self.rng.randint(result) + 1 if result > 0 else self.rng.randint(feature_width**length) # Get the second factor by dividing by the first and rounding down. factor2 = int(result / factor1) # Compute the new result with the rounded factor. result = factor1 * factor2 sequence1 = self.int_to_sequence(factor1, length, feature_width) sequence2 = self.int_to_sequence(factor2, length, feature_width) answer = self.int_to_sequence(result, length, feature_width) x_word = np.concatenate([sequence1, [feature_width], sequence2, [feature_width], [0 for _ in range(length)]]) y_word = np.concatenate([[0 for _ in range(length*2 + 2)], answer]) sample = OrderedDict() sample['x_word'] = x_word sample['x'] = self._numbers_to_onehot(x_word, feature_width + 1) sample['y'] = self._numbers_to_onehot(y_word, feature_width) sample['m'] = np.concatenate([[0 for _ in range(length*2 + 2)], [1 for _ in range(length)]]) return sample @staticmethod def int_to_sequence(value, length, feature_width): seq = np.ndarray(length, dtype=np.int32) for i in range(length): seq[i] = value % feature_width value = int(value / feature_width) return seq @staticmethod def _numbers_to_onehot(numbers, size): length = numbers.__len__() row = np.arange(length) data = np.ones(length) matrix = csr_matrix((data, (row, numbers)), shape=(length, size)).toarray() # super fast return matrix @staticmethod def _zeros_matrix(len, width): row = np.arange(len) col = np.zeros(len) data = np.zeros(len) padding = csr_matrix((data, (row, col)), shape=(len, width)).toarray() return padding def get_sample(self, set_name, number): conf = self.config['set_list'][set_name] return self.create_sample(self.rng.randint(conf["min_length"], conf["max_length"]), self.feature_width) @property def vocabulary_size(self): return self.feature_width + 1 @property def x_size(self): return self.feature_width + 1 @property def y_size(self): return self.feature_width def sample_amount(self, set_name): return self.config['set_list'][set_name]['quantity'] def decode_output(self, sample, prediction): pass def patch_batch(self, list_of_samples): batch = {'x': [], 'y': [], 'm': [], 'x_word': []} len = [] for sample in list_of_samples: len.append(sample['x'].shape[0]) batch['x_word'].append(sample['x_word']) max_len = np.max(len) for sample in list_of_samples: cur_len = sample['x'].shape[0] if cur_len < max_len: add_len = max_len - cur_len x_add = self._zeros_matrix(add_len, self.x_size) batch['x'].append(np.concatenate([sample['x'], x_add], axis=0)) y_add = self._zeros_matrix(add_len, self.y_size) batch['y'].append(np.concatenate([sample['y'], y_add], axis=0)) m_add = np.zeros([add_len]) batch['m'].append(np.concatenate([sample['m'], m_add], axis=0)) else: for key in ['x', 'y', 'm']: batch[key].append(sample[key]) for key in ['x', 'y', 'm']: batch[key] = np.stack(batch[key], axis=0) batch['x'] = np.transpose(batch['x'], axes=(1, 0, 2)) batch['y'] = np.transpose(batch['y'], axes=(1, 0, 2)) batch['m'] = np.transpose(batch['m'], axes=(1, 0)) return batch @staticmethod def decode_output(sample, prediction): if prediction.shape.__len__() == 3: prediction_decode_list = [] target_decode_list = [] for b in range(prediction.shape[1]): target_decode_list.append([np.argmax(sample['y'][i, b, :]) for i in range(sample['y'].shape[0])]) prediction_decode_list.append([np.argmax(prediction[i, b, :]) for i in range(prediction.shape[0])]) return target_decode_list, prediction_decode_list else: target_decode = [np.argmax(sample['y'][i, :]) for i in range(sample['y'].shape[0])] prediction_decode = [
np.argmax(prediction[i, :])
numpy.argmax
import math import numpy as np import warnings from collections import Counter from sklearn.cluster import MiniBatchKMeans from sklearn.metrics import calinski_harabasz_score, davies_bouldin_score from sklearn.preprocessing import MinMaxScaler from .metrics import gap_statistic, silhouette_score_block from ..utils.os_utl import check_types, filter_kwargs from ..utils.log_utl import print_progress_bar, printv """ GapStatistic estimator is the Miles Granger implementation 2016.04.25.1430 shared in https://anaconda.org/milesgranger/gap-statistic/notebook """ class EstimatorMixin: def __init__(self, cluster_fn=MiniBatchKMeans, **kwargs): self.K = 0 self.best_votes = list() self.cluster = cluster_fn self.metrics = None @staticmethod def _get_best_votes(arr): k_best_n = arr[arr[:, 1].argsort()[::-1], 0].astype(int) return k_best_n.tolist() @staticmethod def _get_max_k(x, max_k): if max_k > x.shape[0]: print(f'Can only use number of clusters lower than number of examples ({x.shape[0]}).') return min(max_k, x.shape[0]) def plot_metric(self, ax=None, show=True, normalise=False, n_votes=3): import matplotlib.pyplot as plt if ax is None: fig, ax = plt.subplots(figsize=(24, 12)) # metric x, y = self.metrics.T if normalise: y = MinMaxScaler().fit_transform(y.reshape(-1, 1)) ax.plot(x, y, label=f'{self.__class__.__qualname__} ({self.best_votes[0]})', linewidth=0.7) # votes votes = np.array(self.best_votes[:n_votes]) ax.scatter(votes, y[votes - 1], color=ax.lines[-1].get_color(), alpha=0.3, edgecolors='k', s=np.array(range(25, (n_votes+1)*15 + 1, 15))[::-1]) if show: ax.legend() plt.show() return def __repr__(self): return f'{self.__class__.__module__}.{self.__class__.__qualname__}' class Riddle(EstimatorMixin): """ Riddle K-estimator. Estimates the correct value for K using the reciprocal delta log rule. """ @check_types(x=np.ndarray, max_k=int) def fit(self, x, max_k=50, **kwargs): """ Directly fit this estimator to original data considering max_k clusters. Kwargs passed are not used. They are included for estimators compatibility only :param np.ndarray x: Array with the data to cluster :param int max_k: Maximum number of clusters to try to find :param kwargs: :return int: Best number of clusters """ # calculate s_k max_k = self._get_max_k(x, max_k) s_k = np.array([self.cluster(k).fit(x).inertia_ for k in range(1, max_k + 1)]) return self.fit_s_k(s_k) @check_types(s_k=(np.ndarray, list, tuple)) def fit_s_k(self, s_k, **kwargs): """ Fit the estimator to the distances of each datapoint to assigned cluster centroid Kwargs passed are not used. They are included for estimators compatibility only :param np.ndarray|list|tuple s_k: Collection of inertias_ for each n_cluster explored :param kwargs: :return int: Best number of clusters """ if isinstance(s_k, (list, tuple)): s_k = np.array(s_k) r_k = 1/s_k n_cl = range(1, len(r_k) + 1) diff = np.pad(
np.diff(r_k)
numpy.diff
from __future__ import print_function import numpy as np import sys import math import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from torch.nn.init import xavier_normal, xavier_uniform from plyfile import (PlyData, PlyElement) # -------------------------------- # MESH IO # -------------------------------- def load_ply_data(filename): """ read ply file, only vertices and faces """ plydata = PlyData.read(filename) vertices = plydata['vertex'].data[:] vertices = np.array([[x, y, z] for x,y,z in vertices]) # input are all traingle meshes faces = plydata['face'].data['vertex_indices'][:] faces = np.array([[f1, f2, f3] for f1,f2,f3 in faces]) return vertices, faces def save_ply_data(filename, vertex, face): """ save ply file, only vertices and faces """ vertices = np.zeros(vertex.shape[0], dtype=[('x', 'f4'), ('y', 'f4'),('z', 'f4')]) for i in range(vertex.shape[0]): vertices[i] = (vertex[i][0], vertex[i][1], vertex[i][2]) # print(vertex, vertex.dtype) faces = np.zeros(face.shape[0], dtype=[('vertex_indices', 'i4', (3,))]) for i in range(face.shape[0]): faces[i] = ([face[i][0], face[i][1], face[i][2]]) # print(faces.shape, faces.dtype) e1 = PlyElement.describe(vertices, 'vertex') e2 = PlyElement.describe(faces, 'face') PlyData([e1, e2], text=True).write(filename) print('file saved') def load_obj_data(filename): """ A simply obj reader which reads vertices and faces only. i.e. lines starting with v and f only """ mesh = {} ver =[] fac = [] if not path.endswith('obj'): sys.exit('the input file is not a obj file') with open(filename) as f: for line in f: if line.strip(): inp = line.split() if(inp[0]=='v'): ver.append([float(inp[1]), float(inp[2]), float(inp[3])]) elif(inp[0]=='f'): fac.append([float(inp[1]), float(inp[2]), float(inp[3])]) V = np.array(ver) F = np.array(fac) return V, F # -------------------------------- # Mesh Utils # -------------------------------- def jitter_vertices(vertices, sigma=0.01, clip=0.05): """ Randomly jitter points. jittering is per point. Input: Nx3 array, original shape Output: Nx3 array, jittered shape """ N, C = vertices.shape assert(clip > 0) jittered_data = np.clip(sigma * np.random.randn(N, C), -1*clip, clip) jittered_data += vertices return jittered_data def rotate_vertices(vertices): """ Randomly rotate the points to augument the dataset rotation is per shape based along up direction Input: Nx3 array, input shape Output: Nx3 array, rotated shape """ rotated_data = np.zeros(vertices.shape, dtype=np.float32) rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) rotated_data = np.dot(vertices, rotation_matrix) return rotated_data def rotate_vertices_by_angle(vertices, rotation_angle): """ Randomly rotate the points by rotation_angle to augument the dataset rotation is per shape based along up direction Input: Nx3 array, input shape rotation_angle in radians Output: Nx3 array, rotated shape """ rotated_data = np.zeros(vertices.shape, dtype=np.float32) # rotation_angle = np.random.uniform() * 2 * np.pi cosval =
np.cos(rotation_angle)
numpy.cos
#Reader for the coco panoptic data set for pointer based image segmentation import numpy as np import os import scipy.misc as misc import random import cv2 import json import threading ############################################################################################################ def rgb2id(color): # Convert annotation map from 3 channel RGB to instance if isinstance(color, np.ndarray) and len(color.shape) == 3: if color.dtype == np.uint8: color = color.astype(np.uint32) return color[:, :, 0] + 256 * color[:, :, 1] + 256 * 256 * color[:, :, 2] return color[0] + 256 * color[1] + 256 * 256 * color[2] ######################################################################################################################### ######################################################################################################################### class Reader: # Initiate reader and define the main parameters for the data reader def __init__(self, ImageDir="/media/sagi/9be0bc81-09a7-43be-856a-45a5ab241d90/Data_zoo/COCO/train2017",AnnotationDir="/media/sagi/9be0bc81-09a7-43be-856a-45a5ab241d90/Data_zoo/COCO/COCO_panoptic/panoptic_train2017/panoptic_train2017", DataFile="/media/sagi/9be0bc81-09a7-43be-856a-45a5ab241d90/Data_zoo/COCO/COCO_panoptic/panoptic_train2017.json",MaxBatchSize=100,MinSize=250,MaxSize=800,MaxPixels=800*800*5, AnnotationFileType="png", ImageFileType="jpg",UnlabeledTag=0,Suffle=True,TrainingMode=True): self.ImageDir=ImageDir # Image dir self.AnnotationDir=AnnotationDir # File containing image annotation self.MaxBatchSize=MaxBatchSize # Max number of image in batch self.MinSize=MinSize # Min image width and hight in pixels self.MaxSize=MaxSize #Max image width and hight in pixels self.MaxPixels=MaxPixels # Max number of pixel in all the batch (reduce to solve oom out of memory issues) self.AnnotationFileType=AnnotationFileType # What is the the type (ending) of the annotation files self.ImageFileType=ImageFileType # What is the the type (ending) of the image files self.DataFile=DataFile # Json File that contain data on the annotation of each image self.UnlabeledTag=UnlabeledTag # Value of unlabled region in the annotation map (usually 0) self.ReadStuff = True # Read things that are not instace object (like sky or grass) self.SplitThings = False#True # Split instance of things (object) to connected component region and use each connected region as an instance self.SplitStuff = True # Split instance of things (object) to connected component region and use each connected region as instance self.SplitCrowd = True # Split areas marked as Crowds using connected componennt self.IgnoreCrowds = True # Ignore areas marked as crowd self.PickBySize = True # Pick instances of with probablity proportional to their sizes self.StuffAreaFactor=0.225 # Since we pick segments according to their size stuf segments (ground, sky) will have higher probability to be chosen compare to things (objets) this factor balance this self.MinSegSize=100 # Ignore segments which are smaller then this size in pixel self.Epoch = 0 # Training Epoch self.itr = 0 # Training iteratation self.suffle=Suffle # Suffle list of file #........................Read data file................................................................................................................ with open(DataFile) as json_file: self.AnnData=json.load(json_file) #-------------------Get All files in folder-------------------------------------------------------------------------------------- self.FileList=[] for FileName in os.listdir(AnnotationDir): if AnnotationFileType in FileName: self.FileList.append(FileName) if self.suffle: random.shuffle(self.FileList) if TrainingMode: self.StartLoadBatch() ############################################################################################################################################## #Get annotation data for specific nmage from the json file def GetAnnnotationData(self, AnnFileName): for item in self.AnnData['annotations']: # Get Annotation Data if (item["file_name"] == AnnFileName): return(item['segments_info']) ############################################################################################################################################ #Get information for specific catagory/Class id def GetCategoryData(self,ID): for item in self.AnnData['categories']: if item["id"]==ID: return item["name"],item["isthing"] ##########################################################################################################################################3333 #Split binary mask correspond to a singele segment into connected components def GetConnectedSegment(self, Seg): [NumCCmp, CCmpMask, CCompBB, CCmpCntr] = cv2.connectedComponentsWithStats(Seg.astype(np.uint8)) # apply connected component Mask=np.zeros([NumCCmp,Seg.shape[0],Seg.shape[1]],dtype=bool) BBox=np.zeros([NumCCmp,4]) Sz=np.zeros([NumCCmp],np.uint32) for i in range(1,NumCCmp): Mask[i-1] = (CCmpMask == i) BBox[i-1] = CCompBB[i][:4] Sz[i-1] = CCompBB[i][4] #segment Size return Mask,BBox,Sz,NumCCmp-1 ################################################################################################################################################# # Pick and return random segment from the list and remove it from the segment list def PickRandomSegment(self,Sgs,SumAreas): if self.PickBySize: # Pick random segment with probability proportional to size r = np.random.randint(SumAreas) + 1 TotAreas=0 for ind in range(Sgs.__len__()): TotAreas+=Sgs[ind]['Area'] if TotAreas>=r: break else: ind=np.random.randint(len(Sgs)) #Pick Random segment with equal probability # print("ind" + str(ind)) SelectedSg=Sgs.pop(ind) SumAreas-=SelectedSg["Area"] return SelectedSg,SumAreas ########################################################################################################################## # Pick set of segments from the list and generate random ROI map by taking the inverse of the region define by these segments area def GenerateRandomROIMask(self, Sgs, SumAreas): ROI = np.ones(Sgs[0]["Mask"].shape) if SumAreas<=0 and np.random.randint(6)==0: return ROI r = np.random.randint(SumAreas) + 1 while (SumAreas>r): SumAreasOld=SumAreas SelectedSg, SumAreas=self.PickRandomSegment( Sgs, SumAreas) # misc.imshow(SelectedSg["Mask"].astype(float)) if SumAreas>r: ROI[SelectedSg["Mask"]]=0 # misc.imshow(ROI.astype(float)) else: if np.random.randint(SumAreas,SumAreasOld)>r:# and (SumAreas>1000): ROI[SelectedSg["Mask"]] = 0 else: Sgs.append(SelectedSg) return(ROI) ############################################################################################################################# ############################################################################################################################ #Pick random point from segment given as a binary mask def PickRandomPointInSegment(self,Seg,ErodeMask=10): x0 = int(np.floor(Seg["BBox"][0])) # Bounding box x position Wbox = int(np.floor(Seg["BBox"][2])) # Bounding box width y0 = int(np.floor(Seg["BBox"][1])) # Bounding box y position Hbox = int(np.floor(Seg["BBox"][3])) # Bounding box height if ErodeMask: Msk = cv2.erode(Seg["Mask"].astype(np.uint8), np.ones((3, 3), np.uint8), iterations=ErodeMask) if Msk.sum()==0: Msk=Seg["Mask"] else: Msk = Seg["Mask"] while(True): x = np.random.randint(Wbox) + x0 y = np.random.randint(Hbox) + y0 if (Msk[y,x])==1: return x,y ############################################################################################################################## # Display loaded data on screen (for debuging) def DisplayTrainExample(self,Img2,ROI2,Segment2,SelectedPoint2): Img=Img2.copy() ROI=ROI2.copy() Segment=Segment2.copy() SelectedPoint=SelectedPoint2.copy() misc.imshow(Img) SelectedPoint = cv2.dilate(SelectedPoint.astype(np.uint8), np.ones((3, 3), np.uint8), iterations=1) Img[SelectedPoint][:]=[255,0,0] Img[:, :, 0] = SelectedPoint.astype(np.uint8)*255+ (1-SelectedPoint.astype(np.uint8))*Img[:, :, 0] Img[:, :, 1] *= 1-SelectedPoint.astype(np.uint8) Img[:, :, 2] *= 1-SelectedPoint.astype(np.uint8) Img[ :, :, 0] *= 1-(ROI.astype(np.uint8)-Segment.astype(np.uint8)) #Img[:, :, 1] += ROI.astype(np.uint8)*40 Img[ :, :, 2] *= 1 - Segment.astype(np.uint8) # misc.imshow(Img) #print(ROI.mean()) ROI[0,0]=0 misc.imshow(ROI.astype(float)) misc.imshow( Segment.astype(float)) misc.imshow(SelectedPoint.astype(float)) misc.imshow(Img) ############################################################################################################################# # Crop and resize image and mask and ROI to feet batch size def CropResize(self,Img, Mask,bbox,ROImask,Px,Py,Hb,Wb): # ========================resize image if it too small to the batch size================================================================================== [h, w, d] = Img.shape Rs =
np.max((Hb / h, Wb / w))
numpy.max
""" Port of Andy's Matlab scripts """ import numpy as np from IPython import embed #% #% This script plots the solution for the 2-layer solution of the #% ventilated thermocline equation of LPS. The script follows #% Pedlosky (1996, Ocean Circulation Theory), section 4.4. #% #% The x-coordinate is longitude in radians, and the y-coordinate #% is f/f0, starting at the equator. #% #% #% #% #% #% #% #% #%%%%%%%%%%%%%%% DO NOT EDIT THE FILE BELOW HERE %%%%%%%% #% def two_layers(theta0=60.,theta2=50., rho1=1025.50,rho2=1026.75, Lx=5e6, W0=2e-6, H2=400, max_depth=-1200): """[summary] Args: theta0 ([type], optional): [description]. Defaults to 60.. theta2 ([type], optional): [description]. Defaults to 50.. rho1 (float, optional): [description]. Defaults to 1025.50. rho2 (float, optional): [description]. Defaults to 1026.75. Lx (width of the box in m, optional): [description]. Defaults to 5e6. W0 ([type], optional): [description]. Defaults to 2e-6. H2 (int, optional): [description]. Defaults to 400. max_depth (int, optional): [description]. Defaults to -1200. #% Specify the layer densities of the active upper two layers (kg/(m*m*m)). #% Northern most extent of the model domain (degrees). #% Latitude of the outcrop line for layer 2 (degrees). #% Width of the domain (m). #% Amplitude of the Ekman pumping velocity (m/s). #% Depth of layer 2 along the eastern boundary (m). #% NOTE: #% Define max plotting depth (m). This parameter controls the maximum value #% plotted on the depth axis. You may need to adjust this if in some of your #% calculations your layer depths exceed the value of -1200m prescribed here. """ g=9.81 rho3=1027.50 #% # Layer 1 reduced gravity. gamma1=(rho2-rho1)*g/rho3 # Layer 2 reduced gravity. gamma2=(rho3-rho2)*g/rho3 # # Define grid. # im=201 jm=201 # Position of y-transect for plotting. xtrans=Lx/2 # Position of x-transect for plotting. ytrans=theta0/2 # Earth radius. eradius=6.371e6 # Angular rotation rate of earth. Omega=7.292e-5 theta0=theta0*2*np.pi/360 theta2=theta2*2*np.pi/360 f0=2*Omega*np.sin(theta0) f2=2*Omega*np.sin(theta2) # Latitude grid-spacing. dtheta=theta0/(jm-1) # Longitude grid-spacing. dx=Lx/(im-1) dphi=dx/eradius phie=(im-1)*dphi # # Coordinate arrays for plotting. xarr=np.zeros((im,jm)) yarr=np.zeros((jm,jm)) for i in range(im): #=1:im xarr[i,:]=i*dphi*eradius/1000 for j in range(jm): #1:jm yarr[:,j]=j*dtheta*eradius/1000 #embed(header='88 of vt') # # Coriolis parameter. # #for j=1:jm theta= np.arange(jm)*dtheta f=2*Omega*np.sin(theta) # # Ekman pumping - Pedlosky eqn 4.4.25. # we=np.zeros((im,jm)) for j in range(jm): #1:jm we[:,j]=-W0*f0*f0*np.sin(np.pi*f[j]/f0)/(f[j]*f[j]) # # D0^2 from Pedlosky eqn 4.4.26 but NOT using the H2 scaling, # but instead using the actual factor from 4.4.5 so that H2, # W0, gamma2, phie and theta0 can be variable parameters. # D02=np.zeros((im,jm)) D0fact=4*eradius*eradius*W0*Omega*np.sin( theta0)*np.sin(theta0)*phie/gamma2 for j in range(jm): #1:jm for i in range(im): #=1:im phi=i*dphi D02[i,j]=D0fact*(1-phi/phie)*np.sin(np.pi*f[j]/f0) # # Single layer region f0 <= f <= f2, Pedlosky eqn 4.4.6. # # h2(i,j)=sqrt(D02(i,j)+H2*H2); # h(i,j)=h2(i,j); h2 = np.sqrt(D02+H2*H2) h = h2.copy() # # Process of subduction, f2 < f <= 0.. # # Pedlosky eqn 4.4.18, where h=h1+h2. # #for j=1:jm #if f(j) <= f2 # for i=1:im # h(i,j)=sqrt((D02(i,j)+H2*H2)/(1+gamma1*(1-f(j)/f2)^2/gamma2)); # end gdf = f <= f2 for j in np.where(gdf)[0]: for i in range(im): #=1:im h[i,j]=np.sqrt((D02[i,j]+H2*H2)/( 1+gamma1*(1-f[j]/f2)**2/gamma2)) # # Pedlosky eqn 4.4.14a,b. # h1=np.zeros((im,jm)) for j in np.where(gdf)[0]: for i in range(im): #=1:im h1[i,j] = (1-f[j]/f2)*h[i,j] h2[i,j] = f[j]*h[i,j]/f2 # # The shadow zone. # The latitude and longitude of the streamline that defines the # poleward edge of the shadow zone can be computed by equating # Pedlosky eqn 4.4.26 and 4.4.22. # Namely: # phi=phie*(1-fac*gamma1*(1-f/f2)*(1-f/f2)*H2*H2/gamma2) # where fac=1/(D0fact*sin(pi*f/f0)). # #shadx=ones(jm,1)*phie*eradius/1000; #shady=zeros(jm,1); #for j=jm:-1:1 shadx = np.ones(jm)*phie*eradius/1000 shady = np.zeros_like(shadx) gdj = np.where(gdf)[0] phi=np.arange(im)*dphi for j in range(jm-1,-1,-1): shady[j]=j*dtheta*eradius/1000 if j in gdj: fac=1/(D0fact*np.sin(np.pi*f[j]/f0)) phi_shadow=phie*(1-fac*gamma1*(1-f[j]/f2)**2*H2*H2/gamma2) shadx[j]=phi_shadow*eradius/1000 #if j == 0: # import pdb; pdb.set_trace() gdphi = phi >= phi_shadow for i in np.where(gdphi)[0]: h[i,j]=H2 h1[i,j]=np.sqrt(gamma2*D02[i,j]/gamma1) h2[i,j]=h[i,j]-h1[i,j] #import pdb; pdb.set_trace() # # The western pool region. # The latitude and longitude of the streamline that defines the # eastern edge of the pool region can be found by equating Pedlosky # eqn 4.6.2 and 4.4.26. It is assumed that the PV is homogenized in the # pool region which yields Pedlosky eqn 4.6.6 for h and 4.6.5 for h2 in the pool # in which case h1=h-h2. # Namely: # phi=phie*(1-fac*(D02w*(1+gamma1*(1-f/f2)^2/gamma2)/(2*H2^2) # +gamma1*(f-f/f2)^2/(2*gamma2)) # where fac=1/(D0fact*sin(pi*f/f0)), and D02w is the value of D02 evaluated # at (0,theta2).. # D02w=D0fact*np.sin(np.pi*f2/f0) Gamma12=gamma1/gamma2 hw=np.sqrt(D02w+H2*H2) pooly=np.arange(jm)*dtheta*eradius/1000 poolx= np.zeros_like(pooly) # Tricky one! phi= np.arange(im)*dphi for j in np.flip(np.where(gdf)[0]): fac=1/(D0fact*np.sin(np.pi*f[j]/f0)) fac1=Gamma12*(1-f[j]/f2)**2 phi_pool=phie*(1-fac*(D02w*(1+fac1)+H2*H2*fac1)) poolx[j] = max(phi_pool*eradius/1000, 0.) gdphi = phi <= phi_pool for i in np.where(gdphi)[0]: h[i,j]=Gamma12*f[j]*hw/( f2*(1+Gamma12))+np.sqrt( (D02[i,j]+H2*H2)*( 1+Gamma12)-Gamma12*( f[j]*hw/f2)**2)/(1+Gamma12) h1[i,j]= h[i,j] - f[j]*hw/f2 #if (i == 10) and (j==10): # import pdb; pdb.set_trace() #embed(header='211 of vt') # psi1=np.nan*np.ones((im,jm)) psi2=np.nan*np.ones((im,jm)) hp1=h1.copy() ps=shadx*1000/eradius phi =
np.arange(im)
numpy.arange
import time import copy import sys import json import os import open3d as o3d import numpy as np import airsim import matplotlib.colors as colors import matplotlib.pyplot as plt import yaml from airsim import ImageRequest, ImageResponse, LidarData from airsimcollect.helper.helper import update_airsim_settings from airsimcollect.helper.helper_transforms import parse_lidarData from airsimcollect.helper.o3d_util import get_extrinsics, set_view, handle_shapes, update_point_cloud, translate_meshes from airsimcollect.helper.helper_mesh import ( create_meshes_cuda, update_open_3d_mesh_from_tri_mesh, decimate_column_opc, get_planar_point_density, map_pd_to_decimate_kernel) from airsimcollect.helper.helper_polylidar import extract_all_dominant_plane_normals, extract_planes_and_polygons_from_mesh from airsimcollect.segmentation import DEFAULT_REGEX_CODES, set_segmentation_ids from fastga import GaussianAccumulatorS2Beta, GaussianAccumulatorS2, IcoCharts from polylidar import MatrixDouble, extract_tri_mesh_from_organized_point_cloud, HalfEdgeTriangulation, Polylidar3D # Lidar Point Cloud Image lidar_beams = 64 def set_up_airsim(client): # connect to the AirSim simulator client.confirmConnection() client.enableApiControl(True) client.armDisarm(True) print("Taking off!") client.takeoffAsync(timeout_sec=3).join() print("Increasing altitude 10 meters!") client.moveToZAsync(-10, 2).join() print("Reached Altitude, launching Lidar Visualizer") return client def get_lidar_data(client: airsim.MultirotorClient): data:LidarData = client.getLidarData() points = parse_lidarData(data) lidar_meta = dict(position=data.pose.position, rotation=data.pose.orientation) return points, lidar_meta def get_image_data(client: airsim.MultirotorClient): response:ImageResponse = client.simGetImage("0", airsim.ImageType.Segmentation) img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8) # TODO shape should be tuple img_rgba = img1d.reshape( response.height, response.width, 4) plt.imshow(img_rgba) def update_view(vis): extrinsics = get_extrinsics(vis) vis.reset_view_point(True) set_view(vis, extrinsics) def main(): # Load yaml file with open('./assets/config/PolylidarParams.yaml') as file: try: config = yaml.safe_load(file) except yaml.YAMLError as exc: print("Error parsing yaml") client = airsim.MultirotorClient() set_segmentation_ids(client, DEFAULT_REGEX_CODES) air_sim_settings = update_airsim_settings() z_col = air_sim_settings['lidar_z_col'] set_up_airsim(client) o3d.utility.set_verbosity_level(o3d.utility.VerbosityLevel.Info) pcd = o3d.geometry.PointCloud() # pcd_pd = o3d.geometry.PointCloud() mesh_noisy = o3d.geometry.TriangleMesh() mesh_smooth = o3d.geometry.TriangleMesh() axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5) vis = o3d.visualization.Visualizer() vis.create_window(width=1280, height=720) vis.add_geometry(pcd) # vis.add_geometry(pcd_pd) vis.add_geometry(mesh_smooth) vis.add_geometry(axis) all_polys = [] pl = Polylidar3D(**config['polylidar']) ga = GaussianAccumulatorS2Beta(level=config['fastga']['level']) ico = IcoCharts(level=config['fastga']['level']) path = [airsim.Vector3r(-10, -10, -10), airsim.Vector3r(10, -10, -15), airsim.Vector3r(10, 10, -10), airsim.Vector3r(-10, 10, -15)] * 4 path = [airsim.Vector3r(-5, -5, -10), airsim.Vector3r(5, -5, -15), airsim.Vector3r(5, 5, -10), airsim.Vector3r(-5, 5, -15)] * 4 client.moveOnPathAsync(path, 2.5, 60) # get_image_data(client) drone = o3d.io.read_triangle_mesh('assets/stl/drone.ply') rot = o3d.geometry.get_rotation_matrix_from_xyz([np.pi/2, 0, 0]) drone = drone.rotate(rot, drone.get_center()) drone.paint_uniform_color([1, 0, 0]) drone.compute_triangle_normals() drone.compute_vertex_normals() vis.add_geometry(drone) prev_time = time.time() with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Info): while True: if time.time() - prev_time > 0.1: points, lidar_meta = get_lidar_data(client) # print(f"Full Point Cloud Size (including NaNs): {points.shape}") if np.count_nonzero(~
np.isnan(points)
numpy.isnan
import itertools import numpy as np from munch import Munch from plaster.tools.image import imops from plaster.tools.image.coord import XY from plaster.tools.ipynb_helpers import displays from plaster.tools.schema import check from plaster.tools.utils import stats, utils from plaster.tools.zplots.zplots import ZPlots import logging log = logging.getLogger(__name__) # Mature # ------------------------------------------------------------------------------------- def plot_psfs(psfs, scale=1.0, **kwargs): """ Show regional PSF in a summary image. Arguments: psfs is 4-d array: (regional divs y, regional divs x, psf h, psf w) """ divs_h, divs_w, dim_h, dim_w = psfs.shape assert divs_h == divs_w divs = divs_h assert dim_h == dim_w dim = dim_h z = ZPlots.zplot_singleton with z(_size=kwargs.get("_size", max(100, int(dim * divs * scale)))): comp =
np.zeros((divs * dim, divs * dim))
numpy.zeros
from datetime import date, timedelta, datetime from calendar import monthrange from random import uniform import logging import json import pandas as pd import numpy as np import networkx as nx import os import random from scipy.stats import skewnorm from sklearn.utils import shuffle import matplotlib.pyplot as plt from Airport import Airport from Airline import Airline from Airplane import Airplane from Country import Country class Environment: PASSENGER_VARIABILITY_PERCENTAGE_PER_DAY = 5 PASSENGER_PERSONAL_BOOKING_SKEW = 0.2 # Negative values are left skewed, positive values are right skewed. PASSENGER_BUSINESS_BOOKING_SKEW = 8 # Negative values are left skewed, positive values are right skewed. PASSENGER_PERSONAL_PROBABILITY = 0.5 # Split for personal passengers DAYS_BEFORE_BOOKING_START = 365 def __init__(self, today=date.today(), world_loc=None, route_loc=None, flow_loc=None): self.date = today self.countries = {} self.airports = {} self.airlines = {} self.airplanes = {} self.distance_graph = {} self.route_graph = nx.MultiGraph() self.route_df = pd.DataFrame() self.passenger_flow_df = pd.DataFrame() self.passenger_flow_monthly_sum = [] self.passenger_flow_airport_list = [] self.passenger_flow_monthly_weights = [] logger.info("Started initializing ENVIRONMENT...") if world_loc is not None and route_loc is not None: self.init_env(world_loc) self.init_routes(route_loc) self.init_passenger_data(flow_loc) else: logger.error("Environment data file not found") raise NotImplemented logger.info("Finished initializing ENVIRONMENT.") def init_passenger_data(self, file_location): logger.info("Started initializing passenger demand data...") self.passenger_flow_df = pd.read_csv(file_location, index_col=0, header=0).astype('int32') self.passenger_flow_monthly_sum = list(self.passenger_flow_df.sum()) self.passenger_flow_airport_list = list(self.passenger_flow_df.index) self.passenger_flow_monthly_weights = pd.DataFrame() for month in range(1, 12 + 1): self.passenger_flow_monthly_weights[str(month)] = self.passenger_flow_df[str(month)] / \ self.passenger_flow_monthly_sum[month - 1] * 100 logger.info("Finished initializing passenger demand data.") def init_routes(self, file_location): logger.info("Started initializing world Routes...") self.route_df = pd.read_csv(file_location, index_col=0, header=0) self.route_graph = nx.from_pandas_edgelist(self.route_df, 'source', 'target', 'Distance_Km') logger.info("Finished initializing world Routes.") def init_env(self, file_location): logger.info("Started initializing world...") world = {} with open(file_location) as world_json: world = json.load(world_json) for airport in world["airports"]: airport_data = world["airports"][airport] new_airport = Airport(iata=airport_data["iata"], name=airport_data["name"], city=airport_data["city"], country=airport_data["country"], lat=airport_data["lat"], long=airport_data["long"]) self.airports[airport] = new_airport logger.info("Finished initializing world airports.") for country in world["countries"]: new_country = Country(country) for airport in world["countries"][country]["airports"]: new_country.add_airport(airport, self.airports[airport]) for airline in world["countries"][country]["airlines"]: airline_data = world["countries"][country]["airlines"][airline] new_airline = Airline(name=airline_data["name"], country=country) self.airlines[airline] = new_airline new_country.add_airline(airline, new_airline) for airplane in world["countries"][country]["airlines"][airline]["airplanes"]: airplane_data = world["countries"][country]["airlines"][airline]["airplanes"][airplane] new_airplane = Airplane(identifier=airplane, airline=airline, start_airport=airplane_data["source_airport"], end_airport=airplane_data["destination_airport"], distance=airplane_data["distance"]) new_airline.add_airplane(airplane, new_airplane) airplane_tuple = (airplane_data["source_airport"], airplane_data["destination_airport"]) if airplane_tuple not in self.airplanes: self.airplanes[airplane_tuple] = {airplane: new_airplane} else: self.airplanes[airplane_tuple][airplane] = new_airplane self.countries[country] = new_country logger.info("Finished initializing world country data.") logger.info("Finished initializing world.") def get_demand(self): if self.date.month in [1, 7, 8, 9, 12]: return uniform(0.8, 1) if self.date.month in [4, 5, 6, 10, 11]: return uniform(0.3, 0.8) if self.date.month in [2, 3]: return uniform(0.1, 0.3) def increment_ticker(self): self.date += timedelta(1) def get_month(self): return self.date.month def get_number_of_passenger_today(self): month = self.get_month() return self.passenger_flow_monthly_sum[month - 1] def get_transit_airports(self): return self.passenger_flow_airport_list def get_transit_airports_weights(self): month = str(self.get_month()) return self.passenger_flow_monthly_weights[month] def get_random_path(self): airports = self.get_transit_airports() airports_weight = self.get_transit_airports_weights() return random.choices(airports, weights=airports_weight, k=2) def generate_passenger_path(self): path = self.get_random_path() while path[0] == path[1]: path = self.get_random_path() return path # def do__(self): # path = self.get_random_path() # comp_path = nx.dijkstra_path(self.route_graph, source=path[0], target=path[1]) # print(comp_path, path) @staticmethod def get_skewed_data(skew, max_value, size): random_skew = skewnorm.rvs(a=skew, loc=max_value, size=size) if size != 0: random_skew -= min(random_skew) random_skew /= max(random_skew) random_skew *= random_skew # plt.hist(random_skew, 365, color='red', alpha=0.1) # plt.show() return random_skew def build_passenger_booking_pattern(self, number_of_days): timestamp = datetime.now().timestamp() logger.info("Started building passenger booking pattern...") day_data = [] normalised_max_value = 1 total_passenger_count = 0 logger.info("Started creating passenger source and destination airport...") day = 0 month = 1 while day < number_of_days: passenger_count = self.get_number_of_passenger_today() for passenger_index in range(passenger_count): path = self.generate_passenger_path() path.append(day + 1) day_data.append(path) total_passenger_count += passenger_count logger.info(f"Finished passenger path for day: {day + 1}") month_end_day = monthrange(self.date.year, self.date.month)[1] if month_end_day == self.date.day: logger.info(f"Started saving passenger data for month {month}...") personal_passenger_count = round(total_passenger_count * self.PASSENGER_PERSONAL_PROBABILITY) business_passenger_count = total_passenger_count - personal_passenger_count personal_passenger_skew_booking_day = self.get_skewed_data(skew=self.PASSENGER_PERSONAL_BOOKING_SKEW, max_value=normalised_max_value, size=personal_passenger_count) business_passenger_skew_booking_day = self.get_skewed_data(skew=self.PASSENGER_BUSINESS_BOOKING_SKEW, max_value=normalised_max_value, size=business_passenger_count) prebooked_days_norm = np.append(personal_passenger_skew_booking_day, business_passenger_skew_booking_day) is_personal = np.append(np.ones((1, personal_passenger_count)), np.zeros((1, business_passenger_count))) month_array =
np.full(shape=personal_passenger_count+business_passenger_count, fill_value=month, dtype=np.int)
numpy.full
# basic dependencies import os import sys import subprocess from glob import glob import math # main dependencies: numpy, nibabel import numpy import nibabel # nighresjava and nighres functions import nighresjava from ..io import load_volume, save_volume from ..utils import _output_dir_4saving, _fname_4saving, \ _check_topology_lut_dir # convenience labels X=0 Y=1 Z=2 T=3 def surface_antsreg(source_surface, target_surface, max_dist=10.0, run_rigid=True, rigid_iterations=1000, run_affine=True, affine_iterations=1000, run_syn=True, coarse_iterations=100, medium_iterations=70, fine_iterations=20, cost_function='Demons', interpolation='Linear', regularization='Low', convergence=1e-6, mask_zero=False, crop=True, ignore_affine=False, ignore_header=False, save_data=False, overwrite=False, output_dir=None, file_name=None): """ Embedded ANTS Registration for surfaces Runs the rigid and/or Symmetric Normalization (SyN) algorithm of ANTs and formats the output deformations into voxel coordinate mappings as used in CBSTools registration and transformation routines. Uses all input contrasts with equal weights. Parameters ---------- source_surface: niimg Levelset surface image to register target_surface: niimg Reference levelset surface image to match run_rigid: bool Whether or not to run a rigid registration first (default is False) rigid_iterations: float Number of iterations in the rigid step (default is 1000) run_affine: bool Whether or not to run a affine registration first (default is False) affine_iterations: float Number of iterations in the affine step (default is 1000) run_syn: bool Whether or not to run a SyN registration (default is True) coarse_iterations: float Number of iterations at the coarse level (default is 40) medium_iterations: float Number of iterations at the medium level (default is 50) fine_iterations: float Number of iterations at the fine level (default is 40) cost_function: {'LeastSquares', 'Demons'} Cost function for the registration (default is 'Demons') interpolation: {'NearestNeighbor', 'Linear'} Interpolation for the registration result (default is 'Linear') regularization: {'Low', 'Medium', 'High'} Regularization preset for the SyN deformation (default is 'Medium') convergence: float Threshold for convergence, can make the algorithm very slow (default is convergence) mask_zero: bool Mask regions with zero value (default is False) ignore_affine: bool Ignore the affine matrix information extracted from the image header (default is False) ignore_header: bool Ignore the orientation information and affine matrix information extracted from the image header (default is False) save_data: bool Save output data to file (default is False) overwrite: bool Overwrite existing results (default is False) output_dir: str, optional Path to desired output directory, will be created if it doesn't exist file_name: str, optional Desired base name for output files with file extension (suffixes will be added) Returns ---------- dict Dictionary collecting outputs under the following keys (suffix of output files in brackets) * mapping (niimg): Coordinate mapping from source to target (_ants_map) * inverse (niimg): Inverse coordinate mapping from target to source (_ants_invmap) Notes ---------- Port of the CBSTools Java module by <NAME>. The main algorithm is part of the ANTs software by <NAME> and colleagues [1]_. Parameters have been set to values commonly found in neuroimaging scripts online, but not necessarily optimal. References ---------- .. [1] Avants et al (2008), Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain, Med Image Anal. 12(1):26-41 """ print('\nEmbedded ANTs Registration Surfaces') # check if ants is installed to raise sensible error try: subprocess.run('antsRegistration', stdout=subprocess.DEVNULL) except FileNotFoundError: sys.exit("\nCould not find command 'antsRegistration'. Make sure ANTs is" " installed and can be accessed from the command line.") try: subprocess.run('antsApplyTransforms', stdout=subprocess.DEVNULL) except FileNotFoundError: sys.exit("\nCould not find command 'antsApplyTransforms'. Make sure ANTs" " is installed and can be accessed from the command line.") # make sure that saving related parameters are correct # output files needed for intermediate results output_dir = _output_dir_4saving(output_dir, source_surface) mapping_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='ants-map')) inverse_mapping_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='ants-invmap')) if save_data: if overwrite is False \ and os.path.isfile(mapping_file) \ and os.path.isfile(inverse_mapping_file) : print("skip computation (use existing results)") output = {'mapping': mapping_file, 'inverse': inverse_mapping_file} return output # cropping and masking do not work well together? if crop: mask_zero=False # load and get dimensions and resolution from input images source = load_volume(source_surface) # flip the data around, threshold source_ls = numpy.minimum(numpy.maximum(max_dist - source.get_data(),0.0),2.0*max_dist) if crop: # crop images for speed? src_xmin, src_xmax = numpy.where(numpy.any(source_ls>0.1, axis=(1,2)))[0][[0, -1]] src_ymin, src_ymax = numpy.where(numpy.any(source_ls>0.1, axis=(0,2)))[0][[0, -1]] src_zmin, src_zmax = numpy.where(numpy.any(source_ls>0.1, axis=(0,1)))[0][[0, -1]] source_ls = source_ls[src_xmin:src_xmax+1, src_ymin:src_ymax+1, src_zmin:src_zmax+1] src_img = nibabel.Nifti1Image(source_ls, source.affine, source.header) src_img.update_header() src_img_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_srcimg')) save_volume(src_img_file, src_img) source = load_volume(src_img_file) src_affine = source.affine src_header = source.header nsx = source.header.get_data_shape()[X] nsy = source.header.get_data_shape()[Y] nsz = source.header.get_data_shape()[Z] rsx = source.header.get_zooms()[X] rsy = source.header.get_zooms()[Y] rsz = source.header.get_zooms()[Z] orig_src_aff = source.affine orig_src_hdr = source.header target = load_volume(target_surface) # flip the data around target_ls = numpy.minimum(numpy.maximum(max_dist - target.get_data(),0.0),2.0*max_dist) if crop: # crop images for speed? trg_xmin, trg_xmax = numpy.where(numpy.any(target_ls>0.1, axis=(1,2)))[0][[0, -1]] trg_ymin, trg_ymax = numpy.where(numpy.any(target_ls>0.1, axis=(0,2)))[0][[0, -1]] trg_zmin, trg_zmax = numpy.where(numpy.any(target_ls>0.1, axis=(0,1)))[0][[0, -1]] target_ls = target_ls[trg_xmin:trg_xmax+1, trg_ymin:trg_ymax+1, trg_zmin:trg_zmax+1] trg_img = nibabel.Nifti1Image(target_ls, target.affine, target.header) trg_img.update_header() trg_img_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=target_surface, suffix='tmp_trgimg')) save_volume(trg_img_file, trg_img) target = load_volume(trg_img_file) trg_affine = target.affine trg_header = target.header ntx = target.header.get_data_shape()[X] nty = target.header.get_data_shape()[Y] ntz = target.header.get_data_shape()[Z] rtx = target.header.get_zooms()[X] rty = target.header.get_zooms()[Y] rtz = target.header.get_zooms()[Z] orig_trg_aff = target.affine orig_trg_hdr = target.header # in case the affine transformations are not to be trusted: make them equal if ignore_affine or ignore_header: # create generic affine aligned with the orientation for the source new_affine = numpy.zeros((4,4)) if ignore_header: new_affine[0][0] = rsx new_affine[1][1] = rsy new_affine[2][2] = rsz new_affine[0][3] = -rsx*nsx/2.0 new_affine[1][3] = -rsy*nsy/2.0 new_affine[2][3] = -rsz*nsz/2.0 else: mx = numpy.argmax(numpy.abs([src_affine[0][0],src_affine[1][0],src_affine[2][0]])) my = numpy.argmax(numpy.abs([src_affine[0][1],src_affine[1][1],src_affine[2][1]])) mz = numpy.argmax(numpy.abs([src_affine[0][2],src_affine[1][2],src_affine[2][2]])) new_affine[mx][0] = rsx*numpy.sign(src_affine[mx][0]) new_affine[my][1] = rsy*numpy.sign(src_affine[my][1]) new_affine[mz][2] = rsz*numpy.sign(src_affine[mz][2]) if (numpy.sign(src_affine[mx][0])<0): new_affine[mx][3] = rsx*nsx/2.0 else: new_affine[mx][3] = -rsx*nsx/2.0 if (numpy.sign(src_affine[my][1])<0): new_affine[my][3] = rsy*nsy/2.0 else: new_affine[my][3] = -rsy*nsy/2.0 if (numpy.sign(src_affine[mz][2])<0): new_affine[mz][3] = rsz*nsz/2.0 else: new_affine[mz][3] = -rsz*nsz/2.0 new_affine[3][3] = 1.0 src_img = nibabel.Nifti1Image(source.get_data(), new_affine, source.header) src_img.update_header() src_img_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_srcimg')) save_volume(src_img_file, src_img) source = load_volume(src_img_file) src_affine = source.affine src_header = source.header # create generic affine aligned with the orientation for the target new_affine = numpy.zeros((4,4)) if ignore_header: new_affine[0][0] = rtx new_affine[1][1] = rty new_affine[2][2] = rtz new_affine[0][3] = -rtx*ntx/2.0 new_affine[1][3] = -rty*nty/2.0 new_affine[2][3] = -rtz*ntz/2.0 else: #mx = numpy.argmax(numpy.abs(trg_affine[0][0:3])) #my = numpy.argmax(numpy.abs(trg_affine[1][0:3])) #mz = numpy.argmax(numpy.abs(trg_affine[2][0:3])) #new_affine[0][mx] = rtx*numpy.sign(trg_affine[0][mx]) #new_affine[1][my] = rty*numpy.sign(trg_affine[1][my]) #new_affine[2][mz] = rtz*numpy.sign(trg_affine[2][mz]) #if (numpy.sign(trg_affine[0][mx])<0): # new_affine[0][3] = rtx*ntx/2.0 #else: # new_affine[0][3] = -rtx*ntx/2.0 # #if (numpy.sign(trg_affine[1][my])<0): # new_affine[1][3] = rty*nty/2.0 #else: # new_affine[1][3] = -rty*nty/2.0 # #if (numpy.sign(trg_affine[2][mz])<0): # new_affine[2][3] = rtz*ntz/2.0 #else: # new_affine[2][3] = -rtz*ntz/2.0 mx = numpy.argmax(numpy.abs([trg_affine[0][0],trg_affine[1][0],trg_affine[2][0]])) my = numpy.argmax(numpy.abs([trg_affine[0][1],trg_affine[1][1],trg_affine[2][1]])) mz = numpy.argmax(numpy.abs([trg_affine[0][2],trg_affine[1][2],trg_affine[2][2]])) #print('mx: '+str(mx)+', my: '+str(my)+', mz: '+str(mz)) #print('rx: '+str(rtx)+', ry: '+str(rty)+', rz: '+str(rtz)) new_affine[mx][0] = rtx*numpy.sign(trg_affine[mx][0]) new_affine[my][1] = rty*numpy.sign(trg_affine[my][1]) new_affine[mz][2] = rtz*numpy.sign(trg_affine[mz][2]) if (numpy.sign(trg_affine[mx][0])<0): new_affine[mx][3] = rtx*ntx/2.0 else: new_affine[mx][3] = -rtx*ntx/2.0 if (numpy.sign(trg_affine[my][1])<0): new_affine[my][3] = rty*nty/2.0 else: new_affine[my][3] = -rty*nty/2.0 if (numpy.sign(trg_affine[mz][2])<0): new_affine[mz][3] = rtz*ntz/2.0 else: new_affine[mz][3] = -rtz*ntz/2.0 #if (numpy.sign(trg_affine[0][mx])<0): new_affine[mx][3] = rtx*ntx #if (numpy.sign(trg_affine[1][my])<0): new_affine[my][3] = rty*nty #if (numpy.sign(trg_affine[2][mz])<0): new_affine[mz][3] = rtz*ntz #new_affine[0][3] = ntx/2.0 #new_affine[1][3] = nty/2.0 #new_affine[2][3] = ntz/2.0 new_affine[3][3] = 1.0 #print("\nbefore: "+str(trg_affine)) #print("\nafter: "+str(new_affine)) trg_img = nibabel.Nifti1Image(target.get_data(), new_affine, target.header) trg_img.update_header() trg_img_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_trgimg')) save_volume(trg_img_file, trg_img) target = load_volume(trg_img_file) trg_affine = target.affine trg_header = target.header if mask_zero: # create and save temporary masks trg_mask_data = (target.get_data()!=0)*(target.get_data()!=2.0*max_dist) trg_mask = nibabel.Nifti1Image(trg_mask_data, target.affine, target.header) trg_mask_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_trgmask')) save_volume(trg_mask_file, trg_mask) src_mask_data = (source.get_data()!=0)*(source.get_data()!=2.0*max_dist) src_mask = nibabel.Nifti1Image(src_mask_data, source.affine, source.header) src_mask_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_srcmask')) save_volume(src_mask_file, src_mask) # run the main ANTS software: here we directly build the command line call reg = 'antsRegistration --collapse-output-transforms 1 --dimensionality 3' \ +' --initialize-transforms-per-stage 0 --interpolation Linear' # add a prefix to avoid multiple names? prefix = _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_syn') prefix = os.path.basename(prefix) prefix = prefix.split(".")[0] #reg.inputs.output_transform_prefix = prefix reg = reg+' --output '+prefix if mask_zero: reg = reg+' --masks ['+trg_mask_file+', '+src_mask_file+']' srcfiles = [] trgfiles = [] print("registering "+source.get_filename()+"\n to "+target.get_filename()) srcfiles.append(source.get_filename()) trgfiles.append(target.get_filename()) weight = 1.0/len(srcfiles) # set parameters for all the different types of transformations if run_rigid is True: reg = reg + ' --transform Rigid[0.1]' for idx,img in enumerate(srcfiles): reg = reg + ' --metric MeanSquares['+trgfiles[idx]+', '+srcfiles[idx] \ +', '+'{:.3f}'.format(weight)+', 0, Random, 0.3 ]' reg = reg + ' --convergence ['+str(rigid_iterations)+'x' \ +str(rigid_iterations)+'x'+str(rigid_iterations) \ +', '+str(convergence)+', 5 ]' reg = reg + ' --smoothing-sigmas 4.0x2.0x0.0' reg = reg + ' --shrink-factors 16x4x1' reg = reg + ' --use-histogram-matching 0' #reg = reg + ' --winsorize-image-intensities [ 0.001, 0.999 ]' if run_affine is True: reg = reg + ' --transform Affine[0.1]' for idx,img in enumerate(srcfiles): reg = reg + ' --metric MeanSquares['+trgfiles[idx]+', '+srcfiles[idx] \ +', '+'{:.3f}'.format(weight)+', 0, Random, 0.3 ]' reg = reg + ' --convergence ['+str(affine_iterations)+'x' \ +str(affine_iterations)+'x'+str(affine_iterations) \ +', '+str(convergence)+', 5 ]' reg = reg + ' --smoothing-sigmas 4.0x2.0x0.0' reg = reg + ' --shrink-factors 16x4x1' reg = reg + ' --use-histogram-matching 0' #reg = reg + ' --winsorize-image-intensities [ 0.001, 0.999 ]' if run_syn is True: if regularization == 'Low': syn_param = [0.1, 1.0, 0.0] elif regularization == 'Medium': syn_param = [0.1, 3.0, 0.0] elif regularization == 'High': syn_param = [0.2, 4.0, 3.0] else: syn_param = [0.1, 3.0, 0.0] reg = reg + ' --transform SyN'+str(syn_param) if (cost_function=='Demons'): for idx,img in enumerate(srcfiles): reg = reg + ' --metric Demons['+trgfiles[idx]+', '+srcfiles[idx] \ +', '+'{:.3f}'.format(weight)+', 4, Random, 0.3 ]' else: for idx,img in enumerate(srcfiles): reg = reg + ' --metric MeanSquares['+trgfiles[idx]+', '+srcfiles[idx] \ +', '+'{:.3f}'.format(weight)+', 0, Random, 0.3 ]' reg = reg + ' --convergence ['+str(coarse_iterations)+'x' \ +str(coarse_iterations)+'x'+str(medium_iterations)+'x' \ +str(medium_iterations)+'x' \ +str(fine_iterations)+', '+str(convergence)+', 5 ]' reg = reg + ' --smoothing-sigmas 9.0x6.0x3.0x1.0x0.0' reg = reg + ' --shrink-factors 16x8x4x2x1' reg = reg + ' --use-histogram-matching 0' #reg = reg + ' --winsorize-image-intensities [ 0.001, 0.999 ]' if run_rigid is False and run_affine is False and run_syn is False: reg = reg + ' --transform Rigid[0.1]' for idx,img in enumerate(srcfiles): reg = reg + ' --metric CC['+trgfiles[idx]+', '+srcfiles[idx] \ +', '+'{:.3f}'.format(weight)+', 5, Random, 0.3 ]' reg = reg + ' --convergence [ 0x0x0, 1.0, 2 ]' reg = reg + ' --smoothing-sigmas 3.0x2.0x1.0' reg = reg + ' --shrink-factors 4x2x1' reg = reg + ' --use-histogram-matching 0' #reg = reg + ' --winsorize-image-intensities [ 0.001, 0.999 ]' reg = reg + ' --write-composite-transform 0' # run the ANTs command directly print(reg) try: subprocess.check_output(reg, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: msg = 'execution failed (error code '+str(e.returncode)+')\n Output: '+str(e.output) raise subprocess.CalledProcessError(msg) # output file names results = sorted(glob(prefix+'*')) forward = [] flag = [] for res in results: if res.endswith('GenericAffine.mat'): forward.append(res) flag.append(False) elif res.endswith('Warp.nii.gz') and not res.endswith('InverseWarp.nii.gz'): forward.append(res) flag.append(False) #print('forward transforms: '+str(forward)) inverse = [] linear = [] for res in results[::-1]: if res.endswith('GenericAffine.mat'): inverse.append(res) linear.append(True) elif res.endswith('InverseWarp.nii.gz'): inverse.append(res) linear.append(False) #print('inverse transforms: '+str(inverse)) #transform input (for checking) # src_at = 'antsApplyTransforms --dimensionality 3 --input-image-type 3' # src_at = src_at+' --input '+source.get_filename() # src_at = src_at+' --reference-image '+target.get_filename() # src_at = src_at+' --interpolation Linear' # for idx,transform in enumerate(forward): # if flag[idx]: # src_at = src_at+' --transform ['+transform+', 1]' # else: # src_at = src_at+' --transform ['+transform+', 0]' # src_at = src_at+' --output '+mapping_file # # print(src_at) # try: # subprocess.check_output(src_at, shell=True, stderr=subprocess.STDOUT) # except subprocess.CalledProcessError as e: # msg = 'execution failed (error code '+e.returncode+')\n Output: '+e.output # raise subprocess.CalledProcessError(msg) # Create forward coordinate mapping src_coord = numpy.zeros((nsx,nsy,nsz,3)) src_coord[:,:,:,0] = numpy.expand_dims(numpy.expand_dims(numpy.array(range(nsx)),1),2) \ *numpy.ones((1,nsy,1))*numpy.ones((1,1,nsz)) src_coord[:,:,:,1] = numpy.ones((nsx,1,1))*numpy.expand_dims(numpy.expand_dims(numpy.array(range(nsy)),0),2) \ *numpy.ones((1,1,nsz)) src_coord[:,:,:,2] = numpy.ones((nsx,1,1))*numpy.ones((1,nsy,1)) \ *numpy.expand_dims(numpy.expand_dims(numpy.array(range(nsz)),0),1) src_map = nibabel.Nifti1Image(src_coord, source.affine, source.header) src_map_file = os.path.join(output_dir, _fname_4saving(module=__name__,file_name=file_name, rootfile=source_surface, suffix='tmp_srccoord')) save_volume(src_map_file, src_map) src_at = 'antsApplyTransforms --dimensionality 3 --input-image-type 3' src_at = src_at+' --input '+src_map.get_filename() src_at = src_at+' --reference-image '+target.get_filename() src_at = src_at+' --interpolation Linear' for idx,transform in enumerate(forward): if flag[idx]: src_at = src_at+' --transform ['+transform+', 1]' else: src_at = src_at+' --transform ['+transform+', 0]' src_at = src_at+' --output '+mapping_file print(src_at) try: subprocess.check_output(src_at, shell=True, stderr=subprocess.STDOUT) except subprocess.CalledProcessError as e: msg = 'execution failed (error code '+e.returncode+')\n Output: '+e.output raise subprocess.CalledProcessError(msg) # uncrop if needed if crop: orig = load_volume(target_surface) nx = orig.header.get_data_shape()[X] ny = orig.header.get_data_shape()[Y] nz = orig.header.get_data_shape()[Z] coord = -numpy.ones((nx,ny,nz,3)) mapping = load_volume(mapping_file).get_data() coord[trg_xmin:trg_xmax+1, trg_ymin:trg_ymax+1, trg_zmin:trg_zmax+1, 0] = mapping[:,:,:,0] + src_xmin coord[trg_xmin:trg_xmax+1, trg_ymin:trg_ymax+1, trg_zmin:trg_zmax+1, 1] = mapping[:,:,:,1] + src_ymin coord[trg_xmin:trg_xmax+1, trg_ymin:trg_ymax+1, trg_zmin:trg_zmax+1, 2] = mapping[:,:,:,2] + src_zmin coord_img = nibabel.Nifti1Image(coord, orig.affine, orig.header) save_volume(mapping_file, coord_img) # Create backward coordinate mapping trg_coord = numpy.zeros((ntx,nty,ntz,3)) trg_coord[:,:,:,0] = numpy.expand_dims(numpy.expand_dims(numpy.array(range(ntx)),1),2) \ *numpy.ones((1,nty,1))*numpy.ones((1,1,ntz)) trg_coord[:,:,:,1] = numpy.ones((ntx,1,1))*numpy.expand_dims(numpy.expand_dims(numpy.array(range(nty)),0),2) \ *numpy.ones((1,1,ntz)) trg_coord[:,:,:,2] = numpy.ones((ntx,1,1))*
numpy.ones((1,nty,1))
numpy.ones
import os import pickle import matplotlib.collections as mcoll import matplotlib.path as mpath import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from preprocessing.classes.base.Generator import Generator class ScanPathsGenerator(Generator): def __init__(self): super().__init__("scanpaths") self.__use_temp_grad = self._params["temporal_gradient"] self.__paths_to_sequences = self._paths.create_paths(self._params["path_to_src"]) self.__paths_to_scan_paths = self._paths.create_paths(self._params["path_to_dest"]) def __generate(self, path_to_src: str, path_to_destination: str): sequences_files = os.listdir(path_to_src) for file_name in tqdm(sequences_files, desc="Generating scan-paths at {}".format(path_to_destination)): item = pickle.load(open(os.path.join(path_to_src, file_name), "rb")).values # Filter out NaN item = item[item[:, 0] != -1.0] # Take "GazePointX (ADCSpx)" and "GazePointY (ADCSpx)" x, y = item[:, 4], item[:, 5] if self.__use_temp_grad: _, _ = plt.subplots() self.__color_lines(x, y) plt.scatter(x, y, c="k", s=1, vmin=0, vmax=1050, alpha=0.0) else: plt.scatter(x, y, vmin=0, vmax=1050) plt.plot(x, y) plt.axis('off') plt.savefig(os.path.join(path_to_destination, file_name.replace("pkl", "png")), bbox_inches='tight') plt.clf() @staticmethod def __color_lines(x: np.ndarray, y: np.ndarray): path = mpath.Path(
np.column_stack([x, y])
numpy.column_stack
# -*- coding: utf-8 -*- """ Created on Sun Dec 20 18:43:11 2020 @author: Christian """ import numpy as np from .solutionClass import Individual # ============================================================================= # Fitness functions # ============================================================================= def basicFitness(individual, env): """ The trivial case, where fitness is just the result of passing through the environment. """ return individual.result # ============================================================================= # Rank populations # ============================================================================= """ Thes functions are used to rank the score of individuals within a population. """ def rankFitness(scores, Npop): """ Assign a rank to each item in the population, with low scores being assigned the first rank. [0, 1, 100, 20, 0.1, 5] - > [0, 2, 5, 4, 1, 3] Parameters ---------- scores : list A list of input scores input scores. Npop : int THe number of individuals in the population. Returns ------- float The ranks in order of lowest output to highest output. """ populationRanks = np.zeros(Npop) # sort the array, then create an array of ranks sortedIndexes = scores.argsort() populationRanks[sortedIndexes] = np.arange(Npop) return populationRanks def rankFitnessInversed(scores, Npop): """ Assign a rank to each item in the population, with high scores being assigned the highest rank. [0, 1, 100, 20, 0.1, 5] - > [5, 3, 0, 1, 4, 2] Parameters ---------- scores : list A list of input scores input scores. Npop : int THe number of individuals in the population. Returns ------- float The ranks in order of highest output to lowest output. """ ranks = rankFitness(scores, Npop) return Npop - ranks # ============================================================================= # # ============================================================================= """ Ranked Fitness probabilities Defines the probability that a parent is chosen. probabilities are represented as a cumulative distrtibution Defines the likilhood a gene is chosen for reproduction. The input scores can have any positive values. Each point in the output array has width equal to the liklihood of it being chosen. """ def _parseStrategyInputs(strategy): """ Parses the inputs. If a integer is passed in, we sleect the appropriate strategy. Otherwise we pass in the custom strategy directly """ crossoverStrategies = {0:rankedRouletteFitnessProbs, 1:rouletteFitnessProbs, } if isinstance(strategy, int): if strategy not in crossoverStrategies.keys(): raise Exception('Invalid strategy Index Provided') crossoverStrategy = crossoverStrategies[strategy] elif callable(strategy): crossoverStrategy = strategy return crossoverStrategy def getProbStrategy(strategy = 0): """ A functions that returns the desired probability defintion function. It is possible to choose from a set of predefined functions, or use a custom function. When chosing from predefined functions, an integer is passed. Custom probability functions will returna cumulative distribution for a set of input individuals. Parameters ---------- crossoverStrategy : int, optional, or function The cross over strategy to use. The current strategies supported are 0: rankedRouletteFitnessProbs 1: rouletteFitnessProbs The default is rankedRouletteFitnessProbs. Returns ------- probabilityFunction: function The function used to define the cumulative distribution for a set of scores in the population. """ return _parseStrategyInputs(strategy) def rankedRouletteFitnessProbs(scores): """ Assigns probabilities of being chosen to a set of scores, based on the rank of each score in the population. The probability of each selection is assigned with the goal of minimizing the input score. Parameters ---------- scores : list The input fitness/score of each individual after it's passed through the environment and processed by the fitness function. Returns ------- probs : list The output cumulative distribution is for the scores. """ Npop = len(scores) populationRanks = rankFitness(scores, Npop) wheelAreas = Npop - populationRanks cumulativeFitness = np.cumsum(wheelAreas) probs = cumulativeFitness / cumulativeFitness[-1] return probs def rouletteFitnessProbs(scores): """ Assigns probabilities of being chosen to a set of scores, based on the score of each individual in the population. The probability of each selection is assigned with the goal of minimizing the input score. Parameters ---------- scores : list The input fitness/score of each individual after it's passed through the environment and processed by the fitness function. Returns ------- probs : list The output cumulative distribution is for the scores. """ Npop = len(scores) populationRanks = rankFitness(scores, Npop) wheelAreas = Npop - populationRanks cumulativeFitness = np.cumsum(wheelAreas) probs = cumulativeFitness / cumulativeFitness[-1] return probs def pick_Individual(population, probs): """ Select a member of the population at random depending on a input cumulative probability distribution. Parameters ---------- population : list The input population of individuals. probs : array The cumulative probability distribution for the population. Returns ------- selection : individual The selected individual from the population. """ # rand =
np.random.random()
numpy.random.random
import time, os, csv, random import cma import numpy as np import pandas as pd from scipy.linalg import cholesky from numpy.linalg import LinAlgError from numpy.random import standard_normal from sklearn.decomposition import PCA from copy import deepcopy import matplotlib.pyplot as plt from nevergrad.functions import corefuncs import tensorflow as tf def output_data(filename, data): file = open(filename, 'w', newline='', encoding='utf-8') csv_writer = csv.writer(file, delimiter='\n', quotechar=' ', quoting=csv.QUOTE_MINIMAL) csv_writer.writerow(data) file.close() # Vanilla ES framework to estimate gradients def es_compute_grads(x, loss_fn, sigma=0.01, pop_size=10): grad = 0 for i in range(pop_size): noise = sigma / np.sqrt(len(x)) * np.random.randn(1, len(x)) noise = noise.reshape(x.shape) grad += noise * (loss_fn(x + noise) - loss_fn(x - noise)) g_hat = grad / (2 * pop_size * sigma ** 2) return g_hat # Using Vanilla ES to estimate the gradient. def es(x_init, loss_fn, lr=0.2, sigma=0.01, pop_size=10, max_samples=int(1e5)): x = deepcopy(x_init) xs, ys, ts, errors = [0], [loss_fn(x)], [0.], [0.] total_sample, current_iter = 0, 0 while total_sample < max_samples: time_st = time.time() g_hat = es_compute_grads(x, loss_fn, sigma=sigma, pop_size=pop_size) errors.append(np.dot(2*x, g_hat)/(np.linalg.norm(2*x) *
np.linalg.norm(g_hat)
numpy.linalg.norm
import numpy as np from collections import defaultdict from collections import OrderedDict import heapq def measure_k(probs, true_ys, k_list=[1, 3, 5]): max_k = np.max(k_list) num_samples = np.size(true_ys, 0) precision_k = defaultdict(float) dgg_k = defaultdict(float) ndgg_k = defaultdict(float) for i in range(num_samples): prob = probs[i, :] true_y = true_ys[i, :] prob = list(zip(prob, range(len(prob)))) max_k_largest_index = [x[1] for x in heapq.nlargest(max_k, prob, key=lambda x: x[0])] for k in k_list: precision_k[k] += np.sum(true_y[max_k_largest_index[0:k]])/k dgg_k[k] += np.sum(true_y[max_k_largest_index[0:k]] / np.log2(2+np.arange(k))) for k in k_list: precision_k[k] /= num_samples dgg_k[k] /= num_samples ndgg_k[k] = dgg_k[k] / np.sum(1/np.log2(2+np.arange(k))) return precision_k, dgg_k, ndgg_k def measure_b(pred_b, y): epsilon = 1e-9 #micro tp = np.sum(np.logical_and(pred_b, y)) fp = np.sum(np.logical_and(pred_b, np.logical_not(y))) fn = np.sum(np.logical_and(np.logical_not(pred_b), y)) micro_p = tp/(tp+fp+epsilon) micro_r = tp/(tp+fn+epsilon) micor_f1 = 2*micro_p*micro_r/(micro_p+micro_r) #marco tp = np.sum(np.logical_and(pred_b, y), 0) fp = np.sum(np.logical_and(pred_b, np.logical_not(y)), 0) fn = np.sum(np.logical_and(np.logical_not(pred_b), y), 0) marco_p = np.mean(tp/(tp+fp+epsilon)) marco_r = np.mean(tp/(tp+fn+epsilon)) marco_f1 = 2*marco_p*marco_r/(marco_p+marco_r) #Example based measures hamming_loss = np.mean(np.logical_xor(pred_b, y)) accuracy = np.mean(np.sum(np.logical_and(pred_b, y), 1)/np.sum(np.logical_or(pred_b, y), 1)) precision = np.mean(np.sum(np.logical_and(pred_b, y), 1)/np.sum(pred_b, 1)) recall = np.mean(np.sum(
np.logical_and(pred_b, y)
numpy.logical_and
import pickle from collections import OrderedDict import numpy as np import numpy.linalg as npl from sgr_analysis.analysis_utils import read_snapshot_file from sgr_analysis.parse_outputs_snapshot_method_dependence import methods from sgr_analysis.parse_outputs_snapshot_method_dependence import basis_sets import matplotlib as mpl mpl.use("Agg") import matplotlib.pyplot as plt import matplotlib.cm as cm colors = OrderedDict([ ('blyp', 'blue'), ('tpss', 'cyan'), ('b3lyp', 'red'), ('wb97x-d', 'orange'), ('hf', 'black'), ('ri-mp2', 'grey'), ]) linestyles = OrderedDict([ ('6-31gdp', '-'), ('cc-pvtz', '--'), ]) def get_single_snapshot_results(snapnum, snapnums_dict, results_dict): """For a given snapshot number, get the single 'result' (frequency, intensity, dipole, etc.) corresponding to it, maintaining the original dictionary structure. """ single_dict = dict() assert snapnums_dict.keys() == results_dict.keys() for method in methods: assert snapnums_dict[method].keys() == results_dict[method].keys() single_dict[method] = dict() for basis_set in basis_sets: assert snapnums_dict[method][basis_set].keys() == results_dict[method][basis_set].keys() single_dict[method][basis_set] = dict() for n_qm in snapnums_dict[method][basis_set]: assert snapnums_dict[method][basis_set][n_qm].keys() == results_dict[method][basis_set][n_qm].keys() single_dict[method][basis_set][n_qm] = dict() for n_mm in snapnums_dict[method][basis_set][n_qm]: if len(snapnums_dict[method][basis_set][n_qm][n_mm]) > 0: idx = snapnums_dict[method][basis_set][n_qm][n_mm].index(snapnum) single_result = results_dict[method][basis_set][n_qm][n_mm][idx] single_dict[method][basis_set][n_qm][n_mm] = single_result return single_dict def plot_single_snapshot_dipoles(snapnum, snapnums_d, dipoles, inp_fig=None, inp_ax=None): """Plot the dipole moment of a single snapshot as a function of its method and basis set. """ dipoles_snap = get_single_snapshot_results(snapnum, snapnums_d, dipoles) fig, ax = plt.subplots() if inp_fig: fig = inp_fig if inp_ax: ax = inp_ax for basis_set in basis_sets: plot_list = [npl.norm(dipoles_snap[method][basis_set][0][0]) for method in methods] ax.plot(ticks_methods, plot_list, label=basis_sets[basis_set], marker='o') if not inp_ax: ax.tick_params(direction='out', top='off', right='off') ax.set_xticklabels(xticklabels_methods) ax.set_xlabel('method', fontsize='large') ax.set_ylabel("total dipole moment (Debye)", fontsize='large') ax.set_title("snapshot {}".format(snapnum), fontsize='large') ax.legend(loc='best', fancybox=True, framealpha=0.50) if not inp_fig: filename = 'dipole_snap{}.pdf'.format(snapnum) print('Saving {}'.format(filename)) fig.savefig(filename, bbox_inches='tight') plt.close(fig) return def plot_single_snapshot_frequencies(snapnum, snapnums_f, frequencies, inp_fig=None, inp_ax=None): """Plot the CO2 v3 frequency of a single snapshot as a function of its method and basis set. """ frequencies_snap = get_single_snapshot_results(snapnum, snapnums_f, frequencies) fig, ax = plt.subplots() if inp_fig: fig = inp_fig if inp_ax: ax = inp_ax for basis_set in basis_sets: plot_list = [frequencies_snap[method][basis_set][0][0] for method in methods] ax.plot(ticks_methods, plot_list, label=basis_sets[basis_set], marker='o') if not inp_ax: ax.tick_params(direction='out', top='off', right='off') ax.set_xticklabels(xticklabels_methods) ax.set_xlabel('method', fontsize='large') ax.set_ylabel(r'$\nu_{3}$ frequency (cm$^{-1}$)', fontsize='large') ax.set_title("snapshot {}".format(snapnum), fontsize='large') ax.legend(loc='best', fancybox=True, framealpha=0.50) if not inp_fig: filename = 'frequency_snap{}.pdf'.format(snapnum) print('Saving {}'.format(filename)) fig.savefig(filename, bbox_inches='tight') plt.close(fig) return if __name__ == '__main__': # Read in the pickle files that contain all the raw data. with open('frequencies.pypickle', 'rb') as picklefile: frequencies = pickle.load(picklefile) with open('dipoles.pypickle', 'rb') as picklefile: dipoles = pickle.load(picklefile) with open('snapnums_frequencies.pypickle', 'rb') as picklefile: snapnums_f = pickle.load(picklefile) with open('snapnums_dipoles.pypickle', 'rb') as picklefile: snapnums_d = pickle.load(picklefile) ticks_methods = range(len(methods)) xticklabels_methods = list(methods[method] for method in methods) means_frequencies = [
np.mean(frequencies[method]['6-31gdp'][0][0])
numpy.mean
from __future__ import (absolute_import, division, print_function, unicode_literals) import os import warnings from matplotlib import __version__ from matplotlib.cbook import maxdict from matplotlib._pylab_helpers import Gcf from matplotlib.backend_bases import RendererBase, GraphicsContextBase,\ FigureManagerBase, FigureCanvasBase, register_backend from matplotlib.path import Path from matplotlib.figure import Figure from matplotlib.mathtext import MathTextParser from matplotlib.texmanager import TexManager import numpy as np import gr linetype = {'solid': 1, 'dashed': 2, 'dashdot': 4, 'dotted': 3} os.environ['GKS_DOUBLE_BUF'] = '1' class RendererGR(RendererBase): """ Handles drawing/rendering operations using GR """ texd = maxdict(50) # a cache of tex image rasters def __init__(self, dpi, width, height): self.dpi = dpi if __version__[0] >= '2': self.nominal_fontsize = 0.001625 default_dpi = 100 else: self.nominal_fontsize = 0.0013 default_dpi = 80 self.width = float(width) * dpi / default_dpi self.height = float(height) * dpi / default_dpi self.mathtext_parser = MathTextParser('agg') self.texmanager = TexManager() def configure(self): aspect_ratio = self.width / self.height if aspect_ratio > 1: rect = np.array([0, 1, 0, 1.0 / aspect_ratio]) self.size = self.width else: rect = np.array([0, aspect_ratio, 0, 1]) self.size = self.height mwidth, mheight, width, height = gr.inqdspsize() if width / (mwidth / 0.0256) < 200: mwidth *= self.width / width gr.setwsviewport(*rect * mwidth) else: gr.setwsviewport(*rect * 0.192) gr.setwswindow(*rect) gr.setviewport(*rect) gr.setwindow(0, self.width, 0, self.height) def draw_path(self, gc, path, transform, rgbFace=None): path = transform.transform_path(path) points = path.vertices codes = path.codes bbox = gc.get_clip_rectangle() if bbox is not None and not np.any(np.isnan(bbox.bounds)): x, y, w, h = bbox.bounds clrt = np.array([x, x + w, y, y + h]) else: clrt = np.array([0, self.width, 0, self.height]) gr.setviewport(*clrt / self.size) gr.setwindow(*clrt) if rgbFace is not None and len(points) > 2: color = gr.inqcolorfromrgb(rgbFace[0], rgbFace[1], rgbFace[2]) gr.settransparency(rgbFace[3]) gr.setcolorrep(color, rgbFace[0], rgbFace[1], rgbFace[2]) gr.setfillintstyle(gr.INTSTYLE_SOLID) gr.setfillcolorind(color) gr.drawpath(points, codes, fill=True) lw = gc.get_linewidth() if lw != 0: rgba = gc.get_rgb()[:4] color = gr.inqcolorfromrgb(rgba[0], rgba[1], rgba[2]) gr.settransparency(rgba[3]) gr.setcolorrep(color, rgba[0], rgba[1], rgba[2]) if isinstance(gc._linestyle, str): gr.setlinetype(linetype[gc._linestyle]) gr.setlinewidth(lw) gr.setlinecolorind(color) gr.drawpath(points, codes, fill=False) def draw_image(self, gc, x, y, im): if hasattr(im, 'as_rgba_str'): h, w, s = im.as_rgba_str() img = np.fromstring(s, np.uint32) img.shape = (h, w) elif len(im.shape) == 3 and im.shape[2] == 4 and im.dtype == np.uint8: img = im.view(np.uint32) img.shape = im.shape[:2] h, w = img.shape else: type_info = repr(type(im)) if hasattr(im, 'shape'): type_info += ' shape=' + repr(im.shape) if hasattr(im, 'dtype'): type_info += ' dtype=' + repr(im.dtype) warnings.warn('Unsupported image type ({}). Please report this at https://github.com/sciapp/python-gr/issues'.format(type_info)) return gr.drawimage(x, x + w, y + h, y, w, h, img) def draw_mathtext(self, x, y, angle, Z): h, w = Z.shape img = np.zeros((h, w), np.uint32) for i in range(h): for j in range(w): img[i, j] = (255 - Z[i, j]) << 24 a = int(angle) if a == 90: gr.drawimage(x - h, x, y, y + w, h, w, np.resize(np.rot90(img, 1), (h, w))) elif a == 180: gr.drawimage(x - w, x, y - h, y, w, h, np.rot90(img, 2)) elif a == 270: gr.drawimage(x, x + h, y - w, y, h, w, np.resize(np.rot90(img, 3), (h, w))) else: gr.drawimage(x, x + w, y, y + h, w, h, img) def draw_tex(self, gc, x, y, s, prop, angle, ismath='TeX!', mtext=None): size = prop.get_size_in_points() key = s, size, self.dpi, angle, self.texmanager.get_font_config() im = self.texd.get(key) if im is None: Z = self.texmanager.get_grey(s, size, self.dpi) Z = np.array(255.0 - Z * 255.0, np.uint8) self.draw_mathtext(x, y, angle, Z) def _draw_mathtext(self, gc, x, y, s, prop, angle): ox, oy, width, height, descent, image, used_characters = \ self.mathtext_parser.parse(s, self.dpi, prop) self.draw_mathtext(x, y, angle, 255 - np.asarray(image)) def draw_text(self, gc, x, y, s, prop, angle, ismath=False, mtext=None): if ismath: self._draw_mathtext(gc, x, y, s, prop, angle) else: x, y = gr.wctondc(x, y) fontsize = prop.get_size_in_points() rgba = gc.get_rgb()[:4] color = gr.inqcolorfromrgb(rgba[0], rgba[1], rgba[2]) gr.settransparency(rgba[3]) gr.setcolorrep(color, rgba[0], rgba[1], rgba[2]) gr.setcharheight(fontsize * self.nominal_fontsize) gr.settextcolorind(color) if angle != 0: gr.setcharup(-
np.sin(angle * np.pi/180)
numpy.sin
import matplotlib.pyplot as plt import matplotlib.colors as colors import matplotlib.patches as patch from matplotlib import ticker import numpy as np from astropy.io import fits from copy import copy from argparse import ArgumentParser parser = ArgumentParser(prog='Plot continuum', description='Free free emission from HII regions') parser.add_argument('-i', '--id', help='id of fits file to be plotted') args = parser.parse_args() if args.id is None: id = '' else: id = args.id tag = 'img_HII_env+disc_'+id #------------------ #LOADING DATA #------------------ if id: image_cont_349 = 'img_HII_env+disc-'+id+'.fits' else: image_cont_349 = 'img_HII_env+disc.fits' data_349, header_349 = fits.getdata(image_cont_349, header=True) if id == 'CONV_noise': pass else: data_349 = data_349[0] #------------------------- #RESOLUTION AND IMAGE SIZE #------------------------- distance = 4000 # parsecs x_lim = 4000 #AUs extent = [-x_lim, x_lim, -x_lim, x_lim] #----------- #CONT. DATA #----------- Npix_349 = header_349['NAXIS1'] resolution_349 = abs(header_349['CDELT1']) * 3600 # in arcsecs #x_lim = (round (Npix / 2.) - x_init) * resolution * distance x_inits = int(round (round (Npix_349 / 2.) - (x_lim / (resolution_349 * distance)) )) x_ends = Npix_349 - x_inits #----- #BEAM #----- header = header_349 i = 0 ellipse = 0 flag_beam = False try: if header['BMAJ']: pass a, b = np.array([header['BMAJ'] , header['BMIN']]) * 3600 * distance if id == 'CONV': f_c, e_c = 'gray', 'white' elif id == 'CONV_noise': f_c, e_c = 'black', 'white' ellipse = patch.Ellipse(xy = (-3500,-3500), angle = 90 + header['BPA'], width = a, height = b, linewidth = 1, fill = True, facecolor = f_c, edgecolor = e_c) flag_beam = True except KeyError: pass #----- #----- #----------------------------- #COLORS IN LIMITS OF COLORBARS #----------------------------- #Use copy so that we don't mutate the global colormap instance colormm = plt.cm.hot palette_hot = copy(colormm) palette_hot.set_over('red', 0.8)#colormm(255), 0.8) if id == 'CONV_noise': palette_hot.set_under('gray', 0.9)#colormm(0), 0.8) else: palette_hot.set_under('black', 1.0)#colormm(0), 0.8) colormm = plt.cm.cubehelix_r palette_helix = copy(colormm) palette_helix.set_over('black', 1)#colormm(255), 0.8) palette_helix.set_under('white', 1)#colormm(0), 0.8) #----------------------------- #----------------------------- #--------- #PLOTTING #--------- images = data_349 fig, ax = plt.subplots(nrows=1, ncols=1) #, figsize=(8, 4.5)) if id == 'CONV_noise': ax.set_facecolor('darkgray') else: ax.set_facecolor('black') im =
np.ones((3,3))
numpy.ones
import numpy as np import pdb import pywt ## This file is imported from the modwt wavelet transform provided at: ## https://github.com/pistonly/modwtpy ## It appears that pywavelet does not have the maximal ovalap discrete wavelet transform. def upArrow_op(li, j): if j == 0: return [1] N = len(li) li_n = np.zeros(2 ** (j - 1) * (N - 1) + 1) for i in range(N): li_n[2 ** (j - 1) * i] = li[i] return li_n def period_list(li, N): n = len(li) # append [0 0 ...] n_app = N - np.mod(n, N) li = list(li) li = li + [0] * n_app if len(li) < 2 * N: return np.array(li) else: li = np.array(li) li = np.reshape(li, [-1, N]) li = np.sum(li, axis=0) return li def circular_convolve_mra(h_j_o, w_j): ''' calculate the mra D_j''' N = len(w_j) l = np.arange(N) D_j = np.zeros(N) for t in range(N): index = np.mod(t + l, N) w_j_p = np.array([w_j[ind] for ind in index]) D_j[t] = (np.array(h_j_o) * w_j_p).sum() return D_j def circular_convolve_d(h_t, v_j_1, j): ''' jth level decomposition h_t: \tilde{h} = h / sqrt(2) v_j_1: v_{j-1}, the (j-1)th scale coefficients return: w_j (or v_j) ''' N = len(v_j_1) L = len(h_t) w_j = np.zeros(N) l = np.arange(L) for t in range(N): index = np.mod(t - 2 ** (j - 1) * l, N) v_p = np.array([v_j_1[ind] for ind in index]) w_j[t] = (np.array(h_t) * v_p).sum() return w_j def circular_convolve_s(h_t, g_t, w_j, v_j, j): ''' (j-1)th level synthesis from w_j, w_j see function circular_convolve_d ''' N = len(v_j) L = len(h_t) v_j_1 = np.zeros(N) l =
np.arange(L)
numpy.arange
import itertools import warnings from inspect import signature from timeit import default_timer from sklearn.preprocessing import normalize import dask import numpy as np try: import shap except: msg = "SHAP not found, therefore using SHAP-values for feature importance not available." warnings.warn(msg) shap = None from dask import delayed from networkx import NetworkXUnfeasible, find_cycle, topological_sort from sklearn.ensemble import ( ExtraTreesClassifier, ExtraTreesRegressor, RandomForestClassifier, RandomForestRegressor, ) from sklearn.impute import SimpleImputer from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from ..algo import ( evaluation, imputation, inference, inference_v3, new_inference, new_prediction, selection, vector_prediction, ) from ..algo.induction import base_induction_algorithm, expand_induction_algorithm from ..composition import CompositeModel, NewCompositeModel, o, x from ..graph import build_diagram, compose_all, get_targ, model_to_graph from ..utils import ( DESC_ENCODING, MISS_ENCODING, TARG_ENCODING, DecoratedDecisionTreeClassifier, DecoratedDecisionTreeRegressor, DecoratedRandomForestClassifier, DecoratedRandomForestRegressor, code_to_query, get_i_o, query_to_code, ) from ..visuals import save_diagram, show_diagram try: from xgboost import XGBClassifier as XGBC from xgboost import XGBRegressor as XGBR except: XGBC, XGBR = None, None try: from lightgbm import LGBMClassifier as LGBMC from lightgbm import LGBMRegressor as LGBMR except: LGBMC, LGBMR = None, None try: from catboost import CatBoostClassifier as CBC from catboost import CatBoostRegressor as CBR except: CBC, CBR = None, None try: from wekalearn import RandomForestClassifier as WLC from wekalearn import RandomForestRegressor as WLR except: WLC, WLR = None, None class Mercs(object): delimiter = "_" selection_algorithms = dict( default=selection.base_selection_algorithm, base=selection.base_selection_algorithm, random=selection.random_selection_algorithm, ) induction_algorithms = dict( base=base_induction_algorithm, default=base_induction_algorithm, expand=expand_induction_algorithm, ) classifier_algorithms = dict( DT=DecisionTreeClassifier, DDT=DecoratedDecisionTreeClassifier, RF=RandomForestClassifier, DRF=DecoratedRandomForestClassifier, XGB=XGBC, xgb=XGBC, weka=WLC, LGBM=LGBMC, lgbm=LGBMC, CB=CBC, extra=ExtraTreesClassifier, ) regressor_algorithms = dict( DT=DecisionTreeRegressor, DDT=DecoratedDecisionTreeRegressor, RF=RandomForestRegressor, DRF=DecoratedDecisionTreeRegressor, XGB=XGBR, xgb=XGBR, weka=WLR, LGBM=LGBMR, lgbm=LGBMR, CB=CBR, extra=ExtraTreesRegressor, ) prediction_algorithms = dict( mi=vector_prediction.mi, mrai=vector_prediction.mrai, it=vector_prediction.it, rw=vector_prediction.rw, ) inference_algorithms = dict( base=inference.base_inference_algorithm, dask=inference_v3.inference_algorithm, own=inference_v3.inference_algorithm, ) imputer_algorithms = dict( nan=imputation.nan_imputation, NAN=imputation.nan_imputation, NaN=imputation.nan_imputation, null=imputation.nan_imputation, NULL=imputation.nan_imputation, skl=imputation.skl_imputation, base=imputation.skl_imputation, default=imputation.skl_imputation, ) evaluation_algorithms = dict( base=evaluation.base_evaluation, default=evaluation.base_evaluation, dummy=evaluation.dummy_evaluation, ) # Used in parse kwargs to identify parameters. If this identification goes wrong, you are sending settings # somewhere you do not want them to be. So, this is a tricky part, and moreover hardcoded. In other words: # this is risky terrain, and should probably be done differently in the future. configuration_prefixes = dict( imputation={"imputation", "imp"}, induction={"induction", "ind"}, selection={"selection", "sel"}, prediction={"prediction", "pred", "prd"}, inference={"inference", "infr", "inf"}, classification={"classification", "classifier", "clf"}, regression={"regression", "regressor", "rgr"}, metadata={"metadata", "meta", "mtd"}, evaluation={"evaluation", "evl"}, ) def __init__( self, selection_algorithm="base", induction_algorithm="base", classifier_algorithm="DT", regressor_algorithm="DT", prediction_algorithm="mi", inference_algorithm="own", imputer_algorithm="default", evaluation_algorithm="default", random_state=42, **kwargs ): self.params = dict( selection_algorithm=selection_algorithm, induction_algorithm=induction_algorithm, classifier_algorithm=classifier_algorithm, regressor_algorithm=regressor_algorithm, prediction_algorithm=prediction_algorithm, inference_algorithm=inference_algorithm, imputer_algorithm=imputer_algorithm, evaluation_algorithm=evaluation_algorithm, random_state=random_state, ) self.params = {**self.params, **kwargs} self.random_state = random_state self.selection_algorithm = self.selection_algorithms[selection_algorithm] # N.b.: First try to look up the key. If the key is not found, we assume the algorithm itself was passed. self.classifier_algorithm = self.classifier_algorithms.get( classifier_algorithm, classifier_algorithm ) self.regressor_algorithm = self.regressor_algorithms.get( regressor_algorithm, regressor_algorithm ) self.prediction_algorithm = self.prediction_algorithms[prediction_algorithm] self.inference_algorithm = self.inference_algorithms[inference_algorithm] self.induction_algorithm = self.induction_algorithms[ induction_algorithm ] # For now, we only have one. self.imputer_algorithm = self.imputer_algorithms[imputer_algorithm] self.evaluation_algorithm = self.evaluation_algorithms[evaluation_algorithm] # Data-structures self.m_codes = np.array([]) self.m_list = [] self.c_list = [] self.g_list = [] self.i_list = [] self.m_fimps = np.array([]) self.m_score = np.array([]) self.FI = np.array([]) self.targ_ids = np.array([]) # Query-related things self.q_code = None self.q_desc_ids = None self.q_targ_ids = None self.q_diagram = None self.q_compose = None self.q_methods = [] # Configurations self.imp_cfg = self._default_config(self.imputer_algorithm) self.ind_cfg = self._default_config(self.induction_algorithm) self.sel_cfg = self._default_config(self.selection_algorithm) self.clf_cfg = self._default_config(self.classifier_algorithm) self.rgr_cfg = self._default_config(self.regressor_algorithm) self.prd_cfg = self._default_config(self.prediction_algorithm) self.inf_cfg = self._default_config(self.inference_algorithm) self.evl_cfg = self._default_config(self.evaluation_algorithm) self.configuration = dict( imputation=self.imp_cfg, induction=self.ind_cfg, selection=self.sel_cfg, classification=self.clf_cfg, regression=self.rgr_cfg, prediction=self.prd_cfg, inference=self.inf_cfg, ) # Collect all configs in one self._update_config(random_state=random_state, **kwargs) self.metadata = dict() self.model_data = dict() self._extra_checks_on_config() return def fit(self, X, y=None, m_codes=None, **kwargs): assert isinstance(X, np.ndarray) if y is not None: assert isinstance(y, np.ndarray) X = np.c_[X, y] tic = default_timer() self.metadata = self._default_metadata(X) self._update_metadata(**kwargs) self.i_list = self.imputer_algorithm(X, self.metadata.get("nominal_attributes")) # N.b.: `random state` parameter is in `self.sel_cfg` if m_codes is None: self.m_codes = self.selection_algorithm(self.metadata, **self.sel_cfg) else: self.m_codes = m_codes self.m_list = self.induction_algorithm( X, self.m_codes, self.metadata, self.classifier_algorithm, self.regressor_algorithm, self.clf_cfg, self.rgr_cfg, **self.ind_cfg ) self._filter_m_list_m_codes() self._consistent_datastructures() if self.imputer_algorithm == self.imputer_algorithms.get("nan"): # If you do no have imputers, you cannot use them as a baseline evaluation self.evl_cfg["consider_imputations"] = False self.m_score = self.evaluation_algorithm( X, self.m_codes, self.m_list, self.i_list, **self.evl_cfg ) toc = default_timer() self.model_data["ind_time"] = toc - tic self.metadata["n_component_models"] = len(self.m_codes) return def predict( self, X, q_code=None, inference_algorithm=None, prediction_algorithm=None, **kwargs ): # Update configuration if necessary if q_code is None: q_code = self._default_q_code() if inference_algorithm is not None: self._reconfig_inference(inference_algorithm=inference_algorithm) if prediction_algorithm is not None: self._reconfig_prediction( prediction_algorithm=prediction_algorithm, **kwargs ) # Adjust data self.q_code = q_code self.q_desc_ids, self.q_targ_ids, _ = code_to_query( self.q_code, return_list=True ) # Make query-diagram tic_prediction = default_timer() self.m_sel = self.prediction_algorithm( self.m_codes, self.m_fimps, self.m_score, q_code=self.q_code, **self.prd_cfg ) toc_prediction = default_timer() tic_diagram = default_timer() self.q_diagram = self._build_q_diagram(self.m_list, self.m_sel) toc_diagram = default_timer() tic_infalgo = default_timer() if isinstance(self.q_diagram, tuple): self.q_diagrams = self.q_diagram # for d in self.q_diagrams: # print(d.nodes) # self.c_list.append(self._build_q_model(X, d)) self.c_list = [self._build_q_model(X, d) for d in self.q_diagrams] self.c_sel = list(range(len(self.c_list))) self.c_diagram = self._build_q_diagram( self.c_list, self.c_sel, composition=True ) self.q_model = self._build_q_model(X, self.c_diagram) else: self.q_model = self._build_q_model(X, self.q_diagram) toc_infalgo = default_timer() tic_dask = default_timer() X = X[:, self.q_model.desc_ids] result = self.q_model.predict(X) toc_dask = default_timer() self.model_data["prd_time"] = toc_prediction - tic_prediction self.model_data["dia_time"] = toc_diagram - tic_diagram self.model_data["infalgo_time"] = toc_infalgo - tic_infalgo self.model_data["dsk_time"] = toc_dask - tic_dask self.model_data["inf_time"] = toc_dask - tic_prediction return result def get_params(self, deep=False): return self.params # Diagrams def _build_q_diagram(self, m_list, m_sel, composition=False): if isinstance(m_sel, tuple): diagrams = [ build_diagram( m_list, m_sel_instance, self.q_code, prune=True, composition=composition, ) for m_sel_instance in m_sel ] return tuple(diagrams) else: return build_diagram( m_list, m_sel, self.q_code, prune=True, composition=composition ) def show_q_diagram(self, kind="svg", fi=False, ortho=False, index=None, **kwargs): if isinstance(self.q_diagram, tuple) and index is None: return show_diagram(self.c_diagram, kind=kind, fi=fi, ortho=ortho, **kwargs) elif isinstance(self.q_diagram, tuple): return show_diagram( self.q_diagram[index], kind=kind, fi=fi, ortho=ortho, **kwargs ) else: return show_diagram(self.q_diagram, kind=kind, fi=fi, ortho=ortho, **kwargs) def save_diagram(self, fname=None, kind="svg", fi=False, ortho=False): return save_diagram(self.q_diagram, fname, kind=kind, fi=fi, ortho=ortho) # Inference def _build_q_model(self, X, diagram): try: self.inference_algorithm( diagram, self.m_list, self.i_list, self.c_list, X, self.metadata.get("nominal_attributes"), ) except NetworkXUnfeasible: cycle = find_cycle(self.q_diagram, orientation="original") msg = """ Topological sort failed, investigate diagram to debug. I will never be able to squeeze a prediction out of a diagram with a loop. Cycle was: {} """.format( cycle ) raise RecursionError(msg) n_component_models = self.metadata["n_component_models"] q_model = NewCompositeModel( diagram, nominal_attributes=self.metadata["nominal_attributes"], n_component_models=n_component_models, ) return q_model def _merge_q_models(self, q_models): q_diagram = build_diagram(self.c_list, self.c_sel, self.q_code, prune=True) return q_diagram def merge_models(self, q_models): types = self._get_types(self.metadata) walks = [ model_to_graph(m, types, idx=idx, composition=True) for idx, m in enumerate(q_models) ] q_diagram = compose_all(walks) filtered_nodes = self.filter_nodes(q_diagram) try: self.inference_algorithm(q_diagram, sorted_nodes=filtered_nodes) except NetworkXUnfeasible: cycle = find_cycle(q_diagram, orientation="original") msg = """ Topological sort failed, investigate diagram to debug. I will never be able to squeeze a prediction out of a diagram with a loop. Cycle was: {} """.format( cycle ) raise RecursionError(msg) q_model = CompositeModel(q_diagram) return q_diagram, q_model def _get_q_model(self, q_diagram, X): self._add_imputer_function(q_diagram) try: self.inference_algorithm(q_diagram, X=X) except NetworkXUnfeasible: cycle = find_cycle(q_diagram, orientation="original") msg = """ Topological sort failed, investigate diagram to debug. I will never be able to squeeze a prediction out of a diagram with a loop. Cycle was: {} """.format( cycle ) raise RecursionError(msg) q_model = CompositeModel(q_diagram) return q_model # Filter def _filter_m_list_m_codes(self): """Filtering out the failed models. This happens when TODO: EXPLAIN """ fail_m_idxs = [i for i, m in enumerate(self.m_list) if m is None] self.m_codes = np.delete(self.m_codes, fail_m_idxs, axis=0) self.m_list = [m for m in self.m_list if m is not None] return # Graphs def _consistent_datastructures(self, binary_scores=False): self._update_m_codes() self._update_m_fimps() return def _expand_m_list(self): self.m_list = list(itertools.chain.from_iterable(self.m_list)) return def _add_model(self, model, binary_scores=False): self.m_list.append(model) self._consistent_datastructures(binary_scores=binary_scores) return def _update_m_codes(self): self.m_codes = np.array( [ query_to_code( list(model.desc_ids), list(model.targ_ids), attributes=self.metadata["attributes"], ) for model in self.m_list ] ) return def _update_m_fimps(self): init = np.zeros(self.m_codes.shape) for m_idx, mod in enumerate(self.m_list): init[m_idx, list(mod.desc_ids)] = mod.feature_importances_ self.m_fimps = init return def _update_m_score(self, binary_scores=False): if binary_scores: self.m_score = (self.m_codes == TARG_ENCODING).astype(float) return # Imputer def _add_imputer_function(self, g): for n in g.nodes: if g.nodes[n]["kind"] == "imputation": idx = g.nodes[n]["idx"] f_1 = self._dummy_array # Artificial input f_2 = self.i_list[idx].transform # Actual imputation f_3 = np.ravel # Return a vector, not array g.nodes[n]["function"] = o(f_3, o(f_2, f_1)) return # Add ids @staticmethod def _add_ids(g, desc_ids, targ_ids): g.graph["desc_ids"] = set(desc_ids) g.graph["targ_ids"] = set(targ_ids) return g # Metadata def _default_metadata(self, X): if X.ndim != 2: X = X.reshape(-1, 1) n_rows, n_cols = X.shape types = [X[0, 0].dtype for _ in range(n_cols)] nominal_attributes = set( [att for att, typ in enumerate(types) if self._is_nominal(typ)] ) numeric_attributes = set( [att for att, typ in enumerate(types) if self._is_numeric(typ)] ) metadata = dict( attributes=set(range(n_cols)), n_attributes=n_cols, types=types, nominal_attributes=nominal_attributes, numeric_attributes=numeric_attributes, ) return metadata def _update_metadata(self, **kwargs): self._update_dictionary(self.metadata, kind="metadata", **kwargs) # Assure every attribute is `typed`: If not every attribute is here, set to numeric type (default) numeric = self.metadata["numeric_attributes"] nominal = self.metadata["nominal_attributes"] att_ids = self.metadata["attributes"] # All attributes should be accounted for and none should be double. if (len(nominal) + len(numeric) - len(att_ids)) != 0: numeric = att_ids - nominal self._update_dictionary( self.metadata, kind="metadata", numeric_attributes=numeric ) return # Configuration def _reconfig_prediction(self, prediction_algorithm="mi", **kwargs): self.prediction_algorithm = self.prediction_algorithms[prediction_algorithm] self.prd_cfg = self._default_config(self.prediction_algorithm) self.configuration["prediction"] = self.prd_cfg self._update_config(**kwargs) return def _reconfig_inference(self, inference_algorithm="own", **kwargs): self.inference_algorithm = self.inference_algorithms[inference_algorithm] self.inf_cfg = self._default_config(self.inference_algorithm) self.configuration["inference"] = self.inf_cfg self._update_config(**kwargs) return @staticmethod def _default_config(method): config = {} sgn = signature(method) for key, parameter in sgn.parameters.items(): if parameter.default is not parameter.empty: config[key] = parameter.default return config def _update_config(self, **kwargs): for kind in self.configuration: self._update_dictionary(self.configuration[kind], kind=kind, **kwargs) return def _extra_checks_on_config(self): self._check_xgb_single_target() return def _check_xgb_single_target(self): nb_targets = self.configuration["selection"]["nb_targets"] if nb_targets == 1: return None else: if ( self.classifier_algorithm is self.classifier_algorithms["XGB"] or self.regressor_algorithm is self.regressor_algorithms["XGB"] ): xgb = True else: xgb = False if xgb: msg = """ XGBoost cannot deal with multi-target outputs. Hence, the `nb_targets` parameter is automatically adapted to 1, so only single-target trees will be learned. Please take this into account. """ warnings.warn(msg) self.configuration["selection"]["nb_targets"] = 1 return def _parse_kwargs(self, kind="selection", **kwargs): prefixes = [e + self.delimiter for e in self.configuration_prefixes[kind]] parameter_map = { x.split(prefix)[1]: x for x in kwargs for prefix in prefixes if x.startswith(prefix) } return parameter_map def _update_dictionary(self, dictionary, kind=None, **kwargs): # Immediate matches overlap = set(dictionary).intersection(set(kwargs)) for k in overlap: dictionary[k] = kwargs[k] if kind is not None: # Parsed matches parameter_map = self._parse_kwargs(kind=kind, **kwargs) overlap = set(dictionary).intersection(set(parameter_map)) for k in overlap: dictionary[k] = kwargs[parameter_map[k]] return # Helpers def _filter_X(self, X): # Filter relevant input attributes if X.shape[1] != len(self.q_compose.desc_ids): indices = self._overlapping_indices( self.q_desc_ids, self.q_compose.desc_ids ) return X[:, indices] @staticmethod def _dummy_array(X): """ Return an array of np.nan, with the same number of rows as the input array. Parameters ---------- X: np.ndarray(), n_rows, n_cols = X.shape, We use the shape of X to deduce shape of our output. Returns ------- a: np.ndarray(), shape= (n_rows, 1) n_rows is the same as the number of rows as X. """ n_rows, _ = X.shape a = np.empty((n_rows, 1)) a.fill(np.nan) return a def _default_q_code(self): q_code =
np.zeros(self.metadata["n_attributes"])
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import math color = ['green', 'darkred', 'skyblue'] degree = [5, 10, 14] one = np.ones(15) noise = np.random.normal(loc=0.0, scale=0.04, size=20) x = np.linspace(0, 1, 20) x = np.random.permutation(x) #print("{}".format( x )) # training error and testing error for k in range(len(degree)): testX = x[15:] X = np.vstack([ np.power(x[:15], degree[k]), np.power(x[:15], degree[k]-1) ]) for i in range(degree[k]-2): X = np.vstack([ X, np.power(x[:15], degree[k]-2-i) ]) X = np.vstack([ X, one]) #print("{}".format( noise )) #print("{}".format( x )) #print("{}".format( one )) #print("{}".format( X )) #print("{}".format( X.shape )) #print("{}".format( testX )) y = np.add(np.sin(np.pi * x[:15] * 2), noise[:15]) #print("{}".format( y )) testY = np.add(np.sin(np.pi * x[15:] * 2), noise[15:]) #print("{}".format( testY )) Wlin = np.linalg.inv(X.dot(X.T)).dot(X).dot(y.T) #print("{}".format( Wlin )) c = 0 for i in range(degree[k]): c += np.power(x[:15], degree[k]-i) * Wlin[i] c += Wlin[degree[k]] d = 0 for i in range(degree[k]): d += np.power(x[15:], degree[k]-i) * Wlin[i] d += Wlin[degree[k]] trainError = math.pow( np.square(np.subtract( c, y )).mean(), 1/2 ) print("training error with degree {D} : {T}".format( D=degree[k],T=trainError )) testError = math.pow( np.square(np.subtract( d, testY )).mean(), 1/2 ) print("testing errors with degree {D} : {T}".format( D=degree[k],T=testError )) a = np.linspace(0, 1, 1000) b = 0 for i in range(degree[k]): b += np.power(a, degree[k]-i) * Wlin[i] b += Wlin[degree[k]] #b = np.power(a, 5) * Wlin[0] + np.power(a, 4) * Wlin[1] + np.power(a, 3) * Wlin[2] + np.power(a, 2) * Wlin[3] + a * Wlin[4] + Wlin[5] plt.plot(a, b, color = color[k]) plt.scatter(x[:15], y, color = 'blue') plt.scatter(x[15:], testY, color = 'yellow') plt.ylim(-2, 2) plt.title('Fitting plots for training error and testing error with degree - {}'.format(degree)) plt.xlabel("trainingPoint : blue , testingPoint : yellow\ngreen : degree-5 , darkred : degree-10 , skyblue : degree-14") plt.show() # cross-validation errors ( leave-one-out ) for k in range(len(degree)): sum = 0 for i in range(15): tmpX = np.delete(x[:15], i) validX = x[i] X = np.vstack([ np.power(tmpX, degree[k]), np.power(tmpX, degree[k]-1) ]) for j in range(degree[k]-2): X = np.vstack([ X, np.power(tmpX, degree[k]-2-j) ]) X = np.vstack([ X, one[:14]]) #print("{}".format( tmpX )) #print("{}".format( validX )) #print("{}".format( X )) tmpY = np.add(np.sin(np.pi * tmpX * 2), np.delete(noise[:15], i) ) #print("{}".format( tmpY )) validY = np.add(np.sin(np.pi * validX * 2), noise[i]) #print("{}".format( validY )) Wlin = np.linalg.inv(X.dot(X.T)).dot(X).dot(tmpY.T) #print("{}".format( Wlin )) d = 0 for j in range(degree[k]): d += np.power(validX, degree[k]-j) * Wlin[j] d += Wlin[degree[k]] crossError = np.abs(np.subtract( d, validY )) #print("{}".format( crossError )) sum += crossError a = np.linspace(0, 1, 1000) b = 0 for i in range(degree[k]): b +=
np.power(a, degree[k]-i)
numpy.power
# Copyright 2016-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import torch, numpy as np, glob, math, torch.utils.data, scipy.ndimage, multiprocessing as mp def make_data_loader(cfg, is_train, is_distributed=False, start_iter=0): scale = cfg.SPARSE3D.VOXEL_SCALE full_scale=cfg.SPARSE3D.VOXEL_FULL_SCALE val_reps = cfg.SPARSE3D.VAL_REPS batch_size = cfg.SOLVER.IMS_PER_BATCH dimension=3 # VALID_CLAS_IDS have been mapped to the range {0,1,...,19} VALID_CLASS_IDS = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39]) def get_files(split): import os cur_path = os.path.dirname(os.path.abspath(__file__)) dset_path = f'{cur_path}/ScanNetTorch' with open(f'{cur_path}/Benchmark_Small/scannetv1_{split}.txt') as f: scene_names = [l.strip() for l in f.readlines()] files = [f'{dset_path}/{scene}/{scene}_vh_clean_2.pth' for scene in scene_names] return files train,val=[],[] for x in torch.utils.data.DataLoader( get_files('train'), collate_fn=lambda x: torch.load(x[0]), num_workers=mp.cpu_count()): train.append(x) for x in torch.utils.data.DataLoader( get_files('val'), collate_fn=lambda x: torch.load(x[0]), num_workers=mp.cpu_count()): val.append(x) print('Training examples:', len(train)) print('Validation examples:', len(val)) #Elastic distortion blur0=np.ones((3,1,1)).astype('float32')/3 blur1=np.ones((1,3,1)).astype('float32')/3 blur2=
np.ones((1,1,3))
numpy.ones
try: from schwimmbad import SerialPool, MultiPool from functools import partial except: print('running without parallelization.') import numpy as np import os import time from astropy.table import Table import time import pylab as pl from IPython import display from .gp_sfh import * from .sed_fitter import * from .pre_grid import * from .priors import * def gen_pg_parallel(data_i, atlas_vals): fname, zval, priors, pg_folder, filter_list, filt_dir, N_pregrid = atlas_vals fname_full = fname + '_zval_%.0f_' %(zval*10000) + '_chunk_%.0f' %(data_i) generate_atlas(N_pregrid = N_pregrid, priors = priors, fname = fname_full, store=True, path=pg_folder, filter_list = filter_list, filt_dir = filt_dir, rseed = (N_pregrid * data_i + 1)) return def generate_atlas_in_parallel_chunking(zval, chunksize, nchunks, fname = 'temp_parallel_atlas', filter_list = 'filter_list_goodss.dat', filt_dir = 'internal', priors = [], z_bw = 0.05, pg_folder = 'parallel_atlases/'): N_pregrid = chunksize atlas_vals = [fname, zval, priors, pg_folder, filter_list, filt_dir, N_pregrid] time_start = time.time() try: with MultiPool() as pool: values = list(pool.map(partial(gen_pg_parallel,atlas_vals), data)) finally: print('Generated pregrid (%.0f chunks, %.0f sedsperchunk) at zval',zval) print('time taken: %.2f mins.' %((time.time()-time_start)/60)) # need to add code here to then concatenate chunks into a single file and delete the individual ones return def make_atlas_parallel(zval, atlas_params): """ Make a single atlas given a redshift value and a list of parameters (including a priors object). Atlas Params: [N_pregrid, priors, fname, store, path, filter_list, filt_dir, z_bw] """ # currently only works for photometry, change to include a variable list of atlas_kwargs N_pregrid, priors, fname, store, path, filter_list, filt_dir, z_bw = atlas_params priors.z_max = zval + z_bw/2 priors.z_min = zval - z_bw/2 fname = fname+'_zval_%.0f_' %(zval*10000) generate_atlas(N_pregrid = N_pregrid, priors = priors, fname = fname, store=True, path=path, filter_list = filter_list, filt_dir = filt_dir, rseed = int(zval*100000)) return def generate_atlas_in_parallel_zgrid(zgrid, atlas_params, dynamic_decouple = True): """ Make a set of atlases given a redshift grid and a list of parameters (including a priors object). Atlas Params: [N_pregrid, priors, fname, store, path, filter_list, filt_dir, z_bw] """ time_start = time.time() try: with MultiPool() as pool: values = list(pool.map(partial(make_atlas_parallel, atlas_params = atlas_params), zgrid)) finally: time_end = time.time() print('time taken [parallel]: %.2f min.' %((time_end-time_start)/60)) #------------------------------------------------------------------------------------ def fit_gals(gal_id, catvals): #if not fit_mask: if len(catvals) == 3: cat_seds, cat_errs, atlas = catvals fit_mask = [] elif len(catvals) == 4: cat_seds, cat_errs, fit_mask, atlas = catvals else: print('wrong number of arguments supplied to fitter') gal_sed = cat_seds[gal_id, 0:].copy() gal_err = cat_errs[gal_id, 0:].copy() #gal_err = cat_errs[gal_id, 0:].copy() + gal_sed*0.03 #gal_err = cat_errs[gal_id, 0:].copy() + gal_sed*0.1 #gal_err = cat_errs[gal_id, 0:].copy() + gal_sed*0.5 fit_likelihood, fit_norm_fac = evaluate_sed_likelihood(gal_sed,gal_err,atlas,fit_mask=fit_mask, zbest=None,deltaz=None) quants = get_quants(fit_likelihood, atlas, fit_norm_fac) return quants, fit_likelihood # try: # map_mstar = evaluate_MAP(atlas['mstar']+np.log10(fit_norm_fac), # np.exp(-fit_likelihood/2), # bins = np.arange(4,14,0.001), # smooth = 'kde', lowess_frac = 0.3, vb = False) # map_sfr = evaluate_MAP(atlas['sfr']+np.log10(fit_norm_fac), # np.exp(-fit_likelihood/2), # bins = np.arange(-6,4,0.001), # smooth = 'kde', lowess_frac = 0.3, vb = False) # return quants, fit_likelihood, map_mstar, map_sfr # except: # print('couldnt calculate MAP for galid: ',gal_id) # return quants, fit_likelihood, np.nan, np.nan def fit_catalog(fit_cat, atlas_path, atlas_fname, output_fname, N_pregrid = 10000, N_param = 3, z_bw = 0.05, f160_cut = 100, fit_mask = [], zgrid = [], sfr_uncert_cutoff = 2.0): cat_id, cat_zbest, cat_seds, cat_errs, cat_f160, cat_class_star = fit_cat #if not zgrid: if isinstance(zgrid, (np.ndarray)) == False: zgrid = np.arange(np.amin(cat_zbest),np.amax(cat_zbest),z_bw) fit_id = cat_id.copy() fit_logM_50 = np.zeros_like(cat_zbest) fit_logM_MAP = np.zeros_like(cat_zbest) fit_logM_16 = np.zeros_like(cat_zbest) fit_logM_84 = np.zeros_like(cat_zbest) fit_logSFRinst_50 = np.zeros_like(cat_zbest) fit_logSFRinst_MAP = np.zeros_like(cat_zbest) fit_logSFRinst_16 = np.zeros_like(cat_zbest) fit_logSFRinst_84 = np.zeros_like(cat_zbest) fit_logZsol_50 = np.zeros_like(cat_zbest) fit_logZsol_16 = np.zeros_like(cat_zbest) fit_logZsol_84 = np.zeros_like(cat_zbest) fit_Av_50 = np.zeros_like(cat_zbest) fit_Av_16 = np.zeros_like(cat_zbest) fit_Av_84 = np.zeros_like(cat_zbest) fit_zfit_50 = np.zeros_like(cat_zbest) fit_zfit_16 = np.zeros_like(cat_zbest) fit_zfit_84 = np.zeros_like(cat_zbest) fit_logMt_50 = np.zeros_like(cat_zbest) fit_logMt_16 = np.zeros_like(cat_zbest) fit_logMt_84 = np.zeros_like(cat_zbest) fit_logSFR100_50 = np.zeros_like(cat_zbest) fit_logSFR100_16 = np.zeros_like(cat_zbest) fit_logSFR100_84 = np.zeros_like(cat_zbest) fit_nparam = np.zeros_like(cat_zbest) fit_t25_50 = np.zeros_like(cat_zbest) fit_t25_16 = np.zeros_like(cat_zbest) fit_t25_84 = np.zeros_like(cat_zbest) fit_t50_50 = np.zeros_like(cat_zbest) fit_t50_16 = np.zeros_like(cat_zbest) fit_t50_84 = np.zeros_like(cat_zbest) fit_t75_50 = np.zeros_like(cat_zbest) fit_t75_16 = np.zeros_like(cat_zbest) fit_t75_84 = np.zeros_like(cat_zbest) fit_nbands = np.zeros_like(cat_zbest) fit_f160w = np.zeros_like(cat_zbest) fit_stellarity = np.zeros_like(cat_zbest) fit_chi2 = np.zeros_like(cat_zbest) fit_flags = np.zeros_like(cat_zbest) for i in (range(len(zgrid))): print('loading atlas at', zgrid[i]) # for a given redshift slice, zval = zgrid[i] # select the galaxies to be fit z_mask = (cat_zbest < (zval + z_bw/2)) & (cat_zbest > (zval - z_bw/2)) & (cat_f160 < f160_cut) fit_ids = np.arange(len(cat_zbest))[z_mask] # for gal_id in fit_ids: # gal_sed = cat_seds[gal_id, 0:] # gal_err = cat_errs[gal_id, 0:] # fit_likelihood, fit_norm_fac = evaluate_sed_likelihood(gal_sed,gal_err,atlas,fit_mask=[], # zbest=None,deltaz=None) # quants = get_quants(fit_likelihood, atlas, fit_norm_fac) print('starting parallel fitting for Ngals = ',len(fit_ids),' at redshift ', str(zval)) try: # load the atlas fname = atlas_fname+'_zval_%.0f_' %(zgrid[i]*10000) atlas = load_atlas(fname, N_pregrid, N_param = N_param, path = atlas_path) print('loaded atlas') with MultiPool() as pool: # note: Parallel doesn't work in Python2.6 # if not fit_mask: if isinstance(fit_mask, np.ndarray) == False: all_quants = list(pool.map(partial(fit_gals, catvals=(cat_seds, cat_errs, atlas)), fit_ids)) else: all_quants = list(pool.map(partial(fit_gals, catvals=(cat_seds, cat_errs, fit_mask, atlas)), fit_ids)) print('finished fitting parallel zbest chunk at z=%.3f' %zval) print('starting to put values in arrays') for ii, gal_id in enumerate(fit_ids): gal_sed = cat_seds[gal_id, 0:] gal_err = cat_errs[gal_id, 0:] quants = all_quants[ii][0] fit_likelihood = all_quants[ii][1] # fit_logM_MAP[gal_id] = all_quants[ii][2] # fit_logSFRinst_MAP[gal_id] = all_quants[ii][3] fit_logM_50[gal_id] = quants[0][0] fit_logM_16[gal_id] = quants[0][1] fit_logM_84[gal_id] = quants[0][2] fit_logSFRinst_50[gal_id] = quants[1][0] fit_logSFRinst_16[gal_id] = quants[1][1] fit_logSFRinst_84[gal_id] = quants[1][2] fit_Av_50[gal_id] = quants[2][0] fit_Av_16[gal_id] = quants[2][1] fit_Av_84[gal_id] = quants[2][2] fit_logZsol_50[gal_id] = quants[3][0] fit_logZsol_16[gal_id] = quants[3][1] fit_logZsol_84[gal_id] = quants[3][2] fit_zfit_50[gal_id] = quants[4][0] fit_zfit_16[gal_id] = quants[4][1] fit_zfit_84[gal_id] = quants[4][2] fit_logMt_50[gal_id] = quants[5][0][0] fit_logMt_16[gal_id] = quants[5][1][0] fit_logMt_84[gal_id] = quants[5][2][0] fit_logSFR100_50[gal_id] = quants[5][0][1] fit_logSFR100_16[gal_id] = quants[5][1][1] fit_logSFR100_84[gal_id] = quants[5][2][1] fit_nparam[gal_id] = quants[5][0][2] fit_t25_50[gal_id] = quants[5][0][3] fit_t25_16[gal_id] = quants[5][1][3] fit_t25_84[gal_id] = quants[5][2][3] fit_t50_50[gal_id] = quants[5][0][4] fit_t50_16[gal_id] = quants[5][1][4] fit_t50_84[gal_id] = quants[5][2][4] fit_t75_50[gal_id] = quants[5][0][5] fit_t75_16[gal_id] = quants[5][1][5] fit_t75_84[gal_id] = quants[5][2][5] fit_nbands[gal_id] = np.sum(gal_sed>0) fit_f160w[gal_id] = cat_f160[gal_id] fit_stellarity[gal_id] = cat_class_star[gal_id] fit_chi2[gal_id] = np.amin(fit_likelihood) # flagging galaxies that either # 1. have nan values for mass # 2. have SFR uncertainties > sfr_uncert_cutoff # 3. are flagged as a star # 4. have extremely large chi2 if
np.isnan(quants[0][0])
numpy.isnan
__package__ = "valkyrie_gym_env" import scipy import os, inspect, time from pybullet_utils.bullet_client import BulletClient currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) os.sys.path.insert(0, parentdir) # from rllab.envs.pybullet.valkyrie_multi_env.utils.util import quat_to_rot, rotX, rotY, rotZ from b3px_gym.b3px_env.parallel.util import quat_to_rot, rotX, rotY, rotZ import gym import copy from gym import spaces from gym.utils import seeding import numpy as np import time import pybullet as pybullet import math from b3px_gym.b3px_env.singleton.valkyrie_gym_env.filter import FilterClass, KalmanFilter, BinaryFilter from b3px_gym.b3px_env.singleton.valkyrie_gym_env.PD_controller import PDController from b3px_gym.b3px_env.singleton.valkyrie_gym_env.sensor_signal_process import calCOP class Valkyrie(gym.Env): metadata = { 'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50 } # def __del__(self): # self._p.disconnect() def __init__(self, max_time=16, # in seconds initial_gap_time=0.01, # in seconds isEnableSelfCollision=False, renders=False, Kp_scale=None, Kd_scale=None, planeId=None, fixed_base=False, time_step=0.005, frame_skip=8, scaling_factor = 1.0, margin_in_degree=1000., # if > 90. then read from urdf useFullDOF=True, regularise_action=True ): self.Kp_scale = dict([ ("rightShoulderPitch", 1), ("rightShoulderRoll", 1), ("rightShoulderYaw", 1), ("rightElbowPitch", 1), ("leftShoulderPitch", 1), ("leftShoulderRoll", 1), ("leftShoulderYaw", 1), ("leftElbowPitch", 1), ("torsoYaw", 1), ("torsoPitch", 1), ("torsoRoll", 1), ("leftHipYaw", 1), ("leftHipRoll", 1), ("leftHipPitch", 1), ("leftKneePitch", 2), ("leftAnklePitch", 2), ("leftAnkleRoll", 1), ("rightHipYaw", 1), ("rightHipRoll", 1), ("rightHipPitch", 1), ("rightKneePitch", 2), ("rightAnklePitch", 2), ("rightAnkleRoll", 1), ]) if Kp_scale is None else Kp_scale self.Kd_scale = dict([ ("rightShoulderPitch", 1), ("rightShoulderRoll", 1), ("rightShoulderYaw", 1), ("rightElbowPitch", 1), ("leftShoulderPitch", 1), ("leftShoulderRoll", 1), ("leftShoulderYaw", 1), ("leftElbowPitch", 1), ("torsoYaw", 1), ("torsoPitch", 1), ("torsoRoll", 1), ("leftHipYaw", 1), ("leftHipRoll", 1), ("leftHipPitch", 1), ("leftKneePitch", 1), ("leftAnklePitch", 1), ("leftAnkleRoll", 1), ("rightHipYaw", 1), ("rightHipRoll", 1), ("rightHipPitch", 1), ("rightKneePitch", 1), ("rightAnklePitch", 1), ("rightAnkleRoll", 1), ]) if Kd_scale is None else Kd_scale self.regularise_action = regularise_action self.useFullDOF= useFullDOF self.timestep = time_step self.frame_skip=frame_skip self.robot_loaded = False self.fixed_base = fixed_base self.planeID = planeId self.jointIdx = {} self.jointNameIdx = {} self.jointLowerLimit = [] self.jointUpperLimit = [] self.total_mass = 0.0 # self._p = p # self._seed() self._envStepCounter = 0 self._renders = renders self._p = BulletClient(connection_mode=pybullet.DIRECT) if not renders else BulletClient(connection_mode=pybullet.GUI) if self.useFullDOF: self.controlled_joints = [ "rightShoulderPitch", "rightShoulderRoll", "rightShoulderYaw", "rightElbowPitch", "leftShoulderPitch", "leftShoulderRoll", "leftShoulderYaw", "leftElbowPitch", "torsoYaw", "torsoPitch", "torsoRoll", "rightHipYaw", "rightHipRoll", "rightHipPitch", "rightKneePitch", "rightAnklePitch", "rightAnkleRoll", "leftHipYaw", "leftHipRoll", "leftHipPitch", "leftKneePitch", "leftAnklePitch", "leftAnkleRoll", ] else: self.controlled_joints = [ "rightHipPitch", "rightKneePitch", "rightAnklePitch", "leftHipPitch", "leftKneePitch", "leftAnklePitch", ] self.nu = len(self.controlled_joints) self.r = -1 self.PD_freq = 1/(self.timestep*self.frame_skip) self.Physics_freq = 1/self.timestep self._actionRepeat = int(self.Physics_freq/self.PD_freq) self._dt_physics = (1./ self.Physics_freq) self._dt_PD = (1. / self.PD_freq) self._dt = self._dt_physics # PD control loop timestep self._dt_filter = self._dt_PD #filter time step self.g = 9.81 self.joint_states = {} self.u_max = dict([("torsoYaw", 190), ("torsoPitch", 150), ("torsoRoll", 150), ("rightShoulderPitch", 190), ("rightShoulderRoll", 190), ("rightShoulderYaw", 65), ("rightElbowPitch", 65), ("rightForearmYaw", 26), ("rightWristRoll", 14), ("rightWristPitch", 14), ("leftShoulderPitch", 190), ("leftShoulderRoll", 190), ("leftShoulderYaw", 65), ("leftElbowPitch", 65), ("leftForearmYaw", 26), ("leftWristRoll", 14), ("leftWristPitch", 14), ("rightHipYaw", 190), ("rightHipRoll", 350), ("rightHipPitch", 350), ("rightKneePitch", 350), ("rightAnklePitch", 205), ("rightAnkleRoll", 205), ("leftHipYaw", 190), ("leftHipRoll", 350), ("leftHipPitch", 350), ("leftKneePitch", 350), ("leftAnklePitch", 205), ("leftAnkleRoll", 205), ("lowerNeckPitch", 50), ("upperNeckPitch", 50), ("neckYaw", 50)]) self.v_max = dict([("torsoYaw", 5.89), ("torsoPitch", 9), ("torsoRoll", 9), ("rightShoulderPitch", 5.89), ("rightShoulderRoll", 5.89), ("rightShoulderYaw", 11.5), ("rightElbowPitch", 11.5), ("leftShoulderPitch", 5.89), ("leftShoulderRoll", 5.89), ("leftShoulderYaw", 11.5), ("leftElbowPitch", 11.5), ("rightHipYaw", 5.89), ("rightHipRoll", 7), ("rightHipPitch", 6.11), ("rightKneePitch", 6.11), ("rightAnklePitch", 11), ("rightAnkleRoll", 11), ("leftHipYaw", 5.89), ("leftHipRoll", 7), ("leftHipPitch", 6.11), ("leftKneePitch", 6.11), ("leftAnklePitch", 11), ("leftAnkleRoll", 11), ("lowerNeckPitch", 5), ("upperNeckPitch", 5), ("neckYaw", 5)]) # nominal joint configuration # self.q_nom = dict([("torsoYaw", 0.0), # ("torsoPitch", 0.0), # ("torsoRoll", 0.0), # ("lowerNeckPitch", 0.0), # ("neckYaw", 0.0), # ("upperNeckPitch", 0.0), # ("rightShoulderPitch", 0.300196631343), # ("rightShoulderRoll", 1.25), # ("rightShoulderYaw", 0.0), # ("rightElbowPitch", 0.785398163397), # ("leftShoulderPitch", 0.300196631343), # ("leftShoulderRoll", -1.25), # ("leftShoulderYaw", 0.0), # ("leftElbowPitch", -0.785398163397), # ("rightHipYaw", 0.0), # ("rightHipRoll", 0.0), # ("rightAnkleRoll", 0.0), # ("leftHipYaw", 0.0), # ("leftHipRoll", 0.0), # # ("rightHipPitch", -0.49), # -0.49 # # ("rightKneePitch", 1.205), # 1.205 # # ("rightAnklePitch", -0.71), # -0.71 # # ("leftHipPitch", -0.49), # -0.49 # # ("leftKneePitch", 1.205), # 1.205 # # ("leftAnklePitch", -0.71), # -0.71 # ("rightHipPitch", -0.49*0.5), # -0.49 # ("rightKneePitch", 1.205*0.5), # 1.205 # ("rightAnklePitch", -0.71*0.5), # -0.71 # ("leftHipPitch", -0.49*0.5), # -0.49 # ("leftKneePitch", 1.205*0.5), # 1.205 # ("leftAnklePitch", -0.71*0.5), # -0.71 # ("leftAnkleRoll", 0.0)]) if self.useFullDOF: self.q_nom = dict([ ("rightHipYaw", 0.0), ("rightHipRoll", -0.1), ("rightHipPitch", -0.45*1.), # -0.49 ("rightKneePitch", 0.944*1.), # 1.205 ("rightAnklePitch", -0.527*1.), # -0.71 ("rightAnkleRoll", 0.1), ("leftHipYaw", 0.0), ("leftHipRoll", 0.1), ("leftHipPitch", -0.45*1.), # -0.49 ("leftKneePitch", 0.944*1.), # 1.205 ("leftAnklePitch", -0.527*1.), # -0.71 ("leftAnkleRoll", -0.1), ("torsoYaw", 0.0), ("torsoPitch", 0.0), ("torsoRoll", 0.0), ("rightShoulderPitch", 0.300196631343), ("rightShoulderRoll", 1.25), ("rightShoulderYaw", 0.0), ("rightElbowPitch", 0.785398163397), ("leftShoulderPitch", 0.300196631343), ("leftShoulderRoll", -1.25), ("leftShoulderYaw", 0.0), ("leftElbowPitch", -0.785398163397), ]) else: self.q_nom = dict([ ("rightHipPitch", -0.45*1.), # -0.49 , -0.49 ("rightKneePitch", 0.944*1.), # 1.205 , 1.205 ("rightAnklePitch", -0.527*1.), # -0.71 , -0.8 ("leftHipPitch", -0.45*1.), # -0.49 , -0.49 ("leftKneePitch", 0.944*1.), # 1.205 , 1.205 ("leftAnklePitch", -0.527*1.), # -0.71 , -0.8 ]) margin = margin_in_degree*3.14/180 # print("MARGIN IN DEG: %.1f" % margin_in_degree) self.margin = margin if self.useFullDOF: self.joint_limits_low = { "rightHipYaw": -margin+self.q_nom["rightHipYaw"], "rightHipRoll": -margin+self.q_nom["rightHipRoll"], "rightHipPitch": -margin+self.q_nom["rightHipPitch"], "rightKneePitch": -margin+self.q_nom["rightKneePitch"], "rightAnklePitch": -margin+self.q_nom["rightAnklePitch"], "rightAnkleRoll": -margin+self.q_nom["rightAnkleRoll"], "leftHipYaw": -margin+self.q_nom["leftHipYaw"], "leftHipRoll": -margin+self.q_nom["leftHipRoll"], "leftHipPitch": -margin+self.q_nom["leftHipPitch"], "leftKneePitch": -margin+self.q_nom["leftKneePitch"], "leftAnklePitch": -margin+self.q_nom["leftAnklePitch"], "leftAnkleRoll": -margin+self.q_nom["leftAnkleRoll"] } self.joint_limits_high = { "rightHipYaw": +margin+self.q_nom["rightHipYaw"], "rightHipRoll": +margin+self.q_nom["rightHipRoll"], "rightHipPitch": +margin+self.q_nom["rightHipPitch"], "rightKneePitch": +margin+self.q_nom["rightKneePitch"], "rightAnklePitch": +margin+self.q_nom["rightAnklePitch"], "rightAnkleRoll": +margin+self.q_nom["rightAnkleRoll"], "leftHipYaw": +margin+self.q_nom["leftHipYaw"], "leftHipRoll": +margin+self.q_nom["leftHipRoll"], "leftHipPitch": +margin+self.q_nom["leftHipPitch"], "leftKneePitch": +margin+self.q_nom["leftKneePitch"], "leftAnklePitch": +margin+self.q_nom["leftAnklePitch"], "leftAnkleRoll": +margin+self.q_nom["leftAnkleRoll"]} else: self.joint_limits_low = { "rightHipPitch": -margin+self.q_nom["rightHipPitch"], "rightKneePitch": -margin+self.q_nom["rightKneePitch"], "rightAnklePitch": -margin+self.q_nom["rightAnklePitch"], "leftHipPitch": -margin+self.q_nom["leftHipPitch"], "leftKneePitch": -margin+self.q_nom["leftKneePitch"], "leftAnklePitch": -margin+self.q_nom["leftAnklePitch"], } self.joint_limits_high = { "rightHipPitch": +margin+self.q_nom["rightHipPitch"], "rightKneePitch": +margin+self.q_nom["rightKneePitch"], "rightAnklePitch": +margin+self.q_nom["rightAnklePitch"], "leftHipPitch": +margin+self.q_nom["leftHipPitch"], "leftKneePitch": +margin+self.q_nom["leftKneePitch"], "leftAnklePitch": +margin+self.q_nom["leftAnklePitch"], } self.linkCOMPos = {} self.linkMass = {} offset = 1. if self.fixed_base else 0. self.base_pos_nom = np.array([0, 0, 1.08+offset]) # 1.175 straight #1.025 bend self.base_orn_nom = np.array([0, 0, 0, 1]) # x,y,z,w self.plane_pos_nom = np.array([0.,0.,0.]) self.plane_orn_nom = np.array([0.,0.,0.,1.]) self._setupSimulation() error_for_full_torque = 10*np.pi/180. kd_fraction = 1/100. self.Kp = {} self.Kd = {} for name in self.controlled_joints: val = self.u_max[name]/error_for_full_torque self.Kp.update({name: val*self.Kp_scale[name]}) self.Kd.update({name: val*kd_fraction*self.Kd_scale[name]}) print("%s: %.1f" % (name, val)) self.q_nom_list = [] for jointName in self.controlled_joints: self.q_nom_list.append(self.q_nom[jointName]) self.q_nom_list = np.array(self.q_nom_list) self.action = self.q_nom_list self._actionDim = len(self.controlled_joints) observationDim = 9+self._actionDim observation_high = np.array([np.finfo(np.float32).max] * observationDim) self.observation_space = spaces.Box(-observation_high, observation_high) self._observationDim = observationDim self.action_space = spaces.Box(np.array(-self.joint_increment), np.array(self.joint_increment)) # print("Action space: ", self.action_space.low) self.getLinkMass() # print("observationDim", self._observationDim, "actionDim", self._actionDim) def getLinkMass(self): self.total_mass = 0 info = self._p.getDynamicsInfo(self.r, -1) # for base link self.linkMass.update({"base": info[0]}) # self.linkMass.update({"pelvisBase": info[0]}) self.total_mass += info[0] for key, value in self.jointIdx.items(): info = self._p.getDynamicsInfo(self.r, value) self.linkMass.update({key: info[0]}) self.total_mass += info[0] def step(self, action): # clip action # print("raw action", action) action = np.clip(action, self.action_space.low, self.action_space.high) # print("Clipped action", action) # print("low", self.action_space.low) # print("high", self.action_space.high) self.action += action self.action = np.clip(self.action, self.jointLowerLimit, self.jointUpperLimit) # self.action = self.getJacobian([0.0, 0.2, 1.1]) # need to clip and perform jacobian here! Filter in loop for _ in range(self._actionRepeat): self.set_pos(self.action) # action = self.getFilteredAction(raw_action) # _ = self.getObservation() # filter is running in here. Thus call getObservation() self._p.stepSimulation() self._observation = self.getExtendedObservation() reward = copy.copy(self.getReward()) done = copy.copy(self.checkFall()) return copy.copy(self._observation), reward, done, {} def render(self, mode='human', close=False, distance=3, yaw=0, pitch=-30, roll=0, ): # p.addUserDebugLine(self.COM_pos + np.array([0, 0, 2]), self.COM_pos + np.array([0, 0, -2]), [1, 0, 0], 5, # 0.1) # TODO rendering to draw COM # p.addUserDebugLine(self.support_polygon_center[0] + np.array([0, 0, 2]), # self.support_polygon_center[0] + np.array([0, 0, -2]), [0, 1, 0], 5, # 0.1) # TODO rendering to draw support polygon # p.addUserDebugLine(self.support_polygon_center[0] + np.array([2, 0, 0]), # self.support_polygon_center[0] + np.array([-2, 0, 0]), [0, 1, 0], 5, # 0.1) # TODO rendering to draw support polygon width = 1600 height = 900 base_pos, base_quat = self._p.getBasePositionAndOrientation(self.r) base_orn = self._p.getEulerFromQuaternion(base_quat) # yaw = base_orn[2]*180/math.pi view_matrix = self._p.computeViewMatrixFromYawPitchRoll( cameraTargetPosition=base_pos, distance=distance, yaw=yaw, pitch=pitch, roll=roll, upAxisIndex=2, ) # # view_matrix = p.computeViewMatrix( # cameraTargetPosition=base_pos, # cameraEyePosition=np.array(base_pos)+np.array([3,-3,2]), # cameraUpVector=np.array(base_pos)+np.array([0,0,1]), # ) proj_matrix = self._p.computeProjectionMatrixFOV( fov=60, aspect=float(width)/height, nearVal=0.1, farVal=100.0, ) # start_time = time.time() (_, _, px, _, _) = self._p.getCameraImage( width=width, height=height, viewMatrix=view_matrix, projectionMatrix=proj_matrix, renderer=self._p.ER_TINY_RENDERER ) #ER_TINY_RENDERER ER_BULLET_HARDWARE_OPENGL rgb_array = np.array(px) rgb_array = rgb_array[:,:,:3] # print("Time it took to get getCameraImage: %.5fs" % (time.time()-start_time)) return rgb_array def reset(self): return self._reset() def _reset(self, base_pos_nom = None, base_orn_nom = None, fixed_base = False, q_nom = None): self.action = self.q_nom_list seed=int((time.time()*1e6)%1e9) np.random.seed(seed=seed) self._p.resetSimulation() self._setupSimulation(base_pos_nom, base_orn_nom, fixed_base, q_nom) self._envStepCounter = 0 self._observation = self.getExtendedObservation() #self._reading = self.getReading() return np.array(self._observation) def get_observation(self): return self.getExtendedObservation() def getExtendedObservation(self): self._observation = self.getFilteredObservation() # filtered observation return self._observation def getReward(self): return self._reward() def applyForce(self, force=[0,0,0], linkName="base"): if linkName == 'base': index = -1 else: index = self.jointIdx[linkName]# frame_flag = self._p.LINK_FRAME pos = [0,0,0] # if linkName is 'base': # pos = self.base_pos # else: # link_state = self._p.getLinkState(self.r, self.jointIdx[linkName]) # pos = link_state[0] self._p.applyExternalForce(self.r, index, forceObj=force, posObj=pos ,#[0, 0.0035, 0], flags=frame_flag) def _reward(self): x_pos_err = 0 - self.base_pos[0] y_pos_err = 0 - self.base_pos[1] z_pos_err = 1.05868 - self.base_pos[2] #1.128 # print("Self pos: %.2f, %.2f, %.2f " % (x_pos_err, y_pos_err, z_pos_err)) # print("Base pos: ", self.base_pos) # print("VEL: ", self.base_vel_yaw) x_vel_err = -self.base_vel_yaw[0] y_vel_err = -self.base_vel_yaw[1] z_vel_err = -self.base_vel_yaw[2] chest_link_state = self._p.getLinkState(self.r, self.jointIdx['torsoRoll'], computeLinkVelocity=1) torso_pitch_err = 0-chest_link_state[1][1] pelvis_pitch_err = 0-self.base_orn[1] torso_roll_err = 0-chest_link_state[1][0] pelvis_roll_err = 0-self.base_orn[0] alpha = 1e-3#1e-2#1e-1 x_pos_reward = math.exp(math.log(alpha)*(x_pos_err/0.7)**2) #1.0 y_pos_reward = math.exp(math.log(alpha)*(y_pos_err/0.7)**2) #1.0 z_pos_reward = math.exp(math.log(alpha)*(z_pos_err/0.7)**2) #1.0 x_vel_reward = math.exp(math.log(alpha)*(x_vel_err/1.0)**2) #4.0 y_vel_reward = math.exp(math.log(alpha)*(y_vel_err/1.0)**2) #4.0 z_vel_reward = math.exp(math.log(alpha)*(z_vel_err/1.0)**2) #2.0 torso_pitch_reward = math.exp(math.log(alpha)*(torso_pitch_err/1.57)**2) pelvis_pitch_reward = math.exp(math.log(alpha)*(pelvis_pitch_err/1.57)**2) torso_roll_reward = math.exp(math.log(alpha)*(torso_roll_err/1.57)**2) pelvis_roll_reward = math.exp(math.log(alpha)*(pelvis_roll_err/1.57)**2) # reward = ( # 1.0 * x_pos_reward + 0.0 * y_pos_reward + 6.0 * z_pos_reward\ # +1.0 * x_vel_reward + 1.0 * y_vel_reward + 1.0 * z_vel_reward \ # +0.0 * torso_pitch_reward + 1.0 * pelvis_pitch_reward \ # +0.0 * torso_roll_reward + 1.0 * pelvis_roll_reward \ # ) \ # * 1 / (1.0 + 0.0 + 6.0 + 1.0 + 1.0 + 1.0 + 1.0 + 1.0 ) # print(self.total_mass) force_targ = -self.total_mass*self.g/2.0 left_foot_force_err = force_targ-self.leftContactForce[2] # Z contact force right_foot_force_err = force_targ-self.rightContactForce[2] left_foot_force_reward = math.exp(math.log(alpha)*(left_foot_force_err/force_targ)**2) right_foot_force_reward = math.exp(math.log(alpha)*(right_foot_force_err/force_targ)**2) if self.regularise_action: velocity_error = 0 torque_error = 0 for idx, key in enumerate(self.controlled_joints): velocity_error += (self.joint_velocity[idx] / self.v_max[key])**2 torque_error += (self.joint_torques[idx]/ self.u_max[key])**2 # print("Foot contact: ", foot_contact_term, "vel: %.2f, torque: %.2f, power: %.2f" % (velocity_penalty, torque_penalty, power_penalty)) velocity_error /= len(self.controlled_joints) torque_error /= len(self.controlled_joints) joint_vel_reward = math.exp(math.log(alpha)*velocity_error) joint_torque_reward = math.exp(math.log(alpha)*velocity_error) else: joint_vel_reward = 0 joint_torque_reward = 0 foot_contact_term = 0 fall_term = 0 if (self.leftFoot_isInContact and self.rightFoot_isInContact): # both feet lost contact foot_contact_term = 2.0#-5 # 1 TODO increase penalty for losing contact with the ground elif (self.leftFoot_isInContact or self.rightFoot_isInContact): # both feet lost contact foot_contact_term = 0.5#-5 # 1 TODO increase penalty for losing contact with the ground # if self.checkFall(): # fall_term -= 10 reward = ( 1.0 * x_pos_reward + 1.0 * y_pos_reward + 4.0 * z_pos_reward\ +1.0 * x_vel_reward + 1.0 * y_vel_reward + 1.0 * z_vel_reward \ +0.5 * torso_pitch_reward + 0.5 * pelvis_pitch_reward \ # +0.5 * torso_roll_reward + 0.5 * pelvis_roll_reward \ +1.0 * left_foot_force_reward + 1.0 * right_foot_force_reward \ +1.0 * joint_vel_reward + 1.0 * joint_torque_reward + 2.0* foot_contact_term ) \ * 10 / (2.0 + 4.0 + 2.0 + 1.0 + 1.0 + 1.0 + 1.0 + 2.0 + 2.0) # penalize reward when joint is moving too fast # velocity_penalty = 0 # torque_penalty = 0 # power_penalty = 0 # if self.regularise_action: # for idx, key in enumerate(self.controlled_joints): # velocity_penalty -= (self.joint_velocity[idx] / self.v_max[key])**2 # torque_penalty -= 0.1 * abs(self.joint_torques[idx]/ self.u_max[key]) # power_penalty -= 0.1 * abs(self.joint_velocity[idx]) * abs(self.joint_torques[idx]) # # print("Foot contact: ", foot_contact_term, "vel: %.2f, torque: %.2f, power: %.2f" % (velocity_penalty, torque_penalty, power_penalty)) # reward += foot_contact_term #+fall_term+velocity_penalty+torque_penalty+power_penalty reward_term = dict([ ("x_pos_reward", x_pos_reward), ("y_pos_reward", y_pos_reward), ("z_pos_reward", z_pos_reward), ("x_vel_reward", x_vel_reward), ("y_vel_reward", y_vel_reward), ("z_vel_reward", z_vel_reward), ("torso_pitch_reward", torso_pitch_reward), ("pelvis_pitch_reward", pelvis_pitch_reward), ("torso_roll_reward", torso_roll_reward), ("pelvis_roll_reward", pelvis_roll_reward), ("left_foot_force_reward", left_foot_force_reward), ("right_foot_force_reward", right_foot_force_reward) ]) # print("Reward: %.4f" % (reward/20)) # print("Reward: ", reward_term) return reward, reward_term def resetJointStates(self, base_pos_nom=None, base_orn_nom=None, q_nom=None): # if base_pos_nom is None: # base_pos_nom = self.base_pos_nom # if base_orn_nom is None: # base_orn_nom = self.base_orn_nom if q_nom is None: q_nom = self.q_nom else: #replace nominal joint angle with target joint angle temp=dict(self.q_nom) for key, value in q_nom.items(): temp[key] = value q_nom = dict(temp) self.q_nom = dict(q_nom) for jointName in q_nom: self._p.resetJointState(self.r, self.jointIdx[jointName], targetValue=q_nom[jointName], targetVelocity=0) # print("Reset %s to %.2f" % (jointName, q_nom[jointName])) # print(base_orn_nom) # self._p.resetBasePositionAndOrientation(self.r, base_pos_nom, base_orn_nom) # self._p.resetBaseVelocity(self.r, [0, 0, 0], [0, 0, 0]) def calcCOM(self): self.linkCOMPos.update({"base": np.array(self.base_pos)}) # base position is the COM of the pelvis self.com_pos = np.zeros((1, 3)) for key, value in self.linkMass.items(): if key != "base": info = self._p.getLinkState(self.r, self.jointIdx[key], computeLinkVelocity=0) self.linkCOMPos.update({key: info[0]}) # print("WTF: %.3f" % value, np.array(self.linkCOMPos[key])) self.com_pos += np.array(self.linkCOMPos[key]) * value # print("KEY: %s, value: %.2f" % (key, value)) self.com_pos /= self.total_mass # self.com_pos /= self.total_mass # update global COM position # self.com_pos = np.array(sum) return self.com_pos def _setupSimulation(self, base_pos_nom=None, base_orn_nom=None, fixed_base=False, q_nom=None): if base_pos_nom is None: base_pos_nom = self.base_pos_nom if base_orn_nom is None: base_orn_nom = self.base_orn_nom self._p.setRealTimeSimulation(0) self._p.setGravity(0, 0, -self.g) #TODO set gravity self._p.setTimeStep(self._dt) self.dir_path = os.path.dirname(os.path.realpath(__file__)) self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 0) plane_urdf = self.dir_path + "/plane/plane.urdf" self.plane = self._p.loadURDF(plane_urdf, basePosition=[0, 0, 0], baseOrientation=[0,0,0,1], useFixedBase=True) if self.useFullDOF: valkyrie_urdf = self.dir_path + "/valkyrie_full_dof.urdf" else: valkyrie_urdf = self.dir_path + "/valkyrie_reduced_fixed.urdf" # print("Fixed: ", self.fixed_base) self.r = self._p.loadURDF(fileName=valkyrie_urdf, basePosition=base_pos_nom, baseOrientation=base_orn_nom, flags=self._p.URDF_USE_INERTIA_FROM_FILE|self._p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS, useFixedBase=self.fixed_base, ) self._p.configureDebugVisualizer(self._p.COV_ENABLE_RENDERING, 1) jointIds = [] for j in range(self._p.getNumJoints(self.r)): self._p.changeDynamics(self.r, j, linearDamping=0, angularDamping=0) info = self._p.getJointInfo(self.r, j) #print(info) jointName = info[1].decode("utf-8") # print(jointName) jointType = info[2] if (jointType == self._p.JOINT_REVOLUTE): jointIds.append(j) # print("Appending %s" % jointName) self.jointIdx.update({jointName: info[0]}) self.jointNameIdx.update({info[0]: jointName}) self.jointIds = [] for name in self.controlled_joints: _id = self.jointIdx[name] if _id in jointIds: self.jointIds.append(_id) if self.margin > 90*3.14/180: for joint in self.controlled_joints: # print("self joint didx", self.jointIdx) info = self._p.getJointInfo(self.r, self.jointIdx[joint]) self.joint_limits_low.update({joint: (info[8])}) self.joint_limits_high.update({joint: (info[9])}) self.jointLowerLimit = [] self.jointUpperLimit = [] for jointName in self.controlled_joints: self.jointLowerLimit.append(self.joint_limits_low[jointName]) self.jointUpperLimit.append(self.joint_limits_high[jointName]) self.joint_increment = (np.array(self.jointUpperLimit) - np.array(self.jointLowerLimit))/ (25 * 10) self.resetJointStates(base_pos_nom, base_orn_nom, q_nom) def getObservation(self): self.base_pos, self.base_quat = self._p.getBasePositionAndOrientation(self.r) self.base_vel, self.base_orn_vel = self._p.getBaseVelocity(self.r) # print(self.base_pos) # for idx in self.jointNameIdx.keys(): # print("Val: ", self._p.getLinkState(self.r, idx+1)[0]) queried_links = [ "head_imu_joint", "leftElbowPitch", "rightElbowPitch", "left_hand", "right_hand", "torsoYaw", "leftKneePitch", "rightKneePitch", "leftAnklePitch", "rightAnklePitch", ] queried_indices = [] for link in queried_links: queried_indices.append(self.jointIdx[link]) self.linkStates = self._p.getLinkStates(self.r, queried_indices) self.head_pos = self.linkStates[0][0] self.left_elbow_pos = self.linkStates[1][0] self.right_elbow_pos = self.linkStates[2][0] self.left_hand_pos = self.linkStates[3][0] self.right_hand_pos = self.linkStates[4][0] self.torso_pos = self.linkStates[5][0] self.left_knee_pos = self.linkStates[6][0] self.right_knee_pos = self.linkStates[7][0] self.left_foot_pos = self.linkStates[8][0] self.right_foot_pos = self.linkStates[9][0] # self.left_foot_pos = self._p.getLinkState(self.r, self.jointIdx["leftAnklePitch"])[0] # self.right_foot_pos = self._p.getLinkState(self.r, self.jointIdx["rightAnklePitch"])[0] # ankleRollContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['leftAnkleRoll'], -1) # anklePitchContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['leftAnklePitch'], -1) # ankleRollContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['rightAnkleRoll'], -1) # anklePitchContact = self._p.getContactPoints(self.r, self.plane, self.jointIdx['rightAnklePitch'], -1) leftContactInfo = self._p.getContactPoints(self.r, self.plane, self.jointIdx["leftAnkleRoll"], -1) rightContactInfo = self._p.getContactPoints(self.r, self.plane, self.jointIdx["rightAnkleRoll"], -1) # print(leftContactInfo) self.leftFoot_isInContact = (len(leftContactInfo) > 0) self.rightFoot_isInContact = (len(rightContactInfo) > 0) # print("LEFT: %d, RIGHT: %d" % (self.leftFoot_isInContact, self.rightFoot_isInContact)) self.leftContactForce = [0, 0, 0] self.rightContactForce = [0, 0, 0] if self.leftFoot_isInContact: for info in leftContactInfo: contactNormal = np.array(info[7]) # contact normal of foot pointing towards plane contactNormal = -contactNormal # contact normal of plane pointing towards foot contactNormalForce = np.array(info[9]) F_contact = np.array(contactNormal)*contactNormalForce self.leftContactForce += F_contact if self.rightFoot_isInContact: for info in rightContactInfo: contactNormal = np.array(info[7]) # contact normal of foot pointing towards plane contactNormal = -contactNormal # contact normal of plane pointing towards foot contactNormalForce = np.array(info[9]) F_contact = np.array(contactNormal)*contactNormalForce self.rightContactForce += F_contact # print("LEFT CONTACT FORCE: ", self.leftContactForce) # print("RIGHT CONTACT FORCE: ", self.rightContactForce) for name in self.controlled_joints: _id = self.jointIdx[name] # print("%s: ID: %d" % (self.jointNameIdx[_id], _id)) self.joint_states.update({self.jointNameIdx[_id]: self._p.getJointState(self.r, _id)}) # print("NAME: ", name) # print(self.joint_states[name]) """Observation""" observation = [] """Yaw adjusted base linear velocity""" self.base_orn = self._p.getEulerFromQuaternion(self.base_quat) Rz = rotZ(self.base_orn[2]) self.Rz_i =
np.linalg.inv(Rz)
numpy.linalg.inv
"""Implementations of the IPFP algorithm to solve for equilibrium and do comparative statics in several variants of the `Choo and Siow 2006 <https://www.jstor.org/stable/10.1086/498585?seq=1>`_ model: * homoskedastic with singles (as in Choo and Siow 2006) * homoskedastic without singles * gender-heteroskedastic: with a scale parameter on the error term for women * gender- and type-heteroskedastic: with a scale parameter on the error term for each gender and type * two-level nested logit, with nests and nest parameters that do not depend on the type, and {0} as the first nest Each solver, when fed the joint surplus and margins, returns the equilibrium matching patterns, the adding-up errors on the margins, and if requested (using `gr=True`) the derivatives of the matching patterns in all primitives. """ import numpy as np from math import sqrt from typing import Union, Tuple, List import scipy.linalg as spla from utils import print_stars, bs_error_abort, npexp, npmaxabs, \ nppow, der_nppow, nprepeat_col, nprepeat_row, describe_array, test_vector TripleArrays = Tuple[np.ndarray, np.ndarray, np.ndarray] IPFPnoGradientResults = Tuple[TripleArrays, np.ndarray, np.ndarray, np.ndarray] IPFPGradientResults = Tuple[TripleArrays, np.ndarray, np.ndarray, np.ndarray, TripleArrays] IPFPResults = Union[IPFPnoGradientResults, IPFPGradientResults] def _ipfp_check_sizes(men_margins: np.ndarray, women_margins: np.ndarray, Phi: np.ndarray) -> Tuple[int]: """checks that the margins and surplus have the correct shapes and sizes """ X = test_vector(men_margins) Y = test_vector(women_margins) if Phi.shape != (X, Y): bs_error_abort(f"The shape of Phi should be ({X}, {Y}") return X, Y def ipfp_homoskedastic_nosingles_solver(Phi: np.array, men_margins: np.array, women_margins: np.array, tol: float = 1e-9, gr: bool = False, verbose: bool = False, maxiter: int = 1000) \ -> IPFPnoGradientResults: """Solves for equilibrium in a Choo and Siow market without singles, given systematic surplus and margins Args: Phi: matrix of systematic surplus, shape (X, Y) men_margins: vector of men margins, shape (X) women_margins: vector of women margins, shape (Y) tol: tolerance on change in solution gr: if `True`, also evaluate derivatives of :math:`(\\mu_{xy})` wrt `Phi` verbose: if `True`, prints information maxiter: maximum number of iterations Returns: muxy: the matching patterns, shape (X, Y) marg_err_x, marg_err_y: the errors on the margins and the gradients of :math:`(\\mu_{xy})` wrt `Phi` if `gr` is `True` """ X, Y = _ipfp_check_sizes(men_margins, women_margins, Phi) n_couples = np.sum(men_margins) # check that there are as many men as women if np.abs(np.sum(women_margins) - n_couples) > n_couples * tol: bs_error_abort("There should be as many men as women") ephi2, der_ephi2 = npexp(Phi / 2.0, deriv=True) ephi2T = ephi2.T ############################################################################# # we solve the equilibrium equations muxy = ephi2 * tx * ty # starting with a reasonable initial point for tx and ty: : tx = ty = bigc # it is important that it fit the number of individuals ############################################################################# bigc = sqrt(n_couples / np.sum(ephi2)) txi = np.full(X, bigc) tyi = np.full(Y, bigc) err_diff = bigc tol_diff = tol * err_diff niter = 0 while (err_diff > tol_diff) and (niter < maxiter): sx = ephi2 @ tyi tx = men_margins / sx sy = ephi2T @ tx ty = women_margins / sy err_x = npmaxabs(tx - txi) err_y = npmaxabs(ty - tyi) err_diff = err_x + err_y txi, tyi = tx, ty niter += 1 muxy = ephi2 * np.outer(txi, tyi) marg_err_x = np.sum(muxy, 1) - men_margins marg_err_y = np.sum(muxy, 0) - women_margins if verbose: print(f"After {niter} iterations:") print(f"\tMargin error on x: {npmaxabs(marg_err_x)}") print(f"\tMargin error on y: {npmaxabs(marg_err_y)}") if not gr: return muxy, marg_err_x, marg_err_y else: sxi = ephi2 @ tyi syi = ephi2T @ txi n_sum_categories = X + Y n_prod_categories = X * Y # start with the LHS of the linear system lhs = np.zeros((n_sum_categories, n_sum_categories)) lhs[:X, :X] = np.diag(sxi) lhs[:X, X:] = ephi2 * txi.reshape((-1, 1)) lhs[X:, X:] = np.diag(syi) lhs[X:, :X] = ephi2T * tyi.reshape((-1, 1)) # now fill the RHS n_cols_rhs = n_prod_categories rhs = np.zeros((n_sum_categories, n_cols_rhs)) # to compute derivatives of (txi, tyi) wrt Phi der_ephi2 /= (2.0 * ephi2) # 1/2 with safeguards ivar = 0 for iman in range(X): rhs[iman, ivar:(ivar + Y)] = - \ muxy[iman, :] * der_ephi2[iman, :] ivar += Y ivar1 = X ivar2 = 0 for iwoman in range(Y): rhs[ivar1, ivar2:n_cols_rhs:Y] = - \ muxy[:, iwoman] * der_ephi2[:, iwoman] ivar1 += 1 ivar2 += 1 # solve for the derivatives of txi and tyi dt_dT = spla.solve(lhs, rhs) dt = dt_dT[:X, :] dT = dt_dT[X:, :] # now construct the derivatives of muxy dmuxy = np.zeros((n_prod_categories, n_cols_rhs)) ivar = 0 for iman in range(X): dt_man = dt[iman, :] dmuxy[ivar:(ivar + Y), :] = np.outer((ephi2[iman, :] * tyi), dt_man) ivar += Y for iwoman in range(Y): dT_woman = dT[iwoman, :] dmuxy[iwoman:n_prod_categories:Y, :] += np.outer((ephi2[:, iwoman] * txi), dT_woman) # add the term that comes from differentiating ephi2 muxy_vec2 = (muxy * der_ephi2).reshape(n_prod_categories) dmuxy += np.diag(muxy_vec2) return muxy, marg_err_x, marg_err_y, dmuxy def ipfp_homoskedastic_solver(Phi: np.array, men_margins: np.array, women_margins: np.array, tol: float = 1e-9, gr: bool = False, verbose: bool = False, maxiter: int = 1000) -> IPFPResults: """Solves for equilibrium in a Choo and Siow market with singles, given systematic surplus and margins Args: Phi: matrix of systematic surplus, shape (X, Y) men_margins: vector of men margins, shape (X) women_margins: vector of women margins, shape (Y) tol: tolerance on change in solution gr: if `True`, also evaluate derivatives of the matching patterns verbose: if `True`, prints information maxiter: maximum number of iterations Returns: (muxy, mux0, mu0y): the matching patterns marg_err_x, marg_err_y: the errors on the margins and the gradients of the matching patterns wrt (men_margins, women_margins, Phi) if `gr` is `True` """ X, Y = _ipfp_check_sizes(men_margins, women_margins, Phi) ephi2, der_ephi2 = npexp(Phi / 2.0, deriv=True) ############################################################################# # we solve the equilibrium equations muxy = ephi2 * tx * ty # where mux0=tx**2 and mu0y=ty**2 # starting with a reasonable initial point for tx and ty: tx = ty = bigc # it is important that it fit the number of individuals ############################################################################# ephi2T = ephi2.T nindivs = np.sum(men_margins) + np.sum(women_margins) bigc = sqrt(nindivs / (X + Y + 2.0 * np.sum(ephi2))) txi = np.full(X, bigc) tyi = np.full(Y, bigc) err_diff = bigc tol_diff = tol * bigc niter = 0 while (err_diff > tol_diff) and (niter < maxiter): sx = ephi2 @ tyi tx = (np.sqrt(sx * sx + 4.0 * men_margins) - sx) / 2.0 sy = ephi2T @ tx ty = (np.sqrt(sy * sy + 4.0 * women_margins) - sy) / 2.0 err_x = npmaxabs(tx - txi) err_y = npmaxabs(ty - tyi) err_diff = err_x + err_y txi = tx tyi = ty niter += 1 mux0 = txi * txi mu0y = tyi * tyi muxy = ephi2 * np.outer(txi, tyi) marg_err_x = mux0 + np.sum(muxy, 1) - men_margins marg_err_y = mu0y + np.sum(muxy, 0) - women_margins if verbose: print(f"After {niter} iterations:") print(f"\tMargin error on x: {npmaxabs(marg_err_x)}") print(f"\tMargin error on y: {npmaxabs(marg_err_y)}") if not gr: return (muxy, mux0, mu0y), marg_err_x, marg_err_y else: # we compute the derivatives sxi = ephi2 @ tyi syi = ephi2T @ txi n_sum_categories = X + Y n_prod_categories = X * Y # start with the LHS of the linear system lhs = np.zeros((n_sum_categories, n_sum_categories)) lhs[:X, :X] = np.diag(2.0 * txi + sxi) lhs[:X, X:] = ephi2 * txi.reshape((-1, 1)) lhs[X:, X:] = np.diag(2.0 * tyi + syi) lhs[X:, :X] = ephi2T * tyi.reshape((-1, 1)) # now fill the RHS n_cols_rhs = n_sum_categories + n_prod_categories rhs = np.zeros((n_sum_categories, n_cols_rhs)) # to compute derivatives of (txi, tyi) wrt men_margins rhs[:X, :X] = np.eye(X) # to compute derivatives of (txi, tyi) wrt women_margins rhs[X:n_sum_categories, X:n_sum_categories] = np.eye(Y) # to compute derivatives of (txi, tyi) wrt Phi der_ephi2 /= (2.0 * ephi2) # 1/2 with safeguards ivar = n_sum_categories for iman in range(X): rhs[iman, ivar:(ivar + Y)] = - \ muxy[iman, :] * der_ephi2[iman, :] ivar += Y ivar1 = X ivar2 = n_sum_categories for iwoman in range(Y): rhs[ivar1, ivar2:n_cols_rhs:Y] = - \ muxy[:, iwoman] * der_ephi2[:, iwoman] ivar1 += 1 ivar2 += 1 # solve for the derivatives of txi and tyi dt_dT = spla.solve(lhs, rhs) dt = dt_dT[:X, :] dT = dt_dT[X:, :] # now construct the derivatives of the mus dmux0 = 2.0 * (dt * txi.reshape((-1, 1))) dmu0y = 2.0 * (dT * tyi.reshape((-1, 1))) dmuxy = np.zeros((n_prod_categories, n_cols_rhs)) ivar = 0 for iman in range(X): dt_man = dt[iman, :] dmuxy[ivar:(ivar + Y), :] = np.outer((ephi2[iman, :] * tyi), dt_man) ivar += Y for iwoman in range(Y): dT_woman = dT[iwoman, :] dmuxy[iwoman:n_prod_categories:Y, :] += np.outer((ephi2[:, iwoman] * txi), dT_woman) # add the term that comes from differentiating ephi2 muxy_vec2 = (muxy * der_ephi2).reshape(n_prod_categories) dmuxy[:, n_sum_categories:] += np.diag(muxy_vec2) return (muxy, mux0, mu0y), marg_err_x, marg_err_y, (dmuxy, dmux0, dmu0y) def ipfp_gender_heteroskedastic_solver(Phi: np.array, men_margins: np.array, women_margins: np.array, tau: float, tol: float = 1e-9, gr: bool = False, verbose: bool = False, maxiter: int = 1000) -> IPFPResults: """Solves for equilibrium in a in a gender-heteroskedastic Choo and Siow market given systematic surplus and margins and a scale parameter `tau` Args: Phi: matrix of systematic surplus, shape (X, Y) men_margins: vector of men margins, shape (X) women_margins: vector of women margins, shape (Y) tau: the standard error for all women tol: tolerance on change in solution gr: if `True`, also evaluate derivatives of the matching patterns verbose: if `True`, prints information maxiter: maximum number of iterations Returns: (muxy, mux0, mu0y): the matching patterns marg_err_x, marg_err_y: the errors on the margins and the gradients of the matching patterns wrt (men_margins, women_margins, Phi, tau) if `gr` is `True` """ X, Y = _ipfp_check_sizes(men_margins, women_margins, Phi) if tau <= 0: bs_error_abort(f"We need a positive tau, not {tau}") ############################################################################# # we use ipfp_heteroxy_solver with sigma_x = 1 and tau_y = tau ############################################################################# sigma_x = np.ones(X) tau_y = np.full(Y, tau) if gr: mus, marg_err_x, marg_err_y, dmus_hxy = \ ipfp_heteroskedastic_solver(Phi, men_margins, women_margins, sigma_x, tau_y, tol=tol, gr=True, maxiter=maxiter, verbose=verbose) dmus_xy, dmus_x0, dmus_0y = dmus_hxy n_sum_categories = X + Y n_prod_categories = X * Y n_cols = n_sum_categories + n_prod_categories itau_y = n_cols + X dmuxy = np.zeros((n_prod_categories, n_cols + 1)) dmuxy[:, :n_cols] = dmus_xy[:, :n_cols] dmuxy[:, -1] = np.sum(dmus_xy[:, itau_y:], 1) dmux0 = np.zeros((X, n_cols + 1)) dmux0[:, :n_cols] = dmus_x0[:, :n_cols] dmux0[:, -1] = np.sum(dmus_x0[:, itau_y:], 1) dmu0y = np.zeros((Y, n_cols + 1)) dmu0y[:, :n_cols] = dmus_0y[:, :n_cols] dmu0y[:, -1] = np.sum(dmus_0y[:, itau_y:], 1) return (muxy, mux0, mu0y), marg_err_x, marg_err_y, (dmuxy, dmux0, dmu0y) else: return ipfp_heteroskedastic_solver(Phi, men_margins, women_margins, sigma_x, tau_y, tol=tol, gr=False, maxiter=maxiter, verbose=verbose) def ipfp_heteroskedastic_solver(Phi: np.array, men_margins: np.array, women_margins: np.array, sigma_x: np.array, tau_y: np.array, tol: float = 1e-9, gr: bool = False, verbose: bool = False, maxiter: int = 1000) -> IPFPResults: """Solves for equilibrium in a in a fully heteroskedastic Choo and Siow market given systematic surplus and margins and standard errors `sigma_x` and `tau_y` Args: Phi: matrix of systematic surplus, shape (X, Y) men_margins: vector of men margins, shape (X) women_margins: vector of women margins, shape (Y) sigma_x: the vector of standard errors for the X types of men sigma_x: the vector of standard errors for Y types of women tol: tolerance on change in solution gr: if `True`, also evaluate derivatives of the matching patterns verbose: if `True`, prints information maxiter: maximum number of iterations Returns: (muxy, mux0, mu0y): the matching patterns marg_err_x, marg_err_y: the errors on the margins and the gradients of the matching patterns wrt (men_margins, women_margins, Phi, sigma_x, tau_y) if `gr` is `True` """ X, Y = _ipfp_check_sizes(men_margins, women_margins, Phi) if np.min(sigma_x) <= 0.0: bs_error_abort(f"All elements of sigma_x must be positive") if np.min(tau_y) <= 0.0: bs_error_abort(f"All elements of tau_y must be positive") sumxy1 = 1.0 / np.add.outer(sigma_x, tau_y) ephi2, der_ephi2 = npexp(Phi * sumxy1, deriv=True) ############################################################################# # we solve the equilibrium equations muxy = ephi2 * tx * ty # with tx = mux0^(sigma_x/(sigma_x + tau_max)) # and ty = mu0y^(tau_y/(sigma_max + tau_y)) # starting with a reasonable initial point for tx and ty: tx = ty = bigc # it is important that it fit the number of individuals ############################################################################# nindivs = np.sum(men_margins) + np.sum(women_margins) bigc = nindivs / (X + Y + 2.0 * np.sum(ephi2)) # we find the largest values of sigma_x and tau_y xmax = np.argmax(sigma_x) sigma_max = sigma_x[xmax] ymax = np.argmax(tau_y) tau_max = tau_y[ymax] # we use tx = mux0^(sigma_x/(sigma_x + tau_max)) # and ty = mu0y^(tau_y/(sigma_max + tau_y)) sig_taumax = sigma_x + tau_max txi = np.power(bigc, sigma_x / sig_taumax) sigmax_tau = tau_y + sigma_max tyi = np.power(bigc, tau_y / sigmax_tau) err_diff = bigc tol_diff = tol * bigc tol_newton = tol niter = 0 while (err_diff > tol_diff) and (niter < maxiter): # IPFP main loop # Newton iterates for men err_newton = bigc txin = txi.copy() mu0y_in = np.power(np.power(tyi, sigmax_tau), 1.0 / tau_y) while err_newton > tol_newton: txit = np.power(txin, sig_taumax) mux0_in = np.power(txit, 1.0 / sigma_x) out_xy = np.outer(np.power(mux0_in, sigma_x), np.power(mu0y_in, tau_y)) muxy_in = ephi2 * np.power(out_xy, sumxy1) errxi = mux0_in + np.sum(muxy_in, 1) - men_margins err_newton = npmaxabs(errxi) txin -= errxi / (sig_taumax * (mux0_in / sigma_x + np.sum(sumxy1 * muxy_in, 1)) / txin) tx = txin # Newton iterates for women err_newton = bigc tyin = tyi.copy() mux0_in = np.power(np.power(tx, sig_taumax), 1.0 / sigma_x) while err_newton > tol_newton: tyit = np.power(tyin, sigmax_tau) mu0y_in = np.power(tyit, 1.0 / tau_y) out_xy = np.outer(np.power(mux0_in, sigma_x), np.power(mu0y_in, tau_y)) muxy_in = ephi2 * np.power(out_xy, sumxy1) erryi = mu0y_in + np.sum(muxy_in, 0) - women_margins err_newton = npmaxabs(erryi) tyin -= erryi / (sigmax_tau * (mu0y_in / tau_y + np.sum(sumxy1 * muxy_in, 0)) / tyin) ty = tyin err_x = npmaxabs(tx - txi) err_y = npmaxabs(ty - tyi) err_diff = err_x + err_y txi = tx tyi = ty niter += 1 mux0 = mux0_in mu0y = mu0y_in muxy = muxy_in marg_err_x = mux0 + np.sum(muxy, 1) - men_margins marg_err_y = mu0y + np.sum(muxy, 0) - women_margins if verbose: print(f"After {niter} iterations:") print(f"\tMargin error on x: {npmaxabs(marg_err_x)}") print(f"\tMargin error on y: {npmaxabs(marg_err_y)}") if not gr: return (muxy, mux0, mu0y), marg_err_x, marg_err_y else: # we compute the derivatives n_sum_categories = X + Y n_prod_categories = X * Y # we work directly with (mux0, mu0y) sigrat_xy = sumxy1 * sigma_x.reshape((-1, 1)) taurat_xy = 1.0 - sigrat_xy mux0_mat = nprepeat_col(mux0, Y) mu0y_mat = nprepeat_row(mu0y, X) # muxy = axy * bxy * ephi2 axy = nppow(mux0_mat, sigrat_xy) bxy = nppow(mu0y_mat, taurat_xy) der_axy1, der_axy2 = der_nppow(mux0_mat, sigrat_xy) der_bxy1, der_bxy2 = der_nppow(mu0y_mat, taurat_xy) der_axy1_rat, der_axy2_rat = der_axy1 / axy, der_axy2 / axy der_bxy1_rat, der_bxy2_rat = der_bxy1 / bxy, der_bxy2 / bxy # start with the LHS of the linear system on (dmux0, dmu0y) lhs =
np.zeros((n_sum_categories, n_sum_categories))
numpy.zeros
"""Models and utilities for processing SMIRNOFF data.""" import abc import copy import functools from collections import defaultdict from typing import ( TYPE_CHECKING, Any, DefaultDict, Dict, List, Tuple, Type, TypeVar, Union, ) import numpy as np from openff.toolkit.topology import Molecule from openff.toolkit.typing.engines.smirnoff.parameters import ( AngleHandler, BondHandler, ChargeIncrementModelHandler, ConstraintHandler, ElectrostaticsHandler, ImproperTorsionHandler, LibraryChargeHandler, ParameterHandler, ProperTorsionHandler, ToolkitAM1BCCHandler, UnassignedProperTorsionParameterException, UnassignedValenceParameterException, VirtualSiteHandler, vdWHandler, ) from openff.units import unit from openff.units.openmm import from_openmm from openmm import unit as omm_unit from pydantic import Field from typing_extensions import Literal from openff.interchange.components.potentials import ( Potential, PotentialHandler, WrappedPotential, ) from openff.interchange.exceptions import ( InvalidParameterHandlerError, MissingParametersError, SMIRNOFFParameterAttributeNotImplementedError, ) from openff.interchange.models import PotentialKey, TopologyKey, VirtualSiteKey from openff.interchange.types import FloatQuantity kcal_mol = omm_unit.kilocalorie_per_mole kcal_mol_angstroms = kcal_mol / omm_unit.angstrom ** 2 kcal_mol_radians = kcal_mol / omm_unit.radian ** 2 if TYPE_CHECKING: from openff.toolkit.topology import Topology from openff.interchange.components.mdtraj import _OFFBioTop ElectrostaticsHandlerType = Union[ ElectrostaticsHandler, ChargeIncrementModelHandler, LibraryChargeHandler, ToolkitAM1BCCHandler, ] T = TypeVar("T", bound="SMIRNOFFPotentialHandler") TP = TypeVar("TP", bound="PotentialHandler") class SMIRNOFFPotentialHandler(PotentialHandler, abc.ABC): """Base class for handlers storing potentials produced by SMIRNOFF force fields.""" @classmethod @abc.abstractmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" raise NotImplementedError() @classmethod @abc.abstractmethod def supported_parameters(cls): """Return a list of parameter attributes supported by this handler.""" raise NotImplementedError() # @classmethod # @abc.abstractmethod # def valence_terms(cls, topology): # """Return an interable of all of one type of valence term in this topology.""" # raise NotImplementedError() @classmethod def check_supported_parameters(cls, parameter_handler: ParameterHandler): """Verify that a parameter handler is in an allowed list of handlers.""" for parameter in parameter_handler.parameters: for parameter_attribute in parameter._get_defined_parameter_attributes(): if parameter_attribute not in cls.supported_parameters(): raise SMIRNOFFParameterAttributeNotImplementedError( parameter_attribute, ) def store_matches( self, parameter_handler: ParameterHandler, topology: Union["Topology", "_OFFBioTop"], ) -> None: """Populate self.slot_map with key-val pairs of [TopologyKey, PotentialKey].""" parameter_handler_name = getattr(parameter_handler, "_TAGNAME", None) if self.slot_map: # TODO: Should the slot_map always be reset, or should we be able to partially # update it? Also Note the duplicated code in the child classes self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): topology_key = TopologyKey(atom_indices=key) potential_key = PotentialKey( id=val.parameter_type.smirks, associated_handler=parameter_handler_name ) self.slot_map[topology_key] = potential_key if self.__class__.__name__ in ["SMIRNOFFBondHandler", "SMIRNOFFAngleHandler"]: valence_terms = self.valence_terms(topology) # type: ignore[attr-defined] parameter_handler._check_all_valence_terms_assigned( assigned_terms=matches, valence_terms=valence_terms, exception_cls=UnassignedValenceParameterException, ) @classmethod def _from_toolkit( cls: Type[T], parameter_handler: TP, topology: "Topology", ) -> T: """ Create a SMIRNOFFPotentialHandler from toolkit data. """ if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError(type(parameter_handler)) handler = cls() if hasattr(handler, "fractional_bond_order_method"): if getattr(parameter_handler, "fractional_bondorder_method", None): handler.fractional_bond_order_method = ( # type: ignore[attr-defined] parameter_handler.fractional_bondorder_method # type: ignore[attr-defined] ) handler.fractional_bond_order_interpolation = ( # type: ignore[attr-defined] parameter_handler.fractional_bondorder_interpolation # type: ignore[attr-defined] ) handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler class SMIRNOFFBondHandler(SMIRNOFFPotentialHandler): """Handler storing bond potentials as produced by a SMIRNOFF force field.""" type: Literal["Bonds"] = "Bonds" expression: Literal["k/2*(r-length)**2"] = "k/2*(r-length)**2" fractional_bond_order_method: Literal["AM1-Wiberg"] = "AM1-Wiberg" fractional_bond_order_interpolation: Literal["linear"] = "linear" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [BondHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "length", "k_bondorder", "length_bondorder"] @classmethod def valence_terms(cls, topology): """Return all bonds in this topology.""" return [list(b.atoms) for b in topology.topology_bonds] def store_matches( self, parameter_handler: ParameterHandler, topology: Union["Topology", "_OFFBioTop"], ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ parameter_handler_name = getattr(parameter_handler, "_TAGNAME", None) if self.slot_map: # TODO: Should the slot_map always be reset, or should we be able to partially # update it? Also Note the duplicated code in the child classes self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): param = val.parameter_type if param.k_bondorder or param.length_bondorder: top_bond = topology.get_bond_between(*key) fractional_bond_order = top_bond.bond.fractional_bond_order if not fractional_bond_order: raise RuntimeError( "Bond orders should already be assigned at this point" ) else: fractional_bond_order = None topology_key = TopologyKey( atom_indices=key, bond_order=fractional_bond_order ) potential_key = PotentialKey( id=val.parameter_type.smirks, associated_handler=parameter_handler_name, bond_order=fractional_bond_order, ) self.slot_map[topology_key] = potential_key valence_terms = self.valence_terms(topology) parameter_handler._check_all_valence_terms_assigned( assigned_terms=matches, valence_terms=valence_terms, exception_cls=UnassignedValenceParameterException, ) def store_potentials(self, parameter_handler: "BondHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ if self.potentials: self.potentials = dict() for topology_key, potential_key in self.slot_map.items(): smirks = potential_key.id parameter = parameter_handler.get_parameter({"smirks": smirks})[0] if topology_key.bond_order: # type: ignore[union-attr] bond_order = topology_key.bond_order # type: ignore[union-attr] if parameter.k_bondorder: data = parameter.k_bondorder else: data = parameter.length_bondorder coeffs = _get_interpolation_coeffs( fractional_bond_order=bond_order, data=data, ) pots = [] map_keys = [*data.keys()] for map_key in map_keys: pots.append( Potential( parameters={ "k": parameter.k_bondorder[map_key], "length": parameter.length_bondorder[map_key], }, map_key=map_key, ) ) potential = WrappedPotential( {pot: coeff for pot, coeff in zip(pots, coeffs)} ) else: potential = Potential( # type: ignore[assignment] parameters={ "k": parameter.k, "length": parameter.length, }, ) self.potentials[potential_key] = potential @classmethod def _from_toolkit( cls: Type[T], parameter_handler: "BondHandler", topology: "Topology", ) -> T: """ Create a SMIRNOFFBondHandler from toolkit data. """ # TODO: This method overrides SMIRNOFFPotentialHandler.from_toolkit in order to gobble up # a ConstraintHandler. This seems like a good solution for the interdependence, but is also # not a great practice. A better solution would involve not overriding the method with a # different function signature. if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError handler: T = cls(type="Bonds", expression="k/2*(r-length)**2") if ( any( getattr(p, "k_bondorder", None) is not None for p in parameter_handler.parameters ) ) or ( any( getattr(p, "length_bondorder", None) is not None for p in parameter_handler.parameters ) ): for ref_mol in topology.reference_molecules: # TODO: expose conformer generation and fractional bond order assigment # knobs to user via API ref_mol.generate_conformers(n_conformers=1) ref_mol.assign_fractional_bond_orders( bond_order_model=handler.fractional_bond_order_method.lower(), # type: ignore[attr-defined] ) handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler class SMIRNOFFConstraintHandler(SMIRNOFFPotentialHandler): """Handler storing constraint potentials as produced by a SMIRNOFF force field.""" type: Literal["Constraints"] = "Constraints" expression: Literal[""] = "" constraints: Dict[ PotentialKey, bool ] = dict() # should this be named potentials for consistency? @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [BondHandler, ConstraintHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "length", "distance"] @classmethod def _from_toolkit( # type: ignore[override] cls: Type[T], parameter_handler: List, topology: "Topology", ) -> T: """ Create a SMIRNOFFPotentialHandler from toolkit data. """ if isinstance(parameter_handler, list): parameter_handlers = parameter_handler else: parameter_handlers = [parameter_handler] for parameter_handler in parameter_handlers: if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError(type(parameter_handler)) handler = cls() handler.store_constraints( # type: ignore[attr-defined] parameter_handlers=parameter_handlers, topology=topology ) return handler def store_constraints( self, parameter_handlers: Any, topology: "_OFFBioTop", ) -> None: """Store constraints.""" if self.slot_map: self.slot_map = dict() constraint_handler = [ p for p in parameter_handlers if type(p) == ConstraintHandler ][0] constraint_matches = constraint_handler.find_matches(topology) if any([type(p) == BondHandler for p in parameter_handlers]): bond_handler = [p for p in parameter_handlers if type(p) == BondHandler][0] bonds = SMIRNOFFBondHandler._from_toolkit( parameter_handler=bond_handler, topology=topology, ) else: bond_handler = None bonds = None for key, match in constraint_matches.items(): topology_key = TopologyKey(atom_indices=key) smirks = match.parameter_type.smirks distance = match.parameter_type.distance if distance is not None: # This constraint parameter is fully specified potential_key = PotentialKey( id=smirks, associated_handler="Constraints" ) distance = match.parameter_type.distance else: # This constraint parameter depends on the BondHandler ... if bond_handler is None: raise MissingParametersError( f"Constraint with SMIRKS pattern {smirks} found with no distance " "specified, and no corresponding bond parameters were found. The distance " "of this constraint is not specified." ) # ... so use the same PotentialKey instance as the BondHandler to look up the distance potential_key = bonds.slot_map[topology_key] # type: ignore[union-attr] self.slot_map[topology_key] = potential_key distance = bonds.potentials[potential_key].parameters["length"] # type: ignore[union-attr] potential = Potential( parameters={ "distance": distance, } ) self.constraints[potential_key] = potential # type: ignore[assignment] class SMIRNOFFAngleHandler(SMIRNOFFPotentialHandler): """Handler storing angle potentials as produced by a SMIRNOFF force field.""" type: Literal["Angles"] = "Angles" expression: Literal["k/2*(theta-angle)**2"] = "k/2*(theta-angle)**2" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [AngleHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attributes.""" return ["smirks", "id", "k", "angle"] @classmethod def valence_terms(cls, topology): """Return all angles in this topology.""" return list(topology.angles) def store_potentials(self, parameter_handler: "AngleHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ for potential_key in self.slot_map.values(): smirks = potential_key.id # ParameterHandler.get_parameter returns a list, although this # should only ever be length 1 parameter = parameter_handler.get_parameter({"smirks": smirks})[0] potential = Potential( parameters={ "k": parameter.k, "angle": parameter.angle, }, ) self.potentials[potential_key] = potential @classmethod def f_from_toolkit( cls: Type[T], parameter_handler: "AngleHandler", topology: "Topology", ) -> T: """ Create a SMIRNOFFAngleHandler from toolkit data. """ handler = cls() handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler class SMIRNOFFProperTorsionHandler(SMIRNOFFPotentialHandler): """Handler storing proper torsions potentials as produced by a SMIRNOFF force field.""" type: Literal["ProperTorsions"] = "ProperTorsions" expression: Literal[ "k*(1+cos(periodicity*theta-phase))" ] = "k*(1+cos(periodicity*theta-phase))" fractional_bond_order_method: Literal["AM1-Wiberg"] = "AM1-Wiberg" fractional_bond_order_interpolation: Literal["linear"] = "linear" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [ProperTorsionHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "periodicity", "phase", "idivf", "k_bondorder"] def store_matches( self, parameter_handler: "ProperTorsionHandler", topology: "_OFFBioTop", ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ if self.slot_map: self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): param = val.parameter_type n_terms = len(val.parameter_type.phase) for n in range(n_terms): smirks = param.smirks if param.k_bondorder: # The relevant bond order is that of the _central_ bond in the torsion top_bond = topology.get_bond_between(key[1], key[2]) fractional_bond_order = top_bond.bond.fractional_bond_order if not fractional_bond_order: raise RuntimeError( "Bond orders should already be assigned at this point" ) else: fractional_bond_order = None topology_key = TopologyKey( atom_indices=key, mult=n, bond_order=fractional_bond_order ) potential_key = PotentialKey( id=smirks, mult=n, associated_handler="ProperTorsions", bond_order=fractional_bond_order, ) self.slot_map[topology_key] = potential_key parameter_handler._check_all_valence_terms_assigned( assigned_terms=matches, valence_terms=list(topology.propers), exception_cls=UnassignedProperTorsionParameterException, ) def store_potentials(self, parameter_handler: "ProperTorsionHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ for topology_key, potential_key in self.slot_map.items(): smirks = potential_key.id n = potential_key.mult parameter = parameter_handler.get_parameter({"smirks": smirks})[0] # n_terms = len(parameter.k) if topology_key.bond_order: # type: ignore[union-attr] bond_order = topology_key.bond_order # type: ignore[union-attr] data = parameter.k_bondorder[n] coeffs = _get_interpolation_coeffs( fractional_bond_order=bond_order, data=data, ) pots = [] map_keys = [*data.keys()] for map_key in map_keys: parameters = { "k": parameter.k_bondorder[n][map_key], "periodicity": parameter.periodicity[n] * unit.dimensionless, "phase": parameter.phase[n], "idivf": parameter.idivf[n] * unit.dimensionless, } pots.append( Potential( parameters=parameters, map_key=map_key, ) ) potential = WrappedPotential( {pot: coeff for pot, coeff in zip(pots, coeffs)} ) else: parameters = { "k": parameter.k[n], "periodicity": parameter.periodicity[n] * unit.dimensionless, "phase": parameter.phase[n], "idivf": parameter.idivf[n] * unit.dimensionless, } potential = Potential(parameters=parameters) # type: ignore[assignment] self.potentials[potential_key] = potential class SMIRNOFFImproperTorsionHandler(SMIRNOFFPotentialHandler): """Handler storing improper torsions potentials as produced by a SMIRNOFF force field.""" type: Literal["ImproperTorsions"] = "ImproperTorsions" expression: Literal[ "k*(1+cos(periodicity*theta-phase))" ] = "k*(1+cos(periodicity*theta-phase))" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [ImproperTorsionHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" return ["smirks", "id", "k", "periodicity", "phase", "idivf"] def store_matches( self, parameter_handler: "ImproperTorsionHandler", topology: "_OFFBioTop" ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ if self.slot_map: self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val in matches.items(): parameter_handler._assert_correct_connectivity( val, [ (0, 1), (1, 2), (1, 3), ], ) n_terms = len(val.parameter_type.k) for n in range(n_terms): smirks = val.parameter_type.smirks non_central_indices = [key[0], key[2], key[3]] for permuted_key in [ ( non_central_indices[i], non_central_indices[j], non_central_indices[k], ) for (i, j, k) in [(0, 1, 2), (1, 2, 0), (2, 0, 1)] ]: topology_key = TopologyKey( atom_indices=(key[1], *permuted_key), mult=n ) potential_key = PotentialKey( id=smirks, mult=n, associated_handler="ImproperTorsions" ) self.slot_map[topology_key] = potential_key def store_potentials(self, parameter_handler: "ImproperTorsionHandler") -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ for potential_key in self.slot_map.values(): smirks = potential_key.id n = potential_key.mult parameter = parameter_handler.get_parameter({"smirks": smirks})[0] parameters = { "k": parameter.k[n], "periodicity": parameter.periodicity[n] * unit.dimensionless, "phase": parameter.phase[n], "idivf": 3.0 * unit.dimensionless, } potential = Potential(parameters=parameters) self.potentials[potential_key] = potential class _SMIRNOFFNonbondedHandler(SMIRNOFFPotentialHandler, abc.ABC): """Base class for handlers storing non-bonded potentials produced by SMIRNOFF force fields.""" type: Literal["nonbonded"] = "nonbonded" cutoff: FloatQuantity["angstrom"] = Field( # type: ignore 9.0 * unit.angstrom, description="The distance at which pairwise interactions are truncated", ) scale_13: float = Field( 0.0, description="The scaling factor applied to 1-3 interactions" ) scale_14: float = Field( 0.5, description="The scaling factor applied to 1-4 interactions" ) scale_15: float = Field( 1.0, description="The scaling factor applied to 1-5 interactions" ) class SMIRNOFFvdWHandler(_SMIRNOFFNonbondedHandler): """Handler storing vdW potentials as produced by a SMIRNOFF force field.""" type: Literal["vdW"] = "vdW" # type: ignore[assignment] expression: Literal[ "4*epsilon*((sigma/r)**12-(sigma/r)**6)" ] = "4*epsilon*((sigma/r)**12-(sigma/r)**6)" method: Literal["cutoff", "pme", "no-cutoff"] = Field("cutoff") mixing_rule: Literal["lorentz-berthelot", "geometric"] = Field( "lorentz-berthelot", description="The mixing rule (combination rule) used in computing pairwise vdW interactions", ) switch_width: FloatQuantity["angstrom"] = Field( # type: ignore 1.0 * unit.angstrom, description="The width over which the switching function is applied", ) @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [vdWHandler] @classmethod def supported_parameters(cls): """Return a list of supported parameter attributes.""" return ["smirks", "id", "sigma", "epsilon", "rmin_half"] def store_potentials(self, parameter_handler: vdWHandler) -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ self.method = parameter_handler.method.lower() self.cutoff = parameter_handler.cutoff for potential_key in self.slot_map.values(): smirks = potential_key.id parameter = parameter_handler.get_parameter({"smirks": smirks})[0] try: potential = Potential( parameters={ "sigma": parameter.sigma, "epsilon": parameter.epsilon, }, ) except AttributeError: # Handle rmin_half pending https://github.com/openforcefield/openff-toolkit/pull/750 potential = Potential( parameters={ "sigma": parameter.sigma, "epsilon": parameter.epsilon, }, ) self.potentials[potential_key] = potential @classmethod def _from_toolkit( cls: Type[T], parameter_handler: "vdWHandler", topology: "Topology", ) -> T: """ Create a SMIRNOFFvdWHandler from toolkit data. """ if isinstance(parameter_handler, list): parameter_handlers = parameter_handler else: parameter_handlers = [parameter_handler] for parameter_handler in parameter_handlers: if type(parameter_handler) not in cls.allowed_parameter_handlers(): raise InvalidParameterHandlerError( f"Found parameter handler type {type(parameter_handler)}, which is not " f"supported by potential type {type(cls)}" ) handler = cls( scale_13=parameter_handler.scale13, scale_14=parameter_handler.scale14, scale_15=parameter_handler.scale15, cutoff=parameter_handler.cutoff, mixing_rule=parameter_handler.combining_rules.lower(), method=parameter_handler.method.lower(), switch_width=parameter_handler.switch_width, ) handler.store_matches(parameter_handler=parameter_handler, topology=topology) handler.store_potentials(parameter_handler=parameter_handler) return handler @classmethod def parameter_handler_precedence(cls) -> List[str]: """ Return the order in which parameter handlers take precedence when computing charges. """ return ["vdw", "VirtualSites"] def _from_toolkit_virtual_sites( self, parameter_handler: "VirtualSiteHandler", topology: "Topology", ): # TODO: Merge this logic into _from_toolkit if not all( isinstance( p, ( VirtualSiteHandler.VirtualSiteBondChargeType, VirtualSiteHandler.VirtualSiteMonovalentLonePairType, VirtualSiteHandler.VirtualSiteDivalentLonePairType, VirtualSiteHandler.VirtualSiteTrivalentLonePairType, ), ) for p in parameter_handler.parameters ): raise NotImplementedError("Found unsupported virtual site types") matches = parameter_handler.find_matches(topology) for atoms, parameter_match in matches.items(): virtual_site_type = parameter_match[0].parameter_type top_key = VirtualSiteKey( atom_indices=atoms, type=virtual_site_type.type, match=virtual_site_type.match, ) pot_key = PotentialKey( id=virtual_site_type.smirks, associated_handler=virtual_site_type.type ) pot = Potential( parameters={ "sigma": virtual_site_type.sigma, "epsilon": virtual_site_type.epsilon, # "distance": virtual_site_type.distance, } ) # if virtual_site_type.type in {"MonovalentLonePair", "DivalentLonePair"}: # pot.parameters.update( # { # "outOfPlaneAngle": virtual_site_type.outOfPlaneAngle, # } # ) # if virtual_site_type.type in {"MonovalentLonePair"}: # pot.parameters.update( # { # "inPlaneAngle": virtual_site_type.inPlaneAngle, # } # ) self.slot_map.update({top_key: pot_key}) self.potentials.update({pot_key: pot}) class SMIRNOFFElectrostaticsHandler(_SMIRNOFFNonbondedHandler): """ A handler which stores any electrostatic parameters applied to a topology. This handler is responsible for grouping together * global settings for the electrostatic interactions such as the cutoff distance and the intramolecular scale factors. * partial charges which have been assigned by a ``ToolkitAM1BCC``, ``LibraryCharges``, or a ``ChargeIncrementModel`` parameter handler. * charge corrections applied by a ``SMIRNOFFChargeIncrementHandler``. rather than having each in their own handler. """ type: Literal["Electrostatics"] = "Electrostatics" # type: ignore[assignment] expression: Literal["coul"] = "coul" method: Literal["pme", "cutoff", "reaction-field", "no-cutoff"] = Field("pme") @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [ LibraryChargeHandler, ChargeIncrementModelHandler, ToolkitAM1BCCHandler, ElectrostaticsHandler, ] @classmethod def supported_parameters(cls): """Return a list of supported parameter attribute names.""" pass @property def charges(self) -> Dict[Union[TopologyKey, VirtualSiteKey], unit.Quantity]: """Get the total partial charge on each atom, excluding virtual sites.""" return self.get_charges(include_virtual_sites=False) @property def charges_with_virtual_sites( self, ) -> Dict[Union[VirtualSiteKey, TopologyKey], unit.Quantity]: """Get the total partial charge on each atom, including virtual sites.""" return self.get_charges(include_virtual_sites=True) def get_charges( self, include_virtual_sites=False ) -> Dict[Union[VirtualSiteKey, TopologyKey], unit.Quantity]: """Get the total partial charge on each atom or particle.""" charges: DefaultDict[ Union[TopologyKey, VirtualSiteKey], FloatQuantity ] = defaultdict(lambda: 0.0 * unit.e) for topology_key, potential_key in self.slot_map.items(): potential = self.potentials[potential_key] for parameter_key, parameter_value in potential.parameters.items(): if parameter_key == "charge_increments": if type(topology_key) != VirtualSiteKey: raise RuntimeError charge = -1.0 * np.sum(parameter_value) # assumes virtual sites can only have charges determined in one step # also, topology_key is actually a VirtualSiteKey charges[topology_key] = charge elif parameter_key in ["charge", "charge_increment"]: charge = parameter_value charges[topology_key.atom_indices[0]] += charge # type: ignore else: raise NotImplementedError() returned_charges: Dict[ Union[VirtualSiteKey, TopologyKey], unit.Quantity ] = dict() for index, charge in charges.items(): if isinstance(index, int): returned_charges[TopologyKey(atom_indices=(index,))] = charge else: if include_virtual_sites: returned_charges[index] = charge return returned_charges @classmethod def parameter_handler_precedence(cls) -> List[str]: """ Return the order in which parameter handlers take precedence when computing charges. """ return ["LibraryCharges", "ChargeIncrementModel", "ToolkitAM1BCC"] @classmethod def _from_toolkit( cls: Type[T], parameter_handler: Any, topology: "Topology", ) -> T: """ Create a SMIRNOFFElectrostaticsHandler from toolkit data. """ if isinstance(parameter_handler, list): parameter_handlers = parameter_handler else: parameter_handlers = [parameter_handler] toolkit_handler_with_metadata = [ p for p in parameter_handlers if type(p) == ElectrostaticsHandler ][0] handler = cls( type=toolkit_handler_with_metadata._TAGNAME, scale_13=toolkit_handler_with_metadata.scale13, scale_14=toolkit_handler_with_metadata.scale14, scale_15=toolkit_handler_with_metadata.scale15, cutoff=toolkit_handler_with_metadata.cutoff, method=toolkit_handler_with_metadata.method.lower(), ) handler.store_matches(parameter_handlers, topology) return handler def _from_toolkit_virtual_sites( self, parameter_handler: "VirtualSiteHandler", topology: "Topology", ): # TODO: Merge this logic into _from_toolkit if not all( isinstance( p, ( VirtualSiteHandler.VirtualSiteBondChargeType, VirtualSiteHandler.VirtualSiteMonovalentLonePairType, VirtualSiteHandler.VirtualSiteDivalentLonePairType, VirtualSiteHandler.VirtualSiteTrivalentLonePairType, ), ) for p in parameter_handler.parameters ): raise NotImplementedError("Found unsupported virtual site types") matches = parameter_handler.find_matches(topology) for atom_indices, parameter_match in matches.items(): virtual_site_type = parameter_match[0].parameter_type virtual_site_key = VirtualSiteKey( atom_indices=atom_indices, type=virtual_site_type.type, match=virtual_site_type.match, ) virtual_site_potential_key = PotentialKey( id=virtual_site_type.smirks, associated_handler="VirtualSiteHandler", ) virtual_site_potential = Potential( parameters={ "charge_increments": from_openmm( virtual_site_type.charge_increment ), } ) matches = {} potentials = {} self.slot_map.update({virtual_site_key: virtual_site_potential_key}) self.potentials.update({virtual_site_potential_key: virtual_site_potential}) # TODO: Counter-intuitive that toolkit regression tests pass by using the counter # variable i as if it was the atom index - shouldn't it just use atom_index? for i, atom_index in enumerate(atom_indices): # noqa topology_key = TopologyKey(atom_indices=(i,), mult=2) potential_key = PotentialKey( id=virtual_site_type.smirks, mult=i, associated_handler="VirtualSiteHandler", ) charge_increment = getattr( virtual_site_type, f"charge_increment{i + 1}" ) potential = Potential( parameters={"charge_increment": from_openmm(charge_increment)} ) matches[topology_key] = potential_key potentials[potential_key] = potential self.slot_map.update(matches) self.potentials.update(potentials) @classmethod @functools.lru_cache(None) def _compute_partial_charges(cls, molecule: Molecule, method: str) -> unit.Quantity: """Call out to the toolkit's toolkit wrappers to generate partial charges.""" molecule = copy.deepcopy(molecule) molecule.assign_partial_charges(method) return from_openmm(molecule.partial_charges) @classmethod def _library_charge_to_potentials( cls, atom_indices: Tuple[int, ...], parameter: LibraryChargeHandler.LibraryChargeType, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Map a matched library charge parameter to a set of potentials. """ matches = {} potentials = {} for i, (atom_index, charge) in enumerate(zip(atom_indices, parameter.charge)): topology_key = TopologyKey(atom_indices=(atom_index,)) potential_key = PotentialKey( id=parameter.smirks, mult=i, associated_handler="LibraryCharges" ) potential = Potential(parameters={"charge": from_openmm(charge)}) matches[topology_key] = potential_key potentials[potential_key] = potential return matches, potentials @classmethod def _charge_increment_to_potentials( cls, atom_indices: Tuple[int, ...], parameter: ChargeIncrementModelHandler.ChargeIncrementType, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Map a matched charge increment parameter to a set of potentials. """ matches = {} potentials = {} for i, atom_index in enumerate(atom_indices): topology_key = TopologyKey(atom_indices=(atom_index,)) potential_key = PotentialKey( id=parameter.smirks, mult=i, associated_handler="ChargeIncrementModel" ) # TODO: Handle the cases where n - 1 charge increments have been defined, # maybe by implementing this in the TK? charge_increment = getattr(parameter, f"charge_increment{i + 1}") potential = Potential( parameters={"charge_increment": from_openmm(charge_increment)} ) matches[topology_key] = potential_key potentials[potential_key] = potential return matches, potentials @classmethod def _find_slot_matches( cls, parameter_handler: Union["LibraryChargeHandler", "ChargeIncrementModelHandler"], reference_molecule: Molecule, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Construct a slot and potential map for a slot based parameter handler. """ # Ideally this would be made redundant by OpenFF TK #971 unique_parameter_matches = { tuple(sorted(key)): (key, val) for key, val in parameter_handler.find_matches( reference_molecule.to_topology() ).items() } parameter_matches = {key: val for key, val in unique_parameter_matches.values()} matches, potentials = {}, {} for key, val in parameter_matches.items(): parameter = val.parameter_type if isinstance(parameter_handler, LibraryChargeHandler): ( parameter_matches, parameter_potentials, ) = cls._library_charge_to_potentials(key, parameter) elif isinstance(parameter_handler, ChargeIncrementModelHandler): ( parameter_matches, parameter_potentials, ) = cls._charge_increment_to_potentials(key, parameter) else: raise NotImplementedError() matches.update(parameter_matches) potentials.update(parameter_potentials) return matches, potentials @classmethod def _find_am1_matches( cls, parameter_handler: Union["ToolkitAM1BCCHandler", ChargeIncrementModelHandler], reference_molecule: Molecule, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """Construct a slot and potential map for a charge model based parameter handler.""" reference_molecule = copy.deepcopy(reference_molecule) reference_smiles = reference_molecule.to_smiles( isomeric=True, explicit_hydrogens=True, mapped=True ) method = getattr(parameter_handler, "partial_charge_method", "am1bcc") partial_charges = cls._compute_partial_charges( reference_molecule, method=method ) matches = {} potentials = {} for i, partial_charge in enumerate(partial_charges): potential_key = PotentialKey( id=reference_smiles, mult=i, associated_handler="ToolkitAM1BCC" ) potentials[potential_key] = Potential(parameters={"charge": partial_charge}) matches[TopologyKey(atom_indices=(i,))] = potential_key return matches, potentials @classmethod def _find_reference_matches( cls, parameter_handlers: Dict[str, "ElectrostaticsHandlerType"], reference_molecule: Molecule, ) -> Tuple[Dict[TopologyKey, PotentialKey], Dict[PotentialKey, Potential]]: """ Construct a slot and potential map for a particular reference molecule and set of parameter handlers. """ matches = {} potentials = {} expected_matches = {i for i in range(reference_molecule.n_atoms)} for handler_type in cls.parameter_handler_precedence(): if handler_type not in parameter_handlers: continue parameter_handler = parameter_handlers[handler_type] slot_matches, am1_matches = None, None slot_potentials: Dict = {} am1_potentials: Dict = {} if handler_type in ["LibraryCharges", "ChargeIncrementModel"]: slot_matches, slot_potentials = cls._find_slot_matches( parameter_handler, reference_molecule ) if handler_type in ["ToolkitAM1BCC", "ChargeIncrementModel"]: am1_matches, am1_potentials = cls._find_am1_matches( parameter_handler, reference_molecule ) if slot_matches is None and am1_matches is None: raise NotImplementedError() elif slot_matches is not None and am1_matches is not None: am1_matches = { TopologyKey( atom_indices=topology_key.atom_indices, mult=0 ): potential_key for topology_key, potential_key in am1_matches.items() } slot_matches = { TopologyKey( atom_indices=topology_key.atom_indices, mult=1 ): potential_key for topology_key, potential_key in slot_matches.items() } matched_atom_indices = { index for key in slot_matches for index in key.atom_indices } matched_atom_indices.intersection_update( {index for key in am1_matches for index in key.atom_indices} ) elif slot_matches is not None: matched_atom_indices = { index for key in slot_matches for index in key.atom_indices } else: matched_atom_indices = { index for key in am1_matches for index in key.atom_indices # type: ignore[union-attr] } if matched_atom_indices != expected_matches: # Handle the case where a handler could not fully assign the charges # to the whole molecule. continue matches.update(slot_matches if slot_matches is not None else {}) matches.update(am1_matches if am1_matches is not None else {}) potentials.update(slot_potentials) potentials.update(am1_potentials) break found_matches = {index for key in matches for index in key.atom_indices} if found_matches != expected_matches: raise RuntimeError( f"{reference_molecule.to_smiles(explicit_hydrogens=False)} could " f"not be fully assigned charges." ) return matches, potentials def store_matches( self, parameter_handler: Union[ "ElectrostaticsHandlerType", List["ElectrostaticsHandlerType"] ], topology: Union["Topology", "_OFFBioTop"], ) -> None: """ Populate self.slot_map with key-val pairs of slots and unique potential identifiers. """ # Reshape the parameter handlers into a dictionary for easier referencing. parameter_handlers = { handler._TAGNAME: handler for handler in ( parameter_handler if isinstance(parameter_handler, list) else [parameter_handler] ) } self.potentials = dict() self.slot_map = dict() reference_molecules = [*topology.reference_molecules] for reference_molecule in reference_molecules: matches, potentials = self._find_reference_matches( parameter_handlers, reference_molecule ) match_mults = defaultdict(set) for top_key in matches: match_mults[top_key.atom_indices].add(top_key.mult) self.potentials.update(potentials) for top_mol in topology._reference_molecule_to_topology_molecules[ reference_molecule ]: for topology_particle in top_mol.atoms: reference_index = topology_particle.atom.molecule_particle_index topology_index = topology_particle.topology_particle_index for mult in match_mults[(reference_index,)]: top_key = TopologyKey(atom_indices=(topology_index,), mult=mult) self.slot_map[top_key] = matches[ TopologyKey(atom_indices=(reference_index,), mult=mult) ] def store_potentials( self, parameter_handler: Union[ "ElectrostaticsHandlerType", List["ElectrostaticsHandlerType"] ], ) -> None: """ Populate self.potentials with key-val pairs of [TopologyKey, PotentialKey]. """ # This logic is handled by ``store_matches`` as we may need to create potentials # to store depending on the handler type. pass class SMIRNOFFVirtualSiteHandler(SMIRNOFFPotentialHandler): """ A handler which stores the information necessary to construct virtual sites (virtual particles). """ type: Literal["Bonds"] = "Bonds" expression: Literal[""] = "" virtual_site_key_topology_index_map: Dict["VirtualSiteKey", int] = Field( dict(), description="A mapping between VirtualSiteKey objects (stored analogously to TopologyKey objects" "in other handlers) and topology indices describing the associated virtual site", ) exclusion_policy: Literal["parents"] = "parents" @classmethod def allowed_parameter_handlers(cls): """Return a list of allowed types of ParameterHandler classes.""" return [VirtualSiteHandler] @classmethod def supported_parameters(cls): """Return a list of parameter attributes supported by this handler.""" return ["distance", "outOfPlaneAngle", "inPlaneAngle"] def store_matches( self, parameter_handler: ParameterHandler, topology: Union["Topology", "_OFFBioTop"], ) -> None: """ Populate self.slot_map with key-val pairs of [TopologyKey, PotentialKey]. Differs from SMIRNOFFPotentialHandler.store_matches because each key can point to multiple potentials (?); each value in the dict is a list of parametertypes, whereas conventional handlers don't have lists """ virtual_site_index = topology.n_topology_atoms parameter_handler_name = getattr(parameter_handler, "_TAGNAME", None) if self.slot_map: self.slot_map = dict() matches = parameter_handler.find_matches(topology) for key, val_list in matches.items(): for val in val_list: virtual_site_key = VirtualSiteKey( atom_indices=key, type=val.parameter_type.type, match=val.parameter_type.match, ) potential_key = PotentialKey( id=val.parameter_type.smirks, associated_handler=parameter_handler_name, ) self.slot_map[virtual_site_key] = potential_key self.virtual_site_key_topology_index_map[ virtual_site_key ] = virtual_site_index virtual_site_index += 1 def store_potentials(self, parameter_handler: ParameterHandler) -> None: """Store VirtualSite-specific parameter-like data.""" if self.potentials: self.potentials = dict() for potential_key in self.slot_map.values(): smirks = potential_key.id parameter_type = parameter_handler.get_parameter({"smirks": smirks})[0] potential = Potential( parameters={ "distance": parameter_type.distance, }, ) for attr in ["outOfPlaneAngle", "inPlaneAngle"]: if hasattr(parameter_type, attr): potential.parameters.update( {attr: from_openmm(getattr(parameter_type, attr))} ) self.potentials[potential_key] = potential def _get_local_frame_weights(self, virtual_site_key: "VirtualSiteKey"): if virtual_site_key.type == "BondCharge": origin_weight = [1.0, 0.0] x_direction = [-1.0, 1.0] y_direction = [-1.0, 1.0] elif virtual_site_key.type == "MonovalentLonePair": origin_weight = [1, 0.0, 0.0] x_direction = [-1.0, 1.0, 0.0] y_direction = [-1.0, 0.0, 1.0] elif virtual_site_key.type == "DivalentLonePair": origin_weight = [0.0, 1.0, 0.0] x_direction = [0.5, -1.0, 0.5] y_direction = [1.0, -1.0, 1.0] elif virtual_site_key.type == "TrivalentLonePair": origin_weight = [0.0, 1.0, 0.0, 0.0] x_direction = [1 / 3, -1.0, 1 / 3, 1 / 3] y_direction = [1.0, -1.0, 0.0, 0.0] return origin_weight, x_direction, y_direction def _get_local_frame_position(self, virtual_site_key: "VirtualSiteKey"): potential_key = self.slot_map[virtual_site_key] potential = self.potentials[potential_key] if virtual_site_key.type == "BondCharge": distance = potential.parameters["distance"] local_frame_position = np.asarray([-1.0, 0.0, 0.0]) * distance elif virtual_site_key.type == "MonovalentLonePair": distance = potential.parameters["distance"] theta = potential.parameters["inPlaneAngle"].m_as(unit.radian) # type: ignore psi = potential.parameters["outOfPlaneAngle"].m_as(unit.radian) # type: ignore factor = np.array( [np.cos(theta) *
np.cos(psi)
numpy.cos
""" MIT License Copyright (c) 2021 Overcomer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import pickle import logging import cv2 import numpy from skimage.feature import local_binary_pattern as LBP from tensorflow.keras.optimizers import Adam from tensorflow.keras.utils import plot_model from tensorflow.keras.models import load_model from tensorflow.keras.models import Sequential from tensorflow.keras import layers, regularizers from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint from .openface import OpenFace from new_tools import check_image class LBPCNN(OpenFace): def __init__(self): """ Init label_encoder and model. """ self.label_encoder = None self.model = None def build_LBPCNN_model(self, name="LBPCNN", input_shape=(256, 256, 1), classes=18, learning_rate=2.5e-4): """ LBPCNN architecture. Args ---- name: Specify CNN model name. input_shape: Specify LBPCNN input shape. Default 256x256x1(local binary patterns image) classes: Specify classes amount. learning_rate: Specify the learning rate of Adam optimizer. """ model = Sequential(name=name) model.add(layers.Conv2D(filters=40, kernel_size=(3, 3), padding="same", input_shape=input_shape, activation="relu", name="cnn1_1")) model.add(layers.Conv2D(filters=40, kernel_size=(3, 3), padding="same", activation="relu", name="cnn1_2")) model.add(layers.BatchNormalization(name="bn1")) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=2, name="mp1")) model.add(layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu", name="cnn2_1")) model.add(layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu", name="cnn2_2")) model.add(layers.BatchNormalization(name="bn2")) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=2, name="mp2")) model.add(layers.Conv2D(filters=128, kernel_size=(3, 3), strides=1, padding="same", activation="relu", name="cnn3_1")) model.add(layers.Conv2D(filters=128, kernel_size=(3, 3), strides=1, padding="same", activation="relu", name="cnn3_2")) model.add(layers.BatchNormalization(name="bn3")) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=2, name="mp3")) model.add(layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu", name="cnn4_1")) model.add(layers.Conv2D(filters=64, kernel_size=(3, 3), padding="same", activation="relu", name="cnn4_2")) model.add(layers.BatchNormalization(name="bn4")) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=2, name="mp4")) model.add(layers.Conv2D(filters=40, kernel_size=(3, 3), padding="same", activation="relu", name="cnn5_1")) model.add(layers.Conv2D(filters=40, kernel_size=(3, 3), padding="same", activation="relu", name="cnn5_2")) model.add(layers.BatchNormalization(name="bn5")) model.add(layers.MaxPooling2D(pool_size=(2, 2), strides=2, name="mp5")) model.add(layers.Flatten(name="flatten")) model.add(layers.Dense(256, activation="relu", name="fc1")) model.add(layers.Dropout(0.25, name="dp1")) model.add(layers.BatchNormalization(name="bn6")) model.add(layers.Dense(128, kernel_regularizer=regularizers.L1L2(0.0001), bias_regularizer=regularizers.L1L2(0.0001), activation="relu", name="fc2")) model.add(layers.Dropout(0.25, name="dp2")) model.add(layers.BatchNormalization(name="bn7")) model.add(layers.Dense(classes, activation="softmax", name="softmax")) model.compile(loss="sparse_categorical_crossentropy", optimizer=Adam(learning_rate=learning_rate), metrics=["accuracy"]) model.summary() self.model = model def load_model(self, label_encoder_path=str(), model_path=str()): """ Load LBPCNN model from SaveModel class. You need to specify model diretory path. Args ---- label_encoder_path: Specify label encoder path. model_path: Specify LBPCNN model path. """ logging.info("Loading LBPCNN model...") if not os.path.exists(label_encoder_path): logging.critical("'{}' error ! Loaded LBPCNN label encoder failed.".format(label_encoder_path)) raise FileNotFoundError if not os.path.exists(model_path): logging.critical("'{}' error ! Loaded LBPCNN model failed.".format(model_path)) raise FileNotFoundError with open(label_encoder_path, "rb") as lab: self.label_encoder = pickle.load(lab) self.model = load_model(model_path) logging.info("Loaded LBPCNN model successfully !") def train_model(self, images, labels, validation_data=tuple(), model=Sequential(), epochs=200, batch_size=128, verbose=1, time_record=str(), save_path=str()): """ Train LBPCNN model. Args ---- images: Training images array. labels: Training labels. validation_data: Input validation images array and validation labels. model: Sequential model instance. epochs: Training model count. batch_size: Images amount of once training model. Power of 2 like 2,4,8,...,128. verbose: Training model real time detail information. time_record: Build training model directory prefixes. save_path: Save model root directory. Return ------ train_history: LBPCNN model training history. """ logging.info("Training LBPCNN model...") root_path = os.path.join(save_path, "{}".format(time_record)) logging.info("Building LBPCNN model saved path to {}...".format(root_path)) if not os.path.join(root_path): os.makedirs(root_path) plot_image = os.path.join(root_path, "{}_LBPCNN_model_architecture.png".format(time_record)) logging.info("Saving LBPCNN model architecture image to {}...".format(plot_image)) plot_model(model, to_file=plot_image, show_shapes=True, show_layer_names=True) log_dir = os.path.join(root_path, "logs/fit/{}".format(time_record)) logging.info("Building tensorboard log directory to {}...".format(log_dir)) os.makedirs(log_dir) tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1, write_graph=True, write_images=True, embeddings_freq=False) checkpoint_dir = os.path.join(root_path, "{}_best_checkpoint".format(time_record)) logging.info("Building checkpoint directory to {}...".format(checkpoint_dir)) os.makedirs(checkpoint_dir) checkpoint_filepath = os.path.join(checkpoint_dir, "lbpcnn_{epoch:04d}.ckpt") checkpoint_callback = ModelCheckpoint(filepath=checkpoint_filepath, monitor='val_loss', mode='min', verbose=0, save_best_only=True) train_history = model.fit(x=images, y=labels, validation_data=validation_data, epochs=epochs, batch_size=batch_size, verbose=verbose, callbacks=[tensorboard_callback, checkpoint_callback]) logging.info("Saved LBPCNN model to {}.".format(root_path)) logging.info("Finished LBPCNN model training !") return train_history def predict(self, image, LBP_sample_point=8, LBP_radius=2, LBP_method="uniform"): """ Predict image. Args ---- image: BGR image format. LBP_sample_point: Local binary patterns sample points. Default 8 point. LBP_radius: Local binary patterns radius. Default 2. LBP_method: Local binary patterns method. Default uniform method. Return ------ pred_id: Prediction index. pred_proba: Prediction probability. """ pred_id = None pred_proba = None state, image = check_image(image) if state == 0: gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) lbp_image = LBP(gray_image, P=LBP_sample_point, R=LBP_radius, method=LBP_method) expand_lbp_image =
numpy.expand_dims(lbp_image, axis=0)
numpy.expand_dims
import numpy as np import texttable as tt from scipy import linalg import sys import random def is_close(float1, float2, epsilon=1e-6): return abs(float1 - float2) <= epsilon def f1(x): return 100 * (x[1] - x[0] ** 2) ** 2 + (1 - x[0]) ** 2 def f2(x): return (x[0] - 4) ** 2 + 4 * (x[1] - 2) ** 2 def f3(x): return (x[0] - 2) ** 2 + (x[1] + 3) ** 2 def f4(x): return (x[0] - 3) ** 2 + x[1] ** 2 # Enables us to not repeat calculations and keep track of number of evals class GoalFunction: def __init__(self, function, start=None): self.f = function self.start = np.array(start) self.count = 0 self.store = dict() def eval(self, x): if str(x) not in self.store.keys(): self.store[str(x)] = self.f(x) self.count += 1 return self.store[str(x)] def reset(self): self.count = 0 self.store = dict() # Wraps GoalFunction in order to search along an axis # e_i is direction vector class LambdaMinWrapper: def __init__(self, gf, x, e_i): self.gf = gf self.x = x self.e_i = e_i def eval(self, L): return self.gf.eval(self.x + L * self.e_i) ''' Postupak trazenja unimodalnog intervala Ulazne velicine: - gf: ciljna funkcija (klasa GoalFunction) - tocka: pocetna tocka pretrazivanja - h: pomak pretrazivanja - f: ciljna funkcija Izlazne vrijednosti: - unimodalni interval [l, r] ''' def get_unimodal_interval(gf, tocka, h=1): step = 1 l, m, r = float(tocka) - h, float(tocka), float(tocka) + h fl, fm, fr = gf.eval(l), gf.eval(m), gf.eval(r) if (fm < fr) and (fm < fl): return [float(l), float(r)] elif fm > fr: while fm > fr: l = float(m) m = float(r) fm = float(fr) step *= 2 r = float(tocka) + h * step fr = gf.eval(r) else: while fm > fl: r = float(m) m = float(l) fm = float(fl) step *= 2 l = float(tocka) - h * step fl = gf.eval(l) return [float(l), float(r)] ''' Algoritam zlatnog reza ulazne velicine: - a, b: pocetne granice unimodalnog intervala - e: preciznost ako je jedan od a ili b None, obavlja se get_unimodal_interval ''' def golden_section_search(gf, a=None, b=None, e=1e-6): if a is None: a, b = get_unimodal_interval(gf, b, 1) elif b is None: a, b = get_unimodal_interval(gf, a, 1) k = 0.5 * (np.sqrt(5) - 1) c = b - k * (b - a) d = a + k * (b - a) fc = gf.eval(c) fd = gf.eval(d) while (b - a) > e: if fc < fd: b = float(d) d = float(c) c = b - k * (b - a) fd = float(fc) fc = gf.eval(c) else: a = c c = d d = a + k * (b - a) fc = fd fd = gf.eval(d) return (a + b) / 2 ''' Algoritam simpleks postupka po Nelderu i Meadu (Downhill simplex) gf - ciljna funkcija x0 - pocetna tocka step - koef pomaka jednog koraka alpha - koef refleksija beta - koef kontrakcija gamma - koef ekspanzije sigma - koef pomicanja u smjeru najbolje tocke mat_iter - maksimalan broj iteracija ''' def nelder_mead(gf, x0, step=1, alpha=1, beta=0.5, gamma=2, sigma=0.5, e=1e-6, max_iter=10000): tab = tt.Texttable() tab.header(['Iteracija', 'Centroid', 'f(centroid)', 'Simplex']) # pocetni simplex simplex, centroid = [x0], np.array([]) for i in range(len(x0)): tocka = np.array(x0) tocka[i] += step simplex.append(tocka) simplex = np.array(simplex) for i in range(max_iter): # indeksi najvece i najmanje vrijednosti funkcije l, h = get_max_and_min(gf, simplex) centroid = get_centroid(simplex, h) tab.add_row([i, centroid, gf.eval(centroid), simplex]) reflected = reflection(simplex[h], centroid, alpha) if gf.eval(reflected) < gf.eval(simplex[l]): expanded = expansion(reflected, centroid, gamma) if gf.eval(expanded) < gf.eval(simplex[l]): simplex[h] = np.array(expanded) else: simplex[h] = np.array(reflected) else: # ako F(Xr)>F(X[j]) za svaki j=0..n, j!=h condition = True for j in range(simplex.shape[0]): if j == h: continue if gf.eval(reflected) <= gf.eval(simplex[j]): condition = False break if condition is True: # ako F(Xr)>F(X[j]) za svaki j=0..n, j!=h if gf.eval(reflected) < gf.eval(simplex[h]): simplex[h] = np.array(reflected) contracted = contraction(simplex[h], centroid, beta) if gf.eval(contracted) < gf.eval(simplex[h]): simplex[h] = np.array(contracted) else: # pomakni sve tocke prema simplex[l] simplex = move_all_to_lowest(simplex, l, sigma) else: simplex[h] = np.array(reflected) # stop if stop value <= epsilon stop_value = 0 for i in range(simplex.shape[0]): stop_value += (gf.eval(simplex[i]) - gf.eval(centroid)) ** 2 stop_value = np.sqrt(stop_value / float(simplex.shape[0])) if stop_value <= e: print("[+] Cilj dostignut prije max_iter, stop_value ={0}!!".format(stop_value)) break print(tab.draw()) # l, h = get_max_and_min(gf, simplex) # return simplex[l] return centroid # mice sve tocke simplexa prema najmanjoj def move_all_to_lowest(simplex, l, sigma): new_simplex = np.array([simplex[l]]) for i in range(simplex.shape[0]): new_simplex = np.vstack([new_simplex, np.array([sigma * (simplex[i] + simplex[l])])]) return new_simplex[1:] # prima najgoru tocku i vraca njenu refleksiju def reflection(tocka, centroid, alpha): return (1 + alpha) * centroid - alpha * tocka # prima reflektiranu tocku i produljuje ju u smjeru centroida def expansion(reflected, centroid, gamma): return (1 - gamma) * centroid + gamma * reflected # prima najgoru tocku i pomice ju u smjeru centroida tako da smanji simpleks def contraction(tocka, centroid, beta): return (1 - beta) * centroid + beta * tocka # vraca centroid svih osim skip_i-te tocke def get_centroid(simplex, skip_i): centroid = np.zeros(simplex.shape[1]) for i in range(simplex.shape[0]): if i == skip_i: continue for j in range(simplex.shape[1]): centroid[j] += simplex[i][j] return np.true_divide(centroid, simplex.shape[0] - 1) # vraca indekse najbolje i najgore tocke def get_max_and_min(gf, simplex): l, h = 0, 0 max_value = gf.eval(simplex[0]) min_value = gf.eval(simplex[0]) for i in range(1, simplex.shape[0]): value = gf.eval(simplex[i]) if value > max_value: max_value = value h = i if value < min_value: min_value = value l = i return l, h ''' Algoritam Hooke-Jeeves postupka x0 - pocetna tocka xB - bazna tocka xP - pocetna tocka pretrazivanja xN - tocka dobivena pretrazivanjem ''' def hooke_jeeves(gf, x0, dx=0.5, e=10e-6, max_iter=200): tab = tt.Texttable() tab.header(['Iteracija', 'Bazna', 'Pocetna', 'Explored']) start = base = x0 for i in range(max_iter): explored = explore(gf, start, dx=dx) if gf.eval(explored) < gf.eval(base): # prihvati baznu tocku start = 2 * explored - base # definiramo novu tocku pretrazivanja base = np.array(explored) else: dx /= 2.0 start = np.array(base) # vratimo se na zadnju baznu tocku tab.add_row([i, "f({0})={1}".format(base, gf.eval(base)), "f({0})={1}".format(start, gf.eval(start)), "f({0})={1}".format(explored, gf.eval(explored))]) # uvjet zaustavljanja if dx < e: print("[+] Kraj prije max_iter, dx=", dx) break print(tab.draw()) if gf.eval(start) < gf.eval(base) and gf.eval(start) < gf.eval(explored): return start elif gf.eval(explored) < gf.eval(base) and gf.eval(explored) < gf.eval(start): return explored return base # hooke jeeves helper functions def explore(gf, tocka, dx=0.5): x = np.array(tocka) for i in range(x.shape[0]): P = gf.eval(x) x[i] = float(x[i]) + dx N = gf.eval(x) if N > P: # ne valja pozitivni pomak x[i] -= 2 * dx N = gf.eval(x) if N > P: # ne valja ni negativni x[i] += dx # vratimo na staro return x ''' Helper for gradient methods ''' def approx_gradient(f, x, delta=1e-9): gradients = [] for j in range(len(x)): tmp_x1, tmp_x2 = list(x), list(x) tmp_x1[j] += delta tmp_x2[j] -= delta gradient_approx = f.eval(tmp_x1) - f.eval(tmp_x2) gradient_approx /= (2 * delta) gradients.append(gradient_approx) return gradients ''' Gradient Descent with gradient calculation on the fly function GoalFunction which we are minimizing x Vector with start values golden_section Finds optimal learning rate if True ''' def gradient_descent(f, x, golden_section=True, epsilon=1e-9, rate=1, iterations=1000, delta=1e-9): stuck_count, f_x, f_best = 0, 0, 10e18 for i in range(iterations): if f.eval(x) >= f_best: stuck_count += 1 else: stuck_count = 0 if stuck_count == 100: break f_x = f.eval(x) if f_x < f_best: f_best = float(f_x) print("{}: f({}): {}".format(i, x, f_x)) if abs(f_x) <= epsilon: print("Success!") break gradients = approx_gradient(f, x, delta=delta) if golden_section is False: for j in range(len(x)): x[j] -= rate * gradients[j] else: # using golden section search to find optimal learning rate for j in range(len(x)): Lgf = LambdaMinWrapper(f, x, np.array(gradients)) unimodal = get_unimodal_interval(Lgf, 0) L = golden_section_search(Lgf, unimodal[0], unimodal[1]) x[j] += L * gradients[j] f_x = f.eval(x) print("Final result: f({}): {}\n".format(x, f_x)) return x, f_x, f.count ''' Helper for Newton methods ''' def hesse(f, x, delta=1e-6): d = len(x) grad_x = approx_gradient(f, x) H = [] for i in range(len(grad_x)): tmp_x1, tmp_x2 = list(x), list(x) tmp_x1[i] += delta tmp_x2[i] -= delta sd1 = np.array(approx_gradient(f, tmp_x1)) sd2 = np.array(approx_gradient(f, tmp_x2)) second_derivative = (sd1 - sd2) / (2 * delta) H.append(second_derivative) return H def supstitute_backward(U, y): return linalg.solve(U, y) def supstitute_forward(L, P, E): N = L.shape[0] PE = np.dot(P, E) return linalg.solve(L, PE) def inverse(m): m = np.array(m) E = np.zeros(m.shape) for i in range(E.shape[0]): E[i][i] = 1 P, L, U = linalg.lu(m) X = [] for i in range(m.shape[0]): y = supstitute_forward(L, P, E) x = supstitute_backward(U, y) X.append(x) return np.array(X) ''' Newton Raphson optimization method function GoalFunction which we are minimizing x Vector with start values golden_section Finds optimal learning rate if True ''' def newton_rhapson(f, x, epsilon=1e-6, iterations=1000): counters = {'hesse': 0, 'gradient': 0, "f_evals": 0} for i in range(iterations): f_x = f.eval(x) print("{}: f({}): {}".format(i, x, f_x)) if abs(f_x) <= epsilon: print("Success!") break gradient = np.array(approx_gradient(f, x)) H = np.array(hesse(f, x)) counters['hesse'] += 1 counters['gradient'] += 2 * len(gradient) + 1 print("Hesse:\n", H) try: step = np.dot(inverse(H), gradient)[0][:] Lgf = LambdaMinWrapper(f, x, step) unimodal = get_unimodal_interval(Lgf, 0) L = golden_section_search(Lgf, unimodal[0], unimodal[1]) x = x + L * step except np.linalg.LinAlgError as e: print(str(e)) print("\nCannot find inverse of hesse matrix\n") return "FAILED" f_x = f.eval(x) print("Final result: f({}): {}\n".format(x, f_x)) counters['f_evals'] = f.count return x, f_x, counters ''' Helper method used with constrained optimization methods: Box Algorithm Mixed-Transformation Algorithm Implicit limitations hardcoded: (x2-x1 >= 0), (2-x1 >= 0) ''' def check_implicit_limitations(x): if x[1] - x[0] >= 0 and 2 - x[0] >= 0: return True else: return False ''' Helper for Box returns indices of two worst points ''' def get_worst_indices(simplex, f): to_be_sorted = [] for i, x in enumerate(simplex): to_be_sorted.append([i, f.eval(x)]) to_be_sorted = sorted(to_be_sorted, key=lambda x: x[1]) return to_be_sorted[-1][0], to_be_sorted[-2][0] ''' Helper for Box returns centroid of given points ''' def centroid(simplex): N = len(simplex[0]) xc =
np.zeros(N)
numpy.zeros
from astropy.io import fits import pandas as pd import numpy as np from lightkurve import KeplerLightCurve def find_flares(flux, error, N1=4, N2=4, N3=3): ''' The algorithm for local changes due to flares defined by <NAME> et al. (2015), Eqn. 3a-d http://arxiv.org/abs/1510.01005 Note: these equations were originally in magnitude units, i.e. smaller values are increases in brightness. The signs have been changed, but coefficients have not been adjusted to change from log(flux) to flux. Parameters: ---------- flux : numpy array data to search over error : numpy array errors corresponding to data. N1 : int, optional Coefficient from original paper (Default is 3 in paper, 4 here) How many times above the stddev is required. N2 : int, optional Coefficient from original paper (Default is 1 in paper, 4 here) How many times above the stddev and uncertainty is required N3 : int, optional Coefficient from original paper (Default is 3) The number of consecutive points required to flag as a flare Return: ------------ isflare : numpy array of booleans datapoints are flagged with 1 if they belong to a flare candidate ''' median = np.nanmedian(flux) sigma = np.nanstd(flux) T0 = flux - median # excursion should be positive #"N0" T1 = np.abs(flux - median) / sigma #N1 T2 = np.abs(flux - median - error) / sigma #N2 # apply thresholds N0-N2: pass_thresholds =
np.where((T0 > 0) & (T1 > N1) & (T2 > N2))
numpy.where
# -*- coding: utf-8 -*- # ------------------------------------------------------------------ # Filename: core.py # Purpose: Expansion of the obspy.core.stream module # Author: uquake development team # Email: <EMAIL> # # Copyright (C) 2016 uquake development team # -------------------------------------------------------------------- """ Expansion of the obspy.core.stream module :copyright: uquake development team (<EMAIL>) :license: GNU Lesser General Public License, Version 3 (http://www.gnu.org/copyleft/lesser.html) """ from abc import ABC from io import BytesIO import numpy as np import obspy.core.stream as obsstream from pkg_resources import load_entry_point from .trace import Trace from .util import ENTRY_POINTS, tools from .logging import logger from pathlib import Path class Stream(obsstream.Stream, ABC): __doc__ = obsstream.Stream.__doc__.replace('obspy', 'uquake') def __init__(self, stream=None, **kwargs): super(Stream, self).__init__(**kwargs) if stream: traces = [] for tr in stream.traces: traces.append(Trace(trace=tr)) self.traces = traces def composite(self): """ returns a new stream object containing composite trace for all station. The amplitude of the composite traces are the norm of the amplitude of the trace of all component and the phase of the trace (sign) is the sign of the first components of a given station. :param st: a stream object :type st: ~uquake.core.stream.Stream :rtype: ~uquake.core.stream.Stream """ return composite_traces(self) def select(self, **kwargs): if 'site' in kwargs.keys(): trs = [tr for tr in self.traces if tr.stats.site == kwargs['site']] else: return super().select(**kwargs) st_tmp = Stream(traces=trs) kwargs_tmp = {} for key in kwargs.keys(): if key == 'site': continue kwargs_tmp[key] = kwargs[key] return st_tmp.select(**kwargs_tmp) def as_array(self, wlen_sec=None, taplen=0.05): t0 = np.min([tr.stats.starttime for tr in self]) sr = self[0].stats.sampling_rate if wlen_sec is not None: npts_fix = int(wlen_sec * sr) else: npts_fix = int(np.max([len(tr.data) for tr in self])) return tools.stream_to_array(self, t0, npts_fix, taplen=taplen), sr, t0 def chan_groups(self): chanmap = self.channel_map() groups = [np.where(sk == chanmap)[0] for sk in np.unique(chanmap)] return groups def channel_map(self): stations = np.array([tr.stats.station for tr in self]) unique = np.unique(stations) unique_dict = dict(zip(unique, np.arange(len(unique)))) chanmap = np.array([unique_dict[chan] for chan in stations], dtype=int) return chanmap def write(self, filename, format='MSEED', **kwargs): from six import string_types f = filename if isinstance(filename, string_types): if filename.endswith('gz'): import gzip f = gzip.open(filename, 'w') elif filename.endswith('bz2'): import bz2 f = bz2.BZ2File(filename, 'w') elif filename.endswith('zip'): print('Zip protocol is not supported') st_out = self.copy() return obsstream.Stream.write(st_out, f, format, **kwargs) write.__doc__ = obsstream.Stream.write.__doc__.replace('obspy', 'uquake') def write_bytes(self): buf = BytesIO() self.write(buf, format='MSEED') return buf.getvalue() def valid(self, **kwargs): return is_valid(self, return_stream=True) def concat(self, comp_st): c = (comp_st is not None) if c: for i, (t1, t2) in enumerate(zip(comp_st.traces, self.traces)): self.detrend_norm(t2) comp_st.traces[i] = t1.__add__(t2, method=1, fill_value=0) else: for t in self: self.detrend_norm(t) comp_st = self return comp_st @property def unique_stations(self): return np.sort(np.unique([tr.stats.station for tr in self])) @property def unique_sites(self): return np.sort(np.unique([tr.stats.site for tr in self])) @property def stations(self): return self.unique_stations @property def sites(self): return self.unique_sites def zpad_names(self): for tr in self.traces: tr.stats.station = tr.stats.station.zfill(3) self.sort() def zstrip_names(self): for tr in self.traces: tr.stats.station = tr.stats.station.lstrip('0') def distance_time_plot(self, event, site, scale=20, freq_min=100, freq_max=1000): """ plot traces that have :param event: event object :param site: site object :param scale: vertical size of pick markers and waveform :return: plot handler """ st = self.copy() st.detrend('demean') st.taper(max_percentage=0.01) st.filter('bandpass', freqmin=freq_min, freqmax=freq_max) import matplotlib.pyplot as plt import numpy as np # initializing the plot ax = plt.subplot(111) if event.preferred_origin(): origin = event.preferred_origin() elif event.origins: origin = event.origins[0] else: return event_location = origin.loc # find the earliest start time and latest end time start_time = None end_time = None for tr in st: if not start_time: start_time = tr.stats.starttime end_time = tr.stats.endtime if tr.stats.starttime < start_time: start_time = tr.stats.starttime if tr.stats.endtime > end_time: end_time = tr.stats.endtime for tr in st: station_code = tr.stats.station # search for arrival station = site.select(station_code).stations()[0] station_location = station.loc distance = np.linalg.norm(event_location - station_location) p_pick = None s_pick = None data = (tr.data / np.max(np.abs(tr.data))) * scale time_delta = tr.stats.starttime - start_time time = np.arange(0, len(data)) / tr.stats.sampling_rate + \ time_delta for arrival in origin.arrivals: if arrival.get_pick().waveform_id.station_code == station_code: distance = arrival.distance if arrival.phase == 'P': p_pick = arrival.get_pick().time - start_time elif arrival.phase == 'S': s_pick = arrival.get_pick().time - start_time ax.plot(time, data + distance, 'k') if p_pick: ax.vlines(p_pick, distance - scale, distance + scale, 'r') if s_pick: ax.vlines(s_pick, distance - scale, distance + scale, 'b') plt.xlabel('relative time (s)') plt.ylabel('distance from event (m)') @staticmethod def create_from_json_traces(traces_json_list): traces = [] # for tr_json in traces_json_list: for i, tr_json in enumerate(traces_json_list): stats = tr_json['stats'] tr = Trace.create_from_json(tr_json) traces.append(tr) return Stream(traces=traces) def to_traces_json(self): traces = [] for tr in self: trout = tr.to_json() traces.append(trout) return traces def plot(self, *args, **kwargs): """ see Obspy stream.plot() """ from ..imaging.waveform import WaveformPlotting waveform = WaveformPlotting(stream=self, *args, **kwargs) return waveform.plotWaveform(*args, **kwargs) # from uquake.core import read, read_events # from spp.utils import application # app = application.Application() # site = app.get_stations() # st = read('2018-11-08T10:21:49.898496Z.mseed', format='mseed') # cat = read_events('test.xml') # evt = cat[0] # st = st.composite() def is_valid(st_in, return_stream=False, STA=0.005, LTA=0.1, min_num_valid=5): """ Determine if an event is valid or return valid traces in a stream :param st_in: stream :type st_in: uquake.core.stream.Stream :param return_stream: return stream of valid traces if true else return true if the event is valid :type return_stream: bool :param STA: short term average used to determine if an event is valid :type STA: float :param LTA: long term average :type LTA: float :param min_num_valid: minimum number of valid traces to declare the event valid :type min_num_valid: int :rtype: bool or uquake.core.stream.Stream """ from scipy.ndimage.filters import gaussian_filter1d from obspy.signal.trigger import recursive_sta_lta st = st_in.copy() st.detrend('demean').detrend('linear') trstd = [] trmax = [] trs_out = [] st_comp = composite_traces(st) for tr in st_comp: if not np.any(tr.data): continue sampling_rate = tr.stats.sampling_rate trstd.append(np.std(tr.data)) trmax.append(np.max(np.abs(tr.data))) nsta = int(STA * sampling_rate) nlta = int(LTA * sampling_rate) cft = recursive_sta_lta(np.array(tr.data), nsta, nlta) sfreq = tr.stats['sampling_rate'] sigma = sfreq / (2 * np.pi * 100) cft = gaussian_filter1d(cft, sigma=sigma, mode='reflect') try: mx = np.r_[True, cft[1:] > cft[:-1]] & \ np.r_[cft[:-1] > cft[1:], True] except Exception as e: logger.error(e) continue i1 = np.nonzero(mx)[0] i2 = i1[cft[i1] > np.max(cft) / 2] tspan = (np.max(i2) -
np.min(i2)
numpy.min
""" This script is devoted to plot the method comparison between 1. Hessian Adam > Basin CMA, and normal Adam Comparison between Hessian CMA and normal CMA. 1. Plot separating layers in CNN. """ #%% import numpy as np import pandas as pd import matplotlib.pylab as plt import sys import os from os.path import join from time import time from scipy.stats import ttest_ind, ttest_rel import matplotlib.cm as cm figdir = r"E:\OneDrive - Washington University in St. Louis\Hessian_summary\Figure5" #%% Simple Adam VS Adam with Hessian basis # Same result for ImageNet and BigGAN generated images summarydir = r"E:\Cluster_Backup\BigGAN_invert\ImageNet\summary" expalign_tab_imgnt = pd.read_csv(join(summarydir, "exprecord_align.csv")) #%% summarydir = r"E:\Cluster_Backup\BigGAN_invert\BigGAN_rnd\summary" expalign_tab_rnd = pd.read_csv(join(summarydir, "exprecord_align.csv")) #%% method_list = ['CMA10Adam10Final500_postAdam_all', 'CMA10Adam10Final500_postAdam_none'] label_list = ["BasinCMA Hess", "BasinCMA none"] savestr = "BasinCMA" method_list = ['CMA50Adam0Final500_postAdam_all', 'CMA50Adam0Final500_postAdam_none',] label_list = ["CMAAdam Hess", "CMAAdam none"] savestr = "CMAAdam" method_list = ['CMA1Adam30Final600_postAdam_all', 'CMA1Adam30Final600_postAdam_none',] label_list = ["Adam Hess", "Adam none"] savestr = "Adam" nmeth = 2 imgnet_msk = (~ expalign_tab_imgnt[method_list[0]].isna()) * (~ expalign_tab_imgnt[method_list[1]].isna()) rand_msk = (~ expalign_tab_rnd[method_list[0]].isna()) * (~ expalign_tab_rnd[method_list[1]].isna()) imgnet_mean = [expalign_tab_imgnt[method][imgnet_msk].mean() for method in method_list] imgnet_sem = [expalign_tab_imgnt[method][imgnet_msk].sem() for method in method_list] rnd_mean = [expalign_tab_rnd[method][rand_msk].mean() for method in method_list] rnd_sem = [expalign_tab_rnd[method][rand_msk].sem() for method in method_list] #% plt.figure(figsize=[4,3]) intvs = np.arange(nmeth)[:,np.newaxis] nsamps = sum(imgnet_msk) xjit = np.random.randn(1, nsamps) * 0.1 plt.plot(0.05 + intvs.repeat(nsamps, 1) + xjit, expalign_tab_imgnt[method_list][imgnet_msk].T, color="gray", alpha=0.15) intvs = np.arange(nmeth, 2*nmeth)[:, np.newaxis] nsamps = sum(rand_msk) xjit = np.random.randn(1, nsamps) * 0.1 plt.plot(0.05 + intvs.repeat(nsamps, 1) + xjit, expalign_tab_rnd[method_list][rand_msk].T, color="gray", alpha=0.15) plt.errorbar(range(nmeth), imgnet_mean, yerr=imgnet_sem, capthick=2, capsize=5, lw=3, alpha=0.7) plt.errorbar(range(nmeth, 2*nmeth), rnd_mean, yerr=rnd_sem, capthick=2, capsize=5, lw=3, alpha=0.7) plt.xticks(range(2*nmeth), ["ImageNet\n%s"% label for label in label_list] + ["BigGAN rand\n%s"%label for label in label_list]) # plt.xticks(range(2*nmeth), ["ImageNet\nBasinCMA Hess", "ImageNet\nBasinCMA none",] + # ["BigGAN rand\nBasinCMA Hess", "BigGAN rand\nBasinCMA none"]) plt.ylabel("LPIPS Image Dist") stat_imgnt = ttest_rel(expalign_tab_imgnt[method_list[0]], expalign_tab_imgnt[method_list[1]], nan_policy="omit") stat_rand = ttest_rel(expalign_tab_rnd[method_list[0]], expalign_tab_rnd[method_list[1]], nan_policy="omit") dof_imgnt = sum(imgnet_msk) - 1 dof_rand = sum(rand_msk) - 1 plt.title("ImageNet: t=%.1f p=%.1e(dof=%d)\n" "BigGAN rand: t=%.1f p=%.1e(dof=%d)"%(stat_imgnt.statistic, stat_imgnt.pvalue, dof_imgnt, stat_rand.statistic, stat_rand.pvalue, dof_rand, )) plt.savefig(join(figdir, "%s_xspace_Hess_cmp.png"%savestr)) plt.savefig(join(figdir, "%s_xspace_Hess_cmp.pdf"%savestr)) # plt.savefig(join(figdir, "BasinCMA_xspace_Hess_cmp.png")) # plt.savefig(join(figdir, "BasinCMA_xspace_Hess_cmp.pdf")) # plt.savefig(join(figdir, "Adam_xspace_Hess_cmp.png")) # plt.savefig(join(figdir, "Adam_xspace_Hess_cmp.pdf")) plt.show() #%% #%% def var_cmp_plot(var=['CMA10Adam10Final500_postAdam_all', 'CMA10Adam10Final500_postAdam_none', 'CMA50Adam0Final500_postAdam_all', 'CMA50Adam0Final500_postAdam_none'], labels=['BasinCMA_all', 'BasinCMA_none', 'CMA-Adam_all', 'CMA-Adam_none'], data=None, msk=None, jitter=False, cmap=cm.RdBu, titstr="", ): """Designed to plot paired scatter plot for discrete categories. Paired t test is performed at the end and stats are returned. Input is a pandas dataframe and variable names in it.""" varn = len(var) clist = [cmap(float((vari + .5) / (varn + 1))) for vari in range(varn)] fig, ax = plt.subplots(figsize=[6, 8]) xjit = np.random.randn(data.shape[0]) * 0.1 if jitter else np.zeros(data.shape[0]) for vari, varnm in enumerate(var): plt.scatter(vari + 1 + xjit, data[varnm], s=9, color=clist[vari], alpha=0.6, label=labels[vari]) plt.legend() intvs = np.arange(varn).reshape(1, -1) plt.plot(1 + intvs.repeat(data.shape[0], 0).T + xjit[np.newaxis, :], data[var].T, color="gray", alpha=0.1) plt.xticks(np.arange(len(labels))+1, labels) stats = {} stats["T01"] = ttest_rel(data[var[0]], data[var[1]], nan_policy='omit') stats["T02"] = ttest_rel(data[var[0]], data[var[2]], nan_policy='omit') stats["T12"] = ttest_rel(data[var[1]], data[var[2]], nan_policy='omit') plt.title( "%s\nT: %s - %s:%.1f(%.1e)\n%s - %s:%.1f(%.1e)\n" "%s - %s:%.1f(%.1e)" % (titstr, labels[0], labels[1], stats["T01"].statistic, stats["T01"].pvalue, labels[0], labels[2], stats["T02"].statistic, stats["T02"].pvalue, labels[1], labels[2], stats["T12"].statistic, stats["T12"].pvalue)) return fig, stats def var_stripe_plot(var=[], labels=[], jitter=False, cmap=cm.RdBu, titstr="", tests=[(0,1),(1,2),(2,3)], median=None): """Designed to plot paired scatter plot for discrete categories. Paired t test is performed at the end and stats are returned. Input is a pandas dataframe and variable names in it.""" varn = len(var) clist = [cmap(float((vari + .5) / (varn + 1))) for vari in range(varn)] fig, ax = plt.subplots(figsize=[6, 8]) for vari, varnm in enumerate(var): xjit = np.random.randn(len(var[vari])) * 0.1 if jitter else np.zeros(len(var[vari])) plt.scatter(vari + 1 + xjit, var[vari], s=9, color=clist[vari], alpha=0.6, label=labels[vari]) plt.legend() ticks = np.arange(varn).reshape(1, -1) # plt.plot(1 + ticks.repeat(data.shape[0], 0).T + xjit[np.newaxis, :], data[var].T, # color="gray", alpha=0.1) plt.xticks(np.arange(len(labels))+1, labels) stats = {} medstr = "" if median is None: median = list(range(varn)) for vari in median: med = np.nanmedian(var[vari]) stats["M%d" % vari] = med medstr += "%s:%.2f " % (labels[vari], med) if (vari+1)%2==0: medstr+="\n" statstr = "" for pair in tests: t_res = ttest_ind(var[pair[0]], var[pair[1]], nan_policy='omit') stats["T%d%d" % pair] = t_res statstr += "%s - %s:%.1f(%.1e)\n"%(labels[pair[0]], labels[pair[1]], t_res.statistic, t_res.pvalue) plt.title( "%s\nMed:%s\nT: %s" % (titstr, medstr, statstr)) return fig, stats #%% """Activation Maximization Cmp""" rootdir = r"E:\Cluster_Backup\BigGAN_Optim_Tune_new" summarydir = join(rootdir, "summary") exprec_tab = pd.read_csv(join(summarydir, "optim_raw_score_tab.csv")) align_tab = pd.read_csv(join(summarydir, "optim_aligned_score_tab_BigGAN.csv")) #%% align_tab_FC6 = pd.read_csv(join(summarydir, "optim_aligned_score_tab_fc6.csv")) #%% layers = align_tab_FC6.layer.unique() optim_list = ["HessCMA", 'CholCMA'] optim_list_fc6 = ['HessCMA500_1_fc6', "CholCMA_fc6"] colorseq = [cm.jet(i/(len(layers)-1)) for i in range(len(layers))] plt.figure(figsize=[4,6]) for Li, layer in enumerate(layers): xjit = np.random.randn(1) * 0.08 msk = align_tab_FC6.layer==layer optim_fc6_mean = [align_tab_FC6[optim][msk].mean() for optim in optim_list_fc6] optim_fc6_sem = [align_tab_FC6[optim][msk].sem() for optim in optim_list_fc6] plt.errorbar(xjit+np.arange(2,4), optim_fc6_mean, yerr=optim_fc6_sem, capthick=2, capsize=5, lw=3, alpha=0.55, color=colorseq[Li]) msk = align_tab.layer==layer optim_mean = [align_tab[optim][msk].mean() for optim in optim_list] optim_sem = [align_tab[optim][msk].sem() for optim in optim_list] plt.errorbar(xjit+np.arange(0,2), optim_mean, yerr=optim_sem, capthick=2, capsize=5, lw=3, alpha=0.55, color=colorseq[Li]) optim_fc6_mean = [align_tab_FC6[optim].mean() for optim in optim_list_fc6] optim_fc6_sem = [align_tab_FC6[optim].sem() for optim in optim_list_fc6] plt.errorbar(
np.arange(2,4)
numpy.arange
""" Created on Wed Nov 7 20:18:05 2018 @author: Raneem """ import numpy as np import random def runOperators(population, fitness, crossoverProbability, mutationProbability, nChromosomes, nPoints): """ This is the main method where the evolutionary operators are called Parameters ---------- population : list The list of chromosomes fitness : list The list of fitness values for each chromosome crossoverProbability : float The probability of crossover mutationProbability : float The probability of mutation nChromosomes: int Number of chrmosome in a population nPoints: Number of points (instances) in the dataset Returns ------- list newPopulation: the new generated population after applying the genetic operations """ #initialize a new population newPopulation = [None] * nChromosomes #Create pairs of parents. The number of pairs equals the number of chromosomes divided by 2 for i in range(0, nChromosomes, 2): #pair of parents selection parent1, parent2 = pairSelection(population, fitness, nChromosomes) #crossover crossoverLength = min(len(parent1), len(parent2)) parentsCrossoverProbability = random.uniform(0.0, 1.0) if parentsCrossoverProbability < crossoverProbability: offspring1, offspring2 = crossover(crossoverLength, parent1, parent2) else: offspring1 = parent1.copy() offspring2 = parent2.copy() #Mutation offspringMutationProbability = random.uniform(0.0, 1.0) if offspringMutationProbability < mutationProbability: mutation(offspring1, len(offspring1), nPoints) offspringMutationProbability = random.uniform(0.0, 1.0) if offspringMutationProbability < mutationProbability: mutation(offspring2, len(offspring2), nPoints) #Add offsprings to population newPopulation[i] = offspring1.copy() newPopulation[i + 1] = offspring2.copy() return newPopulation def elitism(population, fitness, labelsPred, bestChromosomeInAllGenerations, bestFitnessInAllGenerations, bestLabelsPredInAllGenerations): """ This method performs the elitism operator Parameters ---------- population : list The list of chromosomes fitness : list The list of fitness values for each chromosome labelPred : list A list of predicted labels for the points for each chroomosome bestChromosomeInAllGenerations : list A chromosome of the previous generation having the best fitness value bestFitnessInAllGenerations : float The best fitness value of the previous generation bestLabelsPredInAllGenerations : A list of predicted labels for the previous generation having the best fitness value Returns ------- list population : The updated population after applying the elitism list fitness : The updated list of fitness values for each chromosome after applying the elitism list labelsPred : The updated list of predicted labels for the points for each chroomosome after applying the elitism list bestChromosomeInAllGenerations : A chromosome of the current generation having the best fitness value float bestFitnessInAllGenerations : The best fitness value of the current generation list bestLabelsPredInAllGenerations : A list of predicted labels for the current generation having the best fitness value """ # get the worst chromosome worstFitnessId = selectWorstChromosome(fitness) #replace worst cromosome with best one from previous generation if its fitness is less than the other if fitness[worstFitnessId] > bestFitnessInAllGenerations: population[worstFitnessId] = bestChromosomeInAllGenerations.copy() fitness[worstFitnessId] = bestFitnessInAllGenerations labelsPred[worstFitnessId] = bestLabelsPredInAllGenerations.copy() #update best chromosome bestFitnessId = selectBestChromosome(fitness) bestChromosomeInAllGenerations = population[bestFitnessId].copy() bestFitnessInAllGenerations = fitness[bestFitnessId].copy() bestLabelsPredInAllGenerations = labelsPred[bestFitnessId].copy() return bestChromosomeInAllGenerations, bestFitnessInAllGenerations, bestLabelsPredInAllGenerations def selectWorstChromosome(fitness): """ It is used to get the worst chromosome in a population based n the fitness value Parameters ---------- fitness : list The list of fitness values for each chromosome Returns ------- int maxFitnessId: The chromosome id of the worst fitness value """ maxFitnessId = np.where(fitness ==
np.max(fitness)
numpy.max
import unittest import numpy as np import sympy from sympy.abc import r, t, z import discretize from discretize import tests np.random.seed(16) TOL = 1e-1 # ----------------------------- Test Operators ------------------------------ # MESHTYPES = ["uniformCylMesh", "randomCylMesh"] call2 = lambda fun, xyz: fun(xyz[:, 0], xyz[:, 2]) call3 = lambda fun, xyz: fun(xyz[:, 0], xyz[:, 1], xyz[:, 2]) cyl_row2 = lambda g, xfun, yfun: np.c_[call2(xfun, g), call2(yfun, g)] cyl_row3 = lambda g, xfun, yfun, zfun: np.c_[ call3(xfun, g), call3(yfun, g), call3(zfun, g) ] cylF2 = lambda M, fx, fy: np.vstack( (cyl_row2(M.gridFx, fx, fy), cyl_row2(M.gridFz, fx, fy)) ) cylF3 = lambda M, fx, fy, fz: np.vstack( ( cyl_row3(M.gridFx, fx, fy, fz), cyl_row3(M.gridFy, fx, fy, fz), cyl_row3(M.gridFz, fx, fy, fz), ) ) cylE3 = lambda M, ex, ey, ez: np.vstack( ( cyl_row3(M.gridEx, ex, ey, ez), cyl_row3(M.gridEy, ex, ey, ez), cyl_row3(M.gridEz, ex, ey, ez), ) ) # class TestCellGradx3D(tests.OrderTest): # name = "CellGradx" # MESHTYPES = MESHTYPES # meshDimension = 3 # meshSizes = [8, 16, 32, 64] # def getError(self): # fun = lambda r, t, z: ( # np.sin(2.*np.pi*r) + np.sin(t) + np.sin(2*np.pi*z) # ) # solR = lambda r, t, z: 2.*np.pi*np.cos(2.*np.pi*r) # phi = call3(fun, self.M.gridCC) # phix_num = self.M.cellGradx * phi # phix_ana = call3(solR, self.M.gridFx) # err = np.linalg.norm(phix_num - phix_ana, np.inf) # return err # def test_order(self): # self.orderTest() class TestFaceDiv3D(tests.OrderTest): name = "FaceDiv" meshTypes = MESHTYPES meshDimension = 3 meshSizes = [8, 16, 32, 64] def getError(self): funR = lambda r, t, z: np.sin(2.0 * np.pi * r) funT = lambda r, t, z: r * np.exp(-r) * np.sin(t) # * np.sin(2.*np.pi*r) funZ = lambda r, t, z: np.sin(2.0 * np.pi * z) sol = lambda r, t, z: ( (2 * np.pi * r * np.cos(2 * np.pi * r) + np.sin(2 * np.pi * r)) / r + np.exp(-r) * np.cos(t) + 2 * np.pi * np.cos(2 * np.pi * z) ) Fc = cylF3(self.M, funR, funT, funZ) # Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]] F = self.M.projectFaceVector(Fc) divF = self.M.faceDiv.dot(F) divF_ana = call3(sol, self.M.gridCC) err = np.linalg.norm((divF - divF_ana), np.inf) return err def test_order(self): self.orderTest() class TestEdgeCurl3D(tests.OrderTest): name = "edgeCurl" meshTypes = MESHTYPES meshDimension = 3 meshSizes = [8, 16, 32, 64] def getError(self): # use the same function in r, t, z # need to pick functions that make sense at the axis of symmetry # careful that r, theta contributions make sense at axis of symmetry funR = lambda r, t, z: np.sin(2 * np.pi * z) * np.sin(np.pi * r) * np.sin(t) funT = lambda r, t, z: np.cos(np.pi * z) * np.sin(np.pi * r) * np.sin(t) funZ = lambda r, t, z: np.sin(np.pi * r) * np.sin(t) derivR_t = lambda r, t, z: np.sin(2 * np.pi * z) * np.sin(np.pi * r) * np.cos(t) derivR_z = ( lambda r, t, z: 2 * np.pi * np.cos(2 * np.pi * z) * np.sin(np.pi * r) * np.sin(t) ) derivT_r = ( lambda r, t, z: np.pi * np.cos(np.pi * z) * np.cos(np.pi * r) * np.sin(t) ) derivT_z = ( lambda r, t, z: -np.pi * np.sin(np.pi * z) * np.sin(np.pi * r) * np.sin(t) ) derivZ_r = lambda r, t, z: np.pi * np.cos(np.pi * r) * np.sin(t) derivZ_t = lambda r, t, z:
np.sin(np.pi * r)
numpy.sin
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Process Hi-C output into AGP for chromosomal-scale scaffolding. """ from __future__ import print_function import array import json import logging import math import os import os.path as op import sys from collections import defaultdict from functools import partial from multiprocessing import Pool import numpy as np from jcvi.algorithms.ec import GA_run, GA_setup from jcvi.algorithms.formula import outlier_cutoff from jcvi.algorithms.matrix import get_signs from jcvi.apps.base import ActionDispatcher, OptionParser, backup, iglob, mkdir, symlink from jcvi.apps.console import green, red from jcvi.apps.grid import Jobs from jcvi.assembly.allmaps import make_movie from jcvi.compara.synteny import check_beds, get_bed_filenames from jcvi.formats.agp import order_to_agp from jcvi.formats.base import LineFile, must_open from jcvi.formats.bed import Bed from jcvi.formats.blast import Blast from jcvi.formats.sizes import Sizes from jcvi.graphics.base import ( markup, normalize_axes, plt, savefig, ticker, human_readable, ) from jcvi.graphics.dotplot import dotplot from jcvi.utils.cbook import gene_name, human_size from jcvi.utils.natsort import natsorted # Map orientations to ints FF = {"+": 1, "-": -1, "?": 1} RR = {"+": -1, "-": 1, "?": -1} LB = 18 # Lower bound for golden_array() UB = 29 # Upper bound for golden_array() BB = UB - LB + 1 # Span for golden_array() ACCEPT = green("ACCEPT") REJECT = red("REJECT") BINSIZE = 50000 class ContigOrderingLine(object): """Stores one line in the ContigOrdering file """ def __init__(self, line, sep="|"): args = line.split() self.contig_id = args[0] self.contig_name = args[1].split(sep)[0] contig_rc = args[2] assert contig_rc in ("0", "1") self.strand = "+" if contig_rc == "0" else "-" self.orientation_score = args[3] self.gap_size_after_contig = args[4] class ContigOrdering(LineFile): """ContigOrdering file as created by LACHESIS, one per chromosome group. Header contains summary information per group, followed by list of contigs with given ordering. """ def __init__(self, filename): super(ContigOrdering, self).__init__(filename) fp = open(filename) for row in fp: if row[0] == "#": continue orderline = ContigOrderingLine(row) self.append(orderline) def write_agp( self, obj, sizes, fw=sys.stdout, gapsize=100, gaptype="contig", evidence="map" ): """Converts the ContigOrdering file into AGP format """ contigorder = [(x.contig_name, x.strand) for x in self] order_to_agp( obj, contigorder, sizes, fw, gapsize=gapsize, gaptype=gaptype, evidence=evidence, ) class CLMFile: """CLM file (modified) has the following format: tig00046211+ tig00063795+ 1 53173 tig00046211+ tig00063795- 1 116050 tig00046211- tig00063795+ 1 71155 tig00046211- tig00063795- 1 134032 tig00030676+ tig00077819+ 5 136407 87625 87625 106905 102218 tig00030676+ tig00077819- 5 126178 152952 152952 35680 118923 tig00030676- tig00077819+ 5 118651 91877 91877 209149 125906 tig00030676- tig00077819- 5 108422 157204 157204 137924 142611 """ def __init__(self, clmfile, skiprecover=False): self.name = op.basename(clmfile).rsplit(".", 1)[0] self.clmfile = clmfile self.idsfile = clmfile.rsplit(".", 1)[0] + ".ids" self.parse_ids(skiprecover) self.parse_clm() self.signs = None def parse_ids(self, skiprecover): """IDS file has a list of contigs that need to be ordered. 'recover', keyword, if available in the third column, is less confident. tig00015093 46912 tig00035238 46779 recover tig00030900 119291 """ idsfile = self.idsfile logging.debug("Parse idsfile `{}`".format(idsfile)) fp = open(idsfile) tigs = [] for row in fp: if row[0] == "#": # Header continue atoms = row.split() tig, _, size = atoms size = int(size) if skiprecover and len(atoms) == 3 and atoms[2] == "recover": continue tigs.append((tig, size)) # Arrange contig names and sizes _tigs, _sizes = zip(*tigs) self.contigs = set(_tigs) self.sizes = np.array(_sizes) self.tig_to_size = dict(tigs) # Initially all contigs are considered active self.active = set(_tigs) def parse_clm(self): clmfile = self.clmfile logging.debug("Parse clmfile `{}`".format(clmfile)) fp = open(clmfile) contacts = {} contacts_oriented = defaultdict(dict) orientations = defaultdict(list) for row in fp: atoms = row.strip().split("\t") assert len(atoms) == 3, "Malformed line `{}`".format(atoms) abtig, links, dists = atoms atig, btig = abtig.split() at, ao = atig[:-1], atig[-1] bt, bo = btig[:-1], btig[-1] if at not in self.tig_to_size: continue if bt not in self.tig_to_size: continue dists = [int(x) for x in dists.split()] contacts[(at, bt)] = len(dists) gdists = golden_array(dists) contacts_oriented[(at, bt)][(FF[ao], FF[bo])] = gdists contacts_oriented[(bt, at)][(RR[bo], RR[ao])] = gdists strandedness = 1 if ao == bo else -1 orientations[(at, bt)].append((strandedness, dists)) self.contacts = contacts self.contacts_oriented = contacts_oriented # Preprocess the orientations dict for (at, bt), dists in orientations.items(): dists = [(s, d, hmean_int(d)) for (s, d) in dists] strandedness, md, mh = min(dists, key=lambda x: x[-1]) orientations[(at, bt)] = (strandedness, len(md), mh) self.orientations = orientations def calculate_densities(self): """ Calculate the density of inter-contig links per base. Strong contigs considered to have high level of inter-contig links in the current partition. """ active = self.active densities = defaultdict(int) for (at, bt), links in self.contacts.items(): if not (at in active and bt in active): continue densities[at] += links densities[bt] += links logdensities = {} for x, d in densities.items(): s = self.tig_to_size[x] logd = np.log10(d * 1.0 / min(s, 500000)) logdensities[x] = logd return logdensities def report_active(self): logging.debug( "Active contigs: {} (length={})".format(self.N, self.active_sizes.sum()) ) def activate(self, tourfile=None, minsize=10000, backuptour=True): """ Select contigs in the current partition. This is the setup phase of the algorithm, and supports two modes: - "de novo": This is useful at the start of a new run where no tours available. We select the strong contigs that have significant number of links to other contigs in the partition. We build a histogram of link density (# links per bp) and remove the contigs that appear as outliers. The orientations are derived from the matrix decomposition of the pairwise strandedness matrix O. - "hotstart": This is useful when there was a past run, with a given tourfile. In this case, the active contig list and orientations are derived from the last tour in the file. """ if tourfile and (not op.exists(tourfile)): logging.debug("Tourfile `{}` not found".format(tourfile)) tourfile = None if tourfile: logging.debug("Importing tourfile `{}`".format(tourfile)) tour, tour_o = iter_last_tour(tourfile, self) self.active = set(tour) tig_to_idx = self.tig_to_idx tour = [tig_to_idx[x] for x in tour] signs = sorted([(x, FF[o]) for (x, o) in zip(tour, tour_o)]) _, signs = zip(*signs) self.signs = np.array(signs, dtype=int) if backuptour: backup(tourfile) tour = array.array("i", tour) else: self.report_active() while True: logdensities = self.calculate_densities() lb, ub = outlier_cutoff(list(logdensities.values())) logging.debug("Log10(link_densities) ~ [{}, {}]".format(lb, ub)) remove = set( x for x, d in logdensities.items() if (d < lb and self.tig_to_size[x] < minsize * 10) ) if remove: self.active -= remove self.report_active() else: break logging.debug("Remove contigs with size < {}".format(minsize)) self.active = set(x for x in self.active if self.tig_to_size[x] >= minsize) tour = range(self.N) # Use starting (random) order otherwise tour = array.array("i", tour) # Determine orientations self.flip_all(tour) self.report_active() self.tour = tour return tour def evaluate_tour_M(self, tour): """ Use Cythonized version to evaluate the score of a current tour """ from .chic import score_evaluate_M return score_evaluate_M(tour, self.active_sizes, self.M) def evaluate_tour_P(self, tour): """ Use Cythonized version to evaluate the score of a current tour, with better precision on the distance of the contigs. """ from .chic import score_evaluate_P return score_evaluate_P(tour, self.active_sizes, self.P) def evaluate_tour_Q(self, tour): """ Use Cythonized version to evaluate the score of a current tour, taking orientation into consideration. This may be the most accurate evaluation under the right condition. """ from .chic import score_evaluate_Q return score_evaluate_Q(tour, self.active_sizes, self.Q) def flip_log(self, method, score, score_flipped, tag): logging.debug("{}: {} => {} {}".format(method, score, score_flipped, tag)) def flip_all(self, tour): """ Initialize the orientations based on pairwise O matrix. """ if self.signs is None: # First run score = 0 else: old_signs = self.signs[: self.N] (score,) = self.evaluate_tour_Q(tour) # Remember we cannot have ambiguous orientation code (0 or '?') here self.signs = get_signs(self.O, validate=False, ambiguous=False) (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped >= score: tag = ACCEPT else: self.signs = old_signs[:] tag = REJECT self.flip_log("FLIPALL", score, score_flipped, tag) return tag def flip_whole(self, tour): """ Test flipping all contigs at the same time to see if score improves. """ (score,) = self.evaluate_tour_Q(tour) self.signs = -self.signs (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped > score: tag = ACCEPT else: self.signs = -self.signs tag = REJECT self.flip_log("FLIPWHOLE", score, score_flipped, tag) return tag def flip_one(self, tour): """ Test flipping every single contig sequentially to see if score improves. """ n_accepts = n_rejects = 0 any_tag_ACCEPT = False for i, t in enumerate(tour): if i == 0: (score,) = self.evaluate_tour_Q(tour) self.signs[t] = -self.signs[t] (score_flipped,) = self.evaluate_tour_Q(tour) if score_flipped > score: n_accepts += 1 tag = ACCEPT else: self.signs[t] = -self.signs[t] n_rejects += 1 tag = REJECT self.flip_log( "FLIPONE ({}/{})".format(i + 1, len(self.signs)), score, score_flipped, tag, ) if tag == ACCEPT: any_tag_ACCEPT = True score = score_flipped logging.debug("FLIPONE: N_accepts={} N_rejects={}".format(n_accepts, n_rejects)) return ACCEPT if any_tag_ACCEPT else REJECT def prune_tour(self, tour, cpus): """ Test deleting each contig and check the delta_score; tour here must be an array of ints. """ while True: (tour_score,) = self.evaluate_tour_M(tour) logging.debug("Starting score: {}".format(tour_score)) active_sizes = self.active_sizes M = self.M args = [] for i, t in enumerate(tour): stour = tour[:i] + tour[i + 1 :] args.append((t, stour, tour_score, active_sizes, M)) # Parallel run p = Pool(processes=cpus) results = list(p.imap(prune_tour_worker, args)) assert len(tour) == len( results ), "Array size mismatch, tour({}) != results({})".format( len(tour), len(results) ) # Identify outliers active_contigs = self.active_contigs idx, log10deltas = zip(*results) lb, ub = outlier_cutoff(log10deltas) logging.debug("Log10(delta_score) ~ [{}, {}]".format(lb, ub)) remove = set(active_contigs[x] for (x, d) in results if d < lb) self.active -= remove self.report_active() tig_to_idx = self.tig_to_idx tour = [active_contigs[x] for x in tour] tour = array.array("i", [tig_to_idx[x] for x in tour if x not in remove]) if not remove: break self.tour = tour self.flip_all(tour) return tour @property def active_contigs(self): return list(self.active) @property def active_sizes(self): return np.array([self.tig_to_size[x] for x in self.active]) @property def N(self): return len(self.active) @property def oo(self): return range(self.N) @property def tig_to_idx(self): return dict((x, i) for (i, x) in enumerate(self.active)) @property def M(self): """ Contact frequency matrix. Each cell contains how many inter-contig links between i-th and j-th contigs. """ N = self.N tig_to_idx = self.tig_to_idx M = np.zeros((N, N), dtype=int) for (at, bt), links in self.contacts.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] M[ai, bi] = M[bi, ai] = links return M @property def O(self): """ Pairwise strandedness matrix. Each cell contains whether i-th and j-th contig are the same orientation +1, or opposite orientation -1. """ N = self.N tig_to_idx = self.tig_to_idx O = np.zeros((N, N), dtype=int) for (at, bt), (strandedness, md, mh) in self.orientations.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] score = strandedness * md O[ai, bi] = O[bi, ai] = score return O @property def P(self): """ Contact frequency matrix with better precision on distance between contigs. In the matrix M, the distance is assumed to be the distance between mid-points of two contigs. In matrix Q, however, we compute harmonic mean of the links for the orientation configuration that is shortest. This offers better precision for the distance between big contigs. """ N = self.N tig_to_idx = self.tig_to_idx P = np.zeros((N, N, 2), dtype=int) for (at, bt), (strandedness, md, mh) in self.orientations.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] P[ai, bi, 0] = P[bi, ai, 0] = md P[ai, bi, 1] = P[bi, ai, 1] = mh return P @property def Q(self): """ Contact frequency matrix when contigs are already oriented. This is s a similar matrix as M, but rather than having the number of links in the cell, it points to an array that has the actual distances. """ N = self.N tig_to_idx = self.tig_to_idx signs = self.signs Q = np.ones((N, N, BB), dtype=int) * -1 # Use -1 as the sentinel for (at, bt), k in self.contacts_oriented.items(): if not (at in tig_to_idx and bt in tig_to_idx): continue ai = tig_to_idx[at] bi = tig_to_idx[bt] ao = signs[ai] bo = signs[bi] Q[ai, bi] = k[(ao, bo)] return Q def hmean_int(a, a_min=5778, a_max=1149851): """ Harmonic mean of an array, returns the closest int """ from scipy.stats import hmean return int(round(hmean(np.clip(a, a_min, a_max)))) def golden_array(a, phi=1.61803398875, lb=LB, ub=UB): """ Given list of ints, we aggregate similar values so that it becomes an array of multiples of phi, where phi is the golden ratio. phi ^ 14 = 843 phi ^ 33 = 7881196 So the array of counts go between 843 to 788196. One triva is that the exponents of phi gets closer to integers as N grows. See interesting discussion here: <https://www.johndcook.com/blog/2017/03/22/golden-powers-are-nearly-integers/> """ counts = np.zeros(BB, dtype=int) for x in a: c = int(round(math.log(x, phi))) if c < lb: c = lb if c > ub: c = ub counts[c - lb] += 1 return counts def prune_tour_worker(arg): """ Worker thread for CLMFile.prune_tour() """ from .chic import score_evaluate_M t, stour, tour_score, active_sizes, M = arg (stour_score,) = score_evaluate_M(stour, active_sizes, M) delta_score = tour_score - stour_score log10d = np.log10(delta_score) if delta_score > 1e-9 else -9 return t, log10d def main(): actions = ( # LACHESIS output processing ("agp", "generate AGP file based on LACHESIS output"), ("score", "score the current LACHESIS CLM"), # Simulation ("simulate", "simulate CLM data"), # Scaffolding ("optimize", "optimize the contig order and orientation"), ("density", "estimate link density of contigs"), # Plotting ("movieframe", "plot heatmap and synteny for a particular tour"), ("movie", "plot heatmap optimization history in a tourfile"), # Reference-based analytics ("bam2mat", "convert bam file to .npy format used in plotting"), ("mergemat", "combine counts from multiple .npy data files"), ("heatmap", "plot heatmap based on .npy file"), ("dist", "plot distance distribution based on .dist.npy file"), ) p = ActionDispatcher(actions) p.dispatch(globals()) def fit_power_law(xs, ys): """ Fit power law distribution. See reference: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html Assumes the form Y = A * X^B, returns Args: xs ([int]): X vector ys ([float64]): Y vector Returns: (A, B), the coefficients """ import math sum_logXlogY, sum_logXlogX, sum_logX, sum_logY = 0, 0, 0, 0 N = len(xs) for i in range(N): if not xs[i] or not ys[i]: continue logXs, logYs = math.log(xs[i]), math.log(ys[i]) sum_logXlogY += logXs * logYs sum_logXlogX += logXs * logXs sum_logX += logXs sum_logY += logYs B = (N * sum_logXlogY - sum_logX * sum_logY) / ( N * sum_logXlogX - sum_logX * sum_logX ) A = math.exp((sum_logY - B * sum_logX) / N) logging.debug("Power law Y = {:.1f} * X ^ {:.4f}".format(A, B)) label = "$Y={:.1f} \\times X^{{ {:.4f} }}$".format(A, B) return A, B, label def dist(args): """ %prog dist input.dist.npy genome.json Plot histogram based on .dist.npy data file. The .npy file stores an array with link counts per dist bin, with the bin starts stored in the genome.json. """ import seaborn as sns import pandas as pd from jcvi.graphics.base import human_base_formatter, markup p = OptionParser(dist.__doc__) p.add_option("--title", help="Title of the histogram") p.add_option("--xmin", default=300, help="Minimum distance") p.add_option("--xmax", default=6000000, help="Maximum distance") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 2: sys.exit(not p.print_help()) npyfile, jsonfile = args pf = npyfile.rsplit(".", 1)[0] header = json.loads(open(jsonfile).read()) distbin_starts = np.array(header["distbinstarts"], dtype="float64") distbin_sizes = np.array(header["distbinsizes"], dtype="float64") a = np.load(npyfile) xmin, xmax = opts.xmin, opts.xmax (size,) = min(distbin_sizes.shape, distbin_starts.shape, a.shape) df = pd.DataFrame() xstart, xend = ( np.searchsorted(distbin_starts, xmin),
np.searchsorted(distbin_starts, xmax)
numpy.searchsorted
#-- -- -- -- Intermediate Python # Used for Data Scientist Training Path #FYI it's a compilation of how to work #with different commands. ####### -----> Matplotlib ### -------------------------------------------------------- ## Line plot - ex#0 # Print the last item from year and pop print(year[-1]) print(pop[-1]) # Import matplotlib.pyplot as plt import matplotlib.pyplot as plt # Make a line plot: year on the x-axis, pop on the y-axis plt.plot(year, pop) # Display the plot with plt.show() plt.show() ### -------------------------------------------------------- ## Line plot - ex#1 import matplotlib.pyplot as plt # Print the last item of gdp_cap and life_exp print(gdp_cap[-1]) print(life_exp[-1]) # Make a line plot, gdp_cap on the x-axis, life_exp on the y-axis plt.plot(gdp_cap, life_exp) # Display the plot plt.show() ### -------------------------------------------------------- ## Scatter Plot --- ex0 import matplotlib.pyplot as plt # Change the line plot below to a scatter plot plt.scatter(gdp_cap, life_exp) # Put the x-axis on a logarithmic scale plt.xscale('log') # Show plot plt.show() ### -------------------------------------------------------- ## Scatter Plot --- ex1 # Import package import matplotlib.pyplot as plt # Build Scatter plot plt.scatter(pop, life_exp) # Show plot plt.show() ## HISTOGRAMS ### -------------------------------------------------------- ### -> Build a histogram import matplotlib.pyplot as plt # Create histogram of life_exp data plt.hist(life_exp) # Display histogram plt.show() ### -------------------------------------------------------- ## Build a histogram --- bins import matplotlib.pyplot as plt # Build histogram with 5 bins plt.hist(life_exp, bins=5) # Show and clean up plot plt.show() plt.clf() # Build histogram with 20 bins plt.hist(life_exp, bins=20) # Show and clean up again plt.show() plt.clf() ### -------------------------------------------------------- ## Build a histogram --- compare import matplotlib.pyplot as plt # Histogram of life_exp, 15 bins plt.hist(life_exp, bins=15) # Show and clear plot plt.show() plt.clf() # Histogram of life_exp1950, 15 bins plt.hist(life_exp1950, bins=15) # Show and clear plot again plt.show() plt.clf() ### -------------------------------------------------------- # You're a professor teaching Data Science with Python, # and you want to visually assess if the grades on # your exam follow a particular distribution. # Which plot do you use? # R/ Histogram ### -------------------------------------------------------- # You're a professor in Data Analytics with Python, and you # want to visually assess if longer answers on exam # questions lead to higher grades. # Which plot do you use? # Scatter plot ### -------------------------------------------------------- ### Labels import matplotlib.pyplot as plt # Basic scatter plot, log scale plt.scatter(gdp_cap, life_exp) plt.xscale('log') # Strings xlab = 'GDP per Capita [in USD]' ylab = 'Life Expectancy [in years]' title = 'World Development in 2007' # Add axis labels plt.xlabel(xlab) plt.ylabel(ylab) # Add title plt.title(title) # After customizing, display the plot plt.show() ### -------------------------------------------------------- ## Ticks import matplotlib.pyplot as plt # Scatter plot plt.scatter(gdp_cap, life_exp) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') # Definition of tick_val and tick_lab tick_val = [1000, 10000, 100000] tick_lab = ['1k', '10k', '100k'] # Adapt the ticks on the x-axis plt.xticks(tick_val, tick_lab) # After customizing, display the plot plt.show() ### -------------------------------------------------------- #Sizes # Import numpy as np import numpy as np # Store pop as a numpy array: np_pop np_pop = np.array(pop) # Double np_pop np_pop = np_pop*2 # Update: set s argument to np_pop plt.scatter(gdp_cap, life_exp, s = np_pop) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000, 10000, 100000],['1k', '10k', '100k']) # Display the plot plt.show() ### -------------------------------------------------------- ### Colors import matplotlib.pyplot as plt # Specify c and alpha inside plt.scatter() plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000,10000,100000], ['1k','10k','100k']) # Show the plot plt.show() ### -------------------------------------------------------- ## Additional Customizations # Scatter plot plt.scatter(x = gdp_cap, y = life_exp, s = np.array(pop) * 2, c = col, alpha = 0.8) # Previous customizations plt.xscale('log') plt.xlabel('GDP per Capita [in USD]') plt.ylabel('Life Expectancy [in years]') plt.title('World Development in 2007') plt.xticks([1000,10000,100000], ['1k','10k','100k']) # Additional customizations plt.text(1550, 71, 'India') plt.text(5700, 80, 'China') # Add grid() call plt.grid(True) # Show the plot plt.show() ### -------------------------------------------------------- #### INTERPRETATION # If you have a look at your colorful plot, # it's clear that people live longer in countries with a # higher GDP per capita. No high income countries have r # eally short life expectancy, and no low income countries # have very long life expectancy. Still, there is a huge # difference in life expectancy between countries on the same # income level. Most people live in middle income countries # where difference in lifespan is huge between countries; # depending on how income is distributed and how it is used. # What can you say about the plot? ## R/ The countries in blue, corresponding to Africa, have # both low life expectancy and a low GDP per capita. ### Dictionaries, Part 1 ### -------------------------------------------------------- ### --->Motivation for dictionaries # Definition of countries and capital countries = ['spain', 'france', 'germany', 'norway'] capitals = ['madrid', 'paris', 'berlin', 'oslo'] # Get index of 'germany': ind_ger ind_ger = countries.index('germany') # Use ind_ger to print out capital of Germany print(capitals[ind_ger]) ### -------------------------------------------------------- ## Create dictionary # Definition of countries and capital countries = ['spain', 'france', 'germany', 'norway'] capitals = ['madrid', 'paris', 'berlin', 'oslo'] # From string in countries and capitals, create dictionary europe europe = { 'spain':'madrid', "france":"paris", "germany":"berlin", "norway":"oslo"} # Print europe print(europe) ### -------------------------------------------------------- ## Access dictionary # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' } # Print out the keys in europe print(europe.keys()) # Print out value that belongs to key 'norway' print(europe['norway']) ### Dictionaries, Part 2 ### -------------------------------------------------------- ### ---> Dictionary Manipulation - ex 0 # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo' } # Add italy to europe europe["italy"] = 'rome' # Print out italy in europe print('italy' in europe) # Add poland to europe europe["poland"] = 'warsaw' # Print europe print(europe) ### -------------------------------------------------------- ### ---> Dictionary Manipulation - ex 1 # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'bonn', 'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'australia':'vienna' } # Update capital of germany europe['germany'] = 'berlin' # Remove australia del(europe['australia']) # Print europe print(europe) ### -------------------------------------------------------- ## Dictionariception # Dictionary of dictionaries europe = { 'spain': { 'capital':'madrid', 'population':46.77 }, 'france': { 'capital':'paris', 'population':66.03 }, 'germany': { 'capital':'berlin', 'population':80.62 }, 'norway': { 'capital':'oslo', 'population':5.084 } } # Print out the capital of France print(europe['france']['capital']) # Create sub-dictionary data data = {'capital': 'rome', 'population': 59.83} # Add data to europe under key 'italy' europe['italy'] = data # Print europe print(europe) ### Pandas, Part 1 ### -------------------------------------------------------- #### ---->>> Dictionary to DataFrame -- ex#0 # Pre-defined lists names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt'] dr = [True, False, False, False, True, True, True] cpc = [809, 731, 588, 18, 200, 70, 45] # Import pandas as pd import pandas as pd # Create dictionary my_dict with three key:value pairs: my_dict my_dict = {'country': names, 'drives_right': dr, 'cars_per_cap': cpc} # Build a DataFrame cars from my_dict: cars cars = pd.DataFrame(my_dict) # Print cars print(cars) ### -------------------------------------------------------- #### ---->>> Dictionary to DataFrame -- ex#0 import pandas as pd # Build cars DataFrame names = ['United States', 'Australia', 'Japan', 'India', 'Russia', 'Morocco', 'Egypt'] dr = [True, False, False, False, True, True, True] cpc = [809, 731, 588, 18, 200, 70, 45] cars_dict = { 'country':names, 'drives_right':dr, 'cars_per_cap':cpc } cars = pd.DataFrame(cars_dict) print(cars) # Definition of row_labels row_labels = ['US', 'AUS', 'JPN', 'IN', 'RU', 'MOR', 'EG'] # Specify row labels of cars cars.index = row_labels # Print cars again print(cars) ### -------------------------------------------------------- ### CSV to DataFrame --- ex#0 # Import pandas as pd import pandas as pd # Import the cars.csv data: cars cars = pd.read_csv('cars.csv') # Print out cars print(cars) ### -------------------------------------------------------- ### CSV to DataFrame --- ex#1 # Import pandas as pd import pandas as pd # Fix import by including index_col cars = pd.read_csv('cars.csv', index_col=0) # Print out cars print(cars) ### Pandas, Part 2 ### -------------------------------------------------------- ### ----> Square Brackets -- ex#0 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out country column as Pandas Series print(cars['country']) # Print out country column as Pandas DataFrame print(cars[['country']]) # Print out DataFrame with country and drives_right columns print(cars[['country', 'drives_right']]) ### -------------------------------------------------------- ### ----> Square Brackets -- ex#1 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out first 3 observations print(cars[0:3]) # Print out fourth, fifth and sixth observation print(cars[3:6]) ### -------------------------------------------------------- ### ---> loc and iloc -- ex#0 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out observation for Japan print(cars.loc['JPN']) # Print out observations for Australia and Egypt print(cars.loc[['AUS', 'EG']]) ### -------------------------------------------------------- ### ---> loc and iloc -- ex#1 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out drives_right value of Morocco print(cars.loc['MOR', 'drives_right']) # Print sub-DataFrame print(cars.loc[['RU', 'MOR'], ['country', 'drives_right']]) ### -------------------------------------------------------- ### ---> loc and iloc -- ex#2 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Print out drives_right column as Series print(cars.loc[:, 'drives_right']) # Print out drives_right column as DataFrame print(cars.loc[:, ['drives_right']]) # Print out cars_per_cap and drives_right as DataFrame print(cars.loc[:, ['cars_per_cap', 'drives_right']]) ## Comparison Operators ### -------------------------------------------------------- ### ---> Equality # Comparison of booleans True != False # Comparison of integers -5 * 15 != 75 # Comparison of strings "pyscript" != "PyScript" # Compare a boolean with an integer True == 1 ### -------------------------------------------------------- ### ---> Greater and less than # Comparison of integers x = -3 * 6 print(x >= -10) # Comparison of strings y = "test" print('test' <= y) # Comparison of booleans print(True > False) ### -------------------------------------------------------- ### ---> Compare arrays # Create arrays import numpy as np my_house = np.array([18.0, 20.0, 10.75, 9.50]) your_house = np.array([14.0, 24.0, 14.25, 9.0]) # my_house greater than or equal to 18 print(my_house >= 18) # my_house less than your_house print(my_house < your_house) #---- Boolean Operators ### -------------------------------------------------------- ## and, or, not -- ex#0 # Define variables my_kitchen = 18.0 your_kitchen = 14.0 # my_kitchen bigger than 10 and smaller than 18? print(my_kitchen > 10 and my_kitchen < 18) # my_kitchen smaller than 14 or bigger than 17? print(my_kitchen < 14 or my_kitchen > 17) # Double my_kitchen smaller than triple your_kitchen? print((my_kitchen * 2) < (your_kitchen * 3)) ### -------------------------------------------------------- ## and, or, not -- ex#1 # To see if you completely understood the boolean # operators, have a look at the following piece of Python code: # x = 8 # y = 9 # not(not(x < 3) and not(y > 14 or y > 10)) # What will the result be if you execute these three # commands in the IPython Shell? # NB: Notice that not has a higher priority # than and and or, it is executed first. # R/ False ### -------------------------------------------------------- ## Boolean operators with Numpy # Create arrays import numpy as np my_house = np.array([18.0, 20.0, 10.75, 9.50]) your_house = np.array([14.0, 24.0, 14.25, 9.0]) # my_house greater than 18.5 or smaller than 10 print(np.logical_or(my_house > 18.5, my_house < 10)) # Both my_house and your_house smaller than 11 print(np.logical_and(my_house < 11, your_house < 11)) ### -------------------------------------------------------- ## ----> if, elif, else ### Warmup # To experiment with if and else a bit, have a look at this code sample: # area = 10.0 # if(area < 9) : # print("small") # elif(area < 12) : # print("medium") # else : # print("large") # What will the output be if you run this piece of code in the IPython Shell? # R/ medium ### -------------------------------------------------------- ## if example # Define variables room = "kit" area = 14.0 # if statement for room if room == "kit" : print("looking around in the kitchen.") # if statement for area if area > 15: print("big place!") ### -------------------------------------------------------- ## Add else # Define variables room = "kit" area = 14.0 # if-else construct for room if room == "kit" : print("looking around in the kitchen.") else : print("looking around elsewhere.") # if-else construct for area if area > 15 : print("big place!") else: print("pretty small.") ### -------------------------------------------------------- ## Customize further: elif # Define variables room = "bed" area = 14.0 # if-elif-else construct for room if room == "kit" : print("looking around in the kitchen.") elif room == "bed": print("looking around in the bedroom.") else : print("looking around elsewhere.") # if-elif-else construct for area if area > 15 : print("big place!") elif area > 10: print("medium size, nice!") else : print("pretty small.") ## Filtering pandas DataFrames ### -------------------------------------------------------- ### ---> Driving right - ex#0 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Extract drives_right column as Series: dr dr = cars['drives_right'] # Use dr to subset cars: sel sel = cars[dr] # Print sel print(sel) ### -------------------------------------------------------- ### ---> Driving right - ex#1 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Convert code to a one-liner sel = cars[cars['drives_right']] # Print sel print(sel) ### -------------------------------------------------------- ### ---> Cars per capita # ex0 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Create car_maniac: observations that have a cars_per_cap over 500 cpc = cars['cars_per_cap'] many_cars = cpc > 500 car_maniac = cars[many_cars] # Print car_maniac print(car_maniac) ### -------------------------------------------------------- ### ---> Cars per capita # ex1 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Import numpy, you'll need this import numpy as np # Create medium: observations with cars_per_cap between 100 and 500 cpc = cars['cars_per_cap'] between = np.logical_and(cpc > 100, cpc < 500) medium = cars[between] # Print medium print(medium) ## while loop ### -------------------------------------------------------- ## ----> while: warming up # The while loop is like a repeated if statement. # The code is executed over and over again, as long as # the condition is True. Have another look at its recipe. # while condition : # expression # Can you tell how many printouts the following while loop will do? # x = 1 # while x < 4 : # print(x) # x = x + 1 ## R/ 3 ### -------------------------------------------------------- ## Basic while loop # Initialize offset offset = 8 # Code the while loop while offset != 0: print("correcting...") offset = offset - 1 print(offset) ### -------------------------------------------------------- ## Add conditionals # Initialize offset offset = -6 # Code the while loop while offset != 0 : print("correcting...") if offset > 0: offset = offset - 1 else: offset = offset + 1 print(offset) ## for loop ### -------------------------------------------------------- # -- Loop over a list # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Code the for loop for a in areas: print(a) ### -------------------------------------------------------- # Indexes and values - ex#0 # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Change for loop to use enumerate() for index, a in enumerate(areas): print("room " + str(index) + ": " + str(a)) ### -------------------------------------------------------- # Indexes and values - ex#1 # areas list areas = [11.25, 18.0, 20.0, 10.75, 9.50] # Code the for loop for index, area in enumerate(areas) : print("room " + str(index+1) + ": " + str(area)) ### -------------------------------------------------------- ## Loop over list of lists # house list of lists house = [["hallway", 11.25], ["kitchen", 18.0], ["living room", 20.0], ["bedroom", 10.75], ["bathroom", 9.50]] # Build a for loop from scratch for room, area in house : print("the " + str(room) + " is " + str(area) + " sqm") ### Loop Data Structures Part 1 ### -------------------------------------------------------- ## ---> Loop over dictionary # Definition of dictionary europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin', 'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'austria':'vienna' } # Iterate over europe for k, v in europe.items(): print("the capital of " + str(k) + " is " + str(v)) ### -------------------------------------------------------- ## ---> Loop over Numpy array # Import numpy as np import numpy as np # For loop over np_height for x in np_height: print(str(x) + " inches") # For loop over np_baseball for x in np.nditer(np_baseball): print(x) #### Loop Data Structures Part 2 ### -------------------------------------------------------- ###------> Loop over DataFrame -- ex#0 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Iterate over rows of cars for lab, row in cars.iterrows(): print(lab) print(row) ### -------------------------------------------------------- ###------> Loop over DataFrame -- ex#1 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Adapt for loop for lab, row in cars.iterrows() : print(str(lab) + ": " + str(row["cars_per_cap"])) ### -------------------------------------------------------- ## Add column - ex#0 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Code for loop that adds COUNTRY column for lab, row in cars.iterrows(): cars.loc[lab, 'COUNTRY'] = row['country'].upper() # Print cars print(cars) ### -------------------------------------------------------- ## Add column - ex#1 # Import cars data import pandas as pd cars = pd.read_csv('cars.csv', index_col = 0) # Use .apply(str.upper) cars['COUNTRY'] = cars['country'].apply(str.upper) ### Random Numbers ### -------------------------------------------------------- ### ---> Random float # Import numpy as np import numpy as np # Set the seed np.random.seed(123) # Generate and print random float print(np.random.rand()) ### -------------------------------------------------------- ### ----> Roll the dice # Import numpy and set seed import numpy as np np.random.seed(123) # Use randint() to simulate a dice print(np.random.randint(1, 7)) # Use randint() again print(np.random.randint(1, 7)) ### -------------------------------------------------------- ### ---->Determine your next move # Import numpy and set seed import numpy as np np.random.seed(123) # Starting step step = 50 # Roll the dice dice = np.random.randint(1, 7) # Finish the control construct if dice <= 2: step = step - 1 elif dice < 6: step = step + 1 else: step = step + np.random.randint(1,7) # Print out dice and step print(dice) print(step) ### Random Walk ### -------------------------------------------------------- ## ---> The next step # Import numpy and set seed import numpy as np np.random.seed(123) # Initialize random_walk random_walk = [0] # Complete the loop for x in range(100): # Set step: last element in random_walk step = random_walk[-1] # Roll the dice dice = np.random.randint(1,7) # Determine next step if dice <= 2: step = step - 1 elif dice <= 5: step = step + 1 else: step = step + np.random.randint(1,7) # append next_step to random_walk random_walk.append(step) # Print random_walk print(random_walk) ### -------------------------------------------------------- ### ---> How low can you go? # Import numpy and set seed import numpy as np np.random.seed(123) # Initialize random_walk random_walk = [0] for x in range(100) : step = random_walk[-1] dice = np.random.randint(1,7) if dice <= 2: # Replace below: use max to make sure step can't go below 0 step = max(0, step - 1) elif dice <= 5: step = step + 1 else: step = step + np.random.randint(1,7) random_walk.append(step) print(random_walk) ### -------------------------------------------------------- ### ---> Visualize the walk # Initialization import numpy as np np.random.seed(123) random_walk = [0] for x in range(100) : step = random_walk[-1] dice =
np.random.randint(1,7)
numpy.random.randint
''' Created on 28.04.2016 @author: lemmerfn ''' from abc import ABC, abstractmethod import weakref from functools import total_ordering import pandas as pd import pysubgroup as ps from itertools import chain import copy import numpy as np @total_ordering class SelectorBase(ABC): __refs__ = weakref.WeakSet() def __new__(cls, *args, **kwargs): tmp = super().__new__(cls) tmp.set_descriptions(*args, **kwargs) if tmp in SelectorBase.__refs__: for ref in SelectorBase. __refs__: if ref == tmp: return ref return tmp def __init__(self): SelectorBase.__refs__.add(self) def __eq__(self, other): if other is None: return False return repr(self) == repr(other) def __lt__(self, other): return repr(self) < repr(other) def __hash__(self): return self._hash #pylint: disable=no-member @abstractmethod def set_descriptions(self, *args, **kwargs): pass def get_cover_array_and_size(subgroup, data_len=None, data=None): if hasattr(subgroup, "representation"): cover_arr = subgroup size = subgroup.size_sg elif isinstance(subgroup, slice): cover_arr = subgroup if data_len is None: if isinstance(data, pd.DataFrame): data_len = len(data) else: raise ValueError("if you pass a slice, you need to pass either data_len or data") # https://stackoverflow.com/questions/36188429/retrieve-length-of-slice-from-slice-object-in-python size = len(range(*subgroup.indices(data_len))) elif hasattr(subgroup, '__array_interface__'): cover_arr = subgroup type_char = subgroup.__array_interface__['typestr'][1] if type_char == 'b': # boolean indexing is used size = np.count_nonzero(cover_arr) elif type_char == 'u' or type_char == 'i': # integer indexing size = subgroup.__array_interface__['shape'][0] else: print(type_char) raise NotImplementedError(f"Currently a typechar of {type_char} is not supported.") else: assert isinstance(data, pd.DataFrame) cover_arr = subgroup.covers(data) size = np.count_nonzero(cover_arr) return cover_arr, size def get_size(subgroup, data_len=None, data=None): if hasattr(subgroup, "representation"): size = subgroup.size_sg elif isinstance(subgroup, slice): if data_len is None: if isinstance(data, pd.DataFrame): data_len = len(data) else: raise ValueError("if you pass a slice, you need to pass either data_len or data") # https://stackoverflow.com/questions/36188429/retrieve-length-of-slice-from-slice-object-in-python size = len(range(*subgroup.indices(data_len))) elif hasattr(subgroup, '__array_interface__'): type_char = subgroup.__array_interface__['typestr'][1] if type_char == 'b': # boolean indexing is used size = np.count_nonzero(subgroup) elif type_char == 'u' or type_char == 'i': # integer indexing size = subgroup.__array_interface__['shape'][0] else: print(type_char) raise NotImplementedError(f"Currently a typechar of {type_char} is not supported.") else: assert isinstance(data, pd.DataFrame) size = np.count_nonzero(subgroup.covers(data)) return size class EqualitySelector(SelectorBase): def __init__(self, attribute_name, attribute_value, selector_name=None): if attribute_name is None: raise TypeError() if attribute_value is None: raise TypeError() self._attribute_name = attribute_name self._attribute_value = attribute_value self._selector_name = selector_name self.set_descriptions(self._attribute_name, self._attribute_value, self._selector_name) super().__init__() @property def attribute_name(self): return self._attribute_name @property def attribute_value(self): return self._attribute_value def set_descriptions(self, attribute_name, attribute_value, selector_name=None): # pylint: disable=arguments-differ self._hash, self._query, self._string = EqualitySelector.compute_descriptions(attribute_name, attribute_value, selector_name=selector_name) @classmethod def compute_descriptions(cls, attribute_name, attribute_value, selector_name): if isinstance(attribute_value, (str, bytes)): query = str(attribute_name) + "==" + "'" + str(attribute_value) + "'" elif np.isnan(attribute_value): query = attribute_name + ".isnull()" else: query = str(attribute_name) + "==" + str(attribute_value) if selector_name is not None: string_ = selector_name else: string_ = query hash_value = hash(query) return (hash_value, query, string_) def __repr__(self): return self._query def covers(self, data): row = data[self.attribute_name].to_numpy() if pd.isnull(self.attribute_value): return pd.isnull(row) return row == self.attribute_value def __str__(self, open_brackets="", closing_brackets=""): return open_brackets + self._string + closing_brackets @property def selectors(self): return (self,) class NegatedSelector(SelectorBase): def __init__(self, selector): self._selector = selector self.set_descriptions(selector) super().__init__() def covers(self, data_instance): return np.logical_not(self._selector.covers(data_instance)) def __repr__(self): return self._query def __str__(self, open_brackets="", closing_brackets=""): return "NOT " + self._selector.__str__(open_brackets, closing_brackets) def set_descriptions(self, selector): # pylint: disable=arguments-differ self._query = "(not " + repr(selector) + ")" self._hash = hash(repr(self)) @property def attribute_name(self): return self._selector.attribute_name @property def selectors(self): return self._selector.selectors # Including the lower bound, excluding the upper_bound class IntervalSelector(SelectorBase): def __init__(self, attribute_name, lower_bound, upper_bound, selector_name=None): self._attribute_name = attribute_name self._lower_bound = lower_bound self._upper_bound = upper_bound self.selector_name = selector_name self.set_descriptions(attribute_name, lower_bound, upper_bound, selector_name) super().__init__() @property def attribute_name(self): return self._attribute_name @property def lower_bound(self): return self._lower_bound @property def upper_bound(self): return self._upper_bound def covers(self, data_instance): val = data_instance[self.attribute_name].to_numpy() return np.logical_and((val >= self.lower_bound), (val < self.upper_bound)) def __repr__(self): return self._query def __hash__(self): return self._hash def __str__(self): return self._string @classmethod def compute_descriptions(cls, attribute_name, lower_bound, upper_bound, selector_name=None): if selector_name is None: _string = cls.compute_string(attribute_name, lower_bound, upper_bound, rounding_digits=2) else: _string = selector_name _query = cls.compute_string(attribute_name, lower_bound, upper_bound, rounding_digits=None) _hash = _query.__hash__() return (_hash, _query, _string) def set_descriptions(self, attribute_name, lower_bound, upper_bound, selector_name=None): # pylint: disable=arguments-differ self._hash, self._query, self._string = IntervalSelector.compute_descriptions(attribute_name, lower_bound, upper_bound, selector_name=selector_name) @classmethod def compute_string(cls, attribute_name, lower_bound, upper_bound, rounding_digits): if rounding_digits is None: formatter = "{}" else: formatter = "{0:." + str(rounding_digits) + "f}" ub = upper_bound lb = lower_bound if ub % 1: ub = formatter.format(ub) if lb % 1: lb = formatter.format(lb) if lower_bound == float("-inf") and upper_bound == float("inf"): repre = attribute_name + "= anything" elif lower_bound == float("-inf"): repre = attribute_name + "<" + str(ub) elif upper_bound == float("inf"): repre = attribute_name + ">=" + str(lb) else: repre = attribute_name + ": [" + str(lb) + ":" + str(ub) + "[" return repre @property def selectors(self): return (self,) def create_selectors(data, nbins=5, intervals_only=True, ignore=None, value_restriction=None): if ignore is None: ignore = [] sels = create_nominal_selectors(data, ignore, value_restriction=value_restriction) sels.extend(create_numeric_selectors(data, nbins, intervals_only, ignore=ignore, value_restriction=value_restriction)) return sels def create_nominal_selectors(data, ignore=None, value_restriction=None): if ignore is None: ignore = [] nominal_selectors = [] # for attr_name in [x for x in data.select_dtypes(exclude=['number']).columns.values if x not in ignore]: # nominal_selectors.extend(create_nominal_selectors_for_attribute(data, attr_name)) nominal_dtypes = data.select_dtypes(exclude=['number']) dtypes = data.dtypes # print(dtypes) for attr_name in [x for x in nominal_dtypes.columns.values if x not in ignore]: nominal_selectors.extend(create_nominal_selectors_for_attribute(data, attr_name, dtypes, value_restriction=value_restriction)) return nominal_selectors def create_nominal_selectors_for_attribute(data, attribute_name, dtypes=None, value_restriction=None): nominal_selectors = [] for val in pd.unique(data[attribute_name]): if value_restriction is not None: nominal_selectors.append(EqualitySelector(attribute_name, value_restriction)) else: nominal_selectors.append(EqualitySelector(attribute_name, val)) # setting the is_bool flag for selector if dtypes is None: dtypes = data.dtypes if dtypes[attribute_name] == 'bool': for s in nominal_selectors: s.is_bool = True return nominal_selectors def create_numeric_selectors(data, nbins=5, intervals_only=True, weighting_attribute=None, ignore=None, value_restriction=None): if ignore is None: ignore = [] numeric_selectors = [] for attr_name in [x for x in data.select_dtypes(include=['number']).columns.values if x not in ignore]: numeric_selectors.extend(create_numeric_selectors_for_attribute( data, attr_name, nbins, intervals_only, weighting_attribute, value_restriction=value_restriction)) return numeric_selectors def create_numeric_selectors_for_attribute(data, attr_name, nbins=5, intervals_only=True, weighting_attribute=None, value_restriction=None): numeric_selectors = [] data_not_null = data[data[attr_name].notnull()] uniqueValues =
np.unique(data_not_null[attr_name])
numpy.unique
""" Deposition of energy from low-energy photons As detailed in section III.F.1 of the paper, low-energy photons (sub-3keV photons) may deposit their energy into the IGM through hydrogen/helium ionization, hydrogen excitation, and by contributing to continuum photons. By contributing to continuum photons, we mean that a certain component of low-energy photons (sub-10.2eV photons) have insufficient energy to effectively interact with the IGM, so they just free-stream and can be thought of as an additional component of the CMB continuum. """ import sys sys.path.append("../..") import numpy as np import darkhistory.physics as phys import darkhistory.spec.spectools as spectools import time def get_kappa_2s(photspec): """ Compute kappa_2s for use in kappa_DM function Parameters ---------- photspec : Spectrum object spectrum of photons. spec.toteng() should return Energy per baryon. Returns ------- kappa_2s : float The added photoionization rate from the 1s to the 2s state due to DM photons. """ # Convenient Variables eng = photspec.eng rs = photspec.rs Lambda = phys.width_2s1s_H Tcmb = phys.TCMB(rs) lya_eng = phys.lya_eng # Photon phase space density (E >> kB*T approximation) def Boltz(E): return np.exp(-E/Tcmb) bounds = spectools.get_bin_bound(eng) mid = spectools.get_indx(bounds, lya_eng/2) # Phase Space Density of DM f_nu = photspec.dNdE * phys.c**3 / ( 8 * np.pi * (eng/phys.hbar)**2 ) # Complementary (E - h\nu) phase space density of DM f_nu_p = np.zeros(mid) # Index of point complementary to eng[k] comp_indx = spectools.get_indx(bounds, lya_eng - eng[0]) # Find the bin in which lya_eng - eng[k] resides. Store f_nu of that bin in f_nu_p. for k in np.arange(mid): while (lya_eng - eng[k]) < bounds[comp_indx]: comp_indx -= 1 f_nu_p[k] = f_nu[comp_indx] # Setting up the numerical integration # Bin sizes diffs = np.append(bounds[1:mid], lya_eng/2) - np.insert(bounds[1:mid], 0, 0) diffs /= (2 * np.pi * phys.hbar) dLam_dnu = phys.get_dLam2s_dnu() rates = dLam_dnu(eng[:mid]/(2 * np.pi * phys.hbar)) boltz = Boltz(eng[:mid]) boltz_p = Boltz(lya_eng - eng[:mid]) # The Numerical Integral kappa_2s = np.sum( diffs * rates * (f_nu[:mid] + boltz) * (f_nu_p + boltz_p) )/phys.width_2s1s_H - Boltz(lya_eng) return kappa_2s def kappa_DM(photspec, xe): """ Compute kappa_DM of the modified tla. Parameters ---------- photspec : Spectrum object spectrum of photons. Assumed to be in dNdE mode. spec.toteng() should return Energy per baryon. Returns ------- kappa_DM : float The added photoionization rate due to products of DM. """ eng = photspec.eng rs = photspec.rs rate_2p1s_times_x1s = ( 8 * np.pi * phys.hubble(rs)/ (3*(phys.nH * rs**3 * (phys.c/phys.lya_freq)**3)) ) x1s_times_R_Lya = rate_2p1s_times_x1s Lambda = phys.width_2s1s_H # The bin number containing 10.2eV lya_index = spectools.get_indx(eng, phys.lya_eng) # The bins between 10.2eV and 13.6eV exc_bounds = spectools.get_bounds_between( eng, phys.lya_eng, phys.rydberg ) # Effect on 2p state due to DM products kappa_2p = ( photspec.dNdE[lya_index] * phys.nB * rs**3 * np.pi**2 * (phys.hbar * phys.c)**3 / phys.lya_eng**2 ) # Effect on 2s state kappa_2s = get_kappa_2s(photspec) return ( kappa_2p*3*x1s_times_R_Lya/4 + kappa_2s*(1-xe)*Lambda/4 )/(3*x1s_times_R_Lya/4 + (1-xe)*Lambda/4) #---- f_c functions ----# #continuum def getf_continuum(photspec, norm_fac, cross_check=False): # All photons below 10.2eV get deposited into the continuum if not cross_check: return photspec.toteng( bound_type='eng', bound_arr=np.array([photspec.eng[0],phys.lya_eng]) )[0] * norm_fac else: return np.dot( photspec.N[photspec.eng < 10.2], photspec.eng[photspec.eng < 10.2]*norm_fac ) #excitation def getf_excitation(photspec, norm_fac, dt, xe, n, method, cross_check=False): if((method == 'old') or (method=='helium') or (method == 'ion')): # All photons between 11.2eV and 13.6eV are deposited into excitation # partial binning if not cross_check: tot_excite_eng = ( photspec.toteng( bound_type='eng', bound_arr=np.array([phys.lya_eng,phys.rydberg]) )[0] ) else: tot_excite_eng = np.dot( photspec.N[(photspec.eng >= 10.2) & (photspec.eng <= 13.6)], photspec.eng[(photspec.eng >= 10.2) & (photspec.eng <= 13.6)] ) f_excite_HI = tot_excite_eng * norm_fac else: # Only photons in the 10.2eV bin participate in 1s->2p excitation. # 1s->2s transition handled more carefully. # Convenient variables kappa = kappa_DM(photspec, xe) # Added this line since rate_2p1s_times_x1s function was removed. rate_2p1s_times_x1s = ( 8 * np.pi * phys.hubble(photspec.rs)/ (3*(phys.nH * photspec.rs**3 * (phys.c/phys.lya_freq)**3)) ) f_excite_HI = ( kappa * ( 3*rate_2p1s_times_x1s*phys.nH + phys.width_2s1s_H*n[0] ) * phys.lya_eng * (norm_fac / phys.nB / photspec.rs**3 * dt) ) return f_excite_HI #HI, HeI, HeII ionization def getf_ion(photspec, norm_fac, n, method, cross_check=False): # The bin number containing 10.2eV lya_index = spectools.get_indx(photspec.eng, phys.lya_eng) # The bin number containing 13.6eV ryd_index = spectools.get_indx(photspec.eng, phys.rydberg) if method == 'old': # All photons above 13.6 eV deposit their 13.6eV into HI ionization #!!! The factor of 10 is probably unecessary if not cross_check: tot_ion_eng = phys.rydberg * photspec.totN( bound_type='eng', bound_arr=np.array([phys.rydberg, 10*photspec.eng[-1]]) )[0] else: tot_ion_eng = phys.rydberg*np.sum( photspec.N[photspec.eng > 13.6] ) f_HI = tot_ion_eng * norm_fac f_HeI = 0 f_HeII = 0 elif method == 'helium': # Neglect HeII photoionization # !!! Not utilizing partial binning! rates = np.array([ n[i]*phys.photo_ion_xsec(photspec.eng, chan) for i,chan in enumerate(['HI', 'HeI']) ]) norm_prob = np.sum(rates, axis=0) prob = np.array([ np.divide( rate, norm_prob, out = np.zeros_like(photspec.eng), where=(photspec.eng > phys.rydberg) ) for rate in rates ]) ion_eng_H = phys.rydberg * np.sum(prob[0] * photspec.N) ion_eng_He = phys.He_ion_eng * np.sum(prob[1] * photspec.N) f_HI = ion_eng_H * norm_fac f_HeI = ion_eng_He * norm_fac f_HeII = 0 else: # HL: Not sure if this code is right....... # Photons may also deposit their energy into HeI and HeII single ionization # Bin boundaries of photon spectrum capable of photoionization, and number of photons in those bounds. ion_bounds = spectools.get_bounds_between(photspec.eng, phys.rydberg) ion_Ns = photspec.totN(bound_type='eng', bound_arr=ion_bounds) # Probability of being absorbed within time step dt in channel a is P_a = \sigma(E)_a n_a c*dt ionHI, ionHeI, ionHeII = [ phys.photo_ion_xsec(photspec.eng[ryd_index:],channel) * n[i] for i,channel in enumerate(['HI','HeI','HeII']) ] # The first energy might be less than 13.6, meaning no photo-ionization. # The photons in this box are hopefully all between 13.6 and 24.6, so they can only ionize H if photspec.eng[ryd_index] < phys.rydberg: ionHI[0] = 1 # Relative likelihood of photoionization of HI is then P_HI/sum(P_a) totList = ionHI + ionHeI + ionHeII + 1e-12 ionHI, ionHeI, ionHeII = [ llist/totList for llist in [ionHI, ionHeI, ionHeII] ] f_HI, f_HeI, f_HeII = [ np.sum(ion_Ns * llist * norm_fac) for llist in [ phys.rydberg*ionHI, phys.He_ion_eng*ionHeI, 4*phys.rydberg*ionHeII ] ] return (f_HI, f_HeI, f_HeII) def compute_fs(photspec, x, dE_dVdt_inj, dt, method='old', cross_check=False): """ Compute f(z) fractions for continuum photons, photoexcitation of HI, and photoionization of HI, HeI, HeII Given a spectrum of deposited photons, resolve its energy into continuum photons, continuum photons, HI excitation, and HI, HeI, HeII ionization in that order. Parameters ---------- photspec : Spectrum object spectrum of photons. spec.toteng() should return energy per baryon. x : list of floats number of (HI, HeI, HeII) divided by nH at redshift photspec.rs dE_dVdt_inj : float energy injection rate DM, dE/dVdt |_inj dt : float time in seconds over which these photons were deposited. method : {'old','ion','new'} 'old': All photons >= 13.6eV ionize hydrogen, within [10.2, 13.6)eV excite hydrogen, < 10.2eV are labelled continuum. 'ion': Same as 'old', but now photons >= 13.6 can ionize HeI and HeII also. 'new': Same as 'ion', but now [10.2, 13.6)eV photons treated more carefully. Returns ------- tuple of floats Ratio of deposited energy to a given channel over energy deposited by DM. The order of the channels is {continuum photons, HI excitation, HI ionization, HeI ion, HeII ion} """ chi = phys.nHe/phys.nH xHeIII = chi - x[1] - x[2] xHII = 1 - x[0] xe = xHII + x[2] + 2*xHeIII n = x * phys.nH * photspec.rs**3 # norm_fac converts from total deposited energy to f_c(z) = (dE/dVdt)dep / (dE/dVdt)inj norm_fac = phys.nB * photspec.rs**3 / dt / dE_dVdt_inj f_continuum = getf_continuum(photspec, norm_fac, cross_check) f_excite_HI = getf_excitation(photspec, norm_fac, dt, xe, n, method, cross_check) f_HI, f_HeI, f_HeII = getf_ion(photspec, norm_fac, n, method, cross_check) return
np.array([f_continuum, f_excite_HI, f_HI, f_HeI, f_HeII])
numpy.array
# Copyright (c) 2021 <NAME>. Licence included in root of package. from src.utils import get_base_path import os import pandas as pd import numpy as np def get_stock_symbols(): destination_folder = os.path.abspath( os.path.join(get_base_path(), 'src/data/stock_prices')) file = os.path.join(destination_folder, 'symbols' + '.csv') data = pd.read_csv(file) data =
np.array(data)
numpy.array
#------------------------------------------------------------------------------ # ABOUT NLMpy #------------------------------------------------------------------------------ # NLMpy is a Python package for the creation of neutral landscape models that # are widely used in the modelling of ecological patterns and processes across # landscapes. # A full description of NLMpy is published in: Etherington TR, Holland EP, and # O'Sullivan D (2015) NLMpy: a Python software package for the creation of # neutral landscape models within a general numerical framework. Methods in # Ecology and Evolution 6(2):164-168 , which is freely available online # (http://bit.ly/14i4x7n). # The journal website also holds example scripts and GIS data # (http://bit.ly/1XUXjOF) that generate the figures in the paper. There are # also some tutorial videos that provide some advice about installing # (http://bit.ly/1qLfMjt) and using (http://bit.ly/2491u9n) NLMpy. #------------------------------------------------------------------------------ # LICENSING #------------------------------------------------------------------------------ # The MIT License (MIT) # Copyright (c) 2014 <NAME>, <NAME>, and # <NAME>. # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. #------------------------------------------------------------------------------ import math import numpy as np from scipy import ndimage #------------------------------------------------------------------------------ # REQUIRED FUNCTIONS: #------------------------------------------------------------------------------ def linearRescale01(array): """ A rescale in which the values in the array are linearly rescaled to range between 0 and 1. Parameters ---------- array : array 2D array of data values. Returns ------- out : array 2D array with rescaled values. """ rescaledArray = (array - np.nanmin(array)) / np.nanmax(array - np.nanmin(array)) return(rescaledArray) #------------------------------------------------------------------------------ # A function to insert nan cells into an array based on a binary mask array. def maskArray(array, maskArray): """ Return the array with nan values inserted where present in the mask array. It is assumed that both the arrays have the same dimensions. Parameters ---------- array : array 2D array of data values. maskArray : array 2D array used as a binary mask. Returns ------- out : array 2D array with masked values. """ np.place(array, maskArray==0, np.nan) return(array) #------------------------------------------------------------------------------ def randomUniform01(nRow, nCol, mask=None): """ Create an array with random values ranging 0-1. Parameters ---------- nRow : int The number of rows in the array. nCol : int The number of columns in the array. mask : array, optional 2D array used as a binary mask to limit the elements with values. Returns ------- out : array 2D float array. """ if mask is None: mask = np.ones((nRow, nCol)) array = np.random.random((nRow, nCol)) maskedArray = maskArray(array, mask) rescaledArray = linearRescale01(maskedArray) return(rescaledArray) #------------------------------------------------------------------------------ def nnInterpolate(array, missing): """ Two-dimensional array nearest-neighbour interpolation in which the elements in the positions indicated by the array "missing" are replaced by the nearest value from the "array" of data values. Parameters ---------- array : array 2D array of data values. missing: boolean array Values of True receive interpolated values. Returns ------- out : array 2D array with interpolated values. """ # Get row column based index of nearest value rcIndex = ndimage.distance_transform_edt(missing, return_distances=False, return_indices=True) # Create a complete array by extracting values based on the index interpolatedArray = array[tuple(rcIndex)] return(interpolatedArray) #------------------------------------------------------------------------------ def w2cp(weights): """ Convert a list of category weights into a 1D NumPy array of cumulative proportions. Parameters ---------- weights : list A list of numeric values Returns ------- out : array 1D array of class cumulative proportions. """ w = np.array(weights, dtype=float) proportions = w / np.sum(w) cumulativeProportions = np.cumsum(proportions) cumulativeProportions[-1] = 1 # to ensure the last value is 1 return(cumulativeProportions) #------------------------------------------------------------------------------ def calcBoundaries(array, cumulativeProportions, classifyMask=None): """ Determine upper class boundaries for classification of an array with values ranging 0-1 based upon an array of cumulative proportions. Parameters ---------- array : array 2D array of data values. cumulativeProportions : array 1D array of class cumulative proportions. classifyMask : array, optional 2D array used as a binary mask to limit the elements used to determine the upper boundary values for each class. Returns ------- out : array 1D float array. """ if classifyMask is None: classifyMask = np.ones(np.shape(array)) maskedArray = array * classifyMask np.place(maskedArray, classifyMask==0, np.nan) # Determine the number of cells that are in the classification mask. nCells = np.count_nonzero(np.isfinite(maskedArray)) # Based on the number of cells, find the index of upper boundary element boundaryIndexes = (cumulativeProportions * nCells).astype(int) - 1 # Index out the the upper boundary value for each class boundaryValues = np.sort(np.ndarray.flatten(maskedArray))[boundaryIndexes] # Ensure the maximum boundary value is equal to 1 boundaryValues[-1] = 1 return(boundaryValues) #------------------------------------------------------------------------------ def classifyArray(array, weights, classifyMask=None): """ Classify an array with values ranging 0-1 into proportions based upon a list of class weights. Parameters ---------- array : array 2D array of data values. weights : list A list of numeric values classifyMask : array, optional 2D array used as a binary mask to limit the elements used to determine the upper boundary values for each class. Returns ------- out : array 2D array. """ cumulativeProportions = w2cp(weights) boundaryValues = calcBoundaries(array, cumulativeProportions, classifyMask) # Classify the array classifiedArray = np.searchsorted(boundaryValues, array) # Replace any nan values classifiedArray = classifiedArray.astype(float) np.place(classifiedArray, np.isnan(array), np.nan) return(classifiedArray) #------------------------------------------------------------------------------ def blendArray(primaryArray, arrays, scalingFactors=None): """ Blend a primary array with other arrays weighted by scaling factors. Parameters ---------- primaryArray : array 2D array of data values. arrays : list List of 2D arrays of data values. scalingFactors : list List of scaling factors used to weight the arrays in the blend. Returns ------- out : array 2D array. """ if scalingFactors is None: scalingFactors = np.ones(len(arrays)) for n in range(len(arrays)): primaryArray = primaryArray + (arrays[n] * scalingFactors[n]) blendedArray = primaryArray / len(arrays) rescaledArray = linearRescale01(blendedArray) return(rescaledArray) #------------------------------------------------------------------------------ def blendClusterArray(primaryArray, arrays, scalingFactors=None): """ Blend a primary cluster NLM with other arrays in which the mean value per cluster is weighted by scaling factors. Parameters ---------- primaryArray : array 2D array of data values in which values are clustered. arrays : list List of 2D arrays of data values. scalingFactors : list List of scaling factors used to weight the arrays in the blend. Returns ------- out : array 2D array. """ if scalingFactors is None: scalingFactors = np.ones(len(arrays)) for n in range(len(arrays)): meanOfClusterArray = meanOfCluster(primaryArray, arrays[n]) primaryArray = primaryArray + (meanOfClusterArray * scalingFactors[n]) blendedArray = primaryArray / len(arrays) rescaledArray = linearRescale01(blendedArray) return(rescaledArray) #------------------------------------------------------------------------------ def meanOfCluster(clusterArray, array): """ For each cluster of elements in an array, calculate the mean value for the cluster based on a second array. Parameters ---------- clutserArray : array 2D array of data values in which values are clustered. array : array 2D array of data values. Returns ------- out : array 2D array. """ meanClusterValues = np.zeros(np.shape(clusterArray)) clusterValues = np.unique(clusterArray) for value in clusterValues: if np.isfinite(value): # Extract location of values valueLocs = clusterArray == value # Define clusters in array clusters, nClusters = ndimage.measurements.label(valueLocs) # Get mean for each cluster means = ndimage.mean(array, clusters, range(1,nClusters + 1)) means = np.insert(means, 0, 0) # for background non-cluster # Apply mean values to clusters by index clusterMeans = means[clusters] # Add values for those clusters to array meanClusterValues = meanClusterValues + clusterMeans np.place(meanClusterValues, np.isnan(clusterArray), np.nan) rescaledArray = linearRescale01(meanClusterValues) return(rescaledArray) #------------------------------------------------------------------------------ def exportASCIIGrid(outFile, nlm, xll=0, yll=0, cellSize=1): """ Export a NLM array as a ASCII grid raster file. Parameters ---------- outFile : string The path and name of the output raster file. nlm : 2D array The NLM to be exported. xll : number Raster lower left corner x coordinate. yll : number Raster lower left corner y coordinate. cellSize : number The size of the cells in the output raster. """ # Get dimensions of the NLM nRow, nCol = nlm.shape # Convert any nan elements to null data value of -9999 np.place(nlm, np.isnan(nlm), -9999) # Create raster out file textOut = open(outFile, 'w') # Write metadata textOut.write("NCOLS " + str(nCol) + "\n") textOut.write("NROWS " + str(nRow) + "\n") textOut.write("XLLCORNER " + str(xll) + "\n") textOut.write("YLLCORNER " + str(yll) + "\n") textOut.write("CELLSIZE " + str(cellSize) + "\n") textOut.write("NODATA_VALUE -9999\n") # Write NLM for row in range(nRow): lineout = "" for col in range(nCol): lineout = lineout + str(nlm[row,col]) + " " textOut.write(lineout[:-1] + "\n") textOut.close() #------------------------------------------------------------------------------ # NEUTRAL LANDSCAPE MODELS: #------------------------------------------------------------------------------ def random(nRow, nCol, mask=None): """ Create a spatially random neutral landscape model with values ranging 0-1. Parameters ---------- nRow : int The number of rows in the array. nCol : int The number of columns in the array. mask : array, optional 2D array used as a binary mask to limit the elements with values. Returns ------- out : array 2D array. """ array = randomUniform01(nRow, nCol, mask) return(array) #------------------------------------------------------------------------------ def planarGradient(nRow, nCol, direction=None, mask=None): """ Create a planar gradient neutral landscape model with values ranging 0-1. Parameters ---------- nRow : int The number of rows in the array. nCol : int The number of columns in the array. direction: int, optional The direction of the gradient as a bearing from north, if unspecified the direction is randomly determined. mask : array, optional 2D array used as a binary mask to limit the elements with values. Returns ------- out : array 2D array. """ if direction is None: direction = np.random.uniform(0, 360, 1) # a random direction if mask is None: mask = np.ones((nRow, nCol)) # Create arrays of row and column index rowIndex, colIndex = np.indices((nRow, nCol)) # Determine the eastness and southness of the direction eastness = np.sin(np.deg2rad(direction)) southness = np.cos(
np.deg2rad(direction)
numpy.deg2rad
import os import glob import cv2 import argparse import numpy as np # SBD by reference def calc_dic(n_objects_gt, n_objects_pred): return np.abs(n_objects_gt - n_objects_pred) def calc_dice(gt_seg, pred_seg): nom = 2 * np.sum(gt_seg * pred_seg) denom = np.sum(gt_seg) + np.sum(pred_seg) dice = float(nom) / float(denom) return dice def calc_bd(ins_seg_gt, ins_seg_pred): gt_object_idxes = list(set(np.unique(ins_seg_gt)).difference([0])) pred_object_idxes = list(set(np.unique(ins_seg_pred)).difference([0])) best_dices = [] for gt_idx in gt_object_idxes: _gt_seg = (ins_seg_gt == gt_idx).astype('bool') dices = [] for pred_idx in pred_object_idxes: _pred_seg = (ins_seg_pred == pred_idx).astype('bool') dice = calc_dice(_gt_seg, _pred_seg) dices.append(dice) best_dice = np.max(dices) best_dices.append(best_dice) best_dice = np.mean(best_dices) return best_dice def calc_sbd(ins_seg_gt, ins_seg_pred): _dice1 = calc_bd(ins_seg_gt, ins_seg_pred) _dice2 = calc_bd(ins_seg_pred, ins_seg_gt) return min(_dice1, _dice2) # SBD by own made def BD(img_a, img_b): ra, ca = img_a.shape rb, cb = img_b.shape a_list, b_list = {}, {} for r in range(ra): for c in range(ca): if img_a[r][c] not in a_list: a_list[img_a[r][c]] = [(r, c)] else: temp = a_list[img_a[r][c]] temp.append((r, c)) a_list[img_a[r][c]] = temp for r in range(rb): for c in range(cb): if img_b[r][c] not in b_list: b_list[img_a[r][c]] = [(r, c)] else: temp = b_list[img_b[r][c]] temp.append((r, c)) b_list[img_b[r][c]] = temp M = len(a_list) N = len(b_list) max_list = list() for i in a_list: result = list() La = a_list[i] size_a = len(La) for j in b_list: Lb = b_list[j] size_b = len(Lb) cover = 0 # check if cover for coordinate in Lb: if coordinate in La: cover+=1 result.append(2*cover/(size_a+size_b)) max_list.append(max(result)) bd = sum(max_list) bd = bd/M return bd def SBD(img_a, img_b): return min(BD(img_a, img_b), BD(img_b, img_a)) if __name__ == '__main__': parse = argparse.ArgumentParser() parse.add_argument('-d', '--dataset', type=str, required=True, help='Input predict dataset') parse.add_argument('-l', '--label_dataset', type=str, required=False, help='Label dataset path') args = parse.parse_args() file_path = glob.glob(os.path.join(args.dataset, '*_ws.png')) sbd_record = list() for file_name in file_path: image_name = file_name.replace('_ws.png', '') predict = cv2.imread(image_name+'_ws.png', 0) img_true = cv2.imread(image_name+'_label.png', 0) score = calc_sbd(img_true, predict) sbd_record.append(score) print(file_name, '%.3f'%score) print('overall mean sbd:',
np.mean(sbd_record)
numpy.mean
import argparse import cv2 import numpy as np import matplotlib.pyplot as plt from constants import MAX_WIDTH, MAX_HEIGHT # Transform Parameters height, width = 1200, 800 # Orignal and transformed keypoints pts1 = np.float32( [[103, 93], [222, 95], [6, 130], [310, 128]]) pts2 = np.float32( [[0, 0], [width, 0], [0, height], [width, height]]) # Translation Matrix tx, ty = 0, 0 translation_matrix = np.float32([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) new_height, new_width = int(height * 1) + ty + 600, int(width * 1.2) + tx # calculate the perspective transform matrix transform_matrix = cv2.getPerspectiveTransform(pts1, pts2) complete_transform = np.dot(translation_matrix, transform_matrix) def imshow(im, name=""): # pragma: no cover plt.figure(name) # BGR to RGB plt.imshow(im[:, :, ::-1]) plt.grid(True) def showTransform(image): # pragma: no cover im = image.copy() for (cx, cy) in pts1: cv2.circle(im, (int(cx), int(cy)), 8, (0, 255, 0), -1) imshow(im, name="transform") def transformPoints(x, y): points = [] for i in range(len(x)): point = transformPoint(
np.array([x[i], y[i], 1])
numpy.array
# Copyright (c) 2020, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import itertools import numpy as np import pytest import torch import torch.nn as nn import torch.nn.functional as F from coremltools.converters.mil.mil import types from coremltools.converters.mil.mil import Builder as mb from coremltools.converters.mil.mil import Function, get_new_symbol from coremltools.converters.mil.mil.var import Var from .. import ops from ..converter import TorchConverter, TranscriptionContext from ..internal_graph import InternalTorchIRNode class TestTorchOps: """Class containing tests for converting TorchIR -> CoreML ops. These tests interface with only the InternalTorchIRGraph and do not build a torch module. Thus, they are much faster then the numerical tests. However, for some ops it is necessary to use the torch module to verify numerical output so they are placed the numerical tests. NOTE: Confused where @context is coming from? Its from the pytest fixture defined below. """ @pytest.fixture def context(self): return TranscriptionContext() @pytest.fixture def set_random_seeds(self): torch.manual_seed(1) np.random.seed(1) @pytest.mark.parametrize("dtype", [torch.bool, torch.float, torch.int]) def test_constant(self, context, dtype): test_data = torch.ones(1, dtype=dtype) node = InternalTorchIRNode( attr={"value": test_data}, kind="constant", inputs=[], outputs=["1"] ) ssa = self._construct_test_graph(context, ops.constant, node, "1") assert np.allclose(test_data, ssa.val) assert test_data.shape == ssa.shape def test_constant_magic(self, context): test_val = ops.PYTORCH_MAGIC_DEFAULT node = InternalTorchIRNode( attr={"value": test_val}, kind="constant", inputs=[], outputs=["1"] ) ssa = self._construct_test_graph(context, ops.constant, node, "1") # We expect the magic default to get converted to None assert ssa is None @staticmethod def _gen_constants(size, vals): """Helper function. Generates a list of internal constant nodes. Arguments: size: number of constants to generate vals: Either a list of values for each constant or one value used for all constants.""" is_list = isinstance(vals, list) if is_list: if len(vals) != size: raise ValueError("len(@vals): {} != size: {}".format(len(vals), size)) constants = [] for index in range(size): if is_list: val = vals[index] else: val = vals constants.append( InternalTorchIRNode( attr={"value": val}, kind="constant", inputs=[], outputs=[str(index)], ) ) input_list = [str(i) for i in range(size)] output_name = str(len(input_list)) return constants, input_list, output_name @staticmethod def _construct_test_graph( context, test_op, test_node, output_name=None, graph_inputs=None, constants=None ): """ Construct an Function for the given @graph_inputs, @constants, and @test_node. Returns the output of the graph, which is the ssa Var of the given @output_name. """ if graph_inputs is None: graph_inputs = {} if constants is None: constants = [] with Function(inputs=graph_inputs) as ssa_func: for name in ssa_func.inputs.keys(): context.add(ssa_func.inputs[name]) for node in constants: ops.constant(context, node) test_op(context, test_node) ssa = None if output_name: ssa = context[output_name] return ssa def _test_elementwise_binary( self, context, op_name, op, test_input, num_constants, expected_result ): """Helper function, runs op on test input and compares against expected result""" constants, input_list, output_name = self._gen_constants( num_constants, test_input ) eb_node = InternalTorchIRNode( kind=op_name, inputs=input_list, outputs=[output_name] ) ssa = self._construct_test_graph( context, op, eb_node, output_name, constants=constants ) np.testing.assert_allclose(expected_result, ssa.val, atol=1e-7) def _test_cast(self, context, test_val, op_kind, op_func, python_type): constants, input_list, output_name = self._gen_constants(1, [test_val]) node = InternalTorchIRNode( kind=op_kind, inputs=input_list, outputs=[output_name] ) ssa = self._construct_test_graph( context, op_func, node, output_name, constants=constants ) assert ssa.val == python_type(test_val) def _test_activation( self, context, input_shape, constants_list, op_kind, op_func, torch_func, atol ): test_input = torch.rand(input_shape) constants, input_list, output_name = self._gen_constants( len(constants_list) + 1, [test_input] + constants_list ) node = InternalTorchIRNode( kind=op_kind, inputs=input_list, outputs=[output_name] ) ssa = self._construct_test_graph( context, op_func, node, output_name, constants=constants ) expected_result = torch_func(test_input).numpy() np.testing.assert_allclose(expected_result, ssa.val, atol=atol) def test_add(self, context): test_input_1 = np.random.rand(2, 3) test_input_2 = np.random.rand(2, 3) scale_factor = 1 self._test_elementwise_binary( context, "Add", ops.add, [test_input_1, test_input_2, scale_factor], 3, test_input_1 + test_input_2, ) def test_add_no_scale_factor(self, context): test_input_1 = np.random.rand(2, 3) test_input_2 = np.random.rand(2, 3) self._test_elementwise_binary( context, "Add", ops.add, [test_input_1, test_input_2], 2, test_input_1 + test_input_2, ) @pytest.mark.parametrize( "test_input_1, test_input_2", [(np.random.rand(3, 2), np.random.rand(3, 2)), (np.random.rand(3, 2), 5),], ) def test_sub(self, context, test_input_1, test_input_2): scale_factor = 1 self._test_elementwise_binary( context, "Sub", ops.sub, [test_input_1, test_input_2, scale_factor], 3, test_input_1 - test_input_2, ) @pytest.mark.parametrize( "test_input_1, test_input_2", [(np.random.rand(3, 2), np.random.rand(3, 2)), (np.random.rand(3, 2), 5),], ) def test_rsub(self, context, test_input_1, test_input_2): scale_factor = 1 self._test_elementwise_binary( context, "rsub", ops.sub, [test_input_1, test_input_2, scale_factor], 3, # Note the reversal of arg ordering relative to 'sub' test_input_2 - test_input_1, ) def test_mul(self, context): test_input_1 = np.random.rand(3, 2) test_input_2 =
np.random.rand(3, 2)
numpy.random.rand
''' Basic classes for sections and surfaces, and fundamental functions ''' import copy import os import re import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D from scipy.interpolate import CubicSpline from scipy import spatial from scipy.interpolate import interp1d from scipy.spatial.distance import cdist class BasicSection(): ''' Section: 3D curve and 2D unit curve ''' def __init__(self, thick=None, chord=1.0, twist=0.0): self.xLE = 0.0 self.yLE = 0.0 self.zLE = 0.0 self.chord = chord self.twist = twist self.thick = 0.0 self.thick_set = thick #* 2D unit curve self.xx = None self.yy = None # open curve self.yu = None # upper surface of closed curve self.yl = None # lower surface of closed curve #* 3D section self.x = np.zeros(1) self.y = np.zeros(1) self.z = np.zeros(1) def set_params(self, init=False, **kwargs): ''' Set parameters of the section ### Inputs: ```text init: True, set to default values ``` ### kwargs: ```text xLE, yLE, zLE, chord, twist, thick (None) ``` ''' if init: self.xLE = 0.0 self.yLE = 0.0 self.zLE = 0.0 self.chord = 1.0 self.twist = 0.0 self.thick = 0.0 self.thick_set = None return if 'xLE' in kwargs.keys(): self.xLE = kwargs['xLE'] if 'yLE' in kwargs.keys(): self.yLE = kwargs['yLE'] if 'zLE' in kwargs.keys(): self.zLE = kwargs['zLE'] if 'chord' in kwargs.keys(): self.chord = kwargs['chord'] if 'twist' in kwargs.keys(): self.twist = kwargs['twist'] if 'thick' in kwargs.keys(): self.thick_set = kwargs['thick'] def section(self, nn=1001, flip_x=False, proj=True): ''' ### Functions: ```text 1. Construct 2D unit curve (null in the BasicSection) 2. Transform to 3D curve ``` ### Inputs: ```text nn: total amount of points (it's here for function BasicSurface.geo_secs) flip_x: True ~ flip section.xx in reverse order proj: True => for unit airfoil, the rotation keeps the projection length the same ``` ''' if not isinstance(self.xx, np.ndarray): raise Exception('The 2D curve has not been constructed') #* Flip xx if flip_x: self.xx =
np.flip(self.xx)
numpy.flip
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data =
np.array([])
numpy.array
from numpy import random import numpy import pickle import sys from envs.env_maze import MazeTask from envs.env_maze import gen_pattern as gen_single def dump_pattern(pattern_number, cell_scale, file_name): handle = open(file_name, "wb") value = [gen_single(cell_scale=cell_scale, crowd_ratio=0.10) for _ in range(pattern_number)] pickle.dump(value, handle) handle.close() def load_pattern(file_name): handle = open(file_name, "rb") value = pickle.load(handle) handle.close() return value def gen_patterns(n=16, cell_scale=11, file_name=None, crowd_ratio=None): if(file_name is None): if(crowd_ratio is not None): return [gen_single(cell_scale=cell_scale, crowd_ratio=crowd_ratio) for _ in range(n)] else: return [gen_single(cell_scale=cell_scale) for _ in range(n)] else: patterns = load_pattern(file_name) size = len(patterns) if(size < n): return patterns else: idxes =
numpy.arange(size, dtype="int32")
numpy.arange
#!/usr/bin/env python """File: pointpatterns.py Module to facilitate point pattern analysis in arbitrarily shaped 2D windows. """ # Copyright 2015 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import (absolute_import, division, print_function, unicode_literals) from random import sample import numpy import pandas from scipy import integrate, optimize, interpolate from scipy.spatial import distance, Voronoi from scipy.stats import percentileofscore from shapely import geometry, affinity, ops, speedups from matplotlib import pyplot, patches from collections import Sequence from .utils import AlmostImmutable, sensibly_divide, project_vectors from .memoize.memoize import memoize_method try: __ = basestring except NameError: basestring = str if speedups.available: speedups.enable() _PI = numpy.pi _2PI = 2.0 * _PI _PI_4 = _PI / 4.0 RSAMPLES = 49 QUADLIMIT = 100 ORIGIN = geometry.Point((0.0, 0.0)) class Window(geometry.Polygon): """ Represent a polygon-shaped window in the Euclidean plane, and provide methods for computing quantities related to it. """ def __reduce__(self): memcache = memoize_method.cache_name red = list(geometry.Polygon.__reduce__(self)) red[2] = {'state': red[2], memcache: getattr(self, memcache, {})} return tuple(red) def __setstate__(self, state): geometry.Polygon.__setstate__(self, state.pop('state')) for key in state: setattr(self, key, state[key]) def includes(self, p): return self.contains(p) or self.boundary.contains(p) def wrap_into(self, points): """ Wrap a set of points into a plane-filling window Parameters ---------- points : array-like, shape (n, 2) Array of `n` point coordinates. Returns ------- ndarray, shape (n, 2) New array of wrapped point coordinates. """ # Translate origin to centroid cen = self.centroid points = numpy.asarray(points) - cen # Wrap points directly into the rhomboidal window lattice = self.lattice() basis = lattice[:2] pcoeffs = project_vectors(points, basis) pcoeffs = numpy.mod(pcoeffs + 0.5, 1.0) - 0.5 points = pcoeffs.dot(basis) # If window is hexagonal there may be some residual wrapping to do if len(lattice) == 6: # Do a full loop to nudge all edge cases to where they belong vertices = self.vertices() for i, vertex in enumerate(vertices): for b in lattice[i:i + 2]: bas = numpy.vstack((vertex, .5 * b)) ppoints = project_vectors(points, bas) pv, pb = ppoints[:, 0], ppoints[:, 1] retard = (pv + pb > 1.0) & (pv > 0.0) & (pb > 0.0) advance = (pv + pb < -1.0) & (pv < 0.0) & (pb < 0.0) points[retard] -= b points[advance] += b # Translate back points += cen return points def vertices(self): """ Find the vectors from the centroid to the vertices of the window Returns ------- ndarray Array of vertex vectors """ vertices = numpy.asarray(self.boundary)[:-1] - self.centroid # Sort by angle, starting with from the x axis angles = numpy.arctan2(vertices[:, 1], vertices[:, 0]) asort = numpy.argsort(angles) start_index = numpy.argmin(numpy.mod(angles[asort], _2PI)) asort = numpy.roll(asort, -start_index) return vertices[asort] @memoize_method def lattice(self): """ Compute lattice vectors of a Bravais lattice having the window as unit cell The lattice vectors are stored as an n-by-2 array, with n the number of window edges, such that each row contains the coordinates of a lattice vector crossing a window edge If the window is not a simple plane-filling polygon (parallellogram or hexagon with reflection symmetry through its center), a ValueError is raised. Returns ------- ndarray Array of lattice vectors. """ vertices = self.vertices() l = vertices.shape[0] vrotated = numpy.roll(vertices, l // 2, axis=0) if not (l in (4, 6) and numpy.allclose(vertices, -vrotated)): raise ValueError("window must be a simple plane-filling polygon " "(a parallellogram, or a hexagon with reflection " "symmetry through its center) to compute lattice " "vectors.") lattice = vertices + numpy.roll(vertices, 1, axis=0) # Sort by angle, starting with the one before the first vertex vector angles = numpy.arctan2(lattice[:, 1], lattice[:, 0]) asort = numpy.argsort(angles) start_angle = numpy.arctan2(vertices[0, 1], vertices[0, 0]) start_index = numpy.argmin(numpy.mod(start_angle - angles[asort], _2PI)) asort = numpy.roll(asort, -start_index) return lattice[asort] @memoize_method def inscribed_circle(self): """ Compute the center and radius of the largest circle that can be inscribed in the polygon ..note:: The largest inscribed circle is found using a standard optimization routine. There is in principle no guarantee that it will converge to the global optimum that corresponds to the largest inscribed circle possible. Returns ------- Series The x and y coordinates of the inscribed circle center, and the radius of the inscribed circle, with the index ('x', 'y', 'r'). """ def d(p): point = geometry.Point(p) if self.contains(point): return -self.boundary.distance(point) else: return 0.0 cent = self.centroid x, y = optimize.minimize(d, (cent.x, cent.y)).x r = -d((x, y)) return dict(x=x, y=y, r=r) @memoize_method def longest_diagonal(self): """ Compute the length of the longest diagonal across the polygon Returns ------- scalar Length of the longest diagonal. """ bpoints = list(geometry.MultiPoint(self.boundary.coords[:-1])) dmax = 0.0 while bpoints: p1 = bpoints.pop() for p2 in bpoints: d = p1.distance(p2) if d > dmax: dmax = d return dmax @memoize_method def voronoi(self): """ Compute the central Voronoi unit cell of the lattice defined by the window Returns ------- Window New window instance representing the lattice Voronoi unit cell, centered at the origin (not at the centroid of this Window instance). """ lattice = self.lattice() lattice_r1 = numpy.roll(lattice, 1, axis=0) lattice_points = numpy.vstack(((0.0, 0.0), lattice, lattice + lattice_r1)) voronoi = Voronoi(lattice_points) window = voronoi.vertices[voronoi.regions[voronoi.point_region[0]]] return type(self)(window) @memoize_method def centered(self): """ Compute a translation of the window such that the centroid coincides with the origin Returns ------- Window Centered window. """ cent = self.centroid return affinity.translate(self, xoff=-cent.x, yoff=-cent.y) @memoize_method def diagonal_cut(self): """ Compute the window obtained byt cutting this window in half along a diagonal This operation can only be performed on windows with an even number of vertices and reflection symmetry through the centroid. This ensures that all diagonals between opposite vertices cut the window into two halves. Returns ------- Window Diagonally cut window. """ boundary = numpy.asarray(self.boundary)[:-1] vertices = boundary - self.centroid l = vertices.shape[0] l_2 = l // 2 vrotated = numpy.roll(vertices, l_2, axis=0) if not (l % 2 == 0 and numpy.allclose(vertices, -vrotated)): raise ValueError("window must have an even number of vertices and " "reflection symmetry through its centroid to " "compute diagonal cut.") # We want to begin in the lower right quadrant angles = numpy.arctan2(vertices[:, 1], vertices[:, 0]) asort = numpy.argsort(angles) start_index = numpy.argmin(numpy.abs(angles[asort] + _PI_4)) asort = numpy.roll(asort, -start_index) new_boundary = boundary[asort[:l_2 + 1]] return type(self)(new_boundary) def dilate_by_this(self, other): """ Dilate another polygon by this polygon :other: polygon to dilate :returns: dilated polygon NB! Don't know if this algorithm works in all cases """ plist = [] sbpoints = geometry.MultiPoint(self.boundary)[:-1] obpoints = geometry.MultiPoint(other.boundary)[:-1] for p in numpy.asarray(sbpoints): plist.append(affinity.translate(other, xoff=p[0], yoff=p[1])) for p in numpy.asarray(obpoints): plist.append(affinity.translate(self, xoff=p[0], yoff=p[1])) return ops.cascaded_union(plist) def erode_by_this(self, other): """ Erode another polygon by this polygon :other: polygon to erode :returns: eroded polygon NB! Don't know if this algorithm is correct in all cases """ eroded = type(self)(other) sbpoints = geometry.MultiPoint(self.boundary)[:-1] for p in numpy.asarray(sbpoints): eroded = eroded.intersection(affinity.translate(other, xoff=-p[0], yoff=-p[1])) return eroded def translated_intersection(self, xoff, yoff): """ Compute the intersection of the window with a translated copy of itself :xoff: distance to translate in the x direction :yoff: distance to translate in the y direction :returns: a Window instance corresponding to the intersection """ return self.intersection(affinity.translate(self, xoff=xoff, yoff=yoff)) @memoize_method def _set_covariance_interpolator(self): """ Compute a set covariance interpolator for the window Returns ------- RectangularGridInterpolator Interpolator that computes the the set covariance of the window. """ ld = self.longest_diagonal() rssqrt = int(numpy.sqrt(RSAMPLES)) xoffs = numpy.linspace(-ld, ld, 4 * (rssqrt + 1) - 1) yoffs = numpy.linspace(-ld, ld, 4 * (rssqrt + 1) - 1) scarray = numpy.zeros((xoffs.size, yoffs.size)) for (i, xoff) in enumerate(xoffs): for (j, yoff) in enumerate(yoffs): scarray[i, j] = self.translated_intersection(xoff, yoff).area #return interpolate.RegularGridInterpolator((xoffs, yoffs), scarray, # bounds_error=False, # fill_value=0.0) return interpolate.RectBivariateSpline(xoffs, yoffs, scarray, kx=3, ky=3) def set_covariance(self, x, y): """ Compute the set covariance of the window at given displacements This is a wrapper around self._set_covariance_interpolator, providing a user friendly call signature. Parameters ---------- x, y : array-like Arrays of the same shape giving x and y values of the displacements at which to evaluate the set covariance. Returns ------- ndarray Array of the same shape as `x` and `y` containing the set covariance at each displacement. """ #xi = numpy.concatenate((x[..., numpy.newaxis], # y[..., numpy.newaxis]), axis=-1) #return self._set_covariance_interpolator()(xi) return self._set_covariance_interpolator()(x, y, grid=False) @memoize_method def _isotropised_set_covariance_interpolator(self): """ Compute an isotropised set covariance interpolator for the window Returns ------- interp1d Interpolator that computes the the isotropised set covariance of the window. """ rvals = numpy.linspace(0.0, self.longest_diagonal(), 2 * (RSAMPLES + 1) - 1) iso_set_cov = numpy.zeros_like(rvals) # Identify potentially problematic angles and a safe starting- and # ending angle for the quadrature integration xy = numpy.asarray(self.boundary)[:-1] problem_angles = numpy.sort(numpy.arctan2(xy[:, 1], xy[:, 0])) theta0 = 0.5 * (problem_angles[0] + problem_angles[-1] - _2PI) for (i, rval) in enumerate(rvals): def integrand(theta): return self.set_covariance(rval * numpy.cos(theta), rval * numpy.sin(theta)) iso_set_cov[i] = (integrate.quad(integrand, theta0, _2PI + theta0, limit=QUADLIMIT, points=problem_angles)[0] / _2PI) return interpolate.interp1d(rvals, iso_set_cov, kind='cubic', bounds_error=False, fill_value=0.0) def isotropised_set_covariance(self, r): """ Compute the isotropised set covariance of the window at given displacements This is a wrapper around self._isotropised_set_covariance_interpolator, providing a user friendly call signature. Parameters ---------- r : array-like Array giving the displacements at which to evaluate the isotropised set covariance. Returns ------- ndarray Array of the same shape as `r` containing the isotropised set covariance at each displacement. """ return self._isotropised_set_covariance_interpolator()(r) @memoize_method def _ball_difference_area_interpolator(self): """ Compute a ball difference area interpolator for the window Returns ------- interp1d Interpolator that computes the the ball difference area for the window. """ rvals = numpy.linspace(0.0, .5 * self.longest_diagonal(), RSAMPLES) ball_diff_area = numpy.zeros_like(rvals) centroid = self.centroid for (i, r) in enumerate(rvals): disc = centroid.buffer(r) ball_diff_area[i] = self.difference(disc).area return interpolate.interp1d(rvals, ball_diff_area, kind='cubic', bounds_error=False, fill_value=0.0) def ball_difference_area(self, r): """ Compute the area of the set difference of the window and a ball of a given radius centered on the window centroid This function provides a speedup of this computation for multiple values of the radius, by relying on an interpolator. Parameters ---------- r : array-like Array giving the radii of the balls to subtract from the window. Returns ndarray Array of the same shape as `r` containing for each value in `r` the area of the set difference of the window and b(c, r), where c is the centroid of the window. """ return self._ball_difference_area_interpolator()(r) @memoize_method def _pvdenom_interpolator(self): """ Compute an interpolator for the denominator of the p-function for the adapted intensity estimator based on area Returns ------- interp1d Interpolator that computes the the p-function denominator. """ def integrand(t): return _2PI * t * self.isotropised_set_covariance(t) rvals = numpy.linspace(0.0, self.longest_diagonal(), RSAMPLES) dvals = numpy.empty_like(rvals) for (i, rval) in enumerate(rvals): dvals[i] = integrate.quad(integrand, 0.0, rval, limit=QUADLIMIT, )[0] return interpolate.interp1d(rvals, dvals, kind='cubic', bounds_error=True) def pvdenom(self, r): """ Compute the denominator of the p-function for the adapted intensity estimator based on area This is a wrapper around self._pvdenom_interpolator, providing a user friendly call signature. Parameters ---------- r : array-like Array giving the distances at which to evaluate the p-function denominator. Returns ------- ndarray Array of the same shape as `r` containing the p-function denominator at each distance. """ return self._pvdenom_interpolator()(r) def p_V(self, point, r): """ Compute the p-function for the adapted intensity estimator based on area :point: a Point instance giving the location at which to evaluate the function :r: array-like with radii around 'point' at which to ev' 'aluate the p-function :returns: the value of the area p-function """ r = numpy.asarray(r) num = numpy.empty_like(r) r_ravel = r.ravel() num_ravel = num.ravel() for (i, rval) in enumerate(r_ravel): num_ravel[i] = self.intersection(point.buffer(rval)).area return sensibly_divide(num, self.pvdenom(r)) def p_S(self, point, r): """ Compute the p-function for the adapted intensity estimator based on perimeter :point: a Point instance giving the location at which to evaluate the function :r: array-like with radii around 'point' at which to evaluate the p-function :returns: the value of the perimeter p-function """ r = numpy.asarray(r) num = numpy.empty_like(r) r_ravel = r.ravel() num_ravel = num.ravel() for (i, rval) in enumerate(r_ravel): num_ravel[i] = self.intersection( point.buffer(rval).boundary).length denom = _2PI * r * self.isotropised_set_covariance(r) return sensibly_divide(num, denom) def patch(self, **kwargs): """ Return a matplotlib.patches.Polygon instance for this window :kwargs: passed through to the matplotlib.patches.Polygon constructor :returns: matplotlib.patches.Polygon instance """ return patches.Polygon(self.boundary, **kwargs) def plot(self, axes=None, linewidth=2.0, fill=False, **kwargs): """ Plot the window The window can be added to an existing plot via the optional 'axes' argument. :axes: Axes instance to add the window to. If None (default), the current Axes instance with equal aspect ratio is used if any, or a new one created. :linewidth: the linewidth to use for the window boundary. Defaults to 2.0. :fill: if True, plot a filled window. If False (default), only plot the boundary. :kwargs: additional keyword arguments passed on to the patches.Polygon() constructor. Note in particular the keywords 'edgecolor', 'facecolor' and 'label'. :returns: the plotted matplotlib.patches.Polygon instance """ if axes is None: axes = pyplot.gca(aspect='equal') cent = self.centroid diag = self.longest_diagonal() axes.set(xlim=(cent.x - diag, cent.x + diag), ylim=(cent.y - diag, cent.y + diag)) wpatch = self.patch(linewidth=linewidth, fill=fill, **kwargs) wpatch = axes.add_patch(wpatch) return wpatch class PointPattern(AlmostImmutable, Sequence): """ Represent a planar point pattern and its associated window, and provide methods for analyzing its statistical properties Parameters ---------- points : sequence or MultiPoint A sequence of coordinate tuples or any other valid MultiPoint constructor argument, representing the points in the point pattern. window : sequence or Polygon or Window A sequence of coordinate tuples or any other valid Window constructor argument, defining the set within which the point pattern is takes values. A ValueError is raised if the window does not contain all points in `points`. The Window method `wrap_into` can be used to wrap points into the window before initalization, if the window is a simple plane-filling polygon (thus providing periodic boundary conditions by which the points can be wrapped). pluspoints : sequence or MultiPoint, optional Like `points`, but representing a set of extra points (usually outside the window) to use for plus sampling. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the default edge handling to apply in computations: ``stationary`` Translational edge correction used. Intensity estimated by the adapted intensity estimator based on area. ``finite`` Translational edge correction used. Intensity estimated by the standard intensity estimator. ``isotropic`` Rotational edge correction used. Intensity estimated by the adapted intensity estimator based on area. ``periodic``: No edge correction used, but points are assumed to repeat periodically according on a lattice defined by the basis vectors in `self.window.lattice` (if defined). Intensity estimated by the standard intensity estimator. ``plus`` No edge correction, but plus sampling is used instead. Intensity estimated by the standard intensity estimator. """ _edge_config = { 'stationary': { 'pmode': 'default', 'imode': 'area', }, 'finite': { 'pmode': 'default', 'imode': 'standard', # corrected, }, 'isotropic': { 'pmode': 'default', 'imode': 'perimeter', }, 'periodic': { 'pmode': 'periodic', 'imode': 'standard', # corrected, }, 'plus': { 'pmode': 'plus', 'imode': 'standard', # corrected, }, } def __init__(self, points, window, pluspoints=None, edge_correction='stationary'): # Avoid copying the window unless needed if not isinstance(window, Window): window = Window(window) self.window = window points = geometry.MultiPoint(points) if len(set(map(tuple, numpy.asarray(points)))) != len(points): raise ValueError("{} instances do not support point patterns " "with multiple exactly equal points" .format(type(self))) if not window.includes(points): raise ValueError("Not all points in 'points' are included in " "'window'.") self._points = points self.pluspoints = geometry.MultiPoint(pluspoints) self.edge_correction = edge_correction # Implement abstract methods def __getitem__(self, index, *args, **kwargs): return self._points.__getitem__(index, *args, **kwargs) def __len__(self, *args, **kwargs): return self._points.__len__(*args, **kwargs) # Override certain possibly very slow mixins def __iter__(self, *args, **kwargs): return self._points.__iter__(*args, **kwargs) def __reversed__(self, *args, **kwargs): return self._points.__reversed__(*args, **kwargs) def index(self, *args, **kwargs): return self._points.index(*args, **kwargs) def _inherit_binary_operation(self, other, op): """ Define the general pattern for inheriting a binary operation on the points as a binary operation on the PointPattern Parameters ---------- other : shapely object The binary operation is applied to `self` and `other`. If `other` is also a `PointPattern` instance, an exception is raised if they are not defined in `Window` instances that compare equal. If `other` is not a `PointPattern` instance, the binary operation is applied to `self._points` and `other`. The result of this operation is returned directly, unless it is a `geometry.MultiPoint` or `geometry.Point` instance, in which case it is used to initialize a new `PointPattern` instance in the same window as `self`. If applying the binary operation to `self.pluspoints` and `other` also returns a `geometry.MultiPoint` or `geometry.Point` instance, this is used as the `pluspoints` of the new `PointPattern`. op : string or callable Either a string naming the attribute of `self._points` that implements the binary operation, or a callable implementing the binary operation on two shapely objects. Returns ------- PointPattern The result of the binary operation applied to the `PointPattern` instances. """ spoints = self._points spluspoints = self.pluspoints if (isinstance(op, basestring) and hasattr(spoints, op) and hasattr(spluspoints, op)): bound_op = getattr(spoints, op) bound_op_plus = getattr(spluspoints, op) else: def bound_op(ogeom): return op(spoints, ogeom) def bound_op_plus(opluspoints): return op(spluspoints, opluspoints) swindow = self.window if isinstance(other, type(self)) or isinstance(self, type(other)): owindow = other.window if not (swindow == owindow): raise ValueError("instances of {} must be defined over " "instances of {} that compare equal for " "binary operations to be defined" .format(self.__class__.__name__, swindow.__class__.__name__)) new_points = bound_op(other._points) new_pluspoints = bound_op_plus(other.pluspoints) return type(self)(new_points, swindow, pluspoints=new_pluspoints, edge_correction=self.edge_correction) # Apparently, other is not a PointPattern. Do the easiest thing. new_geom = bound_op(other) if isinstance(new_geom, geometry.Point): new_geom = geometry.MultiPoint((new_geom,)) if isinstance(new_geom, geometry.MultiPoint): new_pluspoints = None potential_pluspoints = bound_op_plus(other) if isinstance(potential_pluspoints, geometry.Point): potential_pluspoints = geometry.MultiPoint((new_pluspoints,)) if isinstance(potential_pluspoints, geometry.MultiPoint): new_pluspoints = potential_pluspoints return type(self)( new_geom, swindow, pluspoints=new_pluspoints, edge_correction=self.edge_correction) return new_geom def difference(self, other): return self._inherit_binary_operation(other, 'difference') def intersection(self, other): return self._inherit_binary_operation(other, 'intersection') def symmetric_difference(self, other): return self._inherit_binary_operation(other, 'symmetric_difference') def union(self, other): return self._inherit_binary_operation(other, 'union') def periodic_extension(self, periodic_levels): """ Compute the periodic extension of this point pattern The extension is made by assuming that periodic boundary conditions hold across the boundaries of the window associated with the pattern. Returns ------- periodic_levels : integer The number of levels of periodic extensions to compute. A level roughly consists of all the lattice displacements that can be written as a sum of an equal number of lattice unit vectors. MultiPoint MultiPoint instance containing the points comprising the periodic extension. Note that the points from the pattern itself are not included. """ lattice = self.window.lattice() lattice_r1 = numpy.roll(lattice, 1, axis=0) dvec_list = [] for i in range(periodic_levels + 1): for l in range(i): k = i - l dvec_list.append(k * lattice + l * lattice_r1) dvecs = numpy.vstack(dvec_list) periodic_points = ops.cascaded_union( [affinity.translate(self.points(), xoff=dvec[0], yoff=dvec[1]) for dvec in dvecs]) return periodic_points def points(self, mode='default', periodic_levels=2, project_points=False): """ Return the points in the pattern Parameters ---------- mode : str {'default', 'periodic', plus'}, optional String to select points: ``default`` The points constituting the pattern are returned. ``periodic`` The union of the pattern and its periodic extension as defined by `self.periodic_extension` is returned. ``plus`` The union of the pattern and the associated plus sampling points in `self.pluspoints` is returned. periodic_levels : integer, optional The number of periodic levels to compute if `mode == 'periodic'`. See `PointPattern.periodic_extension` for explanation. project_points : bool, optional If True, the points will be projected into the unit square by oblique projection onto the edges of the window of the point pattern. The periodic extension points or plus sampling points will of course take values outside the unit square, but will be subject to the same transformation. If the window is not rhomboidal, an error will be raised. Returns ------- MultiPoint MultiPoint instance containing the requested points. """ if mode == 'default': points = self._points elif mode == 'periodic': points = self._points.union( self.periodic_extension(periodic_levels)) elif mode == 'plus': points = self._points.union(self.pluspoints) else: raise ValueError("unknown mode: {}".format(mode)) if project_points: basis_vectors = self.window.lattice() if len(basis_vectors) != 4: raise ValueError("projection is only possible for point " "patterns in rhomboidal windows.") basis_vectors = basis_vectors[:2] # Find the lower left corner (with respect to the basis vectors) # of the window boundary = numpy.asarray(self.window.boundary)[:-1] boundary_coeffs = project_vectors(boundary, basis_vectors) anchor_coeffs = min(boundary_coeffs, key=numpy.sum) # Subtract anchor and project parray = numpy.array(points) - anchor_coeffs.dot(basis_vectors) point_coeffs = project_vectors(parray, basis_vectors) points = geometry.MultiPoint(point_coeffs) return points @staticmethod def range_tree_build(points): """ Construct a range tree from a set of points Parameters ---------- points : sequence Sequence of coordinate tuples instances to build the range tree from. ..note:: shapely Point instances are not supported. Returns ------- tuple Root node of the range tree. The nodes are tuples in the following format: [median_point, left_child, right_child, associated_binary_tree]. The associated binary tree at each node points to the root node of a binary tree with nodes in the following format: [median_point_r, left_child, right_child]. Here, `median_point` is a regular coordinate tuple, while `median_point_r` is a reversed coordinate tuple. """ def binary_node_stuff(points, sort_index): # Binary tree node format: [point, left, right] mid = len(sort_index) // 2 p = points[sort_index[mid]] si_l, si_r = sort_index[:mid], sort_index[mid:] return [p, None, None], si_l, si_r def build_binary_tree(points, sort_index): root_stuff = binary_node_stuff(points, sort_index) stack = [] if len(sort_index) > 1: stack.append(root_stuff) while stack: current, si_l, si_r = stack.pop() left_stuff = binary_node_stuff(points, si_l) current[1] = left_stuff[0] if len(si_l) > 1: stack.append(left_stuff) right_stuff = binary_node_stuff(points, si_r) current[2] = right_stuff[0] if len(si_r) > 1: stack.append(right_stuff) return root_stuff[0] def range_node_stuff(points, xsort_index, points_r, ysort_index): # Range tree node format: [point, left, right, # associated_binary_tree) b = build_binary_tree(points_r, ysort_index) mid = len(xsort_index) // 2 p = points[xsort_index[mid]] xsi_l, xsi_r = xsort_index[:mid], xsort_index[mid:] ysi_l = [yi for yi in ysort_index if yi in xsi_l] ysi_r = [yi for yi in ysort_index if yi in xsi_r] return [p, None, None, b], xsi_l, xsi_r, ysi_l, ysi_r def build_range_tree(points, xsort_index, points_r, ysort_index): root_stuff = range_node_stuff(points, xsort_index, points_r, ysort_index) stack = [] if len(xsort_index) > 1: stack.append(root_stuff) while stack: current, xsi_l, xsi_r, ysi_l, ysi_r = stack.pop() left_stuff = range_node_stuff(points, xsi_l, points_r, ysi_l) current[1] = left_stuff[0] if len(xsi_l) > 1: stack.append(left_stuff) right_stuff = range_node_stuff(points, xsi_r, points_r, ysi_r) current[2] = right_stuff[0] if len(xsi_r) > 1: stack.append(right_stuff) return root_stuff[0] indices = range(len(points)) points_r = [p[::-1] for p in points] xsort_index = sorted(indices, key=lambda i: points[i]) ysort_index = sorted(indices, key=lambda i: points_r[i]) return build_range_tree(points, xsort_index, points_r, ysort_index) @staticmethod def range_tree_query(tree, xmin, xmax, ymin, ymax): """ Return the points stored in a range tree that lie inside a rectangular region Parameters ---------- root : tuple Root node of the range tree, as returned from `PointPattern.range_tree_static`. xmin, xmax, ymin, ymax : scalars Limits of the range in which to query the range tree for points. Limits are inclusive in both ends. Returns ------- list List of coordinate tuples for all points from the tree inside the given range. """ xmin, xmax = (xmin, -numpy.inf), (xmax, numpy.inf) ymin, ymax = (ymin, -numpy.inf), (ymax, numpy.inf) def isleaf(node): return (node[1] is None) and (node[2] is None) def query(root, min_, max_, report, points): # Find split node. split = root while not isleaf(split): x = split[0] if x > max_: split = split[1] elif x <= min_: split = split[2] else: break else: # The split node is a leaf node. Report if relevant and finish. if min_ <= split[0] <= max_: report(split, points) return # The split node is a non-leaf node: traverse subtrees and report # relevant nodes. # First, take the left subtree. node = split[1] while not isleaf(node): if node[0] > min_: # The whole right subtree is relevant. Report it. report(node[2], points) node = node[1] else: node = node[2] # We end on a leaf node. Report if relevant. if min_ <= node[0] <= max_: report(node, points) # Then take the right subtree. node = split[2] while not isleaf(node): if node[0] <= max_: # The whole left subtree is relevant. Report it. report(node[1], points) node = node[2] else: node = node[1] # We end on a leaf node. Report if relevant. if min_ <= node[0] <= max_: report(node, points) def report_subtree_r(node, points): stack = [node] while stack: node = stack.pop() if isleaf(node): points.append(node[0][::-1]) else: stack.extend(node[1:3]) def report_yquery(node, points): return query(node[3], ymin, ymax, report_subtree_r, points) points = [] query(tree, xmin, xmax, report_yquery, points) return points #@memoize_method def range_tree(self, project_points=True): """ Construct a range tree from the points in the pattern Only the actual points in the pattern are added to the range tree -- plus sampling points or points from the periodic extension is never used. Parameters ---------- project_points : bool, optional Passed to `PointPattern.points`. Returns ------- Root node of the range tree. For details about the type and format, see `PointPattern.range_tree_static`. """ points = self.points(project_points=project_points) return self.range_tree_build([tuple(p) for p in numpy.asarray(points)]) @staticmethod def pairwise_vectors(pp1, pp2=None): """ Return a matrix of vectors between points in a point pattern :pp1: PointPattern or MultiPoint instance containing the points to find vectors between :pp2: if not None, vectors are calculated from points in pp1 to points in pp2 instead of between points in pp1 :returns: numpy array of where slice [i, j, :] contains the vector pointing from pp1[i] to pp1[j], or if pp2 is not None, from pp1[i] to pp2[j] """ ap1 = numpy.array(pp1)[:, :2] if pp2 is not None: ap2 = numpy.array(pp2)[:, :2] else: ap2 = ap1 return ap2 - ap1[:, numpy.newaxis, :] @staticmethod def pairwise_distances(pp1, pp2=None): """ Return a matrix of distances between points in a point pattern :pp1: PointPattern or MultiPoint instance containing the points to find distances between :pp2: if not None, distances are calculated from points in pp1 to points in pp2 instead of between points in pp1 :returns: numpy array of where slice [i, j, :] contains the distance from pp1[i] to pp1[j], or if pp2 is not None, from pp1[i] to pp2[j] """ #diff = PointPattern.pairwise_vectors(pp1, pp2=pp2) #return numpy.sqrt(numpy.sum(diff * diff, axis=-1)) ap1 = numpy.array(pp1)[:, :2] if pp2 is not None: ap2 = numpy.array(pp2)[:, :2] else: ap2 = ap1 return distance.cdist(ap1, ap2) def nearest(self, point, mode='standard'): """ Return the point in the pattern closest to the location given by 'point' :point: Point instance giving the location to find the nearest point to :mode: string to select the points among which to look for the nearest point. See the documentation for PointPattern.points() for details. :returns: Point instance representing the point in the pattern nearest 'point' """ return min(self.points(mode=mode).difference(point), key=lambda p: point.distance(p)) def nearest_list(self, point, mode='standard'): """ Return the list of points in the pattern, sorted by distance to the location given by 'point' The list does not include 'point' itself, even if it is part of the pattern. :point: Point instance giving the location to sort the points by distance to. :mode: string to select the points to sort. See the documentation for PointPattern.points() for details. :returns: list of Point instances containing the points in the pattern, sorted by distance to 'point'. """ return sorted(self.points(mode=mode).difference(point), key=lambda p: point.distance(p)) def intensity(self, mode='standard', r=None): """ Compute an intensity estimate, assuming a stationary point pattern :mode: flag to select the kind of estimator to compute. Possible values: 'standard': The standard estimator: the number of points in the pattern divided by the area of the window. 'area': The adapted estimator based on area. 'perimeter': The adapted estimator based on perimeter. 'minus': The standard estimator in a window eroded by the radius r. 'neighbor': The standard estimator subject to nearest neighbor edge correction. :r: array-like, containing distances at which to evaluate the intensity estimator, for modes where this is relevant. For modes where distance is not relevant, `r` may be omitted. :returns: scalar or array-like containing the estimated intensities. """ window = self.window if mode == 'standard': intensity = len(self) / window.area elif mode in ('area', 'perimeter'): if mode == 'area': pfunc = window.p_V else: pfunc = window.p_S intensity = sum(pfunc(p, r) for p in self) elif mode == 'minus': try: r_enum = enumerate(r) except TypeError: ew = window.buffer(-r) intensity = len(self._points.intersection(ew)) / ew.area else: intensity = numpy.zeros_like(r) for (i, rval) in r_enum: ew = window.buffer(-rval) intensity[i] = len(self._points.intersection(ew)) / ew.area elif mode == 'neighbor': intensity = 0.0 for p in self: nn_dist = p.distance(self._points.difference(p)) if nn_dist <= p.distance(window.boundary): intensity += 1.0 / window.buffer(-nn_dist).area else: raise ValueError("unknown mode: {}".format(mode)) return intensity def squared_intensity(self, mode='standard', r=None): """ Compute an estimate of the squared intensity, assuming a stationary point pattern The estimate is found by squaring an estimate of the intensity, and multiplying with (n - 1) / n, where n is the number of points in the pattern, to remove statistical bias due to the squaring. :mode: flag to select the kind of estimator to compute. The supported modes are listed in the documentation for PointPattern.intensity(). # In addition, the # following mode is supported: #'corrected': The square of the 'standard' intensity estimate, # multiplied by (n - 1) / n to give an unbiased # estimate of the squared intensity. :r: array-like, containing distances at which to evaluate the squared intensity estimator, for modes where this is relevant. For modes where distance is not relevant, `r` may be omitted. :returns: scalar or array-like containing the estimated squared intensities. """ n = len(self) #if mode == 'corrected': # if n == 0: # return 0.0 # # lambda_ = self.intensity(mode='standard') # return lambda_ * lambda_ * (n - 1) / n #else: # lambda_ = self.intensity(mode=mode, r=r) # return lambda_ * lambda_ if n == 0: return 0.0 lambda_ = self.intensity(mode=mode, r=r) return lambda_ * lambda_ * (n - 1) / n def rmax(self, edge_correction=None): """ Return the largest relevant interpoint distance for a given edge correction in the window of this point pattern Parameters ---------- edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'} String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- scalar Largest relevant interpoint distance. """ if edge_correction is None: edge_correction = self.edge_correction if edge_correction in ('finite', 'plus', 'isotropic'): return self.window.longest_diagonal() elif edge_correction == 'periodic': return 0.5 * self.window.voronoi().longest_diagonal() elif edge_correction == 'stationary': return 2.0 * self.window.inscribed_circle()['r'] else: raise ValueError("unknown edge correction: {}" .format(edge_correction)) def rvals(self, edge_correction=None): """ Construct an array of r values tailored for the empirical K/L-functions The returned array contains a pair of tightly spaced values around each vertical step in the K/L-functions, and evenly spaced r values with moderate resolution elsewhere. Parameters ---------- edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- array Array of r values tailored to the empirical K/L-functions """ if edge_correction is None: edge_correction = self.edge_correction rmax = self.rmax(edge_correction=edge_correction) rvals = numpy.linspace(0.0, rmax, RSAMPLES) # Get step locations rsteps, __ = self._estimator_base(edge_correction) micrormax = 1.e-6 * rmax rstep_values = numpy.repeat(rsteps, 2) rstep_values[0::2] -= micrormax rstep_values[1::2] += micrormax # Add r values tightly around each step rstep_indices = numpy.searchsorted(rvals, rstep_values) rvals = numpy.insert(rvals, rstep_indices, rstep_values) return rvals @staticmethod def pair_weights(window, mp1, mp2, edge_correction): """ Compute the weights that pairs of points in a window contribute in the estimation of second-order summary characteristics Parameters ---------- window : Window Window in which the points take values. mp1, mp2 : MultiPoint MultiPoint instances containing the points to pair up. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'} String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. Returns ------- array Array containing the weight of the pair `(mp1[i], mp2[j])` in element `[i, j]`. """ if edge_correction in ('finite', 'stationary'): diff = PointPattern.pairwise_vectors(mp1, mp2) return 1.0 / window.set_covariance(diff[:, :, 0], diff[:, :, 1]) elif edge_correction == 'periodic': m, n = len(mp1), len(mp2) w = numpy.zeros((m, n)) if n < m: mp1, mp2 = mp2, mp1 wview = w.transpose() else: wview = w mp2_arr = numpy.array(mp2) voronoi = window.voronoi() area_inv = 1.0 / voronoi.area centroid = voronoi.centroid #distances = PointPattern.pairwise_distances(mp1, mp2) pdisps = numpy.asarray(mp1) - numpy.asarray(centroid) for (i, pd) in enumerate(pdisps): translated_window = affinity.translate(voronoi, xoff=pd[0], yoff=pd[1]) valid_mp2 = mp2.intersection(translated_window) vmp2_arr = numpy.atleast_2d(valid_mp2) vindex = numpy.any(distance.cdist(mp2_arr, vmp2_arr) == 0.0, axis=-1) #vindex = numpy.any( # numpy.all(PointPattern.pairwise_vectors( # mp2_arr, vmp2_arr) == 0.0, axis=-1), axis=-1) wview[i, vindex] = area_inv ## Isotropic edge correction (to cancel corner effects that are ## still present for large r) #for j in numpy.nonzero(vindex)[0]: # r = distances[i, j] # ring = centroid.buffer(r).boundary # wview[i, j] *= (_2PI * r / # ring.intersection(window).length) return w elif edge_correction == 'plus': m, n = len(mp1), len(mp2) w = numpy.empty((m, n)) w.fill(1.0 / window.area) return w elif edge_correction == 'isotropic': m, n = len(mp1), len(mp2) w = numpy.zeros((m, n)) distances = PointPattern.pairwise_distances(mp1, mp2) for (i, p1) in enumerate(mp1): for j in range(n): r = distances[i, j] ring = p1.buffer(r).boundary rball = ORIGIN.buffer(r) doughnut = window.difference(window.erode_by_this(rball)) w[i, j] = _2PI * r / ( window.intersection(ring).length * doughnut.area) return w else: raise ValueError("unknown edge correction: {}" .format(edge_correction)) @memoize_method def _estimator_base(self, edge_correction): """ Compute the distances between pairs of points in the pattern, and the weights they contribute in the estimation of second-order characteristics Parameters ---------- edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'} String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. Returns ------- r : array Array of containing the pairwise distances in the point pattern, sorted from small to large. Only pairs that actually contribute with the selected edge correction are included. weights : array Array containing the weights associated with pairs in the point pattern, sorted such that weights[i] gives the weight of the pair with distance r[i]. """ rmax = self.rmax(edge_correction=edge_correction) pmode = self._edge_config[edge_correction]['pmode'] allpoints = self.points(mode=pmode) distances = self.pairwise_distances(self._points, allpoints) valid = numpy.logical_and(distances < rmax, distances != 0.0) index1, = numpy.nonzero(numpy.any(valid, axis=1)) index2, = numpy.nonzero(numpy.any(valid, axis=0)) mp1 = geometry.MultiPoint([self[i] for i in index1]) mp2 = geometry.MultiPoint([allpoints[i] for i in index2]) weight_matrix = self.pair_weights(self.window, mp1, mp2, edge_correction) r = distances[valid] sort_ind = numpy.argsort(r) r = r[sort_ind] weights = weight_matrix[valid[index1, :][:, index2]] weights = weights[sort_ind] return r, weights def _cumulative_base(self, edge_correction): """ Compute the cumulative weight of the points in the pattern Parameters ---------- edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. Returns ------- rsteps : ndarray Array containing the r values between `rmin`and `rmax` at which the cumulative characteristics make jumps. cweights : ndarray Array of the same shape as `rsteps`, containing the value of the cumulated weights just after each step. """ rmax = self.rmax(edge_correction=edge_correction) rsteps, weights = self._estimator_base(edge_correction) rsteps = numpy.hstack((0.0, rsteps, rmax)) weights = numpy.hstack((0.0, weights, numpy.nan)) cweights = numpy.cumsum(weights) return rsteps, cweights def kfunction(self, r, edge_correction=None): """ Evaluate the empirical K-function of the point pattern Parameters ---------- r : array-like array of values at which to evaluate the emprical K-function. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- array Values of the empirical K-function evaulated at `r`. """ if edge_correction is None: edge_correction = self.edge_correction rsteps, cweights = self._cumulative_base( edge_correction=edge_correction) indices = numpy.searchsorted(rsteps, r, side='right') - 1 imode = self._edge_config[edge_correction]['imode'] lambda2 = self.squared_intensity(mode=imode, r=r) return sensibly_divide(cweights[indices], lambda2) def lfunction(self, r, edge_correction=None): """ Evaluate the empirical L-function of the point pattern Parameters ---------- r : array-like array of values at which to evaluate the emprical L-function. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- array Values of the empirical L-function evaulated at `r`. """ if edge_correction is None: edge_correction = self.edge_correction return numpy.sqrt(self.kfunction(r, edge_correction=edge_correction) / _PI) def pair_corr_function(self, r, bandwidth=None, edge_correction=None): """ Evaluate the empirical pair correlation function of the point pattern Parameters ---------- r : array-like array of values at which to evaluate the emprical pair correlation function. bandwidth : scalar The bandwidth of the box kernel used to estimate the density of points pairs at a given distance. If None, the bandwidth is set to :math:`0.2 / \sqrt(\lambda)`, where :math:`\lambda` is the standard intensity estimate for the process. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- array Values of the empirical pair correlation function evaulated at `r`. """ if edge_correction is None: edge_correction = self.edge_correction if bandwidth is None: bandwidth = 0.2 / numpy.sqrt(self.intensity()) rpairs, weights = self._estimator_base(edge_correction) # Find the contribution from each pair to each element in `r` d = numpy.abs(r[numpy.newaxis, ...] - rpairs[..., numpy.newaxis]) w = numpy.sum((d < bandwidth) * weights[..., numpy.newaxis], axis=0) w *= 1.0 / (2.0 * _2PI * r * bandwidth) imode = self._edge_config[edge_correction]['imode'] lambda2 = self.squared_intensity(mode=imode, r=r) return sensibly_divide(w, lambda2) def kfunction_std(self, r, edge_correction=None): """ Compute the theoretical standard deviation of the empirical k-function of a point pattern like this one, under the CSR hypothesis. The ``theoretical'' standard deviation is really an empirically validated formula, and should be a very good fit to the true standard deviation within the interval given by `PointPattern.kstatistic_interval`. It is currently only implemented for periodic boundary conditions -- an array of ones is returned for other edge corrections. Parameters ---------- r : array-like array of values at which to evaluate the emprical K-function standard deviation. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- array Values of the standard deviation of the empirical K-function, evaulated at `r`. """ if edge_correction is None: edge_correction = self.edge_correction r = numpy.asarray(r) if edge_correction == 'periodic': imode = self._edge_config[edge_correction]['imode'] squared_intensity = self.squared_intensity(r=r, mode=imode) voronoi = self.window.voronoi() area = voronoi.area npnp_1 = area * area * squared_intensity kstd = r * numpy.sqrt(2.0 * _PI * voronoi.ball_difference_area(r) / npnp_1) # (npnp_1 + 0.5 + numpy.sqrt(npnp_1 + 0.25))) else: kstd = numpy.ones_like(r) return kstd def kfunction_std_inv(self, r, edge_correction=None): """ Compute the inverse of the theoretical standard deviation of the empirical k-function of a point pattern like this one, under the CSR hypothesis. Parameters ---------- r, edge_correction See `PointPattern.kfunction_std`. Returns ------- array Values of the inverse of the standard deviation of the empirical K-function, evaulated at `r`. """ return 1.0 / self.kfunction_std(r, edge_correction=edge_correction) def lfunction_std(self, r, edge_correction=None): """ Compute the theoretical standard deviation of the empirical L-function of a point pattern like this one, under the CSR hypothesis. The ``theoretical'' standard deviation is really an empirically validated formula, and should be a very good fit to the true standard deviation within the interval given by `PointPattern.lstatistic_interval`. It is currently only implemented for periodic boundary conditions -- an array of ones is returned for other edge corrections. Parameters ---------- r : array-like array of values at which to evaluate the emprical L-function standard deviation. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- array Values of the standard deviation of the empirical L-function, evaulated at `r`. """ if edge_correction is None: edge_correction = self.edge_correction r = numpy.asarray(r) if edge_correction == 'periodic': lstd = (self.kfunction_std(r, edge_correction=edge_correction) / (2.0 * _PI * r)) else: lstd = numpy.ones_likes(r) return lstd def lfunction_std_inv(self, r, edge_correction=None): """ Compute the inverse of the theoretical standard deviation of the empirical L-function of a point pattern like this one, under the CSR hypothesis. Parameters ---------- r, edge_correction See `PointPattern.lfunction_std`. Returns ------- array Values of the inverse of the standard deviation of the empirical L-function, evaulated at `r`. """ return 1.0 / self.lfunction_std(r, edge_correction=edge_correction) def kstatistic(self, rmin=None, rmax=None, weight_function=None, edge_correction=None): """ Compute the K test statistic for CSR The test statstic is defined as max(abs(K(r) - pi * r ** 2)) for r-values between some minimum and maximum radii. Parameters ---------- rmin : scalar The minimum r value to consider when computing the statistic. If None, the value is set to 0.0. rmin : scalar The maximum r value to consider when computing the statistic. If None, the value is set by the upper limit from `PointPattern.lstatistic_interval`. weight_function : callable, optional If not None, the offset `K(r) - pi * r ** 2` is weighted by `weight_function(r)`. The function should accept one array-like argument of r values. A typical example of a relevant weight function is `pp.kfunction_std_inv(r)`, where `pp` is the `PointPattern` instance for which the K test statistic is computed. This weight will compensate for the variation of the variance of K(r) for different r. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- scalar The K test statistic. """ if edge_correction is None: edge_correction = self.edge_correction interval = self.kstatistic_interval(edge_correction=edge_correction) if rmin is None: rmin = interval[0] if rmax is None: rmax = interval[1] if rmin > rmax: raise ValueError("'rmin' is smaller than 'rmax'.") # The largest deviation between K(r) and r is bound to be at a vertical # step. We go manual instead of using self.kfunction, in order to get # it as exactly and cheaply as possible. rsteps, cweights = self._cumulative_base( edge_correction=edge_correction) left = numpy.searchsorted(rsteps, rmin, side='right') right = numpy.searchsorted(rsteps, rmax, side='left') # Include endpoints, and extract cweights for the in-between intervals rsteps = numpy.hstack((rmin, rsteps[left:right], rmax)) cweights = cweights[left - 1:right] # Compute the K-values just before and after each step imode = self._edge_config[edge_correction]['imode'] lambda2 = numpy.ones_like(rsteps) lambda2[:] = self.squared_intensity(mode=imode, r=rsteps) kvals_low = sensibly_divide(cweights, lambda2[:-1]) kvals_high = sensibly_divide(cweights, lambda2[1:]) # Compute the offset pi_rsteps_sq = _PI * rsteps * rsteps offset = numpy.hstack((kvals_low - pi_rsteps_sq[:-1], kvals_high - pi_rsteps_sq[1:])) # Weight the offsets by the weight function if weight_function is not None: weight = weight_function(rsteps) weight = numpy.hstack((weight[:-1], weight[1:])) offset *= weight return numpy.nanmax(numpy.abs(offset)) def lstatistic(self, rmin=None, rmax=None, weight_function=None, edge_correction=None): """ Compute the L test statistic for CSR The test statstic is defined as max(abs(L(r) - r)) for r-values between some minimum and maximum radii. Note that if edge_correction == 'finite', the power of the L test may depend heavily on the maximum r-value and the number of points in the pattern, and the statistic computed by this function may not be adequate. Parameters ---------- rmin : scalar The minimum r value to consider when computing the statistic. If None, the value is set by `PointPattern.lstatistic_interval`. rmin : scalar The maximum r value to consider when computing the statistic. If None, the value is set by `PointPattern.lstatistic_interval`. weight_function : callable, optional If not None, the offset `L(r) - r` is weighted by `weight_function(r)`. The function should accept one array-like argument of r values. A typical example of a relevant weight function is `pp.lfunction_std_inv(r)`, where `pp` is the `PointPattern` instance for which the L test statistic is computed. This weight will compensate for the variation of the variance of L(r) for different r. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- scalar The L test statistic. """ if edge_correction is None: edge_correction = self.edge_correction interval = self.lstatistic_interval(edge_correction=edge_correction) if rmin is None: rmin = interval[0] if rmax is None: rmax = interval[1] # The largest deviation between L(r) and r is bound to be at a vertical # step. We go manual instead of using self.lfunction, in order to get # it as exactly and cheaply as possible. rsteps, cweights = self._cumulative_base( edge_correction=edge_correction) valid = numpy.nonzero((rsteps > rmin) & (rsteps < rmax)) # Include endpoints, and extract cweights for the in-between intervals rsteps = numpy.hstack((rmin, rsteps[valid], rmax)) cweights = numpy.hstack((cweights[valid[0][0] - 1], cweights[valid])) # Compute the L-values just before and after each step imode = self._edge_config[edge_correction]['imode'] lambda2 = numpy.ones_like(rsteps) lambda2[:] = self.squared_intensity(mode=imode, r=rsteps) lvals_low = numpy.sqrt(sensibly_divide(cweights, _PI * lambda2[:-1])) lvals_high = numpy.sqrt(sensibly_divide(cweights, _PI * lambda2[1:])) # Compute the offset offset = numpy.hstack((lvals_high - rsteps[:-1], lvals_low - rsteps[1:])) # Weight the offsets by the theoretical standard deviation at the # corresponding r values. if weight_function is not None: weight = weight_function(rsteps) weight = numpy.hstack((weight[:-1], weight[1:])) offset *= weight return numpy.nanmax(numpy.abs(offset)) @memoize_method def ksstatistic(self, variation='fasano'): """ Compute the 2D Kolmogorov-Smirnov test statistic for CSR Parameters ---------- variation : {'fasano', 'peacock'} Flag to select which definition of the 2D extension of the test statistic to use. See <NAME>., <NAME>., & <NAME>. (2007). The two-dimensional Kolmogorov-Smirnov test. Proceedings of Science. Retrieved from http://bura.brunel.ac.uk/handle/2438/1166. Returns ------- scalar The value of the KS test statistic. """ if variation == 'fasano': def piter(points): for p in numpy.asarray(points): yield p[0], p[1], True elif variation == 'peacock': def piter(points): parray = numpy.asarray(points) for (i, p) in enumerate(parray): for (j, q) in enumerate(parray): yield p[0], q[1], i == j else: raise ValueError("Unknown 'variation': {}".format(variation)) tree = self.range_tree(project_points=True) points = self.points(project_points=True) n = len(points) ks = 0.0 for x, y, ispoint in piter(points): for (xmin, xmax) in ((0.0, x), (x, 1.0)): for (ymin, ymax) in ((0.0, y), (y, 1.0)): np = len(self.range_tree_query(tree, xmin, xmax, ymin, ymax)) #rect = geometry.Polygon(((xmin, ymin), (xmax, ymin), # (xmax, ymax), (xmin, ymax))) #ps = rect.intersection(points) #if isinstance(ps, geometry.Point): # np = 1 #else: # np = len(ps) new_ks = numpy.abs(n * (xmax - xmin) * (ymax - ymin) - np) ks = max(ks, new_ks) # If x, y corresponds to an actual point location, the EDF # has a jump here, and we should also check the other # possible value. if ispoint: new_ks = numpy.abs(n * (xmax - xmin) * (ymax - ymin) - (np - 1)) ks = max(ks, new_ks) return ks / numpy.sqrt(n) def kstatistic_interval(self, edge_correction=None): """ Compute the an appropriate interval over which to evaluate the K test statistic for this pattern The interval is defined as [rmin, rmax], where rmax is the the same as for `PointPattern.lstatistic_interval`, and rmin is a third of the rmin from `PointPattern.lstatistic_interval`. Parameters ---------- edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- rmin : scalar The minimum end of the K test statistic interval rmax : scalar The maximum end of the K test statistic interval """ if edge_correction is None: edge_correction = self.edge_correction # rmin: the distance within which the expected number of pairs is # greater than 0.5 under uniformity window = self.window sqi = self.squared_intensity() rmin = numpy.sqrt(1.0 / (_PI * sqi * window.area)) # rmax: the maximum sensible distance rmax_absolute = self.rmax(edge_correction=edge_correction) if edge_correction == 'periodic': rmax_standard = self.window.voronoi().inscribed_circle()['r'] else: rmax_standard = self.window.inscribed_circle()['r'] rmax = min(rmax_standard, rmax_absolute) return rmin, rmax def lstatistic_interval(self, edge_correction=None): """ Compute the an appropriate interval over which to evaluate the L test statistic for this pattern The interval is defined as [rmin, rmax], where rmax is the minimum of the following two alternatives: - the radius of the largest inscribed circle in the window of the point pattern, as computed by `Window.inscribed_circle` (if using periodic edge correction, the radius of the largest inscribed circle in the Voronoi unit cell of the periodic lattice is used instead), - the maximum relevant interpoint distance in the point pattern, as computed by `PointPattern.rmax`. The value of rmin is set to `1.8 / (intensity * sqrt(area))`, where `area` is the area of the window of the point pattern, and `intensity` is the standard intensity estimate of the point pattern. Parameters ---------- edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). Returns ------- rmin : scalar The minimum end of the L test statistic interval rmax : scalar The maximum end of the L test statistic interval """ if edge_correction is None: edge_correction = self.edge_correction rmin, rmax = self.kstatistic_interval(edge_correction=edge_correction) # rmin: increase to 5 expected pairs within this distance rmin *= numpy.sqrt(10.0) return rmin, rmax @memoize_method def _simulate(self, nsims, process, edge_correction): """ Simulate a number of point processes in the same window, and of the same intensity, as this pattern This part of `PointPattern.simulate` is factored out to optimize memoization. """ return PointPatternCollection.from_simulation( nsims, self.window, self.intensity(), process=process, edge_correction=edge_correction) def simulate(self, nsims=100, process='binomial', edge_correction=None): """ Simulate a number of point processes in the same window, and of the same intensity, as this pattern Parameters ---------- nsims : int, optional The number of point patterns to generate. process : str {'binomial', 'poisson'}, optional String to select the kind of process to simulate. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the default edge handling for the simulated patterns. See the documentation for `PointPattern` for details. If None, the default edge correction for this pattern is used. Returns ------- PointPatternCollection Collection of the simulated patterns. """ if edge_correction is None: edge_correction = self.edge_correction return self._simulate(nsims, process, edge_correction) def plot_kfunction(self, axes=None, edge_correction=None, linewidth=2.0, csr=False, csr_kw=None, **kwargs): """ Plot the empirical K-function for the pattern Parameters ---------- axes : Axes, optional Axes instance to add the K-function to. If None (default), the current Axes instance is used if any, or a new one created. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). linewidth : scalar, optional The width of the line showing the K-function. csr : bool, optional If True, overlay the curve :math:`K(r) = \pi r^2`, which is the theoretical K-function for complete spatial randomness. The style of this line may be customized using csr_kw. csr_kw : dict, optional Keyword arguments to pass to `axes.plot` when plotting the CSR curve. **kwargs : dict, optional Additional keyword arguments to pass to `axes.plot`. Note in particular the keywords 'linestyle', 'color' and 'label'. Returns ------- list List of handles to the Line2D instances added to the plot, in the following order: empirical K-function, CSR curve (optional). """ if axes is None: axes = pyplot.gca() if edge_correction is None: edge_correction = self.edge_correction rvals = self.rvals(edge_correction=edge_correction) kvals = self.kfunction(rvals, edge_correction=edge_correction) lines = axes.plot(rvals, kvals, linewidth=linewidth, **kwargs) if csr: if csr_kw is None: csr_kw = {} kcsr = _PI * rvals * rvals lines += axes.plot(rvals, kcsr, **csr_kw) return lines def plot_lfunction(self, axes=None, edge_correction=None, linewidth=2.0, csr=False, csr_kw=None, **kwargs): """ Plot the empirical L-function for the pattern Parameters ---------- axes : Axes, optional Axes instance to add the L-function to. If None (default), the current Axes instance is used if any, or a new one created. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). linewidth : scalar, optional The width of the line showing the L-function. csr : bool, optional If True, overlay the curve :math:`L(r) = r`, which is the theoretical L-function for complete spatial randomness. The style of this line may be customized using csr_kw. csr_kw : dict, optional Keyword arguments to pass to `axes.plot` when plotting the CSR curve. **kwargs : dict, optional Additional keyword arguments to pass to `axes.plot`. Note in particular the keywords 'linestyle', 'color' and 'label'. Returns ------- list List of handles to the Line2D instances added to the plot, in the following order: empirical L-function, CSR curve (optional). """ if axes is None: axes = pyplot.gca() if edge_correction is None: edge_correction = self.edge_correction rvals = self.rvals(edge_correction=edge_correction) lvals = self.lfunction(rvals, edge_correction=edge_correction) lines = axes.plot(rvals, lvals, linewidth=linewidth, **kwargs) if csr: if csr_kw is None: csr_kw = {} lines += axes.plot(rvals, rvals, **csr_kw) return lines def plot_pair_corr_function(self, axes=None, bandwidth=None, edge_correction=None, linewidth=2.0, csr=False, csr_kw=None, **kwargs): """ Plot the empirical pair correlation function for the pattern Parameters ---------- axes : Axes, optional Axes instance to add the K-function to. If None (default), the current Axes instance is used if any, or a new one created. bandwidth : scalar The bandwidth of the box kernel used to estimate the density of points pairs at a given distance. See the documentation for `PointPattern.pair_corr_function` for details. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the edge handling to apply in computations. See the documentation for `PointPattern` for details. If None, the edge correction falls back to the default value (set at instance initialization). linewidth : scalar, optional The width of the line showing the K-function. csr : bool, optional If True, overlay the curve :math:`g(r) = 1`, which is the theoretical pair correlation function for complete spatial randomness. The style of this line may be customized using csr_kw. csr_kw : dict, optional Keyword arguments to pass to `axes.plot` when plotting the CSR curve. **kwargs : dict, optional Additional keyword arguments to pass to `axes.plot`. Note in particular the keywords 'linestyle', 'color' and 'label'. Returns ------- list List of handles to the Line2D instances added to the plot, in the following order: empirical pair correlation function, CSR curve (optional). """ if axes is None: axes = pyplot.gca() if edge_correction is None: edge_correction = self.edge_correction rmax = self.rmax(edge_correction=edge_correction) rvals = numpy.linspace(0.0, rmax, RSAMPLES) gvals = self.pair_corr_function(rvals, bandwidth=bandwidth, edge_correction=edge_correction) lines = axes.plot(rvals, gvals, linewidth=linewidth, **kwargs) if csr: if csr_kw is None: csr_kw = {} gcsr = numpy.ones_like(rvals) lines += axes.plot(rvals, gcsr, **csr_kw) return lines def plot_pattern(self, axes=None, marker='o', periodic_levels=0, plus=False, window=False, periodic_kw=None, plus_kw=None, window_kw=None, **kwargs): """ Plot point pattern The point pattern can be added to an existing plot via the optional 'axes' argument. :axes: Axes instance to add the point pattern to. If None (default), the current Axes instance with equal aspect ratio is used if any, or a new one created. :marker: a valid matplotlib marker specification. Defaults to 'o' periodic_levels : integer, optional Add this many levels of periodic extensions of the point pattern to the plot. See `PointPattern.periodic_extension` for further explanation. :plus: if True, add plus sampling points to the plot. :window: if True, the window boundaries are added to the plot. :periodic_kw: dict of keyword arguments to pass to the axes.scatter() method used to plot the periodic extension. Default: None (empty dict) :plus_kw: dict of keyword arguments to pass to the axes.scatter() method used to plot the plus sampling points. Default: None (empty dict) :window_kw: dict of keyword arguments to pass to the Window.plot() method. Default: None (empty dict) :kwargs: additional keyword arguments passed on to axes.scatter() method used to plot the point pattern. Note especially the keywords 'c' (colors), 's' (marker sizes) and 'label'. :returns: list of the artists added to the plot: a matplotlib.collections.PathCollection instance for the point pattern, and optionally another matplotlib.collections.PathCollection instance for each of the periodic extension and the plus sampling points, and finally a a matplotlib.patches.Polygon instance for the window. """ if axes is None: axes = pyplot.gca(aspect='equal') cent = self.window.centroid diag = self.window.longest_diagonal() axes.set(xlim=(cent.x - diag, cent.x + diag), ylim=(cent.y - diag, cent.y + diag)) pp = numpy.asarray(self._points) h = [axes.scatter(pp[:, 0], pp[:, 1], marker=marker, **kwargs)] if periodic_levels > 0: if periodic_kw is None: periodic_kw = {} pp = numpy.asarray(self.periodic_extension(periodic_levels)) h.append(axes.scatter(pp[:, 0], pp[:, 1], marker=marker, **periodic_kw)) if plus: if plus_kw is None: plus_kw = {} pp = numpy.asarray(self.pluspoints) h.append(axes.scatter(pp[:, 0], pp[:, 1], marker=marker, **plus_kw)) if window: if window_kw is None: window_kw = {} wpatch = self.window.plot(axes=axes, **window_kw) h.append(wpatch) return h class PointPatternCollection(AlmostImmutable, Sequence): """ Represent a collection of planar point patterns defined in the same window, and provide methods to compute statistics over them. Parameters ---------- patterns : sequence List of PointPattern instnaces to include in the collection. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the default edge handling to apply in computations. See the documentation for `PointPattern` for details. """ def __init__(self, patterns, edge_correction='stationary'): self.patterns = list(patterns) self.edge_correction = edge_correction @classmethod def from_simulation(cls, nsims, window, intensity, process='binomial', edge_correction='stationary'): """ Create a PointPatternCollection instance by simulating a number of point patterns in the same window Parameters ---------- nsims : integer The number of point patterns to generate. window : Window Window instance to simulate the process within. intensity : scalar The intensity (density of points) of the process. process : str {'binomial', 'poisson'}, optional String to select the kind of process to simulate. edge_correction : str {'stationary', 'finite', 'isotropic', 'periodic', 'plus'}, optional String to select the default edge handling to apply in computations. See the documentation for `PointPattern` for details. Returns ------- PointPatternCollection Collection of the simulated processes """ xmin, ymin, xmax, ymax = window.bounds area_factor = (xmax - xmin) * (ymax - ymin) / window.area nmean = intensity * window.area if process == 'poisson': nlist = numpy.random.poisson(nmean, nsims) elif process == 'binomial': nlist = numpy.empty((nsims,), dtype=numpy.int_) nlist.fill(round(nmean)) else: raise ValueError("unknown point process: {}".format(process)) patterns = [] for n in nlist: points = [] left = n while left > 0: ndraw = int(area_factor * left) draw = numpy.column_stack( (numpy.random.uniform(low=xmin, high=xmax, size=ndraw),
numpy.random.uniform(low=ymin, high=ymax, size=ndraw)
numpy.random.uniform
from model.ddpg.actor import ActorNetwork from model.ddpg.critic import CriticNetwork from model.ddpg.ddpg import DDPG from model.ddpg.ornstein_uhlenbeck import OrnsteinUhlenbeckActionNoise import numpy as np import tflearn import tensorflow as tf import json from stock_model_train import StockActor, StockCritic, obs_normalizer,\ test_model, get_variable_scope, test_model_multiple, obs_normalizer from utils.clientutils import * from model.supervised.lstm import StockLSTM from model.supervised.cnn import StockCNN from utils.data import read_stock_history, read_uptodate_data, fetch_data from utils.modelutils import * import copy class ddpg_restore_model(): def __init__(self, train_id): self.model_save_path = get_model_path(train_id) self.summary_path = get_result_path(train_id) self.config_path = "./train_package/" + str(train_id) + "/stock.json" self.config = load_config(config_path = self.config_path) self.batch_size = self.config["training"]["batch size"] self.action_bound = self.config["training"]["action_bound"] self.tau = self.config["training"]["tau"] self.feature_number = self.config["input"]["feature_number"] self.window_length = self.config["input"]["window_length"] self.predictor_type = self.config["input"]["predictor_type"] self.use_batch_norm = self.config["input"]["use_batch_norm"] self.testing_stocks = self.config["input"]["stocks"] self.trading_cost = self.config["input"]["trading_cost"] self.time_cost = self.config["input"]["time_cost"] self.testing_start_time = self.config["testing"]["testing_start_time"] self.testing_end_time = self.config["testing"]["testing_end_time"] self.activation_function = self.config["layers"]["activation_function"] self.train_id = train_id def restore(self): self.start_session() nb_classes = len(self.testing_stocks) + 1 action_dim, state_dim = [nb_classes], [nb_classes, self.window_length] variable_scope = get_variable_scope(self.window_length, self.predictor_type, self.use_batch_norm) with tf.variable_scope(variable_scope): actor = StockActor(sess = self.sess, feature_number = self.feature_number, state_dim = state_dim, action_dim = action_dim, action_bound = self.action_bound, learning_rate = self.config["training"]["actor learning rate"], decay_rate = self.config["training"]["actor decay rate"], decay_steps = self.config["training"]["actor decay steps"], weight_decay = self.config["training"]["actor weight decay"], tau = self.tau, batch_size = self.batch_size, predictor_type = self.predictor_type, use_batch_norm = self.use_batch_norm, activation_function = self.activation_function) critic = StockCritic(sess = self.sess, feature_number = self.feature_number, state_dim = state_dim, action_dim = action_dim, tau = self.tau, learning_rate = self.config["training"]["critic learning rate"], decay_rate = self.config["training"]["critic decay rate"], decay_steps = self.config["training"]["critic decay steps"], weight_decay = self.config["training"]["critic weight decay"], num_actor_vars = actor.get_num_trainable_vars(), predictor_type = self.predictor_type, use_batch_norm = self.use_batch_norm, activation_function = self.activation_function) actor_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(action_dim)) print(self.model_save_path) ddpg_model = DDPG(env = None, sess = self.sess, actor = actor, critic = critic, actor_noise = actor_noise, obs_normalizer = obs_normalizer, config =self.config, model_save_path = self.model_save_path, summary_path = self.summary_path) ddpg_model.initialize(load_weights=True, verbose=False) self.model = ddpg_model def predict_single(self, model, observation, previous_w): return model.predict_single(observation, previous_w, self.feature_number) # def fetch_data(self, testing_start_time, testing_end_time, window_length, testing_stocks): # history, time_list = read_uptodate_data(testing_stocks, rootpath = "utils") # total_length = len(time_list) # try: # if testing_start_time in time_list: # self.testing_start_time = total_length - time_list.index(testing_start_time) # else: # for time in time_list: # if testing_start_time < time: # self.testing_start_time = total_length - time_list.index(time) # break; # assert isinstance(self.testing_start_time, int), "not a valid testing start date" # except ValueError as e: # print('testing_start_time error', e) # try: # if testing_end_time in time_list: # self.testing_end_time = total_length - time_list.index(testing_end_time) # else: # for i,time in enumerate(time_list): # if (i != len(time_list) - 1 and testing_end_time > time and testing_end_time < time_list[i+1]) or \ # i == len(time_list) - 1: # self.testing_end_time = total_length - time_list.index(time) # break; # assert isinstance(self.testing_start_time, int), "not a valid testing end date" # except ValueError as e: # print('testing_end_time error', e) # # print(self.training_end_time, self.training_start_time) # assert self.testing_end_time < self.testing_start_time, "testing start date must be earlier then traing end date" # if self.testing_end_time == 1: # print("The testing start date and end date1 are from %s to %s" %(time_list[-self.testing_start_time],\ # time_list[-1])) # return history[:,-self.testing_start_time - window_length:,:],\ # time_list[-self.testing_start_time:] # else: # print("The testing start date and end date2 are from %s to %s" %(time_list[-self.testing_start_time],\ # time_list[-self.testing_end_time])) # return history[:,-self.testing_start_time - window_length: -self.testing_end_time,:], \ # time_list[-self.testing_start_time: -self.testing_end_time] def backtest(self, start_date=None, end_date=None): if start_date is not None: self.testing_start_time = start_date if end_date is not None: self.testing_end_time = end_date print("bactesting period is from %s to %s"%(self.testing_start_time,self.testing_end_time)) nb_classes = len(self.testing_stocks) + 1 testing_history, self.time_list, self.testing_start_time, self.testing_end_time \ = fetch_data(start_time = self.testing_start_time, end_time = self.testing_end_time, window_length = self.window_length, stocks = self.testing_stocks) # print("this is testing_history") # print(testing_history) # print("teststage time list is ", time_list) # print(self.testing_start_time, self.testing_end_time) print("total testing example is %d" %(self.testing_start_time-self.testing_end_time)) prev_pv = 1 prev_action = np.zeros(shape=(1,nb_classes)) prev_action[0][0] = 1 action_list = [] share_list, share_change_list = [], [] pv_list, actualPV_list = [], [] price_list =[] mu1_list = [] #add a W' change list so we could see the change in weight every day unadjust_weight_list = [] for step in range(-self.testing_end_time +self.testing_start_time): observation = testing_history[:, step:step + self.window_length, :].copy() cash_observation = np.ones((1, self.window_length, observation.shape[2])) observation = np.concatenate((cash_observation, observation), axis=0) action = self.predict_single(self.model, observation, prev_action) date = step + self.window_length today_price = testing_history[:, date-1, 4] prev_price = testing_history[:, date-2, 4] cash_price = np.ones((1,)) today_price =
np.concatenate((cash_price, today_price), axis=0)
numpy.concatenate
from typing import TypeVar import numpy as np import xarray as xr PreserveFloatRangeType = TypeVar("PreserveFloatRangeType", xr.DataArray, np.ndarray) LevelsType = TypeVar("LevelsType", xr.DataArray, np.ndarray) def preserve_float_range( array: PreserveFloatRangeType, rescale: bool = False, preserve_input: bool = False, ) -> PreserveFloatRangeType: """ Clips values below zero to zero. If values above one are detected, clips them to 1 unless `rescale` is True, in which case the input is scaled by the max value and the linearity of the dynamic range is preserved. Input arrays may be modified by this operation if `preserve_input` is False. There is no guarantee that the input array is returned even if `preserve_input` is True, however. Parameters ---------- array : Union[xr.DataArray, np.ndarray] Array whose values should be in the interval [0, 1] but may not be. rescale : bool If true, scale values by the max. preserve_input : bool If True, ensure that we do not modify the input data. This may either be done by making a copy of the input data or ensuring that the operation does not modify the input array. Even if `preserve_input` is True, modifications to the resulting array may modify the input array. Returns ------- array : Union[xr.DataArray, np.ndarray] Array whose values are in the interval [0, 1]. """ return levels(array, rescale=False, rescale_saturated=rescale, preserve_input=preserve_input) def levels( array: LevelsType, rescale: bool = False, rescale_saturated: bool = False, preserve_input: bool = False, ) -> LevelsType: """ Clips values below zero to zero. If values above one are detected, clip them to 1 if both ``rescale`` and ``rescale_saturated`` are False. If ``rescale`` is True, then the input is rescaled by the peak intensity. If ``rescale_saturated`` is True, then the image is rescaled by the peak intensity provided the peak intensity is saturated. It is illegal for both ``rescale`` and ``rescale_saturated`` to be True. Input arrays may be modified by this operation if `preserve_input` is False. There is no guarantee that the input array is returned even if `preserve_input` is True, however. Parameters ---------- array : Union[xr.DataArray, np.ndarray] Array whose values should be in the interval [0, 1] but may not be. rescale : bool If true, scale values by the max. rescale_saturated : bool If true, scale values by the max if the max is saturated (i.e., >= 1). preserve_input : bool If True, ensure that we do not modify the input data. This may either be done by making a copy of the input data or ensuring that the operation does not modify the input array. Even if `preserve_input` is True, modifications to the resulting array may modify the input array. Returns ------- array : Union[xr.DataArray, np.ndarray] Array whose values are in the interval [0, 1]. """ if rescale and rescale_saturated: raise ValueError("rescale and rescale_saturated cannot both be set.") if isinstance(array, xr.DataArray): # do a shallow copy array = array.copy(deep=False) data = array.values else: data = array casted = data.astype(np.float32, copy=False) if casted is not data: preserve_input = False data = casted if preserve_input or not data.flags['WRITEABLE']: # if we still want a copy, check to see if any modifications would be made. if so, make a # copy. belowzero =
np.any(data < 0)
numpy.any
""" gui/average3 ~~~~~~~~~~~~~~~~~~~~ Graphical user interface for three-dimensional averaging of particles :author: <NAME>, 2017-2018 :copyright: Copyright (c) 2017-2018 Jungmann Lab, MPI of Biochemistry """ import os.path import sys import traceback import colorsys import matplotlib.pyplot as plt import numba import numpy as np import scipy from scipy import signal from PyQt5 import QtCore, QtGui, QtWidgets from .. import io, lib, render from numpy.lib.recfunctions import stack_arrays from cmath import rect, phase from tqdm import tqdm import scipy.ndimage.filters DEFAULT_OVERSAMPLING = 1.0 INITIAL_REL_MAXIMUM = 2.0 ZOOM = 10 / 7 N_GROUP_COLORS = 8 @numba.jit(nopython=True, nogil=True) def render_hist(x, y, oversampling, t_min, t_max): n_pixel = int(np.ceil(oversampling * (t_max - t_min))) in_view = (x > t_min) & (y > t_min) & (x < t_max) & (y < t_max) x = x[in_view] y = y[in_view] x = oversampling * (x - t_min) y = oversampling * (y - t_min) image = np.zeros((n_pixel, n_pixel), dtype=np.float32) render._fill(image, x, y) return len(x), image @numba.jit(nopython=True, nogil=True) def render_histxyz(a, b, oversampling, a_min, a_max, b_min, b_max): n_pixel_a = int(np.ceil(oversampling * (a_max - a_min))) n_pixel_b = int(np.ceil(oversampling * (b_max - b_min))) in_view = (a > a_min) & (b > b_min) & (a < a_max) & (b < b_max) a = a[in_view] b = b[in_view] a = oversampling * (a - a_min) b = oversampling * (b - b_min) image = np.zeros((n_pixel_b, n_pixel_a), dtype=np.float32) render._fill(image, a, b) return len(a), image def rotate_axis(axis, vx, vy, vz, angle, pixelsize): if axis == "z": vx_rot = np.cos(angle) * vx - np.sin(angle) * vy vy_rot = np.sin(angle) * vx + np.cos(angle) * vy vz_rot = vz elif axis == "y": vx_rot = np.cos(angle) * vx + np.sin(angle) * np.divide(vz, pixelsize) vy_rot = vy vz_rot = -np.sin(angle) * vx * pixelsize + np.cos(angle) * vz elif axis == "x": vx_rot = vx vy_rot = np.cos(angle) * vy - np.sin(angle) * np.divide(vz, pixelsize) vz_rot = np.sin(angle) * vy * pixelsize + np.cos(angle) * vz return vx_rot, vy_rot, vz_rot def compute_xcorr(CF_image_avg, image): F_image = np.fft.fft2(image) xcorr = np.fft.fftshift(np.real(np.fft.ifft2((F_image * CF_image_avg)))) return xcorr class ParametersDialog(QtWidgets.QDialog): def __init__(self, window): super().__init__(window) self.window = window self.setWindowTitle("Parameters") self.setModal(False) grid = QtWidgets.QGridLayout(self) grid.addWidget(QtWidgets.QLabel("Oversampling:"), 0, 0) self.oversampling = QtWidgets.QDoubleSpinBox() self.oversampling.setRange(1, 200) self.oversampling.setValue(DEFAULT_OVERSAMPLING) self.oversampling.setDecimals(1) self.oversampling.setKeyboardTracking(False) self.oversampling.valueChanged.connect(self.window.updateLayout) grid.addWidget(self.oversampling, 0, 1) self.iterations = QtWidgets.QSpinBox() self.iterations.setRange(1, 1) self.iterations.setValue(1) class View(QtWidgets.QLabel): def __init__(self, window): super().__init__() self.window = window self.setMinimumSize(1, 1) self.setAlignment(QtCore.Qt.AlignCenter) self.setAcceptDrops(True) self._pixmap = None def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): urls = event.mimeData().urls() path = urls[0].toLocalFile() ext = os.path.splitext(path)[1].lower() if ext == ".hdf5": self.open(path) def resizeEvent(self, event): if self._pixmap is not None: self.set_pixmap(self._pixmap) def set_image(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap("magma")(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype("uint8") Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order="C") self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) self._pixmap = QtGui.QPixmap.fromImage(qimage) self.set_pixmap(self._pixmap) def set_pixmap(self, pixmap): self.setPixmap( pixmap.scaled( self.width(), self.height(), QtCore.Qt.KeepAspectRatio, QtCore.Qt.FastTransformation, ) ) def update_image(self, *args): oversampling = self.window.parameters_dialog.oversampling.value() t_min = -self.r t_max = self.r N_avg, image_avg = render.render_hist( self.locs, oversampling, t_min, t_min, t_max, t_max ) self.set_image(image_avg) class DatasetDialog(QtWidgets.QDialog): def __init__(self, window): super().__init__(window) self.window = window self.setWindowTitle("Datasets") self.setModal(False) self.layout = QtWidgets.QVBoxLayout() self.checks = [] self.setLayout(self.layout) def add_entry(self, path): c = QtWidgets.QCheckBox(path) self.layout.addWidget(c) self.checks.append(c) self.checks[-1].setChecked(True) class Window(QtWidgets.QMainWindow): def __init__(self): super().__init__() self.setWindowTitle("Picasso: Average3") self.resize(1024, 512) this_directory = os.path.dirname(os.path.realpath(__file__)) icon_path = os.path.join(this_directory, "icons", "average.ico") icon = QtGui.QIcon(icon_path) self.setWindowIcon(icon) self.setAcceptDrops(True) self.parameters_dialog = ParametersDialog(self) self.dataset_dialog = DatasetDialog(self) menu_bar = self.menuBar() file_menu = menu_bar.addMenu("File") open_action = file_menu.addAction("Open") open_action.setShortcut(QtGui.QKeySequence.Open) open_action.triggered.connect(self.open) file_menu.addAction(open_action) save_action = file_menu.addAction("Save") save_action.setShortcut(QtGui.QKeySequence.Save) save_action.triggered.connect(self.save) file_menu.addAction(save_action) process_menu = menu_bar.addMenu("Process") parameters_action = process_menu.addAction("Parameters") parameters_action.setShortcut("Ctrl+P") parameters_action.triggered.connect(self.parameters_dialog.show) dataset_action = process_menu.addAction("Datasets") dataset_action.triggered.connect(self.dataset_dialog.show) self.status_bar = self.statusBar() self._pixmap = None self.locs = [] self.z_state = [] self.group_index = [] self.infos = [] self.locs_paths = [] self._mode = "Zoom" self._pan = False self._size_hint = (768, 768) self.n_locs = 0 self._picks = [] self.index_blocks = [] self._drift = [] # Define DisplaySettingsDialog self.viewxy = QtWidgets.QLabel("") self.viewxz = QtWidgets.QLabel("") self.viewyz = QtWidgets.QLabel("") self.viewcp = QtWidgets.QLabel("") minsize = 512 self.viewxy.setFixedWidth(minsize) self.viewxy.setFixedHeight(minsize) self.viewxz.setFixedWidth(minsize) self.viewxz.setFixedHeight(minsize) self.viewyz.setFixedWidth(minsize) self.viewyz.setFixedHeight(minsize) self.viewcp.setFixedWidth(minsize) self.viewcp.setFixedHeight(minsize) # Define layout display_groupbox = QtWidgets.QGroupBox("Display") displaygrid = QtWidgets.QGridLayout(display_groupbox) displaygrid.addWidget(QtWidgets.QLabel("XY"), 0, 0) displaygrid.addWidget(self.viewxy, 1, 0) displaygrid.addWidget(QtWidgets.QLabel("XZ"), 0, 1) displaygrid.addWidget(self.viewxz, 1, 1) displaygrid.addWidget(QtWidgets.QLabel("YZ"), 2, 0) displaygrid.addWidget(self.viewyz, 3, 0) displaygrid.addWidget(QtWidgets.QLabel("CP"), 2, 1) displaygrid.addWidget(self.viewcp, 3, 1) button_groupbox = QtWidgets.QGroupBox("Buttons") buttongrid = QtWidgets.QGridLayout(button_groupbox) rotation_groupbox = QtWidgets.QGroupBox("Rotation + Translation") rotationgrid = QtWidgets.QGridLayout(rotation_groupbox) centerofmassbtn = QtWidgets.QPushButton("Center of Mass XYZ") axis_groupbox = QtWidgets.QGroupBox("Axis") axisgrid = QtWidgets.QGridLayout(axis_groupbox) self.x_axisbtn = QtWidgets.QRadioButton("X") self.y_axisbtn = QtWidgets.QRadioButton("Y") self.z_axisbtn = QtWidgets.QRadioButton("Z") self.z_axisbtn.setChecked(True) axisgrid.addWidget(self.x_axisbtn, 0, 0) axisgrid.addWidget(self.y_axisbtn, 0, 1) axisgrid.addWidget(self.z_axisbtn, 0, 2) proj_groupbox = QtWidgets.QGroupBox("Projection") projgrid = QtWidgets.QGridLayout(proj_groupbox) self.xy_projbtn = QtWidgets.QRadioButton("XY") self.yz_projbtn = QtWidgets.QRadioButton("YZ") self.xz_projbtn = QtWidgets.QRadioButton("XZ") self.xy_projbtn.setChecked(True) projgrid.addWidget(self.xy_projbtn, 0, 0) projgrid.addWidget(self.yz_projbtn, 0, 1) projgrid.addWidget(self.xz_projbtn, 0, 2) rotatebtn = QtWidgets.QPushButton("Rotate") self.radio_sym = QtWidgets.QRadioButton("x symmetry") self.symEdit = QtWidgets.QSpinBox() self.symEdit.setRange(2, 100) self.symEdit.setValue(8) self.radio_sym_custom = QtWidgets.QRadioButton("custom symmetry") self.symcustomEdit = QtWidgets.QLineEdit("90,180,270") deg_groupbox = QtWidgets.QGroupBox("Degrees") deggrid = QtWidgets.QGridLayout(deg_groupbox) self.full_degbtn = QtWidgets.QRadioButton("Full") self.part_degbtn = QtWidgets.QRadioButton("Part") self.degEdit = QtWidgets.QTextEdit() self.degEdit = QtWidgets.QSpinBox() self.degEdit.setRange(1, 10) self.degEdit.setValue(5) deggrid.addWidget(self.full_degbtn, 0, 0) deggrid.addWidget(self.part_degbtn, 0, 1) deggrid.addWidget(self.degEdit, 0, 2) self.full_degbtn.setChecked(True) # Rotation Groupbox rotationgrid.addWidget(axis_groupbox, 0, 0, 1, 2) rotationgrid.addWidget(proj_groupbox, 1, 0, 1, 2) rotationgrid.addWidget(deg_groupbox, 2, 0, 1, 2) rotationgrid.addWidget(rotatebtn, 3, 0, 1, 2) rotationgrid.addWidget(self.symEdit, 4, 0) rotationgrid.addWidget(self.radio_sym, 4, 1) rotationgrid.addWidget(self.radio_sym_custom, 5, 0) rotationgrid.addWidget(self.symcustomEdit, 5, 1) buttongrid.addWidget(centerofmassbtn, 0, 0) buttongrid.addWidget(rotation_groupbox, 1, 0) centerofmassbtn.clicked.connect(self.centerofmass) rotatebtn.clicked.connect(self.rotate_groups) self.translatebtn = QtWidgets.QCheckBox("Translate only") self.flipbtn = QtWidgets.QCheckBox("Consider flipped structures") self.alignxbtn = QtWidgets.QPushButton("Align X") self.alignybtn = QtWidgets.QPushButton("Align Y") self.alignzzbtn = QtWidgets.QPushButton("Align Z_Z") self.alignzybtn = QtWidgets.QPushButton("Align Z_Y") self.translatexbtn = QtWidgets.QPushButton("Translate X") self.translateybtn = QtWidgets.QPushButton("Translate Y") self.translatezbtn = QtWidgets.QPushButton("Translate Z") self.rotatexy_convbtn = QtWidgets.QPushButton("Rotate XY - Convolution") self.scorebtn = QtWidgets.QPushButton("Calculate Score") operate_groupbox = QtWidgets.QGroupBox("Operate") operategrid = QtWidgets.QGridLayout(operate_groupbox) rotationgrid.addWidget(self.translatebtn, 7, 0) rotationgrid.addWidget(self.flipbtn, 8, 0) self.x_range = QtWidgets.QLineEdit("-3,3") rotationgrid.addWidget(QtWidgets.QLabel("x-Range (Px)"), 9, 0) rotationgrid.addWidget(self.x_range, 9, 1) self.y_range = QtWidgets.QLineEdit("-3,3") rotationgrid.addWidget(QtWidgets.QLabel("y-Range (Px)"), 10, 0) rotationgrid.addWidget(self.y_range, 10, 1) self.z_range = QtWidgets.QLineEdit("-1000,1000") rotationgrid.addWidget(QtWidgets.QLabel("z-Range (nm)"), 11, 0) rotationgrid.addWidget(self.z_range, 11, 1) self.z_range.textChanged.connect(self.adjust_z) self.x_range.textChanged.connect(self.adjust_xy) self.y_range.textChanged.connect(self.adjust_xy) operategrid.addWidget(self.alignxbtn, 0, 1) operategrid.addWidget(self.alignybtn, 1, 1) operategrid.addWidget(self.alignzzbtn, 2, 1) operategrid.addWidget(self.alignzybtn, 3, 1) operategrid.addWidget(self.translatexbtn, 0, 0) operategrid.addWidget(self.translateybtn, 1, 0) operategrid.addWidget(self.translatezbtn, 2, 0) operategrid.addWidget(self.rotatexy_convbtn, 4, 0) operategrid.addWidget(self.scorebtn, 4, 1) self.rotatexy_convbtn.clicked.connect(self.rotatexy_convolution) self.alignxbtn.clicked.connect(self.align_x) self.alignybtn.clicked.connect(self.align_y) self.alignzzbtn.clicked.connect(self.align_zz) self.alignzybtn.clicked.connect(self.align_zy) self.translatexbtn.clicked.connect(self.translate_x) self.translateybtn.clicked.connect(self.translate_y) self.translatezbtn.clicked.connect(self.translate_z) self.scorebtn.clicked.connect(self.calculate_score) buttongrid.addWidget(operate_groupbox, 2, 0) self.contrastEdit = QtWidgets.QDoubleSpinBox() self.contrastEdit.setDecimals(1) self.contrastEdit.setRange(0, 10) self.contrastEdit.setValue(0.5) self.contrastEdit.setSingleStep(0.1) self.contrastEdit.valueChanged.connect(self.updateLayout) self.grid = QtWidgets.QGridLayout() self.grid.addWidget(display_groupbox, 0, 0, 2, 1) self.grid.addWidget(button_groupbox, 0, 1, 1, 1) contrast_groupbox = QtWidgets.QGroupBox("Contrast") contrastgrid = QtWidgets.QGridLayout(contrast_groupbox) contrastgrid.addWidget(self.contrastEdit) buttongrid.addWidget(contrast_groupbox) MODEL_X_DEFAULT = "0,20,40,60,0,20,40,60,0,20,40,60" MODEL_Y_DEFAULT = "0,20,40,0,20,40,0,20,40,0,20,40" MODEL_Z_DEFAULT = "0,0,0,0,0,0,0,0,0,0,0,0" self.modelchk = QtWidgets.QCheckBox("Use Model") self.model_x = QtWidgets.QLineEdit(MODEL_X_DEFAULT) self.model_y = QtWidgets.QLineEdit(MODEL_Y_DEFAULT) self.model_z = QtWidgets.QLineEdit(MODEL_Z_DEFAULT) self.model_preview_btn = QtWidgets.QPushButton("Preview") self.model_preview_btn.clicked.connect(self.model_preview) self.modelblurEdit = QtWidgets.QDoubleSpinBox() self.modelblurEdit.setDecimals(1) self.modelblurEdit.setRange(0, 10) self.modelblurEdit.setValue(0.5) self.modelblurEdit.setSingleStep(0.1) self.pixelsizeEdit = QtWidgets.QSpinBox() self.pixelsizeEdit.setRange(1, 999) self.pixelsizeEdit.setValue(130) model_groupbox = QtWidgets.QGroupBox("Model") modelgrid = QtWidgets.QGridLayout(model_groupbox) modelgrid.addWidget(self.modelchk, 0, 0) modelgrid.addWidget(QtWidgets.QLabel("X-Coordinates"), 1, 0) modelgrid.addWidget(self.model_x, 1, 1) modelgrid.addWidget(QtWidgets.QLabel("Y-Coordinates"), 2, 0) modelgrid.addWidget(self.model_y, 2, 1) modelgrid.addWidget(QtWidgets.QLabel("Z-Coordinates"), 3, 0) modelgrid.addWidget(self.model_z, 3, 1) modelgrid.addWidget(QtWidgets.QLabel("Blur:"), 4, 0) modelgrid.addWidget(self.modelblurEdit, 4, 1) modelgrid.addWidget(QtWidgets.QLabel("Pixelsize:"), 5, 0) modelgrid.addWidget(self.pixelsizeEdit, 5, 1) modelgrid.addWidget(self.model_preview_btn, 6, 0) modelgrid.addWidget(self.modelchk, 6, 1) buttongrid.addWidget(model_groupbox) mainWidget = QtWidgets.QWidget() mainWidget.setLayout(self.grid) self.setCentralWidget(mainWidget) self.status_bar.showMessage("Average3 ready.") def open(self): path, exe = QtWidgets.QFileDialog.getOpenFileName( self, "Open localizations", filter="*.hdf5" ) if path: self.add(path) def save(self, path): n_channels = len(self.locs) for i in range(n_channels): cx = self.infos[i][0]["Width"] / 2 cy = self.infos[i][0]["Height"] / 2 out_locs = self.locs[i].copy() out_locs.x += cx out_locs.y += cy info = self.infos[i] + [{"Generated by": "Picasso Average3"}] if not self.z_state[i]: out_locs = lib.remove_from_rec(out_locs, "z") out_path = os.path.splitext(self.locs_paths[i])[0] + "_avg3.hdf5" path, exe = QtWidgets.QFileDialog.getSaveFileName( self, "Save localizations", out_path, filter="*.hdf5" ) io.save_locs(path, out_locs, info) def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): urls = event.mimeData().urls() path = urls[0].toLocalFile() ext = os.path.splitext(path)[1].lower() if ext == ".hdf5": print("Opening {} ..".format(path)) self.add(path) def add(self, path, rendermode=True): try: locs, info = io.load_locs(path, qt_parent=self) except io.NoMetadataFileError: return if len(self.locs) == 0: self.pixelsize = 0 if not hasattr(locs, "group"): msgBox = QtWidgets.QMessageBox(self) msgBox.setWindowTitle("Error") msgBox.setText( ("Datafile does not contain group information." " Please load file with picked localizations.") ) msgBox.exec_() else: locs = lib.ensure_sanity(locs, info) if not hasattr(locs, "z"): locs = lib.append_to_rec(locs, locs.x.copy(), "z") self.pixelsize = 1 has_z = False else: has_z = True if self.pixelsize == 0: pixelsize, ok = QtWidgets.QInputDialog.getInt( self, "Pixelsize Dialog", "Please enter the pixelsize in nm", 130, ) if ok: self.pixelsize = pixelsize else: self.pixelsize = 130 self.locs.append(locs) self.z_state.append(has_z) self.infos.append(info) self.locs_paths.append(path) self.index_blocks.append(None) self._drift.append(None) self.dataset_dialog.add_entry(path) self.dataset_dialog.checks[-1].stateChanged.connect( self.updateLayout ) cx = self.infos[-1][0]["Width"] / 2 cy = self.infos[-1][0]["Height"] / 2 self.locs[-1].x -= cx self.locs[-1].y -= cy if len(self.locs) == 1: self.median_lp = np.mean( [np.median(locs.lpx), np.median(locs.lpy)] ) if hasattr(locs, "group"): groups = np.unique(locs.group) groupcopy = locs.group.copy() for i in range(len(groups)): groupcopy[locs.group == groups[i]] = i np.random.shuffle(groups) groups %= N_GROUP_COLORS self.group_color = groups[groupcopy] if render: self.fit_in_view(autoscale=True) else: if render: self.update_scene() self.oversampling = 1 if len(self.locs) == 1: self.t_min = np.min([np.min(locs.x), np.min(locs.y)]) self.t_max = np.max([np.max(locs.x), np.max(locs.y)]) self.z_min = np.min(locs.z) self.z_max = np.max(locs.z) else: self.t_min = np.min( [np.min(locs.x), np.min(locs.y), self.t_min] ) self.t_max = np.max( [np.max(locs.x), np.max(locs.y), self.t_max] ) self.z_min = np.min([np.min(locs.z), self.z_min]) self.z_max = np.min([np.max(locs.z), self.z_max]) if len(self.locs) == 1: print("Dataset loaded from {}.".format(path)) else: print( ("Dataset loaded from {}," " Total number of datasets {}.").format( path, len(self.locs) ) ) # CREATE GROUP INDEX if hasattr(locs, "group"): groups = np.unique(locs.group) n_groups = len(groups) n_locs = len(locs) group_index = scipy.sparse.lil_matrix( (n_groups, n_locs), dtype=np.bool ) progress = lib.ProgressDialog( "Creating group index", 0, len(groups), self ) progress.set_value(0) for i, group in enumerate(groups): index = np.where(locs.group == group)[0] group_index[i, index] = True progress.set_value(i + 1) self.group_index.append(group_index) self.n_groups = n_groups os.chdir(os.path.dirname(path)) self.calculate_radii() self.oversampling = 4 self.updateLayout() def updateLayout(self): if len(self.locs) > 0: pixmap1, pixmap2, pixmap3 = self.hist_multi_channel(self.locs) self.viewxy.setPixmap(pixmap1) self.viewxz.setPixmap(pixmap2) self.viewyz.setPixmap(pixmap3) def centerofmass_all(self): # Align all by center of mass n_channels = len(self.locs) out_locs_x = [] out_locs_y = [] out_locs_z = [] for j in range(n_channels): sel_locs_x = [] sel_locs_y = [] sel_locs_z = [] # stack arrays sel_locs_x = self.locs[j].x sel_locs_y = self.locs[j].y sel_locs_z = self.locs[j].z out_locs_x.append(sel_locs_x) out_locs_y.append(sel_locs_y) out_locs_z.append(sel_locs_z) out_locs_x = stack_arrays(out_locs_x, asrecarray=True, usemask=False) out_locs_y = stack_arrays(out_locs_y, asrecarray=True, usemask=False) out_locs_z = stack_arrays(out_locs_z, asrecarray=True, usemask=False) mean_x = np.mean(out_locs_x) mean_y = np.mean(out_locs_y) mean_z = np.mean(out_locs_z) for j in range(n_channels): self.locs[j].x -= mean_x self.locs[j].y -= mean_y self.locs[j].z -= mean_z def calculate_radii(self): # CALCULATE PROPER R VALUES n_channels = len(self.locs) self.r = 0 self.r_z = 0 for j in range(n_channels): self.r = np.max( [ 3 * np.sqrt( np.mean(self.locs[j].x ** 2 + self.locs[j].y ** 2) ), self.r, ] ) self.r_z = np.max( [5 * np.sqrt(np.mean(self.locs[j].z ** 2)), self.r_z] ) self.t_min = -self.r self.t_max = self.r self.z_min = -self.r_z self.z_max = self.r_z self.z_min_load = self.z_min.copy() self.z_max_load = self.z_max.copy() def centerofmass(self): print("Aligning by center of mass.. ", end="", flush=True) n_groups = self.n_groups n_channels = len(self.locs) progress = lib.ProgressDialog( "Aligning by center of mass", 0, n_groups, self ) progress.set_value(0) for i in range(n_groups): out_locs_x = [] out_locs_y = [] out_locs_z = [] for j in range(n_channels): sel_locs_x = [] sel_locs_y = [] sel_locs_z = [] index = self.group_index[j][i, :].nonzero()[1] # stack arrays sel_locs_x = self.locs[j].x[index] sel_locs_y = self.locs[j].y[index] sel_locs_z = self.locs[j].z[index] out_locs_x.append(sel_locs_x) out_locs_y.append(sel_locs_y) out_locs_z.append(sel_locs_z) progress.set_value(i + 1) out_locs_x = stack_arrays( out_locs_x, asrecarray=True, usemask=False ) out_locs_y = stack_arrays( out_locs_y, asrecarray=True, usemask=False ) out_locs_z = stack_arrays( out_locs_z, asrecarray=True, usemask=False ) mean_x = np.mean(out_locs_x) mean_y = np.mean(out_locs_y) mean_z = np.mean(out_locs_z) for j in range(n_channels): index = self.group_index[j][i, :].nonzero()[1] self.locs[j].x[index] -= mean_x self.locs[j].y[index] -= mean_y self.locs[j].z[index] -= mean_z self.calculate_radii() self.updateLayout() print("Complete.") def histtoImage(self, image): cmap = np.uint8(np.round(255 * plt.get_cmap("magma")(np.arange(256)))) image /= image.max() image = np.minimum(image, 1.0) image = np.round(255 * image).astype("uint8") Y, X = image.shape self._bgra = np.zeros((Y, X, 4), dtype=np.uint8, order="C") self._bgra[..., 0] = cmap[:, 2][image] self._bgra[..., 1] = cmap[:, 1][image] self._bgra[..., 2] = cmap[:, 0][image] qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled( self.viewxy.width(), np.round(self.viewxy.height() * Y / X), QtCore.Qt.KeepAspectRatioByExpanding, ) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap def hist_multi_channel(self, locs): oversampling = self.parameters_dialog.oversampling.value() self.oversampling = oversampling if locs is None: locs = self.locs n_channels = len(locs) hues = np.arange(0, 1, 1 / n_channels) colors = [colorsys.hsv_to_rgb(_, 1, 1) for _ in hues] renderings = [] for i in range(n_channels): if self.dataset_dialog.checks[i].isChecked(): renderings.append( render.render_hist3d( locs[i], oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize, ) ) images = np.array([_[1] for _ in renderings]) pixmap1 = self.pixmap_from_colors(images, colors, 2) pixmap2 = self.pixmap_from_colors(images, colors, 0) pixmap3 = self.pixmap_from_colors(images, colors, 1) return pixmap1, pixmap2, pixmap3 def pixmap_from_colors(self, images, colors, axisval): if axisval == 2: image = [np.sum(_, axis=axisval) for _ in images] else: image = [np.transpose(np.sum(_, axis=axisval)) for _ in images] image = np.array([self.scale_contrast(_) for _ in image]) Y, X = image.shape[1:] bgra = np.zeros((Y, X, 4), dtype=np.float32) for color, image in zip(colors, image): bgra[:, :, 0] += color[2] * image bgra[:, :, 1] += color[1] * image bgra[:, :, 2] += color[0] * image bgra = np.minimum(bgra, 1) self._bgra = self.to_8bit(bgra) qimage = QtGui.QImage(self._bgra.data, X, Y, QtGui.QImage.Format_RGB32) qimage = qimage.scaled( self.viewxy.width(), np.round(self.viewxy.height() * Y / X), QtCore.Qt.KeepAspectRatioByExpanding, ) pixmap = QtGui.QPixmap.fromImage(qimage) return pixmap def align_x(self): print("Align X") self.align_all("x") def align_y(self): print("Align Y") self.align_all("y") def align_zz(self): print("Align Z") self.align_all("zz") def align_zy(self): print("Align Z") self.align_all("zy") def translate_x(self): print("Translate X") self.translate("x") def translate_y(self): print("Translate Y") self.translate("y") def translate_z(self): print("Translate Z") self.translate("z") def translate(self, translateaxis): renderings = [ render.render_hist3d( _, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize, ) for _ in self.locs ] images = np.array([_[1] for _ in renderings]) if translateaxis == "x": image = [np.sum(_, axis=2) for _ in images] signalimg = [np.sum(_, axis=0) for _ in image] elif translateaxis == "y": image = [np.sum(_, axis=2) for _ in images] signalimg = [np.sum(_, axis=1) for _ in image] elif translateaxis == "z": image = [np.sum(_, axis=1) for _ in images] signalimg = [np.sum(_, axis=0) for _ in image] fig = plt.figure(figsize=(5, 5)) ax1 = fig.add_subplot(1, 1, 1) for element in signalimg: plt.plot(element) n_groups = self.group_index[0].shape[0] print("Translating..") for i in tqdm(range(n_groups)): self.status_bar.showMessage("Group {} / {}.".format(i, n_groups)) self.translate_group(signalimg, i, translateaxis) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage( fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32 ) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) self.centerofmass_all() self.updateLayout() self.status_bar.showMessage("Done!") def translate_group(self, signalimg, group, translateaxis): n_channels = len(self.locs) all_xcorr = np.zeros((1, n_channels)) all_da = np.zeros((1, n_channels)) if translateaxis == "x": proplane = "xy" elif translateaxis == "y": proplane = "xy" elif translateaxis == "z": proplane = "xz" plotmode = 0 for j in range(n_channels): if plotmode: fig = plt.figure() ax1 = fig.add_subplot(1, 3, 1) plt.plot(signalimg[j]) ax2 = fig.add_subplot(1, 3, 2) if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] plane = self.render_planes( x_rot, y_rot, z_rot, proplane, self.pixelsize ) # if translateaxis == "x": projection = np.sum(plane, axis=0) elif translateaxis == "y": projection = np.sum(plane, axis=1) elif translateaxis == "z": projection = np.sum(plane, axis=1) if plotmode: plt.plot(projection) # print('Step X') # ax3 = fig.add_subplot(1,3,3) # plt.imshow(plane, interpolation='nearest', cmap=plt.cm.ocean) corrval = np.max(signal.correlate(signalimg[j], projection)) shiftval = ( np.argmax(signal.correlate(signalimg[j], projection)) - len(signalimg[j]) + 1 ) all_xcorr[0, j] = corrval all_da[0, j] = shiftval / self.oversampling if plotmode: plt.show() # value with biggest cc value form table maximumcc = np.argmax(np.sum(all_xcorr, axis=1)) dafinal = np.mean(all_da[maximumcc, :]) for j in range(n_channels): index = self.group_index[j][group].nonzero()[1] if translateaxis == "x": self.locs[j].x[index] += dafinal elif translateaxis == "y": self.locs[j].y[index] += dafinal elif translateaxis == "z": self.locs[j].z[index] += dafinal * self.pixelsize def adjust_z(self): z_range_str = np.asarray((self.z_range.text()).split(",")) z_range = [] for element in z_range_str: try: z_range.append(float(element)) except ValueError: pass z_min = z_range[0] z_max = z_range[1] self.z_min = np.max([z_min, self.z_min_load]) self.z_max = np.min([z_max, self.z_max_load]) print("Z min {}, Z max {}".format(self.z_min, self.z_max)) self.updateLayout() def adjust_xy(self): x_range_str = np.asarray((self.x_range.text()).split(",")) x_range = [] for element in x_range_str: try: x_range.append(float(element)) except ValueError: pass x_min = x_range[0] x_max = x_range[1] self.x_min = np.max([x_min, self.t_min]) self.x_max = np.min([x_max, self.t_max]) print("X min {}, X max {}".format(self.x_min, self.x_max)) y_range_str = np.asarray((self.y_range.text()).split(",")) y_range = [] for element in y_range_str: try: y_range.append(float(element)) except ValueError: pass y_min = y_range[0] y_max = y_range[1] self.y_min = np.max([y_min, self.t_min]) self.y_max = np.min([y_max, self.t_max]) print("Y min {}, Y max {}".format(self.y_min, self.y_max)) self.updateLayout() def rotatexy_convolution_group( self, CF_image_avg, angles, group, rotaxis, proplane ): n_channels = len(self.locs) n_angles = len(angles) all_xcorr = np.zeros((n_angles, n_channels)) all_da = np.zeros((n_angles, n_channels)) all_db = np.zeros((n_angles, n_channels)) for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() if self.translatebtn.isChecked(): angles = [0] n_angles = 1 for k in range(n_angles): angle = angles[k] # rotate locs x_rot, y_rot, z_rot = rotate_axis( rotaxis, x_original, y_original, z_original, angle, self.pixelsize, ) # render group image for plane image = self.render_planes( x_rot, y_rot, z_rot, proplane, self.pixelsize ) # calculate cross-correlation if 0: fig = plt.figure() ax1 = fig.add_subplot(1, 2, 1) ax1.set_aspect("equal") plt.imshow( image, interpolation="nearest", cmap=plt.cm.ocean ) plt.colorbar() plt.show() plt.waitforbuttonpress() xcorr = np.sum(np.multiply(CF_image_avg[j], image)) all_xcorr[k, j] = xcorr # value with biggest cc value form table maximumcc = np.argmax(np.sum(all_xcorr, axis=1)) rotfinal = angles[maximumcc] for j in range(n_channels): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() # rotate and shift image group locs x_rot, y_rot, z_rot = rotate_axis( rotaxis, x_original, y_original, z_original, rotfinal, self.pixelsize, ) self.locs[j].x[index] = x_rot self.locs[j].y[index] = y_rot self.locs[j].z[index] = z_rot def rotatexy_convolution(self): # TODO: re-write ths with kwargs at some point rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = "x" elif self.y_axisbtn.isChecked(): rotaxis = "y" elif self.z_axisbtn.isChecked(): rotaxis = "z" n_groups = self.group_index[0].shape[0] a_step = np.arcsin(1 / (self.oversampling * self.r)) if self.full_degbtn.isChecked(): angles = np.arange(0, 2 * np.pi, a_step) elif self.part_degbtn.isChecked(): degree = self.degEdit.value() angles = np.arange( -degree / 360 * 2 * np.pi, degree / 360 * 2 * np.pi, a_step ) renderings = [ render.render_hist3d( _, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize, ) for _ in self.locs ] images = np.array([_[1] for _ in renderings]) # DELIVER CORRECT PROJECTION FOR IMAGE proplane = [] if self.xy_projbtn.isChecked(): proplane = "xy" image = [np.sum(_, axis=2) for _ in images] elif self.yz_projbtn.isChecked(): proplane = "yz" image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif self.xz_projbtn.isChecked(): proplane = "xz" image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] # Change CFiamge for symmetry if self.radio_sym.isChecked(): print("Using symmetry.") fig = plt.figure(figsize=(5, 5)) ax1 = fig.add_subplot(1, 2, 1) symmetry = self.symEdit.value() ax1.set_aspect("equal") imageold = image[0].copy() plt.imshow(imageold, interpolation="nearest", cmap=plt.cm.ocean) # rotate image for i in range(symmetry - 1): image[0] += scipy.ndimage.interpolation.rotate( imageold, ((i + 1) * 360 / symmetry), axes=(1, 0), reshape=False, ) ax2 = fig.add_subplot(1, 2, 2) ax2.set_aspect("equal") plt.imshow(image[0], interpolation="nearest", cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage( fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32, ) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.radio_sym_custom.isChecked(): print("Using custom symmetry.") symmetry_txt = np.asarray((self.symcustomEdit.text()).split(",")) print(symmetry_txt) fig = plt.figure(figsize=(5, 5)) ax1 = fig.add_subplot(1, 2, 1) symmetry = self.symEdit.value() ax1.set_aspect("equal") imageold = image[0].copy() plt.imshow(imageold, interpolation="nearest", cmap=plt.cm.ocean) # rotate image for degree in symmetry_txt: image[0] += scipy.ndimage.interpolation.rotate( imageold, float(degree), axes=(1, 0), reshape=False ) ax2 = fig.add_subplot(1, 2, 2) ax2.set_aspect("equal") plt.imshow(image[0], interpolation="nearest", cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage( fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32, ) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.modelchk.isChecked(): self.generate_template() image[0] = self.template_img CF_image_avg = image print("Convolving..") for i in tqdm(range(n_groups)): self.status_bar.showMessage("Group {} / {}.".format(i, n_groups)) self.rotatexy_convolution_group( CF_image_avg, angles, i, rotaxis, proplane ) self.updateLayout() self.status_bar.showMessage("Done!") def rotate_groups(self): # Read out values from radiobuttons # TODO: maybe re-write this with kwargs rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = "x" elif self.y_axisbtn.isChecked(): rotaxis = "y" elif self.z_axisbtn.isChecked(): rotaxis = "z" n_groups = self.group_index[0].shape[0] a_step = np.arcsin(1 / (self.oversampling * self.r)) if self.full_degbtn.isChecked(): angles = np.arange(0, 2 * np.pi, a_step) elif self.part_degbtn.isChecked(): degree = self.degEdit.value() angles = np.arange( -degree / 360 * 2 * np.pi, degree / 360 * 2 * np.pi, a_step ) renderings = [ render.render_hist3d( _, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize, ) for _ in self.locs ] images = np.array([_[1] for _ in renderings]) # DELIVER CORRECT PROJECTION FOR IMAGE proplane = [] if self.xy_projbtn.isChecked(): proplane = "xy" image = [np.sum(_, axis=2) for _ in images] elif self.yz_projbtn.isChecked(): proplane = "yz" image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif self.xz_projbtn.isChecked(): proplane = "xz" image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] if self.radio_sym.isChecked(): print("Radio sym") fig = plt.figure(figsize=(5, 5)) ax1 = fig.add_subplot(1, 2, 1) symmetry = self.symEdit.value() ax1.set_aspect("equal") imageold = image[0].copy() plt.imshow(imageold, interpolation="nearest", cmap=plt.cm.ocean) # rotate image for i in range(symmetry - 1): image[0] += scipy.ndimage.interpolation.rotate( imageold, ((i + 1) * 360 / symmetry), axes=(1, 0), reshape=False, ) ax2 = fig.add_subplot(1, 2, 2) ax2.set_aspect("equal") plt.imshow(image[0], interpolation="nearest", cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage( fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32, ) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) # TODO: Sort these functions out, # combine with radio_sym / also for convolving. if self.radio_sym_custom.isChecked(): print("Using custom symmetry.") symmetry_txt = np.asarray((self.symcustomEdit.text()).split(",")) fig = plt.figure(figsize=(5, 5)) ax1 = fig.add_subplot(1, 2, 1) symmetry = self.symEdit.value() ax1.set_aspect("equal") imageold = image[0].copy() plt.imshow(imageold, interpolation="nearest", cmap=plt.cm.ocean) # rotate image for degree in symmetry_txt: image[0] += scipy.ndimage.interpolation.rotate( imageold, float(degree), axes=(1, 0), reshape=False ) ax2 = fig.add_subplot(1, 2, 2) ax2.set_aspect("equal") plt.imshow(image[0], interpolation="nearest", cmap=plt.cm.ocean) fig.canvas.draw() size = fig.canvas.size() width, height = size.width(), size.height() im = QtGui.QImage( fig.canvas.buffer_rgba(), width, height, QtGui.QImage.Format_ARGB32, ) self.viewcp.setPixmap((QtGui.QPixmap(im))) self.viewcp.setAlignment(QtCore.Qt.AlignCenter) plt.close(fig) if self.modelchk.isChecked(): self.generate_template() image[0] = self.template_img CF_image_avg = [np.conj(np.fft.fft2(_)) for _ in image] # n_pixel, _ = image_avg.shape # image_half = n_pixel / 2 print("Rotating..") for i in tqdm(range(n_groups)): self.status_bar.showMessage("Group {} / {}.".format(i, n_groups)) self.align_group(CF_image_avg, angles, i, rotaxis, proplane) self.updateLayout() self.status_bar.showMessage("Done!") def getUIstate(self): rotaxis = [] if self.x_axisbtn.isChecked(): rotaxis = "x" elif self.y_axisbtn.isChecked(): rotaxis = "y" elif self.z_axisbtn.isChecked(): rotaxis = "z" proplane = [] if self.xy_projbtn.isChecked(): proplane = "xy" elif self.yz_projbtn.isChecked(): proplane = "yz" elif self.xz_projbtn.isChecked(): proplane = "xz" return rotaxis, proplane def projectPlanes(self, images, proplane): if proplane == "xy": image = [np.sum(_, axis=2) for _ in images] elif proplane == "yz": image = [np.sum(_, axis=1) for _ in images] image = [_.transpose() for _ in image] elif proplane == "xz": image = [(np.sum(_, axis=0)) for _ in images] image = [_.transpose() for _ in image] return image def generate_template(self): model_x_str = np.asarray((self.model_x.text()).split(",")) model_y_str = np.asarray((self.model_y.text()).split(",")) model_z_str = np.asarray((self.model_z.text()).split(",")) model_x = [] model_y = [] model_z = [] for element in model_x_str: try: model_x.append(float(element)) except ValueError: pass for element in model_y_str: try: model_y.append(float(element)) except ValueError: pass for element in model_z_str: try: model_z.append(float(element)) except ValueError: pass pixelsize = self.pixelsizeEdit.value() blur = self.modelblurEdit.value() # Center of mass model_x = np.array(model_x) / pixelsize model_y = np.array(model_y) / pixelsize model_z = np.array(model_z) model_x = model_x - np.mean(model_x) model_y = model_y - np.mean(model_y) model_z = model_z - np.mean(model_z) rotaxis, proplane = self.getUIstate() template_img = self.render_planes( model_x, model_y, model_z, proplane, pixelsize ) self.template_img = scipy.ndimage.filters.gaussian_filter( template_img, blur ) def model_preview(self): self.generate_template() # Generate a template image fig = plt.figure() plt.title("Preview of Template") plt.imshow(self.template_img, interpolation="nearest", cmap=plt.cm.hot) plt.show() def calculate_score(self): # Dummy button -> Functionality of rotatebtn for now # TODO: maybe re-write this with kwargs self.scores = [] rotaxis, proplane = self.getUIstate() n_groups = self.group_index[0].shape[0] renderings = [ render.render_hist3d( _, self.oversampling, self.t_min, self.t_min, self.t_max, self.t_max, self.z_min, self.z_max, self.pixelsize, ) for _ in self.locs ] n_locs = sum([_[0] for _ in renderings]) # Make an average and not a sum image here.. images = np.array([_[1] / n_groups for _ in renderings]) # DELIVER CORRECT PROJECTION FOR IMAGE image = self.projectPlanes(images, proplane) n_channels = len(image) print("Calculating score..") for i in tqdm(range(n_groups)): channel_score = [] for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][i].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] groupimage = self.render_planes( x_rot, y_rot, z_rot, proplane, self.pixelsize ) score = np.sum(np.sqrt(groupimage * image[j])) / np.sum( np.sqrt(groupimage * groupimage) ) channel_score.append(score) self.scores.append(channel_score) self.status_bar.showMessage("Group {} / {}.".format(i, n_groups)) self.status_bar.showMessage( "Done. Average score: {}".format(np.mean(self.scores)) ) plt.hist(np.array(self.scores), 40) plt.title( "Histogram of Scores, Mean: {:.2f}".format(np.mean(self.scores)) ) plt.xlabel("Score") plt.ylabel("Counts") plt.show() def mean_angle(self, deg): return phase(sum(rect(1, d) for d in deg) / len(deg)) def render_planes(self, xdata, ydata, zdata, proplane, pixelsize): # assign correct renderings for all planes a_render = [] b_render = [] if proplane == "xy": a_render = xdata b_render = ydata aval_min = self.t_min aval_max = self.t_max bval_min = self.t_min bval_max = self.t_max elif proplane == "yz": a_render = ydata b_render = np.divide(zdata, pixelsize) aval_min = self.t_min aval_max = self.t_max bval_min = np.divide(self.z_min, pixelsize) bval_max = np.divide(self.z_max, pixelsize) elif proplane == "xz": b_render = np.divide(zdata, pixelsize) a_render = xdata bval_min = np.divide(self.z_min, pixelsize) bval_max = np.divide(self.z_max, pixelsize) aval_min = self.t_min aval_max = self.t_max N, plane = render_histxyz( a_render, b_render, self.oversampling, aval_min, aval_max, bval_min, bval_max, ) return plane def align_all(self, alignaxis): a_step = np.arcsin(1 / (self.oversampling * self.r)) angles = np.arange(0, 2 * np.pi, a_step) n_channels = len(self.locs) n_angles = len(angles) all_corr = np.zeros((n_angles, n_channels)) for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): alignimage = [] x_rot = self.locs[j].x y_rot = self.locs[j].y z_rot = self.locs[j].z x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() alignimage = [] for k in range(n_angles): angle = angles[k] if alignaxis == "zz": proplane = "yz" rotaxis = "x" elif alignaxis == "zy": proplane = "yz" rotaxis = "x" elif alignaxis == "y": proplane = "xy" rotaxis = "z" elif alignaxis == "x": proplane = "xy" rotaxis = "z" x_rot, y_rot, z_rot = rotate_axis( rotaxis, x_original, y_original, z_original, angle, self.pixelsize, ) # render group image for plane image = self.render_planes( x_rot, y_rot, z_rot, proplane, self.pixelsize ) # RENDR PLANES WAS BUGGY AT SOME POINT if alignimage == []: alignimage = np.zeros(image.shape) # CREATE ALIGNIMAGE if alignaxis == "zz": alignimage[np.int(alignimage.shape[0] / 2), :] += 2 alignimage[ np.int(alignimage.shape[0] / 2) + 1, : ] += 1 alignimage[ np.int(alignimage.shape[0] / 2) - 1, : ] += 1 elif alignaxis == "zy": alignimage[:, np.int(alignimage.shape[0] / 2)] += 2 alignimage[ :, np.int(alignimage.shape[0] / 2) + 1 ] += 1 alignimage[ :, np.int(alignimage.shape[0] / 2) - 1 ] += 1 elif alignaxis == "y": alignimage[:, np.int(alignimage.shape[1] / 2)] += 2 alignimage[ :, np.int(alignimage.shape[1] / 2) - 1 ] += 1 alignimage[ :, np.int(alignimage.shape[1] / 2) + 1 ] += 1 elif alignaxis == "x": alignimage[np.int(alignimage.shape[0] / 2), :] += 2 alignimage[ np.int(alignimage.shape[0] / 2) + 1, : ] += 1 alignimage[ np.int(alignimage.shape[0] / 2) - 1, : ] += 1 all_corr[k, j] = np.sum(np.multiply(alignimage, image)) if 0: fig = plt.figure() ax1 = fig.add_subplot(1, 2, 1) ax1.set_aspect("equal") plt.imshow( image, interpolation="nearest", cmap=plt.cm.ocean ) ax2 = fig.add_subplot(1, 2, 2) ax2.set_aspect("equal") plt.imshow( alignimage, interpolation="nearest", cmap=plt.cm.ocean, ) plt.colorbar() plt.show() # value with biggest cc value form table maximumcc = np.argmax(np.sum(all_corr, axis=1)) rotfinal = angles[maximumcc] for j in range(n_channels): x_rot = self.locs[j].x y_rot = self.locs[j].y z_rot = self.locs[j].z x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() # rotate and shift image group locs x_rot, y_rot, z_rot = rotate_axis( rotaxis, x_original, y_original, z_original, rotfinal, self.pixelsize, ) self.locs[j].x = x_rot self.locs[j].y = y_rot self.locs[j].z = z_rot self.updateLayout() self.status_bar.showMessage( "Align on Axis {} complete.".format(alignaxis) ) def align_group(self, CF_image_avg, angles, group, rotaxis, proplane): n_channels = len(self.locs) n_angles = len(angles) all_xcorr = np.zeros((n_angles, n_channels)) all_da = np.zeros((n_angles, n_channels)) all_db = np.zeros((n_angles, n_channels)) flips = 1 if self.flipbtn.isChecked(): print("Considering flipped structures...") flips = 2 for f in range(flips): for j in range(n_channels): if self.dataset_dialog.checks[j].isChecked(): index = self.group_index[j][group].nonzero()[1] x_rot = self.locs[j].x[index] y_rot = self.locs[j].y[index] z_rot = self.locs[j].z[index] x_original = x_rot.copy() y_original = y_rot.copy() z_original = z_rot.copy() if f == 1: # Flipped round if proplane == "xy": x_original = -x_original elif proplane == "yz": y_original = -y_original elif proplane == "xz": z_original = -z_original if self.translatebtn.isChecked(): angles = [0] n_angles = 1 for k in range(n_angles): angle = angles[k] x_rot, y_rot, z_rot = rotate_axis( rotaxis, x_original, y_original, z_original, angle, self.pixelsize, ) # render group image for plane image = self.render_planes( x_rot, y_rot, z_rot, proplane, self.pixelsize ) # RENDR PLANES WAS BUGGY AT SOME POINT # calculate cross-correlation if 0: fig = plt.figure() ax1 = fig.add_subplot(1, 2, 1) ax1.set_aspect("equal") plt.imshow( image, interpolation="nearest", cmap=plt.cm.ocean, ) plt.colorbar() plt.show() plt.waitforbuttonpress() xcorr = compute_xcorr(CF_image_avg[j], image) n_pixelb, n_pixela = image.shape image_halfa = n_pixela / 2 # TODO: CHECK THOSE VALUES image_halfb = n_pixelb / 2 # find the brightest pixel b_max, a_max = np.unravel_index( xcorr.argmax(), xcorr.shape ) # store the transformation if the correlation # is larger than before all_xcorr[k, j] = xcorr[b_max, a_max] all_db[k, j] = (
np.ceil(b_max - image_halfb)
numpy.ceil
import json import math import numbers import random from abc import ABCMeta, abstractmethod from collections import Iterable, OrderedDict from functools import partial from typing import List import numpy as np import torch from . import functional as F class Sequence: def __init__(self, transforms): if not isinstance(transforms, List): transforms = [transforms] self.transforms = transforms def __call__(self, data): for t in self.transforms: data = t(data) return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string def to_dict(self): return OrderedDict([("sequence", OrderedDict([t.to_dict().popitem() for t in self.transforms]))]) def to_json(self, indent=4): return json.dumps(self.to_dict(), indent=indent) class Shuffle: def __init__(self, transforms): if not isinstance(transforms, List): transforms = [transforms] self.transforms = transforms def __call__(self, data): random.shuffle(self.transforms) for t in self.transforms: data = t(data) return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string def to_dict(self): return OrderedDict([("shuffle", OrderedDict([t.to_dict().popitem() for t in self.transforms]))]) def to_json(self, indent=4): return json.dumps(self.to_dict(), indent=indent) class Sample: def __init__(self, transforms, k=1): if not isinstance(transforms, List): transforms = [transforms] assert len(transforms) >= k self.transforms = transforms self.k = k def __call__(self, data): transforms = random.sample(self.transforms, k=self.k) for t in transforms: data = t(data) return data def __repr__(self): format_string = self.__class__.__name__ + '(' for t in self.transforms: format_string += '\n' format_string += ' {0}'.format(t) format_string += '\n)' return format_string def to_dict(self): return OrderedDict([("sample", OrderedDict([t.to_dict().popitem() for t in self.transforms]))]) def to_json(self, indent=4): return json.dumps(self.to_dict(), indent=indent) class Transform(metaclass=ABCMeta): @abstractmethod def apply_image(self, img): pass def apply_mask(self, mask): raise NotImplementedError def apply_box(self, box): raise NotImplementedError def apply_kp(self, kp): raise NotImplementedError def __repr__(self): format_string = self.__class__.__name__ return format_string @abstractmethod def to_dict(self): pass class ToTensor(Transform): def __call__(self, data): if isinstance(data, dict): for k, v in data.items(): if v is not None: data[k] = getattr(self, f'apply_{k}')(v) else: data = self.apply_image(data) return data def apply_image(self, img): return F.to_tensor(img) def apply_mask(self, mask): if isinstance(mask, List): return torch.stack([torch.as_tensor(
np.array(m)
numpy.array
import numpy as np import scipy.constants as const import json import os from matplotlib import pyplot as plt import ckvpy.tools.photon_yield as photon_yield import ckvpy.tools.effective as effective from ckvpy.tools.analysis import dataAnalysis class dataAnalysis3D(dataAnalysis): """Data analysis class for 3D models, requires intersection of electron plane and dispersion to find cherenkov angle etc.""" def __init__(self, data): self.data_full = data # includes full Brillouin zone data self.data_dict = {} # same structure as in 2D case self._init_data_dict(data) self._get_num_bands() self.status = { 'reflected': True, 'interpolated': True, 'intersected': False } def _init_data_dict(self, data): self.data_dict = {} for root in self.data_full: self.data_dict[root] = {} for band in self.data_full[root]: self.data_dict[root][band] = {} def calculateCherenkov(self, beta=0.999, direction = [1,0]): """Find intersection of electron plane and dispersion to get Cherenkov behaviour Args: beta (float): electron speed ratio with c direction (list): determines direction of electron with idices rho (|x,y|) and z which defines e-plane omega = k.v """ if type(direction[0]) is not int or type(direction[1]) is not int: raise ValueError("Only directions purely in z or rho supported") for band in self.data_full['default']: m_rho = self.data_full['default'][band]['mi'] # matrix of k_rho values mz = np.copy(self.data_full['default'][band]['mz']) # mutated so copy my = self.data_full['default'][band]['my'] # matrix of ky values mx = self.data_full['default'][band]['mx'] # matrix of kx values mf = np.copy(self.data_full['default'][band]['mf']) # mutated so copy z_array = mz.T[0][-1:1:-1] # starts at maximum rho_array = m_rho[0][1:-1] # cut off edges (interp) # e_plane = self.data_dict['default'][band]['mj']*3.e8*v mf *= 2*np.pi # omega=2pif mf = mf.T # since we transpose z to get z array from columns self.data_dict['default'][band] = \ {'kz': [None], 'k_rho': [None], 'frequency': [None], 'direction': direction} kz_c = np.array([]) # empty temp arrays to store crossing points k_rho_c = np.array([]) f_c = np.array([]) for kz_i, kz in enumerate(z_array[:-1]): # ith value of kz for k_rho_i, k_rho in enumerate(rho_array[:-1]): # jth k_rho kz2 = z_array[kz_i + 1] # i+1th value of kz k_rho2 = rho_array[k_rho_i + 1] # j+1th k_rho f = mf[kz_i, k_rho_i] # f(kz,k_rho) fz2 = mf[kz_i + 1, k_rho_i] # f(kz2,k_rho) f_rho2 = mf[kz_i, k_rho_i + 1] # f(kz,k_rho2) # get crossing points and booleans (was crossing found?) rho_found, rho_cross, z_found, z_cross = \ self._cross(beta, kz, kz2, k_rho, k_rho2, f, fz2, f_rho2, direction) k_rho_cross, f_rho_cross = rho_cross kz_cross, fz_cross = z_cross if z_found: # crossing found in kz direction kz_c = np.append(kz_c, kz_cross) k_rho_c =
np.append(k_rho_c, k_rho)
numpy.append
# Copyright 2018-2020 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Unit tests and integration tests for the ``default.qubit.tf`` device. """ from itertools import product import numpy as np import pytest tf = pytest.importorskip("tensorflow", minversion="2.0") import pennylane as qml from pennylane.wires import Wires from pennylane.devices.default_qubit_tf import DefaultQubitTF from gate_data import ( I, X, Y, Z, H, S, T, CNOT, CZ, SWAP, CNOT, Toffoli, CSWAP, Rphi, Rotx, Roty, Rotz, Rot3, CRotx, CRoty, CRotz, CRot3, MultiRZ1, MultiRZ2, ) np.random.seed(42) ##################################################### # Test matrices ##################################################### U = np.array( [ [0.83645892 - 0.40533293j, -0.20215326 + 0.30850569j], [-0.23889780 - 0.28101519j, -0.88031770 - 0.29832709j], ] ) U2 = np.array([[0, 1, 1, 1], [1, 0, 1, -1], [1, -1, 0, 1], [1, 1, -1, 0]]) / np.sqrt(3) A = np.array([[1.02789352, 1.61296440 - 0.3498192j], [1.61296440 + 0.3498192j, 1.23920938 + 0j]]) ##################################################### # Define standard qubit operations ##################################################### single_qubit = [(qml.S, S), (qml.T, T), (qml.PauliX, X), (qml.PauliY, Y), (qml.PauliZ, Z), (qml.Hadamard, H)] single_qubit_param = [(qml.PhaseShift, Rphi), (qml.RX, Rotx), (qml.RY, Roty), (qml.RZ, Rotz), (qml.MultiRZ, MultiRZ1)] two_qubit = [(qml.CZ, CZ), (qml.CNOT, CNOT), (qml.SWAP, SWAP)] two_qubit_param = [(qml.CRX, CRotx), (qml.CRY, CRoty), (qml.CRZ, CRotz), (qml.MultiRZ, MultiRZ2)] three_qubit = [(qml.Toffoli, Toffoli), (qml.CSWAP, CSWAP)] ##################################################### # Fixtures ##################################################### @pytest.fixture def init_state(scope="session"): """Generates a random initial state""" def _init_state(n): """random initial state""" state = np.random.random([2 ** n]) + np.random.random([2 ** n]) * 1j state /= np.linalg.norm(state) return state return _init_state ##################################################### # Device-level integration tests ##################################################### class TestApply: """Test application of PennyLane operations.""" def test_basis_state(self, tol): """Test basis state initialization""" dev = DefaultQubitTF(wires=4) state = np.array([0, 0, 1, 0]) dev.apply([qml.BasisState(state, wires=[0, 1, 2, 3])]) res = dev.state expected = np.zeros([2 ** 4]) expected[np.ravel_multi_index(state, [2] * 4)] = 1 assert isinstance(res, tf.Tensor) assert np.allclose(res, expected, atol=tol, rtol=0) def test_invalid_basis_state_length(self, tol): """Test that an exception is raised if the basis state is the wrong size""" dev = DefaultQubitTF(wires=4) state = np.array([0, 0, 1, 0]) with pytest.raises( ValueError, match=r"BasisState parameter and wires must be of equal length" ): dev.apply([qml.BasisState(state, wires=[0, 1, 2])]) def test_invalid_basis_state(self, tol): """Test that an exception is raised if the basis state is invalid""" dev = DefaultQubitTF(wires=4) state = np.array([0, 0, 1, 2]) with pytest.raises( ValueError, match=r"BasisState parameter must consist of 0 or 1 integers" ): dev.apply([qml.BasisState(state, wires=[0, 1, 2, 3])]) def test_qubit_state_vector(self, init_state, tol): """Test qubit state vector application""" dev = DefaultQubitTF(wires=1) state = init_state(1) dev.apply([qml.QubitStateVector(state, wires=[0])]) res = dev.state expected = state assert isinstance(res, tf.Tensor) assert np.allclose(res, expected, atol=tol, rtol=0) def test_full_subsystem_statevector(self, mocker): """Test applying a state vector to the full subsystem""" dev = DefaultQubitTF(wires=['a', 'b', 'c']) state = tf.constant([1, 0, 0, 0, 1, 0, 1, 1], dtype=tf.complex128) / 2. state_wires = qml.wires.Wires(['a', 'b', 'c']) spy = mocker.spy(dev, "_scatter") dev._apply_state_vector(state=state, device_wires=state_wires) assert np.all(tf.reshape(dev._state, [-1]) == state) spy.assert_not_called() def test_partial_subsystem_statevector(self, mocker): """Test applying a state vector to a subset of wires of the full subsystem""" dev = DefaultQubitTF(wires=['a', 'b', 'c']) state = tf.constant([1, 0, 1, 0], dtype=tf.complex128) / np.sqrt(2.) state_wires = qml.wires.Wires(['a', 'c']) spy = mocker.spy(dev, "_scatter") dev._apply_state_vector(state=state, device_wires=state_wires) res = tf.reshape(tf.reduce_sum(dev._state, axis=(1,)), [-1]) assert np.all(res == state) spy.assert_called() def test_invalid_qubit_state_vector_size(self): """Test that an exception is raised if the state vector is the wrong size""" dev = DefaultQubitTF(wires=2) state = np.array([0, 1]) with pytest.raises(ValueError, match=r"State vector must be of length 2\*\*wires"): dev.apply([qml.QubitStateVector(state, wires=[0, 1])]) def test_invalid_qubit_state_vector_norm(self): """Test that an exception is raised if the state vector is not normalized""" dev = DefaultQubitTF(wires=2) state = np.array([0, 12]) with pytest.raises(ValueError, match=r"Sum of amplitudes-squared does not equal one"): dev.apply([qml.QubitStateVector(state, wires=[0])]) def test_invalid_state_prep(self): """Test that an exception is raised if a state preparation is not the first operation in the circuit.""" dev = DefaultQubitTF(wires=2) state = np.array([0, 12]) with pytest.raises( qml.DeviceError, match=r"cannot be used after other Operations have already been applied", ): dev.apply([qml.PauliZ(0), qml.QubitStateVector(state, wires=[0])]) @pytest.mark.parametrize("op,mat", single_qubit) def test_single_qubit_no_parameters(self, init_state, op, mat, tol): """Test non-parametrized single qubit operations""" dev = DefaultQubitTF(wires=1) state = init_state(1) queue = [qml.QubitStateVector(state, wires=[0])] queue += [op(wires=0)] dev.apply(queue) res = dev.state expected = mat @ state assert isinstance(res, tf.Tensor) assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("theta", [0.5432, -0.232]) @pytest.mark.parametrize("op,func", single_qubit_param) def test_single_qubit_parameters(self, init_state, op, func, theta, tol): """Test parametrized single qubit operations""" dev = DefaultQubitTF(wires=1) state = init_state(1) queue = [qml.QubitStateVector(state, wires=[0])] queue += [op(theta, wires=0)] dev.apply(queue) res = dev.state expected = func(theta) @ state assert np.allclose(res, expected, atol=tol, rtol=0) def test_rotation(self, init_state, tol): """Test three axis rotation gate""" dev = DefaultQubitTF(wires=1) state = init_state(1) a = 0.542 b = 1.3432 c = -0.654 queue = [qml.QubitStateVector(state, wires=[0])] queue += [qml.Rot(a, b, c, wires=0)] dev.apply(queue) res = dev.state expected = Rot3(a, b, c) @ state assert np.allclose(res, expected, atol=tol, rtol=0) def test_controlled_rotation(self, init_state, tol): """Test three axis controlled-rotation gate""" dev = DefaultQubitTF(wires=2) state = init_state(2) a = 0.542 b = 1.3432 c = -0.654 queue = [qml.QubitStateVector(state, wires=[0, 1])] queue += [qml.CRot(a, b, c, wires=[0, 1])] dev.apply(queue) res = dev.state expected = CRot3(a, b, c) @ state assert np.allclose(res, expected, atol=tol, rtol=0) def test_inverse_operation(self, init_state, tol): """Test that the inverse of an operation is correctly applied""" """Test three axis rotation gate""" dev = DefaultQubitTF(wires=1) state = init_state(1) a = 0.542 b = 1.3432 c = -0.654 queue = [qml.QubitStateVector(state, wires=[0])] queue += [qml.Rot(a, b, c, wires=0).inv()] dev.apply(queue) res = dev.state expected = np.linalg.inv(Rot3(a, b, c)) @ state assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("op,mat", two_qubit) def test_two_qubit_no_parameters(self, init_state, op, mat, tol): """Test non-parametrized two qubit operations""" dev = DefaultQubitTF(wires=2) state = init_state(2) queue = [qml.QubitStateVector(state, wires=[0, 1])] queue += [op(wires=[0, 1])] dev.apply(queue) res = dev.state expected = mat @ state assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("mat", [U, U2]) def test_qubit_unitary(self, init_state, mat, tol): """Test application of arbitrary qubit unitaries""" N = int(np.log2(len(mat))) dev = DefaultQubitTF(wires=N) state = init_state(N) queue = [qml.QubitStateVector(state, wires=range(N))] queue += [qml.QubitUnitary(mat, wires=range(N))] dev.apply(queue) res = dev.state expected = mat @ state assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("op, mat", three_qubit) def test_three_qubit_no_parameters(self, init_state, op, mat, tol): """Test non-parametrized three qubit operations""" dev = DefaultQubitTF(wires=3) state = init_state(3) queue = [qml.QubitStateVector(state, wires=[0, 1, 2])] queue += [op(wires=[0, 1, 2])] dev.apply(queue) res = dev.state expected = mat @ state assert np.allclose(res, expected, atol=tol, rtol=0) @pytest.mark.parametrize("theta", [0.5432, -0.232]) @pytest.mark.parametrize("op,func", two_qubit_param) def test_two_qubit_parameters(self, init_state, op, func, theta, tol): """Test two qubit parametrized operations""" dev = DefaultQubitTF(wires=2) state = init_state(2) queue = [qml.QubitStateVector(state, wires=[0, 1])] queue += [op(theta, wires=[0, 1])] dev.apply(queue) res = dev.state expected = func(theta) @ state assert np.allclose(res, expected, atol=tol, rtol=0) def test_apply_ops_not_supported(self, mocker, monkeypatch): """Test that when a version of TensorFlow before 2.3.0 is used, the _apply_ops dictionary is empty and application of a CNOT gate is performed using _apply_unitary_einsum""" with monkeypatch.context() as m: m.setattr("pennylane.devices.default_qubit_tf.SUPPORTS_APPLY_OPS", False) dev = DefaultQubitTF(wires=3) assert dev._apply_ops == {} spy = mocker.spy(DefaultQubitTF, "_apply_unitary_einsum") queue = [qml.CNOT(wires=[1, 2])] dev.apply(queue) spy.assert_called_once() def test_apply_ops_above_8_wires(self, mocker): """Test that when 9 wires are used, the _apply_ops dictionary is empty and application of a CNOT gate is performed using _apply_unitary_einsum""" dev = DefaultQubitTF(wires=9) assert dev._apply_ops == {} spy = mocker.spy(DefaultQubitTF, "_apply_unitary_einsum") queue = [qml.CNOT(wires=[1, 2])] dev.apply(queue) spy.assert_called_once() @pytest.mark.xfail( raises=tf.errors.UnimplementedError, reason="Slicing is not supported for more than 8 wires", strict=True, ) def test_apply_ops_above_8_wires_using_special(self): """Test that special apply methods that involve slicing function correctly when using 9 wires""" dev = DefaultQubitTF(wires=9) dev._apply_ops = {"CNOT": dev._apply_cnot} queue = [qml.CNOT(wires=[1, 2])] dev.apply(queue) THETA = np.linspace(0.11, 1, 3) PHI =
np.linspace(0.32, 1, 3)
numpy.linspace
"""Plotting for manuscript figures.""" import matplotlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import fit from models import calc_cs, calc_ffs, calc_ge_gm, calc_rho, dipole_ffs, get_b2, hbarc matplotlib.rcParams["text.usetex"] = True matplotlib.rcParams["font.size"] = 13 matplotlib.rcParams["font.family"] = "lmodern" matplotlib.rcParams["text.latex.preamble"] = r"\usepackage{lmodern}" matplotlib.rcParams["xtick.labelsize"] = 12 matplotlib.rcParams["ytick.labelsize"] = 12 # Number of samples to use when generating statistical uncertainty bands N_SAMPLES = 1000 def read_Rosenbluth_data(): """Read data for G_E and G_M from "Rosenbluth.dat".""" col_names = ["Q2", "GE", "delta_GE", "GM", "delta_GM"] data = pd.read_csv("data/Rosenbluth.dat", sep=" ", skiprows=5, names=col_names) return data def calc_interval(calc_func, x_range, param_list, order): """Calculate 68% ("1 sigma") percentile interval from param sample.""" out = np.array([calc_func(x_range, param, order) for param in param_list]) return np.percentile(out, (15.9, 84.1), 0) def calc_params(data, order, reg_param): """Run fit and get model parameters and covariance.""" params, _, _, _, cov = fit.fit(data, data, order, reg_param) params = params[fit.N_NORM_PARAMS :] cov = cov[fit.N_NORM_PARAMS :, fit.N_NORM_PARAMS :] return params, cov def calc_sys_bands(calc_func, x_range, data, order, reg_param): """Calculate systematic error bands for given quantity.""" params, _ = calc_params(data, order, reg_param) f1, f2 = calc_func(x_range, params, order) mincut_params = fit.fit_systematic_variant("cs_mincut", data, order, reg_param)[0] maxcut_params = fit.fit_systematic_variant("cs_maxcut", data, order, reg_param)[0] sysup_params = fit.fit_systematic_variant("cs_sysup", data, order, reg_param)[0] syslow_params = fit.fit_systematic_variant("cs_syslow", data, order, reg_param)[0] mincut_f1, mincut_f2 = calc_func(x_range, mincut_params, order) maxcut_f1, maxcut_f2 = calc_func(x_range, maxcut_params, order) sysup_f1, sysup_f2 = calc_func(x_range, sysup_params, order) syslow_f1, syslow_f2 = calc_func(x_range, syslow_params, order) # Calculate upper and lower limits for each of the systematic variations: f1_cut_up = np.clip(np.max(np.stack([mincut_f1 - f1, maxcut_f1 - f1]), 0), 0, None) f1_cut_low = np.clip(np.min(np.stack([mincut_f1 - f1, maxcut_f1 - f1]), 0), None, 0) f1_sys_up = np.clip(np.max(np.stack([sysup_f1 - f1, syslow_f1 - f1]), 0), 0, None) f1_sys_low = np.clip(np.min(np.stack([sysup_f1 - f1, syslow_f1 - f1]), 0), None, 0) f2_cut_up = np.clip(np.max(np.stack([mincut_f2 - f2, maxcut_f2 - f2]), 0), 0, None) f2_cut_low = np.clip(np.min(np.stack([mincut_f2 - f2, maxcut_f2 - f2]), 0), None, 0) f2_sys_up = np.clip(np.max(np.stack([sysup_f2 - f2, syslow_f2 - f2]), 0), 0, None) f2_sys_low = np.clip(np.min(np.stack([sysup_f2 - f2, syslow_f2 - f2]), 0), None, 0) # Add two systematic "errors" in quadrature: f1_up = np.sqrt(f1_cut_up ** 2 + f1_sys_up ** 2) f1_low = np.sqrt(f1_cut_low ** 2 + f1_sys_low ** 2) f2_up = np.sqrt(f2_cut_up ** 2 + f2_sys_up ** 2) f2_low = np.sqrt(f2_cut_low ** 2 + f2_sys_low ** 2) return f1_up, f1_low, f2_up, f2_low def fill_between(x_range, y_up, y_low, color, hbarc_scale=False): """Plot confidence interval.""" if hbarc_scale: x_range = hbarc * x_range y_up = y_up / (hbarc * hbarc) y_low = y_low / (hbarc * hbarc) plt.fill_between(x_range, y_up, y_low, color=color, lw=0, alpha=0.7) def plot_f1_f2(data, order, reg_param): """Plot the Dirac and Pauli form factors.""" params, cov = calc_params(data, order, reg_param) Q2_range = np.linspace(0, 1, 100) F1, F2 = calc_ffs(Q2_range, params, order) # Transverse charge radius and the slope of F1: b2, _ = get_b2(params, cov) slope_x = np.linspace(0, 0.15, 10) slope_y = 1 - slope_x * b2 / 4 # Plot the form factor slope: plt.plot(slope_x, slope_y, ls="--", color="black", lw=1) if fit.covariance_bad(cov): print("Warning: Covariance ill-conditioned, will not plot confidence intervals") draw_confidence = False else: draw_confidence = True if draw_confidence: # Calculate statistical uncertainties: params =
np.random.multivariate_normal(params, cov, size=N_SAMPLES)
numpy.random.multivariate_normal
import numpy as np from scipy import stats, special import matplotlib.pyplot as plt from math import sqrt, factorial exercise = 15 ################################################################# # exercise 2.2 if exercise == 2: x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="black") plt.xlabel(r"$\hat{\nu}$") plt.ylabel(r"f($\hat{\nu}$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.show() ################################################################# # exercise 2.3 if exercise == 3: q = 150 # estimator from the first experiment, we use it as "true" value for the following MC's # we now genetare 10^6 MC experiments from a Poisson pdf. There is # a module, so-called numpy.random, which implements pseudo-random number generators for various distributions. # since we want to generate numbers Poisson distributed, we can directly use this module. poisson_data = np.random.poisson(q, 10**6) print(poisson_data) print(len(poisson_data)) # the obtained values are directly N_i. # Now we compute the estimator for each one, which in fact corresponds to q_i = N_i # so we don't have to make any change plt.hist(poisson_data, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (150,150)$") # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(poisson_data) variance_estimator = np.var(poisson_data, ddof=1) print(mean_estimator, variance_estimator) plt.xlabel(r"$\hat{\nu}$") plt.ylabel(r"N($\hat{\nu}$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.4 if exercise == 4: N = 150 nu = np.linspace(100,200,100000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**(N/2))*(np.exp(-nu))*(nu**(N/2)))/special.gamma(N+1) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|150)") plt.plot(nu, stats.norm.pdf(nu, 150, sqrt(150)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (150,150)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|150)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.5 if exercise == 5: N_obs=150 nu = np.random.uniform(0.0, N_obs + 10.0*sqrt(N_obs), size=10**7) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (150,150)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) # mean = 150.91 variance 150.56 # 151.06,151.09 # 150.95,152.57 # 151.04,151.19 # revise exercise 2.4: find mode and verify if its 150 o 151 plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (151,151)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.6 (if 6 -> repeat ex 2.4. if 7 ex -> 7 repeat ex 2.5) if exercise == 6: N = 10 nu = np.linspace(0,50,100000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**(N/2))*(np.exp(-nu))*(nu**(N/2)))/special.gamma(N+1) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|10)") plt.plot(nu, stats.norm.pdf(nu, 10, sqrt(10)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (10,10)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|10)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 7: N_obs=10 nu = np.random.uniform(0.0, N_obs + 10.0*sqrt(N_obs), size=10**7) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 10, sqrt(10)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (10,10)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (11,11)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.7 (if 8 -> repeat ex 2.4. if 9 ex -> 7 repeat ex 2.5) if exercise == 8: N = 1 nu = np.linspace(0,10,10000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**(N/2))*(np.exp(-nu))*(nu**(N/2)))/special.gamma(N+1) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|1)") plt.plot(nu, stats.norm.pdf(nu, 1, sqrt(1)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (1,1)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|1)") plt.xlim(0,5) plt.ylim(0, 0.45) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 9: N_obs=1 nu = np.random.uniform(0.0, N_obs + 10.0*sqrt(N_obs), size=10**7) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 1, sqrt(1)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.45) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.45) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# ################################################################# ################################################################# # exercise 2.8 if exercise == 10: N = 150 nu = np.linspace(100,200,100000) posterior_pdf = ((nu**((N-1)/2))*(np.exp(-nu))*(nu**((N-1)/2)))/special.gamma(N) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|150)") plt.plot(nu, stats.norm.pdf(nu, 150, sqrt(150)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (150,150)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|150)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# if exercise == 11: N_obs=150 # we generate nu that satisfies our prior. # we have used the inv transformation MC method # remember that we always use r = U[0,1] in this method nu = np.exp(np.random.uniform(0.0, np.log(N_obs + 10.0*sqrt(N_obs)), size=10**7)) # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count, nu_i) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 150, sqrt(150)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (150,150)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (151,151)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(100,200) plt.ylim(0, 0.035) plt.xticks(np.arange(100,210,10)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.6 (if 6 -> repeat ex 2.4. if 7 ex -> 7 repeat ex 2.5) if exercise == 12: N = 10 nu = np.linspace(0,50,100000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**((N-1)/2))*(np.exp(-nu))*(nu**((N-1)/2)))/special.gamma(N) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|10)") plt.plot(nu, stats.norm.pdf(nu, 10, sqrt(10)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (10,10)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|10)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 13: N_obs=10 nu = np.exp(np.random.uniform(0.0, np.log(N_obs + 10.0*sqrt(N_obs)), size=10**7)) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 10, sqrt(10)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (10,10)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 30, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (11,11)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,20) plt.ylim(0, 0.14) plt.xticks(np.arange(0,22,2)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() ################################################################# # exercise 2.7 (if 8 -> repeat ex 2.4. if 9 ex -> 7 repeat ex 2.5) if exercise == 14: N = 1 nu = np.linspace(0,10,10000) # posterior_pdf = ((nu**N)*np.exp(-nu))/special.gamma(N+1) # be careful here. This last expresion overflows when n=113 since result exp(308) # Remember that Max normal number with 64 bit floating point is 1.7x10308 # so we have to redefine the calculations posterior_pdf = ((nu**((N-1)/2))*(np.exp(-nu))*(nu**((N-1)/2)))/special.gamma(N) plt.plot(nu, posterior_pdf, color = "black", linewidth= "1", label = r"P($\nu$|1)") plt.plot(nu, stats.norm.pdf(nu, 1, sqrt(1)), color="red", linewidth= "1", label=r"$\mathcal{N} \ (1,1)$") print(np.argmax(posterior_pdf)) print(nu[np.argmax(posterior_pdf)]) plt.xlabel(r"$\nu$") plt.ylabel(r"P($\nu$|1)") plt.xlim(0,5) plt.ylim(0, 1) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() if exercise == 15: N_obs=1 nu = np.exp(np.random.uniform(-100., np.log(N_obs + 10.0*sqrt(N_obs)), size=10**7)) # we generate nu that satisfies our prior # N = np.array([]) count = 0 nu_accepted = np.array([]) for nu_i in nu: N = np.random.poisson(nu_i, 1) # we generate one N for each value of nu if N == N_obs: nu_accepted = np.append(nu_accepted, nu_i) count += 1 print(count) plt.figure(1) plt.hist(nu_accepted, bins= 40, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 1, sqrt(1)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.60) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator = np.mean(nu_accepted) variance_estimator = np.var(nu_accepted, ddof=1) print(mean_estimator, variance_estimator) print("{0:.2f},{1:.2f}".format(mean_estimator, variance_estimator)) plt.figure(2) plt.hist(nu_accepted, bins= 50, normed=True, histtype="step", color="black") plt.plot(x_axis, stats.norm.pdf(x_axis, mean_estimator, sqrt(variance_estimator)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 1.0) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') plt.show() np.savetxt("nu_accepted", nu_accepted) if exercise == 16: nu_accepted=np.loadtxt("nu_accepted") plt.figure(1) plt.hist(nu_accepted, bins= 40, normed=True, histtype="step", color="black") # we compare it with the result in exercise 2.2 x_axis = np.linspace(0,300, 10000) plt.plot(x_axis, stats.norm.pdf(x_axis, 1, sqrt(1)), color="red", linewidth = "1", label= r"$\mathcal{N} \ (1,1)$") plt.xlabel(r"$\nu$") plt.ylabel(r"N($\nu$)") plt.xlim(0,5) plt.ylim(0, 0.60) plt.xticks(np.arange(0,5.5,0.5)) plt.legend(loc="best") leg = plt.legend() leg.get_frame().set_edgecolor('black') # we compute the estimators of the mean and variance from poisson_data mean_estimator =
np.mean(nu_accepted)
numpy.mean
#!/usr/bin/python # -*- coding: utf-8 -*- """ Author: <NAME> Email: <EMAIL> Updated: <NAME> Email: <EMAIL> """ import logging import os from math import log import cv2 import numpy as np import numpy.linalg as la from scipy.spatial import distance as spd import pywt import Tyf import tifffile as tiff import rawpy class Image(object): """ Image class Attributes: full path original image, may be uint16 type fullsize gray image exif info, Tyf.TiffFile type image features """ def __init__(self, full_path): super(Image, self).__init__() self.full_path = full_path self.dir, self.name = os.path.split(full_path) self.focal_len = None self.features = {} self.tf = None _, ext = os.path.splitext(full_path) if ext.lower() in (".tiff", ".tif") and os.path.isfile(full_path): self.original_image, self.exif_info = ImageProcessing.read_tif_image(full_path) gray_img = cv2.cvtColor(self.original_image, cv2.COLOR_RGB2GRAY) self.fullsize_gray_image = ImageProcessing.convert_to_float(gray_img) elif ext.lower() in (".nef", ".arw", "cr2") and os.path.isfile(full_path): self.original_image, self.exif_info = ImageProcessing.read_raw_image(full_path) gray_img = cv2.cvtColor(self.original_image, cv2.COLOR_RGB2GRAY) self.fullsize_gray_image = ImageProcessing.convert_to_float(gray_img) else: self.original_image = None self.fullsize_gray_image = None self.exif_info = None self.reset_all() def reset_focal_length(self): f = self.get_exif_value("FocalLength") if f and len(f) == 2: self.focal_len = f[0] * 1.0 / f[1] elif f and len(f) == 1: self.focal_len = f[0] else: self.focal_len = None def reset_all(self): self.reset_focal_length() self.features = {} self.tf = None def get_exif_value(self, name): if not self.exif_info: return None info = self.exif_info[0].find(name) if not info: return None else: return info.value class DataModel(object): # Align options AUTO_MASK = 1 ALIGN_STARS = 2 ALIGN_GROUND = 3 # Display options ORIGINAL_IMAGE = 1 def __init__(self): super(DataModel, self).__init__() self.logger = logging.getLogger(self.__class__.__name__) self.images = [] self.ref_ind = 0 self.image_dir = None self.final_sky_img = None # Of type double self.final_ground_img = None # Of type double # For concurrency issue self.is_adding_image = False # Other GUI options self.merge_option_type = self.ALIGN_STARS def add_image(self, path): self.logger.debug("add_image()") img_dir, name = os.path.split(path) if not os.path.exists(path) or not os.path.isfile(path): self.logger.error("File %s does not exist!", path) return False for img in self.images: if path == img.full_path: self.logger.info("Image already exists. File: %s", path) return False if self.is_adding_image: return False self.is_adding_image = True img = Image(path) focal_len = img.get_exif_value("FocalLength") self.images.append(img) self.logger.debug("Loading image %s... Focal length = %s", name, focal_len) if not self.image_dir: self.image_dir = img_dir self.is_adding_image = False return True def update_final_sky(self, img): self.logger.debug("update_final_sky()") self.final_sky_num += 1 if self.final_sky_img is None and self.final_sky_num == 1: self.final_sky_img = np.copy(img) elif self.final_sky_img is not None and self.final_sky_num > 0: # self.final_sky_img = np.fmax(self.final_sky_img, img) self.final_sky_img = self.final_sky_img / self.final_sky_num * (self.final_sky_num - 1) + img / self.final_sky_num def update_final_ground(self, img): self.logger.debug("update_final_ground()") self.final_ground_num += 1 if self.final_ground_img is None and self.final_ground_num == 1: self.final_ground_img = np.copy(img) elif self.final_ground_img is not None and self.final_ground_num > 0: self.final_ground_img = self.final_ground_img / self.final_ground_num * (self.final_ground_num - 1) + img / self.final_ground_num def clear_images(self): self.logger.debug("clear_images()") self.images = [] self.reset_final_sky() self.reset_final_ground() self.image_dir = None self.ref_ind = 0 self.is_adding_image = False def reset_final_sky(self): self.logger.debug("reset_final_sky()") self.final_sky_img = None self.final_sky_num = 0 def reset_final_ground(self): self.logger.debug("reset_final_ground()") self.final_ground_img = None self.final_ground_num = 0 def reset_result(self): self.logger.debug("reset_result()") self.reset_final_sky() self.reset_final_ground() for img in self.images: img.features = {} def has_image(self): res = len(self.images) > 0 self.logger.debug("has_image(): %s", res) return res def iter_images(self): self.logger.debug("iter_images()") return iter(self.images) def total_images(self): res = len(self.images) self.logger.debug("total_images(): %s", res) return res def has_sky_result(self): res = self.final_sky_img is not None self.logger.debug("has_sky_result(): %s", res) return res def has_ground_result(self): res = self.final_ground_img is not None self.logger.debug("has_ground_result(): %s", res) return res class ImageProcessing(object): def __init__(self): super(ImageProcessing, self).__init__() @staticmethod def wavelet_dec_rec(img_blr, resize_factor=0.25): ''' wavelet_dec_rec Take a picture, does a wavelet decompsition, remove the low frequency (approximation) and highest details (noises) and return the recomposed picture ''' img_shape = img_blr.shape need_resize = abs(resize_factor - 1) > 0.001 level = int(6 - log(1 / resize_factor, 2)) if need_resize: img_blr_resize = cv2.resize(img_blr, None, fx=resize_factor, fy=resize_factor) else: img_blr_resize = img_blr coeffs = pywt.wavedec2(img_blr_resize, "db8", level=level) #remove the low freq (approximation) coeffs[0].fill(0) #remove the highest details (noise??) coeffs[-1][0].fill(0) coeffs[-1][1].fill(0) coeffs[-1][2].fill(0) img_rec_resize = pywt.waverec2(coeffs, "db8") if need_resize: img_rec = cv2.resize(img_rec_resize, (img_shape[1], img_shape[0])) else: img_rec = img_rec_resize return img_rec @staticmethod def detect_star_points(img_gray, mask=None, resize_length=2200): logging.debug("detect_star_point()") logging.debug("resize_length = %s", resize_length) sigma = 2 img_shape = img_gray.shape img_blr = cv2.GaussianBlur(img_gray, (9, 9), sigma) img_blr_mean=np.mean(img_blr) img_blr_range=np.max(img_blr) - np.min(img_blr) img_blr = (img_blr - img_blr_mean) / img_blr_range resize_factor = 1 while max(img_shape) * resize_factor > resize_length: resize_factor /= 2 logging.debug("Calculating mask...") tmp_mask = cv2.resize(img_gray, None, fx=resize_factor, fy=resize_factor) tmp_mask_10percent=np.percentile(tmp_mask, 10) tmp_mask = (tmp_mask < min(tmp_mask_10percent, 0.15)).astype(np.uint8) * 255 ## tmp_mask = np.logical_and(tmp_mask < np.percentile(tmp_mask, 10), tmp_mask < 0.15).astype(np.uint8) * 255 logging.debug("Mask logical selection complete") dilate_size = int(max(img_shape) * 0.02 * resize_factor * 5) tmp_mask = 255 - cv2.dilate(tmp_mask, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (dilate_size, dilate_size))) tmp_mask = cv2.resize(tmp_mask, (img_shape[1], img_shape[0])) if mask is None: mask = tmp_mask > 127 else: mask = np.logical_and(tmp_mask > 127, mask > 0) logging.debug("Mask calculation Complete") mask_rate = np.sum(mask) * 100.0 / np.prod(mask.shape) logging.debug("mask rate: %.2f", mask_rate) if mask_rate < 50: mask = np.ones(tmp_mask.shape, dtype="bool") while True: try: ## img_rec = ImageProcessing.wavelet_dec_rec(contrast_img, resize_factor=resize_factor) * mask img_rec = ImageProcessing.wavelet_dec_rec(img_blr, resize_factor=resize_factor) * mask bw = ((img_rec > np.percentile(img_rec[mask], 99.5)) * mask).astype(np.uint8) * 255 bw = cv2.morphologyEx(bw, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) contours, _ = cv2.findContours(np.copy(bw), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) contours = [contour for contour in contours if len(contour) > 5] logging.debug("%d star points detected", len(contours)) if len(contours) > 400: break else: raise ValueError("No enough points") except ValueError as e: if resize_factor >= 1: raise ValueError("Cannot detect enough star points:" + str(e)) else: resize_factor *= 2 logging.debug("resize factor = %f", resize_factor) #elps - match contours to an ellipse. Return a Box2D - coordinates of a rotated rectangle - 3x tuples #first tuple is the center of the box, the second gives the width and the height and the last is the angle. elps = [cv2.fitEllipse(contour) for contour in contours] #centroids - the "center" of the ellipses centroids = np.array([e[0] for e in elps]) #areas - the areas of the contours, but 0.5*len(contour)? areas = np.array([cv2.contourArea(contour) + 0.5 * len(contour) for contour in contours]) #eccentricities - how irregular the ellipse is. eccentricities = np.sqrt(np.array([1 - (elp[1][0] / elp[1][1]) ** 2 for elp in elps])) # Calculate "intensity" mask = np.zeros(bw.shape, np.uint8) intensities = np.zeros(areas.shape) for i in range(len(contours)): cv2.drawContours(mask, contours[i], 0, 255, -1) #It is a straight rectangle, it doesn't consider the rotation of the object. . #Let (x,y) be the top-left coordinate of the rectangle and (w,h) be its width and height. #x,y,w,h = cv2.boundingRect(cnt) rect = cv2.boundingRect(contours[i]) val = cv2.mean(img_rec[rect[1]:rect[1] + rect[3] + 1, rect[0]:rect[0] + rect[2] + 1], mask[rect[1]:rect[1] + rect[3] + 1, rect[0]:rect[0] + rect[2] + 1]) mask[rect[1]:rect[1] + rect[3] + 1, rect[0]:rect[0] + rect[2] + 1] = 0 intensities[i] = val[0] valid_stars = np.logical_and(areas > 20, areas < 200, eccentricities < .8) valid_stars = np.logical_and(valid_stars, areas > np.percentile(areas, 20), intensities > np.percentile(intensities, 20)) star_pts = centroids[valid_stars] # [x, y] print("Final star points = {0}".format(len(star_pts))) areas = areas[valid_stars] intensities = intensities[valid_stars] return star_pts, areas * intensities @staticmethod def convert_to_spherical_coord(star_pts, img_size, focal_length,crop_factor=1.0): ''' convert_to_spherical_coord Input: start_pts: np array of start points in x,y coodinates img_size: image size in pixels focal_length: focal length, the "real focal length" before crop factor. In real life no real effect observed. crop_factor: sensor crop factor. In real life no real effect is observed. Output: theta and phi in spherical corrdinates. ''' logging.debug("convert_coord_img_sph(Focal length {0}, crop_factor {1})".format(focal_length,crop_factor)) FullFrameSensorWidth=36 #Full frame sensor width is 36mm sensorSize=FullFrameSensorWidth/crop_factor #Actual sensor size PPMM = np.max(img_size)/sensorSize #Pixels per mm p0 = (star_pts - img_size / 2.0) #Adjust start x,y coords to the middle of lens p=p0/PPMM #Convert coordinates to mm ## p0 = (star_pts - img_size / 2.0) / (np.max(img_size) / 2) ## p = p0 * 18 # Fullframe half size, 18mm ## p = p0 * 18 / crop_factor # Fullframe half size, 18mm, with crop factor 1.5 #Now, with the original point in the center of lens, the x,y,z is actually focal_length,x, y #therefore, tan(theta) = x/focal_length #ro**2 = x**2 + y**2 + focal_length **2, and #sin(phi) = y/ro = y/sqrt(x**2 + y**2 + focal_length **2) theta = np.arctan2(p[:, 0], focal_length) phi = np.arcsin(p[:, 1] / np.sqrt(np.sum(p ** 2, axis=1) + focal_length ** 2)) return np.stack((theta, phi), axis=-1) @staticmethod def extract_point_features(sph, vol, k=15): ''' extract_point_features Calculate the "features", or signatures of each starpoint Identified by the angles (theta) and distances (ro) to K "neighbors" input: sph: Spherical coordinates, theta([:0]) and phi ([:1]) vol: "Volume", i.e. the product of area and intensity/average luminosity k: number of "neighbors" output: Array of "features" of each star point derived from relationship between K neighbors: theta: angle from the star point rho: distance from the star point vol: volume ''' logging.debug("extract_point_features()") pts_num = len(sph) #convert theta,phi to x,y,z, assuming ro is 1 vec = np.stack((np.cos(sph[:, 1]) * np.cos(sph[:, 0]), np.cos(sph[:, 1]) * np.sin(sph[:, 0]),
np.sin(sph[:, 1])
numpy.sin
# -*- coding: utf-8 -*- import gc import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt import seaborn as sns import datetime import lightgbm as lgb from scipy import stats from sklearn.model_selection import train_test_split, StratifiedKFold, KFold, cross_val_score, GridSearchCV, RepeatedStratifiedKFold from sklearn.preprocessing import StandardScaler import os import plotly.offline as py import plotly.graph_objs as go import plotly.tools as tls import xgboost as xgb import lightgbm as lgb from catboost import CatBoostClassifier from sklearn import model_selection from sklearn.metrics import accuracy_score, roc_auc_score from sklearn import metrics import json import ast import time from sklearn import linear_model import eli5 from eli5.sklearn import PermutationImportance import shap from tqdm import tqdm_notebook from mlxtend.feature_selection import SequentialFeatureSelector as SFS from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs from sklearn.neighbors import NearestNeighbors from sklearn.feature_selection import GenericUnivariateSelect, SelectPercentile, SelectKBest, f_classif, mutual_info_classif, RFE import statsmodels.api as sm import warnings warnings.filterwarnings('ignore') from src.util.log_util import set_logger logger = set_logger(__name__) def calculate_metrics(model, X_train: pd.DataFrame() = None, y_train: pd.DataFrame() = None, X_valid: pd.DataFrame() = None, y_valid: pd.DataFrame() = None, columns: list = []) -> pd.DataFrame(): columns = columns if len(columns) > 0 else list(X_train.columns) train_pred = model.predict_proba(X_train[columns]) valid_pred = model.predict_proba(X_valid[columns]) f1 = 0 best_t = 0 for t in np.arange(0.1, 1, 0.05): valid_pr = (valid_pred[:, 1] > t).astype(int) valid_f1 = metrics.f1_score(y_valid, valid_pr) if valid_f1 > f1: f1 = valid_f1 best_t = t t = best_t train_pr = (train_pred[:, 1] > t).astype(int) valid_pr = (valid_pred[:, 1] > t).astype(int) train_f1 = metrics.f1_score(y_train, train_pr) valid_f1 = metrics.f1_score(y_valid, valid_pr) score_df = [] print(f'Best threshold: {t:.2f}. Train f1: {train_f1:.4f}. Valid f1: {valid_f1:.4f}.') score_df.append(['F1', np.round(train_f1, 4), np.round(valid_f1, 4)]) train_r = metrics.recall_score(y_train, train_pr) valid_r = metrics.recall_score(y_valid, valid_pr) score_df.append(['Recall', np.round(train_r, 4), np.round(valid_r, 4)]) train_p = metrics.precision_score(y_train, train_pr) valid_p = metrics.precision_score(y_valid, valid_pr) score_df.append(['Precision', np.round(train_p, 4),
np.round(valid_p, 4)
numpy.round
import os from pathlib import Path import numpy as np from nose import tools from photomanip import PAD, CROP from photomanip.grouper import FileSystemGrouper from photomanip.manipulator import ImageManipulatorSKI class TestIMKSI: @classmethod def setup_class(cls): cls.fs_grouper = FileSystemGrouper('photomanip/tests/') cls.im_ski = ImageManipulatorSKI() cls.color_test_image = np.ones((111, 131, 3), dtype=np.bool) cls.bw_test_image_3 = np.ones((111, 131, 1), dtype=np.bool) cls.bw_test_image_1 = np.ones((111, 131), dtype=np.bool) cls.ski_pad_fname = Path('photomanip/tests/year_pad_ski.jpeg') cls.ski_crop_fname = Path('photomanip/tests/year_crop_ski.jpeg') @classmethod def teardown_class(cls): os.unlink(cls.ski_pad_fname) os.unlink(cls.ski_crop_fname) def test_even_image(self): # color image test_image = self.im_ski._even_image(self.color_test_image) tools.eq_(test_image.shape, (110, 130, 3)) # bw image test_image = self.im_ski._even_image(self.bw_test_image_3) tools.eq_(test_image.shape, (110, 130, 1)) test_image = self.im_ski._even_image(self.bw_test_image_1) tools.eq_(test_image.shape, (110, 130, 1)) def test_pad_image(self): # color image test_image = self.im_ski._pad_image(self.color_test_image, 200) tools.eq_(test_image.shape, (200, 200, 3)) # bw image test_image = self.im_ski._pad_image(self.bw_test_image_3, 200) tools.eq_(test_image.shape, (200, 200, 1)) test_image = self.im_ski._pad_image(self.bw_test_image_1, 200) tools.eq_(test_image.shape, (200, 200, 1)) def test_square_image(self): # color image test_image = self.im_ski._even_image(self.color_test_image) test_image = self.im_ski._square_image(test_image, 100) tools.eq_(test_image.shape, (100, 100, 3)) # bw image test_image = self.im_ski._even_image(self.bw_test_image_3) test_image = self.im_ski._square_image(test_image, 100) tools.eq_(test_image.shape, (100, 100, 1)) test_image = self.im_ski._even_image(self.bw_test_image_1) test_image = self.im_ski._square_image(test_image, 100) tools.eq_(test_image.shape, (100, 100, 1)) def test_split_scale_image(self): # color image test_image = self.im_ski.split_scale_image( self.color_test_image * 3, 3 ) tools.eq_(
np.any(test_image != 1)
numpy.any
# unit tests for iteration_tools.py import pytest import os import netCDF4 import numpy as np import matplotlib.pyplot as plt import unittest.mock as mock from pyDeltaRCM.model import DeltaModel from . import utilities class TestSolveWaterAndSedimentTimestep: def test_solve_water_and_sediment_timestep_defaults(self, tmp_path): # create a delta with default settings p = utilities.yaml_from_dict(tmp_path, 'input.yaml') delta = DeltaModel(input_file=p) # mock top-level methods, verify call was made to each delta.log_info = mock.MagicMock() delta.init_water_iteration = mock.MagicMock() delta.run_water_iteration = mock.MagicMock() delta.compute_free_surface = mock.MagicMock() delta.finalize_water_iteration = mock.MagicMock() delta.route_sediment = mock.MagicMock() # run the timestep delta.solve_water_and_sediment_timestep() # assert that methods are called assert delta.init_water_iteration.called is True assert delta.run_water_iteration.called is True assert delta.compute_free_surface.called is True assert delta.finalize_water_iteration.called is True _calls = [mock.call(0), mock.call(1), mock.call(2)] delta.finalize_water_iteration.assert_has_calls( _calls, any_order=False) assert delta.finalize_water_iteration.call_count == 3 assert (delta.route_sediment.called is True) assert (delta._is_finalized is False) def test_solve_water_and_sediment_timestep_itermax_10(self, tmp_path): # create a delta with different itermax p = utilities.yaml_from_dict(tmp_path, 'input.yaml', {'itermax': 10}) delta = DeltaModel(input_file=p) # mock top-level methods, verify call was made to each delta.log_info = mock.MagicMock() delta.init_water_iteration = mock.MagicMock() delta.run_water_iteration = mock.MagicMock() delta.compute_free_surface = mock.MagicMock() delta.finalize_water_iteration = mock.MagicMock() delta.route_sediment = mock.MagicMock() # run the timestep delta.solve_water_and_sediment_timestep() # assert that methods are called assert delta.init_water_iteration.called is True assert delta.run_water_iteration.called is True assert delta.compute_free_surface.called is True assert delta.finalize_water_iteration.called is True _calls = [mock.call(i) for i in range(10)] delta.finalize_water_iteration.assert_has_calls( _calls, any_order=False) assert delta.finalize_water_iteration.call_count == 10 assert (delta.route_sediment.called is True) assert (delta._is_finalized is False) def test_run_one_timestep_deprecated(self, tmp_path): # create a delta with default settings p = utilities.yaml_from_dict(tmp_path, 'input.yaml') _delta = DeltaModel(input_file=p) # mock top-level methods _delta.logger = mock.MagicMock() _delta.solve_water_and_sediment_timestep = mock.MagicMock() # check warning raised with pytest.warns(UserWarning): _delta.run_one_timestep() # and logged assert (_delta.logger.warning.called is True) class TestFinalizeTimestep: def test_finalize_timestep(self, tmp_path): # create a delta with default settings p = utilities.yaml_from_dict(tmp_path, 'input.yaml', {'SLR': 0.001}) delta = DeltaModel(input_file=p) # mock the flooding correction and log delta.log_info = mock.MagicMock() delta.flooding_correction = mock.MagicMock() # run the step delta.finalize_timestep() # assert submethod called once delta.flooding_correction.call_count == 1 # check that sea level rose as expected assert delta.H_SL == 25 class TestApplyingSubsidence: def test_subsidence_in_update(self, tmp_path): # create a delta with subsidence parameters p = utilities.yaml_from_dict(tmp_path, 'input.yaml', {'toggle_subsidence': True, 'subsidence_rate': 1e-8, 'start_subsidence': 0, 'save_eta_grids': True, 'seed': 0}) _delta = DeltaModel(input_file=p) # mock the timestep computations _delta.solve_water_and_sediment_timestep = mock.MagicMock() assert _delta.dt == 25000 assert _delta.subsidence_rate == 1e-8 assert np.all(_delta.sigma[:_delta.L0, :] == 0.0) # outside the sigma mask assert np.all(_delta.sigma[_delta.L0:, :] == 0.00025) # inside the sigma mask assert
np.all(_delta.eta[_delta.L0:, :] == -_delta.h0)
numpy.all
## Portions of Code from, copyright 2018 <NAME> from __future__ import absolute_import, division, print_function import torch import numpy as np from scipy import ndimage import png def numpy2torch(array): assert(isinstance(array, np.ndarray)) if array.ndim == 3: array = np.transpose(array, (2, 0, 1)) else: array =
np.expand_dims(array, axis=0)
numpy.expand_dims
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for slater_determinants.py.""" from __future__ import absolute_import import numpy import unittest from scipy.linalg import qr from openfermion.utils import (fermionic_gaussian_decomposition, givens_decomposition) from openfermion.utils._slater_determinants import ( diagonalizing_fermionic_unitary, double_givens_rotate, givens_rotate, swap_rows) class GivensDecompositionTest(unittest.TestCase): def test_bad_dimensions(self): m, n = (3, 2) # Obtain a random matrix of orthonormal rows x = numpy.random.randn(m, m) y = numpy.random.randn(m, m) A = x + 1.j*y Q, R = qr(A) Q = Q[:m, :n] with self.assertRaises(ValueError): V, givens_rotations, diagonal = givens_decomposition(Q) def test_identity(self): n = 3 Q = numpy.eye(n, dtype=complex) V, givens_rotations, diagonal = givens_decomposition(Q) # V should be the identity I = numpy.eye(n, dtype=complex) for i in range(n): for j in range(n): self.assertAlmostEqual(V[i, j], I[i, j]) # There should be no Givens rotations self.assertEqual(givens_rotations, list()) # The diagonal should be ones for d in diagonal: self.assertAlmostEqual(d, 1.) def test_antidiagonal(self): m, n = (3, 3) Q = numpy.zeros((m, n), dtype=complex) Q[0, 2] = 1. Q[1, 1] = 1. Q[2, 0] = 1. V, givens_rotations, diagonal = givens_decomposition(Q) # There should be no Givens rotations self.assertEqual(givens_rotations, list()) # VQ should equal the diagonal VQ = V.dot(Q) D = numpy.zeros((m, n), dtype=complex) D[numpy.diag_indices(m)] = diagonal for i in range(n): for j in range(n): self.assertAlmostEqual(VQ[i, j], D[i, j]) def test_3_by_3(self): m, n = (3, 3) # Obtain a random matrix of orthonormal rows x = numpy.random.randn(n, n) y = numpy.random.randn(n, n) A = x + 1.j*y Q, R = qr(A) Q = Q[:m, :] # Get Givens decomposition of Q V, givens_rotations, diagonal = givens_decomposition(Q) # There should be no Givens rotations self.assertEqual(givens_rotations, list()) # Compute V * Q * U^\dagger W = V.dot(Q) # Construct the diagonal matrix D = numpy.zeros((m, n), dtype=complex) D[
numpy.diag_indices(m)
numpy.diag_indices
import RPi.GPIO as GPIO from time import sleep import pybullet as p import pybullet_data import numpy as np import Encoder import argparse # Motor-------------------------------------- pwm_frequency = 1000 encoder_count_per_rotation = 810 # constants Ts = 23.5/1000 # Nm (stall torque) Is = 1.8 # A (stall current) R = 8.4 # Ohm V = 12 # Voltage [V] noLoadCurr = 70/1000 # A noLoadSpeed = 7000*2*np.pi/60 # rad / s Kt = Ts/Is Ke = (V - R*noLoadCurr)/noLoadSpeed # V0 = R/Kt*force0 +Ke*v0 # V1 = R/Kt*force1 +Ke*v1 # V2 = R/Kt*force2 +Ke*v2 # GPIOs-------------------------------------- # First Motor related motor_driver_0_reverse_enable_pin = 4 # GPIO 4 motor_driver_0_forward_enable_pin = 17 # GPIO 17 motor_driver_0_reverse_pwm_pin = 27 # GPIO 27 motor_driver_0_forward_pwm_pin = 22 # GPIO 22 motor_0_Encoder_A_pin = 18 # GPIO 18 motor_0_Encoder_B_pin = 23 # GPIO 23 # Second Motor related motor_driver_1_reverse_enable_pin = 10 # GPIO 10 motor_driver_1_forward_enable_pin = 9 # GPIO 9 motor_driver_1_reverse_pwm_pin = 11 # GPIO 11 motor_driver_1_forward_pwm_pin = 5 # GPIO 5 motor_1_Encoder_A_pin = 24 # GPIO 24 motor_1_Encoder_B_pin = 25 # GPIO 25 # Third Motor related motor_driver_2_reverse_enable_pin = 6 # GPIO 6 motor_driver_2_forward_enable_pin = 13 # GPIO 13 motor_driver_2_reverse_pwm_pin = 19 # GPIO 19 motor_driver_2_forward_pwm_pin = 26 # GPIO 26 motor_2_Encoder_A_pin = 12 # GPIO 12 motor_2_Encoder_B_pin = 16 # GPIO 16 # GPIO initialization-------------------------------------- GPIO.setmode(GPIO.BCM) # First Motor related GPIO.setup(motor_driver_0_reverse_enable_pin, GPIO.OUT) GPIO.setup(motor_driver_0_forward_enable_pin, GPIO.OUT) GPIO.setup(motor_driver_0_reverse_pwm_pin, GPIO.OUT) GPIO.setup(motor_driver_0_forward_pwm_pin, GPIO.OUT) GPIO.setup(motor_0_Encoder_A_pin, GPIO.IN) GPIO.setup(motor_0_Encoder_B_pin, GPIO.IN) motor_0_encoder = Encoder.Encoder(motor_0_Encoder_A_pin, motor_0_Encoder_B_pin) motor_driver_0_reverse_pwm = GPIO.PWM(motor_driver_0_reverse_pwm_pin, pwm_frequency) motor_driver_0_forward_pwm = GPIO.PWM(motor_driver_0_forward_pwm_pin, pwm_frequency) # Second Motor related GPIO.setup(motor_driver_1_reverse_enable_pin, GPIO.OUT) GPIO.setup(motor_driver_1_forward_enable_pin, GPIO.OUT) GPIO.setup(motor_driver_1_reverse_pwm_pin, GPIO.OUT) GPIO.setup(motor_driver_1_forward_pwm_pin, GPIO.OUT) GPIO.setup(motor_1_Encoder_A_pin, GPIO.IN) GPIO.setup(motor_1_Encoder_B_pin, GPIO.IN) motor_1_encoder = Encoder.Encoder(motor_1_Encoder_A_pin, motor_1_Encoder_B_pin) motor_driver_1_reverse_pwm = GPIO.PWM(motor_driver_1_reverse_pwm_pin, pwm_frequency) motor_driver_1_forward_pwm = GPIO.PWM(motor_driver_1_forward_pwm_pin, pwm_frequency) # Third Motor related GPIO.setup(motor_driver_2_reverse_enable_pin, GPIO.OUT) GPIO.setup(motor_driver_2_forward_enable_pin, GPIO.OUT) GPIO.setup(motor_driver_2_reverse_pwm_pin, GPIO.OUT) GPIO.setup(motor_driver_2_forward_pwm_pin, GPIO.OUT) GPIO.setup(motor_2_Encoder_A_pin, GPIO.IN) GPIO.setup(motor_2_Encoder_B_pin, GPIO.IN) motor_2_encoder = Encoder.Encoder(motor_2_Encoder_A_pin, motor_2_Encoder_B_pin) motor_driver_2_reverse_pwm = GPIO.PWM(motor_driver_2_reverse_pwm_pin, pwm_frequency) motor_driver_2_forward_pwm = GPIO.PWM(motor_driver_2_forward_pwm_pin, pwm_frequency) motor_driver_2_forward_pwm.start(0) motor_driver_2_forward_pwm.changeDutyCycle() # End of initialization-------------------------------------- # Argument Parsing------------------------------------------- parser = argparse.ArgumentParser() parser.add_argument('x', type=float, help='1st target end effector world coordinate x') parser.add_argument('y', type=float, help='1st target end effector world coordinate y') parser.add_argument('z', type=float, help='1st target end effector world coordinate z') parser.add_argument('--weight', type = float, help = 'set payload weight to pick up') args = parser.parse_args() # Argument Conversion------------------------------------------- target = [args.x,args.y,args.z] destination = [-args.x,args.y,args.z] offsetJoint3 = -10*np.pi/180 tol = 1e-2 # Can alternatively pass in p.DIRECT # client = p.connect(p.GUI) client = p.connect(p.DIRECT) p.setGravity(0, 0, -9.81, physicsClientId=client) p.setAdditionalSearchPath(pybullet_data.getDataPath()) planeId = p.loadURDF("plane.urdf") ''' LOAD ''' flags = p.URDF_USE_SELF_COLLISION bodyId = p.loadURDF("./data/Arm_Final_Planet_hook/urdf/Arm_Final_Planet_hook.urdf", basePosition=[0,0,0],useFixedBase=True,flags=flags) ''' LOAD ''' position, orientation = p.getBasePositionAndOrientation(bodyId) numJoints = p.getNumJoints(bodyId) print("number of joints = ",numJoints) # Variable Declaration------------------------------------------- torqueLog0 = [] torqueLog1 = [] torqueLog2 = [] errorLog0 = [] errorLog1 = [] errorLog2 = [] angLog0 = [] angLog1 = [] angLog2 = [] minE = [] prev_error0 = 0 prev_error1 = 0 prev_error2 = 0 cumul_e0 = 0 cumul_e1 = 0 cumul_e2 = 0 # Parameters------------------------------------------- # First Motor related kp0 = 2e-2 ki0 = 1e-8 kd0 = 2e-2 # Second Motor related kp1 = 3e-2 ki1 = 1e-7 kd1 = 4e-2 # Third Motor related kp2 = 2e-2 ki2 = 1e-4 kd2 = 2e-2 # prevPose = [0, 0, 0] # prevPose1 = [0, 0, 0] trailDuration = 15 hasPrevPose = 0 p.enableJointForceTorqueSensor(bodyId,0) p.enableJointForceTorqueSensor(bodyId,1) p.enableJointForceTorqueSensor(bodyId,2) maxForce = 0 p.setJointMotorControl2(bodyId, 0,controlMode=p.VELOCITY_CONTROL, force=maxForce) p.setJointMotorControl2(bodyId, 1,controlMode=p.VELOCITY_CONTROL, force=maxForce) p.setJointMotorControl2(bodyId, 2,controlMode=p.VELOCITY_CONTROL, force=maxForce) ind,Name,tp,qInd,uInd,flags,damp, \ friction,ll,ul,maxF,maxV,linkName, \ ax,parPos,parOrn,ParInd = p.getJointInfo(bodyId,0) p.changeDynamics(bodyId,0, rollingFriction = 1e-5, spinningFriction = 1e-4) p.changeDynamics(bodyId,1,jointLowerLimit = -np.pi,jointUpperLimit = np.pi, rollingFriction = 1e-5,spinningFriction = 1e-2) p.changeDynamics(bodyId,2,jointLowerLimit = -np.pi,jointUpperLimit = np.pi, rollingFriction = 1e-5,spinningFriction = 1e-2) ee_mass = p.getDynamicsInfo(bodyId,3)[0] print("mass of end effector : ", ee_mass) targetORN = np.asarray( p.calculateInverseKinematics(bodyId,3,target) ) destORN = np.asarray( p.calculateInverseKinematics(bodyId,3,destination) ) if(targetORN[1]>0): targetORN[1]*= -1 print("inverting target joint 1 angle") targetORN[0]+=np.pi print("180 target rotating joint 0") if(targetORN[2]>0): print("inverting target joint 2 angle") targetORN[2]*=-1 if(destORN[1]>0): destORN[1]*= -1 print("inverting dest joint 1 angle") destORN[0]+=np.pi print("180 dest rotating joint 0") if(destORN[2]>0): print("inverting dest joint 2 angle") destORN[2]*=-1 print("target pos 0 (deg.):",targetORN[0]*180/np.pi) print("target pos 1 (deg.):",targetORN[1]*180/np.pi) print("target pos 2 (deg.):",targetORN[2]*180/np.pi) print("destination pos 0 (deg.):",destORN[0]*180/np.pi) print("destination pos 1 (deg.):",destORN[1]*180/np.pi) print("destination pos 2 (deg.):",destORN[2]*180/np.pi) state1 = False a1 = False state2 = False a2 = False state3 = False a3 = False state4 = False a4 = False payload = args.weight duration = 30000 p.setRealTimeSimulation(0) # t0 = time.time() # dt = 1/240 termTime = 0 dt = 0.05 # 50ms per loop def main(): # pos, ori = p.getBasePositionAndOrientation(bodyId) if state1==False and a1 == False: targetORN[2]+=offsetJoint3 a1 = True print("Attempting at state 1 . . .") elif state1==True and state2==False and a2==False: targetORN[2]-=offsetJoint3 a2 = True print("Attempting at state 2 . . .") elif state2==True and state3==False and a3==False: targetORN = destORN a3 = True print("Attempting at state 3 . . .") elif state3==True and state4==False and a4==False: print("Reached state 3, attempting to place the load and disengage . . .") a4 = True targetORN[1]-=0.5*offsetJoint3 targetORN[2]+=2*offsetJoint3 pos = [0,0,0] pos0,vel0,RF0,torque0 = p.getJointState(bodyId,0) pos1,vel1,RF1,torque1 = p.getJointState(bodyId,1) pos2,vel2,RF2,torque2 = p.getJointState(bodyId,2) ''' For PID ''' error0 = targetORN[0]-pos0 error1 = targetORN[1]-pos1 error2 = targetORN[2]-pos2 # Divide this by actual step size when we control real robot. de0 = error0 - prev_error0 de1 = error1 - prev_error1 de2 = error2 - prev_error2 cumul_e0 += error0 cumul_e1 += error1 cumul_e2 += error2 ''' We Need angle and velocity for this: pos, vel ''' # radians = (enccoder value / encoder_count_per_rotation) * 2*Pi pos0 = (motor_0_encoder.read() / encoder_count_per_rotation) * 2*np.pi # rad vel0 = pos0 / dt # rad/s pos1 = (motor_1_encoder.read() / encoder_count_per_rotation) * 2*np.pi # rad vel1 = pos1 / dt # rad/s pos2 = (motor_2_encoder.read() / encoder_count_per_rotation) * 2*np.pi # rad vel2 = pos2 / dt # rad/s tau0,tau1,tau2 = p.calculateInverseDynamics(bodyId, [pos0,pos1,pos2], [vel0,vel1,vel2], [0,0,0]) ''' PID ''' T0 = kp0*(error0) + kd0*(de0/dt) + ki0*cumul_e0 T1 = kp1*(error1) + kd1*(de1/dt) + ki1*cumul_e1 T2 = kp2*(error2) + kd2*(de2/dt) + ki2*cumul_e2 prev_error0 = error0 prev_error1 = error1 prev_error2 = error2 #### #### # tau0 = 0 force0 = T0 + tau0 force1 = T1 + tau1 force2 = T2 + tau2 p.setJointMotorControl2(bodyId,0,controlMode = p.TORQUE_CONTROL, force = force0) p.setJointMotorControl2(bodyId,1,controlMode = p.TORQUE_CONTROL, force = force1) p.setJointMotorControl2(bodyId,2,controlMode = p.TORQUE_CONTROL, force = force2) errorLog0.append(error0*180/np.pi) errorLog1.append(error1*180/np.pi) errorLog2.append(error2*180/np.pi) torqueLog0.append(force0) torqueLog1.append(force1) torqueLog2.append(force2) angLog0.append(pos0*180/np.pi) angLog1.append(pos1*180/np.pi) angLog2.append(pos2*180/np.pi) minE.append(False) if (np.abs(vel0)+np.abs(vel1)+np.abs(vel2)) <tol and \ (np.abs(error0)+
np.abs(error1)
numpy.abs
import pytest import numpy import scipy from numpy.testing import assert_allclose from jadapy import jdqz from jadapy import Target from jadapy.utils import norm REAL_DTYPES = [numpy.float32, numpy.float64] COMPLEX_DTYPES = [numpy.complex64, numpy.complex128] DTYPES = REAL_DTYPES + COMPLEX_DTYPES def generate_random_dtype_array(shape, dtype): if dtype in COMPLEX_DTYPES: return (numpy.random.rand(*shape) + numpy.random.rand(*shape) * 1.0j).astype(dtype) return numpy.random.rand(*shape).astype(dtype) def generate_test_matrix(shape, dtype): a = generate_random_dtype_array(shape, dtype) a += 3 * numpy.diag(numpy.ones([shape[0]], dtype)) return a @pytest.mark.parametrize('dtype', DTYPES) def test_jdqz_smallest_magnitude(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) b = generate_test_matrix([n, n], dtype) alpha, beta = jdqz.jdqz(a, b, num=k, tol=tol) jdqz_eigs = numpy.array(sorted(alpha / beta, key=lambda x: abs(x))) eigs = scipy.linalg.eigvals(a, b) eigs = numpy.array(sorted(eigs, key=lambda x: abs(x))) eigs = eigs[:k] assert_allclose(jdqz_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqz_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqz_largest_magnitude(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) b = generate_test_matrix([n, n], dtype) alpha, beta = jdqz.jdqz(a, b, k, Target.LargestMagnitude, tol=tol) jdqz_eigs = numpy.array(sorted(alpha / beta, key=lambda x: -abs(x))) eigs = scipy.linalg.eigvals(a, b) eigs = numpy.array(sorted(eigs, key=lambda x: -abs(x))) eigs = eigs[:k] assert_allclose(jdqz_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqz_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqz_smallest_real(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) b = generate_test_matrix([n, n], dtype) alpha, beta = jdqz.jdqz(a, b, k, Target.SmallestRealPart, tol=tol) jdqz_eigs = numpy.array(sorted(alpha / beta, key=lambda x: x.real)) eigs = scipy.linalg.eigvals(a, b) eigs = numpy.array(sorted(eigs, key=lambda x: x.real)) eigs = eigs[:k] assert_allclose(jdqz_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqz_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqz_largest_real(dtype):
numpy.random.seed(1234)
numpy.random.seed
import datetime import numpy as np import os from riverrunner import context from riverrunner import settings import time class TContext(context.Context): """mock database context generates a mock database context for unit testing Attributes: weather_sources ([str]): list of possible weather sources """ def __init__(self): super().__init__(settings.DATABASE_TEST) self.weather_sources = ['NOAA', 'USGS', 'SNOW'] self.measurements_file_name = "measurements_file_for_test.csv" def clear_dependency_data(self, session): """clear all data from mock db Args: session (Session): managed connection to mock db Returns: None """ self.clear_all_tables(session) session.query(context.Address).delete() session.query(context.State).delete() session.commit() @staticmethod def clear_all_tables(session): """clear tables for unittest tear down it is important that order of entities below remain in this order. if not, the SQL statements will not complete from foreign key dependency issues Args: session (Session): managed connection to mock db Returns: None """ entities = [ context.Prediction, context.StationRiverDistance, context.Measurement, context.Metric, context.Station, context.RiverRun ] for entity in entities: session.query(entity).delete() session.commit() def generate_addresses(self, session): """generate a random set of addresses generates and inserts a random set of addresses into the db Args: session (Session): managed connection to mock db Returns: None """ # fill a few foreign key dependencies session.add(context.State( short_name='WA', long_name='Washington' )) addresses = [ context.Address( latitude=self.random_latitude(), longitude=self.random_longitude(), address='that street you know somewhere', city='a city %s' % i, county='King', state='WA', zip='a zip' ) for i in range(5) ] session.add_all(addresses) session.commit() def get_measurements_for_test(self, i, session): """generate a random set of measurements Args: i (int): number of measurements to generate session (Session): managed connection to mock db Return: [Measurement]: list containing i random Measurements """ stations = self.get_stations_for_test(i, session) session.add_all(stations) metrics = self.get_metrics_for_test(i) session.add_all(metrics) session.commit() measurements = [] for idx in range(i): measurements.append( context.Measurement( station_id=np.random.choice(stations, 1)[0].station_id, metric_id=np.random.choice(metrics, 1)[0].metric_id, date_time=datetime.datetime.now(), value=np.round(np.random.normal(10, 3, 1)[0], 3) )) # make sure we don't generate duplicate keys time.sleep(.001) return measurements def get_measurements_file_for_test(self, i, session): """generate a file with a random set of measurements Args: i (int): number of measurements to generate session (Session): managed connection to mock db Return: file: file containing i random Measurements """ measurements = self.get_measurements_for_test(i, session) with open(self.measurements_file_name, "w") as f: for measurement in measurements: f.write("{},{},{},{}\n".format( measurement.date_time, measurement.metric_id, measurement.station_id, measurement.value )) return self.measurements_file_name def remove_measurements_file_for_test(self): """remove file used for put_measurements tests""" os.remove(self.measurements_file_name) @staticmethod def get_metrics_for_test(i): """generate a random set of metrics Args: i (int): number of measurements to generate Return: [Metric]: list containing i random Measurements """ return [ context.Metric( metric_id=mid, description='a metric description', name='some kind of rate of change Copy(%s)' % mid, units='thing per second' ) for mid in range(i)] def get_predictions_for_test(self, i, session): """generate a random set of predictions Args: i (int): number of predictions to generate session (Session): managed connection to mock db Return: [Prediction]: list containing i random predictions """ runs = self.get_runs_for_test(i, session) session.add_all(runs) session.commit() predictions = [] for idx in range(i): fr = np.random.uniform(100, 1000, 1)[0] sd = np.random.normal(50, 10, 1)[0] predictions.append( context.Prediction( run_id=np.random.choice(runs, 1)[0].run_id, timestamp=datetime.datetime.now(), fr_lb=np.round(fr - sd, 1), fr=np.round(fr, 1), fr_ub=np.round(fr + sd, 1) ) ) # make sure we don't generate duplicate keys time.sleep(.001) return predictions @staticmethod def get_runs_for_test(i, session): """generate a random set of runs Args: i (int): number of runs to generate session (Session): managed connection to mock db Returns: [RiverRun]: list containing i random runs """ addresses = session.query(context.Address).all() runs = [] for idx in range(i): put_in = np.random.choice(addresses, 1)[0] take_out = np.random.choice(addresses, 1)[0] runs.append(context.RiverRun( run_id=idx, class_rating=np.random.choice(['I', 'II', 'IV', 'V', 'GTFO'], 1)[0], min_level=int(np.random.randint(0, 100, 1)[0]), max_level=int(np.random.randint(100, 1000, 1)[0]), put_in_latitude=put_in.latitude, put_in_longitude=put_in.longitude, distance=np.round(
np.random.uniform(5, 3, 1)
numpy.random.uniform
import os import time import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate from keras.layers import Input from keras.models import Model from keras.utils import plot_model, to_categorical from keras.callbacks import EarlyStopping from numpy.core.multiarray import ndarray from scipy.signal import savgol_filter from helpers.io import inputter_train, inputter_test, outputter from helpers.preprocessing import transform_proba stopper = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=1) def build(_base_shape): inputer = Input(shape=_base_shape, name='input') split = Lambda(lambda x: tf.split(x, num_or_size_splits=3, axis=1))(inputer) conv1 = Conv1D(filters=16, kernel_size=11, activation='relu', padding='valid', name='conv1')(split[0]) maxpool1 = MaxPooling1D()(conv1) conv2 = Conv1D(filters=32, kernel_size=5, activation='relu', padding='valid', name='conv2')(maxpool1) maxpool2 = MaxPooling1D()(conv2) conv3 = Conv1D(filters=64, kernel_size=5, activation='relu', padding='valid', name='conv3')(maxpool2) maxpool3 = MaxPooling1D()(conv3) conv4 = Conv1D(filters=128, kernel_size=5, activation='relu', padding='valid', name='conv4')(maxpool3) maxpool4_1 = MaxPooling1D()(conv4) conv1 = Conv1D(filters=16, kernel_size=11, activation='relu', padding='valid', name='conv1_2')(split[1]) maxpool1 = MaxPooling1D()(conv1) conv2 = Conv1D(filters=32, kernel_size=5, activation='relu', padding='valid', name='conv2_2')(maxpool1) maxpool2 = MaxPooling1D()(conv2) conv3 = Conv1D(filters=64, kernel_size=5, activation='relu', padding='valid', name='conv3_2')(maxpool2) maxpool3 = MaxPooling1D()(conv3) conv4 = Conv1D(filters=128, kernel_size=5, activation='relu', padding='valid', name='conv4_2')(maxpool3) maxpool4_2 = MaxPooling1D()(conv4) conv1 = Conv1D(filters=16, kernel_size=11, activation='relu', padding='valid', name='conv1_3')(split[1]) maxpool1 = MaxPooling1D()(conv1) conv2 = Conv1D(filters=32, kernel_size=5, activation='relu', padding='valid', name='conv2_3')(maxpool1) maxpool2 = MaxPooling1D()(conv2) conv3 = Conv1D(filters=64, kernel_size=5, activation='relu', padding='valid', name='conv3_3')(maxpool2) maxpool3 = MaxPooling1D()(conv3) conv4 = Conv1D(filters=128, kernel_size=5, activation='relu', padding='valid', name='conv4_3')(maxpool3) maxpool4_3 = MaxPooling1D()(conv4) merger = Concatenate(axis=1)([maxpool4_1, maxpool4_2, maxpool4_3]) flatten = Flatten()(merger) dense1 = Dense(1024, activation='relu', name='dense1')(flatten) dense2 = Dense(512, activation='relu', name='dense2')(dense1) outputer = Dense(3, activation='softmax')(dense2) _model = Model(inputs=inputer, outputs=outputer) # type: Model return _model eeg1, eeg2, emg, lab = inputter_train() print('Each data input shape: ', eeg1.shape) data = np.concatenate((np.reshape(eeg1, (-1, 128)), np.reshape(eeg2, (-1, 128)), np.reshape(emg, (-1, 128))), axis=1) data = data[..., np.newaxis] print("Data format: ", data.shape) del eeg1 del eeg2 del emg print(lab.shape) labels = np.reshape(lab, (-1, 1)) labels = np.concatenate((labels, labels, labels, labels), axis=1) print(labels.shape) labels = np.reshape(labels, (-1, 1)) labels = np.subtract(labels, 1) labels = to_categorical(labels, num_classes=None) # type: ndarray base_shape = (data.shape[1], data.shape[2]) print('Input shape: ', base_shape) print('Label shape: ', labels.shape) print('Input done.') model = build(base_shape) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy']) print(model.summary()) plot_model(model, to_file=os.getcwd() + '/data/' + str(time.strftime("%Y%m%d-%H%M%S")) + '_model.png', show_shapes=True, show_layer_names=True, rankdir='TB') print("Unique labels: ", np.unique(lab)) model.fit(data, labels, batch_size=128, epochs=50, verbose=1, validation_split=0.1, callbacks=[stopper]) model.save_weights("/model/conv2d_model.h5") eeg1_t, eeg2_t, emg_t = inputter_test() data_t = np.concatenate((np.reshape(eeg1_t, (-1, 128)),
np.reshape(eeg2_t, (-1, 128))
numpy.reshape
from __future__ import division, absolute_import, print_function import warnings import numpy as np try: import scipy.stats as stats except ImportError: pass from .common import Benchmark class Anderson_KSamp(Benchmark): def setup(self, *args): self.rand = [np.random.normal(loc=i, size=1000) for i in range(3)] def time_anderson_ksamp(self): with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) stats.anderson_ksamp(self.rand) class CorrelationFunctions(Benchmark): param_names = ['alternative'] params = [ ['two-sided', 'less', 'greater'] ] def setup(self, mode): a =
np.random.rand(2,2)
numpy.random.rand
# -*- coding: utf-8 -*- """ Created on Thu Jul 15 17:34:46 2021 @author: a1 """ import numpy as np def zscore(A, size): B=np.zeros(shape=[A.shape[0],size]) for j in range(size): mean=np.mean(A[:,j]) std=np.std(A[:,j], ddof=1) for i in range(A.shape[0]): B[i,j] = (A[i,j] - mean) / std return B def dist(Z): D=np.zeros(shape=[Z.shape[0],Z.shape[0]]) for i in range(Z.shape[0]): point1=Z[i,:] for j in range(Z.shape[0]): point2=Z[j,:] diff=point1 - point2 D[i,j] = np.sqrt(np.sum(diff*diff)) return D def ROI_Main(I,Z): d=dist(Z) #Eucledean Distance Z=np.transpose(Z) Y=np.transpose(np.percentile(d, [35, 50, 85], axis=1)) nin=d.shape[0] NST=nin/2 #stations number divided by 2 d2=np.zeros(shape=[d.shape[0],d.shape[1]]) S =np.zeros(shape=[d.shape[0],d.shape[1]]) Nsi=np.zeros(shape=[d.shape[0],d.shape[1]]) D=np.zeros(shape=[d.shape[0],d.shape[1]]) S2=np.zeros(shape=[d.shape[0],d.shape[1]]) Ns=np.zeros(shape=[d.shape[0],d.shape[1]]) M=np.zeros(shape=[d.shape[0],d.shape[1]]) S_all=np.zeros(shape=[Z.shape[0],Z.shape[1]]) #Ss=np.zeros(shape=[Z.shape[0],Z.shape[1]]) for k in range(d.shape[0]): d2[k,:]=d[k, d[k, :].argsort()] for i in range(50): S[i,:]=d2[i,:]<=Y[i,0] #number of station at minimum 25% percentile Nsi[i,:]=np.sum(S[i,:])-1 #minimum distance at 25% percentile D[i,:]=Y[i,0]+((Y[i,2]-Y[i,0])*((NST-Nsi[i,:])/(NST))) #main Eqn. to get the optimum distance S2[i,:]=d2[i,:]<=D[i,:] Ns[i,:]=sum(S2[i,:])-1 #Number of stations in ROI M[i,:]=d[i,:]<=D[i,:] #stations by their number in ROI imax=0 for j in range(50): if M[I,j] == 1: S_all[:,j]=Z[:,j] imax=j Ss=S_all[:,0:imax+1] pin=imax #Index for the number of cases row=np.zeros(shape=[1,pin+1]) row[0,:]=range(1,(pin+2)) Ss_ser=np.append(row, Ss, axis=0) idx = np.argwhere(
np.any(Ss_ser[..., :] == 0, axis=0)
numpy.any
import numpy as np import torch import os import glob from utils.dataset_processing import image, grasp from .grasp_data import GraspDatasetBase class CameraData(GraspDatasetBase): """ Dataset wrapper for the camera data. """ def __init__(self, file_path, ds_rotate=0, width=640, height=480, output_size=224, include_depth=True, include_rgb=True, **kwargs): """ :param output_size: Image output size in pixels (square) :param include_depth: Whether depth image is included :param include_rgb: Whether RGB image is included """ super(CameraData, self).__init__(**kwargs) self.output_size = output_size self.include_depth = include_depth self.include_rgb = include_rgb self.depth_files = glob.glob(os.path.join(file_path, 'depth_*.npy')) self.depth_files.sort() self.rgb_files = glob.glob(os.path.join(file_path, 'color_*.png')) self.rgb_files.sort() self.length = len(self.depth_files) if include_depth is False and include_rgb is False: raise ValueError('At least one of Depth or RGB must be specified.') left = (width - output_size) // 2 top = (height - output_size) // 2 right = (width + output_size) // 2 bottom = (height + output_size) // 2 self.bottom_right = (bottom, right) self.top_left = (top, left) @staticmethod def numpy_to_torch(s): if len(s.shape) == 2: return torch.from_numpy(np.expand_dims(s, 0).astype(np.float32)) else: return torch.from_numpy(s.astype(np.float32)) def get_gtbb(self, idx, rot=0, zoom=1.0): rect = np.array([[ [0.0, 10.0], [10.0, 10.0], [10.0, 0.0], [0.0, 0.0] ]]) gtbbs = grasp.GraspRectangles.load_from_array(rect) c = self.output_size // 2 # gtbbs.rotate(rot, (c, c)) # gtbbs.zoom(zoom, (c, c)) return gtbbs def get_depth(self, idx, rot=0, zoom=1.0, normalise=True): arr = np.load(self.depth_files[idx]) depth_img = image.Image(arr) depth_img.crop(bottom_right=self.bottom_right, top_left=self.top_left) depth_img.rotate(rot) # depth_img.zoom(zoom) depth_img.resize((self.output_size, self.output_size)) # depth_img.resize((self.output_size, self.output_size)) # depth_img.img = depth_img.img.transpose((2, 0, 1)) if normalise: depth_img.normalise() return np.squeeze(depth_img.img) def get_rgb(self, idx, rot=0, zoom=1.0, normalise=True): rgb_img = image.Image.from_file(self.rgb_files[idx]) rgb_img.crop(bottom_right=self.bottom_right, top_left=self.top_left) rgb_img.rotate(rot) rgb_img.zoom(zoom) rgb_img.resize((self.output_size, self.output_size)) if normalise: rgb_img.normalise() rgb_img.img = rgb_img.img.transpose((2, 0, 1)) return rgb_img.img def get_data(self, rgb=None, depth=None): depth_img = None rgb_img = None # Load the depth image if self.include_depth: depth_img = self.get_depth(img=depth) # Load the RGB image if self.include_rgb: rgb_img = self.get_rgb(img=rgb) if self.include_depth and self.include_rgb: x = self.numpy_to_torch( np.concatenate( (
np.expand_dims(depth_img, 0)
numpy.expand_dims
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test numpy ops """ import numpy as np import mindspore.numpy as mnp from mindspore import Tensor from mindspore.nn import Cell import mindspore.context as context from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config context.set_context(mode=context.GRAPH_MODE) class MeshGrid(Cell): def construct(self, a, b, c, d): ret = mnp.meshgrid(a, b, c, d) return ret class Choose(Cell): def construct(self, a, b): ret = mnp.choose(a, b) return ret class Histogram(Cell): def construct(self, a): ret = mnp.histogram(a) return ret class Norm(Cell): def construct(self, a): ret = mnp.norm(a) return ret class Cross(Cell): def construct(self, a, b): ret = mnp.cross(a, b) return ret class Stack(Cell): def construct(self, a, b): ret = mnp.stack((a, b)) return ret class Correlate(Cell): def construct(self, a, b): ret = mnp.correlate(a, b) return ret class Split(Cell): def construct(self, tensor): a = mnp.split(tensor, indices_or_sections=1) b = mnp.split(tensor, indices_or_sections=3) c = mnp.array_split(tensor, indices_or_sections=1) d = mnp.array_split(tensor, indices_or_sections=3, axis=-1) return a, b, c, d class MatrixPower(Cell): def construct(self, tensor): a = mnp.matrix_power(tensor, 3) return a class RavelMultiIndex(Cell): def construct(self, tensor): a = mnp.ravel_multi_index(tensor, (7, 6)) b = mnp.ravel_multi_index(tensor, (7, 6), order='F') c = mnp.ravel_multi_index(tensor, (4, 6), mode='clip') d = mnp.ravel_multi_index(tensor, (4, 4), mode='wrap') return a, b, c, d class GeomSpace(Cell): def construct(self, start): a = mnp.geomspace(1, 256, num=9) b = mnp.geomspace(1, 256, num=8, endpoint=False) c = mnp.geomspace(start, [1000, 2000, 3000], num=4) d = mnp.geomspace(start, [1000, 2000, 3000], num=4, endpoint=False, axis=-1) return a, b, c, d class Arange(Cell): def construct(self): a = mnp.arange(10) b = mnp.arange(0, 10) c = mnp.arange(0.1, 9.9) return a, b, c class Eye(Cell): def construct(self): res = [] for n in range(1, 5): for k in range(0, 5): res.append(mnp.eye(10, n, k)) return res class Trace(Cell): def construct(self, arr): a = mnp.trace(arr, offset=-1, axis1=0, axis2=1) b = mnp.trace(arr, offset=0, axis1=1, axis2=0) return a, b class Pad(Cell): def construct(self, arr1, arr2): a = mnp.pad(arr1, ((1, 1), (2, 2), (3, 4))) b = mnp.pad(arr1, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4))) c = mnp.pad(arr1, ((1, 1), (2, 2), (3, 4)), mode="edge") d = mnp.pad(arr1, ((1, 1), (2, 2), (3, 4)), mode="wrap") e = mnp.pad(arr1, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99))) f = mnp.pad(arr2, ((10, 13), (5, 12), (3, 0), (2, 6)), mode='symmetric', reflect_type='even') g = mnp.pad(arr2, ((10, 13)), mode='reflect', reflect_type='even') return a, b, c, d, e, f, g class Where(Cell): def construct(self, a, b, c): ret = mnp.where(a, b, c) return ret class Select(Cell): def construct(self, a, b): ret = mnp.select(a, b) return ret class IsClose(Cell): def construct(self, a, b): ret = mnp.isclose(a, b) return ret class Average(Cell): def construct(self, a): ret = mnp.average(a) return ret class Remainder(Cell): def construct(self, a, b): ret = mnp.remainder(a, b) return ret class Diff(Cell): def construct(self, a): ret1 = mnp.diff(a) ret2 = mnp.ediff1d(a) return ret1, ret2 class Trapz(Cell): def construct(self, arr): a = mnp.trapz(arr, x=[-2, 1, 2], axis=1) b = mnp.trapz(arr, dx=3, axis=0) return a, b class Lcm(Cell): def construct(self, a, b): ret = mnp.lcm(a, b) return ret class Cov(Cell): def construct(self, a): ret = mnp.cov(a, a) return ret class Gradient(Cell): def construct(self, a): ret = mnp.gradient(a) return ret class MultiDot(Cell): def construct(self, a, b, c, d): ret = mnp.multi_dot((a, b, c, d)) return ret class Histogramdd(Cell): def construct(self, a): ret = mnp.histogramdd(a) return ret test_cases = [ ('MeshGrid', { 'block': MeshGrid(), 'desc_inputs': [Tensor(np.full(3, 2, dtype=np.float32)), Tensor(np.full(1, 5, dtype=np.float32)), Tensor(np.full((2, 3), 9, dtype=np.float32)), Tensor(np.full((4, 5, 6), 7, dtype=np.float32))], }), ('Norm', { 'block': Norm(), 'desc_inputs': [Tensor(np.ones((5, 2, 3, 7), dtype=np.float32))], }), ('Cross', { 'block': Cross(), 'desc_inputs': [Tensor(np.arange(18, dtype=np.int32).reshape(2, 3, 1, 3)), Tensor(np.arange(9, dtype=np.int32).reshape(1, 3, 3))], }), ('Stack', { 'block': Stack(), 'desc_inputs': [Tensor(np.arange(9, dtype=np.int32).reshape(3, 3)), Tensor(np.arange(9, dtype=np.int32).reshape(3, 3)),], }), ('Correlate', { 'block': Correlate(), 'desc_inputs': [Tensor(np.array([1, 2, 3, 4, 5], dtype=np.int32)), Tensor(np.array([0, 1], dtype=np.int32)),], }), ('Split', { 'block': Split(), 'desc_inputs': [Tensor(np.arange(9, dtype=np.float32).reshape(3, 3))], }), ('MatrixPower', { 'block': MatrixPower(), 'desc_inputs': [Tensor(np.arange(9, dtype=np.float32).reshape(3, 3))], }), ('RavelMultiIndex', { 'block': RavelMultiIndex(), 'desc_inputs': [Tensor(np.array([[3, 6, 6], [4, 5, 1]], dtype=np.int32))], }), ('GeomSpace', { 'block': GeomSpace(), 'desc_inputs': [Tensor(np.arange(1, 7, dtype=np.float32).reshape(2, 3))], }), ('Arange', { 'block': Arange(), 'desc_inputs': [], }), ('Eye', { 'block': Eye(), 'desc_inputs': [], }), ('Trace', { 'block': Trace(), 'desc_inputs': [Tensor(np.ones((3, 5), dtype=np.float32))], }), ('Where', { 'block': Where(), 'desc_inputs': [Tensor(np.full((1, 1, 2), [False, True])), Tensor(np.full((1, 3, 2), 5, dtype=np.float32)), Tensor(np.full((2, 1, 1), 7, dtype=np.float32))], }), ('Select', { 'block': Select(), 'desc_inputs': [Tensor([[True, True, True, False, False], [False, False, True, False, True]]), Tensor(np.array([[0, 1, 2, 3, 4], [0, 1, 4, 9, 16]], dtype=np.int32))], }), ('IsClose', { 'block': IsClose(), 'desc_inputs': [Tensor(np.array([0, 1, 2, float('inf'), float('inf'), float('nan')], dtype=np.float32)), Tensor(np.array([0, 1, -2, float('-inf'), float('inf'), float('nan')], dtype=np.float32))], }), ('Average', { 'block': Average(), 'desc_inputs': [Tensor(np.array([[1., 2.], [3., 4.]], dtype=np.float32))], }), ('Remainder', { 'block': Remainder(), 'desc_inputs': [Tensor(np.array([4, 7], dtype=np.int32)), Tensor(np.array([[1, 2], [3, 4]], dtype=np.int32))], }), ('Diff', { 'block': Diff(), 'desc_inputs': [Tensor(
np.array([1, 3, -1, 0, 4], dtype=np.int32)
numpy.array
#!/usr/bin/env python # # Heart Rate and Electrocardiagram Simulation # CSE 6730 Modeling and Simulation Project #2 # <NAME> and <NAME> # Georgia Institute of Technology # May 2016 # # Imports -------------------------------------------------------------------- # import sys import time import Queue import numpy as np import ConfigParser from uuid import uuid4 from scipy.integrate import odeint import matplotlib.pyplot as plt # Constants ------------------------------------------------------------------ # ECG_AMP_MAX = +1.2 # Maximum ECG signal amplitude (mV) ECG_AMP_MIN = -0.4 # Minimum ECG signal amplitude (mV) ECG_NOISE_AMP = .2 # ECG Noise signal max amplitude (mV) START_ACTIVITY = 1 # Start activity event flag END_ACTIVITY = -1 # End activity event flag # Classes -------------------------------------------------------------------- # class Human(object): """Store characteristics of the human whose heart will be simulated.""" def __init__(self, verbose=False): """Create a human object with all default parameters.""" # Attributes to set once during creation of the object. self.age = 45 self.gender = "male" self.mass = 80 self.rhr = 60 self.vo2max = 11.0 # State variables that change throughout the simulation self.hr = 60 self.cav = 7 self.intensity = 1 self.activity = None # Control variables self.verbose = verbose def description(self): """A simple text description of the object.""" template = "The human subject is {} age {}" return template.format(self.gender, self.age) def change_activity(self, activity): self.activity = activity self._adjust_activity_level(activity.met) def rest(self): self.activity = None self._adjust_activity_level(1.0) def _adjust_activity_level(self, intensity): """Mutate the human object for the new activity level. :param intensity: Activity intensity in units of METs. """ self.intensity = intensity sv = self._calculate_stroke_volume() self.cav = self._calculate_cav(intensity) self.hr = 3.5*self.mass*intensity/sv/(self.cav/100) if self.verbose: print("HR = {} beats/min".format(self.hr)) def _initial_stroke_volume(self): """Calculate the human's resting stroke volume.""" sv = 3.5*self.mass/self.rhr/(self._calculate_cav(1.0)/100) if self.verbose: print("Initial SV = {} ml".format(sv)) return sv # mL def _calculate_stroke_volume(self): """Calculate updated stroke volume. This uses a linear approximation. :return: Stroke volume (ml) scaled for activity level. """ max_increase = 0.65 # 65% increase at max sv_init = self._initial_stroke_volume() if self.intensity/self.vo2max >= 0.6: # After 60% VO2max the SV has plateaued sv = sv_init*(1 + max_increase) elif self.intensity > 1: # Model as linear increase up to plateau sv = sv_init*(max_increase*(self.intensity - 1)/(0.6*self.vo2max - 1) + 1) else: # Keep resting SV sv = sv_init if self.verbose: print("Scaled SV = {} ml".format(sv)) return sv def _calculate_cav(self, intensity): """Calculate arteriovenous oxygen content difference (Cav). :param intensity: Exercise intensity in units of METs. """ cav = 5.72 + 0.1047*(intensity/self.vo2max*100) if self.verbose: print("Cav = {} ml/100ml".format(cav)) return cav class Activity(object): """Represents an activity that will change the average heart rate.""" def __init__(self, uid): """Create an activity object with all default values.""" self.type = "resting" self.met = 1 self.start = 0 self.duration = 60 self.uid = uid def description(self): """A simple text description of the object.""" template = "Perform {} activity for {} minutes" return template.format(self.type, self.duration) class Event(object): """ """ def __init__(self, event_id, event_obj): self.id = event_id self.obj = event_obj class HeartSimulation(object): """Simulate average HR based on activity level""" def __init__(self, human, fel, verbose=False, visual=False): self.human = human self.fel = fel self.avg_hr = [] self.verbose = verbose self.visual = visual def start_activity_event(self, time_stamp, event): """Start activity event handler. :param time_stamp: Time stamp of the activity start. :param event: Event object containing event information. """ activity = event.obj if self.verbose: if self.human.activity is not None: print("End activity {} at time {}".format(self.human.activity.type, time_stamp)) print("\nStart activity {} at time {}".format(activity.type, time_stamp)) # Queue an event that will end the activity new_event = Event(END_ACTIVITY, activity) self.fel.put((time_stamp + activity.duration, new_event)) old_hr = self.human.hr self.human.change_activity(activity) if self.verbose: print("delta HR = {}".format(self.human.hr - old_hr)) # Save the change in HR self.avg_hr.append((time_stamp, self.human.hr, activity.met)) def end_activity_event(self, time_stamp, event): """End activity event handler. :param time_stamp: Time stamp of the activity start. :param event: Event object containing event information. """ activity = event.obj # Check to see if the activity is still in progress. if activity.uid == self.human.activity.uid: if self.verbose: print("End activity {} at time {}".format(activity.type, time_stamp)) old_hr = self.human.hr self.human.rest() # Put the heart back at rest if self.verbose: print("delta HR = {}".format(self.human.hr - old_hr)) # Save the change in HR self.avg_hr.append((time_stamp, self.human.hr, 1.0)) def run_simulation(self, output_file_path=None): """Run the discrete event heart rate simulation.""" # Process queued events while not self.fel.empty(): # Get the next event with lowest time stamp value now, event = self.fel.get() # Call event handlers if event.id == START_ACTIVITY: self.start_activity_event(now, event) elif event.id == END_ACTIVITY: self.end_activity_event(now, event) # Process the HR data to include transitions. # Approximate transitions as 2 min linear transitions discretely stepped every 10 seconds. # Assume the HR starts at rest temp_events = [] t_step = 1./6 prev_hr = self.human.rhr for n in range(len(self.avg_hr)): t, hr, met = self.avg_hr[n] if hr != prev_hr: end_t = t + 2 if len(self.avg_hr) - 1 > n: # check the next one next_t = self.avg_hr[n + 1][0] if next_t < end_t: end_t = next_t # Add transition steps t_steps = np.arange(t, end_t + t_step, t_step) hr_steps = np.linspace(prev_hr, hr, num=len(t_steps)) temp_events.extend([(ts, hr_steps[i], met) for i, ts in enumerate(t_steps)]) prev_hr = hr # Write the HR data to the output file self.avg_hr = temp_events if output_file_path is not None: with open(output_file_path, 'w') as hr_output_file: for t, hr, met in self.avg_hr: hr_output_file.write("{},{},{}\n".format(t, hr, met)) # If the visual flag is set plot the results. if self.visual: data = np.array(self.avg_hr) plt.figure() plt.plot(data[:, 0], data[:, 1]) plt.xlabel("Time (min)") plt.ylabel("Average HR") plt.grid(True) plt.show() return 0 # return status class ECGSimulation(object): """Simulate realistic ECG signals based on inputs.""" def __init__(self, hr_list, visual=False): self.hr_vector = hr_list self.ecg_state = None self.x0 = np.array([1, 0, 0.04]) self.visual = visual def synthetic_ecg(self, hr_mean=60.0, no_amp=0.0, start_t=0, stop_t=10): """ :param hr_mean: Mean heart rate :param no_amp: Noise amplitude :param start_t: Signal start time in seconds :param stop_t: signal stop time in seconds :return: ECG signal array and corresponding time (sec) array """ # Settings ----------------------------------------------------------- # Fs = 100.0 # sampling frequency (samples/sec) sfecg = Fs # ECG sampling frequency [ Hertz] sfint = Fs # ECG sampling frequency [ Hertz] hr_std = 1.0 # Standard deviation of heart rate [1 beat per minute] lfhfratio = 0.5 # LF/HF ratio [0.5] ti = np.radians([-60, -15, 0, 15, 90]) # P Q R S T ti = angles of extrema degrees [radians] ai = np.array([1.2, -5, 30, -7.5, 0.75]) # ai = z-position of extrema [1.2 -5 30 -7.5 0.75] bi = np.array([0.25, 0.1, 0.1, 0.1, 0.4]) # bi = Gaussian width of peaks [0.25 0.1 0.1 0.1 0.4] min_rand(9843) # Seed the RNG # -------------------------------------------------------------------- # n = int(stop_t - start_t) # time in sec # Adjust extrema parameters for mean heart rate hrfact = np.sqrt(hr_mean/60.0) hrfact2 = np.sqrt(hrfact) bi = hrfact*bi ti = np.array([hrfact2, hrfact, 1., hrfact, hrfact2])*ti q = np.round(sfint/sfecg) # frequency parameters for rr process flo and fhi are the Mayer waves # and respiratory rate respectively flo = 0.1 fhi = 0.25 flo_std = 0.01 fhi_std = 0.01 # Compute the RR-interval which is the time between successive R-peaks, # the inverse of this time interval gives the instantaneous heart rate. sfrr = 1.0 # sampling frequency w1 = 2*np.pi*flo w2 = 2*np.pi*fhi c1 = 2*np.pi*flo_std c2 = 2*np.pi*fhi_std sig2 = 1. sig1 = lfhfratio rr_mean = 60./hr_mean rr_std = 60.*hr_std/(hr_mean*hr_mean) df = sfrr/n w = np.arange(n)*2*np.pi*df dw1 = w - w1 dw2 = w - w2 hw1 = sig1*
np.exp(-0.5*(dw1/c1)**2)
numpy.exp
import numpy as np import gym from gym import spaces # from attn_toy.env.fourrooms import Fourrooms as Fourrooms from attn_toy.env.fourrooms import FourroomsNorender as Fourrooms class ImageInputWarpper(gym.Wrapper): def __init__(self, env, max_steps=100): gym.Wrapper.__init__(self, env) screen_height = self.env.obs_height screen_width = self.env.obs_width self.observation_space = spaces.Box(low=0, high=255, shape=(screen_height, screen_width, 3), dtype=np.uint8) # self.num_steps = 0 self.max_steps = max_steps # self.state_space_capacity = self.env.state_space_capacity self.mean_obs = None def step(self, action): state, reward, done, info = self.env.step(action) # self.num_steps += 1 if self.num_steps >= self.max_steps: done = True obs = self.env.render(state) # print("step reporting",done) # if self.mean_obs is None: # self.mean_obs = np.mean(obs) # print("what is wrong?",self.mean_obs) # obs = obs - 0.5871700112336601 # info['ori_obs'] = ori_obs info['s_tp1'] = state return obs, reward, done, info def reset(self, state=-1): if state < 0: state = np.random.randint(0, self.state_space_capacity) self.env.reset(state) # self.num_steps = self.env.num_steps obs = self.env.render(state) # print("reset reporting") # if self.mean_obs is None: # self.mean_obs = np.mean(obs) # print("what is wrong? reset",self.mean_obs) # obs = obs - 0.5871700112336601 # info['ori_obs'] = ori_obs return obs.astype(np.uint8) class FourroomsDynamicNoise(Fourrooms): # noise type = dynamic relevant def __init__(self, max_epilen=100, obs_size=128, seed=0, goal=77): np.random.seed(seed) super(FourroomsDynamicNoise, self).__init__(max_epilen, goal) self.obs_size = obs_size self.obs_height = obs_size self.obs_width = obs_size self.background = np.random.randint(0, 255, (10, 1, 1, 3)) self.background[:, :, :, 2] = 0 self.background = np.tile(self.background, (1, obs_size, obs_size, 1)) self.seed = seed self.color = np.random.randint(100, 255, (200, 3)) self.color[:, 2] = 100 self.observation_space = spaces.Discrete(self.num_pos * 3) self.state_space_capacity = self.observation_space.n def render(self, state=-1): which_background = state // self.num_pos # obs = np.zeros((self.obs_size, self.obs_size, 3)) # obs[:12, :12, :] = self.color[state + 1] # obs = np.random.randint(0, 255, (self.obs_size, self.obs_size, 3)) obs = np.tile(self.color[which_background][np.newaxis, np.newaxis, :], (self.obs_size, self.obs_size, 1)) # obs = (state+100) * np.ones((self.obs_size,self.obs_size)) arr = super(FourroomsDynamicNoise, self).render(state) padding_height, padding_width = (obs.shape[0] - arr.shape[0]) // 2, (obs.shape[1] - arr.shape[1]) // 2 obs[padding_height:padding_height + arr.shape[0], padding_width:padding_width + arr.shape[1], :] = arr return obs.astype(np.uint8) def step(self, action): state, reward, done, info = super(FourroomsDynamicNoise, self).step(action) state += self.num_pos * (self.num_steps % 3) return state, reward, done, info def reset(self, state=-1): obs = super(FourroomsDynamicNoise, self).reset(state % self.num_pos) self.num_steps = state % 3 return state class FourroomsDynamicNoise2(Fourrooms): # noise type = state relevant def __init__(self, max_epilen=100, obs_size=128, seed=0, goal=77): np.random.seed(seed) super(FourroomsDynamicNoise2, self).__init__(max_epilen, goal) self.obs_size = obs_size self.obs_height = obs_size self.obs_width = obs_size self.background = np.random.randint(0, 255, (10, 1, 1, 3)) self.background[:, :, :, 2] = 0 self.background = np.tile(self.background, (1, obs_size, obs_size, 1)) self.seed = seed self.color = np.random.randint(100, 255, (200, 3)) self.color[:, 2] = 100 self.observation_space = spaces.Discrete(self.num_pos * max_epilen) self.state_space_capacity = self.num_pos * max_epilen self.last_action = -1 def step(self, action): state, reward, done, info = super(FourroomsDynamicNoise2, self).step(action) state += self.num_pos * self.num_steps return state, reward, done, info def reset(self, state=-1): self.state = state obs = super(FourroomsDynamicNoise2, self).reset(state % self.num_pos) self.num_steps = state // self.num_pos return state def render(self, state=-1): # which_background = self.num_steps % 3 # obs = np.zeros((self.obs_size, self.obs_size, 3)) # obs[:12, :12, :] = self.color[state + 1] obs = np.tile(self.color[self.num_steps + 1][np.newaxis, np.newaxis, :], (self.obs_size, self.obs_size, 1)) # obs = np.random.randint(0, 255, (self.obs_size, self.obs_size, 3)) # obs = np.tile(self.color[which_background][np.newaxis, np.newaxis, :], (self.obs_size, self.obs_size, 1)) # obs = (state+100) * np.ones((self.obs_size,self.obs_size)) arr = super(FourroomsDynamicNoise2, self).render(state % self.num_pos) padding_height, padding_width = (obs.shape[0] - arr.shape[0]) // 2, (obs.shape[1] - arr.shape[1]) // 2 obs[padding_height:padding_height + arr.shape[0], padding_width:padding_width + arr.shape[1], :] = arr return obs.astype(np.uint8) class FourroomsDynamicNoise3(Fourrooms): # noise type = action relevant def __init__(self, max_epilen=100, obs_size=128, seed=0, goal=77): np.random.seed(seed) super(FourroomsDynamicNoise3, self).__init__(max_epilen, goal) self.agent_color = np.tile(np.array([[1, 0, 0]]), (100, 1)) self.obs_size = obs_size self.obs_height = obs_size self.obs_width = obs_size self.background = np.random.randint(0, 255, (10, 1, 1, 3)) self.background[:, :, :, 2] = 0 self.background = np.tile(self.background, (1, obs_size, obs_size, 1)) self.seed = seed self.color = np.random.randint(100, 255, (200, 3)) self.color[:, 2] = 100 self.observation_space = spaces.Discrete(self.num_pos * self.action_space.n) self.state_space_capacity = self.observation_space.n def render(self, state=-1): which_background = state // self.num_pos # obs = np.zeros((self.obs_size, self.obs_size, 3)) # obs[:12, :12, :] = self.color[state + 1] # print(which_background, self.color[which_background]) # obs = np.random.randint(0, 255, (self.obs_size, self.obs_size, 3)) obs = np.tile(self.color[which_background][np.newaxis, np.newaxis, :], (self.obs_size, self.obs_size, 1)) # obs = (state+100) * np.ones((self.obs_size,self.obs_size)) arr = super(FourroomsDynamicNoise3, self).render(state) padding_height, padding_width = (obs.shape[0] - arr.shape[0]) // 2, (obs.shape[1] - arr.shape[1]) // 2 obs[padding_height:padding_height + arr.shape[0], padding_width:padding_width + arr.shape[1], :] = arr return obs.astype(np.uint8) def step(self, action): state, reward, done, info = super(FourroomsDynamicNoise3, self).step(action) state += self.num_pos * action # print("state in step",state) return state, reward, done, info def reset(self, state=-1): obs = super(FourroomsDynamicNoise3, self).reset(state % self.num_pos) self.num_steps = state // self.num_pos return state class FourroomsRandomNoise(Fourrooms): # noise type = random def __init__(self, max_epilen=100, obs_size=128, seed=0, goal=77): np.random.seed(seed) super(FourroomsRandomNoise, self).__init__(max_epilen, goal) self.obs_size = obs_size self.obs_height = obs_size self.obs_width = obs_size # self.background = np.random.randint(0, 255, (10, 1, 1, 3)) # self.background[:, :, :, 2] = 0 # self.background = np.tile(self.background, (1, obs_size, obs_size, 1)) self.random_background = np.random.randint(0, 255, (100, obs_size, obs_size, 3)) # self.random_background[..., 2] = 100 self.seed = seed self.color = np.random.randint(100, 255, (200, 3)) # self.color[:, 2] = 100 self.rand_range = 100 self.observation_space = spaces.Discrete(self.num_pos * self.rand_range) self.state_space_capacity = self.observation_space.n self.which_background = -1 def render(self, state=-1): which_background = state // self.num_pos # obs = np.zeros((self.obs_size, self.obs_size, 3)) # obs[:12, :12, :] = self.color[state + 1] # obs = np.random.randint(0, 255, (self.obs_size, self.obs_size, 3)) # obs = np.tile(self.color[which_background][np.newaxis, np.newaxis, :], (self.obs_size, self.obs_size, 1)) obs = self.random_background[which_background] # obs = (state+100) * np.ones((self.obs_size,self.obs_size)) arr = super(FourroomsRandomNoise, self).render(state % self.num_pos) padding_height, padding_width = (obs.shape[0] - arr.shape[0]) // 2, (obs.shape[1] - arr.shape[1]) // 2 obs[padding_height:padding_height + arr.shape[0], padding_width:padding_width + arr.shape[1], :] = arr return obs.astype(np.uint8) def step(self, action): state, reward, done, info = super(FourroomsRandomNoise, self).step(action) self.which_background =
np.random.randint(0, self.rand_range)
numpy.random.randint