prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################## ############################## ######################### Detection module ######################### ######################### ######################### ############################# ### Contains all the functions necessary to find the detection probability, including the geometries of relevant experiment ### and the main recasting functions for the various signatues (scattering, decay, monoX, invisible meson decay, etc ... ### The final functions are typically written as Fast**** ### <NAME>, <NAME>, <NAME>, 29/12/2019 ############ import math import numpy as np from scipy.optimize import minimize_scalar from scipy import optimize as opt from scipy.special import lambertw import Production as br import UsefulFunctions as uf import Amplitudes as am from scipy.integrate import quad from scipy.optimize import minimize ################################################## #################################### ######################### ######################### ######################### Auxilliary functions ######################### ######################### ######################### ######################### ######################### ######################### me=0.0005109989 mmuon=0.1056584 ## ----- Fill the effective couplings for light quarks from the dictionary def Fillg(geff): return geff.get("gu11",0.),geff.get("gd11",0.),geff.get("gl11",0.),geff.get("gd22",0.) ## ----- Used to find the lower limit in Lambda due to the Chi2 decaying before reaching the detector def FindShortLam(A,B,myc): newA=A # Could be used to change a bit the boost factor for testing purposes newB=B myX= myc/newA/np.power(newB,1./myc) # res=(myc/np.power(newA,1)*( np.log(myX)+ np.log(np.log(myX)) )) # Approximation no needed -> use directly the lambertw function in scipy res2 = -myc/np.power(newA,1)*lambertw(-1/myX,-1) # print("Comparing approx to direct ",res/np.real(res2)) return np.power(np.real(res2),-1/4.) ## ----- Simple decay probability evaluation for a given c *tau * gamma def ProbDecay(D,L,ctaugamma): res= np.exp(-D/ctaugamma)*(1-np.exp(-L/ctaugamma)) return res # ---- Used to include the Lambda dependence of the cross-section due to the limitation of the EFT approach at LHC # ---- it assumes that the CS has been parametrised as CS = acs * Lambda^bcs in pb def ReduceLimLHC(LimOld,acs = 0.0009,bcs=1.14,CSfull=4.,geff=1): redpt=(LimOld<1700) LimOld[redpt] = np.power(LimOld[redpt]*np.power(acs/CSfull,1/8.),1/(1-bcs/8.)) return LimOld # ---- Gives back an estimate of the average boost factor depending on the source beam and for various invariant mass for chi1 chi2 ## corresponding to different dominant production channels def BoostFact(Mx,Del,beamtype): FactInvMass=(1+1/(Del+1)) # Mx is actually Mx2 mass of the heavy state Ep=0 mpith=134.9766/FactInvMass/1000;metath=547.862/FactInvMass/1000; if (beamtype=="SPS"): # Data from BdNMC meson+brem production and taking the average # Using the ratio of production from CHARM # xMes=xi_CHARM_DP; NMes=Prod_CHARM_DP # x,Np = uf.LoadDirectProdDP("SPS/DirectFDM_SPS",A_charm,Z_charm,PoTcharm,False) # xiratio,ratio,notrelevant= uf.GetRatio(Np,x1,CS2,x2,lim,xlim): Ep=np.sqrt(np.power(Mx,2)+np.power((Mx < mpith)*11 + (Mx < metath)*(Mx > mpith)*(17.) + (Mx > metath)*np.sqrt(17.*17-np.power(Mx*FactInvMass/2,2)),2)) elif (beamtype=="FnalRing"): Ep=np.sqrt(np.power(Mx,2)+np.power((Mx < mpith)*7 + (Mx < metath)*(Mx > mpith)*8.5 + (Mx > metath)*np.sqrt(8.5*8.5-np.power(Mx*FactInvMass/2,2)),2)) elif (beamtype=="FnalBooster"): Ep=np.sqrt(np.power(Mx,2)+np.power((Mx < mpith)*0.7 + (Mx < metath)*(Mx > mpith)*1 + (Mx > metath)*np.sqrt(1-np.power(Mx*FactInvMass/2,2)),2)) elif (beamtype=="LSND"): Ep=np.sqrt(np.power(Mx,2)+np.power(0.12,2)) elif (beamtype=="LHC"): Ep=np.sqrt(np.power(Mx,2)+1000**2) # From 1816.07396 and 1810.01879 else: print("Bad beam line choice, possibilities: SPS, FnalRing, FnalBooster, LHC") Boost=Ep/Mx return Boost # ---- Gives back the geometrical parameters of various experiments, as well as the corresponding beam lines. def GeomForExp(exp): if exp =="faser": L=10;D=480;beamtype="LHC" elif exp == "mathusla": L=35;D=100;beamtype="LHC" elif exp == "ship": L=65;D=60;beamtype="SPS" elif exp == "charm": L=35;D=480;beamtype="SPS" elif exp == "seaquest": L=5;D=5;beamtype="FnalRing" elif exp == "seaquest_phase2": L=5;D=5;beamtype="FnalRing" elif exp == "nova": L=14.3;D=990;beamtype="FnalRing" elif exp == "miniboone": L=12;D=491;beamtype="FnalBooster" elif exp == "sbnd": L=5;D=110;beamtype="FnalBooster" elif exp == "lsnd": L=8.4;D=34;beamtype="LSND" else: print("Experiment selected: ", exp, " is not currently implemented. Possible choices: faser, mathusla, ship, seaquest, seaquest_phase2, nova, miniboone, sbnd, lsnd") L= 0;D=0;beamtype="NotDefined" return D,L,beamtype ################################################## #################################### ######################### ######################### ######################### Scattering detection ######################### ######################### ######################### ######################### ################################## ######################### def FastScatLimit(exp,x_in,Lim_in, Del_in,Del,geff,optype="V"): ##### Assuming the splitting to be irrelevant --> upscattering easy to get using the beam energy gu,gd,ge,gs=Fillg(geff) if Del>0.5: print("Warning: recasting of scattering limits only implemented for small or zero splitting") M2tildeToM1=( 1+1/(1+Del))/(2+Del_in) xProd_DPtmp, NProd_DP= br.NProd_DP(exp) xProd_DP=xProd_DPtmp/1.0 # Switching to zero splitting to avoid problems at the resonance mymin=np.min(xProd_DP)/M2tildeToM1; # Sending M1 to M2tilde mymax=np.max(xProd_DP)/M2tildeToM1; xi = uf.log_sample(mymin,mymax,200) Lam1TeV = np.full(np.size(xi),1000) xProd_new, Prod_new= br.NProd(Del,exp,geff,optype) Nnew = np.interp(xi, xProd_new*(1+Del), Prod_new) xProd, NProd= br.NProd(Del,exp,geff,optype) xi,ratio,LimDP = uf.GetRatio(NProd,xProd,NProd_DP,xProd_DP,Lim_in,x_in) gscat=(np.abs(gu)+np.abs(gd)) EffLim =0.013*np.sqrt(xi)/np.sqrt(LimDP)*np.power(ratio,1/8.)*1000*np.sqrt(gscat) return xi, EffLim ################################################## #################################### ######################### ######################### ######################### Invisible meson decay ######################### ######################### ######################### ######################### ################################## ######################### def FastPi0InvLimit(xi,Lim_in,Delini,Del, geff,optype="V"): gu,gd,ge,gs=Fillg(geff) M2tildeToM1=( 1+1/(1+Del))/(2+Delini) if optype == "AV": xf=xi/M2tildeToM1 Gam1=am.GamAV_MestoXX(xi,xi*(1+Delini),br.MPi,1,1000.) Gam2=am.GamAV_MestoXX(xf/(1+Del),xf,br.MPi,1,1000.) Lim_out = Lim_in*np.power(gu-gd,1/2.)*np.power(Gam2/Gam1,1/4.) else : xf=xi/M2tildeToM1 Lim_out=Lim_in*0 return xf, Lim_out # As usual we return the limits as function of M2 ################################################## #################################### ######################### ######################### ######################### Missing Energy detection ######################### ######################### ######################### ######################### ################################## ######################### def FastMonoPhoton(exp,xin,limin,Delini,Del, geff,optype="V"): gu,gd,ge,gs=Fillg(geff) M2tildeToM1=( 1+1/(1+Del))/(2+Delini) x_out=xin/M2tildeToM1; # As usual, we return the value for the heavy state chi2 return x_out, limin*np.sqrt(np.abs(ge)) ################################################## #################################### ######################### ######################### ######################### Mono-jet ######################### ######################### ######################### ######################### ################################## ######################### def FastMonoJet(exp,g_in,Lim_Up_in,Delini,Del, geff,optype="V"): gu,gd,ge,gs=Fillg(geff) xi_basic=uf.log_sample(0.005,5,200) gef = np.sqrt(2*gu**2+gd**2) if gef < np.min(g_in): Lim_u_out=0 else: Lim_u_out=np.interp(gef,g_in, Lim_Up_in) Lim_full = np.full(200,Lim_u_out) return xi_basic,Lim_full ################################################## #################################### ######################### ######################### ######################### Supernovae cooling limits ######################### ######################### ######################### ######################### ################################## ######################### def FastSN1987Limit(limlist,Del, geff,optype="V",upperlimit=True): xi_basic=uf.log_sample(0.005,0.3,400) ##### Currently just test the different operator and apply a naive proton scattering scaling, except from the AV case where the upper limit derives from the pi0 branching ratio gu,gd,ge,gs=Fillg(geff) M2tildeToM1=( 1+1/(1+Del))/(2) ### Change for scaling dle=0 initially x_in,Lim_in=limlist[optype] if upperlimit: if optype == "V": Lim_out = Lim_in*np.sqrt((np.abs(gu)+np.abs(gd)+np.abs(ge))/2 ) # Scaling based on e+e- annihilation return xi_basic,np.interp(xi_basic,x_in/M2tildeToM1,Lim_out) # we include the possibility of production from electrons just incase -- very rough else: # Gam1=br.GamAV_MestoXX(x_inAV,x_inAV*(1),br.MPi,1,1000.) # Gam2=br.GamAV_MestoXX(x_inAV,x_inAV*(1+Del),br.MPi,1,1000.) xf=x_in/M2tildeToM1 Gam1=am.GamAV_MestoXX(x_in,x_in*(1+0),br.MPi,1,1000.) Gam2=am.GamAV_MestoXX(xf/(1+Del),xf,br.MPi,1,1000.) Lim_out = Lim_in*np.power(gu-gd,1/2.)*np.power(Gam2/Gam1,1/8.) # Limits from invisible pi0 decay # print("x for SN, ",M2tildeToM1, x_inAV , Lim_inAV, Lim_out) return xi_basic,np.interp(xi_basic,x_in/M2tildeToM1,Lim_out) else: if optype == "V": Lim_out = Lim_in*np.sqrt((np.abs(gu)+np.abs(gd)) )# we include the possibility of scattering from nuclei return xi_basic,
np.interp(xi_basic,x_in/M2tildeToM1,Lim_out)
numpy.interp
import torch import numpy as np from scipy.stats import norm from blackbox_selectinf.usecase.AR_model import AR_model from importlib import reload import blackbox_selectinf.usecase.AR_model reload(blackbox_selectinf.usecase.AR_model) from blackbox_selectinf.learning.learning import (learn_select_prob, get_weight, get_CI) import argparse import pickle from statsmodels.stats.stattools import durbin_watson parser = argparse.ArgumentParser(description='AR model inference for beta') parser.add_argument('--basis_type', type=str, default='linear') parser.add_argument('--idx', type=int, default=0) parser.add_argument('--n', type=int, default=100) parser.add_argument('--p', type=int, default=10) parser.add_argument('--n_b', type=int, default=100) parser.add_argument('--rho', type=float, default=0.0) parser.add_argument('--Q_L', type=float, default=1.9) parser.add_argument('--Q_U', type=float, default=2.2) parser.add_argument('--upper', action='store_false', default=True) parser.add_argument('--nrep', type=int, default=1) parser.add_argument('--max_it', type=int, default=1) parser.add_argument('--savemodel', action='store_true', default=False) parser.add_argument('--modelname', type=str, default='model_') parser.add_argument('--epochs', type=int, default=1000) parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--ntrain', type=int, default=1000) parser.add_argument('--logname', type=str, default='log') parser.add_argument('--loadmodel', action='store_true', default=False) parser.add_argument('--verbose', action='store_true', default=False) parser.add_argument('--thre', type=float, default=0.99) parser.add_argument('--consec_epochs', type=int, default=5) args = parser.parse_args() def main(): Q_L = args.Q_L Q_U = args.Q_U n = args.n p = args.p rho = args.rho n_b = args.n_b ntrain = args.ntrain max_it = args.max_it j = args.idx for j in range(args.idx, args.idx + args.nrep): logs = {} print("Start simulation {}".format(j)) # generate data seed = j logs['seed'] = seed
np.random.seed(seed)
numpy.random.seed
import numpy as np # Sort and remove spurious eigenvalues def print_evals(evals,n=None): if n is None:n=len(evals) print('{:>4s} largest eigenvalues:'.format(str(n))) print('\n'.join('{:4d}: {:10.4e} {:10.4e}j'.format(n-c,
np.real(k)
numpy.real
# -*- coding: utf-8 -*- # Calculate various agreement measures. # Copyright (C) 2012-2013 <NAME> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import division, print_function import itertools import re import numpy as np from .core import IntervalTier, PointTier, Time # -------------- # Fleiss's kappa # -------------- def fleiss_observed_agreement(a): '''Return the observed agreement for the input array.''' def per_subject_agreement(row): '''Return the observed agreement for the i-th subject.''' number_of_objects = np.sum(row) return (np.sum(np.square(row)) - number_of_objects) / (number_of_objects * (number_of_objects - 1)) row_probabilities = np.apply_along_axis(per_subject_agreement, axis=1, arr=a) return np.mean(row_probabilities) def fleiss_chance_agreement(a): '''Returns the chance agreement for the input array.''' def per_category_probabilities(a): '''The proportion of all assignments which were to the j-th category.''' cat_sums = np.sum(a, axis=0) return cat_sums / np.sum(cat_sums) return np.sum(np.square(per_category_probabilities(a))) def fleiss_kappa(a): '''Calculates Fleiss's kappa for the input array (with categories in columns and items in rows).''' p = fleiss_observed_agreement(a) p_e = fleiss_chance_agreement(a) return (p - p_e) / (1 - p_e) # ------------- # Cohen's kappa # ------------- def cohen_kappa(a): '''Calculates Cohen's kappa for the input array.''' totsum = np.sum(a) colsums = np.sum(a, 0) rowsums = np.sum(a, 1) # Observed agreement. p = np.sum(np.diagonal(a)) / totsum # Chance agreement. p_e = np.sum((colsums * rowsums) / totsum ** 2) return (p - p_e) / (1 - p_e) # ---------- # Scott's pi # ---------- def scott_pi(a): '''Calculates Scott's Pi for the input array.''' totsum =
np.sum(a)
numpy.sum
""" Tests for the model. """ import unittest import sys from numpy.testing import assert_array_almost_equal, assert_array_equal import numpy as np from numpy import random from pyhacrf import Hacrf from pyhacrf.state_machine import GeneralStateMachine, DefaultStateMachine from pyhacrf.pyhacrf import _GeneralModel, _AdjacentModel from pyhacrf import StringPairFeatureExtractor TEST_PRECISION = 3 class TestHacrf(unittest.TestCase): def test_initialize_parameters(self): start_states = [0] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0))] states_to_classes = {0: 'a'} state_machine = GeneralStateMachine(start_states=start_states, transitions=transitions, states_to_classes=states_to_classes) n_features = 3 actual_parameters = Hacrf._initialize_parameters(state_machine, n_features) expected_parameter_shape = (5, 3) self.assertEqual(actual_parameters.shape, expected_parameter_shape) def test_fit_predict(self): incorrect = ['helloooo', 'freshh', 'ffb', 'h0me', 'wonderin', 'relaionship', 'hubby', 'krazii', 'mite', 'tropic'] correct = ['hello', 'fresh', 'facebook', 'home', 'wondering', 'relationship', 'husband', 'crazy', 'might', 'topic'] training = zip(incorrect, correct) fe = StringPairFeatureExtractor(match=True, numeric=True) xf = fe.fit_transform(training) model = Hacrf() model.fit(xf, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) expected_parameters = np.array([[-10.76945326, 144.03414923, 0.], [31.84369748, -106.41885651, 0.], [-52.08919467, 4.56943665, 0.], [31.01495044, -13.0593297, 0.], [49.77302218, -6.42566204, 0.], [-28.69877796, 24.47127009, 0.], [-85.34524911, 21.87370646, 0.], [106.41949333, 6.18587125, 0.]]) print(model.parameters) assert_array_almost_equal(model.parameters, expected_parameters, decimal=TEST_PRECISION) expected_probas = np.array([[1.00000000e+000, 3.51235685e-039], [1.00000000e+000, 4.79716208e-039], [1.00000000e+000, 2.82744641e-139], [1.00000000e+000, 6.49580729e-012], [9.99933798e-001, 6.62022561e-005], [8.78935957e-005, 9.99912106e-001], [4.84538335e-009, 9.99999995e-001], [1.25170233e-250, 1.00000000e+000], [2.46673086e-010, 1.00000000e+000], [1.03521293e-033, 1.00000000e+000]]) actual_predict_probas = model.predict_proba(xf) print(actual_predict_probas) assert_array_almost_equal(actual_predict_probas, expected_probas, decimal=TEST_PRECISION) expected_predictions = np.array([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) actual_predictions = model.predict(xf) assert_array_almost_equal(actual_predictions, expected_predictions, decimal=TEST_PRECISION) def test_fit_predict_regularized(self): incorrect = ['helloooo', 'freshh', 'ffb', 'h0me', 'wonderin', 'relaionship', 'hubby', 'krazii', 'mite', 'tropic'] correct = ['hello', 'fresh', 'facebook', 'home', 'wondering', 'relationship', 'husband', 'crazy', 'might', 'topic'] training = zip(incorrect, correct) fe = StringPairFeatureExtractor(match=True, numeric=True) xf = fe.fit_transform(training) model = Hacrf(l2_regularization=10.0) model.fit(xf, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) print(model.parameters) expected_parameters = np.array([[-0.0569188, 0.07413339, 0.], [0.00187709, -0.06377866, 0.], [-0.01908823, 0.00586189, 0.], [0.01721114, -0.00636556, 0.], [0.01578279, 0.0078614, 0.], [-0.0139057, -0.00862948, 0.], [-0.00623241, 0.02937325, 0.], [0.00810951, -0.01774676, 0.]]) assert_array_almost_equal(model.parameters, expected_parameters, decimal=TEST_PRECISION) expected_probas = np.array([[0.5227226, 0.4772774], [0.52568993, 0.47431007], [0.4547091, 0.5452909], [0.51179222, 0.48820778], [0.46347576, 0.53652424], [0.45710098, 0.54289902], [0.46159657, 0.53840343], [0.42997978, 0.57002022], [0.47419724, 0.52580276], [0.50797852, 0.49202148]]) actual_predict_probas = model.predict_proba(xf) print(actual_predict_probas) assert_array_almost_equal(actual_predict_probas, expected_probas, decimal=TEST_PRECISION) expected_predictions = np.array([0, 0, 1, 0, 1, 1, 1, 1, 1, 0]) actual_predictions = model.predict(xf) assert_array_almost_equal(actual_predictions, expected_predictions, decimal=TEST_PRECISION) class TestGeneralModel(unittest.TestCase): def test_build_lattice(self): n_states = 4 # Because 3 is the max start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0)), (0, 3, lambda i, j, k: (0, 2))] states_to_classes = {0: 0, 1: 1, 3: 3} state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) x = np.zeros((2, 3, 9)) # # ________ # 1. . . # 1 0 - 10 - 31 # # | /_______ # 0. . . # 0 10 -- 1 3 # 0 1 2 # 0 1 2 # # 1(0, 1), 3(0, 2), 1(1, 1), 1(0, 0) should be pruned because they represent partial alignments. # Only nodes that are reachable by stepping back from (1, 2) must be included in the lattice. actual_lattice = state_machine.build_lattice(x) expected_lattice = np.array([(0, 0, 0, 1, 0, 0, 2 + n_states), (0, 0, 0, 1, 1, 0, 0 + n_states), (1, 0, 0, 1, 2, 3, 3 + n_states), (1, 1, 0, 1, 2, 1, 1 + n_states)]) assert_array_equal(actual_lattice, expected_lattice) def test_build_lattice_jumps(self): n_states = 2 # Because 1 is the max start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 2)), (0, 0, (1, 0))] states_to_classes = {0: 0, 1: 1} state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) x = np.zeros((2, 3, 9)) # # ________ # 1. . . # 1 0 . 1 # # | _______ # 0. . . # 0 10 / . 1 # 0 1 2 # 0 1 2 # # 1(0, 2) should be pruned because they represent partial alignments. # Only nodes that are reachable by stepping back from (1, 2) must be included in the lattice. actual_lattice = state_machine.build_lattice(x) expected_lattice = np.array([(0, 0, 0, 1, 0, 0, 2 + n_states), (1, 0, 0, 1, 2, 1, 1 + n_states)]) assert_array_equal(actual_lattice, expected_lattice) def test_forward_single(self): start_states = [0, 1] transitions = [(0, 0, (1, 1)), (0, 1, (0, 1)), (0, 0, (1, 0)), (0, 2, lambda i, j, k: (0, 2))] states_to_classes = {0: 'a', 1: 'a', 2: 'b'} # Dummy state_machine = GeneralStateMachine(start_states, transitions, states_to_classes) parameters = np.array(range(-7, 7), dtype='float64').reshape((7, 2)) # parameters = # 0([[-7, -6], # 1 [-5, -4], # 2 [-3, -2], # 3 [-1, 0], # 4 [ 1, 2], # 5 [ 3, 4], # 6 [ 5, 6]]) x = np.array([[[0, 1], [1, 0], [2, 1]], [[0, 1], [1, 0], [1, 0]]], dtype=np.float64) y = 'a' # Expected lattice: # # ________ # 1. . . # 1 0 __0 - 21 # # | / # 0. . . # 0 0 # 0 1 2 # 0 1 2 expected_alpha = { (0, 0, 0): np.exp(-6), (0, 0, 0, 1, 0, 0, 5): np.exp(-6) * np.exp(4), (0, 0, 0, 1, 1, 0, 3): np.exp(-6) * np.exp(-1), (1, 0, 0): np.exp(-6) * np.exp(4) * np.exp(-6), (1, 0, 0, 1, 2, 2, 6): np.exp(-6) * np.exp(4) * np.exp(-6) * np.exp(5), (1, 1, 0): np.exp(-6) * np.exp(-1) * np.exp(-7), (1, 1, 0, 1, 2, 1, 4): np.exp(-6) * np.exp(-1) * np.exp(-7) * np.exp(1), (1, 2, 1): np.exp(-6) * np.exp(-1) *
np.exp(-7)
numpy.exp
"""Testing functions for UncertaintyModel parent class""" import numpy import unittest import unittest.mock import gandy.models.models as mds import gandy.quality_est.metrics class TestUncertaintyModel(unittest.TestCase): @unittest.mock.patch('gandy.models.models.UncertaintyModel.build') def test___init__(self, mocked_build): """Test initialization of the UncertaintyModel class""" # first mock the build method # initialize subject = mds.UncertaintyModel(xshape=(6,), yshape=(3,), keyword=5) # keywords passed? # test assignment of shapes self.assertTrue(hasattr(subject, 'xshape')) self.assertTrue(hasattr(subject, 'yshape')) # test that build was called mocked_build.assert_called_once_with(keyword=5) # test that we initializzed sessions self.assertEqual(subject.sessions, {}) self.assertTrue(hasattr(subject, 'model')) return @unittest.mock.patch('gandy.models.models.UncertaintyModel.build') def test_check(self, mocked_build): """Test the ability of the model to recognize improper data""" # prepare some data objects to check. # we only have numpy available in the dependencies # should work with other objects such as pandas dataframe # test different dimensions XSHAPE = [(5, 6,), (8,)] YSHAPE = [(5,), (1,)] for xshape, yshape in XSHAPE, YSHAPE: Xs_good = numpy.ones( (20, *xshape), # as if it were 20 data points dtype=int # specify int to ensure proper conversion ) Xs_bad = numpy.ones( (20, 3, 4) ) Xs_non_numeric = numpy.array(['str']) Ys_good = numpy.ones( (20, *yshape) # matching 20 data points ) Ys_bad = numpy.ones( (20, 3) ) Ys_datacount_mismatch = numpy.ones( (10, *yshape) # not matching 20 data points ) no_shape_attribute = [1, 2, 3] # prepare the subject subject = mds.UncertaintyModel(xshape, yshape) # first test only Xs passed # start with expected success Xs_out = subject.check(Xs_good) self.assertEqual(numpy.ndarray, type(Xs_out)) self.assertEqual(Xs_good.shape, Xs_out.shape) self.assertEqual(numpy.float64, Xs_out.dtype) # failure modes with self.assertRaises(ValueError): subject.check(Xs_bad) with self.assertRaises(TypeError): subject.check(Xs_non_numeric) with self.assertRaises(AttributeError): subject.check(no_shape_attribute) # Xs and y together # expected success Xs_out, Ys_out = subject.check(Xs_good, Ys_good) self.assertTrue(isinstance(Xs_out, numpy.ndarray) and isinstance(Ys_out, numpy.ndarray)) self.assertTrue(Xs_good.shape == Xs_out.shape and Ys_good.shape == Ys_out.shape) self.assertEqual(numpy.float64, Xs_out.dtype) # failure modes with self.assertRaises(ValueError): subject.check(Xs_bad, Ys_good) with self.assertRaises(ValueError): subject.check(Xs_good, Ys_bad) with self.assertRaises(TypeError): subject.check(Xs_non_numeric, Ys_good) with self.assertRaises(AttributeError): subject.check(no_shape_attribute, Ys_good) with self.assertRaises(AttributeError): subject.check(Xs_good, no_shape_attribute) with self.assertRaises(ValueError): subject.check(Xs_good, Ys_datacount_mismatch) return def test_build(self): """Test the parent build method, to make sure it executes protected method""" model = 'Mymodel' with unittest.mock.patch( 'gandy.models.models.UncertaintyModel._build', return_value=model # mock the return of the model to a string ) as mocked__build: subject = mds.UncertaintyModel((1,), (1,), keyword=5) mocked__build.assert_called_once_with(keyword=5) # ensure automatically set model self.assertTrue(subject.model is model) return def test__build(self): """Parent _build should do nothing but raise""" with self.assertRaises(mds.NotImplimented): mds.UncertaintyModel((1,), (1,)) # mock _build from here on out - we don;t want the init build to # interfere return @unittest.mock.patch( 'gandy.models.models.UncertaintyModel._build', return_value='Model' ) def test__get_metric(self, mocked__build): """test ability to retrieve the correct callables""" def fake_metric(trues, predictions, uncertainties): return 5 # initialize the subject subject = mds.UncertaintyModel((1,), (1,)) # try all success cases metric_out = subject._get_metric(fake_metric) self.assertEqual(fake_metric, metric_out) metric_out = subject._get_metric('Metric') self.assertEqual(gandy.quality_est.metrics.Metric, metric_out) metric_out = subject._get_metric(None) self.assertTrue(metric_out is None) # and failure, not a class with self.assertRaises(AttributeError): subject._get_metric('not_a_class') return @unittest.mock.patch( 'gandy.models.models.UncertaintyModel._build', return_value='Model' ) def test_train(self, mocked__build): """Proper passing of data to _train and updating of sessions""" subject = mds.UncertaintyModel((1,), (1,)) # mock the required nested calls Xs_in, Ys_in = 'Xs', 'Ys' mocked_check = unittest.mock.MagicMock( return_value=('Xs_checked', 'Ys_checked') ) subject.check = mocked_check mocked__train = unittest.mock.MagicMock( return_value='losses' ) subject._train = mocked__train mocked__get_metric = unittest.mock.MagicMock( return_value='some_metric' ) subject._get_metric = mocked__get_metric # run the train and check proper calls with unittest.mock.patch('time.time', return_value='thetime' ) as mocked_time: # first specify a session name subject.train(Xs_in, Ys_in, metric='fake_metric', session='first_session') mocked_check.assert_called_with(Xs_in, Ys_in) mocked__get_metric.assert_called_with('fake_metric') mocked__train.assert_called_with('Xs_checked', 'Ys_checked', metric='some_metric') # then try without specifying session name, we want to make its own # also don't give a metric to make sure that is an allowed option subject.train(Xs_in, Ys_in) mocked_time.assert_called() # check all of the correct storing of sessions self.assertEqual(2, len(subject.sessions)) self.assertTrue('first_session' in subject.sessions.keys()) self.assertEqual(subject.sessions['first_session'], 'losses') self.assertTrue('Starttime: thetime' in subject.sessions.keys()) return @unittest.mock.patch( 'gandy.models.models.UncertaintyModel._build', return_value='Model' ) def test__train(self, mocked__build): """All it should do is raise an error for child to define""" subject = mds.UncertaintyModel((1,), (1,)) with self.assertRaises(mds.NotImplimented): subject._train('Xs', 'Ys') return @unittest.mock.patch( 'gandy.models.models.UncertaintyModel._build', return_value='Model' ) def test_predict(self, mocked__build): """Test proper flagging of predictions""" subject = mds.UncertaintyModel((1,), (1,)) # prepare and mock objects Xs_in = 'Xs' # here we set up a rotation of predictions, uncertaintains for # _predict to return, allowing us to test _predict output handling _predict_return = [ ([5, 10],
numpy.array([5, 10], dtype=int)
numpy.array
""" The goal of this script is to illustrate the results of applying kernel inference in its simplest form to derive a best guess for a covariance function. For this, do the following: 1. Definitions and imports 2. Simulations 3. Perform kernel inference 4. Plots and illustrations """ """ 1. Definitions and imports ----------------------------------------------- """ # i) Import packages import numpy as np import numpy.linalg as lina import matplotlib.pyplot as plt plt.rcParams.update({'font.size': 5}) # ii) Define auxiliary quantities n=100 n_simu=80 n_sample=30 n_exp=10 t=np.linspace(0,1,n) sample_index=np.round(np.linspace(0,n-1,n_sample)) t_sample=t[sample_index.astype(int)] tol=10**(-10) """ 2. Simulations ---------------------------------------------------------- """ # i) Define true underlying covariance function d_true=0.5 def cov_fun_true(t1,t2): return np.exp(-(lina.norm(t1-t2)/d_true)**2) # ii) Set up Covariance matrix K_true=np.zeros([n,n]) for k in range(n): for l in range(n): K_true[k,l]=cov_fun_true(t[k],t[l]) mu=np.zeros(n) # iii) Generate simulations x_simu=np.zeros([n,n_simu]) for k in range(n_simu): x_simu[:,k]=np.random.multivariate_normal(mu,K_true) x_measured=x_simu[sample_index.astype(int),:] # iv) Create empirical covariance matrix S_emp_full=(1/n_simu)*(x_simu@x_simu.T) S_emp=(1/n_simu)*(x_measured@x_measured.T) """ 3. Perform kernel inference --------------------------------------------- """ # i) Create prior r=2 d_prior=0.2 def cov_fun_prior(t1,t2): return np.exp(-(lina.norm(t1-t2)/d_prior)**2) K_prior=np.zeros([n,n]) for k in range(n): for l in range(n): K_prior[k,l]=cov_fun_prior(t[k],t[l]) # ii) Set up matrices [U_p,Lambda_p,V_p]=lina.svd(K_prior) Lambda_p=
np.diag(Lambda_p)
numpy.diag
import os import math import time import math import numpy as np import pandas as pd import argparse import matplotlib.pyplot as plt from ggplot import * from pdb import set_trace as bp from sklearn.manifold import TSNE from mpl_toolkits.axes_grid1 import ImageGrid parser = argparse.ArgumentParser(description='Restricted Boltzman Machine') parser.add_argument("--lr", type=float, default=0.1, help="initial learning rate for gradient descent based algorithms") parser.add_argument("--k", type=int, default=1, help="momentum to be used by momentum based algorithms") parser.add_argument("--num_hidden", type=int, default=500, help="number of hidden variable - this does not include the 784 dimensional input_x layer\ and the 10 dimensional output layer") parser.add_argument("--batch_size", type=int, default=10, help="the batch size to be used - valid values are 1 and multiples of 5") parser.add_argument("--epochs", type=int, default=10, help="the no of epochs the model should run") parser.add_argument("--save_dir", default=os.getcwd() + "/", type=str, help="the directory in which the pickled model should be saved - by model we mean\ all the weights and biases of the network") parser.add_argument("--train", default=os.getcwd() + "/train.csv", type=str, help="path to the Training dataset") parser.add_argument("--test", default=os.getcwd() + "/test.csv", type=str, help="path to the Test dataset") print("Parsing Arguments...") args = parser.parse_args() def make_matgrid(input_image, file_name): fig = plt.figure(1, (20., 20.)) grid = ImageGrid(fig, 111, # similar to subplot(111) nrows_ncols=(8, 8), # creates 2x2 grid of axes axes_pad=0.1, # pad between axes in inch. ) for i in range(input_image.shape[0]): im = input_image[i:i + 1].reshape(28, 28) grid[i].imshow(im, cmap='gray') # The AxesGrid object work as a list of axes. plt.savefig(file_name) plt.close('all') def tsne_custom(x, y, filename): feat_cols = ['pixel' + str(i) for i in range(1, 785)] df = pd.DataFrame(x, columns=feat_cols) df['label'] = y df['label'] = df['label'].apply(lambda i: str(i)) rndperm = np.random.permutation(df.shape[0]) n_sne = 10000 time_start = time.time() tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=300) tsne_results = tsne.fit_transform(df.loc[rndperm[:n_sne], feat_cols].values) print('t-SNE done! Time elapsed: {} seconds'.format(time.time() - time_start)) df_tsne = df.loc[rndperm[:n_sne], :].copy() df_tsne['x-tsne'] = tsne_results[:, 0] df_tsne['y-tsne'] = tsne_results[:, 1] chart = ggplot(df_tsne, aes(x='x-tsne', y='y-tsne', color='label')) \ + geom_point(size=70, alpha=0.5) \ + ggtitle("tSNE dimensions colored by digit") chart.save(filename + ".png") plt.close('all') class RBM(object): """docstring for RBM""" def __init__(self, input=None, n_V=784, n_H=args.num_hidden, W=None, h_bias=None, v_bias=None, numpy_rng=None,): super(RBM, self).__init__() self.input = input self.visible = n_V self.hidden = n_H if numpy_rng is None: # create a number generator numpy_rng = np.random.RandomState(1) if W is None: W = numpy_rng.uniform( low=-4 * np.sqrt(6. / (n_H + n_V)), high=4 * np.sqrt(6. / (n_H + n_V)), size=(n_V, n_H) ) if h_bias is None: h_bias = np.zeros(n_H) if v_bias is None: v_bias = np.zeros(n_V) self.W = W self.numpy_rng = numpy_rng self.hbias = h_bias self.vbias = v_bias self.params = [self.W, self.hbias, self.vbias] def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def dsigmoid(self, y): return y * (1.0 - y) def propagate_up(self, visible): pre_sigmoid = np.dot(visible, self.W) + self.hbias post_sigmoid = self.sigmoid(pre_sigmoid) return [pre_sigmoid, post_sigmoid] def h_given_v(self, v0): pre_sigmoid_h1, h1_mean = self.propagate_up(v0) h1_sample = self.numpy_rng.binomial(n=1, p=h1_mean, size=h1_mean.shape) return [pre_sigmoid_h1, h1_mean, h1_sample] def propagate_down(self, hidden): pre_sigmoid = np.dot(hidden, self.W.T) + self.vbias post_sigmoid = self.sigmoid(pre_sigmoid) return [pre_sigmoid, post_sigmoid] def v_given_h(self, h0): pre_sigmoid_v1, v1_mean = self.propagate_down(h0) v1_sample = np.random.binomial(n=1, p=v1_mean, size=v1_mean.shape) return [pre_sigmoid_v1, v1_mean, v1_sample] def giibs_hvh(self, h0): pre_sigmoid_v1, v1_mean, v1_sample = self.v_given_h(h0) pre_sigmoid_h1, h1_mean, h1_sample = self.h_given_v(v1_sample) return [pre_sigmoid_v1, v1_mean, v1_sample, pre_sigmoid_h1, h1_mean, h1_sample] def giibs_vhv(self, v0): pre_sigmoid_h1, h1_mean, h1_sample = self.h_given_v(v0) pre_sigmoid_v1, v1_mean, v1_sample = self.v_given_h(h1_sample) return [pre_sigmoid_h1, h1_mean, h1_sample, pre_sigmoid_v1, v1_mean, v1_sample] def free_energy_loss(self, epsilon=10**(-3)): pre_sigmoid_activation_h = np.dot(self.input, self.W) + self.hbias sigmoid_activation_h = self.sigmoid(pre_sigmoid_activation_h) pre_sigmoid_activation_v = np.dot(sigmoid_activation_h, self.W.T) + self.vbias sigmoid_activation_v = self.sigmoid(pre_sigmoid_activation_v) cross_entropy = - np.mean( np.sum(self.input * np.log(sigmoid_activation_v + epsilon) + (1 - self.input) * np.log(1 + epsilon - sigmoid_activation_v), axis=1)) return cross_entropy def get_update_rbm(self, lr=0.1, persistent=None, k=1): pre_sigmoid_ph, ph_mean, ph_sample = self.h_given_v(self.input) if persistent is None: chain_start = ph_sample else: chain_start = persistent for step in range(k): if step == 0: pre_sigmoid_nvs, nv_means, nv_samples, pre_sigmoid_nhs, nh_means, nh_samples = self.giibs_hvh(chain_start) else: pre_sigmoid_nvs, nv_means, nv_samples, pre_sigmoid_nhs, nh_means, nh_samples = self.giibs_hvh(nh_samples) self.W += lr * (
np.dot(self.input.T, ph_mean)
numpy.dot
from skimage import data import os from skimage.filters import unsharp_mask import matplotlib.pyplot as plt from pathlib import Path from skimage.morphology import (erosion, dilation, opening, closing, # noqa white_tophat) from skimage.morphology import disk # noqa import numpy as np from pyimage.ami_image import AmiImage class Exploration: def sharpen_explore(self, axis=False): gray = Exploration.create_gray_network_snippet("snippet_rgba.png") result_1_1 = unsharp_mask(gray, radius=1, amount=1) result_5_2 = unsharp_mask(gray, radius=5, amount=2) result_20_1 = unsharp_mask(gray, radius=20, amount=1) plots = [ {"image": gray, "title": 'Original image'}, {"image": result_1_1, "title": 'Enhanced image, radius=1, amount=1.0'}, {"image": result_5_2, "title": 'Enhanced image, radius=5, amount=2.0'}, {"image": result_20_1, "title": 'Enhanced image, radius=20, amount=1.0'}, ] ax, fig = self.create_subplots(plots, nrows=2, ncols=2, figsize=(10, 10)) Exploration.axis_layout(ax, axis, fig) plt.show() def explore_erode_dilate(self): from skimage.util import img_as_ubyte # orig_phantom = img_as_ubyte(data.shepp_logan_phantom()) # Exploration.make_numpy_assert(orig_phantom, shape=(400, 400), max=255, dtype=np.uint8) # fig, ax = plt.subplots() # ax.imshow(orig_phantom, cmap=plt.cm.gray) # plt.show() # # footprint = disk(6) # Exploration.make_numpy_assert(footprint, shape=(13, 13), max=1, dtype=np.uint8) # # eroded = erosion(orig_phantom, footprint) # Exploration.make_numpy_assert(eroded, shape=(400, 400), max=255) # Exploration.plot_comparison(orig_phantom, eroded, 'erosion') # plt.show() # white = Exploration.create_white_network_snippet("snippet_rgba.png") Exploration.make_numpy_assert(white, shape=(341, 796), max=1, dtype=np.bool) footprint = disk(1) eroded = erosion(white, footprint) Exploration.plot_comparison(white, eroded, 'erosion') plt.show() erode_1 = erosion(white, disk(1)) erode_2 = erosion(white, disk(2)) dilate_1 = dilation(white, disk(1)) dilate_2 = dilation(white, disk(2)) dilate_erode_1 = dilation(erosion(white, disk(1)), disk(1)) plots = [ {"image": white, "title": 'Original image'}, {"image": erode_1, "title": 'erode disk=1'}, {"image": erode_2, "title": 'erode disk=2'}, {"image": dilate_1, "title": 'dilate disk=1'}, {"image": dilate_2, "title": 'dilate disk=2'}, {"image": dilate_erode_1, "title": 'dilate_erode disk=1'}, ] ax, fig = self.create_subplots(plots, nrows=3, ncols=2, figsize=(10, 10)) # Exploration.axis_layout(ax, axis, fig) plt.show() # ================= resources ================= @classmethod def create_gray_network_snippet(cls, png): path = Path(Path(__file__).parent.parent, "test", "resources", png) assert path.exists(), f"path {path} exists" gray = AmiImage.create_grayscale_from_file(path) return gray @classmethod def create_white_network_snippet(cls, png): path = Path(Path(__file__).parent.parent, "test", "resources", png) assert path.exists(), f"path {path} exists" white = AmiImage.create_white_binary_from_file(path) Exploration.make_numpy_assert(white, shape=(341, 796), max=1, dtype=np.bool) return white @classmethod def plot_comparison(cls, original, modified, modified_title): """ Plots old/new images side-by-side :param original: :param modified: :param modified_title: title of RH image :return: """ fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4), sharex=True, sharey=True) ax1.imshow(original, cmap=plt.cm.gray) ax1.set_title('original') ax1.axis('off') ax2.imshow(modified, cmap=plt.cm.gray) ax2.set_title(modified_title) ax2.axis('off') @classmethod def create_subplots(cls, plots, nrows=2, ncols=2, sharex=True, sharey=True, figsize=(10, 10)): """ Convenience method to create subplots :param plots: array of ndarrays to plot :param nrows: :param ncols: :param sharex: :param sharey: :param figsize: tuple for display (width, height in "cm" I think) :return: ax, fig """ fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharex=sharex, sharey=sharey, figsize=figsize) ax = axes.ravel() for i, plot in enumerate(plots): ax[i].imshow(plots[i]["image"], cmap=plt.cm.gray) ax[i].set_title(plots[i]["title"]) return ax, fig @classmethod def axis_layout(cls, ax, axis, fig): """ Not quite sure what it switches on/off :param ax: :param axis: :param fig: :return: """ if axis: for a in ax: a.axis('off') fig.tight_layout() # =========== palettes ============ """ From https://stackoverflow.com/questions/45523205/get-rgb-colors-from-color-palette-image-and-apply-to-binary-image You can use a combination of a reshape and np.unique to extract the unique RGB values from your color palette image: """ # Load the color palette from skimage import io raise NotImplemented("image explore, needs biosynth3??") palette = io.imread(os.image.join(os.getcwd(), 'color_palette.png')) # Use `np.unique` following a reshape to get the RGB values palette = palette.reshape(palette.shape[0]*palette.shape[1], palette.shape[2]) palette_colors =
np.unique(palette, axis=0)
numpy.unique
""" """ import numpy as np from astropy.utils.misc import NumpyRNGContext from astropy.tests.helper import pytest from .pure_python_mean_radial_velocity_vs_r import pure_python_mean_radial_velocity_vs_r from ..mean_radial_velocity_vs_r import mean_radial_velocity_vs_r from ...tests.cf_helpers import generate_locus_of_3d_points, generate_3d_regular_mesh __all__ = ('test_mean_radial_velocity_vs_r1', ) fixed_seed = 43 def test_mean_radial_velocity_vs_r1(): """ Compare <Vr> calculation to simple configuration with exactly calculable result """ npts = 10 xc1, yc1, zc1 = 0.1, 0.5, 0.5 xc2, yc2, zc2 = 0.05, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2) vx1, vy1, vz1 = 0., 0., 0. vx2, vy2, vz2 = 20., 0., 0. velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1) velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2) rbins = np.array([0, 0.1, 0.2, 0.3]) ########### # Run the test with PBCs turned off result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2) assert np.allclose(result, [-20, 0, 0]) # Result should be identical with PBCs turned on result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(result, [-20, 0, 0]) def test_mean_radial_velocity_vs_r2(): """ Compare <Vr> calculation to simple configuration with exactly calculable result """ npts = 10 xc1, yc1, zc1 = 0.05, 0.5, 0.5 xc2, yc2, zc2 = 0.95, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2) vx1, vy1, vz1 = 0., 0., 0. vx2, vy2, vz2 = 20., 0., 0. velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1) velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2) rbins = np.array([0, 0.05, 0.2, 0.3]) ########### # Run the test with PBCs turned off result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2) assert np.allclose(result, [0, 0, 0]) # Result should change with PBCs turned on result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(result, [0, -20, 0]) def test_mean_radial_velocity_vs_r3(): """ Brute force comparison of <Vr> calculation to pure python implementation, with PBCs turned off, and cross-correlation is tested """ npts1, npts2 = 150, 151 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts1, 3)) sample2 = np.random.random((npts2, 3)) velocities1 = np.random.uniform(-100, 100, npts1*3).reshape((npts1, 3)) velocities2 = np.random.uniform(-100, 100, npts2*3).reshape((npts2, 3)) rbins = np.array([0, 0.05, 0.2, 0.3]) cython_result_no_pbc = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2) for i, rmin, rmax in zip(range(len(rbins)), rbins[:-1], rbins[1:]): python_result_no_pbc = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=float('inf')) assert np.allclose(cython_result_no_pbc[i], python_result_no_pbc) def test_mean_radial_velocity_vs_r4(): """ Brute force comparison of <Vr> calculation to pure python implementation, with PBCs turned on, and cross-correlation is tested """ npts1, npts2 = 150, 151 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts1, 3)) sample2 = np.random.random((npts2, 3)) velocities1 = np.random.uniform(-100, 100, npts1*3).reshape((npts1, 3)) velocities2 = np.random.uniform(-100, 100, npts2*3).reshape((npts2, 3)) rbins = np.array([0, 0.05, 0.2, 0.3]) cython_result_pbc = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2, period=1.) for i, rmin, rmax in zip(range(len(rbins)), rbins[:-1], rbins[1:]): python_result_no_pbc = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample2, velocities2, rmin, rmax, Lbox=1) assert np.allclose(cython_result_pbc[i], python_result_no_pbc) def test_mean_radial_velocity_vs_r5(): """ Brute force comparison of <Vr> calculation to pure python implementation, with PBCs turned off, and auto-correlation is tested """ npts1, npts2 = 150, 151 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts1, 3)) sample2 = np.random.random((npts2, 3)) velocities1 = np.random.uniform(-100, 100, npts1*3).reshape((npts1, 3)) velocities2 = np.random.uniform(-100, 100, npts2*3).reshape((npts2, 3)) sample1 = np.concatenate((sample1, sample2)) velocities1 = np.concatenate((velocities1, velocities2)) rbins = np.array([0, 0.05, 0.2, 0.3]) cython_result_no_pbc = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins) for i, rmin, rmax in zip(range(len(rbins)), rbins[:-1], rbins[1:]): python_result_no_pbc = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample1, velocities1, rmin, rmax, Lbox=float('inf')) assert np.allclose(cython_result_no_pbc[i], python_result_no_pbc) def test_mean_radial_velocity_vs_r6(): """ Brute force comparison of <Vr> calculation to pure python implementation, with PBCs turned on, and auto-correlation is tested """ npts1, npts2 = 150, 151 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts1, 3)) sample2 = np.random.random((npts2, 3)) velocities1 = np.random.uniform(-100, 100, npts1*3).reshape((npts1, 3)) velocities2 = np.random.uniform(-100, 100, npts2*3).reshape((npts2, 3)) sample1 = np.concatenate((sample1, sample2)) velocities1 = np.concatenate((velocities1, velocities2)) rbins = np.array([0, 0.05, 0.2, 0.3]) cython_result_no_pbc = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, period=1) for i, rmin, rmax in zip(range(len(rbins)), rbins[:-1], rbins[1:]): python_result_no_pbc = pure_python_mean_radial_velocity_vs_r( sample1, velocities1, sample1, velocities1, rmin, rmax, Lbox=1) assert np.allclose(cython_result_no_pbc[i], python_result_no_pbc) def test_mean_radial_velocity_vs_r1a(): """ Compare <Vr> calculation to simple configuration with exactly calculable result. Here we verify that we get identical results when using the ``normalize_rbins_by`` feature with unit-normalization. """ npts = 10 xc1, yc1, zc1 = 0.1, 0.5, 0.5 xc2, yc2, zc2 = 0.05, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2) vx1, vy1, vz1 = 0., 0., 0. vx2, vy2, vz2 = 20., 0., 0. velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1) velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2) normalize_rbins_by = np.ones(sample1.shape[0]) rbins = np.array([0, 0.1, 0.2, 0.3]) ########### # Run the test with PBCs turned off result1 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2) result2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_normalized=rbins, normalize_rbins_by=normalize_rbins_by, sample2=sample2, velocities2=velocities2) assert np.allclose(result1, result2) # Result should be identical with PBCs turned on result1 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2, period=1) result2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_normalized=rbins, normalize_rbins_by=normalize_rbins_by, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(result1, result2) def test_mean_radial_velocity_vs_r1b(): """ Compare <Vr> calculation to simple configuration with exactly calculable result, explicitly testing a nontrivial example of ``normalize_rbins_by`` feature """ npts = 10 xc1, yc1, zc1 = 0.2, 0.5, 0.5 xc2, yc2, zc2 = 0.05, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2) vx1, vy1, vz1 = 0., 0., 0. vx2, vy2, vz2 = 20., 0., 0. velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1) velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2) normalize_rbins_by = np.zeros(sample1.shape[0]) + 0.1 rbins_normalized = np.array((0., 1., 2.)) ########### # Run the test with PBCs turned off result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_normalized=rbins_normalized, normalize_rbins_by=normalize_rbins_by, sample2=sample2, velocities2=velocities2) assert np.allclose(result, [0, -20]), "normalize_rbins_by feature is not implemented correctly" def test_rvir_normalization_feature(): """ Test the rvir normalization feature. Lay down a regular grid of sample1 points. Generate a sample2 point for each point in sample1, at a z value equal to 2.5*Rvir, where Rvir is close to 0.01 for every point. Assign the same z-velocity to each sample2 point. This allows the value of <Vr> to be calculated simply from <Vz>. """ sample1 = generate_3d_regular_mesh(5) velocities1 = np.zeros_like(sample1) rvir = 0.01 sample2 = np.copy(sample1) sample2[:, 2] += 2.5*rvir velocities2 = np.zeros_like(sample2) velocities2[:, 2] = -43. normalize_rbins_by = np.random.uniform(0.95*rvir, 1.05*rvir, sample1.shape[0]) rbins_normalized = np.array((0., 1., 2., 3., 4.)) result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_normalized=rbins_normalized, normalize_rbins_by=normalize_rbins_by, sample2=sample2, velocities2=velocities2) correct_result = [0, 0, -43, 0] assert np.allclose(result, correct_result) def test_mean_radial_velocity_vs_r2b(): """ Compare <Vr> calculation to simple configuration with exactly calculable result """ npts = 10 xc1, yc1, zc1 = 0.05, 0.5, 0.5 xc2, yc2, zc2 = 0.95, 0.5, 0.5 sample1 = np.zeros((npts, 3)) + (xc1, yc1, zc1) sample2 = np.zeros((npts, 3)) + (xc2, yc2, zc2) vx1, vy1, vz1 = 0., 0., 0. vx2, vy2, vz2 = 20., 0., 0. velocities1 = np.zeros((npts, 3)) + (vx1, vy1, vz1) velocities2 = np.zeros((npts, 3)) + (vx2, vy2, vz2) normalize_rbins_by = np.zeros(sample1.shape[0]) + 0.1 rbins_normalized = np.array((0., 1., 2.)) ########### # Run the test with PBCs turned off result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_normalized=rbins_normalized, normalize_rbins_by=normalize_rbins_by, sample2=sample2, velocities2=velocities2) assert np.allclose(result, [0, 0]) # Result should change with PBCs turned on result = mean_radial_velocity_vs_r(sample1, velocities1, rbins_normalized=rbins_normalized, normalize_rbins_by=normalize_rbins_by, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(result, [0, -20]) def test_mean_radial_velocity_vs_r_correctness1(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.5, 0.5, 0.1), the second at (0.5, 0.5, 0.25). The first set of points is moving at +50 in the z-direction; the second set of points is at rest. PBCs are set to infinity in this test. So in this configuration, the two sets of points are moving towards each other, and so the radial component of the relative velocity should be -50 for cross-correlations in the radial separation bin containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. The tests will be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = -50 npts = 100 xc1, yc1, zc1 = 0.5, 0.5, 0.1 xc2, yc2, zc2 = 0.5, 0.5, 0.25 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 2] = 50. rbins = np.array([0, 0.1, 0.3]) s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins_absolute=rbins) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) @pytest.mark.slow def test_mean_radial_velocity_vs_r_correctness2(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.5, 0.5, 0.05), the second at (0.5, 0.5, 0.95). The first set of points is moving at +50 in the z-direction; the second set of points is at rest. So in this configuration, when PBCs are operative the two sets of points are moving away from each other, and so the radial component of the relative velocity should be +50 for cross-correlations in the radial separation bin containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. When PBCs are turned off, the function should return zero as the points are too distant to find pairs. These tests will be applied with and without periodic boundary conditions. The tests will also be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = +50 npts = 100 xc1, yc1, zc1 = 0.5, 0.5, 0.05 xc2, yc2, zc2 = 0.5, 0.5, 0.9 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 2] = 50. rbins = np.array([0, 0.1, 0.3]) # First run the calculation with PBCs set to unity s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) # Now set PBCs to infinity and verify that we instead get zeros s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins_absolute=rbins, sample2=sample2, velocities2=velocities2) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], 0, rtol=0.01) # Bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) # Now repeat the above tests, with and without PBCs s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins_absolute=rbins, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins_absolute=rbins) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) def test_mean_radial_velocity_vs_r_correctness3(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.95, 0.5, 0.5), the second at (0.05, 0.5, 0.5). The first set of points is moving at +50 in the x-direction; the second set of points is moving at +25 in the x-direction. So in this configuration, when PBCs are operative the two sets of points are moving towards each other, as the first set of points is "gaining ground" on the second set in the x-direction. So the radial component of the relative velocity should be -25 for cross-correlations in the radial separation bin containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. When PBCs are turned off, the function should return zero as the points are too distant to find pairs. These tests will be applied with and without periodic boundary conditions. The tests will also be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = -25 npts = 100 xc1, yc1, zc1 = 0.95, 0.5, 0.5 xc2, yc2, zc2 = 0.05, 0.5, 0.5 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 0] = 50. velocities2[:, 0] = 25. rbins = np.array([0, 0.05, 0.3]) s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, period=1, approx_cell1_size=0.1) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) # repeat the test but with PBCs set to infinity s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, approx_cell2_size=0.1) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) # Repeat the above tests s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) def test_mean_radial_velocity_vs_r_correctness4(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.5, 0.95, 0.5), the second at (0.5, 0.05, 0.5). The first set of points is moving at -50 in the y-direction; the second set of points is moving at +25 in the y-direction. So in this configuration, when PBCs are operative the two sets of points are each moving away from each other, so the radial component of the relative velocity should be +75 for cross-correlations in the radial separation bin containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. When PBCs are turned off, the function should return zero as the points are too distant to find pairs. These tests will be applied with and without periodic boundary conditions. The tests will also be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = +75 npts = 100 xc1, yc1, zc1 = 0.5, 0.95, 0.5 xc2, yc2, zc2 = 0.5, 0.05, 0.5 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, 1] = -50. velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities2[:, 1] = 25. rbins = np.array([0, 0.05, 0.3]) s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) # repeat the test but with PBCs set to infinity s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) # Repeat the above tests s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) def test_mean_radial_velocity_vs_r_correctness5(): """ This function tests that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns correct results for a controlled distribution of points whose mean radial velocity is analytically calculable. For this test, the configuration is two tight localizations of points, the first at (0.05, 0.05, 0.05), the second at (0.95, 0.95, 0.95). The first set of points is moving at (+50, +50, +50); the second set of points is moving at (-50, -50, -50). So in this configuration, when PBCs are operative the two sets of points are each moving towards each other, so the radial component of the relative velocity should be +100*sqrt(3) for cross-correlations in the radial separation bin containing the pair of points. For any separation bin containing only one set or the other, the auto-correlations should be 0 because each set of points moves coherently. When PBCs are turned off, the function should return zero as the points are too distant to find pairs. These tests will be applied with and without periodic boundary conditions. The tests will also be run with the two point configurations passed in as separate ``sample1`` and ``sample2`` distributions, as well as bundled together into the same distribution. """ correct_relative_velocity = np.sqrt(3)*100. npts = 91 xc1, yc1, zc1 = 0.05, 0.05, 0.05 xc2, yc2, zc2 = 0.95, 0.95, 0.95 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, :] = 50. velocities2[:, :] = -50. rbins = np.array([0, 0.1, 0.3]) s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, period=1) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], correct_relative_velocity, rtol=0.01) # repeat the test but with PBCs set to infinity s1s2 = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2) assert np.allclose(s1s2[0], 0, rtol=0.01) assert np.allclose(s1s2[1], 0, rtol=0.01) # Now bundle sample2 and sample1 together and only pass in the concatenated sample sample = np.concatenate((sample1, sample2)) velocities = np.concatenate((velocities1, velocities2)) # Repeat the above tests s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins, period=1) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], correct_relative_velocity, rtol=0.01) s1s1 = mean_radial_velocity_vs_r(sample, velocities, rbins) assert np.allclose(s1s1[0], 0, rtol=0.01) assert np.allclose(s1s1[1], 0, rtol=0.01) @pytest.mark.slow def test_mean_radial_velocity_vs_r_parallel1(): """ Verify that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns identical results for two tight loci of points whether the function runs in parallel or serial. """ npts = 91 xc1, yc1, zc1 = 0.5, 0.05, 0.05 xc2, yc2, zc2 = 0.45, 0.05, 0.1 sample1 = generate_locus_of_3d_points(npts, xc=xc1, yc=yc1, zc=zc1, seed=fixed_seed) sample2 = generate_locus_of_3d_points(npts, xc=xc2, yc=yc2, zc=zc2, seed=fixed_seed) velocities1 = np.zeros(npts*3).reshape(npts, 3) velocities2 = np.zeros(npts*3).reshape(npts, 3) velocities1[:, :] = 50. velocities2[:, :] = 0. rbins = np.array([0, 0.1, 0.3]) s1s2_parallel = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, num_threads=3, period=1) s1s2_serial = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, num_threads=1, period=1) assert np.all(s1s2_serial == s1s2_parallel) @pytest.mark.slow def test_mean_radial_velocity_vs_r_parallel2(): """ Verify that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns identical results for two random distributions of points whether the function runs in parallel or serial, with PBCs operative. """ npts = 101 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) velocities1 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) sample2 = np.random.random((npts, 3)) velocities2 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) rbins = np.array([0, 0.1, 0.3]) s1s2_parallel = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, num_threads=2, period=1) s1s2_serial = mean_radial_velocity_vs_r(sample1, velocities1, rbins, sample2=sample2, velocities2=velocities2, num_threads=1, period=1) assert np.allclose(s1s2_serial, s1s2_parallel, rtol=0.001) @pytest.mark.slow def test_mean_radial_velocity_vs_r_parallel3(): """ Verify that the `~halotools.mock_observables.mean_radial_velocity_vs_r` function returns identical results for two random distributions of points whether the function runs in parallel or serial, with PBCs turned off. """ npts = 101 with NumpyRNGContext(fixed_seed): sample1 = np.random.random((npts, 3)) velocities1 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) sample2 = np.random.random((npts, 3)) velocities2 = np.random.normal(loc=0, scale=100, size=npts*3).reshape((npts, 3)) rbins =
np.array([0, 0.1, 0.3])
numpy.array
import tensorflow as tf import numpy as np from scipy.interpolate import interp1d def weight_variable(shape, name=None): return tf.get_variable(name=name, shape=shape, dtype=tf.float32, initializer=tf.truncated_normal_initializer(stddev=0.001)) def bias_variable(shape, name=None): return tf.get_variable(name=name, shape=shape, dtype=tf.float32, initializer=tf.constant_initializer(0)) def conv2d(x, w, strides=1, name=None): return tf.nn.conv2d(x, w, strides=[1, 1, strides, 1], padding="SAME", name=name) def lrelu(x, leak=0.2): return tf.maximum(x, leak*x) def prelu(x, scope=None): """parametric ReLU activation""" with tf.variable_scope(name_or_scope=scope, default_name="prelu"): _alpha = tf.get_variable("prelu", shape=1, dtype=x.dtype, initializer=tf.constant_initializer(0.1)) return tf.maximum(0.0, x) + _alpha * tf.minimum(0.0, x), _alpha def deconv(x, w, output_shape, strides, name=None): dyn_input_shape = tf.shape(x) batch_size = dyn_input_shape[0] output_shape = tf.stack([batch_size, output_shape[1], output_shape[2], output_shape[3]]) output = tf.nn.conv2d_transpose(x, w, output_shape, strides, padding="SAME", name=name) return output def prefilter(k_size, channel_in, channel_out, name=None): x = np.linspace(0, 80, num=k_size) filters = np.zeros([k_size, 1]) filters[int((k_size - 1) / 2), 0] = 1 for chn in range(channel_out - 1): y = np.exp(-np.square(x - 40) / (200 / ((channel_out - 1) * 5 + 1) * (chn * 5 + 1))) value = interp1d(x, y, kind='cubic') value = value(x) value = value / np.sum(value) filters = np.concatenate((filters, np.expand_dims(value, axis=1)), axis=1) filters = np.tile(filters, [1, channel_in, 1, 1]) filters = np.transpose(filters, (0, 2, 1, 3)) return tf.get_variable(name=name, shape=[1, k_size, channel_in, channel_out], dtype=tf.float32, initializer=tf.constant_initializer(filters)) def shear(x, scale): global y input_shape = x.get_shape().as_list() hei = input_shape[1] wid = input_shape[2] shift_max = np.ceil((hei - 1) / 2 * abs(scale)) base_shift = shift_max - (hei - 1) / 2 * abs(scale) paddings = [[0, 0], [0, 0], [int(shift_max), int(shift_max)], [0, 0]] x = tf.pad(x, paddings) for i in range(hei): if scale > 0: shift = i * scale + base_shift else: shift = (hei - i - 1) * abs(scale) + base_shift if shift == int(shift): cur_y = tf.slice(x, [0, i, int(shift), 0], [-1, 1, wid, -1]) else: cur_y = tf.add((shift -
np.floor(shift)
numpy.floor
# -*- coding: utf-8 -*- # Copyright (C) 2022 Machine Learning Group of the University of Oldenburg. # Licensed under the Academic Free License version 3.0 from __future__ import division, print_function import os import re import glob import numpy as np from matplotlib.ticker import MaxNLocator from utils import eval_fn import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt # noqa from tvutil.viz import make_grid_with_black_boxes_and_white_background, scale # noqa class Visualizer(object): def __init__( self, viz_every, output_directory, clean_image, noisy_image, patch_size=None, ncol_gfs=5, sort_gfs=True, topk_gfs=None, cmap=None, figsize=[9, 3], positions={ "clean": [0.001, 0.01, 0.20, 0.85], "noisy": [0.218, 0.01, 0.20, 0.85], "rec": [0.433, 0.01, 0.20, 0.85], "gfs": [0.715, 0.37, 0.28, 0.56], "pies": [0.731, 0.18, 0.26, 0.24], }, labelsize=10, gif_framerate=None, ): self._viz_every = viz_every self._output_directory = output_directory self._gif_framerate = gif_framerate if gif_framerate is not None and viz_every > 1: print("Choose --viz_every=1 for best gif results") self._clean_image = clean_image self._noisy_image = noisy_image self._patch_size = patch_size self._ncol_gfs = ncol_gfs self._sort_gfs = sort_gfs if sort_gfs: print( "Displayed GFs will be ordered according to prior activation (from highest " "to lowest)" ) self._topk_gfs = topk_gfs self._isrgb = np.ndim(clean_image) == 3 self._cmap = (plt.cm.jet if self._isrgb else plt.cm.gray) if cmap is None else cmap self._positions = positions self._labelsize = labelsize self._fig = plt.figure(figsize=figsize) self._axes = {k: self._fig.add_axes(v, xmargin=0, ymargin=0) for k, v in positions.items()} self._handles = {k: None for k in positions} self._viz_clean() self._viz_noisy() def _viz_clean(self): assert "clean" in self._axes ax = self._axes["clean"] clean = scale(self._clean_image, [0.0, 1.0]) if self._isrgb else self._clean_image self._handles["clean"] = ax.imshow(clean) ax.axis("off") self._handles["clean"].set_cmap(self._cmap) ax.set_title("Clean\n") def _viz_noisy(self): assert "noisy" in self._axes ax = self._axes["noisy"] noisy = self._noisy_image psnr_noisy = eval_fn(self._clean_image, noisy) print("psnr of noisy = {:.2f}".format(psnr_noisy)) noisy = scale(noisy, [0.0, 1.0]) if self._isrgb else noisy self._handles["noisy"] = ax.imshow(noisy) ax.axis("off") self._handles["noisy"].set_cmap(self._cmap) ax.set_title("Noisy\nPSNR={:.2f})".format(psnr_noisy)) def _viz_rec(self, epoch, rec): assert "rec" in self._axes ax = self._axes["rec"] rec = scale(rec, [0.0, 1.0]) if self._isrgb else rec if self._handles["rec"] is None: self._handles["rec"] = ax.imshow(rec) ax.axis("off") else: self._handles["rec"].set_data(rec) self._handles["rec"].set_cmap(self._cmap) self._handles["rec"].set_clim(vmin=np.min(rec), vmax=np.max(rec)) psnr = eval_fn(self._clean_image, rec) ax.set_title("Reco @ {}\n(PSNR={:.2f})".format(epoch, psnr)) def _viz_weights(self, epoch, gfs, suffix=""): assert "gfs" in self._axes ax = self._axes["gfs"] D, H = gfs.shape no_channels = 3 if self._isrgb else 1 patch_height, patch_width = ( (int(np.sqrt(D / no_channels)), int(np.sqrt(D / no_channels))) if self._patch_size is None else self._patch_size ) grid, cmap, vmin, vmax, scale_suff = make_grid_with_black_boxes_and_white_background( images=gfs.T.reshape(H, no_channels, patch_height, patch_width), nrow=int(np.ceil(H / self._ncol_gfs)), surrounding=2, padding=4, repeat=10, global_clim=False, sym_clim=False, cmap=self._cmap, eps=0.02, ) gfs = grid.transpose(1, 2, 0) if self._isrgb else
np.squeeze(grid)
numpy.squeeze
import numpy as np from sklearn.preprocessing import LabelBinarizer import svm def sigmoid(x): #激活函数 return 1/(1+np.exp(-x)) def dsigmoid(x): #激活函数的导数 return x*(1-x) class NeuralNetwork: def __init__(self,layers): # 权重初始化,最后一列为偏置值 self.V = np.random.random((layers[0] + 1, layers[1]+1))*2 - 1 self.W =
np.random.random((layers[1] + 1, layers[2]))
numpy.random.random
#ISTA(Iterative Shrinkage Thresholding Algorithm) #L1 minimization ||Ax-b||_2^2 + lambda * ||x||_1 import numpy as np #import numpy import matplotlib.pyplot as plt from numpy import linalg as LA def threshold(x,lamb,C): if x < -lamb/2/C: gamma_x = x + lamb/2/C elif x > lamb/2/C: gamma_x = x - lamb/2/C else: gamma_x = 0 return gamma_x def shrinkage(x,a): #x: vector , a: scalar new_z = np.zeros(len(x)) norm_x = LA.norm(x) if norm_x - a/2 < 0: pass else: new_z = (1-a/2/norm_x)*x return new_z def ISTA_1(A,x,b,lamb,C, tol,threshold): #solve a system Ax = b with L1-regularizer d = 100000 iter = 0 energy = np.zeros(50000) x_new = np.zeros(np.shape(A)[1]) # while (d > tol): while(iter<20000): y = x + 1/C* np.dot(
np.transpose(A)
numpy.transpose
""" MAPSCI: Multipole Approach of Predicting and Scaling Cross Interactions Handles the primary functions """ import numpy as np import scipy.optimize as spo import logging logger = logging.getLogger(__name__) def calc_distance_array(bead_dict, tol=0.01, max_factor=2, lower_bound="rmin"): r""" Calculation of array for nondimensionalized distance array. Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- bead_dict : dict Dictionary of multipole parameters. - sigma (float) Nondimensionalized size parameter, :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent tol : float, Optional, default=0.01 Ratio of absolute value of repulsive term over attractive term of the Mie potential to define minimum bound max_factor : int, Optional, default=2 Factor to multiply minimum bound by to define maximum bound. lower_bound : str, Optional, default='rmin' Lower bound of distance array. Can be one of: - rmin: the position of the potential well - sigma: the size parameter - tolerance: Uses 'tol' keyword to define the ratio between the attractive and repulsive terms of the Mie potential, note that if tol = 0.01 the lower bound will be ~2.5*sigma. Returns ------- r : numpy.ndarray Array (or float) in [Å] or nondimensionalized, distance between two beads. :math:`r'=r (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` """ if lower_bound == "rmin": rm = mie_potential_minimum(bead_dict) elif lower_bound == "sigma": rm = bead_dict["sigma"] elif lower_bound == "tolerance": rm = bead_dict["sigma"] * (1 / tol)**(1 / (bead_dict["lambdar"] - bead_dict["lambdaa"])) else: raise ValueError("Method, {}, is not supported to calculating lower_bound of fitting/integration".format(lower_bound)) r_array = np.linspace(rm, max_factor * rm, num=10000) return r_array def mie_potential_minimum(bead_dict): r""" Calculate Mie potential minimum of potential well. Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- bead_dict : dict Dictionary of multipole parameters. - sigma (float) Size parameter in [Å] or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent Returns ------- rmin : float Position of minimum of potential well """ return bead_dict["sigma"] * (bead_dict["lambdar"] / bead_dict["lambdaa"])**(1 / (bead_dict["lambdar"] - bead_dict["lambdaa"])) def mie_combining_rules(bead1, bead2): r""" Calculate basic mixed parameters, where the energy parameter is calculated with the geometric mean Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- beadA : dict Dictionary of multipole parameters for bead_A. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent beadB : dict Dictionary of multipole parameters for bead_B. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent Returns ------- beadAB : dict Dictionary of multipole parameters for bead_B. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent """ beadAB = {} beadAB["sigma"] = (bead1["sigma"] + bead2["sigma"]) / 2 beadAB["lambdar"] = 3 + np.sqrt((bead1["lambdar"] - 3) * (bead2["lambdar"] - 3)) beadAB["lambdaa"] = 3 + np.sqrt((bead1["lambdaa"] - 3) * (bead2["lambdaa"] - 3)) beadAB["epsilon"] = np.sqrt(bead1["epsilon"] * bead2["epsilon"]) return beadAB def calc_mie_attractive_potential(r, bead_dict, shape_factor_scale=False): r""" Calculation of attractive Mie potential. Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- r : numpy.ndarray Array (or float) in either [Å] or nondimensionalized distance between two beads. :math:`r'=r (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}`, whatever is consistent with 'bead_dict' bead_dict : dict Dictionary of multipole parameters for bead_A. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent - Sk (float) Shape factor shape_factor_scale : bool, Optional, default=False Scale energy parameter based on shape factor epsilon*Si*Sj Returns ------- potential : numpy.ndarray Array of nondimensionalized potential between beads from Mie potential. Array is equal in length to "r". :math:`\phi'=\phi/(3k_{B}T)` """ if shape_factor_scale: if "Sk" in bead_dict: bead_dict["epsilon"] = bead_dict["epsilon"] * bead_dict["Sk"]**2 else: raise ValueError("Shape factor was not provided in bead dictionary") potential = -prefactor(bead_dict["lambdar"], bead_dict["lambdaa"]) * bead_dict["epsilon"] * (bead_dict["sigma"] / r)**bead_dict["lambdaa"] return potential def calc_mie_repulsive_potential(r, bead_dict, shape_factor_scale=False): r""" Calculation of repulsive Mie potential. Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- r : numpy.ndarray Array (or float) in either [Å] or nondimensionalized distance between two beads. :math:`r'=r (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}`, whatever is consistent with 'bead_dict' bead_dict : dict Dictionary of multipole parameters for bead_A. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent - Sk (float) Shape factor shape_factor_scale : bool, Optional, default=False Scale energy parameter based on shape factor epsilon*Si*Sj Returns ------- potential : numpy.ndarray Array of nondimensionalized potential between beads from Mie potential. Array is equal in length to "r". :math:`\phi'=\phi/(3k_{B}T)` """ if shape_factor_scale: if "Sk" in bead_dict: bead_dict["epsilon"] = bead_dict["epsilon"] * bead_dict["Sk"]**2 else: raise ValueError("Shape factor was not provided in bead dictionary") potential = prefactor(bead_dict["lambdar"], bead_dict["lambdaa"]) * bead_dict["epsilon"] * (bead_dict["sigma"] / r)**bead_dict["lambdar"] return potential def prefactor(lamr, lama): """ Calculation prefactor for Mie potential: :math:`C_{Mie}=\lambda_r/(\lambda_r-\lambda_a) (\lambda_r/\lambda_a)^{\lambda_a/(\lambda_r-\lambda_a)}` """ return lamr / (lamr - lama) * (lamr / lama)**(lama / (lamr - lama)) def calc_lambdaij_from_epsilonij(epsij, bead1, bead2): r""" Calculates cross-interaction exponents from cross interaction energy parameter Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- epsilonij : float Fit energy parameter in [K] or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` beadA : dict Dictionary of multipole parameters for bead_A. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent - Sk (float) Shape factor beadB : dict Dictionary of multipole parameters for bead_B. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent - Sk (float) Shape factor Returns ------- lambdar_new : float Repulsive exponent lambdaa_new : float Attractive exponent """ sigmaij = np.mean([bead1["sigma"], bead2["sigma"]]) tmp = epsij * sigmaij**3 / np.sqrt(bead1["sigma"]**3 * bead2["sigma"]**3) / np.sqrt( bead1["epsilon"] * bead2["epsilon"]) lamr_ij = 3 + tmp * np.sqrt((bead1["lambdar"] - 3) * (bead2["lambdar"] - 3)) lama_ij = 3 + tmp * np.sqrt((bead1["lambdaa"] - 3) * (bead2["lambdaa"] - 3)) return lamr_ij, lama_ij def calc_epsilonij_from_lambda_aij(lambda_a, bead1, bead2): r""" Calculate cross-interaction energy parameter from self-interaction parameters and cross-interaction attractive exponent using from scaling with vdW attraction parameter Nondimensional parameters are scaled using the following physical constants: vacuum permittivity, :math:`\varepsilon_{0}`, Boltzmann constant, :math:`k_{B}`, and elementary charge, :math:`e`. Parameters ---------- lambda_aij : float Mixed attractive exponent from multipole combining rules beadA : dict Dictionary of multipole parameters for bead_A. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent - Sk (float) Shape factor beadB : dict Dictionary of multipole parameters for bead_B. - epsilon (float) Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` - sigma (float) Size parameter in [Å], or nondimensionalized as :math:`\sigma'=\sigma (4 \pi \varepsilon_{0}) 3k_{B}T e^{-2}` - lambdar (float) Repulsive exponent - lambdaa (float) Attractive exponent - Sk (float) Shape factor Returns ------- epsilon_ij : float Energy parameter scaled by :math:`k_{B}` in [K], or nondimensionalized as :math:`\epsilon'=\epsilon/(3k_{B}T)` """ tmp_sigma = np.sqrt(bead1["sigma"]**3 * bead2["sigma"]**3) / np.mean([bead1["sigma"], bead2["sigma"]])**3 tmp_lambda = (lambda_a - 3) /
np.sqrt((bead1["lambdaa"] - 3) * (bead2["lambdaa"] - 3))
numpy.sqrt
""" In this script we have functions that calculate the spectral norm for different keras layers. Specifically we can calculate the spectral norm of 1) convolutional 2) locally connected layers . This is a difficult problem as the full operators are huge sparse matrices. """ import numpy as np from keras.callbacks import Callback def compute_spectral_norm_of_conv(weights,featuremap_dim): # The dimensions of the weight matrix are # trainable_weights[0] = (filter_d1,filter_d2,input_channels,output_channels) This is the kernel. # trainable_weights[1] = (output_channels) This is the bias. dim1 = weights.shape[0] dim2 = weights.shape[1] dim3 = weights.shape[2] dim4 = weights.shape[3] fourier_weights = np.empty((featuremap_dim*featuremap_dim,dim3,dim4),dtype='cfloat') tmp_featuremap = np.zeros((featuremap_dim,featuremap_dim)) for i in range(0,dim3): for j in range(0,dim4): tmp_featuremap[0:dim1,0:dim2] = weights[:,:,i,j] fourier_weights[:,i,j] = np.reshape(np.fft.fft2(tmp_featuremap),-1) max_l2 = 0 for i in range(0,featuremap_dim*featuremap_dim): if np.linalg.norm(fourier_weights[i,:,:],2)>max_l2: max_l2 =
np.linalg.norm(fourier_weights[i,:,:],2)
numpy.linalg.norm
# encoding=utf8 # pylint: disable=mixed-indentation, multiple-statements, line-too-long, unused-argument, no-self-use, no-self-use, attribute-defined-outside-init, logging-not-lazy, len-as-condition, singleton-comparison, arguments-differ, redefined-builtin, bad-continuation import logging from numpy import apply_along_axis, asarray, inf, argmin, argmax, sum, full from NiaPy.algorithms.algorithm import Algorithm __all__ = ['GravitationalSearchAlgorithm'] logging.basicConfig() logger = logging.getLogger('NiaPy.algorithms.basic') logger.setLevel('INFO') class GravitationalSearchAlgorithm(Algorithm): r"""Implementation of gravitational search algorithm. **Algorithm:** Gravitational Search Algorithm **Date:** 2018 **Author:** <NAME> **License:** MIT **Reference URL:** https://doi.org/10.1016/j.ins.2009.03.004 **Reference paper:** <NAME>, <NAME>, <NAME>, GSA: A Gravitational Search Algorithm, Information Sciences, Volume 179, Issue 13, 2009, Pages 2232-2248, ISSN 0020-0255 """ Name = ['GravitationalSearchAlgorithm', 'GSA'] @staticmethod def typeParameters(): return { 'NP': lambda x: isinstance(x, int) and x > 0, 'G_0': lambda x: isinstance(x, (int, float)) and x >= 0, 'epsilon': lambda x: isinstance(x, float) and 0 < x < 1 } def setParameters(self, NP=40, G_0=2.467, epsilon=1e-17, **ukwargs): r"""Set the algorithm parameters. **Arguments:** NP {integer} -- number of planets in population G_0 {real} -- starting gravitational constant """ self.NP, self.G_0, self.epsilon = NP, G_0, epsilon if ukwargs: logger.info('Unused arguments: %s' % (ukwargs)) def G(self, t): return self.G_0 / t def d(self, x, y, ln=2): return sum((x - y) ** ln) ** (1 / ln) def runTask(self, task): X, v = self.uniform(task.Lower, task.Upper, [self.NP, task.D]), full([self.NP, task.D], 0.0) xb, xb_f = None, task.optType.value * inf while not task.stopCondI(): X_f = apply_along_axis(task.eval, 1, X) ib, iw = argmin(X_f), argmax(X_f) if xb_f > X_f[ib]: xb, xb_f = X[ib], X_f[ib] m = (X_f - X_f[iw]) / (X_f[ib] - X_f[iw]) M = m / sum(m) Fi = asarray([[self.G(task.Iters) * ((M[i] * M[j]) / (self.d(X[i], X[j]) + self.epsilon)) * (X[j] - X[i]) for j in range(len(M))] for i in range(len(M))]) F = sum(self.rand([self.NP, task.D]) * Fi, axis=1) a = F.T / (M + self.epsilon) v = self.rand([self.NP, task.D]) * v + a.T X =
apply_along_axis(task.repair, 1, X + v, self.Rand)
numpy.apply_along_axis
''' Pre-process the data to extract patches Input: A csv file containing path to input files ''' import argparse import os import sys import math import numpy as np import SimpleITK as sitk import pandas as pd import multiprocessing as mp lowerThreshold = -1024 upperThreshold = 240 def convert_to_isotropic(inputVolume, isoSpacing=1.0): inputSpacing = inputVolume.GetSpacing() inputSize = inputVolume.GetSize() #Resample the images to make them iso-tropic resampleFilter = sitk.ResampleImageFilter() T = sitk.Transform() T.SetIdentity() resampleFilter.SetTransform(T) resampleFilter.SetInterpolator(sitk.sitkBSpline) resampleFilter.SetDefaultPixelValue(float(-1024)) # isoSpacing = 1 #math.sqrt(inputSpacing[2] * inputSpacing[0]) resampleFilter.SetOutputSpacing((isoSpacing,isoSpacing,isoSpacing)) resampleFilter.SetOutputOrigin(inputVolume.GetOrigin()) resampleFilter.SetOutputDirection(inputVolume.GetDirection()) dx = int(inputSize[0] * inputSpacing[0] / isoSpacing) dy = int(inputSize[1] * inputSpacing[1] / isoSpacing) dz = int((inputSize[2] - 1 ) * inputSpacing[2] / isoSpacing) resampleFilter.SetSize((dx,dy,dz)) try: resampleVolume = resampleFilter.Execute(inputVolume) except Error as err: print("Resample failed: " + str(imageFilePath) ) print(err.decode(encoding='UTF-8')) return None return resampleVolume def pad_img(input_img, image_lowest_intensity=-1024): lower_bound = [30] * 3 upper_bound = [30] * 3 cpf = sitk.ConstantPadImageFilter() cpf.SetConstant(image_lowest_intensity) cpf.SetPadLowerBound(lower_bound) cpf.SetPadUpperBound(upper_bound) input_img = cpf.Execute(input_img) return input_img def Image2Patch(inputImg, step_size, patch_size, registered_patch_loc): """ This function converts image to patches. Here is the input of the function: inputImg : input image. This should be simpleITK object patchSize : size of the patch. It should be array of three scalar Here is the output of the function: patchImgData : It is a list containing the patches of the image patchLblData : Is is a list containing the patches of the label image """ patch_vol = patch_size[0]*patch_size[1]*patch_size[2] patch_img_data = [] patch_loc = [] for i in range(registered_patch_loc.shape[0]): x, y, z = registered_patch_loc[i].tolist() #print(x,y,z) patchImg = sitk.RegionOfInterest(inputImg, size=patch_size, index=[x,y,z]) npLargePatchImg = sitk.GetArrayFromImage(patchImg) patch_img_data.append(npLargePatchImg.copy()) patch_loc.append([x, y, z]) patch_img_data = np.asarray(patch_img_data) patch_loc = np.asarray(patch_loc) return patch_img_data, patch_loc def extract_patch(isoRawImage_file, altas_patch_loc): #Read the input isotropic image volume isoRawImage = sitk.ReadImage(isoRawImage_file) isoRawImage = convert_to_isotropic(isoRawImage) isoRawImage = pad_img(isoRawImage) npIsoRawImage = sitk.GetArrayFromImage(isoRawImage) #print(npIsoRawImage.shape) # Thresholding the isotropic raw image npIsoRawImage[npIsoRawImage > upperThreshold] = upperThreshold npIsoRawImage[npIsoRawImage < lowerThreshold] = lowerThreshold thresholdIsoRawImage = sitk.GetImageFromArray(npIsoRawImage) thresholdIsoRawImage.SetOrigin(isoRawImage.GetOrigin()) thresholdIsoRawImage.SetSpacing(isoRawImage.GetSpacing()) thresholdIsoRawImage.SetDirection(isoRawImage.GetDirection()) # Prepare registered patch location registered_patch_loc = [] affine_trans=sitk.ReadTransform("./INSP2Atlas/transform/"\ + isoRawImage_file.split('/')[-1][:-7]+"_Reg_Atlas_Affine_0GenericAffine.mat") for i in range(altas_patch_loc.shape[0]): physical_cor_on_fixed = tuple(altas_patch_loc[i]) physical_cor_on_moving = affine_trans.TransformPoint(physical_cor_on_fixed) index_on_moving = isoRawImage.TransformPhysicalPointToIndex(physical_cor_on_moving) registered_patch_loc.append(list(index_on_moving)) registered_patch_loc = np.array(registered_patch_loc) #Extract Patches # Generate Patches of the masked Image patchImgData, patch_loc = Image2Patch(thresholdIsoRawImage, \ [step_size]*3, [patch_size]*3, registered_patch_loc) return patchImgData, patch_loc def prep_adjacency_matrix(patch_loc): adj = [] for i in range(patch_loc.shape[0]): adj_row = np.zeros((patch_loc.shape[0],)) dist = np.abs(patch_loc - patch_loc[i]) max_side_dist = dist.max(1) dist = dist[max_side_dist<patch_size,:] volume = np.abs(dist-patch_size) volume = volume[:,0] * volume[:,1] * volume[:,2] #print(volume.shape) #print(adj_row[max_side_dist<patch_size].shape) adj_row[max_side_dist<patch_size] = volume / (patch_size**3) adj.append(adj_row.transpose()) adj = np.asarray(adj) #adj = (adj / np.sum(adj, 0)).transpose() return adj def run(start, end, batch_index): df = pd.read_csv(input_csv) df = df[~df['image'].isnull()] # Prepare physical coord of patch location fixed_img = sitk.ReadImage(atlas_image) altas_patch_loc_temp=[] for i in range(altas_patch_loc.shape[0]): altas_patch_loc_temp.append(list(fixed_img.TransformIndexToPhysicalPoint(tuple(altas_patch_loc[i,:].tolist())))) altas_patch_loc=np.array(altas_patch_loc_temp) del altas_patch_loc_temp, fixed_img for i in range(start,end): row = df.iloc[i] subject_id = row['sid'] #if subject_id != '19676E': # continue print(row['image']) output_basename = row['image'].split('/')[-1][:-24] isotropicFileName = "./INSP2Atlas/clamped/"+output_basename+".nii.gz" patchFileName = os.path.join(output_dir, 'patch', output_basename+'_patch.npy') if not os.path.exists(isotropicFileName): print(output_basename, "image not found") continue if not os.path.exists("./INSP2Atlas/transform/"\ + output_basename +"_Reg_Atlas_Affine_0GenericAffine.mat"): print(output_basename, "mat not found") continue if os.path.getsize(isotropicFileName)/(1024.**2) < 16: continue if not os.path.exists(patchFileName): try: patchImgData, patch_loc = extract_patch(isotropicFileName, altas_patch_loc) adj = prep_adjacency_matrix(patch_loc)
np.save(patchFileName, patchImgData)
numpy.save
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 17 09:39:23 2020 @author: u0101486 """ #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 5 12:26:49 2019 @author: u0101486 """ # Aggregate QC measures import os import sys import numpy as np import matplotlib.pyplot as plt from scipy.stats import spearmanr import configparser config = configparser.ConfigParser() config.read('/home/luna.kuleuven.be/u0101486/workspace/fmri_proc/params.ini') #PATH to qclib sys.path.append(config['PATHS']['QCLIB_PATH']) sys.path.append('/home/luna.kuleuven.be/u0101486/workspace/fmri_proc/ext/nitransforms/nitransforms') import qclib.common_funcs as gpc import shutil from warnings import filterwarnings filterwarnings('ignore') import pandas as pd import statsmodels.formula.api as smf import multiprocessing as mp import time from functools import partial # ====================================================================== # ====================================================================== #project = 'CRUNCH' #project = 'CAI_China' project = 'RepImpact' baseDir = '/home/luna.kuleuven.be/u0101486/workspace/data/' + project + '/tmp/' qcDir = '/home/luna.kuleuven.be/u0101486/workspace/data/' + project + '/Quality_Control/FinalProc_20200714/Files/' distMat = '/home/luna.kuleuven.be/u0101486/workspace/fmri_proc/atlas/CAT12/lg400_cobra_distance.txt' distMat = np.loadtxt(distMat, delimiter=',') distMat = distMat[0:400, 0:400] nNodes = distMat.shape[0] distVec = np.reshape(distMat, (1,nNodes*nNodes)) meanDt = np.mean(distVec) stdDt = np.std(distVec) distSort = np.argsort(distVec) distThreshold = 0.1 i = 0 j = 1 while j < distVec.shape[1]: dist = np.sqrt( (distVec[0,distSort[0,i]]-distVec[0,distSort[0,j]])**2) if dist < distThreshold or dist == 0: distVec[0,distSort[0,j]] = -100 else: i = j j += 1 #print( len(distVec[np.where(distVec > -100)]) ) #plt.plot(np.sort(distVec[np.where(distVec > -100)]), '.') ##%% import nibabel as nib atlas=nib.load('/home/luna.kuleuven.be/u0101486/workspace/fmri_proc/atlas/CAT12/lg400_cobra.nii') atlas=atlas.get_fdata() x,y,z=atlas.shape atlas[np.where(np.isnan(atlas))]=0 uNodes=np.unique(atlas.reshape((x*y*z))).reshape([1,-1]).astype(int) #statModels = ['NONE', 'SFIX', 'SFIX_D', 'SRP24WM1CSF1', 'SRP24CC', 'SRP9'] procBase = [''] statModels = ['FAC_DiC_RP6', 'FAC_DiC_RP24', 'FAC', 'FAC_CC_RP24', 'FAC_RP24', 'FAC_WM_CSF', 'FAD_CC_RP24', 'FAD_DiC_RP24', 'RP24_WM_CSF'] statModels = ['FAC_CC_RP6', 'FAD_CC_RP6', 'FAC_DiC_RP6', 'FAD_DiC_RP6', 'FAC_CC_RP24', 'FAD_CC_RP24', 'FAC_DiC_RP24', 'FAD_DiC_RP24', 'FAC_WM_CSF_RP6', 'FAD_WM_CSF_RP24', 'RP24_WM_CSF', 'RP24_CC'] statModels= ['FAD_DiC_RP6', 'FAD_DiC_RP24', 'FAC_WM_CSF_RP6'] #statModels = [ 'FAC_DiC_RP24' ] #if os.path.isdir(qcDir) == True: # shutil.rmtree(qcDir) #os.mkdir(qcDir) qcFcResults = [] bic = [] aic = [] subsMdl = [] models = [] for proc in procBase: for mdl in statModels: fcMats = [] meanMov = [] stdMov = [] movFcR = [] center = [] timepoint = [] subIds = [] incSubs = [] excSubs = [] currentModel = proc + mdl print( currentModel ) for sub in sorted(os.listdir(baseDir)): subDir = baseDir + '/' + sub + '/' + '/QA_' + currentModel + '_AGG' fdFile = baseDir + '/' + sub + '/maximum_disp.1d_delt' fcFile = subDir + '/FC_' + mdl + '_local_global_cobra.txt' nodeFile = subDir + '/FC_' + mdl + '_local_global_cobra_node.txt' if os.path.isfile(fcFile): #os.path.isfile(fdFile) fd = np.loadtxt(fdFile) fc = np.loadtxt(fcFile) nodes = np.loadtxt(nodeFile) fcN = np.zeros((600,600)) * np.nan idx1 = 0 for n1 in nodes[1:]: idx2 = 0; for n2 in nodes[1:]: fcN[int(n1-1), int(n2-1)] = fc[idx1,idx2] idx2 += 1 idx1 += 1 print('Processing: ' + sub) print('\tMeanFD = {:.03f}'.format(np.mean(fd))) print('\tMaxFD = {:.03f}'.format(np.max(fd))) pctScrub = 100*np.count_nonzero( fd>0.4) / len(fd) print('\tpctScrub = {:.03f}%'.format(pctScrub)) #% if np.mean(fd) > 0.4 or np.max(fd) > 5 or pctScrub > 33: excId = 0 if sub[0] == 'B': excId = 100 + int(sub[3:]) if sub[0] == 'N': excId = 500 + int(sub[3:]) if sub[1] == '1': excId += 100 if sub[1] == '2': excId += 200 if sub[1] == '3': excId += 300 excSubs.append( excId ) continue excId = 0 if sub[0] == 'B': excId = 100 + int(sub[3:]) if sub[0] == 'N': excId = 500 + int(sub[3:]) if sub[1] == '1': excId += 100 if sub[1] == '2': excId += 200 if sub[1] == '3': excId += 300 incSubs.append( excId ) if sub[0] == 'B': center.append(1) subIds.append(100 + int(sub[3:])) if sub[0] == 'N': center.append(10) subIds.append(200 + int(sub[3:])) if sub[1] == '1': timepoint.append(1) if sub[1] == '2': timepoint.append(2) if sub[1] == '3': timepoint.append(3) #tmp = fcN[uNodes,:] #tmp = tmp[0,:,uNodes] # No cerebellum included tmp = fcN[0:400,:] tmp = tmp[:,0:400] fcMats.append(
np.squeeze(tmp)
numpy.squeeze
from blackbox_selectinf.usecase.DTL import DropTheLoser from blackbox_selectinf.learning.learning import (learn_select_prob, get_weight, get_CI) import DTL_vae import numpy as np import argparse import pickle from regreg.smooth.glm import glm from selectinf.algorithms import lasso from scipy.stats import norm import matplotlib.pyplot as plt import torch from selectinf.distributions.discrete_family import discrete_family from argparse import Namespace parser = argparse.ArgumentParser(description='DTL') parser.add_argument('--idx', type=int, default=0) parser.add_argument('--selection', type=str, default='mean') parser.add_argument('--uc', type=float, default=2) parser.add_argument('--basis_type', type=str, default='naive') parser.add_argument('--indep', action='store_true', default=False) parser.add_argument('--K', type=int, default=50) parser.add_argument('--n', type=int, default=1000) parser.add_argument('--m', type=int, default=500) parser.add_argument('--n_b', type=int, default=1000) parser.add_argument('--m_b', type=int, default=500) parser.add_argument('--nrep', type=int, default=1) parser.add_argument('--savemodel', action='store_true', default=False) parser.add_argument('--modelname', type=str, default='model_') parser.add_argument('--epochs', type=int, default=3000) parser.add_argument('--batch_size', type=int, default=100) parser.add_argument('--ntrain', type=int, default=5000) parser.add_argument('--logname', type=str, default='log_') parser.add_argument('--loadmodel', action='store_true', default=False) parser.add_argument('--use_vae', action='store_true', default=False) parser.add_argument('--nonnull', action='store_true', default=False) args = parser.parse_args() def main(): seed = args.idx n = args.n m = args.m n_b = args.n_b m_b = args.m_b K = args.K uc = args.uc selection = args.selection ntrain = args.ntrain mu_list = np.zeros(K) if args.nonnull: mu_list[:25] = .1 logs = [dict() for x in range(args.nrep)] for j in range(args.idx, args.idx + args.nrep): print("Starting simulation", j) logs[j - args.idx]['seed'] = j np.random.seed(j) X = np.zeros([K, n]) for k in range(K): X[k, :] = np.random.randn(n) + mu_list[k] X_bar = np.mean(X, 1) if selection == 'mean': max_rest = np.sort(X_bar)[-2] win_idx = np.argmax(X_bar) elif selection == "UC": UC = X_bar + uc * np.std(X, axis=1, ddof=1) win_idx = np.argmax(UC) max_rest = np.sort(UC)[-2] else: raise AssertionError("invalid selection") # Stage 2 X_2 = np.random.randn(m) + mu_list[win_idx] DTL_class = DropTheLoser(X, X_2) basis_type = args.basis_type Z_data = DTL_class.basis(X, X_2, basis_type) theta_data = DTL_class.theta_hat print("Generate initial data") training_data = DTL_class.gen_train_data(ntrain=ntrain, n_b=n_b, m_b=m_b, basis_type=args.basis_type, remove_D0=args.indep) Z_train = training_data['Z_train'] W_train = training_data['W_train'] gamma = training_data['gamma'] print(np.mean(W_train)) if args.use_vae and np.mean(W_train) <= .1: print("Start generating more positive data") pos_ind = W_train == 1 Z_pos = torch.tensor(Z_train[pos_ind, :], dtype=torch.float) input_dim = Z_pos.shape[1] bottleneck_dim = 10 vae_model = DTL_vae.VAE(input_dim, bottleneck_dim) vae_path = "DTL_VAE_seed_{}_n_{}_K_{}_m_{}.pt".format(seed, n, K, m) output_dim = n * K + m decoder = DTL_vae.Decoder(input_dim, output_dim) decoder_path = "DTL_decoder_seed_{}_n_{}_K_{}_m_{}.pt".format(seed, n, K, m) try: vae_model.load_state_dict(torch.load(vae_path)) decoder.load_state_dict(torch.load(decoder_path)) except: print("no model found, start training") DTL_vae.train_networks(n, K, bottleneck_dim, Z_pos, vae_path, decoder_path, output_dim, print_every=100, dec_epochs=2) vae_model.load_state_dict(torch.load(vae_path)) decoder.load_state_dict(torch.load(decoder_path)) n_vae = ntrain Z_vae = vae_model.decode(torch.randn(n_vae, bottleneck_dim)) X_vae = decoder(Z_vae).detach().numpy() X_vae_1 = X_vae[:, :n * K].reshape(-1, K, n) X_vae_2 = X_vae[:, n * K:].reshape(-1, m) Z_train_vae = np.zeros([n_vae, K + 1]) W_train_vae = np.zeros(n_vae) print("Start generating data using VAE+decoder") for i in range(n_vae): X_1_b = X_vae_1[i, :, :] X_2_b = X_vae_2[i, :] X_bar_b = np.mean(X_1_b, 1) if np.argmax(X_bar_b) == win_idx: W_train_vae[i] = 1 Z_train_vae[i, :] = DTL_class.basis(X_1_b, X_2_b, basis_type=basis_type) Z_train = np.concatenate([Z_train, Z_train_vae]) W_train = np.concatenate([W_train, W_train_vae]) print(Z_train.shape) # train print("Start learning selection probability") net, flag, pr_data = learn_select_prob(Z_train, W_train, Z_data=torch.tensor(Z_data, dtype=torch.float), num_epochs=args.epochs, batch_size=args.batch_size, verbose=True) print('pr_data', pr_data) logs[j - args.idx]['pr_data'] = pr_data logs[j - args.idx]['flag'] = flag if args.indep: gamma_D0 = training_data['gamma_D0'] Z_data = Z_data - gamma_D0 @ DTL_class.D_0.reshape(1, ) N_0 = Z_data - gamma @ theta_data.reshape(1, ) target_var = 1 / (n + m) target_sd = np.sqrt(target_var) gamma_list = np.linspace(-20 / np.sqrt(n_b + m_b), 20 / np.sqrt(n_b + m_b), 101) target_theta = theta_data + gamma_list target_theta = target_theta.reshape(1, 101) weight_val = get_weight(net, target_theta, N_0, gamma) interval_nn, pvalue_nn = get_CI(target_theta, weight_val, target_var, theta_data, return_pvalue=True) logs[j - args.idx]['interval_nn'] = interval_nn if interval_nn[0] <= mu_list[DTL_class.win_idx] <= interval_nn[1]: logs[j - args.idx]['covered_nn'] = 1 else: logs[j - args.idx]['covered_nn'] = 0 logs[j - args.idx]['width_nn'] = interval_nn[1] - interval_nn[0] logs[j - args.idx]['pvalue_nn'] = pvalue_nn print("pvalue", pvalue_nn) ################################################## # check learning count = 0 nb = 50 X_pooled = np.concatenate([X[win_idx], X_2]) pval = [] for ell in range(int(nb / np.mean(W_train))): X_b = np.zeros([K, n_b]) for k in range(K): if k != win_idx: X_b[k, :] = X[k,
np.random.choice(n, n_b, replace=True)
numpy.random.choice
import tensorflow as tf import tensorflow.keras.losses as kls import tensorflow.keras.optimizers as ko import numpy as np from tools import ProgressBar class A2CAgent: def __init__(self, lr=7e-3, gamma=0.99, value_c=0.5, entropy_c=1e-4): # `gamma` is the discount factor self.gamma = gamma # Coefficients are used for the loss terms. self.value_c = value_c self.entropy_c = entropy_c self.lr = lr def _value_loss(self, returns, value): # Value loss is typically MSE between value estimates and returns. return self.value_c * kls.mean_squared_error(returns, value) def _logits_loss(self, actions_and_advantages, logits): # A trick to input actions and advantages through the same API. actions, advantages = tf.split(actions_and_advantages, 2, axis=-1) # Sparse categorical CE loss obj that supports sample_weight arg on `call()`. # `from_logits` argument ensures transformation into normalized probabilities. weighted_sparse_ce = kls.SparseCategoricalCrossentropy(from_logits=True) # Policy loss is defined by policy gradients, weighted by advantages. # Note: we only calculate the loss on the actions we've actually taken. actions = tf.cast(actions, tf.int32) policy_loss = weighted_sparse_ce(actions, logits, sample_weight=advantages) # Entropy loss can be calculated as cross-entropy over itself. probs = tf.nn.softmax(logits) entropy_loss = kls.categorical_crossentropy(probs, probs) # We want to minimize policy and maximize entropy losses. # Here signs are flipped because the optimizer minimizes. return policy_loss - self.entropy_c * entropy_loss def train(self, env, config, batch_size=128, updates=500, max_seconds = 30): models = config.get() for model in models: model.compile(optimizer=ko.RMSprop(lr=self.lr), loss=[self._logits_loss, self._value_loss]) # Storage helpers for a single batch of data. actions =
np.empty((batch_size, config.num), dtype=np.int32)
numpy.empty
## test_attack.py -- sample code to test attack procedure ## ## Copyright (C) 2017, <NAME> <<EMAIL>>. ## Copyright (C) 2016, <NAME> <<EMAIL>>. ## ## This program is licenced under the BSD 2-Clause licence, ## contained in the LICENCE file in this directory. import tensorflow as tf import numpy as np import time import random import _pickle as pickle import os import scipy from setup_cifar import CIFAR, CIFARModel from setup_mnist import MNIST, MNISTModel from setup_inception import ImageNet, InceptionModel from l2_attack import CarliniL2 from l1_attack import EADL1 from en_attack import EADEN from fgm import FGM from ifgm import IFGM from PIL import Image def show(img, name = "output.png"): fig = (img + 0.5)*255 fig = fig.astype(np.uint8).squeeze() pic = Image.fromarray(fig) # pic.resize((512,512), resample=PIL.Image.BICUBIC) pic.save(name) def generate_data(data, model, samples, targeted=True, target_num=9, start=0, inception=False, handpick=True, train=False, leastlikely=False, sigma=0., seed=3): random.seed(seed) inputs = [] targets = [] labels = [] true_ids = [] sample_set = [] """ Generate the input data to the attack algorithm. """ if train: data_d = data.train_data labels_d = data.train_labels else: data_d = data.test_data labels_d = data.test_labels if handpick: if inception: deck = list(range(0,int(1.5 * samples))) else: deck = list(range(0,10000)) random.shuffle(deck) print('Handpicking') while(len(sample_set) < samples): rand_int = deck.pop() pred = model.model.predict(data_d[rand_int:rand_int+1]) if inception: pred = np.reshape(pred, (labels_d[0:1].shape)) if(np.argmax(pred,1) == np.argmax(labels_d[rand_int:rand_int+1],1)): sample_set.append(rand_int) print('Handpicked') else: if inception: sample_set = random.sample(range(0,int(1.5 * samples)),samples) else: sample_set = random.sample(range(0,10000),samples) for i in sample_set: if targeted: if inception: r = list(range(1,1001)) else: r = list(range(labels_d.shape[1])) r.remove(np.argmax(labels_d[start+i])) seq = random.sample(r, target_num) for j in seq: inputs.append(data_d[start+i]) targets.append(np.eye(labels_d.shape[1])[j]) labels.append(labels_d[start+i]) true_ids.append(start+i) else: inputs.append(data_d[start+i]) targets.append(labels_d[start+i]) labels.append(labels_d[start+i]) true_ids.append(start+i) inputs = np.array(inputs) targets = np.array(targets) labels = np.array(labels) true_ids = np.array(true_ids) return inputs, targets, labels, true_ids def main(args): with tf.Session() as sess: if (args['dataset'] == 'mnist'): data = MNIST() inception=False if (args['adversarial'] != "none"): model = MNISTModel("models/mnist_cw"+str(args['adversarial']), sess) elif (args['temp']): model = MNISTModel("models/mnist-distilled-"+str(args['temp']), sess) else: model = MNISTModel("models/mnist", sess) if (args['dataset'] == "cifar"): data = CIFAR() inception=False if (args['adversarial'] != "none"): model = CIFARModel("models/cifar_cw"+str(args['adversarial']), sess) elif (args['temp']): model = CIFARModel("models/cifar-distilled-"+str(args['temp']), sess) else: model = CIFARModel("models/cifar", sess) if (args['dataset'] == "imagenet"): data, model = ImageNet(args['seed_imagenet'], 2*args['numimg']), InceptionModel(sess) inception=True inputs, targets, labels, true_ids = generate_data(data, model, samples=args['numimg'], targeted = not args['untargeted'], target_num = args['targetnum'], inception=inception, train=args['train'], seed=args['seed']) timestart = time.time() if(args['restore_np']): if(args['train']): adv = np.load(str(args['dataset'])+'_'+str(args['attack'])+'_train.npy') else: adv = np.load(str(args['dataset'])+'_'+str(args['attack'])+'.npy') else: if (args['attack'] == 'L2'): attack = CarliniL2(sess, model, batch_size=args['batch_size'], max_iterations=args['maxiter'], confidence=args['conf'], initial_const=args['init_const'], binary_search_steps=args['binary_steps'], targeted = not args['untargeted'], beta=args['beta'], abort_early=args['abort_early']) adv = attack.attack(inputs, targets) if (args['attack'] == 'L1'): attack = EADL1(sess, model, batch_size=args['batch_size'], max_iterations=args['maxiter'], confidence=args['conf'], initial_const=args['init_const'], binary_search_steps=args['binary_steps'], targeted = not args['untargeted'], beta=args['beta'], abort_early=args['abort_early']) adv = attack.attack(inputs, targets) if (args['attack'] == 'EN'): attack = EADEN(sess, model, batch_size=args['batch_size'], max_iterations=args['maxiter'], confidence=args['conf'], initial_const=args['init_const'], binary_search_steps=args['binary_steps'], targeted = not args['untargeted'], beta=args['beta'], abort_early=args['abort_early']) adv = attack.attack(inputs, targets) """If untargeted, pass labels instead of targets""" if (args['attack'] == 'FGSM'): attack = FGM(sess, model, batch_size=args['batch_size'], ord=np.inf, eps=args['eps'], inception=inception) adv = attack.attack(inputs, targets) if (args['attack'] == 'FGML1'): attack = FGM(sess, model, batch_size=args['batch_size'], ord=1, eps=args['eps'], inception=inception) adv = attack.attack(inputs, targets) if (args['attack'] == 'FGML2'): attack = FGM(sess, model, batch_size=args['batch_size'], ord=2, eps=args['eps'], inception=inception) adv = attack.attack(inputs, targets) if (args['attack'] == 'IFGSM'): attack = IFGM(sess, model, batch_size=args['batch_size'], ord=np.inf, eps=args['eps'], inception=inception) adv = attack.attack(inputs, targets) if (args['attack'] == 'IFGML1'): attack = IFGM(sess, model, batch_size=args['batch_size'], ord=1, eps=args['eps'], inception=inception) adv = attack.attack(inputs, targets) if (args['attack'] == 'IFGML2'): attack = IFGM(sess, model, batch_size=args['batch_size'], ord=2, eps=args['eps'], inception=inception) adv = attack.attack(inputs, targets) timeend = time.time() if args['untargeted']: num_targets = 1 else: num_targets = args['targetnum'] print("Took",timeend-timestart,"seconds to run",len(inputs)/num_targets,"random instances.") if(args['save_np']): if(args['train']): np.save(str(args['dataset'])+'_labels_train.npy',labels) np.save(str(args['dataset'])+'_'+str(args['attack'])+'_train.npy',adv) else: np.save(str(args['dataset'])+'_'+str(args['attack']+'.npy'),adv) r_best_ = [] d_best_l1_ = [] d_best_l2_ = [] d_best_linf_ = [] r_average_ = [] d_average_l1_ = [] d_average_l2_ = [] d_average_linf_ = [] r_worst_ = [] d_worst_l1_ = [] d_worst_l2_ = [] d_worst_linf_ = [] #Transferability Tests model_ = [] model_.append(model) if (args['targetmodel'] != "same"): if(args['targetmodel'] == "dd_100"): model_.append(MNISTModel("models/mnist-distilled-100", sess)) num_models = len(model_) if (args['show']): if not os.path.exists(str(args['save'])+"/"+str(args['dataset'])+"/"+str(args['attack'])): os.makedirs(str(args['save'])+"/"+str(args['dataset'])+"/"+str(args['attack'])) for m,model in enumerate(model_): r_best = [] d_best_l1 = [] d_best_l2 = [] d_best_linf = [] r_average = [] d_average_l1 = [] d_average_l2 = [] d_average_linf = [] r_worst = [] d_worst_l1 = [] d_worst_l2 = [] d_worst_linf = [] for i in range(0,len(inputs),num_targets): pred = [] for j in range(i,i+num_targets): if inception: pred.append(np.reshape(model.model.predict(adv[j:j+1]), (data.test_labels[0:1].shape))) else: pred.append(model.model.predict(adv[j:j+1])) dist_l1 = 1e10 dist_l1_index = 1e10 dist_linf = 1e10 dist_linf_index = 1e10 dist_l2 = 1e10 dist_l2_index = 1e10 for k,j in enumerate(range(i,i+num_targets)): success = False if(args['untargeted']): if(np.argmax(pred[k],1) != np.argmax(targets[j:j+1],1)): success = True else: if(np.argmax(pred[k],1) == np.argmax(targets[j:j+1],1)): success = True if(success): if(np.sum(np.abs(adv[j]-inputs[j])) < dist_l1): dist_l1 = np.sum(np.abs(adv[j]-inputs[j])) dist_l1_index = j if(np.amax(np.abs(adv[j]-inputs[j])) < dist_linf): dist_linf = np.amax(np.abs(adv[j]-inputs[j])) dist_linf_index = j if((np.sum((adv[j]-inputs[j])**2)**.5) < dist_l2): dist_l2 = (np.sum((adv[j]-inputs[j])**2)**.5) dist_l2_index = j if(dist_l1_index != 1e10): d_best_l2.append((np.sum((adv[dist_l2_index]-inputs[dist_l2_index])**2)**.5)) d_best_l1.append(np.sum(np.abs(adv[dist_l1_index]-inputs[dist_l1_index]))) d_best_linf.append(np.amax(np.abs(adv[dist_linf_index]-inputs[dist_linf_index]))) r_best.append(1) else: r_best.append(0) rand_int = np.random.randint(i,i+num_targets) if inception: pred_r = np.reshape(model.model.predict(adv[rand_int:rand_int+1]), (data.test_labels[0:1].shape)) else: pred_r = model.model.predict(adv[rand_int:rand_int+1]) success_average = False if(args['untargeted']): if(np.argmax(pred_r,1) != np.argmax(targets[rand_int:rand_int+1],1)): success_average = True else: if(np.argmax(pred_r,1) == np.argmax(targets[rand_int:rand_int+1],1)): success_average = True if success_average: r_average.append(1) d_average_l2.append(np.sum((adv[rand_int]-inputs[rand_int])**2)**.5) d_average_l1.append(np.sum(np.abs(adv[rand_int]-inputs[rand_int]))) d_average_linf.append(np.amax(np.abs(adv[rand_int]-inputs[rand_int]))) else: r_average.append(0) dist_l1 = 0 dist_l1_index = 1e10 dist_linf = 0 dist_linf_index = 1e10 dist_l2 = 0 dist_l2_index = 1e10 for k,j in enumerate(range(i,i+num_targets)): failure = True if(args['untargeted']): if(np.argmax(pred[k],1) != np.argmax(targets[j:j+1],1)): failure = False else: if(np.argmax(pred[k],1) == np.argmax(targets[j:j+1],1)): failure = False if failure: r_worst.append(0) dist_l1_index = 1e10 dist_l2_index = 1e10 dist_linf_index = 1e10 break else: if(np.sum(np.abs(adv[j]-inputs[j])) > dist_l1): dist_l1 = np.sum(np.abs(adv[j]-inputs[j])) dist_l1_index = j if(np.amax(np.abs(adv[j]-inputs[j])) > dist_linf): dist_linf = np.amax(np.abs(adv[j]-inputs[j])) dist_linf_index = j if((np.sum((adv[j]-inputs[j])**2)**.5) > dist_l2): dist_l2 = (np.sum((adv[j]-inputs[j])**2)**.5) dist_l2_index = j if(dist_l1_index != 1e10): d_worst_l2.append((np.sum((adv[dist_l2_index]-inputs[dist_l2_index])**2)**.5)) d_worst_l1.append(np.sum(np.abs(adv[dist_l1_index]-inputs[dist_l1_index]))) d_worst_linf.append(np.amax(np.abs(adv[dist_linf_index]-inputs[dist_linf_index]))) r_worst.append(1) if(args['show'] and m == (num_models-1)): for j in range(i,i+num_targets): target_id = np.argmax(targets[j:j+1],1) label_id = np.argmax(labels[j:j+1],1) prev_id = np.argmax(np.reshape(model.model.predict(inputs[j:j+1]),(data.test_labels[0:1].shape)),1) adv_id = np.argmax(np.reshape(model.model.predict(adv[j:j+1]),(data.test_labels[0:1].shape)),1) suffix = "id{}_seq{}_lbl{}_prev{}_adv{}_{}_l1_{:.3f}_l2_{:.3f}_linf_{:.3f}".format(true_ids[i], target_id, label_id, prev_id, adv_id, adv_id == target_id, np.sum(np.abs(adv[j]-inputs[j])), np.sum((adv[j]-inputs[j])**2)**.5, np.amax(np.abs(adv[j]-inputs[j]))) show(inputs[j:j+1], str(args['save'])+"/"+str(args['dataset'])+"/"+str(args['attack'])+"/original_{}.png".format(suffix)) show(adv[j:j+1], str(args['save'])+"/"+str(args['dataset'])+"/"+str(args['attack'])+"/adversarial_{}.png".format(suffix)) if(m != (num_models - 1)): lbl = "Src_" if(num_models > 2): lbl += str(m) + "_" else: lbl = "Tgt_" if(num_targets > 1): print(lbl+'best_case_L1_mean', np.mean(d_best_l1)) print(lbl+'best_case_L2_mean', np.mean(d_best_l2)) print(lbl+'best_case_Linf_mean', np.mean(d_best_linf)) print(lbl+'best_case_prob', np.mean(r_best)) print(lbl+'average_case_L1_mean', np.mean(d_average_l1)) print(lbl+'average_case_L2_mean', np.mean(d_average_l2)) print(lbl+'average_case_Linf_mean', np.mean(d_average_linf)) print(lbl+'average_case_prob', np.mean(r_average)) print(lbl+'worst_case_L1_mean', np.mean(d_worst_l1)) print(lbl+'worst_case_L2_mean', np.mean(d_worst_l2)) print(lbl+'worst_case_Linf_mean',
np.mean(d_worst_linf)
numpy.mean
import os import pickle import torch import numpy as np from torch import nn from scipy.stats import linregress from sklearn.datasets import make_blobs from collections.abc import Iterable import matplotlib.pyplot as plt from utils.config import * def get_blobs(feature_dim, num_samples=1000, split=0.95, cluster_std=[1., 1.], transform=None, plot=False): ''' Creates some toy datasets that can be used for testing Fractal Dimension approaches. Got some ideas from: https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py ''' # check for low positive training examples assert split > 0.5, f"WARNING: split was set to less than 0.5, did you mean to use {1-split}?" # check if plot is set to true but wrong feature_dim if plot and feature_dim > 2: print(f"Feature_dim set to larger than 2 with plot set to false, setting plot to False") plot = False # init proper class sizes and blob centers centers = [[-1]*feature_dim, [1]*feature_dim] class_sizes = [int(num_samples*split), int((1-split)*num_samples)] X, y = make_blobs(n_samples=class_sizes, cluster_std=cluster_std, centers=centers) # carry out anisotropic transformation; only works for feature_dim of 2 if transform and feature_dim == 2: transformation = [[-0.5, 0.5], [-0.5, 1]] X = np.dot(X, transformation) # view plot if plot: plt.figure(figsize=(5, 4)) plt.scatter(X[:, 0], X[:, 1], alpha=0.6, c=['r' if i == 1 else 'g' for i in y]) plt.xlabel(r'$X_1$') plt.ylabel(r'$X_2$') #plt.savefig("images/blobs.png", dpi=150, bbox_inches='tight') return X, y def import_corpus(event): ''' Import the corpus from the sandy pickled events. args: events : thread, registry or file returns: corpus : list of strings, corresponding to API usage by process targets : int value for malicious label, where 1 is malicious 0 is benign attr : dict of attributes, see generate_corpus.py ''' file = os.path.join(SANDY_ATTR_PATH, f'corpus.{event}.pkl') # fetch corpus and attributes corpus = pickle.load(open(file, "rb" )) attr = pickle.load(open(os.path.join(SANDY_ATTR_PATH, f'attr.{event}.pkl'), "rb" )) # fetch targets from attribute dict targets = attr['target_arr'] del attr['target_arr'] return corpus, targets, attr def mass_fd(X, k=5, skip=0, norm=2, gyration=True, ratios=False, verbose=False): ''' Determine the mass radius or radius of gyration fractal dimension. Numpy implemention used for quick prototyping. args: X - (n, m) feature vector. Can be any m-th dimensional data, with n datapoints k - number of scales to use skip - skip some points on the log-log plot. Helps on occasionn for numerical stability in the upper/lower range norm - the norm for the generalized distance metric, where 1 = Manhattan, 2 = Euclidean, 3+ = Minkowski gyration - flag to enable radius of gyration instead of mass-radius ratios - flag to enable the use of ratios of std. devs between scales. Doesn't work well :( verbose - plot the log-log plot and print some metadata returns: D - returns the fractal dimension of the input ''' # sanity check so enough points are considered for log-log plot assert k - skip >= 2, f"Not enough points on the log-log plot to consider, you used: {k=} and {skip=} and need at least 2" # make X an iterable so that we can run the loop regardless *need to fix this check* if not isinstance(X, Iterable) or isinstance(X, np.ndarray): X = [X] else: verbose = False # remove verbose for Iterable # main loop D = [] for x in X: D.append(mass_fd_aux(x=x, k=k, skip=skip, norm=norm, gyration=gyration, ratios=ratios, verbose=verbose)) # * this is returning an extra dimension for np.array* return D def mass_fd_aux(x, k=5, skip=0, norm=2, gyration=True, ratios=False, verbose=False): # remove zero values x = x[~np.all(x == 0, axis=1)] # mean along each axis centroid = x.mean(axis=0) # find distances and sort by proximity to centroid dist = np.power(np.sum(np.abs(x - centroid) ** norm, axis=1), 1. / norm) dist_idx_sorted = np.argsort(dist) # split distances array into k partitions N = np.array_split(dist_idx_sorted, k) # points for log-log plot Rg = [] Nk = [] # loop through scales for i in range(k): # concatenates sucessive nodes away from centroid (e.g Nk_1, Nk_1 + Nk_2) Nj = x[np.concatenate(N[:i+1])] # compute the centroid for each k if using ROG if gyration: centroid = Nj.mean(axis=0) # compute the std. dev in all d dimensions Rg.append(np.power(np.sum(np.abs(Nj - centroid) ** norm) / len(Nj), 1. / norm)) # append the number of nodes considered Nk.append(Nj.shape[0]) # vanilla implementation, just used the raw std. devs. if not ratios: log_Rg = np.log(Rg)[:-skip] if skip != 0 else np.log(Rg) log_Nk =
np.log(Nk)
numpy.log
import numpy as np import pickle import sys import time import torch import yaml from baller2vecplusplus import Baller2VecPlusPlus from baller2vecplusplus_dataset import Baller2VecPlusPlusDataset from settings import * from torch import nn, optim from torch.utils.data import DataLoader from toy_dataset import ToyDataset SEED = 2010 torch.manual_seed(SEED) torch.set_printoptions(linewidth=160) np.random.seed(SEED) def worker_init_fn(worker_id): # See: https://pytorch.org/docs/stable/notes/faq.html#my-data-loader-workers-return-identical-random-numbers # and: https://pytorch.org/docs/stable/data.html#multi-process-data-loading # and: https://pytorch.org/docs/stable/data.html#randomness-in-multi-process-data-loading. # NumPy seed takes a 32-bit unsigned integer. np.random.seed(int(torch.utils.data.get_worker_info().seed) % (2 ** 32 - 1)) def get_train_valid_test_gameids(): with open("train_gameids.txt") as f: train_gameids = f.read().split() with open("valid_gameids.txt") as f: valid_gameids = f.read().split() with open("test_gameids.txt") as f: test_gameids = f.read().split() return (train_gameids, valid_gameids, test_gameids) def init_basketball_datasets(opts): baller2vec_config = pickle.load(open(f"{DATA_DIR}/baller2vec_config.pydict", "rb")) n_player_ids = len(baller2vec_config["player_idx2props"]) (train_gameids, valid_gameids, test_gameids) = get_train_valid_test_gameids() dataset_config = opts["dataset"] dataset_config["gameids"] = train_gameids dataset_config["N"] = opts["train"]["train_samples_per_epoch"] dataset_config["starts"] = [] dataset_config["mode"] = "train" dataset_config["n_player_ids"] = n_player_ids train_dataset = Baller2VecPlusPlusDataset(**dataset_config) train_loader = DataLoader( dataset=train_dataset, batch_size=None, num_workers=opts["train"]["workers"], worker_init_fn=worker_init_fn, ) N = opts["train"]["valid_samples"] samps_per_gameid = int(np.ceil(N / len(valid_gameids))) starts = [] for gameid in valid_gameids: y = np.load(f"{GAMES_DIR}/{gameid}_y.npy") max_start = len(y) - train_dataset.chunk_size gaps = max_start // samps_per_gameid starts.append(gaps * np.arange(samps_per_gameid)) dataset_config["gameids"] = np.repeat(valid_gameids, samps_per_gameid) dataset_config["N"] = len(dataset_config["gameids"]) dataset_config["starts"] = np.concatenate(starts) dataset_config["mode"] = "valid" valid_dataset = Baller2VecPlusPlusDataset(**dataset_config) valid_loader = DataLoader( dataset=valid_dataset, batch_size=None, num_workers=opts["train"]["workers"], ) samps_per_gameid = int(np.ceil(N / len(test_gameids))) starts = [] for gameid in test_gameids: y = np.load(f"{GAMES_DIR}/{gameid}_y.npy") max_start = len(y) - train_dataset.chunk_size gaps = max_start // samps_per_gameid starts.append(gaps * np.arange(samps_per_gameid)) dataset_config["gameids"] = np.repeat(test_gameids, samps_per_gameid) dataset_config["N"] = len(dataset_config["gameids"]) dataset_config["starts"] =
np.concatenate(starts)
numpy.concatenate
# Author: <NAME>, 02/09/2022 from matplotlib import pyplot as plt from PIL import Image import numpy as np # DLT def compute_A(X, X_): A_list = [] zero =
np.zeros(3)
numpy.zeros
import numpy as np from MagniPy.lensdata import Data import subprocess import shutil import scipy.ndimage.filters as sfilt import itertools from copy import deepcopy def dr(x1,x2,y1,y2): return np.sqrt((x1-x2)**2+(y1-y2)**2) def snap_to_bins(data, xbin_centers, dx, ybin_centers, dy, ranges): new_datax = deepcopy(data[:, 0]) new_datay = deepcopy(data[:, 1]) new_datax[np.where(new_datax <= ranges[0][0])] = xbin_centers[0] new_datax[np.where(new_datax >= ranges[0][1])] = xbin_centers[-1] new_datay[np.where(new_datay <= ranges[1][0])] = ybin_centers[0] new_datay[np.where(new_datay >= ranges[1][1])] = ybin_centers[-1] new_data = None xx, yy = np.meshgrid(xbin_centers, ybin_centers) coords = zip(np.round(xx.ravel(), 4), np.round(yy.ravel(), 4)) for i, (cenx, ceny) in enumerate(coords): subx = np.absolute(new_datax - cenx) * dx ** -1 suby = np.absolute(new_datay - ceny) * dy ** -1 inds = np.where(np.logical_and(subx < 1, suby < 1))[0] if len(inds) > 0: new_array = np.column_stack((np.array([cenx] * len(inds)), np.array([ceny] * len(inds)))) if new_data is None: new_data = deepcopy(new_array) else: new_data = np.vstack((new_data, new_array)) return new_data def approx_theta_E(ximg,yimg): dis = [] xinds,yinds = [0,0,0,1,1,2],[1,2,3,2,3,3] for (i,j) in zip(xinds,yinds): dx,dy = ximg[i] - ximg[j], yimg[i] - yimg[j] dr = (dx**2+dy**2)**0.5 dis.append(dr) dis = np.array(dis) greatest = np.argmax(dis) dr_greatest = dis[greatest] dis[greatest] = 0 second_greatest = np.argmax(dis) dr_second = dis[second_greatest] return 0.5*(dr_greatest*dr_second)**0.5 def min_img_sep_ranked(ximg, yimg): ximg, yimg = np.array(ximg), np.array(yimg) d1 = dr(ximg[0], ximg[1:], yimg[0], yimg[1:]) d2 = dr(ximg[1], [ximg[0], ximg[2], ximg[3]], yimg[1], [yimg[0], yimg[2], yimg[3]]) d3 = dr(ximg[2], [ximg[0], ximg[1], ximg[3]], yimg[2], [yimg[0], yimg[1], yimg[3]]) d4 = dr(ximg[3], [ximg[0], ximg[1], ximg[2]], yimg[3], [yimg[0], yimg[1], yimg[2]]) idx1 = np.argmin(d1) idx2 = np.argmin(d2) idx3 = np.argmin(d3) idx4 = np.argmin(d4) x_2, x_3, x_4 = [ximg[0], ximg[2], ximg[3]], [ximg[0], ximg[1], ximg[3]], [ximg[0], ximg[1], ximg[2]] y_2, y_3, y_4 = [yimg[0], yimg[2], yimg[3]], [yimg[0], yimg[1], yimg[3]], [yimg[0], yimg[1], yimg[2]] theta1 = np.arctan((yimg[1:][idx1] - yimg[0])/(ximg[1:][idx1] - ximg[0])) theta2 = np.arctan((y_2[idx2] - yimg[1]) / (x_2[idx2] - ximg[1])) theta3 = np.arctan((y_3[idx3] - yimg[2]) / (x_3[idx3] - ximg[2])) theta4 = np.arctan((y_4[idx4] - yimg[3]) / (x_4[idx4] - ximg[3])) return np.array([np.min(d1), np.min(d2), np.min(d3), np.min(d4)]), np.array([theta1, theta2, theta3, theta4]) def min_img_sep(ximg,yimg): assert len(ximg) == len(yimg) dr = [] if len(ximg) == 1: return 1 elif len(ximg) == 0: return 1 try: for i in range(0,int(len(ximg)-1)): for j in range(i+1,int(len(ximg))): dx = ximg[i] - ximg[j] dy = yimg[i] - yimg[j] dr.append((dx**2 + dy**2)**0.5) return min(dr) except: print('problem with the fit...') return 1 def sort_image_index(ximg,yimg,xref,yref): assert len(xref) == len(ximg) x_self = np.array(list(itertools.permutations(ximg))) y_self = np.array(list(itertools.permutations(yimg))) indexes = [0, 1, 2, 3] index_iterations = list(itertools.permutations(indexes)) delta_r = [] for i in range(0, int(len(x_self))): dr = 0 for j in range(0, int(len(x_self[0]))): dr += (x_self[i][j] - xref[j]) ** 2 + (y_self[i][j] - yref[j]) ** 2 delta_r.append(dr ** .5) min_indexes = np.array(index_iterations[np.argmin(delta_r)]) return min_indexes def coordinates_inbox(box_dx,box_dy,centered_x,centered_y): return np.logical_and(np.logical_and(-0.5*box_dx < centered_x, centered_x < 0.5*box_dx), np.logical_and(-0.5*box_dy < centered_y, centered_y < 0.5*box_dy)) def confidence_interval(percentile,data): data=np.array(data) data.sort() L = len(data) counter = 0 while True: value = data[counter] if counter>=L*percentile: break counter+=1 return value def quick_confidence(centers, heights, percentile): total = np.sum(heights) summ, index = 0, 0 while summ < total * percentile: summ += heights[index] index += 1 return centers[index-1] def read_data(filename='',N=None): with open(filename,'r') as f: lines = f.readlines() dsets = [] for line in lines: line = line.split(' ') n = int(line[0]) try: srcx,srcy = float(line[1]),float(line[2]) except: srcx,srcy = None,None x1,x2,x3,x4,y1,y2,y3,y4 = float(line[3]),float(line[7]),float(line[11]),float(line[15]),float(line[4]),\ float(line[8]),float(line[12]),float(line[16]) m1,m2,m3,m4 = float(line[5]),float(line[9]),float(line[13]),float(line[17]) t1,t2,t3,t4 = float(line[6]),float(line[10]),float(line[14]),float(line[18]) dsets.append(Data(x=[x1,x2,x3,x4],y=[y1,y2,y3,y4],m=[m1,m2,m3,m4], t=[t1,t2,t3,t4],source=[srcx,srcy])) if N is not None and len(dsets)>=N: break return dsets def write_fluxes(filename='',fluxes = [], mode='append',summed_in_quad=True): if summed_in_quad: fluxes = np.squeeze(fluxes) with open(filename,'a') as f: if isinstance(fluxes,float): f.write(str(fluxes)+'\n') else: for val in fluxes: f.write(str(val)+'\n') return fluxes = np.array(fluxes) if mode == 'append': m = 'a' else: m = 'w' if fluxes.ndim == 1: with open(filename, m) as f: for val in fluxes: f.write(str(val) + ' ') f.write('\n') else: N = int(np.shape(fluxes)[0]) with open(filename,m) as f: for n in range(0,N): for val in fluxes[n,:]: f.write(str(val)+' ') f.write('\n') def write_data(filename='',data_list=[],mode='append'): def single_line(dset=classmethod): lines = '' lines += str(dset.nimg)+' '+str(dset.srcx)+' '+str(dset.srcy)+' ' for i in range(0,int(dset.nimg)): for value in [dset.x[i],dset.y[i],dset.m[i],dset.t[i]]: if value is None: lines += '0 ' else: lines += str(value)+' ' return lines+'\n' if mode=='append': with open(filename,'a') as f: for dataset in data_list: f.write(single_line(dataset)) else: with open(filename,'w') as f: for dataset in data_list: f.write(single_line(dataset)) def integrate_profile(profname,limit,inspheres=False,**kwargs): if profname=='nfw': rs=kwargs['rs'] ks=kwargs['ks'] n=limit*rs**-1 if inspheres: rho0 = 86802621404*ks*rs**-1 n*=rs r200 = kwargs['c']*rs return 4*np.pi*rho0*rs**3*(np.log(1+r200*n**-1)- n*(n+r200)**-1) else: return 2*np.pi*rs**2*ks*(np.log(.25*n**2)+2*np.arctanh(np.sqrt(1-n**2))*(np.sqrt(1-n**2))**-1) elif profname=='SIE': b = kwargs['SIE_Rein'] return np.pi*limit*b def rotate(xcoords,ycoords,angle): return xcoords*np.cos(angle)+ycoords*np.sin(angle),-xcoords*np.sin(angle)+ycoords*np.cos(angle) def img_sept(x,y): return np.sort(np.array([dr(x[0],x[1],y[0],y[1]),dr(x[0],x[2],y[0],y[2]),dr(x[0],x[3],y[0],y[3]), dr(x[1],x[2],y[1],y[2]),dr(x[1],x[3],y[1],y[3]),dr(x[2],x[3],y[2],y[3])])) def identify(x,y,RE): separations = img_sept(x,y) if separations[0] > RE: return 0 if separations[1] <= 1.15*RE: return 2 elif separations[0] <= 0.85*RE: return 1 else: return 0 def read_dat_file(fname): x_srcSIE, y_srcSIE = [], [] with open(fname, 'r') as f: nextline = False dosrc = False doimg = False count = 0 readcount = 0 for line in f: row = line.split(" ") #print(row,fname) #row_split = filter(None, row) row_split = list(filter(None, row)) if row_split[0] == 'alpha': macromodel = row_split continue if row_split[0] == 'Source': nextline = True dosrc = True src = [] continue if nextline and dosrc: for item in row: try: src.append(float(item)) except ValueError: continue x_srcSIE.append(src[0]) y_srcSIE.append(src[1]) nextline = False dosrc = False continue if row_split[0] == 'images:\n': nextline = True doimg = True count = 0 x, y, f, t = [], [], [], [] continue if nextline and doimg: count += 1 numbers = [] for item in row: try: numbers.append(float(item)) except ValueError: continue x.append(numbers[4]) y.append(numbers[5]) f.append(numbers[6]) t.append(numbers[7]) if int(count) == 4: t = np.array(t) if min(t) < 0: t += -1 * min(t) xpos = x ypos = y fr = np.array(f) tdel = np.array(t) return xpos, ypos, fr, t, macromodel, [x_srcSIE[0], y_srcSIE[0]] def read_gravlens_out(fnames): vector = [] if isinstance(fnames,list): for fname in fnames: with open(fname, 'r') as f: lines = f.readlines() f.close() imgline = lines[1].split(' ') numimg = int(imgline[1]) xpos, ypos, mag, tdelay = [], [], [], [] for i in range(0, numimg): data = lines[2 + i].split(' ') data = filter(None, data) xpos.append(float(data[0])) ypos.append(float(data[1])) mag.append(np.absolute(float(data[2]))) tdelay.append(float(data[3])) vector.append([
np.array(xpos)
numpy.array
import tensorflow as tf import numpy as np from scipy.misc import imsave def get_pos(x: int, y: int, w: int, h: int): x = (float(x) - w // 2) / w y = (float(y) - h // 2) / h return [x, y, np.sqrt(np.square(x) +
np.square(y)
numpy.square
# ============================================================================ # Copyright (c) 2018 Diamond Light Source Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Author: <NAME> # E-mail: <EMAIL> # Description: Python implementation of the author's methods of # distortion correction, <NAME> et al "Radial lens distortion # correction with sub-pixel accuracy for X-ray micro-tomography" # Optics Express 23, 32859-32868 (2015), https://doi.org/10.1364/OE.23.032859 # Publication date: 10th July 2018 # ============================================================================ # Contributors: # ============================================================================ """ Module of processing methods: - Fit lines of dots to parabolas, find the center of distortion. - Calculate undistorted intercepts of gridlines. - Calculate distortion coefficients of the backward model, the forward model, and the backward-from-forward model. - Correct perspective distortion affecting curve lines. - Generate non-perspective points or lines from perspective points or lines. - Calculate perspective coefficients. """ import numpy as np from scipy import optimize def _para_fit_hor(list_lines, xcenter, ycenter): """ Fit horizontal lines of dots to parabolas. Parameters ---------- list_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. Returns ------- list_coef : list of 1D arrays List of the coefficients of each parabola (y=ax**2+bx+c). list_slines : list of 2D arrays List of the shifted (y,x)-coordinates of dot-centroids on each line. """ num_line = len(list_lines) list_coef = np.zeros((num_line, 3), dtype=np.float32) list_slines = [] for i, iline in enumerate(list_lines): line = np.asarray(iline) list_coef[i] = np.asarray(np.polyfit(line[:, 1] - xcenter, line[:, 0] - ycenter, 2)) list_temp = np.asarray( [(dot[0] - ycenter, dot[1] - xcenter) for dot in line]) list_slines.append(list_temp) return list_coef, list_slines def _para_fit_ver(list_lines, xcenter, ycenter): """ Fit vertical lines of dots to parabolas. Parameters ---------- list_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. Returns ------- list_coef : list of 1D arrays List of the coefficients of each parabola (x=ay**2+by+c). list_slines : list of 2D arrays List of the shifted (y,x)-coordinates of dot-centroids on each line. """ num_line = len(list_lines) list_coef = np.zeros((num_line, 3), dtype=np.float32) list_slines = [] for i, iline in enumerate(list_lines): line = np.asarray(iline) list_coef[i] = np.asarray( np.polyfit(line[:, 0] - ycenter, line[:, 1] - xcenter, 2)) list_temp = np.asarray( [(dot[0] - ycenter, dot[1] - xcenter) for dot in line]) list_slines.append(list_temp) return list_coef, list_slines def find_cod_coarse(list_hor_lines, list_ver_lines): """ Coarse estimation of the center of distortion. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. Returns ------- xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. """ (list_coef_hor, list_hor_lines) = _para_fit_hor(list_hor_lines, 0.0, 0.0) (list_coef_ver, list_ver_lines) = _para_fit_ver(list_ver_lines, 0.0, 0.0) pos_hor = np.argmax(np.abs(np.diff(np.sign(list_coef_hor[:, 0])))) + 1 pos_ver = np.argmax(np.abs(np.diff(np.sign(list_coef_ver[:, 0])))) + 1 ycenter0 = (list_coef_hor[pos_hor - 1, 2] + list_coef_hor[ pos_hor, 2]) * 0.5 xcenter0 = (list_coef_ver[pos_ver - 1, 2] + list_coef_ver[ pos_ver, 2]) * 0.5 slope_hor = (list_coef_hor[pos_hor - 1, 1] + list_coef_hor[ pos_hor, 1]) * 0.5 slope_ver = (list_coef_ver[pos_ver - 1, 1] + list_coef_ver[ pos_ver, 1]) * 0.5 ycenter = (ycenter0 + xcenter0 * slope_hor) / (1.0 - slope_hor * slope_ver) xcenter = (xcenter0 + ycenter0 * slope_ver) / (1.0 - slope_hor * slope_ver) return xcenter, ycenter def _func_dist(x, a, b, c): """ Function for finding the minimum distance. """ return x ** 2 + (a * x ** 2 + b * x + c) ** 2 def _calc_error(list_coef_hor, list_coef_ver): """ Calculate a metric of measuring how close fitted lines to the coordinate origin by: locating points on each parabola having the minimum distance to the origin, applying linear fits to these points, adding intercepts of the fits. Parameters ---------- list_coef_hor : list of 1D arrays Coefficients of parabolic fits of horizontal lines. list_coef_ver : list of 1D arrays Coefficients of parabolic fits of vertical lines. Returns ------- float """ num_hline = len(list_coef_hor) num_vline = len(list_coef_ver) list_hpoint = np.zeros((num_hline, 2), dtype=np.float32) for i, coefs in enumerate(list_coef_hor): minimum = optimize.minimize(_func_dist, 0.0, args=tuple(coefs)) xm = minimum.x[0] ym = coefs[0] * xm ** 2 + coefs[1] * xm + coefs[2] list_hpoint[i, 0] = xm list_hpoint[i, 1] = ym list_vpoint = np.zeros((num_vline, 2), dtype=np.float32) for i, coefs in enumerate(list_coef_ver): minimum = optimize.minimize(_func_dist, 0.0, args=tuple(coefs)) ym = minimum.x[0] xm = coefs[0] * ym ** 2 + coefs[1] * ym + coefs[2] list_vpoint[i, 0] = ym list_vpoint[i, 1] = xm error_h = np.polyfit(list_hpoint[:, 0], list_hpoint[:, 1], 1)[-1] error_v = np.polyfit(list_vpoint[:, 0], list_vpoint[:, 1], 1)[-1] return np.abs(error_h) + np.abs(error_v) def _calc_metric(list_hor_lines, list_ver_lines, xcenter, ycenter, list_xshift, list_yshift): """ Calculate a metric for determining the best center of distortion. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. list_xshift : list of float List of x-offsets from the x-center. list_yshift : list of float List of y-offsets from the y-center. Returns ------- xshift : float Shift in x-direction from the x-center. yshift : float Shift in y-direction from the y-center. """ (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) pos_hor = np.argmin(np.abs(list_coef_hor[:, 2])) pos_ver = np.argmin(np.abs(list_coef_ver[:, 2])) mat_metric = np.zeros( (len(list_xshift), len(list_yshift)), dtype=np.float32) num_hline = len(list_hor_lines) num_vline = len(list_ver_lines) numuse = min(5, num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = ( max(0, pos_hor - numuse), min(num_hline, pos_hor + numuse + 1)) (posv1, posv2) = ( max(0, pos_ver - numuse), min(num_vline, pos_ver + numuse + 1)) for j, pos_x in enumerate(list_xshift): for i, pos_y in enumerate(list_yshift): (list_coef_hor, _) = _para_fit_hor( list_hor_lines[posh1:posh2], pos_x, pos_y) (list_coef_ver, _) = _para_fit_ver( list_ver_lines[posv1:posv2], pos_x, pos_y) mat_metric[i, j] = _calc_error(list_coef_hor, list_coef_ver) min_pos = (np.unravel_index(mat_metric.argmin(), mat_metric.shape)) xshift = list_xshift[min_pos[1]] yshift = list_yshift[min_pos[0]] return xshift, yshift def find_cod_fine(list_hor_lines, list_ver_lines, xcenter, ycenter, dot_dist): """ Find the best center of distortion (CoD) by searching around the coarse estimation of the CoD. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Coarse estimation of the CoD in x-direction. ycenter : float Coarse estimation of the CoD in y-direction. dot_dist : float Median distance of two nearest dots. Returns ------- xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. """ step0 = 2.0 list_xshift = np.arange(-dot_dist, dot_dist + step0, step0) list_yshift = list_xshift (xshift, yshift) = _calc_metric( list_hor_lines, list_ver_lines, xcenter, ycenter, list_xshift, list_yshift) xcenter1 = xcenter + xshift ycenter1 = ycenter + yshift step = 0.5 list_xshift = np.arange(-step0, step0 + step, step) list_yshift = list_xshift (xshift, yshift) = _calc_metric( list_hor_lines, list_ver_lines, xcenter1, ycenter1, list_xshift, list_yshift) xcenter2 = xcenter1 + xshift ycenter2 = ycenter1 + yshift return xcenter2, ycenter2 def _check_missing_lines(list_coef_hor, list_coef_ver): """ Check if there are missing lines Parameters ---------- list_coef_hor : list of 1D arrays Coefficients of parabolic fits of horizontal lines. list_coef_ver : list of 1D arrays Coefficients of parabolic fits of vertical lines. Returns ------- bool """ check = False list_dist_hor = np.abs(np.diff(list_coef_hor[:, 2])) list_dist_ver = np.abs(np.diff(list_coef_ver[:, 2])) list_hindex = np.arange(len(list_dist_hor)) list_vindex = np.arange(len(list_dist_ver)) hfact = np.polyfit(list_hindex, list_dist_hor, 2) vfact = np.polyfit(list_vindex, list_dist_ver, 2) list_fit_hor = hfact[0] * list_hindex ** 2 + \ hfact[1] * list_hindex + hfact[2] list_fit_ver = vfact[0] * list_vindex ** 2 + \ vfact[1] * list_vindex + vfact[2] herror = np.max(np.abs((list_dist_hor - list_fit_hor) / list_fit_hor)) verror = np.max(np.abs((list_dist_ver - list_fit_ver) / list_fit_ver)) if (herror > 0.3) or (verror > 0.3): check = True return check def _func_opt(d0, c0, indexc0, *list_inter): """ Function for finding the optimum undistorted distance for radial distortion correction. """ return np.sum( np.asarray([(np.sign(c) * np.abs(i - indexc0) * d0 + c0 - c) ** 2 for i, c in enumerate(list_inter)])) def _optimize_intercept(dist_hv, pos_hv, list_inter): """ Find the optimum undistorted distance for radial-distortion correction. """ list_arg = [list_inter[pos_hv], pos_hv] list_arg.extend(list_inter) minimum = optimize.minimize(_func_opt, dist_hv, args=tuple(list_arg)) return minimum.x[0] def _calc_undistor_intercept(list_hor_lines, list_ver_lines, xcenter, ycenter, optimizing=False): """ Calculate the intercepts of undistorted lines. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. optimizing : bool, optional Apply optimization if True. Returns ------- list_hor_uc : list of floats Intercepts of undistorted horizontal lines. list_ver_uc : list of floats Intercepts of undistorted vertical lines. """ (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) check = _check_missing_lines(list_coef_hor, list_coef_ver) if check: print("!!! ERROR !!!") print("Parameters of the methods of grouping dots need to be adjusted") raise ValueError("There're missing lines, algorithm will not work!!!") pos_hor = np.argmin(np.abs(list_coef_hor[:, 2])) pos_ver = np.argmin(np.abs(list_coef_ver[:, 2])) num_hline = len(list_hor_lines) num_vline = len(list_ver_lines) num_use = min(3, num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = ( max(0, pos_hor - num_use), min(num_hline, pos_hor + num_use + 1)) (posv1, posv2) = ( max(0, pos_ver - num_use), min(num_vline, pos_ver + num_use + 1)) dist_hor = np.mean(np.abs(np.diff(list_coef_hor[posh1: posh2, 2]))) dist_ver = np.mean(np.abs(np.diff(list_coef_ver[posv1: posv2, 2]))) if optimizing is True: dist_hor = _optimize_intercept(dist_hor, pos_hor, list_coef_hor[:, 2]) dist_ver = _optimize_intercept(dist_ver, pos_ver, list_coef_ver[:, 2]) list_hor_uc = np.zeros(num_hline, dtype=np.float32) list_ver_uc = np.zeros(num_vline, dtype=np.float32) for i in range(num_hline): dist = np.abs(i - pos_hor) * dist_hor list_hor_uc[i] = np.sign(list_coef_hor[i, 2]) * dist + list_coef_hor[ pos_hor, 2] for i in range(num_vline): dist = np.abs(i - pos_ver) * dist_ver list_ver_uc[i] = np.sign(list_coef_ver[i, 2]) * dist + list_coef_ver[ pos_ver, 2] return list_hor_uc, list_ver_uc def calc_coef_backward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact): """ Calculate the distortion coefficients of a backward mode. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. num_fact : int Number of the factors of polynomial. Returns ------- list_fact : list of float Coefficients of the polynomial. """ num_fact = np.int16(np.clip(num_fact, 1, None)) (list_hor_uc, list_ver_uc) = _calc_undistor_intercept( list_hor_lines, list_ver_lines, xcenter, ycenter) (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) Amatrix = [] Bmatrix = [] list_expo = np.arange(num_fact, dtype=np.int16) for i, line in enumerate(list_hor_lines): (a_coef, _, c_coef) = np.float64(list_coef_hor[i]) uc_coef = np.float64(list_hor_uc[i]) for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = (a_coef * xd * xd + c_coef) / uc_coef Amatrix.append(np.power(rd / Fb, list_expo)) Bmatrix.append(Fb) for i, line in enumerate(list_ver_lines): (a_coef, _, c_coef) = np.float64(list_coef_ver[i]) uc_coef = np.float64(list_ver_uc[i]) for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = (a_coef * yd * yd + c_coef) / uc_coef Amatrix.append(np.power(rd / Fb, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) list_fact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return list_fact def calc_coef_forward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact): """ Calculate the distortion coefficients of a forward mode. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. num_fact : int Number of the factors of polynomial. Returns ------- list_fact : list of float Coefficients of the polynomial. """ num_fact = np.int16(np.clip(num_fact, 1, None)) (list_hor_uc, list_ver_uc) = _calc_undistor_intercept( list_hor_lines, list_ver_lines, xcenter, ycenter) (list_coef_hor, list_hor_lines) = _para_fit_hor( list_hor_lines, xcenter, ycenter) (list_coef_ver, list_ver_lines) = _para_fit_ver( list_ver_lines, xcenter, ycenter) list_expo = np.arange(num_fact, dtype=np.int16) Amatrix = [] Bmatrix = [] for i, line in enumerate(list_hor_lines): (a_coef, _, c_coef) = np.float64(list_coef_hor[i]) uc_coef = np.float64(list_hor_uc[i]) if uc_coef != 0.0: for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = uc_coef / (a_coef * xd * xd + c_coef) if Fb != 0.0: Amatrix.append(np.power(rd, list_expo)) Bmatrix.append(Fb) for i, line in enumerate(list_ver_lines): (a_coef, _, c_coef) = np.float64(list_coef_ver[i]) uc_coef = np.float64(list_ver_uc[i]) if uc_coef != 0.0: for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) Fb = uc_coef / (a_coef * yd * yd + c_coef) if Fb != 0.0: Amatrix.append(np.power(rd, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) list_fact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return list_fact def calc_coef_backward_from_forward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact): """ Calculate the distortion coefficients of a backward mode from a forward model. Parameters ---------- list_hor_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each horizontal line. list_ver_lines : list of 2D arrays List of the (y,x)-coordinates of dot-centroids on each vertical line. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. num_fact : int Number of the factors of polynomial. Returns ------- list_ffact : list of floats Polynomial coefficients of the forward model. list_bfact : list of floats Polynomial coefficients of the backward model. """ num_fact = np.int16(np.clip(num_fact, 1, None)) list_ffact = np.float64( calc_coef_forward(list_hor_lines, list_ver_lines, xcenter, ycenter, num_fact)) (_, list_hor_lines) = _para_fit_hor(list_hor_lines, xcenter, ycenter) (_, list_ver_lines) = _para_fit_ver(list_ver_lines, xcenter, ycenter) list_expo = np.arange(num_fact, dtype=np.int16) Amatrix = [] Bmatrix = [] for _, line in enumerate(list_hor_lines): for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) ffactor = np.float64(np.sum(list_ffact * np.power(rd, list_expo))) if ffactor != 0.0: Fb = 1 / ffactor ru = ffactor * rd Amatrix.append(np.power(ru, list_expo)) Bmatrix.append(Fb) for _, line in enumerate(list_ver_lines): for _, point in enumerate(line): xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) ffactor = np.float64(np.sum(list_ffact * np.power(rd, list_expo))) if ffactor != 0.0: Fb = 1 / ffactor ru = ffactor * rd Amatrix.append(np.power(ru, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) list_bfact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return list_ffact, list_bfact def transform_coef_backward_and_forward(list_fact, mapping="backward", ref_points=None): """ Transform polynomial coefficients of a radial distortion model between forward mapping and backward mapping. Parameters ---------- list_fact : list of floats Polynomial coefficients of the radial distortion model. mapping : {'backward', 'forward'} Transformation direction. ref_points : list of 1D-arrays, optional List of the (y,x)-coordinates of points used for the transformation. Generated if None given. Returns ------- list of floats Polynomial coefficients of the reversed model. """ if ref_points is None: ref_points = [[i, j] for i in np.arange(-1000, 1000, 50) for j in np.arange(-1000, 1000, 50)] else: num_points = len(ref_points) if num_points < len(list_fact): raise ValueError("Number of reference-points must be equal or " "larger than the number of coefficients!!!") Amatrix = [] Bmatrix = [] list_expo = np.arange(len(list_fact), dtype=np.int16) if mapping == "forward": for point in ref_points: xu = np.float64(point[1]) yu = np.float64(point[0]) ru = np.sqrt(xu * xu + yu * yu) factor = np.float64( np.sum(list_fact * np.power(ru, list_expo))) if factor != 0.0: Fb = 1 / factor rd = factor * ru Amatrix.append(np.power(rd, list_expo)) Bmatrix.append(Fb) else: for point in ref_points: xd = np.float64(point[1]) yd = np.float64(point[0]) rd = np.sqrt(xd * xd + yd * yd) factor = np.float64( np.sum(list_fact * np.power(rd, list_expo))) if factor != 0.0: Fb = 1 / factor ru = factor * rd Amatrix.append(np.power(ru, list_expo)) Bmatrix.append(Fb) Amatrix = np.asarray(Amatrix, dtype=np.float64) Bmatrix = np.asarray(Bmatrix, dtype=np.float64) trans_fact = np.linalg.lstsq(Amatrix, Bmatrix, rcond=1e-64)[0] return trans_fact def find_cod_bailey(list_hor_lines, list_ver_lines, iteration=2): """ Find the center of distortion (COD) using the Bailey's approach (Ref. [1]). Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. Returns ------- xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. References ---------- [1].. https://www-ist.massey.ac.nz/dbailey/sprg/pdfs/2002_IVCNZ_59.pdf """ (xcenter, ycenter) = find_cod_coarse(list_hor_lines, list_ver_lines) list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] a1, b1 = np.polyfit(list_coef_hor[:, 2], list_coef_hor[:, 0], 1)[0:2] a2, b2 = np.polyfit(list_coef_ver[:, 2], list_coef_ver[:, 0], 1)[0:2] xcenter = xcenter - b2 / a2 ycenter = ycenter - b1 / a1 for i in range(iteration): list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] a1, b1 = np.polyfit(list_coef_hor[:, 2], list_coef_hor[:, 0], 1)[0:2] a2, b2 = np.polyfit(list_coef_ver[:, 2], list_coef_ver[:, 0], 1)[0:2] xcenter = xcenter - b2 / a2 ycenter = ycenter - b1 / a1 return xcenter, ycenter def _generate_non_perspective_parabola_coef(list_hor_lines, list_ver_lines): """ Correct the deviation of fitted parabola coefficients of each line caused by perspective distortion. Note that the resulting coefficients are referred to a different origin-coordinate instead of (0, 0). Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. Returns ------- list_coef_hor : list of 1D-arrays List of the corrected coefficients for horizontal lines. list_coef_ver : list of 1D-arrays List of the corrected coefficients for vertical lines. xcenter : float Center of distortion in x-direction. ycenter : float Center of distortion in y-direction. """ num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) xcenter, ycenter = find_cod_bailey(list_hor_lines, list_ver_lines) list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] ah, bh = np.polyfit(list_coef_hor[:, 2], list_coef_hor[:, 1], 1)[0:2] av, bv = np.polyfit(list_coef_ver[:, 2], -list_coef_ver[:, 1], 1)[0:2] if np.abs(ah - av) >= 0.001: b0 = (ah * bv - av * bh) / (ah - av) else: b0 = (bh + bv) * 0.5 list_coef_hor[:, 1] = b0 * np.ones(num_hline) list_coef_ver[:, 1] = -b0 * np.ones(num_vline) pos_hor = np.argmax(np.abs(np.diff(np.sign(list_coef_hor[:, 0])))) + 1 pos_ver = np.argmax(np.abs(np.diff(np.sign(list_coef_ver[:, 0])))) + 1 num_use = min(3, num_hline // 2 - 1, num_vline // 2 - 1) (posh1, posh2) = ( max(0, pos_hor - num_use), min(num_hline, pos_hor + num_use + 1)) (posv1, posv2) = ( max(0, pos_ver - num_use), min(num_vline, pos_ver + num_use + 1)) dist_hor = np.mean(np.abs(np.diff(list_coef_hor[posh1: posh2, 2]))) dist_ver = np.mean(np.abs(np.diff(list_coef_ver[posv1: posv2, 2]))) if dist_hor > dist_ver: list_coef_ver[:, 2] = list_coef_ver[:, 2] * dist_hor / dist_ver list_coef_ver[:, 0] = list_coef_ver[:, 0] * dist_hor / dist_ver else: list_coef_hor[:, 2] = list_coef_hor[:, 2] * dist_ver / dist_hor list_coef_hor[:, 0] = list_coef_hor[:, 0] * dist_ver / dist_hor return list_coef_hor, list_coef_ver, xcenter, ycenter def _find_cross_point_between_parabolas(para_coef_hor, para_coef_ver): """ Find a cross point between two parabolas. Parameters ---------- para_coef_hor : array_like Coefficients of a horizontal parabola (y=ax**2+bx+c). para_coef_ver : array_like Coefficients of a vertical parabola (x=ay**2+by+c). Returns ------- x, y : floats Coordinate of the cross point. """ a1, b1, c1 = para_coef_hor[0:3] a2, b2, c2 = para_coef_ver[0:3] xvals = np.float32(np.real( np.roots([a1 ** 2 * a2, 2 * a1 * a2 * b1, a2 * b1 ** 2 + a1 * b2 + 2 * a1 * a2 * c1, -1 + b1 * b2 + 2 * a2 * b1 * c1, b2 * c1 + a2 * c1 ** 2 + c2]))) if len(xvals) == 0: raise ValueError("Can't find a cross point between two parabolas") if len(xvals) > 1: x = xvals[np.argmin(np.abs(xvals - c2))] else: x = xvals[0] y = a1 * x ** 2 + b1 * x + c1 return x, y def regenerate_grid_points_parabola(list_hor_lines, list_ver_lines, perspective=True): """ Regenerating grid points by finding cross points between horizontal lines and vertical lines using their parabola coefficients. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. perspective : bool, optional Apply perspective correction if True. Returns ------- new_hor_lines : list of 2D-arrays List of the updated (y,x)-coordinates of points on each horizontal line. new_ver_lines : list of 2D-arrays List of the updated (y,x)-coordinates of points on each vertical line. """ if perspective is True: results = _generate_non_perspective_parabola_coef(list_hor_lines, list_ver_lines) list_coef_hor, list_coef_ver, xcenter, ycenter = results else: xcenter, ycenter = find_cod_bailey(list_hor_lines, list_ver_lines) list_coef_hor = _para_fit_hor(list_hor_lines, xcenter, ycenter)[0] list_coef_ver = _para_fit_ver(list_ver_lines, xcenter, ycenter)[0] num_hline, num_vline = len(list_coef_hor), len(list_coef_ver) new_hor_lines = np.zeros((num_hline, num_vline, 2), dtype=np.float32) new_ver_lines = np.zeros((num_vline, num_hline, 2), dtype=np.float32) for i in range(num_hline): for j in range(num_vline): x, y = _find_cross_point_between_parabolas(list_coef_hor[i], list_coef_ver[j]) new_hor_lines[i, j] = np.asarray([y + ycenter, x + xcenter]) new_ver_lines[j, i] = np.asarray([y + ycenter, x + xcenter]) return new_hor_lines, new_ver_lines def _generate_linear_coef(list_hor_lines, list_ver_lines, xcenter=0.0, ycenter=0.0): """ Get linear coefficients of horizontal and vertical lines from linear fit. Parameters ---------- list_hor_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each horizontal line. list_ver_lines : list of 2D-arrays List of the (y,x)-coordinates of points on each vertical line. xcenter : float X-origin of the coordinate system. ycenter : float Y-origin of the coordinate system. Returns ------- list_coef_hor : list of 1D-arrays List of the linear coefficients for horizontal lines. list_coef_ver : list of 1D-arrays List of the linear coefficients for vertical lines. """ num_hline, num_vline = len(list_hor_lines), len(list_ver_lines) list_coef_hor =
np.zeros((num_hline, 2), dtype=np.float32)
numpy.zeros
from numpy import concatenate, zeros from scipy.linalg import toeplitz import torch from torch import nn import numpy as np import matplotlib as mat mat.use("TkAgg") import matplotlib.pyplot as plt import time from torch.autograd import Variable import cv2 torch.manual_seed(1) # reproducible mat.use("TkAgg") hidden_siz = 30 hidden_lay = 1 LR = 0.02 # learning rate class LSNN1(nn.Module): def __init__(self): super(LSNN1, self).__init__() self.lstm = nn.LSTM( input_size=1, hidden_size=hidden_siz, num_layers=hidden_lay, batch_first=True, ) self.hidden = (torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz)),torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz))) self.out = nn.Linear(hidden_siz, 1) def forward(self,x): # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, output_size) r_out,self.hidden= self.lstm(x,self.hidden) self.hidden=(Variable(self.hidden[0]),Variable(self.hidden[1])) outs = [] #print(r_out.size()) for time_step in range(33): outs.append(self.out(r_out[:, time_step, :])) return torch.stack(outs, dim=1) class LSNN2(nn.Module): def __init__(self): super(LSNN2, self).__init__() self.lstm = nn.LSTM( input_size=1, hidden_size=hidden_siz, num_layers=hidden_lay, batch_first=True, ) self.hidden = (torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz)),torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz))) self.out = nn.Linear(hidden_siz, 1) def forward(self,x): # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, output_size) r_out,self.hidden= self.lstm(x,self.hidden) self.hidden=(Variable(self.hidden[0]),Variable(self.hidden[1])) outs = [] for time_step in range(100): if(time_step>=33 and time_step<66): outs.append(self.out(r_out[:, time_step, :])) return torch.stack(outs, dim=1) class LSNN3(nn.Module): def __init__(self): super(LSNN3, self).__init__() self.lstm = nn.LSTM( input_size=1, hidden_size=hidden_siz, num_layers=hidden_lay, batch_first=True, ) self.hidden = (torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz)),torch.autograd.Variable(torch.zeros(hidden_lay, 1, hidden_siz))) self.out = nn.Linear(hidden_siz, 1) def forward(self,x): # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, output_size) r_out,self.hidden= self.lstm(x,self.hidden) self.hidden=(Variable(self.hidden[0]),Variable(self.hidden[1])) outs = [] for time_step in range(67): if(time_step>=33 and time_step<67): outs.append(self.out(r_out[:, time_step, :])) return torch.stack(outs, dim=1) lstmNN1 = LSNN1() lstmNN2 = LSNN2() lstmNN3 = LSNN3() optimizer1 = torch.optim.Adam(lstmNN1.parameters(), lr=LR) # optimize all rnn parameters optimizer2 = torch.optim.Adam(lstmNN2.parameters(), lr=LR) optimizer3 = torch.optim.Adam(lstmNN3.parameters(), lr=LR) loss_func = nn.MSELoss() loss_list1 = [] loss_list2 = [] loss_list3 = [] prediction_list1 = [] prediction_list2 = [] prediction_list3 = [] steps = np.linspace(0, 100, 100, dtype=np.float32) for step in range(98): if step == 0: x_np1 = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[step: step + 1, :33] x_np2 = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[step: step + 1, 33: 66] x_np3 = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[step: step + 1, 66:] y_np1 = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.], zeros(97)]))[step + 1: step + 2, :33] y_np2 = toeplitz(concatenate([[1.], zeros(99)]),concatenate([[1.,1.,1.],
zeros(97)
numpy.zeros
import os from os.path import join as pjoin import numpy as np import pandas as pd import scipy.stats import dask from cesium import featurize from cesium.tests.fixtures import (sample_values, sample_ts_files, sample_featureset) import numpy.testing as npt import pytest DATA_PATH = pjoin(os.path.dirname(__file__), "data") FEATURES_CSV_PATH = pjoin(DATA_PATH, "test_features_with_targets.csv") def test_featurize_files_function(tmpdir): """Test featurize function for on-disk time series""" with sample_ts_files(size=4, labels=['A', 'B']) as ts_paths: fset, labels = featurize.featurize_ts_files(ts_paths, features_to_use=["std_err"], scheduler=dask.get) assert "std_err" in fset assert fset.shape == (4, 1) npt.assert_array_equal(labels, ['A', 'B', 'A', 'B']) def test_featurize_time_series_single(): """Test featurize wrapper function for single time series""" t, m, e = sample_values() features_to_use = ['amplitude', 'std_err'] meta_features = {'meta1': 0.5} fset = featurize.featurize_time_series(t, m, e, features_to_use, meta_features, scheduler=dask.get) assert fset['amplitude'].values.dtype == np.float64 def test_featurize_time_series_single_multichannel(): """Test featurize wrapper function for single multichannel time series""" n_channels = 3 t, m, e = sample_values(channels=n_channels) features_to_use = ['amplitude', 'std_err'] meta_features = {'meta1': 0.5} fset = featurize.featurize_time_series(t, m, e, features_to_use, meta_features, scheduler=dask.get) assert ('amplitude', 0) in fset.columns assert 'meta1' in fset.columns def test_featurize_time_series_multiple(): """Test featurize wrapper function for multiple time series""" n_series = 5 list_of_series = [sample_values() for i in range(n_series)] times, values, errors = [list(x) for x in zip(*list_of_series)] features_to_use = ['amplitude', 'std_err'] meta_features = [{'meta1': 0.5}] * n_series fset = featurize.featurize_time_series(times, values, errors, features_to_use, meta_features, scheduler=dask.get) npt.assert_array_equal(sorted(fset.columns.get_level_values('feature')), ['amplitude', 'meta1', 'std_err']) def test_featurize_time_series_multiple_multichannel(): """Test featurize wrapper function for multiple multichannel time series""" n_series = 5 n_channels = 3 list_of_series = [sample_values(channels=n_channels) for i in range(n_series)] times, values, errors = [list(x) for x in zip(*list_of_series)] features_to_use = ['amplitude', 'std_err'] meta_features = {'meta1': 0.5} fset = featurize.featurize_time_series(times, values, errors, features_to_use, meta_features, scheduler=dask.get) assert ('amplitude', 0) in fset.columns assert 'meta1' in fset.columns def test_featurize_time_series_uneven_multichannel(): """Test featurize wrapper function for uneven-length multichannel data""" n_channels = 3 t, m, e = sample_values(channels=n_channels) t = [[t, t[0:-5], t[0:-10]]] m = [[m[0], m[1][0:-5], m[2][0:-10]]] e = [[e[0], e[1][0:-5], e[2][0:-10]]] features_to_use = ['amplitude', 'std_err'] meta_features = {'meta1': 0.5} fset = featurize.featurize_time_series(t, m, e, features_to_use, meta_features, scheduler=dask.get) assert ('amplitude', 0) in fset.columns assert 'meta1' in fset.columns def test_featurize_time_series_custom_functions(): """Test featurize wrapper function for time series w/ custom functions""" n_channels = 3 t, m, e = sample_values(channels=n_channels) features_to_use = ['amplitude', 'std_err', 'test_f'] meta_features = {'meta1': 0.5} custom_functions = {'test_f': lambda t, m, e: np.pi} fset = featurize.featurize_time_series(t, m, e, features_to_use, meta_features, custom_functions=custom_functions, scheduler=dask.get) npt.assert_array_equal(fset['test_f', 0], np.pi) assert ('amplitude', 0) in fset.columns assert 'meta1' in fset.columns def test_featurize_time_series_custom_dask_graph(): """Test featurize wrapper function for time series w/ custom dask graph""" n_channels = 3 t, m, e = sample_values(channels=n_channels) features_to_use = ['amplitude', 'std_err', 'test_f', 'test_meta'] meta_features = {'meta1': 0.5} custom_functions = {'test_f': (lambda x: x.min() - x.max(), 'amplitude'), 'test_meta': (lambda x: 2. * x, 'meta1')} fset = featurize.featurize_time_series(t, m, e, features_to_use, meta_features, custom_functions=custom_functions, scheduler=dask.get) assert ('amplitude', 0) in fset.columns assert ('test_f', 0) in fset.columns assert ('test_meta', 0) in fset.columns def test_featurize_time_series_default_times(): """Test featurize wrapper function for time series w/ missing times""" n_channels = 3 _, m, e = sample_values(channels=n_channels) features_to_use = ['amplitude', 'std_err'] meta_features = {} fset = featurize.featurize_time_series(None, m, e, features_to_use, meta_features, scheduler=dask.get) m = [[m[0], m[1][0:-5], m[2][0:-10]]] e = [[e[0], e[1][0:-5], e[2][0:-10]]] fset = featurize.featurize_time_series(None, m, e, features_to_use, meta_features, scheduler=dask.get) m = m[0][0] e = e[0][0] fset = featurize.featurize_time_series(None, m, e, features_to_use, meta_features, scheduler=dask.get) assert ('amplitude', 0) in fset.columns def test_featurize_time_series_default_errors(): """Test featurize wrapper function for time series w/ missing errors""" n_channels = 3 t, m, _ = sample_values(channels=n_channels) features_to_use = ['amplitude', 'std_err'] meta_features = {} fset = featurize.featurize_time_series(t, m, None, features_to_use, meta_features, scheduler=dask.get) t = [[t, t[0:-5], t[0:-10]]] m = [[m[0], m[1][0:-5], m[2][0:-10]]] fset = featurize.featurize_time_series(t, m, None, features_to_use, meta_features, scheduler=dask.get) t = t[0][0] m = m[0][0] fset = featurize.featurize_time_series(t, m, None, features_to_use, meta_features, scheduler=dask.get) assert ('amplitude', 0) in fset.columns def test_featurize_time_series_pandas_metafeatures(): """Test featurize function for metafeatures passed as Series/DataFrames.""" t, m, e = sample_values() features_to_use = ['amplitude', 'std_err'] meta_features = pd.Series({'meta1': 0.5}) fset = featurize.featurize_time_series(t, m, e, features_to_use, meta_features, scheduler=dask.get) npt.assert_allclose(fset['meta1'], 0.5) n_series = 5 list_of_series = [sample_values() for i in range(n_series)] times, values, errors = [list(x) for x in zip(*list_of_series)] features_to_use = ['amplitude', 'std_err'] meta_features = pd.DataFrame({'meta1': [0.5] * n_series, 'meta2': [0.8] * n_series}) fset = featurize.featurize_time_series(times, values, errors, features_to_use, meta_features, scheduler=dask.get) npt.assert_allclose(fset['meta1'], 0.5) npt.assert_allclose(fset['meta2'], 0.8) def test_impute(): """Test imputation of missing Featureset values.""" fset, labels = sample_featureset(5, 1, ['amplitude'], ['class1', 'class2'], names=['a', 'b', 'c', 'd', 'e'], meta_features=['meta1']) imputed = featurize.impute_featureset(fset) npt.assert_allclose(fset.amplitude.values, imputed.amplitude.values) assert isinstance(imputed, pd.DataFrame) fset.amplitude.values[0] = np.inf fset.amplitude.values[1] = np.nan amp_values = fset.amplitude.values[2:] other_values = fset.values.T.ravel()[2:] imputed = featurize.impute_featureset(fset, strategy='constant', value=None) npt.assert_allclose(-2 * np.nanmax(np.abs(other_values)), imputed.amplitude.values[0:2]) imputed = featurize.impute_featureset(fset, strategy='constant', value=-1e4) npt.assert_allclose(-1e4, imputed.amplitude.values[0:2]) imputed = featurize.impute_featureset(fset, strategy='mean') npt.assert_allclose(np.mean(amp_values), imputed.amplitude.values[0:2]) npt.assert_allclose(amp_values, imputed.amplitude.values[2:]) imputed = featurize.impute_featureset(fset, strategy='median') npt.assert_allclose(np.median(amp_values), imputed.amplitude.values[0:2]) npt.assert_allclose(amp_values, imputed.amplitude.values[2:]) imputed = featurize.impute_featureset(fset, strategy='most_frequent') npt.assert_allclose(scipy.stats.mode(amp_values).mode.item(), imputed.amplitude.values[0:2]) npt.assert_allclose(amp_values, imputed.amplitude.values[2:]) featurize.impute_featureset(fset, strategy='constant', value=-1e4, inplace=True) npt.assert_allclose(-1e4, fset.amplitude.values[0:2]) with pytest.raises(NotImplementedError): featurize.impute_featureset(fset, strategy='blah') def test_roundtrip_featureset(tmpdir): fset_path = os.path.join(str(tmpdir), 'test.npz') for n_channels in [1, 3]: for labels in [['class1', 'class2'], []]: fset, labels = sample_featureset(3, n_channels, ['amplitude'], labels, names=['a', 'b', 'c'], meta_features=['meta1']) pred_probs = pd.DataFrame(np.random.random((len(fset), 2)), index=fset.index.values, columns=['class1', 'class2']) featurize.save_featureset(fset, fset_path, labels=labels, pred_probs=pred_probs) fset_loaded, data_loaded = featurize.load_featureset(fset_path) npt.assert_allclose(fset.values, fset_loaded.values) npt.assert_array_equal(fset.index, fset_loaded.index) npt.assert_array_equal(fset.columns, fset_loaded.columns) assert isinstance(fset_loaded, pd.DataFrame) npt.assert_array_equal(labels, data_loaded['labels']) npt.assert_allclose(pred_probs, data_loaded['pred_probs']) npt.assert_array_equal(pred_probs.columns, data_loaded['pred_probs'].columns) def test_ignore_exceptions(): import cesium.features.graphs def raise_exc(x): raise ValueError() old_value = cesium.features.graphs.dask_feature_graph['mean'] try: cesium.features.graphs.dask_feature_graph['mean'] = (raise_exc, 't') t, m, e = sample_values() features_to_use = ['mean'] with pytest.raises(ValueError): fset = featurize.featurize_time_series(t, m, e, features_to_use, scheduler=dask.get, raise_exceptions=True) fset = featurize.featurize_time_series(t, m, e, features_to_use, scheduler=dask.get, raise_exceptions=False) assert
np.isnan(fset.values)
numpy.isnan
#!/usr/bin/python import sys import os import json # -*- coding:utf8 -*- import numpy as np import math import Control_Exp1001 as CE import torch.utils.data as Data import matplotlib.pyplot as plt import random import sklearn.metrics.base from sklearn.metrics import mean_squared_error import torch.nn as nn import torch.nn.functional as F from Control_Exp1001.simulation.thickener import Thickener from torch.autograd import Variable import torch import torch.optim as optim from Control_Exp1001.control.base_ac import ACBase from Control_Exp1001.demo.thickener.ILPL.critic import Critic from Control_Exp1001.demo.thickener.ILPL.actor import Actor from Control_Exp1001.demo.thickener.ILPL.predict import Model sys.path.append(('./')) import itertools from Control_Exp1001.demo.flotation.plotuilt import PltUtil import mpl_toolkits.mplot3d as p3d from pylab import contourf from pylab import contour class HDP(ACBase): def __init__(self, gpu_id=1, replay_buffer = None, u_bounds = None, exploration = None, env=None, predict_training_rounds=10000, gamma=0.6, batch_size = 1, predict_batch_size=32, model_nn_error_limit = 0.08, critic_nn_error_limit = 1, actor_nn_error_limit = 0.1, actor_nn_lr = 0.01, critic_nn_lr = 0.01, model_nn_lr = 0.01, indice_y = None, indice_u = None, indice_y_star = None, indice_c=None, hidden_model = 10, hidden_critic = 14, hidden_actor = 10, predict_epoch = 35, Nc = 500 ): """ :param gpu_id: :param replay_buffer: :param u_bounds: :param exploration: :param env: :param predict_training_rounds: 训练预测模型时使用的真实数据条数 :param Vm: :param Lm: :param Va: :param La: :param Lc: :param Vc: :param gamma: :param batch_size: :param predict_batch_size: 训练预测模型时的batch_size :param model_nn_error_limit: :param critic_nn_error_limit: critic网络的误差限 :param actor_nn_loss: :param u_iter: 求解u*时的迭代次数 :param u_begin: 求解u*时,第一次迭代的其实u(k) :param indice_y: y在state中的位置 :param indice_y_star: *在state中的位置 :param u_first: 第一次控制时的命令 """ super(HDP, self).__init__(gpu_id=gpu_id,replay_buffer=replay_buffer, u_bounds=u_bounds,exploration=exploration) if env is None: env = Thickener() self.env=env self.predict_training_rounds = predict_training_rounds self.device = None self.cuda_device(gpu_id) self.batch_size = batch_size self.predict_batch_size = predict_batch_size self.predict_training_losses = [] self.model_nn = None self.model_nn_error_limit = model_nn_error_limit self.critic_nn_error_limit = critic_nn_error_limit self.actor_nn_error_limit = actor_nn_error_limit self.u_grad = [0, 0] self.y_grad = [0, 0] dim_c = env.size_yudc[3] dim_y = env.size_yudc[0] dim_u = env.size_yudc[1] # Train model neural network self.model_nn = nn.Sequential( nn.Linear(dim_y+dim_u+dim_c, hidden_model), nn.Tanh(), nn.Linear(hidden_model, dim_y) ) self.model_nn_optim = torch.optim.Adam(self.model_nn.parameters(), lr=model_nn_lr) #self.train_identification_model() #mse = self.test_predict_model(test_rounds=400) #定义actor网络相关 self.actor_nn = nn.Sequential( nn.Linear(2*dim_y+dim_c, hidden_actor, bias=False), nn.Tanh(), nn.Linear(hidden_actor, dim_u), nn.Tanh(), # nn.Linear(dim_u, dim_u) ) self.actor_nn_optim = torch.optim.Adam(self.actor_nn.parameters(), lr=actor_nn_lr) #定义critic网络相关:HDP self.critic_nn = nn.Sequential( nn.Linear(dim_y+dim_y+dim_c, hidden_critic, bias=False), nn.Tanh(), nn.Linear(hidden_critic, 1), ) self.critic_nn_optim = torch.optim.Adam(self.critic_nn.parameters(), lr=critic_nn_lr) self.critic_criterion = torch.nn.MSELoss() self.gamma = gamma if indice_y is None: indice_y = [2,3] if indice_y_star is None: indice_y_star = [0,1] if indice_u is None: indice_u = [4,5] self.indice_y = indice_y self.indice_y_star = indice_y_star self.indice_c = [6, 7] self.indice_u = indice_u self.predict_epoch = predict_epoch self.Nc = Nc def cuda_device(self, cuda_id): use_cuda = torch.cuda.is_available() cuda = 'cuda:'+str(cuda_id) self.device = torch.device(cuda if use_cuda else "cpu") def _act(self, state): y = self.normalize_y(state[self.indice_y]) y_star = self.normalize_y(state[self.indice_y_star]) c = self.normalize_c(state[self.indice_c]) x = torch.FloatTensor(np.hstack((y, y_star,c))).unsqueeze(0) act = self.actor_nn(x).detach().squeeze(0).numpy() # make the output action locate in bounds of constraint # U = (max - min)/2 * u + (max + min)/2 self.delta_u = self.env.u_bounds[:, 1] - self.env.u_bounds[:, 0] self.mid_u = np.mean(self.env.u_bounds, axis=1) A = np.matrix(np.diag(self.delta_u/2)) B = np.matrix(self.mid_u).T act = A*np.matrix(act).T + B act = np.array(act).reshape(-1) # self.actor_nn[-1].weight.data = torch.FloatTensor() # self.actor_nn[-1].bias.data = torch.FloatTensor(self.mid_u) # self.actor_nn[-1].weight.requires_grad = False # self.actor_nn[-1].bias.requires_grad = False return act def _train(self, s, u, ns, r, done): # 先放回放池 self.replay_buffer.push(s, u, r, ns, done) # if len(self.replay_buffer) < self.batch_size: # return # 从回放池取数据,默认1条 state, action, reward, next_state, done = self.replay_buffer.sample( # 尽快开始训练,而不能等batchsize满了再开始 min(len(self.replay_buffer), self.batch_size) ) # 更新模型 self.update_model(state, action, reward, next_state, done) def update_model(self,state, action, penalty, next_state, done): tmp_state =
np.copy(state)
numpy.copy
import numpy as np def rotate_point_cloud(batch_data): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotated_data = np.zeros(batch_data.shape, dtype=np.float32) for k in range(batch_data.shape[0]): rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, -sinval, 0], [sinval, cosval, 0], [0, 0, 1]]) shape_pc = batch_data[k, ...] rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix) return rotated_data def rotate_perturbation_point_cloud(batch_data, angle_sigma=0.06, angle_clip=0.18): """ Randomly perturb the point clouds by small rotations Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotated_data = np.zeros(batch_data.shape, dtype=np.float32) for k in range(batch_data.shape[0]): angles = np.clip(angle_sigma*np.random.randn(3), -angle_clip, angle_clip) Rx = np.array([[1,0,0], [0,np.cos(angles[0]),-np.sin(angles[0])], [0,np.sin(angles[0]),np.cos(angles[0])]]) Ry = np.array([[np.cos(angles[1]),0,np.sin(angles[1])], [0,1,0], [-np.sin(angles[1]),0,np.cos(angles[1])]]) Rz = np.array([[np.cos(angles[2]),-np.sin(angles[2]),0], [np.sin(angles[2]),np.cos(angles[2]),0], [0,0,1]]) R = np.dot(Rz, np.dot(Ry,Rx)) shape_pc = batch_data[k, ...] rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), R) return rotated_data def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05): """ Randomly jitter points. jittering is per point. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, jittered batch of point clouds """ B, N, C = batch_data.shape assert(clip > 0) jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip) jittered_data += batch_data return jittered_data def random_drop_n_cuboids(batch_data): """ Randomly drop N cuboids from the point cloud. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, dropped batch of point clouds """ batch_data = random_drop_point_cloud(batch_data) cuboids_count = 1 while cuboids_count < 5 and np.random.uniform(0., 1.) > 0.3: batch_data = random_drop_point_cloud(batch_data) cuboids_count += 1 return batch_data def check_aspect2D(crop_range, aspect_min): xy_aspect = np.min(crop_range[:2])/
np.max(crop_range[:2])
numpy.max
from util import * import numpy as np K = np.array( [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2], np.uint32) STATE =
np.array([0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19], np.uint32)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den =
N.array([2,1,2])
numpy.array
#!/usr/bin/env python """Very simple SVG rasterizer NOT SUPPORTED: - markers - symbol - color-interpolation and filter-color-interpolation attributes PARTIALLY SUPPORTED: - text (textPath is not supported) - fonts - font resolution logic is very basic - style font attribute is not parsed only font-* attrs are supported KNOWN PROBLEMS: - multiple pathes over going over the same pixels are breakin antialising (would draw all pixels with multiplied AA coverage (clamped)). """ from __future__ import annotations import builtins import gzip import io import math import numpy as np import numpy.typing as npt import os import re import struct import sys import textwrap import time import warnings import xml.etree.ElementTree as etree import zlib from functools import reduce, partial from typing import Any, Callable, NamedTuple, List, Tuple, Optional, Dict EPSILON = sys.float_info.epsilon FLOAT_RE = re.compile(r"[-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?") FLOAT = np.float64 # ------------------------------------------------------------------------------ # Layer # ------------------------------------------------------------------------------ COMPOSE_OVER = 0 COMPOSE_OUT = 1 COMPOSE_IN = 2 COMPOSE_ATOP = 3 COMPOSE_XOR = 4 COMPOSE_PRE_ALPHA = {COMPOSE_OVER, COMPOSE_OUT, COMPOSE_IN, COMPOSE_ATOP, COMPOSE_XOR} BBox = Tuple[float, float, float, float] FNDArray = npt.NDArray[FLOAT] class Layer(NamedTuple): image: np.ndarray[Tuple[int, int, int], FLOAT] offset: Tuple[int, int] pre_alpha: bool linear_rgb: bool @property def x(self) -> int: return self.offset[0] @property def y(self) -> int: return self.offset[1] @property def width(self) -> int: return self.image.shape[1] @property def height(self) -> int: return self.image.shape[0] @property def channels(self) -> int: return self.image.shape[2] @property def bbox(self) -> BBox: return (*self.offset, *self.image.shape[:2]) def translate(self, x: int, y: int) -> Layer: offset = (self.x + x, self.y + y) return Layer(self.image, offset, self.pre_alpha, self.linear_rgb) def color_matrix(self, matrix: np.ndarray) -> Layer: """Apply color matrix transformation""" if not isinstance(matrix, np.ndarray) or matrix.shape != (4, 5): raise ValueError("expected 4x5 matrix") layer = self.convert(pre_alpha=False, linear_rgb=True) M = matrix[:, :4] B = matrix[:, 4] image = np.matmul(layer.image, M.T) + B np.clip(image, 0, 1, out=image) return Layer(image, layer.offset, pre_alpha=False, linear_rgb=True) def convolve(self, kernel: np.ndarray) -> Layer: """Convlve layer""" try: from scipy.signal import convolve layer = self.convert(pre_alpha=False, linear_rgb=True) kw, kh = kernel.shape image = convolve(layer.image, kernel[..., None]) x, y = int(layer.x - kw / 2), int(layer.y - kh / 2) return Layer(image, (x, y), pre_alpha=False, linear_rgb=True) except ImportError: warnings.warn("Layer::convolve requires `scipy`") return self def morphology(self, x: int, y: int, method: str) -> Layer: """Morphology filter operation Morphology is essentially {min|max} pooling with [1, 1] stride """ layer = self.convert(pre_alpha=True, linear_rgb=True) image = pooling(layer.image, ksize=(x, y), stride=(1, 1), method=method) return Layer(image, layer.offset, pre_alpha=True, linear_rgb=True) def convert(self, pre_alpha=None, linear_rgb=None) -> Layer: """Convert image if needed to specified alpha and colorspace""" pre_alpha = self.pre_alpha if pre_alpha is None else pre_alpha linear_rgb = self.linear_rgb if linear_rgb is None else linear_rgb if self.channels == 1: # single channel value assumed to be alpha return Layer(self.image, self.offset, pre_alpha, linear_rgb) in_image, out_offset, out_pre_alpha, out_linear_rgb = self out_image = None if out_linear_rgb != linear_rgb: out_image = in_image.copy() # convert to straight alpha first if needed if out_pre_alpha: out_image = color_pre_to_straight_alpha(out_image) out_pre_alpha = False if linear_rgb: out_image = color_srgb_to_linear(out_image) else: out_image = color_linear_to_srgb(out_image) out_linear_rgb = linear_rgb if out_pre_alpha != pre_alpha: if out_image is None: out_image = in_image.copy() if pre_alpha: out_image = color_straight_to_pre_alpha(out_image) else: out_image = color_pre_to_straight_alpha(out_image) out_pre_alpha = pre_alpha if out_image is None: return self return Layer(out_image, out_offset, out_pre_alpha, out_linear_rgb) def background(self, color: np.ndarray) -> Layer: layer = self.convert(pre_alpha=True, linear_rgb=True) image = canvas_compose(COMPOSE_OVER, color[None, None, ...], layer.image) return Layer(image, layer.offset, pre_alpha=True, linear_rgb=True) def opacity(self, opacity: float, linear_rgb=False) -> Layer: """Apply additinal opacity""" layer = self.convert(pre_alpha=True, linear_rgb=linear_rgb) image = layer.image * opacity return Layer(image, layer.offset, pre_alpha=True, linear_rgb=linear_rgb) @staticmethod def compose(layers: List[Layer], method=COMPOSE_OVER, linear_rgb=False) -> Optional[Layer]: """Compose multiple layers into one with specified `method` Composition in linear RGB is correct one but SVG composes in sRGB by default. Only filter is composing in linear RGB by default. """ if not layers: return None elif len(layers) == 1: return layers[0] images = [] pre_alpha = method in COMPOSE_PRE_ALPHA for layer in layers: layer = layer.convert(pre_alpha=pre_alpha, linear_rgb=linear_rgb) images.append((layer.image, layer.offset)) #print([i[0].shape for i in images]) blend = partial(canvas_compose, method) if method == COMPOSE_IN: result = canvas_merge_intersect(images, blend) elif method == COMPOSE_OVER: start = time.time() result = canvas_merge_union(images, full=False, blend=blend) print("render from image,offset pair take:",time.time()-start) else: result = canvas_merge_union(images, full=True, blend=blend) if result is None: return None image, offset = result return Layer(image, offset, pre_alpha=pre_alpha, linear_rgb=linear_rgb) def write_png(self, output=None): if self.channels != 4: raise ValueError("Only RGBA layers are supported") layer = self.convert(pre_alpha=False, linear_rgb=False) return canvas_to_png(layer.image, output) def __repr__(self): return "Layer(x={}, y={}, w={}, h={}, pre_alpha={}, linear_rgb={})".format( self.x, self.y, self.width, self.height, self.pre_alpha, self.linear_rgb ) def show(self, format=None): """Show layer on terminal if `imshow` if available NOTE: used only for debugging """ try: from imshow import show layer = self.convert(pre_alpha=False, linear_rgb=False) show(layer.image, format=format) except ImportError: warnings.warn("to be able to show layer on terminal imshow is required") def canvas_create(width, height, bg=None): """Create canvas of a specified size Returns (canvas, transform) tuple: canvas - float64 ndarray of (height, width, 4) shape transform - transform from (x, y) to canvas pixel coordinates """ if bg is None: canvas = np.zeros((height, width, 4), dtype=FLOAT) else: canvas = np.broadcast_to(bg, (height, width, 4)).copy() return canvas, Transform().matrix(0, 1, 0, 1, 0, 0) def canvas_to_png(canvas, output=None): """Convert (height, width, rgba{float64}) to PNG""" def png_pack(output, tag, data): checksum = 0xFFFFFFFF & zlib.crc32(data, zlib.crc32(tag)) output.write(struct.pack("!I", len(data))) output.write(tag) output.write(data) output.write(struct.pack("!I", checksum)) height, width, _ = canvas.shape data = io.BytesIO() comp = zlib.compressobj(level=9) for row in np.round(canvas * 255.0).astype(np.uint8): data.write(comp.compress(b"\x00")) data.write(comp.compress(row.tobytes())) data.write(comp.flush()) output = io.BytesIO() if output is None else output output.write(b"\x89PNG\r\n\x1a\n") png_pack(output, b"IHDR", struct.pack("!2I5B", width, height, 8, 6, 0, 0, 0)), png_pack(output, b"IDAT", data.getvalue()), png_pack(output, b"IEND", b"") return output def canvas_compose(mode, dst, src): """Compose two alpha premultiplied images https://ciechanow.ski/alpha-compositing/ http://ssp.impulsetrain.com/porterduff.html """ src_a = src[..., -1:] if len(src.shape) == 3 else src dst_a = dst[..., -1:] if len(dst.shape) == 3 else dst if mode == COMPOSE_OVER: return src + dst * (1 - src_a) elif mode == COMPOSE_OUT: return src * (1 - dst_a) elif mode == COMPOSE_IN: return src * dst_a elif mode == COMPOSE_ATOP: return src * dst_a + dst * (1 - src_a) elif mode == COMPOSE_XOR: return src * (1 - dst_a) + dst * (1 - src_a) elif isinstance(mode, tuple) and len(mode) == 4: k1, k2, k3, k4 = mode return (k1 * src * dst + k2 * src + k3 * dst + k4).clip(0, 1) raise ValueError(f"invalid compose mode: {mode}") canvas_compose_over = partial(canvas_compose, COMPOSE_OVER) def canvas_merge_at(base, overlay, offset, blend=canvas_compose_over): """Alpha blend `overlay` on top of `base` at offset coordintate Updates `base` with `overlay` in place. """ x, y = offset b_h, b_w = base.shape[:2] o_h, o_w = overlay.shape[:2] clip = lambda v, l, h: l if v < l else h if v > h else v b_x_low, b_x_high = clip(x, 0, b_h), clip(x + o_h, 0, b_h) b_y_low, b_y_high = clip(y, 0, b_w), clip(y + o_w, 0, b_w) effected = base[b_x_low:b_x_high, b_y_low:b_y_high] if effected.size == 0: return o_x_low, o_x_high = clip(-x, 0, o_h), clip(b_h - x, 0, o_h) o_y_low, o_y_high = clip(-y, 0, o_w), clip(b_w - y, 0, o_w) overlay = overlay[o_x_low:o_x_high, o_y_low:o_y_high] if overlay.size == 0: return effected[...] = blend(effected, overlay).clip(0, 1) return base def canvas_merge_union(layers, full=True, blend=canvas_compose_over): """Blend multiple `layers` into single large enough image""" if not layers: raise ValueError("can not blend zero layers") elif len(layers) == 1: return layers[0] min_x, min_y, max_x, max_y = None, None, None, None for image, offset in layers: x, y = offset w, h = image.shape[:2] if min_x is None: min_x, min_y = x, y max_x, max_y = x + w, y + h else: min_x, min_y = min(min_x, x), min(min_y, y) max_x, max_y = max(max_x, x + w), max(max_y, y + h) width, height = max_x - min_x, max_y - min_y if full: output = None for image, offset in layers: x, y = offset w, h = image.shape[:2] ox, oy = x - min_x, y - min_y image_full = np.zeros((width, height, 4), dtype=FLOAT) image_full[ox : ox + w, oy : oy + h] = image if output is None: output = image_full else: output = blend(output, image_full) else: # this is optimization for method `over` blending output = np.zeros((max_x - min_x, max_y - min_y, 4), dtype=FLOAT) for index, (image, offset) in enumerate(layers): x, y = offset w, h = image.shape[:2] ox, oy = x - min_x, y - min_y effected = output[ox : ox + w, oy : oy + h] if index == 0: effected[...] = image else: effected[...] = blend(effected, image) return output, (min_x, min_y) def canvas_merge_intersect(layers, blend=canvas_compose_over): """Blend multiple `layers` into single image coverd by all layers""" if not layers: raise ValueError("can not blend zero layers") elif len(layers) == 1: return layers[0] min_x, min_y, max_x, max_y = None, None, None, None for layer, offset in layers: x, y = offset w, h = layer.shape[:2] if min_x is None: min_x, min_y = x, y max_x, max_y = x + w, y + h else: min_x, min_y = max(min_x, x), max(min_y, y) max_x, max_y = min(max_x, x + w), min(max_y, y + h) if min_x >= max_x or min_y >= max_y: return None # empty intersection (first, (fx, fy)), *rest = layers output = first[min_x - fx : max_x - fx, min_y - fy : max_y - fy] w, h, c = output.shape if c == 1: output = np.broadcast_to(output, (w, h, 4)) output = output.copy() for layer, offset in rest: x, y = offset output[...] = blend(output, layer[min_x - x : max_x - x, min_y - y : max_y - y]) return output, (min_x, min_y) def pooling(mat, ksize, stride=None, method="max", pad=False): """Overlapping pooling on 2D or 3D data. <mat>: ndarray, input array to pool. <ksize>: tuple of 2, kernel size in (ky, kx). <stride>: tuple of 2 or None, stride of pooling window. If None, same as <ksize> (non-overlapping pooling). <method>: str, 'max for max-pooling, 'mean' for mean-pooling. <pad>: bool, pad <mat> or not. If no pad, output has size (n-f)//s+1, n being <mat> size, f being kernel size, s stride. if pad, output has size ceil(n/s). Return <result>: pooled matrix. """ m, n = mat.shape[:2] ky, kx = ksize if stride is None: stride = (ky, kx) sy, sx = stride if pad: nx = int(np.ceil(n / float(sx))) ny = int(np.ceil(m / float(sy))) size = ((ny - 1) * sy + ky, (nx - 1) * sx + kx) + mat.shape[2:] mat_pad = np.full(size, np.nan) mat_pad[:m, :n, ...] = mat else: mat_pad = mat[: (m - ky) // sy * sy + ky, : (n - kx) // sx * sx + kx, ...] # Get a strided sub-matrices view of an ndarray. s0, s1 = mat_pad.strides[:2] m1, n1 = mat_pad.shape[:2] m2, n2 = ksize view_shape = (1 + (m1 - m2) // stride[0], 1 + (n1 - n2) // stride[1], m2, n2) + mat_pad.shape[ 2: ] strides = (stride[0] * s0, stride[1] * s1, s0, s1) + mat_pad.strides[2:] view = np.lib.stride_tricks.as_strided(mat_pad, view_shape, strides=strides) if method == "max": result = np.nanmax(view, axis=(2, 3)) elif method == "min": result = np.nanmin(view, axis=(2, 3)) elif method == "mean": result = np.nanmean(view, axis=(2, 3)) else: raise ValueError(f"invalid poll method: {method}") return result def color_pre_to_straight_alpha(rgba): """Convert from premultiplied alpha inplace""" rgb = rgba[..., :-1] alpha = rgba[..., -1:] np.divide(rgb, alpha, out=rgb, where=alpha > 0.0001) np.clip(rgba, 0, 1, out=rgba) return rgba def color_straight_to_pre_alpha(rgba): """Convert to premultiplied alpha inplace""" rgba[..., :-1] *= rgba[..., -1:] return rgba def color_linear_to_srgb(rgba): """Convert pixels from linear RGB to sRGB inplace""" rgb = rgba[..., :-1] small = rgb <= 0.0031308 rgb[small] = rgb[small] * 12.92 large = ~small rgb[large] = 1.055 * np.power(rgb[large], 1.0 / 2.4) - 0.055 return rgba def color_srgb_to_linear(rgba): """Convert pixels from sRGB to linear RGB inplace""" rgb = rgba[..., :-1] small = rgb <= 0.04045 rgb[small] = rgb[small] / 12.92 large = ~small rgb[large] = np.power((rgb[large] + 0.055) / 1.055, 2.4) return rgba # ------------------------------------------------------------------------------ # Transform # ------------------------------------------------------------------------------ class Transform: __slots__: List[str] = ["m", "_m_inv"] m: np.ndarray[Tuple[int, int], FLOAT] _m_inv: np.ndarray[Tuple[int, int], FLOAT] def __init__(self, matrix=None, matrix_inv=None): if matrix is None: self.m = np.identity(3) self._m_inv = self.m else: self.m = matrix self._m_inv = matrix_inv def __matmul__(self, other: Transform) -> Transform: return Transform(self.m @ other.m) @property def invert(self) -> Transform: if self._m_inv is None: self._m_inv = np.linalg.inv(self.m) return Transform(self._m_inv, self.m) def __call__(self, points: FNDArray) -> FNDArray: if len(points) == 0: return points return points @ self.m[:2, :2].T + self.m[:2, 2] def apply(self) -> Callable[[FNDArray], FNDArray]: M = self.m[:2, :2].T B = self.m[:2, 2] return lambda points: points @ M + B def matrix(self, m00, m01, m02, m10, m11, m12): return Transform(self.m @ np.array([[m00, m01, m02], [m10, m11, m12], [0, 0, 1]])) def translate(self, tx: float, ty: float) -> Transform: return Transform(self.m @ np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])) def scale(self, sx, sy=None): sy = sx if sy is None else sy return Transform(self.m @ np.array([[sx, 0, 0], [0, sy, 0], [0, 0, 1]])) def rotate(self, angle): cos_a = math.cos(angle) sin_a = math.sin(angle) return Transform(self.m @ np.array([[cos_a, -sin_a, 0], [sin_a, cos_a, 0], [0, 0, 1]])) def skew(self, ax, ay): return Transform( np.matmul(self.m, np.array([[1, math.tan(ax), 0], [math.tan(ay), 1, 0], [0, 0, 1]])) ) def __repr__(self): return str(np.around(self.m, 4).tolist()[:2]) def no_translate(self): m = self.m.copy() m[0, 2] = 0 m[1, 2] = 0 return Transform(m) # ------------------------------------------------------------------------------ # Render scene # ------------------------------------------------------------------------------ RENDER_FILL = 0 RENDER_STROKE = 1 RENDER_GROUP = 2 RENDER_OPACITY = 3 RENDER_CLIP = 4 RENDER_TRANSFORM = 5 RENDER_FILTER = 6 RENDER_MASK = 7 class Scene(tuple): __slots__: List[str] = [] def __new__(cls, type, args): return tuple.__new__(cls, (type, args)) @classmethod def fill(cls, path, paint, fill_rule=None): return cls(RENDER_FILL, (path, paint, fill_rule)) @classmethod def stroke(cls, path, paint, width, linecap=None, linejoin=None): return cls(RENDER_STROKE, (path, paint, width, linecap, linejoin)) @classmethod def group(cls, children): if not children: raise ValueError("group have to contain at least one child") if len(children) == 1: return children[0] return cls(RENDER_GROUP, children) def opacity(self, opacity): if opacity > 0.999: return self return Scene(RENDER_OPACITY, (self, opacity)) def clip(self, clip, bbox_units=False): return Scene(RENDER_CLIP, (self, clip, bbox_units)) def mask(self, mask, bbox_units=False): return Scene(RENDER_MASK, (self, mask, bbox_units)) def transform(self, transform): type, args = self if type == RENDER_TRANSFORM: target, target_transform = args return Scene(RENDER_TRANSFORM, (target, transform @ target_transform)) else: return Scene(RENDER_TRANSFORM, (self, transform)) def filter(self, filter): return Scene(RENDER_FILTER, (self, filter)) def render(self, transform, mask_only=False, viewport=None, linear_rgb=False): """Render graph""" type, args = self if type == RENDER_FILL: path, paint, fill_rule = args if mask_only: return path.mask(transform, fill_rule=fill_rule, viewport=viewport) else: return path.fill( transform, paint, fill_rule=fill_rule, viewport=viewport, linear_rgb=linear_rgb ) elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args stroke = path.stroke(width, linecap, linejoin) if mask_only: return stroke.mask(transform, viewport=viewport) else: return stroke.fill(transform, paint, viewport=viewport, linear_rgb=linear_rgb) elif type == RENDER_GROUP: layers, hulls = [], [] start = time.time() for child in args: layer = child.render(transform, mask_only, viewport, linear_rgb) if layer is None: continue layer, hull = layer layers.append(layer) hulls.append(hull) group = Layer.compose(layers, COMPOSE_OVER, linear_rgb) if not group: return None return group, ConvexHull.merge(hulls) elif type == RENDER_OPACITY: target, opacity = args layer = target.render(transform, mask_only, viewport, linear_rgb) if layer is None: return None layer, hull = layer return layer.opacity(opacity, linear_rgb), hull elif type == RENDER_CLIP: target, clip, bbox_units = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result if bbox_units: transform = hull.bbox_transform(transform) clip_result = clip.render(transform, True, viewport, linear_rgb) if clip_result is None: return None mask, _ = clip_result result = Layer.compose([mask, image], COMPOSE_IN, linear_rgb) if result is None: return None return result, hull elif type == RENDER_TRANSFORM: target, target_transfrom = args return target.render(transform @ target_transfrom, mask_only, viewport, linear_rgb) elif type == RENDER_MASK: target, mask_scene, bbox_units = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result if bbox_units: transform = hull.bbox_transform(transform) mask_result = mask_scene.render(transform, mask_only, viewport, linear_rgb) if mask_result is None: return None mask, _ = mask_result mask = mask.convert(pre_alpha=False, linear_rgb=linear_rgb) mask_image = mask.image[..., :3] @ [0.2125, 0.7154, 0.072] * mask.image[..., 3] mask = Layer(mask_image[..., None], mask.offset, pre_alpha=False, linear_rgb=linear_rgb) result = Layer.compose([mask, image], COMPOSE_IN, linear_rgb) if result is None: return None return result, hull elif type == RENDER_FILTER: target, filter = args image_result = target.render(transform, mask_only, viewport, linear_rgb) if image_result is None: return None image, hull = image_result return filter(transform, image), hull else: raise ValueError(f"unhandled scene type: {type}") def to_path(self, transform: Transform): """Try to convert whole scene to a path (used only for testing)""" def to_path(scene, transform): type, args = scene if type == RENDER_FILL: path, _paint, _fill_rule = args yield path.transform(transform) elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args yield path.transform(transform).stroke(width, linecap, linejoin) elif type == RENDER_GROUP: for child in args: yield from to_path(child, transform) elif type == RENDER_OPACITY: target, _opacity = args yield from to_path(target, transform) elif type == RENDER_CLIP: target, _clip, _bbox_units = args yield from to_path(target, transform) elif type == RENDER_TRANSFORM: target, target_transfrom = args yield from to_path(target, transform @ target_transfrom) elif type == RENDER_MASK: target, _mask_scene, _bbox_units = args yield from to_path(target, transform) elif type == RENDER_FILTER: target, _filter = args yield from to_path(target, transform) else: raise ValueError(f"unhandled scene type: {type}") subpaths = [spath for path in to_path(self, transform) for spath in path.subpaths] return Path(subpaths) def __repr__(self) -> str: def repr_rec(scene, output, depth): output.write(indent * depth) type, args = scene if type == RENDER_FILL: path, paint, fill_rule = args if isinstance(paint, np.ndarray): paint = format_color(paint) output.write(f"FILL fill_rule:{fill_rule} paint:{paint}\n") output.write(textwrap.indent(repr(path), indent * (depth + 1))) output.write("\n") elif type == RENDER_STROKE: path, paint, width, linecap, linejoin = args if isinstance(paint, np.ndarray): paint = format_color(paint) output.write(f"STROKE ") output.write(f"width:{width} ") output.write(f"linecap:{linecap} ") output.write(f"linejoin:{linejoin} ") output.write(f"paint:{paint}\n") output.write(textwrap.indent(repr(path), indent * (depth + 1))) output.write("\n") elif type == RENDER_GROUP: output.write("GROUP\n") for child in args: repr_rec(child, output, depth + 1) elif type == RENDER_OPACITY: target, opacity = args output.write(f"OPACITY {opacity}\n") repr_rec(target, output, depth + 1) elif type == RENDER_CLIP: target, clip, bbox_units = args output.write(f"CLIP bbox_units:{bbox_units}\n") output.write(indent * (depth + 1)) output.write("CLIP_PATH\n") repr_rec(clip, output, depth + 2) output.write(indent * (depth + 1)) output.write("CLIP_TARGET\n") repr_rec(target, output, depth + 2) elif type == RENDER_MASK: target, mask, bbox_units = args output.write(f"MASK bbox_units:{bbox_units}\n") output.write(indent * (depth + 1)) output.write("MAKS_PATH\n") repr_rec(mask, output, depth + 2) output.write(indent * (depth + 1)) output.write("MASK_TARGET\n") repr_rec(target, output, depth + 2) elif type == RENDER_TRANSFORM: target, transform = args output.write(f"TRANSFORM {transform}\n") repr_rec(target, output, depth + 1) elif type == RENDER_FILTER: target, filter = args output.write(f"FILTER {filter}\n") repr_rec(target, output, depth + 1) else: raise ValueError(f"unhandled scene type: {type}") return output def format_color(cs): return "#" + "".join(f"{c:0<2x}" for c in (cs * 255).astype(np.uint8)) indent = " " return repr_rec(self, io.StringIO(), 0).getvalue()[:-1] # ------------------------------------------------------------------------------ # Path # ------------------------------------------------------------------------------ PATH_LINE = 0 PATH_QUAD = 1 PATH_CUBIC = 2 PATH_ARC = 3 PATH_CLOSED = 4 PATH_UNCLOSED = 5 PATH_LINES = {PATH_LINE, PATH_CLOSED, PATH_UNCLOSED} PATH_FILL_NONZERO = "nonzero" PATH_FILL_EVENODD = "evenodd" STROKE_JOIN_MITER = "miter" STROKE_JOIN_ROUND = "round" STROKE_JOIN_BEVEL = "bevel" STROKE_CAP_BUTT = "butt" STROKE_CAP_ROUND = "round" STROKE_CAP_SQUARE = "square" class Path: """Single rendering unit that can be filled or converted to stroke path `subpaths` is a list of tuples: - `(PATH_LINE, (p0, p1))` - line from p0 to p1 - `(PATH_CUBIC, (p0, c0, c1, p1))` - cubic bezier curve from p0 to p1 with control c0, c1 - `(PATH_QUAD, (p0, c0, p1))` - quadratic bezier curve from p0 to p1 with control c0 - `(PATH_ARC, (center, rx, ry, phi, eta, eta_delta)` - arc with a center and to radii rx, ry rotated to phi angle, going from inital eta to eta + eta_delta angle. - `(PATH_CLOSED | PATH_UNCLOSED, (p0, p1))` - last segment of subpath `"closed"` if path was closed and `"unclosed"` if path was not closed. p0 - end subpath p1 - beggining of this subpath. """ __slots__ = ["subpaths"] subpaths: List[List[Tuple[int, Tuple[Any, ...]]]] def __init__(self, subpaths): self.subpaths = subpaths def __iter__(self): """Itearte over subpaths""" return iter(self.subpaths) def __bool__(self) -> bool: return bool(self.subpaths) def mask( self, transform: Transform, fill_rule: Optional[str] = None, viewport: Optional[BBox] = None, ): """Render path as a mask (alpha channel only image)""" # convert all curves to cubic curves and lines lines_defs, cubics_defs = [], [] for path in self.subpaths: if not path: continue for cmd, args in path: if cmd in PATH_LINES: lines_defs.append(args) elif cmd == PATH_CUBIC: cubics_defs.append(args) elif cmd == PATH_QUAD: cubics_defs.append(bezier2_to_bezier3(args)) elif cmd == PATH_ARC: cubics_defs.extend(arc_to_bezier3(*args)) else: raise ValueError(f"unsupported path type: `{cmd}`") #def __call__(self, points: FNDArray) -> FNDArray: #if len(points) == 0: #return points #return points @ self.m[:2, :2].T + self.m[:2, 2] # transform all curves into presentation coordinate system lines = transform(np.array(lines_defs, dtype=FLOAT)) cubics = transform(np.array(cubics_defs, dtype=FLOAT)) # flattend (convet to lines) all curves if cubics.size != 0: # flatness of 0.1px gives good accuracy if lines.size != 0: lines = np.concatenate([lines, bezier3_flatten_batch(cubics, 0.1)]) else: lines = bezier3_flatten_batch(cubics, 0.1) if lines.size == 0: return # calculate size of the mask min_x, min_y = np.floor(lines.reshape(-1, 2).min(axis=0)).astype(int) - 1 max_x, max_y = np.ceil(lines.reshape(-1, 2).max(axis=0)).astype(int) + 1 if viewport is not None: vx, vy, vw, vh = viewport min_x, min_y = max(vx, min_x), max(vy, min_y) max_x, max_y = min(vx + vw, max_x), min(vy + vh, max_y) width = max_x - min_x height = max_y - min_y if width <= 0 or height <= 0: return # create trace (signed coverage) trace = np.zeros((width, height), dtype=FLOAT) for points in lines - np.array([min_x, min_y]): line_signed_coverage(trace, points) # render mask mask = np.cumsum(trace, axis=1) if fill_rule is None or fill_rule == PATH_FILL_NONZERO: mask = np.fabs(mask).clip(0, 1) elif fill_rule == PATH_FILL_EVENODD: mask = np.fabs(np.remainder(mask + 1.0, 2.0) - 1.0) else: raise ValueError(f"Invalid fill rule: {fill_rule}") mask[mask < 1e-6] = 0 # reound down to zero very small mask values output = Layer(mask[..., None], (min_x, min_y), pre_alpha=True, linear_rgb=True) return output, ConvexHull(lines) def fill(self, transform, paint, fill_rule=None, viewport=None, linear_rgb=True): """Render path by fill-ing it.""" if paint is None: return None # create a mask mask = self.mask(transform, fill_rule, viewport) if mask is None: return None mask, hull = mask # create background with specified paint if isinstance(paint, np.ndarray) and paint.shape == (4,): if not linear_rgb: paint = color_pre_to_straight_alpha(paint.copy()) paint = color_linear_to_srgb(paint) paint = color_straight_to_pre_alpha(paint) output = Layer(mask.image * paint, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) elif isinstance(paint, (GradLinear, GradRadial)): if paint.bbox_units: user_tr = hull.bbox_transform(transform).invert else: user_tr = transform.invert # convert grad pixels to user coordinate system pixels = user_tr(grad_pixels(mask.bbox)) if paint.linear_rgb is not None: linear_rgb = paint.linear_rgb image = paint.fill(pixels, linear_rgb=linear_rgb) # NOTE: consider optimizing calculation of grad only for unmasked points # masked = mask.image > EPSILON # painted = paint.fill( # pixels[np.broadcast_to(masked, pixels.shape)].reshape(-1, 2), # linear_rgb=linear_rgb, # ) # image = np.zeros((mask.width, mask.height, 4), dtype=FLOAT) # image[np.broadcast_to(masked, image.shape)] = painted.reshape(-1) background = Layer(image, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) # use `canvas_compose` directly to avoid needless allocation background = background.convert(pre_alpha=True, linear_rgb=linear_rgb) mask = mask.convert(pre_alpha=True, linear_rgb=linear_rgb) image = canvas_compose(COMPOSE_IN, mask.image, background.image) output = Layer(image, mask.offset, pre_alpha=True, linear_rgb=linear_rgb) elif isinstance(paint, Pattern): # render pattern pat_tr = transform.no_translate() if paint.scene_view_box: if paint.bbox_units: px, py, pw, ph = paint.bbox() _hx, _hy, hw, hh = hull.bbox(transform) bbox = (px * hw, py * hh, pw * hw, ph * hh) else: bbox = paint.bbox() pat_tr @= svg_viewbox_transform(bbox, paint.scene_view_box) elif paint.scene_bbox_units: pat_tr = hull.bbox_transform(pat_tr) pat_tr @= paint.transform result = paint.scene.render(pat_tr, linear_rgb=linear_rgb) if result is None: return None pat_layer, _pat_hull = result # repeat pattern repeat_tr = transform if paint.bbox_units: repeat_tr = hull.bbox_transform(repeat_tr) repeat_tr @= paint.transform repeat_tr = repeat_tr.no_translate() offsets = repeat_tr.invert(grad_pixels(mask.bbox)) offsets = repeat_tr( np.remainder(offsets - [paint.x, paint.y], [paint.width, paint.height]) ) offsets = offsets.astype(int) corners = repeat_tr( [ [0, 0], [paint.width, 0], [0, paint.height], [paint.width, paint.height], ] ) max_x, max_y = corners.max(axis=0).astype(int) min_x, min_y = corners.min(axis=0).astype(int) w, h = max_x - min_x, max_y - min_y offsets -= [min_x, min_y] pat = np.zeros((w + 1, h + 1, 4)) pat = canvas_merge_at(pat, pat_layer.image, (pat_layer.x - min_x, pat_layer.y - min_y)) image = canvas_compose(COMPOSE_IN, mask.image, pat[offsets[..., 0], offsets[..., 1]]) output = Layer( image, mask.offset, pre_alpha=pat_layer.pre_alpha, linear_rgb=pat_layer.linear_rgb ) else: warnings.warn(f"fill method is not implemented: {paint}") return None return output, hull def stroke(self, width, linecap=None, linejoin=None) -> "Path": """Convert path to stroked path""" curve_names = {2: PATH_LINE, 3: PATH_QUAD, 4: PATH_CUBIC} dist = width / 2 outputs = [] for path in self: if not path: continue # offset curves forward, backward = [], [] for cmd, args in path: if cmd == PATH_LINE or cmd == PATH_CLOSED: line = np.array(args) line_forward = line_offset(line, dist) if line_forward is None: continue forward.append(line_forward) backward.append(line_offset(line, -dist)) elif cmd == PATH_CUBIC: cubic = np.array(args) forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_QUAD: cubic = bezier2_to_bezier3(args) forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_ARC: for cubic in arc_to_bezier3(*args): forward.extend(bezier3_offset(cubic, dist)) backward.extend(bezier3_offset(cubic, -dist)) elif cmd == PATH_UNCLOSED: continue else: raise ValueError(f"unsupported path type: `{cmd}`") closed = cmd == PATH_CLOSED if not forward: continue # connect curves curves = [] for curve in forward: if not curves: curves.append(curve) continue curves.extend(stroke_line_join(curves[-1], curve, linejoin)) curves.append(curve) # complete subpath if path is closed or add line cap if closed: curves.extend(stroke_line_join(curves[-1], curves[0], linejoin)) outputs.append([(curve_names[len(curve)], np.array(curve)) for curve in curves]) curves = [] else: curves.extend(stroke_line_cap(curves[-1][-1], backward[-1][-1], linecap)) # extend subpath with backward path while backward: curve = list(reversed(backward.pop())) if not curves: curves.append(curve) continue curves.extend(stroke_line_join(curves[-1], curve, linejoin)) curves.append(curve) # complete subpath if closed: curves.extend(stroke_line_join(curves[-1], curves[0], linejoin)) else: curves.extend(stroke_line_cap(curves[-1][-1], curves[0][0], linecap)) outputs.append([(curve_names[len(curve)], np.array(curve)) for curve in curves]) return Path(outputs) def transform(self, transform: Transform) -> "Path": """Apply transformation to a path This method is usually not used directly but rather transformation is passed to mask/fill method. """ paths_out = [] for path_in in self.subpaths: path_out = [] if not path_in: continue for cmd, args in path_in: if cmd == PATH_ARC: cubics = arc_to_bezier3(*args) for cubic in transform(cubics): path_out.append((PATH_CUBIC, cubic.tolist())) else: points = transform(np.array(args)).tolist() path_out.append((cmd, points)) paths_out.append(path_out) return Path(paths_out) def to_svg(self) -> str: """Convert to SVG path""" output = io.StringIO() for path in self.subpaths: if not path: continue cmd_prev = None for cmd, args in path: if cmd == PATH_LINE: (x0, y0), (x1, y1) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") else: output.write("L") output.write(f"{x1:g},{y1:g} ") cmd_prev = PATH_LINE elif cmd == PATH_QUAD: (x0, y0), (x1, y1), (x2, y2) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") output.write("Q") output.write(f"{x1:g},{y1:g} {x2:g},{y2:g} ") cmd_prev = PATH_QUAD elif cmd in {PATH_CUBIC, PATH_ARC}: if cmd == PATH_ARC: cubics = arc_to_bezier3(*args) else: cubics = [args] for args in cubics: (x0, y0), (x1, y1), (x2, y2), (x3, y3) = args if cmd_prev != cmd: if cmd_prev is None: output.write(f"M{x0:g},{y0:g} ") output.write("C") output.write(f"{x1:g},{y1:g} {x2:g},{y2:g} {x3:g},{y3:g} ") cmd_prev = PATH_CUBIC elif cmd == PATH_CLOSED: output.write("Z ") cmd_prev = None elif cmd == PATH_UNCLOSED: cmd_prev = None else: raise ValueError("unhandled path type: `{cmd}`") output.write("\n") return output.getvalue()[:-1] @staticmethod def from_svg(input: str) -> "Path": """Parse SVG path For more info see [SVG spec](https://www.w3.org/TR/SVG11/paths.html) """ input_len = len(input) input_offset = 0 WHITESPACE = set(" \t\r\n,") COMMANDS = set("MmZzLlHhVvCcSsQqTtAa") def position(is_relative, pos, dst): return [pos[0] + dst[0], pos[1] + dst[1]] if is_relative else dst def smooth(points): px, py = points[-1] cx, cy = points[-2] return [px * 2 - cx, py * 2 - cy] # parser state paths = [] path = [] args = [] cmd = None pos = [0.0, 0.0] first = True # true if this is a frist command start = [0.0, 0.0] smooth_cubic = None smooth_quad = None while input_offset <= input_len: char = input[input_offset] if input_offset < input_len else None if char in WHITESPACE: # remove whitespaces input_offset += 1 elif char is None or char in COMMANDS: # process current command cmd_args, args = args, [] if cmd is None: pass elif cmd in "Mm": # terminate current path if path: path.append((PATH_UNCLOSED, [pos, start])) paths.append(path) path = [] is_relative = cmd == "m" (move, *lineto) = chunk(cmd_args, 2) pos = position(is_relative and not first, pos, move) start = pos for dst in lineto: dst = position(is_relative, pos, dst) path.append((PATH_LINE, [pos, dst])) pos = dst # line to elif cmd in "Ll": for dst in chunk(cmd_args, 2): dst = position(cmd == "l", pos, dst) path.append((PATH_LINE, [pos, dst])) pos = dst # vertical line to elif cmd in "Vv": if not cmd_args: raise ValueError(f"command '{cmd}' expects at least one argument") is_relative = cmd == "v" for dst in cmd_args: dst = position(is_relative, pos, [0 if is_relative else pos[0], dst]) path.append((PATH_LINE, [pos, dst])) pos = dst # horizontal line to elif cmd in "Hh": if not cmd_args: raise ValueError(f"command '{cmd}' expects at least one argument") is_relative = cmd == "h" for dst in cmd_args: dst = position(is_relative, pos, [dst, 0 if is_relative else pos[1]]) path.append((PATH_LINE, [pos, dst])) pos = dst # cubic bezier curve elif cmd in "Cc": for points in chunk(cmd_args, 6): points = [position(cmd == "c", pos, point) for point in chunk(points, 2)] path.append((PATH_CUBIC, [pos, *points])) pos = points[-1] smooth_cubic = smooth(points) # smooth cubic bezier curve elif cmd in "Ss": for points in chunk(cmd_args, 4): points = [position(cmd == "s", pos, point) for point in chunk(points, 2)] if smooth_cubic is None: smooth_cubic = pos path.append((PATH_CUBIC, [pos, smooth_cubic, *points])) pos = points[-1] smooth_cubic = smooth(points) # quadratic bezier curve elif cmd in "Qq": for points in chunk(cmd_args, 4): points = [position(cmd == "q", pos, point) for point in chunk(points, 2)] path.append((PATH_QUAD, [pos, *points])) pos = points[-1] smooth_quad = smooth(points) # smooth quadratic bezier curve elif cmd in "Tt": for points in chunk(cmd_args, 2): points = position(cmd == "t", pos, points) if smooth_quad is None: smooth_quad = pos points = [pos, smooth_quad, points] path.append((PATH_QUAD, points)) pos = points[-1] smooth_quad = smooth(points) # elliptical arc elif cmd in "Aa": # NOTE: `large_f`, and `sweep_f` are not float but flags which can only be # 0 or 1 and as the result some svg minimizers merge them with next # float which may break current parser logic. for points in chunk(cmd_args, 7): rx, ry, x_axis_rot, large_f, sweep_f, dst_x, dst_y = points dst = position(cmd == "a", pos, [dst_x, dst_y]) src, pos = pos, dst if rx == 0 or ry == 0: path.append((PATH_LINE, [pos, dst])) else: path.append( ( PATH_ARC, arc_svg_to_parametric( src, dst, rx, ry, x_axis_rot, large_f > 0.001, sweep_f > 0.001, ), ) ) # close current path elif cmd in "Zz": if cmd_args: raise ValueError(f"`z` command does not accept any argmuents: {cmd_args}") path.append((PATH_CLOSED, [pos, start])) if path: paths.append(path) path = [] pos = start else: raise ValueError(f"unsuppported command '{cmd}' at: {input_offset}") if cmd is not None and cmd not in "CcSs": smooth_cubic = None if cmd is not None and cmd not in "QqTt": smooth_quad = None first = False input_offset += 1 cmd = char else: # parse float arguments match = FLOAT_RE.match(input, input_offset) if match: match_str = match.group(0) args.append(float(match_str)) input_offset += len(match_str) else: raise ValueError(f"not recognized command '{char}' at: {input_offset}") if path: path.append((PATH_UNCLOSED, [pos, start])) paths.append(path) return Path(paths) def is_empty(self): return not bool(self.subpaths) def __repr__(self): if not self.subpaths: return "EMPTY" output = io.StringIO() for subpath in self.subpaths: for type, coords in subpath: if type == PATH_LINE: output.write(f"LINE {repr_coords(coords)}\n") elif type == PATH_CUBIC: output.write(f"CUBIC {repr_coords(coords)}\n") elif type == PATH_QUAD: output.write(f"QUAD {repr_coords(coords)}\n") elif type == PATH_ARC: center, rx, ry, phi, eta, eta_delta = coords output.write(f"ARC ") output.write(f"{repr_coords([center])} ") output.write(f"{rx:.4g} {ry:.4g} ") output.write(f"{phi:.3g} {eta:.3g} {eta_delta:.3g}\n") elif type == PATH_CLOSED: output.write("CLOSE\n") return output.getvalue()[:-1] def repr_coords(coords): return " ".join(f"{x:.4g},{y:.4g}" for x, y in coords) # offset along tanget to approximate circle with four bezier3 curves CIRCLE_BEIZER_OFFSET = 4 * (math.sqrt(2) - 1) / 3 def stroke_line_cap(p0, p1, linecap=None): """Generate path connecting two curves p0 and p1 with a cap""" if linecap is None: linecap = STROKE_CAP_BUTT if np.allclose(p0, p1): return [] if linecap == STROKE_CAP_BUTT: return [np.array([p0, p1])] elif linecap == STROKE_CAP_ROUND: seg = p1 - p0 radius = np.linalg.norm(seg) / 2 seg /= 2 * radius seg_norm = np.array([-seg[1], seg[0]]) offset = CIRCLE_BEIZER_OFFSET * radius center = (p0 + p1) / 2 midpoint = center + seg_norm * radius return [ np.array([p0, p0 + seg_norm * offset, midpoint - seg * offset, midpoint]), np.array([midpoint, midpoint + seg * offset, p1 + seg_norm * offset, p1]), ] elif linecap == STROKE_CAP_SQUARE: seg = p1 - p0 seg_norm = np.array([-seg[1], seg[0]]) polyline = [p0, p0 + seg_norm / 2, p1 + seg_norm / 2, p1] return [np.array([s0, s1]) for s0, s1 in zip(polyline, polyline[1:])] else: raise ValueError(f"unkown line cap type: `{linecap}`") def stroke_line_join(c0, c1, linejoin=None, miterlimit=4): """Stroke used at the joints of paths""" if linejoin is None: linejoin = STROKE_JOIN_MITER if linejoin == STROKE_JOIN_BEVEL: return [np.array([c0[-1], c1[0]])] _, l0 = stroke_curve_tangent(c0) l1, _ = stroke_curve_tangent(c1) if l0 is None or l1 is None: return [np.array([c0[-1], c1[0]])] if np.allclose(l0[-1], l1[0]): return [] p, t0, t1 = line_intersect(l0, l1) if p is None or (0 <= t0 <= 1 and 0 <= t1 <= 1): # curves intersect or parallel return [np.array([c0[-1], c1[0]])] # FIXME correctly determine miterlength: stroke_width / sin(eta / 2) if abs(t0) < miterlimit and abs(t1) < miterlimit: if linejoin == STROKE_JOIN_MITER: return [np.array([c0[-1], p]), np.array([p, c1[0]])] elif linejoin == STROKE_JOIN_ROUND: # FIXME: correctly produce round instead quad curve return [np.array([c0[-1], p, c1[0]])] return [np.array([c0[-1], c1[0]])] def stroke_curve_tangent(curve): """Find tangents of a curve at t = 0 and at t = 1 points""" segs = [] for p0, p1 in zip(curve, curve[1:]): if np.allclose(p0, p1): continue segs.append([p0, p1]) if not segs: return None, None return segs[0], segs[-1] def chunk(vs, size): """Chunk list `vs` into chunk of size `size`""" chunks = [vs[i : i + size] for i in range(0, len(vs), size)] if not chunks or len(chunks[-1]) != size: raise ValueError(f"list {vs} can not be chunked in {size}s") return chunks # ------------------------------------------------------------------------------ # Gradients # ------------------------------------------------------------------------------ class GradLinear(NamedTuple): p0: np.ndarray p1: np.ndarray stops: List[Tuple[float, np.ndarray]] transform: Optional[Transform] spread: str bbox_units: bool linear_rgb: Optional[bool] def fill(self, pixels, linear_rgb=True): """Fill pixels (array of coordinates) with gradient Returns new array same size as pixels filled with gradient """ if self.transform is not None: pixels = self.transform.invert(pixels) vec = self.p1 - self.p0 offset = (pixels - self.p0) @ vec / np.dot(vec, vec) return grad_interpolate(grad_spread(offset, self.spread), self.stops, linear_rgb) class GradRadial(NamedTuple): center: np.ndarray radius: float fcenter: Optional[np.ndarray] fradius: float stops: List[Tuple[float, np.ndarray]] transform: Optional[Transform] spread: str bbox_units: bool linear_rgb: Optional[bool] def fill(self, pixels, linear_rgb=True): """Fill pixels (array of coordinates) with gradient Returns new array same size as pixels filled with gradient. Two circle gradient is an interpolation between two cirles (c0, r0) and (c1, r1), with center `c(t) = (1 - t) * c0 + t * c1`, and radius `r(t) = (1 - t) * r0 + t * r1`. If we have a pixel with coordinates `p`, we should solve equation for it `|| c(t) - p || = r(t)` and pick solution corresponding to bigger radius. Solving this equation for `t`: || c(t) - p || = r(t) -> At² - 2Bt + C = 0 where: cd = c2 - c1 pd = p - c1 rd = r2 - r1 A = cdx ^ 2 + cdy ^ 2 - rd ^ 2 B = pdx * cdx + pdy * cdy + r1 * rd C = pdx ^2 + pdy ^ 2 - r1 ^ 2 results in: t = (B +/- (B ^ 2 - A * C).sqrt()) / A [reference]: https://cgit.freedesktop.org/pixman/tree/pixman/pixman-radial-gradient.c """ mask = None if self.transform is not None: pixels = self.transform.invert(pixels) if self.fcenter is None and self.fradius is None: offset = (pixels - self.center) / self.radius offset = np.sqrt((offset * offset).sum(axis=-1)) else: fcenter = self.center if self.fcenter is None else self.fcenter fradius = self.fradius or 0 # This is SVG 1.1 behaviour. If focal center is outside of circle it # should be moved inside. But in SVG 2.0 it should produce a cone # shaped gradient. # fdist = np.linalg.norm(fcenter - self.center) # if fdist > self.radius: # fcenter = self.center + (fcenter - self.center) * self.radius / fdist cd = self.center - fcenter pd = pixels - fcenter rd = self.radius - fradius a = (cd ** 2).sum() - rd ** 2 b = (pd * cd).sum(axis=-1) + fradius * rd c = (pd ** 2).sum(axis=-1) - fradius ** 2 det = b * b - a * c if (det < 0).any(): mask = det >= 0 det = det[mask] b = b[mask] c = c[mask] t0 = np.sqrt(det) t1 = (b + t0) / a t2 = (b - t0) / a if mask is None: offset = np.maximum(t1, t2) else: offset = np.zeros(mask.shape, dtype=FLOAT) offset[mask] = np.maximum(t1, t2) if fradius != self.radius: # exclude negative `r(t)` mask &= offset > (fradius / (fradius - self.radius)) overlay = grad_interpolate(grad_spread(offset, self.spread), self.stops, linear_rgb) if mask is not None: overlay[~mask] = np.array([0, 0, 0, 0]) return overlay def grad_pixels(viewport): """Create pixels matrix to be filled by gradient""" off_x, off_y, width, height = viewport xs, ys = np.indices((width, height)).astype(FLOAT) offset = [off_x + 0.5, off_y + 0.5] return np.concatenate([xs[..., None], ys[..., None]], axis=2) + offset def grad_spread(offsets, spread): if spread == "pad": return offsets elif spread == "repeat": return np.modf(offsets)[0] elif spread == "reflect": return np.fabs(np.remainder(offsets + 1.0, 2.0) - 1.0) raise ValueError(f"invalid spread method: {spread}") def grad_interpolate(offset, stops, linear_rgb): """Create gradient by interpolating offsets from stops""" stops = grad_stops_colorspace(stops, linear_rgb) output = np.zeros((*offset.shape, 4), dtype=FLOAT) o_min, c_min = stops[0] output[offset <= o_min] = c_min o_max, c_max = stops[-1] output[offset > o_max] = c_max for (o0, c0), (o1, c1) in zip(stops, stops[1:]): mask = np.logical_and(offset > o0, offset <= o1) ratio = ((offset[mask] - o0) / (o1 - o0))[..., None] output[mask] += (1 - ratio) * c0 + ratio * c1 return output def grad_stops_colorspace(stops, linear_rgb=False): if linear_rgb: return stops output = [] for offset, color in stops: color = color_pre_to_straight_alpha(color.copy()) color = color_linear_to_srgb(color) color = color_straight_to_pre_alpha(color) output.append((offset, color)) return output class Pattern(NamedTuple): scene: Scene scene_bbox_units: bool scene_view_box: Optional[Tuple[float, float, float, float]] x: float y: float width: float height: float transform: Transform bbox_units: bool def bbox(self): return (self.x, self.y, self.width, self.height) # ------------------------------------------------------------------------------ # Filter # ------------------------------------------------------------------------------ FE_BLEND = 0 FE_COLOR_MATRIX = 1 FE_COMPONENT_TRANSFER = 2 FE_COMPOSITE = 3 FE_CONVOLVE_MATRIX = 4 FE_DIFFUSE_LIGHTING = 5 FE_DISPLACEMENT_MAP = 6 FE_FLOOD = 7 FE_GAUSSIAN_BLUR = 8 FE_MERGE = 9 FE_MORPHOLOGY = 10 FE_OFFSET = 11 FE_SPECULAR_LIGHTING = 12 FE_TILE = 13 FE_TURBULENCE = 14 FE_SOURCE_ALPHA = "SourceAlpha" FE_SOURCE_GRAPHIC = "SourceGraphic" COLOR_MATRIX_LUM = np.array( [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0.2125, 0.7154, 0.0721, 0, 0]], dtype=FLOAT ) COLOR_MATRIX_HUE = np.array( [ [[0.213, 0.715, 0.072], [0.213, 0.715, 0.072], [0.213, 0.715, 0.072]], [[0.787, -0.715, -0.072], [-0.213, 0.285, -0.072], [-0.213, -0.715, 0.928]], [[-0.213, -0.715, 0.928], [0.143, 0.140, -0.283], [-0.787, 0.715, 0.072]], ], dtype=FLOAT, ) class Filter(NamedTuple): names: Dict[str, int] # {name: index} filters: List[Tuple[int, List[Any], List[int]]] # [(type, attrs, inputs)] @classmethod def empty(cls): return cls({FE_SOURCE_ALPHA: 0, FE_SOURCE_GRAPHIC: 1}, []) def add_filter(self, type, attrs, inputs, result): names = self.names.copy() filters = self.filters.copy() args = [] for input in inputs: if input is None: args.append(len(filters) + 1) # use previous result else: arg = self.names.get(input) if arg is None: warnings.warn(f"unknown filter result name: {input}") args.append(len(filters) + 1) # use previous result else: args.append(arg) if result is not None: names[result] = len(filters) + 2 filters.append((type, attrs, args)) return Filter(names, filters) def offset(self, dx, dy, input=None, result=None): return self.add_filter(FE_OFFSET, (dx, dy), [input], result) def merge(self, inputs, result=None): return self.add_filter(FE_MERGE, tuple(), inputs, result) def blur(self, std_x, std_y=None, input=None, result=None): return self.add_filter(FE_GAUSSIAN_BLUR, (std_x, std_y), [input], result) def blend(self, in1, in2, mode=None, result=None): return self.add_filter(FE_BLEND, (mode,), [in1, in2], result) def composite(self, in1, in2, mode=None, result=None): return self.add_filter(FE_COMPOSITE, (mode,), [in1, in2], result) def color_matrix(self, input, matrix, result=None): return self.add_filter(FE_COLOR_MATRIX, (matrix,), [input], result) def morphology(self, rx, ry, method, input, result=None): return self.add_filter(FE_MORPHOLOGY, (rx, ry, method), [input], result) def __call__(self, transform, source): """Execute fiter on the provided source""" alpha = Layer( source.image[..., -1:] * np.array([0, 0, 0, 1]), source.offset, pre_alpha=True, linear_rgb=True, ) stack = [alpha, source.convert(pre_alpha=False, linear_rgb=True)] for filter in self.filters: type, attrs, inputs = filter if type == FE_OFFSET: fn = filter_offset(transform, *attrs) elif type == FE_MERGE: fn = filter_merge(transform, *attrs) elif type == FE_BLEND: fn = filter_blend(transform, *attrs) elif type == FE_COMPOSITE: fn = filter_composite(transform, *attrs) elif type == FE_GAUSSIAN_BLUR: fn = filter_blur(transform, *attrs) elif type == FE_COLOR_MATRIX: fn = filter_color_matrix(transform, *attrs) elif type == FE_MORPHOLOGY: fn = filter_morphology(transform, *attrs) else: raise ValueError(f"unsupported filter type: {type}") stack.append(fn(*(stack[input] for input in inputs))) return stack[-1] def filter_color_matrix(_transform, matrix): def filter_color_matrix_apply(input): if not isinstance(matrix, np.ndarray) or matrix.shape != (4, 5): warnings.warn(f"invalid color matrix: {matrix}") return input return input.color_matrix(matrix) return filter_color_matrix_apply def filter_offset(transform, dx, dy): def filter_offset_apply(input): x, y = input.offset tx, ty = transform(transform.invert([x, y]) + [dx, dy]) return input.translate(int(tx) - x, int(ty) - y) return filter_offset_apply def filter_morphology(transform, rx, ry, method): def filter_morphology_apply(input): # NOTE: # I have no idea how to account for rotation, except to roate # apply morphology and rotate back, but it is slow, so I'm not doing it ux, uy = transform([[rx, 0], [0, ry]]) - transform([[0, 0], [0, 0]]) x = int(np.linalg.norm(ux) * 2) y = int(np.linalg.norm(uy) * 2) if x < 1 or y < 1: return input return input.morphology(x, y, method) return filter_morphology_apply def filter_merge(_transform): def filter_merge_apply(*inputs): return Layer.compose(inputs, linear_rgb=True) return filter_merge_apply def filter_blend(_transform, mode): def filter_blend_apply(in1, in2): warnings.warn("feBlend is not properly supported") return Layer.compose([in2, in1], linear_rgb=True) return filter_blend_apply def filter_composite(_transform, mode): def filter_composite_apply(in1, in2): return Layer.compose([in2, in1], mode, linear_rgb=True) return filter_composite_apply def filter_blur(transform, std_x, std_y=None): if std_y is None: std_y = std_x def filter_blur_apply(input): kernel = blur_kernel(transform, (std_x, std_y)) if kernel is None: return input return input.convolve(kernel) return filter_blur_apply def blur_kernel(transform, sigma): """Gaussian blur convolution kerenel Gaussiange kernel ginven presentation transformation and sigma in user coordinate system. """ sigma_x, sigma_y = sigma # if one of the sigmas is smaller then a pixel rotatetion produces # incorrect degenerate state when the whole convolution is the same as over # a delta function. So we need to adjust it. If both simgas are smallerd # then a pixel then gaussian blur is a nonop. scale_x, scale_y = np.linalg.norm(transform(np.eye(2)) - transform([0, 0]), axis=1) if scale_x * sigma_x < 0.5 and scale_y * sigma_y < 0.5: return None elif scale_x * sigma_x < 0.5: sigma_x = 0.5 / scale_x elif scale_y * sigma_y < 0.5: sigma_y = 0.5 / scale_y sigma = np.array([sigma_x, sigma_y]) sigmas = 2.5 user_box = [ [-sigmas * sigma_x, -sigmas * sigma_y], [-sigmas * sigma_x, sigmas * sigma_y], [sigmas * sigma_x, sigmas * sigma_y], [sigmas * sigma_x, -sigmas * sigma_y], ] box = transform(user_box) - transform([0, 0]) min_x, min_y = box.min(axis=0).astype(int) max_x, max_y = box.max(axis=0).astype(int) kernel_w, kernel_h = max_x - min_x, max_y - min_y kernel_w += ~kernel_w & 1 # make it odd kernel_h += ~kernel_h & 1 user_tr = transform.invert kernel = user_tr(grad_pixels([-kernel_w / 2, -kernel_h / 2, kernel_w, kernel_h])) kernel -= user_tr([0, 0]) # remove translation kernel = np.exp(-
np.square(kernel)
numpy.square
import time import random import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import ops.semantic_segmentation.imageops as imageops def test(predict, dataset, num_classes, batch_size=3, ys_mask=None, cutoffs=(0.0, 0.9), bins=np.linspace(0.0, 1.0, 11), verbose=True, period=10): predict_times = [] nll_metric = tf.keras.metrics.SparseCategoricalCrossentropy(name='nll') cm_shape = [num_classes, num_classes] cms = [[np.zeros(cm_shape), np.zeros(cm_shape)] for _ in range(len(cutoffs))] ious, accs, uncs, covs, eces = [], [], [], [], [] cms_bin = [np.zeros(cm_shape) for _ in range(len(bins) - 1)] confs_metric_bin = [tf.keras.metrics.Mean() for _ in range(len(bins) - 1)] count_bin, accs_bin, confs_bin, metrics_str = [], [], [], [] dataset = dataset.batch(batch_size).enumerate().prefetch(tf.data.experimental.AUTOTUNE) for step, (xs, ys) in dataset: batch_time = time.time() ys_pred = predict(xs) predict_times.append(time.time() - batch_time) mask = ys_mask(xs, ys) ys = tf.boolean_mask(ys, mask) ys_pred = tf.boolean_mask(ys_pred, mask) nll_metric(ys, ys_pred) for cutoff, cm_group in zip(cutoffs, cms): cm_certain = cm(ys, ys_pred, num_classes, filter_min=cutoff) cm_uncertain = cm(ys, ys_pred, num_classes, filter_max=cutoff) cm_group[0] = cm_group[0] + cm_certain cm_group[1] = cm_group[1] + cm_uncertain for i, (start, end) in enumerate(zip(bins, bins[1:])): cms_bin[i] = cms_bin[i] + cm(ys, ys_pred, num_classes, filter_min=start, filter_max=end) confidence = tf.math.reduce_max(ys_pred, axis=-1) condition = tf.logical_and(confidence >= start, confidence < end) confs_metric_bin[i](tf.boolean_mask(confidence, condition)) ious = [miou(cm_certain) for cm_certain, cm_uncertain in cms] accs = [gacc(cm_certain) for cm_certain, cm_uncertain in cms] uncs = [unconfidence(cm_certain, cm_uncertain) for cm_certain, cm_uncertain in cms] covs = [coverage(cm_certain, cm_uncertain) for cm_certain, cm_uncertain in cms] count_bin = [np.sum(cm_bin) for cm_bin in cms_bin] accs_bin = [gacc(cm_bin) for cm_bin in cms_bin] confs_bin = [metric.result() for metric in confs_metric_bin] eces = ece(count_bin, accs_bin, confs_bin) metrics_str = [ "Time: %.3f ± %.3f ms" % (np.mean(predict_times) * 1e3, np.std(predict_times) * 1e3), "NLL: %.4f" % nll_metric.result(), "Cutoffs: " + ", ".join(["%.1f %%" % (cutoff * 100) for cutoff in cutoffs]), "Accs: " + ", ".join(["%.3f %%" % (acc * 100) for acc in accs]), "Uncs: " + ", ".join(["%.3f %%" % (unc * 100) for unc in uncs]), "IoUs: " + ", ".join(["%.3f %%" % (iou * 100) for iou in ious]), "Covs: " + ", ".join(["%.3f %%" % (cov * 100) for cov in covs]), "ECE: " + "%.3f %%" % (eces * 100), ] if verbose and int(step + 1) % period is 0: print('%d Steps, %s' % (int(step + 1), ', '.join(metrics_str))) print(", ".join(metrics_str)) fig, axes = plt.subplots(1, 2, figsize=(10, 4)) confidence_histogram(axes[0], count_bin) reliability_diagram(axes[1], accs_bin) fig.tight_layout() calibration_image = imageops.plot_to_image(fig) if not verbose: plt.close(fig) return nll_metric.result(), cms, ious, accs, uncs, covs, \ count_bin, accs_bin, confs_bin, eces, calibration_image def ys_mask(xs, ys, edge): # Void mask mask = ys >= 0 # Edge mask if edge is not None: xs_edge = tf.image.sobel_edges(tf.image.rgb_to_grayscale(xs)) xs_edge = tf.squeeze(xs_edge, axis=3) xs_edge = tf.sqrt(tf.reduce_sum(tf.math.square(xs_edge), axis=-1)) mask = tf.math.logical_and(mask, xs_edge > edge) return mask def ys_mask_seq(xs, ys, edge): # Void mask mask = ys >= 0 # Edge mask if edge is not None: xs_edge = tf.image.sobel_edges(tf.image.rgb_to_grayscale(xs[:, -1, :, :, :])) xs_edge = tf.squeeze(xs_edge, axis=3) xs_edge = tf.sqrt(tf.reduce_sum(tf.math.square(xs_edge), axis=-1)) mask = tf.math.logical_and(mask, xs_edge > edge) return mask def test_vanilla(model, dataset, num_classes, batch_size=3, edge=None, cutoffs=(0.0, 0.9), verbose=True, period=10): return test(lambda xs: predict_vanilla(model, xs), dataset, num_classes, batch_size=batch_size, ys_mask=lambda xs, ys: ys_mask(xs, ys, edge), cutoffs=cutoffs, verbose=verbose, period=period) def test_temp_scaling(model, temp, dataset, num_classes, batch_size=3, edge=None, cutoffs=(0.0, 0.9), verbose=True, period=10): return test(lambda xs: predict_temp_scaling(model, xs, temp), dataset, num_classes, batch_size=batch_size, ys_mask=lambda xs, ys: ys_mask(xs, ys, edge), cutoffs=cutoffs, verbose=verbose, period=period) def test_sampling(model, n_ff, dataset, num_classes, batch_size=3, edge=None, cutoffs=(0.0, 0.9), verbose=True, period=10): return test(lambda xs: predict_sampling(model, xs, n_ff), dataset, num_classes, batch_size=batch_size, ys_mask=lambda xs, ys: ys_mask(xs, ys, edge), cutoffs=cutoffs, verbose=verbose, period=period) def test_temporal_smoothing(model, l, offset, dataset, num_classes, batch_size=3, edge=None, cutoffs=(0.0, 0.9), verbose=True, period=10): return test(lambda xs: predict_temporal_smoothing(model, xs, l, offset), dataset, num_classes, batch_size=batch_size, ys_mask=lambda xs, ys: ys_mask_seq(xs, ys, edge), cutoffs=cutoffs, verbose=verbose, period=period) def test_ensemble(models, dataset, num_classes, batch_size=3, edge=None, cutoffs=(0.0, 0.9), verbose=True, period=10): return test(lambda xs: predict_ensemble(models, xs), dataset, num_classes, batch_size=batch_size, ys_mask=lambda xs, ys: ys_mask(xs, ys, edge), cutoffs=cutoffs, verbose=verbose, period=period) def test_ensemble_smoothing(models, l, dataset, num_classes, batch_size=3, edge=None, cutoffs=(0.0, 0.9), verbose=True, period=10): return test(lambda xs: predict_ensemble_smoothing(models, xs, l), dataset, num_classes, batch_size=batch_size, ys_mask=lambda xs, ys: ys_mask_seq(xs, ys, edge), cutoffs=cutoffs, verbose=verbose, period=period) def predict_vanilla(model, xs): ys_pred = tf.nn.softmax(model(xs), axis=-1) return ys_pred def predict_temp_scaling(model, xs, temp=1.0): ys_pred = tf.nn.softmax(model(xs) / temp, axis=-1) return ys_pred def predict_sampling(model, xs, n_ff): ys_pred = tf.stack([tf.nn.softmax(model(xs), axis=-1) for _ in range(n_ff)]) ys_pred = tf.math.reduce_mean(ys_pred, axis=0) return ys_pred def predict_temporal_smoothing(model, xs, l, offset): """ Shape: xs: [batch_size, n_ff, H, W, C] """ weight = list(range(offset[0])) + list(range(offset[0], offset[0] - offset[1] - 1, -1)) weight = tf.constant(weight, dtype=tf.float32) weight = weight * l weight = tf.math.exp(weight) weight = weight / tf.reduce_sum(weight) xs = tf.einsum("ij...->ji...", xs) # xs = tf.transpose(xs, perm=[1, 0, ...]) ys_pred = tf.stack([tf.nn.softmax(model(x_batch), axis=-1) for x_batch in xs]) ys_pred = tf.tensordot(weight, ys_pred, axes=[0, 0]) return ys_pred def predict_ensemble(models, xs): ys_pred = tf.stack([tf.nn.softmax(model(xs), axis=-1) for model in models]) ys_pred = tf.math.reduce_mean(ys_pred, axis=0) return ys_pred def predict_ensemble_smoothing(models, xs, l): n_ff = xs.shape[1] weight = (tf.range(n_ff, dtype=tf.float32) - n_ff) * l weight = tf.math.exp(weight) weight = weight / tf.reduce_sum(weight) xs = tf.einsum("ij...->ji...", xs) # xs = tf.transpose(xs, perm=[1, 0, ...]) models = [models[random.randint(0, len(models)) - 1] for _ in range(len(xs))] ys_pred = tf.stack([tf.nn.softmax(model(x_batch), axis=-1) for model, x_batch in zip(models, xs)]) ys_pred = tf.tensordot(weight, ys_pred, axes=[0, 0]) return ys_pred def cm(ys, ys_pred, num_classes, filter_min=0.0, filter_max=1.0): """ Confusion matrix. :param ys: [batch_size, height, width] :param ys_pred: onehot with shape [batch_size, height, width, num_class] :param num_classes: int :param filter_min: :param filter_max: :return: cms for certain and uncertain prediction (shape: [batch_size, num_classes, num_classes]) """ ys = tf.reshape(tf.cast(ys, tf.int32), [-1]) result = tf.reshape(tf.argmax(ys_pred, axis=-1, output_type=tf.int32), [-1]) confidence = tf.reshape(tf.math.reduce_max(ys_pred, axis=-1), [-1]) condition = tf.logical_and(confidence > filter_min, confidence <= filter_max) k = (ys >= 0) & (ys < num_classes) & condition cm = tf.math.bincount(num_classes * ys[k] + result[k], minlength=num_classes ** 2) cm = tf.reshape(cm, [num_classes, num_classes]) return cm def miou(cm): """ Mean IoU """ weights = np.sum(cm, axis=1) weights = [1 if weight > 0 else 0 for weight in weights] if np.sum(weights) > 0: _miou = np.average(ious(cm), weights=weights) else: _miou = 0.0 return _miou def ious(cm): """ Intersection over unit w.r.t. classes. """ num = np.diag(cm) den = np.sum(cm, axis=1) + np.sum(cm, axis=0) - np.diag(cm) return np.divide(num, den, out=np.zeros_like(num, dtype=float), where=(den != 0)) def gacc(cm): """ Global accuracy p(accurate). For cm_certain, p(accurate|confident). """ num = np.diag(cm).sum() den = np.sum(cm) return np.divide(num, den, out=np.zeros_like(num, dtype=float), where=(den != 0)) def caccs(cm): """ Accuracies w.r.t. classes. """ accs = [] for ii in range(np.shape(cm)[0]): if float(np.sum(cm, axis=1)[ii]) == 0: acc = 0.0 else: acc =
np.diag(cm)
numpy.diag
import unittest import numpy as np from femio.fem_data import FEMData from femio.util import brick_generator WRITE_TEST_DATA = False class TestBrickGenerator(unittest.TestCase): def test_generate_brick_tri(self): n_x_element = 4 n_y_element = 10 x_length = .5 y_length = 2. fem_data = brick_generator.generate_brick( 'tri', n_x_element, n_y_element, x_length=x_length, y_length=y_length) np.testing.assert_almost_equal( np.max(fem_data.nodes.data, axis=0), [x_length, y_length, 0.]) np.testing.assert_almost_equal( np.min(fem_data.nodes.data, axis=0), [0., 0., 0.]) self.assertEqual(len(fem_data.elements), n_x_element * n_y_element * 2) if WRITE_TEST_DATA: fem_data.write( 'ucd', 'tests/data/ucd/brick_tri/mesh.inp', overwrite=True) areas = fem_data.calculate_element_areas() np.testing.assert_almost_equal( areas, (x_length / n_x_element) * (y_length / n_y_element) / 2) ref_fem_data = FEMData.read_directory( 'ucd', 'tests/data/ucd/brick_tri', read_npy=False, save=False) np.testing.assert_almost_equal( fem_data.nodes.data, ref_fem_data.nodes.data) np.testing.assert_array_equal( fem_data.elements.data, ref_fem_data.elements.data) def test_generate_brick_quad(self): n_x_element = 4 n_y_element = 20 x_length = 1. y_length = 4. fem_data = brick_generator.generate_brick( 'quad', n_x_element, n_y_element, x_length=x_length, y_length=y_length) np.testing.assert_almost_equal( np.max(fem_data.nodes.data, axis=0), [x_length, y_length, 0.]) np.testing.assert_almost_equal(
np.min(fem_data.nodes.data, axis=0)
numpy.min
""" Dictionary learning estimator: Perform a map learning algorithm by learning a temporal dense dictionary along with sparse spatial loadings, that constitutes output maps """ # Author: <NAME> # License: BSD 3 clause from __future__ import division import warnings from distutils.version import LooseVersion import numpy as np import sklearn from sklearn.base import TransformerMixin from sklearn.decomposition import dict_learning_online from sklearn.externals.joblib import Memory from sklearn.linear_model import Ridge from .base import BaseDecomposition, mask_and_reduce from .canica import CanICA if LooseVersion(sklearn.__version__) >= LooseVersion('0.17'): # check_input=False is an optimization available only in sklearn >=0.17 sparse_encode_args = {'check_input': False} def _compute_loadings(components, data): ridge = Ridge(fit_intercept=None, alpha=1e-8) ridge.fit(components.T, np.asarray(data.T)) loadings = ridge.coef_.T S = np.sqrt(np.sum(loadings ** 2, axis=0)) S[S == 0] = 1 loadings /= S[np.newaxis, :] return loadings class DictLearning(BaseDecomposition, TransformerMixin): """Perform a map learning algorithm based on spatial component sparsity, over a CanICA initialization. This yields more stable maps than CanICA. .. versionadded:: 0.2 Parameters ---------- mask: Niimg-like object or MultiNiftiMasker instance, optional Mask to be used on data. If an instance of masker is passed, then its mask will be used. If no mask is given, it will be computed automatically by a MultiNiftiMasker with default parameters. n_components: int Number of components to extract. batch_size : int, optional, default=20 The number of samples to take in each batch. n_epochs: float Number of epochs the algorithm should run on the data. alpha: float, optional, default=1 Sparsity controlling parameter. dict_init: Niimg-like object, optional Initial estimation of dictionary maps. Would be computed from CanICA if not provided. reduction_ratio: 'auto' or float between 0. and 1. - Between 0. or 1. : controls data reduction in the temporal domain. 1. means no reduction, < 1. calls for an SVD based reduction. - if set to 'auto', estimator will set the number of components per reduced session to be n_components. method : {'lars', 'cd'} Coding method used by sklearn backend. Below are the possible values. lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse. random_state: int or RandomState Pseudo number generator state used for random sampling. smoothing_fwhm: float, optional If smoothing_fwhm is not None, it gives the size in millimeters of the spatial smoothing to apply to the signal. standardize : boolean, optional If standardize is True, the time-series are centered and normed: their variance is put to 1 in the time dimension. target_affine: 3x3 or 4x4 matrix, optional This parameter is passed to image.resample_img. Please see the related documentation for details. target_shape: 3-tuple of integers, optional This parameter is passed to image.resample_img. Please see the related documentation for details. low_pass: None or float, optional This parameter is passed to signal.clean. Please see the related documentation for details. high_pass: None or float, optional This parameter is passed to signal.clean. Please see the related documentation for details. t_r: float, optional This parameter is passed to signal.clean. Please see the related documentation for details. memory: instance of joblib.Memory or string Used to cache the masking process. By default, no caching is done. If a string is given, it is the path to the caching directory. memory_level: integer, optional Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. n_jobs: integer, optional, default=1 The number of CPUs to use to do the computation. -1 means 'all CPUs', -2 'all CPUs but one', and so on. verbose: integer, optional Indicate the level of verbosity. By default, nothing is printed. References ---------- * <NAME>, <NAME>, <NAME>, Compressed online dictionary learning for fast resting-state fMRI decomposition. IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016. pp. 1282-1285 """ def __init__(self, n_components=20, n_epochs=1, alpha=10, reduction_ratio='auto', dict_init=None, random_state=None, batch_size=20, method="cd", mask=None, smoothing_fwhm=4, standardize=True, detrend=True, low_pass=None, high_pass=None, t_r=None, target_affine=None, target_shape=None, mask_strategy='epi', mask_args=None, n_jobs=1, verbose=0, memory=Memory(cachedir=None), memory_level=0): BaseDecomposition.__init__(self, n_components=n_components, random_state=random_state, mask=mask, smoothing_fwhm=smoothing_fwhm, standardize=standardize, detrend=detrend, low_pass=low_pass, high_pass=high_pass, t_r=t_r, target_affine=target_affine, target_shape=target_shape, mask_strategy=mask_strategy, mask_args=mask_args, memory=memory, memory_level=memory_level, n_jobs=n_jobs, verbose=verbose) self.n_epochs = n_epochs self.batch_size = batch_size self.method = method self.alpha = alpha self.reduction_ratio = reduction_ratio self.dict_init = dict_init def _init_dict(self, data): if self.dict_init is not None: components = self.masker_.transform(self.dict_init) else: canica = CanICA(n_components=self.n_components, # CanICA specific parameters do_cca=True, threshold=float(self.n_components), n_init=1, # mask parameter is not useful as we bypass masking mask=self.masker_, random_state=self.random_state, memory=self.memory, memory_level=self.memory_level, n_jobs=self.n_jobs, verbose=self.verbose) with warnings.catch_warnings(): warnings.simplefilter("ignore", UserWarning) # We use protected function _raw_fit as data # has already been unmasked canica._raw_fit(data) components = canica.components_ S = (components ** 2).sum(axis=1) S[S == 0] = 1 components /= S[:, np.newaxis] self.components_init_ = components def _init_loadings(self, data): self.loadings_init_ = self._cache(_compute_loadings)( self.components_init_, data) def fit(self, imgs, y=None, confounds=None): """Compute the mask and component maps across subjects Parameters ---------- imgs: list of Niimg-like objects See http://nilearn.github.io/manipulating_images/input_output.html Data on which PCA must be calculated. If this is a list, the affine is considered the same for all. confounds: CSV file path or 2D matrix This parameter is passed to nilearn.signal.clean. Please see the related documentation for details """ # Base logic for decomposition estimators BaseDecomposition.fit(self, imgs) if self.verbose: print('[DictLearning] Loading data') data = mask_and_reduce(self.masker_, imgs, confounds, reduction_ratio=self.reduction_ratio, n_components=self.n_components, random_state=self.random_state, memory_level=max(0, self.memory_level - 1), n_jobs=self.n_jobs, memory=self.memory) if self.verbose: print('[DictLearning] Learning initial components') self._init_dict(data) self._raw_fit(data) return self def _raw_fit(self, data): """Helper function that direcly process unmasked data Parameters ---------- data: ndarray, Shape (n_samples, n_features) """ _, n_features = data.shape if self.verbose: print('[DictLearning] Computing initial loadings') self._init_loadings(data) dict_init = self.loadings_init_ n_iter = ((n_features - 1) // self.batch_size + 1) * self.n_epochs if self.verbose: print('[DictLearning] Learning dictionary') self.components_, _ = self._cache(dict_learning_online)( data.T, self.n_components, alpha=self.alpha, n_iter=n_iter, batch_size=self.batch_size, method=self.method, dict_init=dict_init, verbose=max(0, self.verbose - 1), random_state=self.random_state, return_code=True, shuffle=True, n_jobs=1) self.components_ = self.components_.T # Unit-variance scaling S = np.sqrt(
np.sum(self.components_ ** 2, axis=1)
numpy.sum
# Built-in import sys import os import warnings import inspect # Common import numpy as np # tofu import tofu try: import tofu.geom._core as _core except Exception: from . import _core __all__ = ['coords_transform', 'get_nIne1e2', 'get_X12fromflat', 'compute_RaysCones', 'get_available_config', 'create_config', 'create_CamLOS1D', 'create_CamLOS2D'] _sep = '_' _dict_lexcept_key = [] _lok = np.arange(0,9) _lok = np.array([_lok, _lok+10]) _root = tofu.__path__[0] _path_testcases = os.path.join(_root, 'geom', 'inputs') ########################################################### # COCOS ########################################################### class CoordinateInputError(Exception): _cocosref = "<NAME>, <NAME>, " _cocosref += "Computer Physics Communications 184 (2103) 293-302" msg = "The provided coords flag should be a str\n" msg += "It should match a known flag:\n" msg += " - 'cart' / 'xyz' : cartesian coordinates\n" msg += " - cocos flag indicating the cocos number (1-8, 11-18)\n" msg += " Valid cocos flags include:\n" msg += " '11', '02', '5', '14', ..." msg += "\n" msg += "The cocos (COordinates COnvetionS) are descibed in:\n" msg += " [1] %s"%_cocosref def __init__(self, msg, errors): # Call the base class constructor with the parameters it # needs super(CoordinateInputError, self).__init__(msg + '\n\n' + self.msg) # Now for your custom code... self.errors = errors def _coords_checkformatcoords(coords='11'): if not type(coords) is str: msg = "Arg coords must be a str !" raise CoordinateInputError(msg) coords = coords.lower() iint = np.array([ss.isdigit() for ss in coords]).nonzero()[0] if coords in ['cart','xyz']: coords = 'xyz' elif iint.size in [1,2]: coords = int(''.join([coords[jj] for jj in iint])) if not coords in _lok.ravel(): msg = 'Not allowed number ({0) !'.format(coords) raise CoordinateInputError(msg) else: msg = "Not allowed coords ({0}) !".format(coords) raise CoordinateInputError(msg) return coords def _coords_cocos2cart(pts, coords=11): R = pts[0,:] if (coords%0)%2==1: indphi, indZi, sig = 1, 2, 1. else: indphi, indZ , sig= 2, 1, -1. phi = sig*pts[indphi,:] X = R*np.cos(phi) Y = R*np.sin(phi) Z = pts[indZ,:] return np.array([X,Y,Z]) def _coords_cart2cocos(pts, coords=11): R = np.hypot(pts[0,:],pts[1,:]) phi = np.arctan2(pts[1,:],pts[0,:]) Z = pts[2,:] if (coords%0)%2==1: indphi, indZ, sig = 1, 2, 1. else: indphi, indZ , sig= 2, 1, -1. pts_out = np.empty((3,pts.shape[1]),dtype=float) pts_out[0,:] = R pts_out[indphi,:] = sig*phi pts_out[indZ,:] = Z return pts_out def coords_transform(pts, coords_in='11', coords_out='11'): coords_in = _coords_checkformatcoords(coords=coords_in) coords_out = _coords_checkformatcoords(coords=coords_out) if coords_in==coords_out: pass elif coords_in=='xyz': pts = _coords_cart2cocos(pts, coords_out) elif coords_out=='xyz': pts = _coords_cocos2cart(pts, coords_out) else: pts = _coords_cocos2cart(pts, coords_in) pts = _coords_cocos2cart(pts, coords_out) return pts ########################################################### ########################################################### # Useful functions ########################################################### def get_nIne1e2(P, nIn=None, e1=None, e2=None): assert np.hypot(P[0],P[1])>1.e-12 phi = np.arctan2(P[1],P[0]) ephi = np.array([-np.sin(phi), np.cos(phi), 0.]) ez = np.array([0.,0.,1.]) if nIn is None: nIn = -P nIn = nIn / np.linalg.norm(nIn) if e1 is None: if np.abs(np.abs(nIn[2])-1.) < 1.e-12: e1 = ephi else: e1 = np.cross(nIn,ez) e1 = e1 if np.sum(e1*ephi) > 0. else -e1 e1 = e1 / np.linalg.norm(e1) if not np.abs(np.sum(nIn*e1))<1.e-12: msg = "Identified local base does not seem valid!\n" msg += "nIn = %s\n"%str(nIn) msg += "e1 = %s\n"%str(e1) msg += "np.sum(nIn*e1) = sum(%s) = %s"%(nIn*e1, np.sum(nIn*e1)) raise Exception(msg) if e2 is None: e2 =
np.cross(nIn,e1)
numpy.cross
import numpy as np from sklearn.cluster import DBSCAN from faster_particles.ppn_utils import crop as crop_util from faster_particles.display_utils import extract_voxels class CroppingAlgorithm(object): """ Base class for any cropping algorithm, they should inherit from it and implement crop method (see below) """ def __init__(self, cfg, debug=False): self.cfg = cfg self.d = cfg.SLICE_SIZE # Patch or box/crop size self.a = cfg.CORE_SIZE # Core size self.N = cfg.IMAGE_SIZE self._debug = debug def crop(self, coords): """ coords is expected to be dimensions (None, 3) = list of non-zero voxels Returns a list of patches centers and sizes (of cubes centered at the patch centers) """ pass def process(self, original_blob): # FIXME cfg.SLICE_SIZE vs patch_size patch_centers, patch_sizes = self.crop(original_blob['voxels']) return self.extract(patch_centers, patch_sizes, original_blob) def extract(self, patch_centers, patch_sizes, original_blob): batch_blobs = [] for i in range(len(patch_centers)): patch_center, patch_size = patch_centers[i], patch_sizes[i] blob = {} # Flip patch_center coordinates # because gt_pixels coordinates are reversed # FIXME here or before blob['data'] ?? patch_center = np.flipud(patch_center) blob['data'], _ = crop_util(np.array([patch_center]), self.cfg.SLICE_SIZE, original_blob['data'], return_labels=False) patch_center = patch_center.astype(int) # print(patch_center, original_blob['data'][0, patch_center[0], patch_center[1], patch_center[2], 0], np.count_nonzero(blob['data'])) # assert np.count_nonzero(blob['data']) > 0 if 'labels' in original_blob: blob['labels'], _ = crop_util(np.array([patch_center]), self.cfg.SLICE_SIZE, original_blob['labels'][..., np.newaxis], return_labels=False) blob['labels'] = blob['labels'][..., 0] # print(np.nonzero(blob['data'])) # print(np.nonzero(blob['labels'])) # assert np.array_equal(np.nonzero(blob['data']), np.nonzero(blob['labels'])) if 'weight' in original_blob: blob['weight'], _ = crop_util(np.array([patch_center]), self.cfg.SLICE_SIZE, original_blob['weight'][..., np.newaxis], return_labels=False) blob['weight'][blob['weight'] == 0.0] = 0.1 blob['weight'] = blob['weight'][..., 0] # Select gt pixels if 'gt_pixels' in original_blob: indices = np.where(np.all(np.logical_and( original_blob['gt_pixels'][:, :-1] >= patch_center - patch_size/2.0, original_blob['gt_pixels'][:, :-1] < patch_center + patch_size/2.0), axis=1)) blob['gt_pixels'] = original_blob['gt_pixels'][indices] blob['gt_pixels'][:, :-1] = blob['gt_pixels'][:, :-1] - (patch_center - patch_size / 2.0) # Add artificial gt pixels artificial_gt_pixels = self.add_gt_pixels(original_blob, blob, patch_center, self.cfg.SLICE_SIZE) if artificial_gt_pixels.shape[0]: blob['gt_pixels'] = np.concatenate([blob['gt_pixels'], artificial_gt_pixels], axis=0) # Select voxels # Flip patch_center coordinates back to normal patch_center = np.flipud(patch_center) if 'voxels' in original_blob: voxels = original_blob['voxels'] blob['voxels'] = voxels[np.all(np.logical_and( voxels >= patch_center - patch_size / 2.0, voxels < patch_center + patch_size / 2.0), axis=1)] blob['voxels'] = blob['voxels'] - (patch_center - patch_size / 2.0) blob['entries'] = original_blob['entries'] # Crops for small UResNet if self.cfg.NET == 'small_uresnet': blob['crops'], blob['crops_labels'] = crop_util( blob['gt_pixels'][:, :-1], self.cfg.CROP_SIZE, blob['data']) # FIXME FIXME FIXME # Make sure there is at least one ground truth pixel in the patch (for training) if self.cfg.NET not in ['ppn', 'ppn_ext', 'full'] or len(blob['gt_pixels']) > 0: batch_blobs.append(blob) return batch_blobs, patch_centers, patch_sizes def compute_overlap(self, coords, patch_centers, sizes=None): """ Compute overlap dict: dict[x] gives the number of voxels which belong to x patches. """ if sizes is None: sizes = self.d/2.0 overlap = [] for voxel in coords: overlap.append(np.sum(np.all(np.logical_and( patch_centers-sizes <= voxel, patch_centers + sizes >= voxel ), axis=1))) return dict(zip(*np.unique(overlap, return_counts=True))) def add_gt_pixels(self, original_blob, blob, patch_center, patch_size): """ Add artificial pixels after cropping """ # Case 1: crop boundaries is intersecting with data nonzero_idx = np.array(np.where(blob['data'][0, ..., 0] > 0.0)).T # N x 3 border_idx = nonzero_idx[np.any(np.logical_or(nonzero_idx == 0, nonzero_idx == self.cfg.IMAGE_SIZE - 1), axis=1)] # Case 2: crop is partially outside of original data (thus padded) # if patch_center is within patch_size of boundaries of original blob # boundary intesecting with data padded_idx = nonzero_idx[np.any(np.logical_or(nonzero_idx + patch_center - patch_size / 2.0 >= self.cfg.IMAGE_SIZE - 2, nonzero_idx + patch_center - patch_size / 2.0 <= 1), axis=1)] # dbscan on all found voxels from case 1 and 2 coords = np.concatenate([border_idx, padded_idx], axis=0) artificial_gt_pixels = [] if coords.shape[0]: db = DBSCAN(eps=10, min_samples=3).fit_predict(coords) for v in np.unique(db): cluster = coords[db == v] artificial_gt_pixels.append(cluster[np.argmax(blob['data'][0, ..., 0][cluster.T[0], cluster.T[1], cluster.T[2]]), :]) artificial_gt_pixels = np.concatenate([artificial_gt_pixels, np.ones((len(artificial_gt_pixels), 1))], axis=1) return np.array(artificial_gt_pixels) def reconcile(self, batch_results, patch_centers, patch_sizes): """ Reconcile slices result together using batch_results, batch_blobs, patch_centers and patch_sizes """ final_results = {} if len(batch_results) == 0: # Empty batch return final_results # UResNet predictions if 'predictions' and 'scores' and 'softmax' in batch_results[0]: final_voxels = np.array([], dtype=np.int32).reshape(0, 3) # Shape N_voxels x dim final_scores = np.array([], dtype=np.float32).reshape(0, self.cfg.NUM_CLASSES) # Shape N_voxels x num_classes final_counts = np.array([], dtype=np.int32).reshape(0,) # Shape N_voxels x 1 for i, result in enumerate(batch_results): # Extract voxel and voxel values # Shape N_voxels x dim v, values = extract_voxels(result['predictions']) # Extract corresponding softmax scores # Shape N_voxels x num_classes scores = result['softmax'][v[:, 0], v[:, 1], v[:, 2], :] # Restore original blob coordinates v = (v + np.flipud(patch_centers[i]) - patch_sizes[i] / 2.0).astype(np.int64) v = np.clip(v, 0, self.cfg.IMAGE_SIZE-1) # indices are indices of the *first* occurrences of the unique values # hence for doublons they are indices in final_voxels # We assume the only overlap that can occur is between # final_voxels and v, not inside these arrays themselves n = final_voxels.shape[0] final_voxels, indices, counts = np.unique(np.concatenate([final_voxels, v], axis=0), axis=0, return_index=True, return_counts=True) final_scores = np.concatenate([final_scores, scores], axis=0)[indices] lower_indices = indices[indices < n] upper_indices = indices[indices >= n] final_counts[lower_indices] += counts[lower_indices] - 1 final_counts = np.concatenate([final_counts, np.ones((upper_indices.shape[0],))], axis=0) final_scores = final_scores / final_counts[:, np.newaxis] # Compute average final_predictions = np.argmax(final_scores, axis=1) final_results['predictions'] = np.zeros((self.cfg.IMAGE_SIZE,) * 3) final_results['predictions'][final_voxels.T[0], final_voxels.T[1], final_voxels.T[2]] = final_predictions final_results['scores'] = np.zeros((self.cfg.IMAGE_SIZE,) * 3) final_results['scores'][final_voxels.T[0], final_voxels.T[1], final_voxels.T[2]] = final_scores[np.arange(final_scores.shape[0]), final_predictions] final_results['softmax'] = np.zeros((self.cfg.IMAGE_SIZE,) * 3 + (self.cfg.NUM_CLASSES,)) final_results['softmax'][final_voxels.T[0], final_voxels.T[1], final_voxels.T[2], :] = final_scores final_results['predictions'] = final_results['predictions'][np.newaxis, ...] # PPN if 'im_proposals' and 'im_scores' and 'im_labels' and 'rois' in batch_results[0]: # print(batch_results[0]['im_proposals'].shape, batch_results[0]['im_scores'].shape, batch_results[0]['im_labels'].shape, batch_results[0]['rois'].shape) final_im_proposals = np.array([], dtype=np.float32).reshape(0, 3) final_im_scores = np.array([], dtype=np.float32).reshape(0,) final_im_labels = np.array([], dtype=np.int32).reshape(0,) final_rois = np.array([], dtype=np.float32).reshape(0, 3) for i, result in enumerate(batch_results): im_proposals = result['im_proposals'] + np.flipud(patch_centers[i]) - patch_sizes[i] / 2.0 im_proposals = np.clip(im_proposals, 0, self.cfg.IMAGE_SIZE-1) # print(final_im_proposals, im_proposals) final_im_proposals = np.concatenate([final_im_proposals, im_proposals], axis=0) final_im_scores = np.concatenate([final_im_scores, result['im_scores']], axis=0) final_im_labels = np.concatenate([final_im_labels, result['im_labels']], axis=0) rois = result['rois'] + (np.flipud(patch_centers[i]) - patch_sizes[i] / 2.0) / (self.cfg.dim1 * self.cfg.dim2) rois = np.clip(rois, 0, self.cfg.IMAGE_SIZE-1) final_rois = np.concatenate([final_rois, rois], axis=0) final_results['im_proposals'] = np.array(final_im_proposals) final_results['im_scores'] =
np.array(final_im_scores)
numpy.array
import pickle as pkl from collections import Counter import numpy as np import nltk class DailyDialogCorpus(object): def __init__(self, corpus_path="data/dailydialog/dailydialog_split.pkl", max_vocab_cnt=30000, word2vec=True, word2vec_dim=None): self.word_vec = word2vec self.word2vec_dim = word2vec_dim self.word2vec = None data = pkl.load(open(corpus_path, "rb")) self.train_data = data["train"] self.valid_data = data["valid"] self.test_data = data["test"] print("DailyDialog Statistics: ") print("train data size: %d" % len(self.train_data)) print("valid data size: %d" % len(self.valid_data)) print("test data size: %d" % len(self.test_data)) print("\n") # DailyDialog Statistics: # train data size: 10117 # valid data size: 1500 # test data size: 1500 self.train_corpus = self.process(self.train_data) self.valid_corpus = self.process(self.valid_data) self.test_corpus = self.process(self.test_data) print(" [*] Building word vocabulary.") self.build_vocab(max_vocab_cnt) print(" [*] Loading word2vec.") self.load_word2vec() def process(self, data): new_meta = [] new_dialog = [] all_lenes = [] new_utts = [] for obj in data: topic = obj["topic"] dial = obj["utts"] lower_utts = [ ( item["floor"], # ["<s>"] + item["text"].lower().strip().split(" ") + ["</s>"], ["<s>"] + nltk.WordPunctTokenizer().tokenize(item["text"].lower().strip()) + ["</s>"], (item["act"], item["emot"]) ) for item in dial] # first all_lenes.extend([len(u) for c, u, f in lower_utts]) # second new_utts.extend([utt for floor, utt, feat in lower_utts]) # third dialog = [(utt, floor, feat) for floor, utt, feat in lower_utts] new_dialog.append(dialog) # fourth meta = (topic,) new_meta.append(meta) print("max_utt_len %d, min_utt_len %d, mean_utt_len %.4f" % \ (np.max(all_lenes),np.min(all_lenes), float(np.mean(all_lenes)))) # Max utt len 298, Min utt len 3, Mean utt len 16.54 # Max utt len 156, Min utt len 3, Mean utt len 16.83 # Max utt len 232, Min utt len 3, Mean utt len 16.80 return {"dialog": new_dialog, "meta": new_meta, "utts": new_utts} def build_vocab(self, max_vocab_cnt): all_words = [] for tokens in self.train_corpus["utts"]: all_words.extend(tokens) vocab_count = Counter(all_words).most_common() raw_vocab_size = len(vocab_count) discard_wc = np.sum([c for t, c, in vocab_count[max_vocab_cnt:]]) vocab_count = vocab_count[0:max_vocab_cnt] self.vocab = ["<pad>", "<unk>"] + [t for t, cnt in vocab_count] # list self.rev_vocab = self.word2idx = {word:idx for idx, word in enumerate(self.vocab)} # dict self.idx2word = {idx:word for idx, word in enumerate(self.vocab)} # dict self.pad_id = self.word2idx["<pad>"] self.unk_id = self.word2idx["<unk>"] self.sos_id = self.word2idx["<s>"] self.eos_id = self.word2idx["</s>"] self.vocab_size = len(self.vocab) print("raw_vocab_size %d, actual_vocab_size %d, at cut_off frequent %d OOV rate %f" % (raw_vocab_size, self.vocab_size, vocab_count[-1][1], float(discard_wc) / len(all_words))) print("<pad> index %d" % self.pad_id) print("<unk> index %d" % self.unk_id) print("<s> index %d" % self.sos_id) print("</s> index %d" % self.eos_id) print("\n") print("Building topic vocabulary...") all_topics = [] for topic, in self.train_corpus["meta"]: all_topics.append(topic) self.topic_vocab = [t for t, cnt in Counter(all_topics).most_common()] self.rev_topic_vocab = {t: idx for idx, t in enumerate(self.topic_vocab)} print("number of topics: %d" % len(self.topic_vocab)) print(self.topic_vocab) print("\n") all_dialog_acts = [] all_emots = [] for dialog in self.train_corpus["dialog"]: all_dialog_acts.extend([feat[0] for floor, utt, feat in dialog if feat is not None]) all_emots.extend([feat[1] for floor, utt, feat in dialog if feat is not None]) print("Building act vocabulary...") self.dialog_act_vocab = [t for t, cnt in Counter(all_dialog_acts).most_common()] self.rev_dialog_act_vocab = {t: idx for idx, t in enumerate(self.dialog_act_vocab)} print("number of acts: %d" % len(self.dialog_act_vocab)) print(self.dialog_act_vocab) print("\n") print("Building emotion vocabulary...") self.dialog_emot_vocab = [t for t, cnt in Counter(all_emots).most_common()] self.rev_dialog_emot_vocab = {t: idx for idx, t in enumerate(self.dialog_emot_vocab)} print("number of emots: %d" % len(self.dialog_emot_vocab)) print(self.dialog_emot_vocab) print("\n") def load_word2vec(self): if self.word_vec is False: print(" [*] No word2vec provided.") return None with open("data/glove.twitter.27B.200d.txt", "r") as f: lines = f.readlines() raw_word2vec = {} for l in lines: w, vec = l.split(" ", 1) raw_word2vec[w] = vec self.word2vec = None oov_cnt = 0 for word in self.vocab: str_vec = raw_word2vec.get(word, None) if str_vec is None: oov_cnt += 1 vec = np.random.randn(self.word2vec_dim) * 0.1 else: vec = np.fromstring(str_vec, sep=" ") vec = np.expand_dims(vec, axis=0) self.word2vec =
np.concatenate((self.word2vec, vec),0)
numpy.concatenate
import pytest from SciDataTool import DataTime, Data1D, DataLinspace, DataPattern import numpy as np from numpy.testing import assert_array_almost_equal @pytest.mark.validation def test_period_linspace(): time = np.linspace(0, 10, 10, endpoint=False) Time = DataLinspace( name="time", unit="s", initial=0, final=10, number=10, include_endpoint=False, ) Time_periodic = Time.get_axis_periodic(5) field = np.tile(np.arange(50, 60, 5), 5) field_periodic = np.arange(50, 60, 5) Field = DataTime( name="field", symbol="X", axes=[Time_periodic], values=field_periodic, ) result = Field.get_along("time") assert_array_almost_equal(time, result["time"]) assert_array_almost_equal(field, result["X"]) result = Field.get_along("time[smallestperiod]") assert_array_almost_equal(np.linspace(0, 2, 2, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) result = Field.get_along("time[oneperiod]") assert_array_almost_equal(np.linspace(0, 2, 2, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) @pytest.mark.validation def test_period_1d(): time = np.linspace(0, 10, 10, endpoint=False) Time = Data1D( name="time", unit="s", values=time, ) Time_periodic = Time.get_axis_periodic(5) field = np.tile(np.arange(50, 60, 5), 5) field_periodic = np.arange(50, 60, 5) Field = DataTime( name="field", symbol="X", axes=[Time_periodic], values=field_periodic, ) result = Field.get_along("time") assert_array_almost_equal(time, result["time"]) assert_array_almost_equal(field, result["X"]) result = Field.get_along("time[smallestperiod]") assert_array_almost_equal(np.linspace(0, 2, 2, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) result = Field.get_along("time[oneperiod]") assert_array_almost_equal(np.linspace(0, 2, 2, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) @pytest.mark.validation def test_antiperiod_linspace(): time = np.linspace(0, 16, 16, endpoint=False) Time = DataLinspace( name="time", unit="s", initial=0, final=16, number=16, include_endpoint=False, ) Time_periodic = Time.get_axis_periodic(4, is_antiperiod=True) field_periodic = np.arange(50, 70, 5) field_antisym = np.concatenate((field_periodic, np.negative(field_periodic))) field = np.tile(field_antisym, 2) Field = DataTime( name="field", symbol="X", axes=[Time_periodic], values=field_periodic, ) result = Field.get_along("time") assert_array_almost_equal(time, result["time"]) assert_array_almost_equal(field, result["X"]) result = Field.get_along("time[smallestperiod]") assert_array_almost_equal(np.linspace(0, 4, 4, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) result = Field.get_along("time[antiperiod]") assert_array_almost_equal(np.linspace(0, 4, 4, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) result = Field.get_along("time[oneperiod]") assert_array_almost_equal(np.linspace(0, 8, 8, endpoint=False), result["time"]) assert_array_almost_equal(field_antisym, result["X"]) @pytest.mark.validation def test_antiperiod_1d(): time = np.linspace(0, 16, 16, endpoint=False) Time = Data1D( name="time", unit="s", values=time, ) Time_periodic = Time.get_axis_periodic(4, is_antiperiod=True) field_periodic = np.arange(50, 70, 5) field_antisym = np.concatenate((field_periodic, np.negative(field_periodic))) field = np.tile(field_antisym, 2) Field = DataTime( name="field", symbol="X", axes=[Time_periodic], values=field_periodic, ) result = Field.get_along("time") assert_array_almost_equal(time, result["time"]) assert_array_almost_equal(field, result["X"]) result = Field.get_along("time[smallestperiod]") assert_array_almost_equal(np.linspace(0, 4, 4, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) result = Field.get_along("time[antiperiod]") assert_array_almost_equal(np.linspace(0, 4, 4, endpoint=False), result["time"]) assert_array_almost_equal(field_periodic, result["X"]) result = Field.get_along("time[oneperiod]") assert_array_almost_equal(np.linspace(0, 8, 8, endpoint=False), result["time"]) assert_array_almost_equal(field_antisym, result["X"]) @pytest.mark.validation def test_period_2d(): time = np.linspace(0, 10, 10, endpoint=False) Time = DataLinspace( name="time", unit="s", initial=0, final=10, number=10, include_endpoint=False, ) Time_periodic = Time.get_axis_periodic(5) angle = np.linspace(0, 2 * np.pi, 16, endpoint=False) Angle = DataLinspace( name="angle", unit="rad", initial=0, final=2 * np.pi, number=16, include_endpoint=False, ) Angle_periodic = Angle.get_axis_periodic(4, is_antiperiod=True) ta, at = np.meshgrid( Time_periodic.get_values(is_smallestperiod=True), Angle_periodic.get_values(is_smallestperiod=True), ) field = np.cos(2 * np.pi * 50 * ta + at) Field = DataTime( name="field", symbol="X", axes=[Angle_periodic, Time_periodic], values=field, ) result = Field.get_along("time", "angle=[0,2*pi]") assert_array_almost_equal(time, result["time"]) assert_array_almost_equal(angle, result["angle"]) @pytest.mark.validation def test_pattern(): Slices = DataPattern( name="slice", unit="m", values=np.array([-5, -3, -1, 1, 3]), values_whole=np.array([-5, -3, -3, -1, -1, 1, 1, 3, 3, 5]), unique_indices=[0, 2, 4, 6, 8], rebuild_indices=[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], ) field = np.array([10, 20, 30, 40, 50]) Field = DataTime( name="field", symbol="X", axes=[Slices], values=field, ) assert_array_almost_equal(10, Slices.get_length()) assert_array_almost_equal(5, Slices.get_length(is_pattern=True)) result = Field.get_along("slice") assert_array_almost_equal( np.array([-5, -3, -3, -1, -1, 1, 1, 3, 3, 5]), result["slice"] ) assert_array_almost_equal( np.array([10, 10, 20, 20, 30, 30, 40, 40, 50, 50]), result["X"] ) result = Field.get_along("slice[pattern]") assert_array_almost_equal(np.array([-5, -3, -1, 1, 3]), result["slice"]) assert_array_almost_equal(field, result["X"]) result = Field.get_along( "slice=axis_data", axis_data={"slice": np.array([-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])}, ) assert_array_almost_equal( np.array([10, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50]), result["X"] ) Slices = DataPattern( name="slice", unit="m", values=np.array([0]), unique_indices=[0], rebuild_indices=[0], ) field = np.array([10]) Field = DataTime( name="field", symbol="X", axes=[Slices], values=field, ) result = Field.get_along( "slice=axis_data", axis_data={"slice": np.array([-2, -1, 0, 1, 2])} ) assert_array_almost_equal(np.array([10, 10, 10, 10, 10]), result["X"]) Slices = DataPattern( name="slice", unit="m", values=np.array([-5, -3, -1, 1, 3]), values_whole=np.array([-5, -3, -3, -1, -1, 1, 1, 3, 3, 5]), unique_indices=[0, 2, 4, 6, 8], rebuild_indices=[0, 0, 1, 1, 2, 2, 3, 3, 4, 4], ) field =
np.array([10, 20, 30, 20, 10])
numpy.array
import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import seaborn as sns from functions.data_handling import convert_timestamp def gather_data_to_plot(wells, df): """ Given a well ID, plot the associated data, pull out treatments. Pull in dataframe of all the data. """ data_to_plot = [] error_to_plot = [] legend = [] for well in wells: data_to_plot.append(df.loc[well, '600_averaged']) error_to_plot.append(df.loc[well, '600_std']) legend.append(df.loc[well, 'cell']) return data_to_plot, error_to_plot, legend #return data_to_plot, legend def quick_plot_all_wells(df, fig_save_path, upper_bound): wavelengths_used = df.columns.values.tolist() for wavelength in wavelengths_used: fig, axs = plt.subplots(8, 12, sharex='col', sharey='row', figsize = (20, 10)) sns.set_style('ticks') axs = axs.flatten() fig.subplots_adjust(hspace = .2, wspace=.2) x = convert_timestamp(list(df[wavelength].iloc[0])) for i in range(2, 98): y = list(df[wavelength].iloc[i]) axs[i-2].plot(x, y, color = '#d55e00') axs[i-2].set_ylim(0, upper_bound) fig.savefig(os.path.join(fig_save_path, 'plot_all_wells_' + wavelength + '.pdf'), bbox_inches='tight') plt.show() return def make_individual_plots(time, conditions, condition_names, df_merged, fig_save_path, y_max, xbounds, fig_name_header): for j in range(len(conditions)): data_to_plot, error_to_plot, legendName = gather_data_to_plot(conditions[j][0], df_merged) #data_to_plot, legendName = gather_data_to_plot(conditions[j][0], df_merged) f = plt.figure(figsize=(20,10)) sns.set_style('ticks') plt.xlabel("Time (min)") plt.ylabel("OD_600") plt.title("") color_palette = ['#e69f00','#56b4e9', '#009e73', '#f0e442', '#d55e00', '#cc79a7'] c = 0 for data in data_to_plot: error = error_to_plot[c] plt.semilogy(time, data, color_palette[c], linewidth = 4, alpha = .8, label = legendName[c]) plt.fill_between(np.array(time), np.array(data)- np.array(error), np.array(data) + np.array(error), alpha=0.15, facecolor = color_palette[c]) plt.ylim([0,y_max]) plt.xlim(xbounds) c += 1 plt.legend() sns.despine() f.savefig(os.path.join(fig_save_path, fig_name_header + condition_names[j] + '.pdf'), bbox_inches='tight') plt.show() plt.clf() return def make_individual_plots_subplot(time, conditions, condition_names, df_merged, fig_save_path, y_max, xbounds, fig_name_header): fig, axs = plt.subplots(3, 1, sharex='col', sharey='row', figsize = (10, 10)) sns.set_style('ticks') color_palette = ['#e69f00','#56b4e9', '#009e73', '#f0e442', '#d55e00', '#cc79a7'] for j in range(len(conditions)): data_to_plot, error_to_plot, legendName = gather_data_to_plot(conditions[j][0], df_merged) for c in range(0, len(data_to_plot)): error = error_to_plot[c] data = data_to_plot[c] axs[j].semilogy(time, data, color_palette[j], linewidth = 4, alpha = .8, label = legendName[c]) axs[j].fill_between(
np.array(time)
numpy.array
# Copyright (C) 2020 <NAME> # All rights reserved. # # This file is part of kspclib. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the kspclib project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. from . import _kspclib as ksp import numpy as np def get_version(): return tuple(ksp.version()) def get_all_grid_addresses(mesh): """Return all single-grid addresses Parameters ---------- mesh : array_like Conventional regular mesh for grid sampling. shape=(3,), dtype='int_' Returns ------- grid_address : ndarray Grid addresses of all grid points corresponding to input mesh. shape=(all_grid_points, 3), dtype='int_' """ grid_address = np.zeros((np.prod(mesh), 3), dtype='int_', order='C') ksp.all_grid_addresses(grid_address, np.array(mesh, dtype='int_')) return grid_address def get_double_grid_address(address, mesh, shift=None): """Convert grid address plus shift to double-grid address address_double = 2 * address + shift, where values are reduced to be closet to 0, -mesh/2 < address_double <= mesh/2. Parameters ---------- address : array_like Grid address. shape=(3,), dtype='int_' mesh : array_like Conventional regular mesh for grid sampling. shape=(3,), dtype='int_' shift : array_like, optional Half grid shift for conventional regular mesh along reciprocal basis vector directions. 0 and 1 mean no shift and half shift, recpectively. shape=(3,), dtype='int_' Returns ------- address_double : ndarray Double-grid address. shape=(3,), dtype='int_' """ address_double = np.zeros(3, dtype='int_', order='C') if shift is None: _shift = np.zeros(3, dtype='int_', order='C') else: _shift = np.array(shift, dtype='int_') ksp.double_grid_address(address_double, np.array(address, dtype='int_'), np.array(mesh, dtype='int_'), _shift) return address_double def get_double_grid_index(address_double, mesh): """Return grid point index of a double-grid address Parameters ---------- address_double : array_like Double-grid address. shape=(3,), dtype='int_' mesh : array_like Conventional regular mesh for grid sampling. shape=(3,), dtype='int_' Returns ------- grid_index : int Grid point index. """ return ksp.double_grid_index(np.array(address_double, dtype='int_'), np.array(mesh, dtype='int_')) def get_thm_relative_grid_addresses(rec_lattice): """Return relative grid addresses of 24 tetrahedra Parameters ---------- rec_lattice : array_like Reciprocal basis vectors in column vectors. shape=(3, 3), dtype='double', order='C' Returns ------- relative_addresses : ndarray Grid address shifts corresponding to 24 tetrahedra surrounding a grid point for conventional regular grid. shape=(24, 4, 3), dtype='int_', order='C' """ relative_addresses = np.zeros((24, 4, 3), dtype='int_', order='C') ksp.thm_relative_grid_addresses( relative_addresses, np.array(rec_lattice, dtype='double', order='C')) return relative_addresses def get_thm_integration_weight(omega, tetrahedra_omegas, function='I'): """Return tetheradron method integration weight for a grid point Parameters ---------- omega : float Energy where integration weight is computed. tetrahedra_omegas : array_like Energies of four vertices of 24 tetrahedra. These energies are those at the grid points as given by ``get_thm_relative_grid_addresses``. shape=(24, 4), dtype='double', order='C' function : str, optional 'I' for delta function and 'J' for Heaviside function. Default is 'I'. Returns ------- integration_weight : float Integration weight for a grid point. """ iw = ksp.thm_integration_weight( float(omega), np.array(tetrahedra_omegas, dtype='double', order='C'), str(function.upper())) return iw def get_snf3x3(A): """Return Smith normal form of 3x3 integer matrix Parameters ---------- A : array_like Integer transformation matrix from basis vectors of microzone to those of primitive basis vectors. shape=(3, 3), dtype='int_', order='C' returns ------- snf : dict D, P, Q of Smith normal form of 3x3 integer matrix. The dict keys are ``D``, ``D_diag``, ``P``, ``Q``, respectively. D, P, Q : shape=(3, 3), dtype='int_', order='C' D_diag : Diagonal elements of D, shape=(3,), dtype='int_', order='C' """ D_diag = np.zeros(3, dtype='int_', order='C') P = np.zeros((3, 3), dtype='int_', order='C') Q = np.zeros((3, 3), dtype='int_', order='C') succeeded = ksp.snf3x3(D_diag, P, Q, np.array(A, dtype='int_', order='C')) D = np.array(np.diag(D_diag), dtype='int_', order='C') if succeeded: return {'D_diag': D_diag, 'D': D, 'P': P, 'Q': Q} else: return None def snf_transform_rotations(rotations, grid_matrix=None, D=None, D_diag=None, Q=None): """Transform rotations by SNF of grid generation matrix Reciprocal rotation matrices of usual reciprocal basis vectors (R) are transformed to those of reciprocal basis vectors transformed by D and Q of Smith normal form of grid generation matrix. The formula implemented is DQ^{-1}RQD^{-1}. Grid generation matrix has to be compatible with R. Unless satisfied, exception is raised. Parameters ---------- D, D_diag, Q : array_like, optional D or diagonal elemets of D and Q of Smith normal form of grid matrix. Default is None. D, Q : shape=(3, 3), dtype='int_', order='C'. D_diag : shape=(3,), dtype='int_', order='C'. grid_matrix : array_like, optional Grid generation matrix. Default is None. shape=(3, 3), dtype='int_', order='C' rotations : array_like Reciprocal rotation matrices of usual reciprocal basis vectors. shape=(num_rot, 3, 3), dtype='int_', order='C' returns ------- transformed_rotations : ndarray Transformed reciprocal rotation matrices. shape=(num_rot, 3, 3), dtype='int_', order='C' """ if grid_matrix is not None: snf = get_snf3x3(grid_matrix) _D_diag = snf['D_diag'] _Q = snf['Q'] elif D_diag is not None and Q is not None: _D_diag = D_diag _Q = Q elif D is not None and Q is not None: _D_diag = np.diagonal(D) _Q = Q else: msg = "grid_matrix or D and Q unspecified." raise RuntimeError(msg) transformed_rots = np.zeros(rotations.shape, dtype='int_', order='C') is_compatible = ksp.snf_transform_rotations( transformed_rots, np.array(rotations, dtype='int_', order='C'), np.array(_D_diag, dtype='int_', order='C'), np.array(_Q, dtype='int_', order='C')) if is_compatible: return transformed_rots else: msg = "Grid generation matrix and rotation matrices are incompatible." raise RuntimeError(msg) def get_all_grgrid_addresses(D_diag): """Return all grid addresses (Generalized-regular-grid version) Parameters ---------- D_diag : array_like Diagonal elements of D of Smith normal form. shape=(3,), dtype='int_' Returns ------- grgrid_address : ndarray Genralized-regular-grid addresses of all grid points corresponding to D_diag. shape=(all_grid_points, 3), dtype='int_' """ grgrid_address = np.zeros((np.prod(D_diag), 3), dtype='int_', order='C') ksp.all_grgrid_addresses(grgrid_address, np.array(D_diag, dtype='int_')) return grgrid_address def get_double_grgrid_address(address, D_diag, PS=None): """Convert grid address plus shift to double-grid address (Generalized-regular-grid version) address_double = 2 * address + shift, where values are reduced to be closet to 0, -mesh/2 < address_double <= mesh/2. Parameters ---------- address : array_like Grid address. shape=(3,), dtype='int_' D_diag : array_like Diagonal elements of D of Smith normal form. shape=(3,), dtype='int_' PS : array_like, optional Half grid shifts after transformation by P of Smith normal form. Let half grid shifts along reciprocal basis vector directions be S, where s_i = 0 or 1, this array corresponds to np.dot(P, S). shape=(3,), dtype='int_' Returns ------- address_double : ndarray Double-grid address. shape=(3,), dtype='int_' """ address_double = np.zeros(3, dtype='int_', order='C') if PS is None: _PS = np.zeros(3, dtype='int_') else: _PS = np.array(PS, dtype='int_') ksp.double_grgrid_address(address_double, np.array(address, dtype='int_'), np.array(D_diag, dtype='int_'), _PS) return address_double def get_grgrid_index(address, D_diag): """Return grid point index of a single-grid address (Generalized-regular-grid version) Parameters ---------- address : array_like Single-grid address. shape=(3,), dtype='int_' D_diag : array_like Diagonal elements of D of Smith normal form. shape=(3,), dtype='int_' Returns ------- grid_index : int Grid point index. """ return ksp.grgrid_index(np.array(address, dtype='int_'), np.array(D_diag, dtype='int_')) def get_double_grgrid_index(address_double, D_diag, PS=None): """Return grid point index of a double-grid address (Generalized-regular-grid version) Parameters ---------- address_double : array_like Double-grid address. shape=(3,), dtype='int_' D_diag : array_like Diagonal elements of D of Smith normal form. shape=(3,), dtype='int_' PS : array_like, optional Half grid shifts after transformation by P of Smith normal form. Let half grid shifts along reciprocal basis vector directions be S, where s_i = 0 or 1, this array corresponds to np.dot(P, S). shape=(3,), dtype='int_' Returns ------- grid_index : int Grid point index. """ if PS is None: _PS =
np.zeros(3, dtype='int_')
numpy.zeros
from collections import defaultdict import vg import math as m import numpy as np import random import pandas as pd np.seterr(divide='ignore', invalid='ignore') # ------------------------------------------------------------------------------------------------------------- # Target Sequence: [C1P1, C2P2] OR [C1P1, P2C2] OR [P1C1, C2P2] OR [P1C1, P2C2] sorted based on time # Features: After blurring Energy, we gain our features such as theta_p, theta_e, energies ... # # Don't forget to blur energy and shuffle family:) # ------------------------------------------------------------------------------------------------------------- def icos(a): if a > 1.0: a = 1.0 elif a < -1.0: a = -1. inv_ = m.acos(a) return m.degrees(inv_) # ------------------------------------------------------------------------------------------------------------- # ----------------------------- Filter families based on Energy Window ---------------------------------------- # ------------------------------------------------------------------------------------------------------------- def process_family(family): dict_ = defaultdict(list) for i, item in enumerate(family): dict_[item[-8]].append(i) # ID of particle [-8] for key in dict_: items = dict_[key] # items = [0, 1] [2, 3] ke 0 ye satre kamele energy = 0.0 for item in items: energy += float(family[item][11]) if energy < 421 or energy > 621: # if energy < 421 or energy > 601: return False # print(items) return True # ------------------------------------------------------------------------------------------------------------- # ---------------------------------------- Calculate Theta_P and Theta_E and Features for ML------------------- # ------------------------------------------------------------------------------------------------------------- def calculate(family): # col10: time stamp nana # global non_comp, compton, pe # random.shuffle(family) return_pack = {'ID_Flag': [], 'X': [], 'Y': [], 'Z': [], 'theta_p_1': [], 'theta_e_1': [], 'theta_p_2': [], 'theta_e_2': [], 'theta_p_3': [], 'theta_e_3': [], 'theta_p_4': [], 'theta_e_4': [], 'energy_c1': [], 'energy_p1': [], 'energy_c2': [], 'energy_p2': [], 'event1x': [], 'event1y': [], 'event1z': [], 'event2x': [], 'event2y': [], 'event2z': [], 'event3x': [], 'event3y': [], 'event3z': [], 'event4x': [], 'event4y': [], 'event4z': [], 'time1': [], 'time2': [], 'time3': [], 'time4': [], 'DDA1': [], 'DDA2': [], 'DDA3': [], 'DDA4': [], 'target_seq': [], 'rf_counter': 0, 'tf_counter': 0, 'valid_family': False} # ------------------------------------------------------------------------------------------------------------- # ---------------------------------Check for family validity whether we have 1C2P combination ----------------- # ------------------------------------------------------------------------------------------------------------- if len(family) != 4: return return_pack counter_2 = 0 counter_3 = 0 for i in range(len(family)): # count the number of rows for column -8 to be 2 or 3 if family[i][-8] == '2': counter_2 += 1 elif family[i][-8] == '3': counter_3 += 1 """return empty pack if the row is neither Compton nor Photon""" if family[i][-3] not in ['Compton', 'PhotoElectric']: return return_pack if counter_2 != 2 or counter_3 != 2: # Check if family has 2P2C photon IDs return return_pack # ------------------------------------------------------------------------------------------------------------- # ----------------------------------Check if all event ids are identical to recognize Random Coincidences - # ------------------------------------------------------------------------------------------------------------- event_id = [] for row in family: event_id.append(int(row[1])) if event_id[1:] == event_id[:-1]: return_pack['ID_Flag'].append(1) # return_pack['tf_counter'] += 1 else: return_pack['ID_Flag'].append(0) # return_pack['rf_counter'] += 1 """ Blur Energy to find theta_p and theta_e after blurring not from Ground Truth""" mu1, sigma1 = 0.0, 17.35881104 for i in range(len(family)): val = float(family[i][11]) val += np.random.normal(mu1, sigma1) family[i][11] = str(val) # # ------------------------------------------------------------------------------------------------------------- # # Prepare target sequence: [C1P1, C2P2] OR [C1P1, P2C2] OR [P1C1, C2P2] OR [P1C1, P2C2] sorted by time! Smaller time comes first] # # ------------------------------------------------------------------------------------------------------------- dict_label = {'time': [], 'panel': [], 'row': []} for i, row in enumerate(family): dict_label['time'].append(row[10]) dict_label['panel'].append(row[-8]) dict_label['row'].append(i) df = pd.DataFrame(dict_label) df = df.sort_values(by=['time'], ignore_index=False) first_panel = df['panel'][0] target_seq = [] target_seq.extend(list(df[df['panel'] == first_panel]['row'])) target_seq.extend(list(df[df['panel'] != first_panel]['row'])) return_pack['target_seq'] = target_seq # print(target_seq) # ------------------------------------------------------------------------------------------------------------- # ---------------------------------------- Calculate Theta_P and Theta_E -------------------------------------- # ------------------------------------------------------------------------------------------------------------- perms = [[target_seq[0], target_seq[1], target_seq[2], target_seq[3]], [target_seq[1], target_seq[0], target_seq[2], target_seq[3]], [target_seq[0], target_seq[1], target_seq[3], target_seq[2]], [target_seq[1], target_seq[0], target_seq[3], target_seq[2]]] # print(perms) i = target_seq[0] # 0 j = target_seq[1] # 2 k = target_seq[2] # 1 l = target_seq[3] # 3 a_vector_1 = [float(family[i][13]) - float(family[k][13]), float(family[i][14]) - float(family[k][14]), float(family[i][15]) - float(family[k][15])] b_vector_1 = [float(family[j][13]) - float(family[i][13]), float(family[j][14]) - float(family[i][14]), float(family[j][15]) - float(family[i][15])] a_vector_1 = np.array(a_vector_1) b_vector_1 = np.array(b_vector_1) theta_p_1 = vg.angle(a_vector_1, b_vector_1) theta_e_1 = icos(1. - 511. * (1 / (float(family[j][11])) - 1 / (float(family[i][11]) + float(family[j][11])))) a_vector_2 = [float(family[j][13]) - float(family[k][13]), float(family[j][14]) - float(family[k][14]), float(family[j][15]) - float(family[k][15])] b_vector_2 = [float(family[i][13]) - float(family[j][13]), float(family[i][14]) - float(family[j][14]), float(family[i][15]) - float(family[j][15])] a_vector_2 = np.array(a_vector_2) b_vector_2 = np.array(b_vector_2) theta_p_2 = vg.angle(a_vector_2, b_vector_2) theta_e_2 = icos(1. - 511. * (1 / (float(family[i][11])) - 1 / (float(family[i][11]) + float(family[j][11])))) a_vector_3 = [float(family[k][13]) - float(family[j][13]), float(family[k][14]) - float(family[j][14]), float(family[k][15]) - float(family[j][15])] b_vector_3 = [float(family[l][13]) - float(family[k][13]), float(family[l][14]) - float(family[k][14]), float(family[l][15]) - float(family[k][15])] a_vector_3 = np.array(a_vector_3) b_vector_3 =
np.array(b_vector_3)
numpy.array
import numpy as np import pandas as pd from scipy import stats import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures # GET DATA path = '../../data/ParteI/data_sub.xlsx' dataFrame = pd.read_excel(path, header=2, sheet_name='trials_available') headers = dataFrame.columns sub_index = len(pd.read_excel(path, header=0, sheet_name='trials_available').columns) # set initial conditions trials = 5 # for each speed fields = 6 # (vas, rnd) for each site subjects = int(sub_index / fields) print('number of subjects: ', subjects) # since we are calculating the mean for each subject in all 3 sites # its necessary to stablish the index of each score position index = [0, 2] color = ['b', 'g'] condition = [3, 10, 30, 50, 100, 200] # fetch_data will read the column for the specific subject at the specific position # and storage the scores given the current speed def fetch_data(trials, dataFrame, headers, condition, i, index_vas, index_speed): s1 = [] for s in range(0, subjects): for t in range(0, trials * 6): if dataFrame[headers[(s * fields + index_speed)]][t] == condition[i]: s1.append(dataFrame[headers[s * fields + index_vas]][t]) if len(s1) == (trials * subjects): ''' print(condition[i]) print(s1) print(np.mean(s1)) ''' mean.append(np.mean(s1)) sd.append(np.std(s1)) se.append(stats.sem(s1)) # the next cycle will move across the data and pass the info for each subject to fetch_data for j in range(0, len(index)): index_vas = index[j] index_speed = index_vas + 1 # create storage variables mean = [] sd = [] se = [] for i in range(0, len(condition)): fetch_data(trials, dataFrame, headers, condition, i, index_vas, index_speed) line_x =
np.array(condition)
numpy.array
import os import numpy as np import matplotlib.pyplot as plt import h5py import ROOT from gna.env import env from gna.ui import basecmd from mpl_tools.helpers import savefig class cmd(basecmd): @classmethod def initparser(cls, parser, env): mode = parser.add_mutually_exclusive_group(required=True) mode.add_argument('--fit-input', type=os.path.abspath, help='Path to file with covariance matrix produced by minimizer after the fit') mode.add_argument('--analysis', type=env.parts.analysis, help='Analysis from which covmatrices would be used') parser.add_argument('--fit-parameters', action='append', nargs='*', default=[], help='Keep only covariances for specified parameters from file') parser.add_argument('--savefig', '-o', '--output', help='Path to save figure') parser.add_argument('--cmap', help='Use cmap from matplotlib') parser.add_argument('--show', action='store_true', help='Show plot of covariance matrix') parser.add_argument('--dump', help='File to dump covariance matrix') parser.add_argument('--mask', action='store_true', help="Mask zeros from covariance matrix") def init(self): if self.opts.fit_input: self.from_fit() if self.opts.analysis: self.from_graph() if self.opts.mask: self.mask_zeroes() self.plot_matrices() def from_fit(self): with h5py.File(self.opts.fit_input, 'r') as f: parameters_from_file = f['par_names'] self.covmat = f['cov_matrix'][:] sigmas = np.diagonal(self.covmat)**0.5 self.cormat = self.covmat/sigmas/sigmas[:,None] def from_graph(self): chol_blocks = (np.tril(block.cov.data()) for block in self.opts.analysis) matrix_stack = [np.matmul(chol, chol.T) for chol in chol_blocks] self.covmat = self.make_blocked_matrix(matrix_stack) sdiag = np.diagonal(covmat)**0.5 self.cormat = covmat/sdiag/sdiag[:,None] def plot_matrices(self): if self.opts.cmap: plt.set_cmap(self.opts.cmap) fig, ax = plt.subplots() im = ax.matshow(self.covmat) ax.minorticks_on() cbar = fig.colorbar(im) plt.title("Covariance matrix") savefig(self.opts.savefig, suffix='_cov') fig, ax = plt.subplots() im = ax.matshow(self.cormat) ax.minorticks_on() cbar = fig.colorbar(im) plt.title("Correlation matrix") savefig(self.opts.savefig, suffix='_cor') if self.opts.dump: np.savez(self.opts.dump, self.covmat) if self.opts.show: plt.show() def mask_zeroes(self): self.covmat = np.ma.array(self.covmat, mask=(self.covmat == 0.)) self.cormat = np.ma.array(self.cormat, mask=(self.cormat == 0.)) def make_blocked_matrix(self, matrices): matrix_stack = [] total_size = sum(mat.shape[0] for mat in matrices) for idx, matrix in enumerate(matrices): size_to_left = sum(mat.shape[1] for mat in matrices[:idx]) assert size_to_left is not None size_to_right = total_size - size_to_left - matrix.shape[1] layer = [np.zeros((matrix.shape[0], size_to_left)), matrix, np.zeros((matrix.shape[0], size_to_right))] matrix_stack.append(layer) return
np.block(matrix_stack)
numpy.block
import os import sys import obspy import scipy import pyasdf import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.fftpack import next_fast_len from obspy.signal.filter import bandpass from seisgo import noise, stacking,utils import pygmt as gmt from obspy import UTCDateTime def plot_eventsequence(cat,figsize=(12,4),ytype='magnitude',figname=None, yrange=None,save=False,stem=True): if isinstance(cat,obspy.core.event.catalog.Catalog): cat=pd.DataFrame(utils.qml2list(cat)) elif isinstance(cat,list): cat=pd.DataFrame(cat) #All magnitudes greater than or equal to the limit will be plotted plt.figure(figsize=figsize) plt.title(ytype+" vs. time") plt.xlabel("Date (UTC)") plt.ylabel(ytype) if yrange is not None: ymin,ymax=yrange if ytype.lower()=="magnitude": cat2=cat[(cat.magnitude>=yrange[0]) & (cat.magnitude<=yrange[1]) ] elif ytype.lower()=="depth": cat2=cat[(cat.depth>=yrange[0]) & (cat.depth<=yrange[1]) ] else: cat2=cat if ytype.lower()=="magnitude": ymin=np.min(cat2.magnitude)*0.9 ymax=np.max(cat2.magnitude)*1.1 elif ytype.lower()=="depth": ymin=np.min(cat2.depth)*0.9 ymax=np.max(cat2.depth)*1.1 t=[] for i in range(len(cat2)): tTime=obspy.UTCDateTime(cat2.iloc[i]["datetime"]) t.append(tTime.datetime) if stem: if ytype.lower()=="magnitude": markerline, stemlines, baseline=plt.stem(t,cat2.magnitude,linefmt='k-',markerfmt="o", bottom=ymin) elif ytype.lower()=="depth": markerline, stemlines, baseline=plt.stem(t,cat2.depth,linefmt='k-',markerfmt="o", bottom=ymin) markerline.set_markerfacecolor('r') markerline.set_markeredgecolor('r') else: if ytype.lower()=="magnitude": plt.scatter(t,cat2.magnitude,5,'k') elif ytype.lower()=="depth": plt.scatter(t,cat2.depth,cat2.magnitude,'k') # plt.grid(axis="both") plt.ylim([ymin,ymax]) if save: if figname is not None: plt.savefig(figname) else: plt.savefig(ytype+"_vs_time.png") else: plt.show() def plot_stations(lon,lat,region,markersize="c0.2c",title="station map",style="fancy",figname=None, format='png',distance=None,projection="M5i", xshift="6i",frame="af"): """ lon, lat: could be list of vectors contaning multiple sets of stations. The number of sets must be the same as the length of the marker list. marker: a list specifying the symbols for each station set. region: [minlon,maxlon,minlat,maxlat] for map view """ nsta=len(lon) if isinstance(markersize,str): markersize=[markersize]*nsta fig = gmt.Figure() gmt.config(MAP_FRAME_TYPE=style) for i in range(nsta): if i==0: fig.coast(region=region, resolution="f",projection=projection, rivers='rivers', water="cyan",frame=frame,land="white", borders=["1/0.5p,gray,2/1p,gray"]) fig.basemap(frame='+t"'+title+'"') fig.plot( x=lon[i], y=lat[i], style=markersize[i], color="red", ) if figname is None: figname='stationmap.'+format fig.savefig(figname) print('plot was saved to: '+figname) ##plot power spectral density def plot_psd(data,dt,labels=None,xrange=None,cmap='jet',normalize=True,figsize=(13,5),\ save=False,figname=None,tick_inc=None): """ Plot the power specctral density of the data array. =PARAMETERS= data: 2-D array containing the data. the data to be plotted should be on axis 1 (second dimention) dt: sampling inverval in time. labels: row labels of the data, default is None. cmap: colormap, default is 'jet' time_format: format to show time marks, default is: '%Y-%m-%dT%H' normalize: whether normalize the PSD in plotting, default is True figsize: figure size, default: (13,5) """ data=np.array(data) if data.ndim > 2: raise ValueError('only plot 1-d arrya or 2d matrix for now. the input data has a dimention of %d'%(data.ndim)) f,psd=utils.psd(data,1/dt) f=f[1:] plt.figure(figsize=figsize) ax=plt.subplot(111) if data.ndim==2: nwin=data.shape[0] if tick_inc is None: if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 psdN=np.ndarray((psd.shape[0],psd.shape[1]-1)) for i in range(psd.shape[0]): if normalize: psdN[i,:]=psd[i,1:]/np.max(np.abs(psd[i,1:])) else: psdN[i,:]=psd[i,1:] plt.imshow(psdN,aspect='auto',extent=[f.min(),f.max(),psdN.shape[0],0],cmap=cmap) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) if labels is not None: ax.set_yticklabels(labels[0:nwin:tick_inc]) if normalize: plt.colorbar(label='normalized PSD') else: plt.colorbar(label='PSD') else: if normalize: psdN=psd[1:]/np.max(np.abs(psd[1:])) else: psdN[i,:]=psd[1:] plt.plot(f,psdN) if xrange is None:plt.xlim([f[1],f[-1]]) else: plt.xlim(xrange) plt.xscale('log') plt.xlabel('frequency (Hz)') plt.title('PSD') if save: if figname is not None: plt.savefig(figname) else: plt.savefig("PSD.png") else: plt.show() ############################################################################# ############### PLOTTING RAW SEISMIC WAVEFORMS ########################## ############################################################################# ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_waveform(sfile,net,sta,freqmin,freqmax,save=False,figdir=None,format='pdf'): ''' display the downloaded waveform for station A PARAMETERS: ----------------------- sfile: containing all wavefrom data for a time-chunck in ASDF format net,sta,comp: network, station name and component freqmin: min frequency to be filtered freqmax: max frequency to be filtered USAGE: ----------------------- plot_waveform('temp.h5','CI','BLC',0.01,0.5) ''' # open pyasdf file to read try: ds = pyasdf.ASDFDataSet(sfile,mode='r') sta_list = ds.waveforms.list() except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # check whether station exists tsta = net+'.'+sta if tsta not in sta_list: raise ValueError('no data for %s in %s'%(tsta,sfile)) tcomp = ds.waveforms[tsta].get_waveform_tags() ncomp = len(tcomp) if ncomp==0: print('no data found for the specified net.sta.') return None tr = ds.waveforms[tsta][tcomp[0]] dt = tr[0].stats.delta npts = tr[0].stats.npts tt = np.arange(0,npts)*dt if ncomp == 1: data = tr[0].data data = bandpass(data,freqmin,freqmax,int(1/dt),corners=4, zerophase=True) fig=plt.figure(figsize=(9,3)) plt.plot(tt,data,'k-',linewidth=1) plt.title('T\u2080:%s %s.%s.%s @%5.3f-%5.2f Hz' % (tr[0].stats.starttime,net,sta,tcomp[0].split('_')[0].upper(),freqmin,freqmax)) plt.xlabel('Time [s]') plt.ylabel('Amplitude') plt.tight_layout() plt.show() else: data = np.zeros(shape=(ncomp,npts),dtype=np.float32) for ii in range(ncomp): data[ii] = ds.waveforms[tsta][tcomp[ii]][0].data data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) fig=plt.figure(figsize=(9,6)) for c in range(ncomp): if c==0: plt.subplot(ncomp,1,1) plt.plot(tt,data[0],'k-',linewidth=1) plt.title('T\u2080:%s %s.%s @%5.3f-%5.2f Hz' % (tr[0].stats.starttime,net,sta,freqmin,freqmax)) plt.legend([tcomp[0].split('_')[0].upper()],loc='upper left') plt.xlabel('Time [s]') else: plt.subplot(ncomp,1,c+1) plt.plot(tt,data[c],'k-',linewidth=1) plt.legend([tcomp[c].split('_')[0].upper()],loc='upper left') plt.xlabel('Time [s]') fig.tight_layout() if save: if not os.path.isdir(figdir):os.mkdir(figdir) sfilebase=sfile.split('/')[-1] outfname = figdir+'/{0:s}_{1:s}.{2:s}'.format(sfilebase.split('.')[0],net,sta) fig.savefig(outfname+'.'+format, format=format, dpi=300) plt.close() else: fig.show() ############################################################################# ###############PLOTTING XCORR RESULTS AS THE OUTPUT OF SEISGO ########################## ############################################################################# def plot_xcorr_substack(sfile,freqmin,freqmax,lag=None,comp='ZZ', save=True,figdir=None): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- sfile: cross-correlation functions outputed by SeisGo workflow freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_xcorr_substack('temp.h5',0.1,1,100,True,'./') Note: IMPORTANT!!!! this script only works for cross-correlation with sub-stacks being set to True in S1. ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables spairs = ds.auxiliary_data.list() path_lists = ds.auxiliary_data[spairs[0]].list() flag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['substack'] dt = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['dt'] maxlag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # only works for cross-correlation with substacks generated if not flag: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # lags for display if not lag:lag=maxlag lag0=np.min([1.0*lag,maxlag]) if lag>maxlag:raise ValueError('lag excceds maxlag!') # t is the time labels for plotting if lag>=5: tstep=int(int(lag)/5) t1=np.arange(-int(lag),0,step=tstep) t2=np.arange(0,int(lag+0.5*tstep),step=tstep) t=np.concatenate((t1,t2)) else: tstep=lag/5 t1=np.arange(-lag,0,step=tstep) t2=np.arange(0,lag+0.5*tstep,step=tstep) t=np.concatenate((t1,t2)) indx1 = int((maxlag-lag0)/dt) indx2 = indx1+2*int(lag0/dt)+1 for spair in spairs: ttr = spair.split('_') net1,sta1 = ttr[0].split('.') net2,sta2 = ttr[1].split('.') path_lists = ds.auxiliary_data[spair].list() for ipath in path_lists: chan1,chan2 = ipath.split('_') cc_comp=chan1[-1]+chan2[-1] if cc_comp == comp or comp=='all' or comp=='ALL': try: dist = ds.auxiliary_data[spair][ipath].parameters['dist'] ngood= ds.auxiliary_data[spair][ipath].parameters['ngood'] ttime= ds.auxiliary_data[spair][ipath].parameters['time'] except Exception: print('continue! something wrong with %s %s'%(spair,ipath)) continue # cc matrix timestamp = np.empty(ttime.size,dtype='datetime64[s]') data = ds.auxiliary_data[spair][ipath].data[:,indx1:indx2] # print(data.shape) nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) if nwin==0 or len(ngood)==1: print('continue! no enough substacks!');continue tmarks = [] data_normalizd=data # load cc for each station-pair for ii in range(nwin): data[ii] = bandpass(data[ii],freqmin,freqmax,1/dt,corners=4, zerophase=True) data[ii] = data[ii]-np.mean(data[ii]) amax[ii] = np.max(np.abs(data[ii])) data_normalizd[ii] = data[ii]/amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) tmarks.append(obspy.UTCDateTime(ttime[ii]).strftime('%Y-%m-%dT%H:%M:%S')) dstack_mean=np.mean(data,axis=0) dstack_robust=stacking.robust_stack(data)[0] # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig = plt.figure(figsize=(10,6)) ax = fig.add_subplot(5,1,(1,3)) ax.matshow(data_normalizd,cmap='seismic',extent=[-lag0,lag0,nwin,0],aspect='auto') ax.plot((0,0),(nwin,0),'k-') ax.set_title('%s.%s.%s %s.%s.%s dist:%5.2fkm' % (net1,sta1,chan1,net2,sta2,chan2,dist)) ax.set_xlabel('time [s]') ax.set_xticks(t) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) # ax.set_yticklabels(np.arange(0,nwin,step=tick_inc)) ax.set_yticklabels(tmarks[0:nwin:tick_inc]) ax.set_xlim([-lag,lag]) ax.xaxis.set_ticks_position('bottom') ax1 = fig.add_subplot(5,1,(4,5)) ax1.set_title('stack at %4.2f-%4.2f Hz'%(freqmin,freqmax)) tstack=np.arange(-lag0,lag0+0.5*dt,dt) if len(tstack)>len(dstack_mean):tstack=tstack[:-1] ax1.plot(tstack,dstack_mean,'b-',linewidth=1,label='mean') ax1.plot(tstack,dstack_robust,'r-',linewidth=1,label='robust') ax1.set_xlabel('time [s]') ax1.set_xticks(t) ax1.set_xlim([-lag,lag]) ylim=ax1.get_ylim() ax1.plot((0,0),ylim,'k-') ax1.set_ylim(ylim) ax1.legend(loc='upper right') ax1.grid() # ax2 = fig.add_subplot(414) # ax2.plot(amax/min(amax),'r-') # ax2.plot(ngood,'b-') # ax2.set_xlabel('waveform number') # ax2.set_xticks(np.arange(0,nwin,step=tick_inc)) # ax2.set_xticklabels(tmarks[0:nwin:tick_inc]) # #for tick in ax[2].get_xticklabels(): # # tick.set_rotation(30) # ax2.legend(['relative amp','ngood'],loc='upper right') fig.tight_layout() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.isdir(figdir):os.mkdir(figdir) outfname = figdir+\ '/{0:s}.{1:s}.{2:s}_{3:s}.{4:s}.{5:s}_{6:s}-{7:s}Hz.png'.format(net1,sta1,\ chan1,net2,\ sta2,chan2, str(freqmin),str(freqmax)) fig.savefig(outfname, format='png', dpi=400) print('saved to: '+outfname) plt.close() else: fig.show() def plot_corrfile(sfile,freqmin,freqmax,lag=None,comp='ZZ', save=True,figname=None,format='png',figdir=None): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- sfile: cross-correlation functions outputed by SeisGo workflow freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_corrfile('temp.h5',0.1,1,100,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') corrdict=noise.extract_corrdata(sfile,comp=comp) clist=list(corrdict.keys()) for c in clist: corr=corrdict[c] if comp in list(corr.keys()): corr[comp].plot(freqmin=freqmin,freqmax=freqmax,lag=lag,save=save,figdir=figdir, figname=figname,format=format) def plot_corrdata(corr,freqmin=None,freqmax=None,lag=None,save=False,figdir=None,figsize=(10,8)): ''' display the 2D matrix of the cross-correlation functions for a certain time-chunck. PARAMETERS: -------------------------- corr: : class:`~seisgo.types.CorrData` CorrData object containing the correlation functions and the metadata. freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: -------------------------- plot_corrdata(corr,0.1,1,100,save=True,figdir='./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') netstachan1 = corr.net[0]+'.'+corr.sta[0]+'.'+corr.loc[0]+'.'+corr.chan[0] netstachan2 = corr.net[1]+'.'+corr.sta[1]+'.'+corr.loc[1]+'.'+corr.chan[1] dt,maxlag,dist,ngood,ttime,substack = [corr.dt,corr.lag,corr.dist,corr.ngood,corr.time,corr.substack] # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') lag0=np.min([1.0*lag,maxlag]) # t is the time labels for plotting if lag>=5: tstep=int(int(lag)/5) t1=np.arange(-int(lag),0,step=tstep);t2=np.arange(0,int(lag+0.5*tstep),step=tstep) t=np.concatenate((t1,t2)) else: tstep=lag/5 t1=np.arange(-lag,0,step=tstep);t2=np.arange(0,lag+0.5*tstep,step=tstep) t=np.concatenate((t1,t2)) indx1 = int((maxlag-lag0)/dt);indx2 = indx1+2*int(lag0/dt)+1 # cc matrix if substack: data = corr.data[:,indx1:indx2] timestamp = np.empty(ttime.size,dtype='datetime64[s]') # print(data.shape) nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) if nwin==0 or len(ngood)==1: print('continue! no enough trace to plot!') return tmarks = [] data_normalizd=data # load cc for each station-pair for ii in range(nwin): if freqmin is not None and freqmax is not None: data[ii] = bandpass(data[ii],freqmin,freqmax,1/dt,corners=4, zerophase=True) data[ii] = data[ii]-np.mean(data[ii]) amax[ii] = np.max(np.abs(data[ii])) data_normalizd[ii] = data[ii]/amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) tmarks.append(obspy.UTCDateTime(ttime[ii]).strftime('%Y-%m-%dT%H:%M:%S')) dstack_mean=np.mean(data,axis=0) # dstack_robust=stack.robust_stack(data)[0] # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig = plt.figure(figsize=figsize) ax = fig.add_subplot(6,1,(1,4)) ax.matshow(data_normalizd,cmap='seismic',extent=[-lag0,lag0,nwin,0],aspect='auto') ax.plot((0,0),(nwin,0),'k-') if freqmin is not None and freqmax is not None: ax.set_title('%s-%s : dist : %5.2f km : %4.2f-%4.2f Hz' % (netstachan1,netstachan2, dist,freqmin,freqmax)) else: ax.set_title('%s-%s : dist : %5.2f km : unfiltered' % (netstachan1,netstachan2,dist)) ax.set_xlabel('time [s]') ax.set_xticks(t) ax.set_yticks(np.arange(0,nwin,step=tick_inc)) ax.set_yticklabels(tmarks[0:nwin:tick_inc]) ax.set_xlim([-lag,lag]) ax.xaxis.set_ticks_position('bottom') ax1 = fig.add_subplot(6,1,(5,6)) if freqmin is not None and freqmax is not None: ax1.set_title('stack at %4.2f-%4.2f Hz'%(freqmin,freqmax)) else: ax1.set_title('stack: unfiltered') tstack=np.arange(-lag0,lag0+0.5*dt,dt) if len(tstack)>len(dstack_mean):tstack=tstack[:-1] ax1.plot(tstack,dstack_mean,'b-',linewidth=1,label='mean') # ax1.plot(tstack,dstack_robust,'r-',linewidth=1,label='robust') ax1.set_xlabel('time [s]') ax1.set_xticks(t) ax1.set_xlim([-lag,lag]) ylim=ax1.get_ylim() ax1.plot((0,0),ylim,'k-') ax1.set_ylim(ylim) ax1.legend(loc='upper right') ax1.grid() fig.tight_layout() else: #only one trace available data = corr.data[indx1:indx2] # load cc for each station-pair if freqmin is not None and freqmax is not None: data = bandpass(data,freqmin,freqmax,1/dt,corners=4, zerophase=True) data = data-np.mean(data) amax = np.max(np.abs(data)) data /= amax timestamp = obspy.UTCDateTime(ttime) tmarks=obspy.UTCDateTime(ttime).strftime('%Y-%m-%dT%H:%M:%S') tx=np.arange(-lag0,lag0+0.5*dt,dt) if len(tx)>len(data):tx=tx[:-1] plt.figure(figsize=figsize) ax=plt.gca() plt.plot(tx,data,'k-',linewidth=1) if freqmin is not None and freqmax is not None: plt.title('%s-%s : dist : %5.2f km : %4.2f-%4.2f Hz' % (netstachan1,netstachan2, dist,freqmin,freqmax)) else: plt.title('%s-%s : dist : %5.2f km : unfiltered' % (netstachan1,netstachan2,dist)) plt.xlabel('time [s]') plt.xticks(t) ylim=ax.get_ylim() plt.plot((0,0),ylim,'k-') plt.ylim(ylim) plt.xlim([-lag,lag]) ax.grid() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.isdir(figdir):os.mkdir(figdir) outfname = figdir+\ '/{0:s}_{1:s}_{2:s}-{3:s}Hz.png'.format(netstachan1,netstachan2, str(freqmin),str(freqmax)) plt.savefig(outfname, format='png', dpi=300) print('saved to: '+outfname) plt.close() else: plt.show() ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_xcorr_substack_spect(sfile,freqmin,freqmax,lag=None,save=True,figdir='./'): ''' display the amplitude spectrum of the cross-correlation functions for a time-chunck. PARAMETERS: ----------------------- sfile: cross-correlation functions outputed by S1 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display USAGE: ----------------------- plot_xcorr_substack_spect('temp.h5',0.1,1,200,True,'./') Note: IMPORTANT!!!! this script only works for the cross-correlation with sub-stacks in S1. ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables spairs = ds.auxiliary_data.list() path_lists = ds.auxiliary_data[spairs[0]].list() flag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['substack'] dt = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['dt'] maxlag = ds.auxiliary_data[spairs[0]][path_lists[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() # only works for cross-correlation with substacks generated if not flag: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 nfft = int(next_fast_len(indx2-indx1)) freq = scipy.fftpack.fftfreq(nfft,d=dt)[:nfft//2] for spair in spairs: ttr = spair.split('_') net1,sta1 = ttr[0].split('.') net2,sta2 = ttr[1].split('.') for ipath in path_lists: chan1,chan2 = ipath.split('_') try: dist = ds.auxiliary_data[spair][ipath].parameters['dist'] ngood= ds.auxiliary_data[spair][ipath].parameters['ngood'] ttime= ds.auxiliary_data[spair][ipath].parameters['time'] timestamp = np.empty(ttime.size,dtype='datetime64[s]') except Exception: print('continue! something wrong with %s %s'%(spair,ipath)) continue # cc matrix data = ds.auxiliary_data[spair][ipath].data[:,indx1:indx2] nwin = data.shape[0] amax = np.zeros(nwin,dtype=np.float32) spec = np.zeros(shape=(nwin,nfft//2),dtype=np.complex64) if nwin==0 or len(ngood)==1: print('continue! no enough substacks!');continue # load cc for each station-pair for ii in range(nwin): spec[ii] = scipy.fftpack.fft(data[ii],nfft,axis=0)[:nfft//2] spec[ii] /= np.max(np.abs(spec[ii]),axis=0) data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = max(data[ii]) data[ii] /= amax[ii] timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # plotting if nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig,ax = plt.subplots(3,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s.%s.%s %s.%s.%s dist:%5.2f km' % (net1,sta1,chan1,net2,sta2,chan2,dist)) ax[0].set_xlabel('time [s]') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:-1:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].matshow(np.abs(spec),cmap='seismic',extent=[freq[0],freq[-1],nwin,0],aspect='auto') ax[1].set_xlabel('freq [Hz]') ax[1].set_ylabel('amplitudes') ax[1].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[1].xaxis.set_ticks_position('bottom') ax[2].plot(amax/min(amax),'r-') ax[2].plot(ngood,'b-') ax[2].set_xlabel('waveform number') #ax[1].set_xticks(np.arange(0,nwin,int(nwin/5))) ax[2].legend(['relative amp','ngood'],loc='upper right') fig.tight_layout() # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.ifigdir(figdir):os.mkdir(figdir) outfname = figdir+'/{0:s}.{1:s}.{2:s}_{3:s}.{4:s}.{5:s}.pdf'.format(net1,sta1,chan1,net2,sta2,chan2) fig.savefig(outfname, format='pdf', dpi=400) plt.close() else: fig.show() ############################################################################# ###############PLOTTING THE POST-STACKING XCORR FUNCTIONS AS OUTPUT OF S2 STEP IN NOISEPY ########################## ############################################################################# ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_substack_all(sfile,freqmin,freqmax,comp,lag=None,save=False,figdir=None): ''' display the 2D matrix of the cross-correlation functions stacked for all time windows. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display comp: cross component of the targeted cc functions USAGE: ---------------------- plot_substack_all('temp.h5',0.1,1,'ZZ',50,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') paths = comp try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables dtype_lists = ds.auxiliary_data.list() dt = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dt'] dist = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dist'] maxlag = ds.auxiliary_data[dtype_lists[0]][paths].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() if len(dtype_lists)==1: raise ValueError('Abort! seems no substacks have been done') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # other parameters to keep nwin = len(dtype_lists)-1 data = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) ngood= np.zeros(nwin,dtype=np.int16) ttime= np.zeros(nwin,dtype=np.int) timestamp = np.empty(ttime.size,dtype='datetime64[s]') amax = np.zeros(nwin,dtype=np.float32) for ii,itype in enumerate(dtype_lists[2:]): timestamp[ii] = obspy.UTCDateTime(np.float(itype[1:])) try: ngood[ii] = ds.auxiliary_data[itype][paths].parameters['ngood'] ttime[ii] = ds.auxiliary_data[itype][paths].parameters['time'] #timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # cc matrix data[ii] = ds.auxiliary_data[itype][paths].data[indx1:indx2] data[ii] = bandpass(data[ii],freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = np.max(data[ii]) data[ii] /= amax[ii] except Exception as e: print(e);continue if len(ngood)==1: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # plotting if nwin>100: tick_inc = int(nwin/10) elif nwin>10: tick_inc = int(nwin/5) else: tick_inc = 2 fig,ax = plt.subplots(2,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s dist:%5.2f km filtered at %4.2f-%4.2fHz' % (sfile.split('/')[-1],dist,freqmin,freqmax)) ax[0].set_xlabel('time [s]') ax[0].set_ylabel('wavefroms') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:nwin:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].plot(amax/max(amax),'r-') ax[1].plot(ngood,'b-') ax[1].set_xlabel('waveform number') ax[1].set_xticks(np.arange(0,nwin,nwin//5)) ax[1].legend(['relative amp','ngood'],loc='upper right') # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.ifigdir(figdir):os.mkdir(figdir) outfname = figdir+'/{0:s}_{1:4.2f}_{2:4.2f}Hz.pdf'.format(sfile.split('/')[-1],freqmin,freqmax) fig.savefig(outfname, format='pdf', dpi=400) plt.close() else: fig.show() ''' Inherited and modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_substack_all_spect(sfile,freqmin,freqmax,comp,lag=None,save=False,figdir=None): ''' display the amplitude spectrum of the cross-correlation functions stacked for all time windows. PARAMETERS: ----------------------- sfile: cross-correlation functions outputed by S2 freqmin: min frequency to be filtered freqmax: max frequency to be filtered lag: time ranges for display comp: cross component of the targeted cc functions USAGE: ----------------------- plot_substack_all('temp.h5',0.1,1,'ZZ',50,True,'./') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') paths = comp try: ds = pyasdf.ASDFDataSet(sfile,mode='r') # extract common variables dtype_lists = ds.auxiliary_data.list() dt = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dt'] dist = ds.auxiliary_data[dtype_lists[0]][paths].parameters['dist'] maxlag = ds.auxiliary_data[dtype_lists[0]][paths].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfile);sys.exit() if len(dtype_lists)==1: raise ValueError('Abort! seems no substacks have been done') # lags for display if not lag:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=int(2*int(lag)/4)) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 nfft = int(next_fast_len(indx2-indx1)) freq = scipy.fftpack.fftfreq(nfft,d=dt)[:nfft//2] # other parameters to keep nwin = len(dtype_lists)-1 data = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) spec = np.zeros(shape=(nwin,nfft//2),dtype=np.complex64) ngood= np.zeros(nwin,dtype=np.int16) ttime= np.zeros(nwin,dtype=np.int) timestamp = np.empty(ttime.size,dtype='datetime64[s]') amax = np.zeros(nwin,dtype=np.float32) for ii,itype in enumerate(dtype_lists[1:]): timestamp[ii] = obspy.UTCDateTime(np.float(itype[1:])) try: ngood[ii] = ds.auxiliary_data[itype][paths].parameters['ngood'] ttime[ii] = ds.auxiliary_data[itype][paths].parameters['time'] #timestamp[ii] = obspy.UTCDateTime(ttime[ii]) # cc matrix tdata = ds.auxiliary_data[itype][paths].data[indx1:indx2] spec[ii] = scipy.fftpack.fft(tdata,nfft,axis=0)[:nfft//2] spec[ii] /= np.max(np.abs(spec[ii])) data[ii] = bandpass(tdata,freqmin,freqmax,int(1/dt),corners=4, zerophase=True) amax[ii] = np.max(data[ii]) data[ii] /= amax[ii] except Exception as e: print(e);continue if len(ngood)==1: raise ValueError('seems no substacks have been done! not suitable for this plotting function') # plotting tick_inc = 50 fig,ax = plt.subplots(3,sharex=False) ax[0].matshow(data,cmap='seismic',extent=[-lag,lag,nwin,0],aspect='auto') ax[0].set_title('%s dist:%5.2f km' % (sfile.split('/')[-1],dist)) ax[0].set_xlabel('time [s]') ax[0].set_ylabel('wavefroms') ax[0].set_xticks(t) ax[0].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[0].set_yticklabels(timestamp[0:nwin:tick_inc]) ax[0].xaxis.set_ticks_position('bottom') ax[1].matshow(np.abs(spec),cmap='seismic',extent=[freq[0],freq[-1],nwin,0],aspect='auto') ax[1].set_xlabel('freq [Hz]') ax[1].set_ylabel('amplitudes') ax[1].set_yticks(np.arange(0,nwin,step=tick_inc)) ax[1].set_yticklabels(timestamp[0:nwin:tick_inc]) ax[1].xaxis.set_ticks_position('bottom') ax[2].plot(amax/max(amax),'r-') ax[2].plot(ngood,'b-') ax[2].set_xlabel('waveform number') ax[2].set_xticks(np.arange(0,nwin,nwin//15)) ax[2].legend(['relative amp','ngood'],loc='upper right') # save figure or just show if save: if figdir==None:figdir = sfile.split('.')[0] if not os.path.ifigdir(figdir):os.mkdir(figdir) outfname = figdir+'/{0:s}.pdf'.format(sfile.split('/')[-1]) fig.savefig(outfname, format='pdf', dpi=400) plt.close() else: fig.show() ''' Modified from the plotting functions in the plotting_module of NoisePy (https://github.com/mdenolle/NoisePy). Credits should be given to the development team for NoisePy (<NAME> and <NAME>). ''' def plot_xcorr_moveout_heatmap(sfiles,sta,dtype,freq,comp,dist_inc,lag=None,save=False,\ figsize=None,format='png',figdir=None): ''' display the moveout (2D matrix) of the cross-correlation functions stacked for all time chuncks. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 sta: station name as the virtual source. dtype: datatype either 'Allstack_pws' or 'Allstack_linear' freqmin: min frequency to be filtered freqmax: max frequency to be filtered comp: cross component dist_inc: distance bins to stack over lag: lag times for displaying save: set True to save the figures (in pdf format) figdir: diresied directory to save the figure (if not provided, save to default dir) USAGE: ---------------------- plot_xcorr_moveout_heatmap('temp.h5','sta','Allstack_pws',0.1,0.2,1,'ZZ',200,True,'./temp') ''' # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') if not isinstance(freq[0],list):freq=[freq] freq=np.array(freq) figlabels=['(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)','(i)'] if freq.shape[0]>9: raise ValueError('freq includes more than 9 (maximum allowed for now) elements!') elif freq.shape[0]==9: subplot=[3,3] figsize0=[14,7.5] elif freq.shape[0] >=7 and freq.shape[0] <=8: subplot=[2,4] figsize0=[18,10] elif freq.shape[0] >=5 and freq.shape[0] <=6: subplot=[2,3] figsize0=[14,7.5] elif freq.shape[0] ==4: subplot=[2,2] figsize0=[10,6] else: subplot=[1,freq.shape[0]] if freq.shape[0]==3: figsize0=[13,3] elif freq.shape[0]==2: figsize0=[8,3] else: figsize0=[4,3] if figsize is None:figsize=figsize0 path = comp receiver = sta+'.h5' stack_method = dtype.split('_')[-1] # extract common variables try: ds = pyasdf.ASDFDataSet(sfiles[0],mpi=False,mode='r') dt = ds.auxiliary_data[dtype][path].parameters['dt'] maxlag= ds.auxiliary_data[dtype][path].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfiles[0]);sys.exit() # lags for display if lag is None:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') t = np.arange(-int(lag),int(lag)+dt,step=(int(2*int(lag)/4))) indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # cc matrix nwin = len(sfiles) data0 = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) dist = np.zeros(nwin,dtype=np.float32) ngood= np.zeros(nwin,dtype=np.int16) # load cc and parameter matrix for ii in range(len(sfiles)): sfile = sfiles[ii] treceiver = sfile.split('_')[-1] ds = pyasdf.ASDFDataSet(sfile,mpi=False,mode='r') try: # load data to variables dist[ii] = ds.auxiliary_data[dtype][path].parameters['dist'] ngood[ii]= ds.auxiliary_data[dtype][path].parameters['ngood'] tdata = ds.auxiliary_data[dtype][path].data[indx1:indx2] if treceiver == receiver: tdata=np.flip(tdata,axis=0) except Exception: print("continue! cannot read %s "%sfile);continue data0[ii] = tdata ntrace = int(np.round(np.max(dist)+0.51)/dist_inc) fig=plt.figure(figsize=figsize) for f in range(len(freq)): freqmin=freq[f][0] freqmax=freq[f][1] data = np.zeros(shape=(nwin,indx2-indx1),dtype=np.float32) for i2 in range(data0.shape[0]): data[i2]=bandpass(data0[i2],freqmin,freqmax,1/dt,corners=4, zerophase=True) # average cc ndata = np.zeros(shape=(ntrace,indx2-indx1),dtype=np.float32) ndist = np.zeros(ntrace,dtype=np.float32) for td in range(ndata.shape[0]): tindx = np.where((dist>=td*dist_inc)&(dist<(td+1)*dist_inc))[0] if len(tindx): ndata[td] = np.mean(data[tindx],axis=0) ndist[td] = (td+0.5)*dist_inc # normalize waveforms indx = np.where(ndist>0)[0] ndata = ndata[indx] ndist = ndist[indx] for ii in range(ndata.shape[0]): # print(ii,np.max(np.abs(ndata[ii]))) ndata[ii] /= np.max(np.abs(ndata[ii])) # plotting figures ax=fig.add_subplot(subplot[0],subplot[1],f+1) ax.matshow(ndata,cmap='seismic',extent=[-lag,lag,ndist[-1],ndist[0]],aspect='auto') ax.set_title('%s %s stack %s %5.3f-%5.2f Hz'%(figlabels[f],sta,stack_method,freqmin,freqmax)) ax.set_xlabel('time [s]') ax.set_ylabel('distance [km]') ax.set_xticks(t) ax.xaxis.set_ticks_position('bottom') #ax.text(np.ones(len(ndist))*(lag-5),dist[ndist],ngood[ndist],fontsize=8) plt.tight_layout() # save figure or show if save: outfname = figdir+'/moveout_'+sta+'_heatmap_'+str(stack_method)+'_'+str(dist_inc)+'kmbin_'+comp+'.'+format plt.savefig(outfname, format=format, dpi=300) plt.close() else: plt.show() #test functions def plot_xcorr_moveout_wiggle(sfiles,sta,dtype,freq,ccomp=None,scale=1.0,lag=None,\ ylim=None,save=False,figsize=None,figdir=None,format='png',minsnr=None): ''' display the moveout waveforms of the cross-correlation functions stacked for all time chuncks. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 sta: source station name dtype: datatype either 'Allstack0pws' or 'Allstack0linear' freqmin: min frequency to be filtered freqmax: max frequency to be filtered ccomp: x-correlation component names, could be a string or a list of strings. scale: plot the waveforms with scaled amplitudes lag: lag times for displaying save: set True to save the figures (in pdf format) figdir: diresied directory to save the figure (if not provided, save to default dir) minsnr: mimumum SNR as a QC criterion, the SNR is computed as max(abs(trace))/mean(abs(trace)), without signal and noise windows. USAGE: ---------------------- plot_xcorr_moveout_wiggle('temp.h5','Allstack0pws',0.1,0.2,'ZZ',200,True,'./temp') ''' if not isinstance(freq[0],list):freq=[freq] freq=np.array(freq) figlabels=['(a)','(b)','(c)','(d)','(e)','(f)','(g)','(h)','(i)'] if freq.shape[0]>9: raise ValueError('freq includes more than 9 (maximum allowed for now) elements!') elif freq.shape[0]==9: subplot=[3,3] figsize0=[14,7.5] elif freq.shape[0] >=7 and freq.shape[0] <=8: subplot=[2,4] figsize0=[18,10] elif freq.shape[0] >=5 and freq.shape[0] <=6: subplot=[2,3] figsize0=[14,7.5] elif freq.shape[0] ==4: subplot=[2,2] figsize0=[10,6] else: subplot=[1,freq.shape[0]] if freq.shape[0]==3: figsize0=[13,3] elif freq.shape[0]==2: figsize0=[8,3] else: figsize0=[4,3] if figsize is None:figsize=figsize0 # qc=False if minsnr is not None: qc=True # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') receiver = sta+'.h5' stack_method = dtype.split('_')[-1] if isinstance(ccomp,str):ccomp=[ccomp] # extract common variables try: ds = pyasdf.ASDFDataSet(sfiles[0],mpi=False,mode='r') complist=ds.auxiliary_data[dtype].list() dt = ds.auxiliary_data[dtype][complist[0]].parameters['dt'] maxlag= ds.auxiliary_data[dtype][complist[0]].parameters['maxlag'] except Exception: print("exit! cannot open %s to read"%sfiles[0]);sys.exit() if ccomp is None:ccomp=complist # lags for display if lag is None:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') tt = np.arange(-lag,lag+dt,dt) indx0= int(maxlag/dt) #zero time index indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # load cc and parameter matrix for ic in range(len(ccomp)): comp = ccomp[ic] data0 = np.zeros(shape=(len(sfiles),indx2-indx1),dtype=np.float32) dist = np.zeros(len(sfiles),dtype=np.float32) snrneg = np.zeros(len(sfiles),dtype=np.float32) snrpos = np.zeros(len(sfiles),dtype=np.float32) iflip = np.zeros(len(sfiles),dtype=np.int16) for ii in range(len(sfiles)): sfile = sfiles[ii] iflip[ii] = 0 treceiver = sfile.split('_')[-1] if treceiver == receiver: iflip[ii] = 1 ds = pyasdf.ASDFDataSet(sfile,mpi=False,mode='r') try: # load data to variables dist[ii] = ds.auxiliary_data[dtype][comp].parameters['dist'] ngood= ds.auxiliary_data[dtype][comp].parameters['ngood'] data0[ii] = ds.auxiliary_data[dtype][comp].data[indx1:indx2] if qc: #get the pseudo-SNR: maximum absolute amplitude/mean absolute amplitude. dneg=ds.auxiliary_data[dtype][comp].data[indx1:indx0-1] dpos=ds.auxiliary_data[dtype][comp].data[indx0+1:indx2] snrneg[ii]=np.max(np.abs(dneg))/np.mean(np.abs(dneg)) snrpos[ii]=np.max(np.abs(dpos))/np.mean(np.abs(dpos)) # print([snrneg,snrpos]) except Exception as e: print("continue! error working on %s "%sfile); print(e) continue mdist=np.max(dist) mindist=np.min(dist) plt.figure(figsize=figsize) for f in range(freq.shape[0]): freqmin=freq[f][0] freqmax=freq[f][1] plt.subplot(subplot[0],subplot[1],f+1) for i2 in range(data0.shape[0]): tdata = bandpass(data0[i2],freqmin,freqmax,1/dt,corners=4, zerophase=True) tdata /= np.max(tdata,axis=0) if ylim is not None: if dist[i2]>ylim[1] or dist[i2]<ylim[0]: continue if qc: if np.max([snrneg[i2],snrpos[i2]]) < minsnr: continue if iflip[i2]: plt.plot(tt,scale*np.flip(tdata,axis=0)+dist[i2],'k',linewidth=0.8) else: plt.plot(tt,scale*tdata+dist[i2],'k',linewidth=0.8) plt.title('%s %s filtered %5.3f-%5.3f Hz' % (figlabels[f],sta,freqmin,freqmax)) plt.xlabel('time (s)') plt.ylabel('offset (km)') plt.xlim([-1.0*lag,lag]) if ylim is None: ylim=[0.8*mindist,1.1*mdist] plt.plot([0,0],ylim,'b--',linewidth=1) plt.ylim(ylim) font = {'family': 'serif', 'color': 'red', 'weight': 'bold','size': 14} plt.text(lag*0.75,ylim[0]+0.07*(ylim[1]-ylim[0]),comp,fontdict=font, bbox=dict(facecolor='white',edgecolor='none',alpha=0.85)) plt.tight_layout() # save figure or show if save: if len(ccomp)>1: outfname = figdir+'/moveout_'+sta+'_wiggle_'+str(stack_method)+'_'+str(len(ccomp))+\ 'ccomp_minsnr'+str(minsnr)+'.'+format else: outfname = figdir+'/moveout_'+sta+'_wiggle_'+str(stack_method)+'_'+ccomp[0]+\ '_minsnr'+str(minsnr)+'.'+format plt.savefig(outfname, format=format, dpi=300) plt.close() else: plt.show() #get peak amplitudes def get_xcorr_peakamplitudes(sfiles,sta,dtype,freq,ccomp=['ZR','ZT','ZZ','RR','RT','RZ','TR','TT','TZ'], scale=1.0,lag=None,ylim=None,save=False,figdir=None,minsnr=None, velocity=[1.0,5.0]): ''' display the moveout waveforms of the cross-correlation functions stacked for all time chuncks. PARAMETERS: --------------------- sfile: cross-correlation functions outputed by S2 sta: source station name dtype: datatype either 'Allstack0pws' or 'Allstack0linear' freq: [freqmin,freqmax] as a filter. ccomp: xcorr components to extract. scale: scale of the waveforms in plotting the traces. lag: lag times for displaying save: set True to save the figures (in pdf format) figdir: diresied directory to save the figure (if not provided, save to default dir) minsnr: SNR cutoff. the SNR is computed with the given velocity range. velocity: velocity range for the main phase used to estimate the signal windows. RETURNS: ----------------------- A dictionary that contains the following keys: source, receivers. Source is a dictionary containing the 'name', 'location' of the virtual source. Receivers is a dictionary containing the 'name' keys of an eight element array for the 'longitude', 'latitude', 'elevation' of each receiver and the 'distance', 'az','baz',peak_amplitude', 'peak_amplitude_time', 'snr' of the each receiver. USAGE: ---------------------- get_xcorr_peakamplitudes('temp.h5','Allstack0pws',0.1,0.2,'ZZ',200,True,'./temp') ''' #initialize out dictionary outdic=dict() outdic['source']=dict() outdic['source']['name']=sta outdic['source']['location']=np.empty((1,3,)) #three-element array of longitude, latitude, and elevation/depth outdic['cc_comp']=dict() qc=False if minsnr is not None: qc=True # open data for read if save: if figdir==None:print('no path selected! save figures in the default path') freqmin=freq[0] freqmax=freq[1] source = sta stack_method = dtype.split('_')[-1] typeofcomp=str(type(ccomp)).split("'")[1] ccomptemp=[] if typeofcomp=='str': ccomptemp.append(ccomp) ccomp=ccomptemp # print(ccomp) #determine subplot parameters if not specified. if len(ccomp)>9: raise ValueError('ccomp includes more than 9 (maximum allowed) elements!') elif len(ccomp)==9: subplot=[3,3] figsize=[14,10.5] elif len(ccomp) >=7 and len(ccomp) <=8: subplot=[2,4] figsize=[18,7.5] elif len(ccomp) >=5 and len(ccomp) <=6: subplot=[2,3] figsize=[14,7.5] elif len(ccomp) ==4: subplot=[2,2] figsize=[10,7.5] else: subplot=[1,len(ccomp)] if len(ccomp)==3: figsize=[13,3] elif len(ccomp)==2: figsize=[8,3] else: figsize=[4,3] # extract common variables try: ds = pyasdf.ASDFDataSet(sfiles[0],mpi=False,mode='r') dt = ds.auxiliary_data[dtype][ccomp[0]].parameters['dt'] maxlag= ds.auxiliary_data[dtype][ccomp[0]].parameters['maxlag'] iflip = 0 treceiver_tmp = sfiles[0].split('_')[-1] treceiver=treceiver_tmp.split('.')[0]+'.'+treceiver_tmp.split('.')[1] if treceiver == source: iflip = 1 if iflip: outdic['source']['location']=[ds.auxiliary_data[dtype][ccomp[0]].parameters['lonR'], ds.auxiliary_data[dtype][ccomp[0]].parameters['latR'],0.0] else: outdic['source']['location']=[ds.auxiliary_data[dtype][ccomp[0]].parameters['lonS'], ds.auxiliary_data[dtype][ccomp[0]].parameters['latS'],0.0] except Exception: print("exit! cannot open %s to read"%sfiles[0]);sys.exit() # lags for display if lag is None:lag=maxlag if lag>maxlag:raise ValueError('lag excceds maxlag!') tt = np.arange(-int(lag),int(lag)+dt,dt) indx0= int(maxlag/dt) #zero time index indx1 = int((maxlag-lag)/dt) indx2 = indx1+2*int(lag/dt)+1 # load cc and parameter matrix plt.figure(figsize=figsize) for ic in range(len(ccomp)): comp = ccomp[ic] outdic['cc_comp'][comp]=dict() #keys of the 'receivers' dictionary are the station names, saving an eight-element array #for 'longitude', 'latitude', 'elevation','distance','az','baz', 'peak_amplitude', 'peak_amplitude_time', 'snr'. # plt.subplot(subplot[0],subplot[1],ic+1) mdist=0 peakamp=np.empty((len(sfiles),2,)) peakamp.fill(np.nan) peaktt=np.empty((len(sfiles),2,)) peaktt.fill(np.nan) distall=np.empty((len(sfiles),)) distall.fill(np.nan) outdict_tmp=dict() for ii in range(len(sfiles)): sfile = sfiles[ii] iflip = 0 treceiver_tmp = sfile.split('_')[-1] treceiver=treceiver_tmp.split('.')[0]+'.'+treceiver_tmp.split('.')[1] tsource=sfile.split('_')[0] if treceiver == source: iflip = 1 treceiver=tsource ds = pyasdf.ASDFDataSet(sfile,mpi=False,mode='r') try: # load data to variables dist = ds.auxiliary_data[dtype][comp].parameters['dist'] distall[ii]=dist ngood= ds.auxiliary_data[dtype][comp].parameters['ngood'] tdata = ds.auxiliary_data[dtype][comp].data[indx1:indx2] #get key metadata parameters if iflip: az=ds.auxiliary_data[dtype][comp].parameters['baz'] baz=ds.auxiliary_data[dtype][comp].parameters['azi'] lonR=ds.auxiliary_data[dtype][comp].parameters['lonS'] latR=ds.auxiliary_data[dtype][comp].parameters['latS'] else: az=ds.auxiliary_data[dtype][comp].parameters['azi'] baz=ds.auxiliary_data[dtype][comp].parameters['baz'] lonR=ds.auxiliary_data[dtype][comp].parameters['lonR'] latR=ds.auxiliary_data[dtype][comp].parameters['latR'] except Exception as e: print("continue! error working on %s "%sfile); print(e) continue if ylim is not None: if dist>ylim[1] or dist<ylim[0]: continue elif dist>mdist: mdist=dist #get signal window: start and end indices signal_neg=[indx0-int(dist/velocity[0]/dt)-indx1,indx0-int(dist/velocity[1]/dt)-indx1] signal_pos=[int(dist/velocity[1]/dt)+indx0-indx1,int(dist/velocity[0]/dt)+indx0-indx1] tdata = bandpass(tdata,freqmin,freqmax,int(1/dt),corners=4, zerophase=True) if dist/velocity[0] > lag: print('Signal window %6.1f is larger than the max lag %6.1f specified by the user' % (dist/velocity[0],lag)) continue if iflip: dtemp=np.flip(tdata,axis=0) dn=dtemp[signal_neg[0]:signal_neg[1]] #negative data section dp=dtemp[signal_pos[0]:signal_pos[1]] #positive dta section if qc: #get the pseudo-SNR: maximum absolute amplitude/mean absolute amplitude. snrneg=np.max(np.abs(dn))/np.mean(np.abs(tdata[0:indx0-1-indx1])) snrpos=np.max(np.abs(dp))/np.mean(np.abs(tdata[indx0+1-indx1:-1])) if np.nanmax([snrneg,snrpos]) < minsnr: continue #get maximum index maxidx=[np.argmax(np.abs(dn)),np.argmax(np.abs(dp))] if maxidx[0] >0 and maxidx[0]<len(dn)-1: peakamp[ii,0]=np.max(np.abs(dn)) peaktt[ii,0]=tt[maxidx[0]+signal_neg[0]] if maxidx[1] >0 and maxidx[1]<len(dn)-1: peakamp[ii,1]=np.max(np.abs(dp)) peaktt[ii,1]=tt[maxidx[1]+signal_pos[0]] #normalize for plotting plt.plot(tt,dist + scale*dtemp/np.max(dtemp,axis=0),'k',linewidth=0.5) else: dn=tdata[signal_neg[0]:signal_neg[1]] #negative data section dp=tdata[signal_pos[0]:signal_pos[1]] #positive dta section if qc: #get the pseudo-SNR: maximum absolute amplitude/mean absolute amplitude. snrneg=np.max(np.abs(dn))/np.mean(np.abs(tdata[0:indx0-1-indx1])) snrpos=np.max(np.abs(dp))/np.mean(np.abs(tdata[indx0+1-indx1:-1])) if np.nanmax([snrneg,snrpos]) < minsnr: continue #get maximum index maxidx=[np.argmax(np.abs(dn)),np.argmax(np.abs(dp))] if maxidx[0] >0 and maxidx[0]<len(dn)-1: peakamp[ii,0]=np.max(np.abs(dn)) peaktt[ii,0]=tt[maxidx[0]+signal_neg[0]] if maxidx[1] >0 and maxidx[1]<len(dn)-1: peakamp[ii,1]=np.max(np.abs(dp)) peaktt[ii,1]=tt[maxidx[1]+signal_pos[0]] plt.plot(tt,dist + scale*tdata/np.max(tdata,axis=0),'k',linewidth=0.5) #save to out dictionary #initialize the receiver element. outdic['cc_comp'][comp][treceiver]=dict() outdic['cc_comp'][comp][treceiver]['location']=[lonR,latR,0.0] outdic['cc_comp'][comp][treceiver]['az']=az outdic['cc_comp'][comp][treceiver]['baz']=baz outdic['cc_comp'][comp][treceiver]['dist']=dist outdic['cc_comp'][comp][treceiver]['peak_amplitude']=peakamp[ii,:] outdic['cc_comp'][comp][treceiver]['peak_amplitude_time']=peaktt[ii,:] # for jj in range(len(sfiles)): plt.plot(peaktt[jj,:],[distall[jj],distall[jj]],'.r',markersize=2) plt.xlim([-1.0*lag,lag]) if ylim is None: ylim=[0.0,mdist] plt.plot([0,0],ylim,'b--',linewidth=1) #plot the bounding lines for signal windows. plt.plot([0, ylim[1]/velocity[1]],[0, ylim[1]],'c-',linewidth=0.5) #postive lag starting bound plt.plot([0, ylim[1]/velocity[0]],[0, ylim[1]],'c-',linewidth=0.5) #postive lag ending bound plt.plot([0, -ylim[1]/velocity[1]],[0, ylim[1]],'c-',linewidth=0.5) #negative lag starting bound plt.plot([0, -ylim[1]/velocity[0]],[0, ylim[1]],'c-',linewidth=0.5) #negative lag ending bound plt.ylim(ylim) font = {'family': 'serif', 'color': 'red', 'weight': 'bold','size': 10} plt.text(lag*0.75,ylim[0]+0.07*(ylim[1]-ylim[0]),comp,fontdict=font, bbox=dict(facecolor='white',edgecolor='none',alpha=0.85)) plt.title('%s filtered @%5.3f-%5.3f Hz' % (sta,freqmin,freqmax)) plt.xlabel('time (s)') plt.ylabel('offset (km)') plt.tight_layout() # save figure or show if save: outfname = figdir+'/moveout_'+sta+'_wiggle_'+str(stack_method)+'_'+str(freqmin)+'_'+str(freqmax)+'Hz_'+str(len(ccomp))+'ccomp_minsnr'+str(minsnr)+'_peakamp.png' plt.savefig(outfname, format='png', dpi=300) plt.close() else: plt.show() return outdic ##### def plot_xcorr_amplitudes(dict_in,region,fignamebase=None,format='png',distance=None, projection="M5i", xshift="6i",frame="af"): """ This function plots the peak amplitude maps for both negative and positive lags, for each xcorr component pair. The map views plot amplitudes corrected for geometric spreading for surface waves. This function calls pygmt package for plotting. It also plots peak amplitudes v.s. distance, without correcting the amplitudes for geometric spreading. PARAMETERS: ---------------------------- dict_in: dictionary containing peak amplitude information from one virtual source to all other receivers. This can be the output of get_xcorr_peakamplitudes(). region: [minlon,maxlon,minlat,maxlat] for map view DEPENDENCIES: ---------------------------- PyGMT: for plotting map view with geographical projections, which can be specified as arguments. """ source=dict_in['source']['name'] lonS,latS,eleS=dict_in['source']['location'] mindatapoints=2 #at least two receivers having data. otherwise, skip. # if fignamebase is None: fignamebase = source cc_comp=list(dict_in['cc_comp'].keys()) for ic in range(len(cc_comp)): comp = cc_comp[ic] receivers=list(dict_in['cc_comp'][comp].keys()) lonR=[] latR=[] dist=[] peakamp_neg=[] peakamp_pos=[] peaktt_neg=[] peaktt_pos=[] for ir in range(len(receivers)): receiver=receivers[ir] dist0=dict_in['cc_comp'][comp][receiver]['dist'] if distance is not None: if dist0<distance[0] or dist0>distance[1]: continue dist.append(dist0) lonR.append(dict_in['cc_comp'][comp][receiver]['location'][0]) latR.append(dict_in['cc_comp'][comp][receiver]['location'][1]) peakamp_neg.append(np.array(dict_in['cc_comp'][comp][receiver]['peak_amplitude'])[0]*dist0) peakamp_pos.append(np.array(dict_in['cc_comp'][comp][receiver]['peak_amplitude'])[1]*dist0) peaktt_neg.append(np.array(dict_in['cc_comp'][comp][receiver]['peak_amplitude_time'])[0]) peaktt_pos.append(np.array(dict_in['cc_comp'][comp][receiver]['peak_amplitude_time'])[1]) if len(peakamp_neg) >= mindatapoints: #amplitudes map views panelstring=['(a) negative lag','(b) positive lag'] fig = gmt.Figure() for d,dat in enumerate([peakamp_neg,peakamp_pos]): if d>0: fig.shift_origin(xshift=xshift) fig.coast(region=region, projection=projection, frame=frame,land="gray", shorelines=True,borders=["1/1p,black","2/0.5p,white"]) fig.basemap(frame='+t"'+fignamebase.split('/')[-1]+'_'+comp+':'+panelstring[d]+'"') fig.plot( x=lonS, y=latS, style="a0.5c", color="black", ) gmt.makecpt(cmap="viridis", series=[np.min(dat), np.max(dat)]) fig.plot( x=lonR, y=latR, color=dat, cmap=True, style="c0.3c", pen="black", ) fig.colorbar(frame='af+l"Amplitude"') figname=fignamebase+'_'+comp+'_peakamp_map.'+format fig.savefig(figname) print('plot was saved to: '+figname) #peak amplitude arrival times fig = gmt.Figure() for d,dat in enumerate([peaktt_neg,peaktt_pos]): if d>0: fig.shift_origin(xshift=xshift) if d==0: dat=np.multiply(dat,-1.0) fig.coast(region=region, projection=projection, frame=frame,land="gray", shorelines=True,borders=["1/1p,black","2/0.5p,white"]) fig.basemap(frame='+t"'+fignamebase.split('/')[-1]+'_'+comp+':'+panelstring[d]+'"') fig.plot( x=lonS, y=latS, style="a0.5c", color="black", ) gmt.makecpt(cmap="viridis", series=[np.min(dat),
np.max(dat)
numpy.max
import unittest import astropy_healpix as aph import healvis import numpy as np import pytest from astropy.units import sday, rad from pyuvsim.analyticbeam import AnalyticBeam from vis_cpu import HAVE_GPU from hera_sim.defaults import defaults from hera_sim import io from hera_sim import vis from hera_sim.antpos import linear_array from hera_sim.visibilities import VisCPU, HealVis SIMULATORS = (HealVis, VisCPU) if HAVE_GPU: class VisGPU(VisCPU): """Simple mock class to make testing VisCPU with use_gpu=True easier""" def __init__(self, *args, **kwargs): super().__init__(*args, use_gpu=True, **kwargs) SIMULATORS = SIMULATORS + (VisGPU,) np.random.seed(0) NTIMES = 10 BM_PIX = 31 NPIX = 12 * 16 ** 2 NFREQ = 5 @pytest.fixture def uvdata(): defaults.set("h1c") return io.empty_uvdata( Nfreqs=NFREQ, integration_time=sday.to("s") / NTIMES, Ntimes=NTIMES, array_layout={ 0: (0, 0, 0), }, start_time=2456658.5, conjugation="ant1<ant2", ) @pytest.fixture def uvdataJD(): defaults.set("h1c") return io.empty_uvdata( Nfreqs=NFREQ, integration_time=sday.to("s") / NTIMES, Ntimes=NTIMES, array_layout={ 0: (0, 0, 0), }, start_time=2456659, ) def test_healvis_beam(uvdata): freqs = np.unique(uvdata.freq_array) # just anything point_source_pos = np.array([[0, uvdata.telescope_location_lat_lon_alt[0]]]) point_source_flux = np.array([[1.0]] * len(freqs)) hv = HealVis( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), point_source_flux=point_source_flux, point_source_pos=point_source_pos, nside=2 ** 4, ) assert len(hv.beams) == 1 assert isinstance(hv.beams[0], healvis.beam_model.AnalyticBeam) def test_healvis_beam_obsparams(tmpdir): # Now try creating with an obsparam file direc = tmpdir.mkdir("test_healvis_beam") with open(direc.join("catalog.txt"), "w") as fl: fl.write( """SOURCE_ID RA_J2000 [deg] Dec_J2000 [deg] Flux [Jy] Frequency [Hz] HERATEST0 68.48535 -28.559917 1 100000000.0 """ ) with open(direc.join("telescope_config.yml"), "w") as fl: fl.write( """ beam_paths: 0 : 'uniform' telescope_location: (-30.72152777777791, 21.428305555555557, 1073.0000000093132) telescope_name: MWA """ ) with open(direc.join("layout.csv"), "w") as fl: fl.write( """Name Number BeamID E N U Tile061 40 0 -34.8010 -41.7365 1.5010 Tile062 41 0 -28.0500 -28.7545 1.5060 Tile063 42 0 -11.3650 -29.5795 1.5160 Tile064 43 0 -9.0610 -20.7885 1.5160 """ ) with open(direc.join("obsparams.yml"), "w") as fl: fl.write( """ freq: Nfreqs: 1 channel_width: 80000.0 start_freq: 100000000.0 sources: catalog: {0}/catalog.txt telescope: array_layout: {0}/layout.csv telescope_config_name: {0}/telescope_config.yml time: Ntimes: 1 integration_time: 11.0 start_time: 2458098.38824015 """.format( direc.strpath ) ) hv = HealVis(obsparams=direc.join("obsparams.yml").strpath) beam = hv.beams[0] print(beam) print(type(beam)) print(beam.__class__) assert isinstance(beam, healvis.beam_model.AnalyticBeam) def test_JD(uvdata, uvdataJD): freqs = np.unique(uvdata.freq_array) # put a point source in point_source_pos = np.array([[0, uvdata.telescope_location_lat_lon_alt[0]]]) point_source_flux = np.array([[1.0]] * len(freqs)) viscpu1 = VisCPU( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), point_source_flux=point_source_flux, point_source_pos=point_source_pos, nside=2 ** 4, ).simulate() viscpu2 = VisCPU( uvdata=uvdataJD, sky_freqs=np.unique(uvdataJD.freq_array), point_source_flux=point_source_flux, point_source_pos=point_source_pos, nside=2 ** 4, ).simulate() assert viscpu1.shape == viscpu2.shape assert not np.allclose(viscpu1, viscpu2, atol=0.1) @pytest.fixture def uvdata2(): defaults.set("h1c") return io.empty_uvdata( Nfreqs=NFREQ, integration_time=sday.to("s") / NTIMES, Ntimes=NTIMES, array_layout={0: (0, 0, 0), 1: (1, 1, 0)}, start_time=2456658.5, conjugation="ant1<ant2", ) def create_uniform_sky(nbase=4, scale=1, nfreq=NFREQ): """Create a uniform sky with total (integrated) flux density of `scale`""" nside = 2 ** nbase npix = 12 * nside ** 2 return np.ones((nfreq, npix)) * scale / (4 * np.pi) @pytest.mark.parametrize("simulator", SIMULATORS) def test_shapes(uvdata, simulator): I_sky = create_uniform_sky() v = simulator( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), sky_intensity=I_sky, ) assert v.simulate().shape == (uvdata.Nblts, 1, NFREQ, 1) @pytest.mark.parametrize("precision, cdtype", [(1, np.complex64), (2, complex)]) def test_dtypes(uvdata, precision, cdtype): I_sky = create_uniform_sky() sim = VisCPU( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), sky_intensity=I_sky, precision=precision, ) v = sim.simulate() assert v.dtype == cdtype @pytest.mark.parametrize("simulator", SIMULATORS) def test_zero_sky(uvdata, simulator): I_sky = create_uniform_sky(scale=0) sim = simulator( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), sky_intensity=I_sky ) v = sim.simulate() np.testing.assert_equal(v, 0) @pytest.mark.parametrize("simulator", SIMULATORS) def test_autocorr_flat_beam(uvdata, simulator): I_sky = create_uniform_sky(nbase=6) sim = simulator( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), sky_intensity=I_sky, ) v = sim.simulate() # Account for factor of 2 between Stokes I and 'xx' pol for vis_cpu if simulator == VisCPU: v *= 2.0 np.testing.assert_allclose(np.abs(v), np.mean(v), rtol=1e-5) np.testing.assert_almost_equal(np.abs(v), 0.5, 2) @pytest.mark.parametrize("simulator", SIMULATORS) def test_single_source_autocorr(uvdata, simulator): freqs = np.unique(uvdata.freq_array) # put a point source in that will go through zenith. point_source_pos = np.array([[0, uvdata.telescope_location_lat_lon_alt[0]]]) point_source_flux = np.array([[1.0]] * len(freqs)) v = simulator( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), point_source_flux=point_source_flux, point_source_pos=point_source_pos, nside=2 ** 4, ).simulate() # Account for factor of 2 between Stokes I and 'xx' pol for vis_cpu if simulator == VisCPU: v *= 2.0 # Make sure the source is over the horizon half the time # (+/- 1 because of the discreteness of the times) # 1e-3 on either side to account for float inaccuracies. assert ( -1e-3 + (NTIMES / 2.0 - 1.0) / NTIMES <= np.round(np.abs(np.mean(v)), 3) <= (NTIMES / 2.0 + 1.0) / NTIMES + 1e-3 ) @pytest.mark.parametrize("simulator", SIMULATORS) def test_single_source_autocorr_past_horizon(uvdata, simulator): freqs = np.unique(uvdata.freq_array) # put a point source in that will never be up point_source_pos = np.array( [[0, uvdata.telescope_location_lat_lon_alt[0] + 1.1 * np.pi / 2]] ) point_source_flux = np.array([[1.0]] * len(freqs)) v = simulator( uvdata=uvdata, sky_freqs=np.unique(uvdata.freq_array), point_source_flux=point_source_flux, point_source_pos=point_source_pos, nside=2 ** 4, ).simulate() assert np.abs(np.mean(v)) == 0 def test_viscpu_coordinate_correction(uvdata2): freqs = np.unique(uvdata2.freq_array) # put a point source in point_source_pos = np.array([[0, uvdata2.telescope_location_lat_lon_alt[0]]]) point_source_flux = np.array([[1.0]] * len(freqs)) viscpu = VisCPU( uvdata=uvdata2, sky_freqs=freqs, point_source_flux=point_source_flux, point_source_pos=point_source_pos, nside=2 ** 4, ) # Apply correction viscpu.correct_point_source_pos(obstime="2018-08-31T04:02:30.11", frame="icrs") v = viscpu.simulate() assert np.all(~np.isnan(v)) def align_src_to_healpix(point_source_pos, point_source_flux, nside=2 ** 4): """Where the point sources will be placed when converted to healpix model Parameters ---------- point_source_pos : ndarray Positions of point sources to be passed to a Simulator. point_source_flux : ndarray Corresponding fluxes of point sources at each frequency. nside : int Healpix nside parameter. Returns ------- new_pos: ndarray Point sources positioned at their nearest healpix centers. new_flux: ndarray Corresponding new flux values. """ hmap = np.zeros((len(point_source_flux), aph.nside_to_npix(nside))) # Get which pixel every point source lies in. pix = aph.lonlat_to_healpix( point_source_pos[:, 0] * rad, point_source_pos[:, 1] * rad, nside, ) hmap[:, pix] += point_source_flux / aph.nside_to_pixel_area(nside).value nside = aph.npix_to_nside(hmap.shape[1]) ra, dec = aph.healpix_to_lonlat(np.arange(len(hmap[0])), nside) flux = hmap * aph.nside_to_pixel_area(nside).value return np.array([ra.to("rad").value, dec.to("rad").value]).T, flux def test_comparison_zenith(uvdata2): freqs =
np.unique(uvdata2.freq_array)
numpy.unique
from __future__ import print_function, division import scipy #from keras.datasets import mnist from keras_contrib.layers.normalization import InstanceNormalization from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Concatenate from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Sequential, Model from keras.optimizers import Adam from keras import optimizers from keras import initializers from keras import backend as K import datetime import matplotlib.pyplot as plt from matplotlib import gridspec import sys import os import numpy as np from skimage import io from sklearn.model_selection import train_test_split import scipy.misc from scipy.misc import imsave from skimage import data, img_as_float from skimage.measure import compare_ssim as ssim import math #data process functions def getConvPath(material, num): root = os.getcwd() +"/newData/" + material if "Pt_input_images" == material: newPath = root +"/Pt_convolution/Pt_convolution_" + str(num) + ".txt" elif "Pt-Mo5_input_images" == material: newPath = root +"/Pt-Mo_convolution/Pt_Mo5_convolution_" + str(num) +".txt" elif "Pt-Mo50_input_images" == material: newPath = root + "/Pt281-Mo280-convolution/Pt_Mo50_convolution_" + str(int(num)+2) + ".txt" else: print("Material key not found! Please check your spelling.") return newPath def getMultislicePath(material, num): root = os.getcwd() + "/newData/" + material if "Pt_input_images" == material: newPath = root +"/Pt_multislice_16_phonons/Pt_" + str(num) + "_cl160mm_ss.tif" elif "Pt-Mo5_input_images" == material: newPath = root +"/Pt-Mo_multislice/pt_mo5_" + str(num) +"_cl160mm_ss.tif" elif "Pt-Mo50_input_images" == material: newPath = root + "/Pt281-Mo280-multislice/pt_mo50_" + str(int(num)+2) + "_cl160mm_ss.tif" else: print("material key not found! Please check your spelling.") return newPath def getNumImages(material): if "Pt_input_images" == material: num = 20 elif "Pt-Mo5_input_images" == material: num = 20 elif "Pt-Mo50_input_images" == material: num = 18 else: num = 0 return num def cutImage(image,height,width): newImage = image[:height,:width] return newImage #returns list of images cut to be min height and width of the group def cutImages(images): widths = [] heights = [] cutImages = [] for image in images: widths.append(len(image[0])) heights.append(len(image)) minWidth = min(widths) minHeight = min(heights) for i in range(len(images)): cutImages.append(cutImage(images[i],minHeight,minWidth)) return cutImages def padImage(image, desiredHeight, desiredWidth): leftSpace = int((desiredWidth - image.shape[1])/2) topSpace = int((desiredHeight - image.shape[0])/2) base = np.zeros((desiredHeight,desiredWidth)) base[topSpace:image.shape[0]+topSpace,leftSpace:image.shape[1]+leftSpace]=image return base #returns list of images with desired heigh and width def formatImages(images,height,width): newImages = [] for image in roundToZeroes(images): if image.shape[0] > height and image.shape[1] > width: newImages.append(cutImage(image)) elif image.shape[0] <= height and image.shape[1] < width: newImages.append(padImage(image,height,width)) elif image.shape[0] >= height and image.shape[1] <= width: newImages.append(padImage(image[:height,:],height,width)) elif image.shape[0] < height and image.shape[1] >= width: newImages.append(padImage(image[:,:width],height,width)) return newImages # rounds any negative values in the matrix to zero. Requested by Dane def roundToZeroes(images): for image in images: for i in range(image.shape[0]): for j in range(image.shape[1]): if image[i,j] < 0.0: image[i,j] = 0.0 return images def cutPadding(image,height,width): h_dif = len(image) - height w_dif = len(image[0]) - width top = h_dif//2 left = w_dif//2 if h_dif % 2 == 1: bottom = top + 1 else: bottom = top if w_dif % 2 == 1: right = left + 1 else: right = left newImage = image[top:len(image)-bottom ,left:len(image[0])-right] return newImage def kerasSSIM(y_true, y_pred):#may be wrong ## mean, std, correlation mu_x = K.mean(y_pred) mu_y = K.mean(y_true) sig_x = K.std(y_pred) sig_y = K.std(y_true) sig_xy = (sig_x * sig_y)**0.5 ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2)) return ssim def mean_squared_error(y_true, y_pred): return K.mean(K.square(y_pred - y_true), axis=-1) def customLoss(yTrue,yPred): # print(backend.shape(yTrue)) # print(backend.shape(yPred)) ssimVal = kerasSSIM(yTrue,yPred) print(ssimVal) return alpha * (1-ssimVal) + (1-alpha) * mean_squared_error(yTrue, yPred) dirArray = ["Pt-Mo5_input_images", "Pt_input_images", "Pt-Mo50_input_images"] matl = dirArray[1] #specify desired material here #Parses image data into ndarrays, then slices each array to be the minimum width and height of the group. #Thus, formattedConvImages and formattedMultiImages will have arrays of all the same size. convImages = [] multiImages = [] widths = [] heights = [] for d in range (0, 3): matl = dirArray[d] for i in range(0,getNumImages(matl)): convArr = np.loadtxt(getConvPath(matl, i)) multiArr = io.imread(getMultislicePath(matl,i)) #TODO: PLEASE DELETE THIS LINE AFTER DATA PROCESSING if (len(convArr[0]) <= 256 and len(convArr) <= 256): widths.append(len(convArr[0])) heights.append(len(convArr)) convImages.append(convArr) multiImages.append(multiArr) minWidth = min(widths) minHeight = min(heights) print(minWidth) print(minHeight) print(len(convImages)) print(len(multiImages)) print(
np.min(convImages[0])
numpy.min
# -*- mode: python; coding: utf-8 -*- # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Class for reading and writing calibration FITS files.""" import warnings import numpy as np from astropy.io import fits from .uvcal import UVCal from .. import utils as uvutils __all__ = ["CALFITS"] class CALFITS(UVCal): """ Defines a calfits-specific class for reading and writing calfits files. This class should not be interacted with directly, instead use the read_calfits and write_calfits methods on the UVCal class. """ def write_calfits( self, filename, run_check=True, check_extra=True, run_check_acceptability=True, clobber=False, ): """ Write the data to a calfits file. Parameters ---------- filename : str The calfits file to write to. run_check : bool Option to check for the existence and proper shapes of parameters before writing the file. check_extra : bool Option to check optional parameters as well as required ones. run_check_acceptability : bool Option to check acceptable range of the values of parameters before writing the file. clobber : bool Option to overwrite the filename if the file already exists. """ if run_check: self.check( check_extra=check_extra, run_check_acceptability=run_check_acceptability ) if self.Nfreqs > 1: freq_spacing = self.freq_array[0, 1:] - self.freq_array[0, :-1] if not np.isclose( np.min(freq_spacing), np.max(freq_spacing), rtol=self._freq_array.tols[0], atol=self._freq_array.tols[1], ): raise ValueError( "The frequencies are not evenly spaced (probably " "because of a select operation). The calfits format " "does not support unevenly spaced frequencies." ) if
np.isclose(freq_spacing[0], self.channel_width)
numpy.isclose
#!/usr/bin/env python3 import numpy as np from ccscp.src.utils.polygonal_obstacles import PolygonalObstacle as PolyObs def get_ISS_zones(): #### INSIDE polytopes btms_lft, tops_rgt = [np.zeros(3)] * 6, [np.zeros(3)] * 6 btms_lft[0], tops_rgt[0] = np.array([ 5.9,-0.6, 4.2]), np.array([ 7.7, 0.6, 5.4]) # 3 btms_lft[1], tops_rgt[1] = np.array([10.2, 1.2, 4.2]), np.array([11.6, 2.7, 5.5]) # 4 btms_lft[2], tops_rgt[2] = np.array([ 9.6, 2.7, 3.8]), np.array([11.9, 7.3, 5.9]) # 5 btms_lft[3], tops_rgt[3] = np.array([10.3,-2.7, 4.3]), np.array([11.6,-1.2, 5.4]) # 6 btms_lft[4], tops_rgt[4] = np.array([ 7.7,-1.2, 3.7]), np.array([11.6, 1.2, 6.0]) # 8 btms_lft[5], tops_rgt[5] = np.array([11.6,-0.8, 4.1]), np.array([12.0, 0.8, 5.5]) # 16 keepin_zones = [] for (btm, top) in zip(btms_lft, tops_rgt): center, width = (top+btm)/2., (top-btm) keepin_zones.append( PolyObs(center,width) ) #### OUTSIDE btms_lft, tops_rgt = [
np.zeros(3)
numpy.zeros
import torch import numpy as np import scipy from scipy import stats import pandas as pd import scanpy import anndata # tempo imports from . import utils # --- PARAMETER FUNCTIONS TO GET VARIATIONAL AND PRIOR DISTRIBUTIONS --- # ** mesor ** # variational def get_mesor_variational_params(adata, init_mesor_scale_val = 0.1): # ** check if mesor_loc and mesor_scale found in adata.var; otherwise init using prop ** if "mu_loc" in adata.var.columns and "mu_scale" in adata.var.columns: mesor_loc = np.array(adata.var['mu_loc']) mesor_scale = np.array(adata.var['mu_scale']) else: mesor_loc = np.log(np.array(adata.var['prop'])) mesor_scale = np.array([init_mesor_scale_val] * adata.shape[1]) # ** mesor log scale ** mesor_log_scale = np.log(mesor_scale) # ** init variational pytorch parameters ** mu_loc = torch.nn.Parameter(torch.Tensor(mesor_loc), requires_grad = True) mu_log_scale = torch.nn.Parameter(torch.Tensor(mesor_log_scale), requires_grad = True) return mu_loc, mu_log_scale # prior def get_mesor_prior_params(adata, prior_mesor_scale_val = 0.5): # ** check if mesor_loc and mesor_scale found in adata.var; otherwise init using prop ** if "prior_mu_loc" in adata.var.columns and "prior_mu_scale" in adata.var.columns: prior_mesor_loc = np.array(adata.var['prior_mu_loc']) prior_mesor_scale = np.array(adata.var['prior_mu_scale']) else: prior_mesor_loc = np.log(np.array(adata.var['prop'])) prior_mesor_scale = np.array([prior_mesor_scale_val] * adata.shape[1]) # ** torch tensors ** prior_mesor_loc = torch.Tensor(prior_mesor_loc) prior_mesor_scale = torch.Tensor(prior_mesor_scale) return prior_mesor_loc, prior_mesor_scale # variational and prior def get_mesor_variational_and_prior_params(adata, init_mesor_scale_val = 0.1, prior_mesor_scale_val = 0.5): # ** init variational pytorch parameters ** mu_loc, mu_log_scale = get_mesor_variational_params(adata, init_mesor_scale_val = init_mesor_scale_val) # ** init prior pytorch distributions ** prior_mesor_loc, prior_mesor_scale = get_mesor_prior_params(adata, prior_mesor_scale_val = prior_mesor_scale_val) return mu_loc, mu_log_scale, prior_mesor_loc, prior_mesor_scale # ** amplitude ** # variational def get_amp_variational_params(adata, max_amp = 1.0 / np.log10(np.e), min_amp = 0.2 / np.log10(np.e), init_amp_loc_val = 0.4 / np.log10(np.e), init_amp_scale_val = 400): # ** check if A_alpha and A_beta are supplied ** if 'A_alpha' in adata.var.columns and 'A_beta' in adata.var.columns: amp_log_alpha = np.log(np.array(adata.var['A_alpha'])) amp_log_beta = np.log(np.array(adata.var['A_beta'])) A_alpha = torch.nn.Parameter(torch.Tensor(amp_log_alpha), requires_grad = True) A_beta = torch.nn.Parameter(torch.Tensor(amp_log_beta), requires_grad = True) return A_alpha, A_beta # ** raise exception if amp variational loc is not greater than min ** if not (init_amp_loc_val > min_amp and init_amp_loc_val < max_amp): raise Exception("Error: init amp loc must be within the (min_amp,max_amp) range -- exclusive.") # ** compute z value ([0,1] which refers to [min_amp, max_amp]) of init_amp_loc_val ** z_val = float((init_amp_loc_val - min_amp) / (max_amp - min_amp)) # ** init variational params as numpy arrays ** amp_alpha = np.array([1.0] * adata.shape[1]) # unscaled alpha and beta amp_beta = np.array([(1.0 / z_val) - 1.0] * adata.shape[1]) # beta = (1 - z) / z = (1 / z) - 1 amp_alpha = amp_alpha * init_amp_scale_val # scaled alpha and beta amp_beta = amp_beta * init_amp_scale_val # ** convert amp alpha and beta to log values ** amp_log_alpha = np.log(amp_alpha) amp_log_beta = np.log(amp_beta) # ** init variational pytorch parameters ** A_log_alpha = torch.nn.Parameter(torch.Tensor(amp_log_alpha), requires_grad = True) A_log_beta = torch.nn.Parameter(torch.Tensor(amp_log_beta), requires_grad = True) return A_log_alpha, A_log_beta # prior def get_amp_prior_params(adata, prior_amp_alpha_val = 1.0, prior_amp_beta_val = 1.0): # ** check if A_alpha and A_beta are supplied ** if 'prior_A_alpha' in adata.var.columns and 'prior_A_beta' in adata.var.columns: prior_amp_alpha =
np.array(adata.var['prior_A_alpha'])
numpy.array
import numpy as np from confidenceMapUtil import FDRutil import argparse, math, os, sys from argparse import RawTextHelpFormatter import time def compute_padding_average(vol, mask): mask = (mask > 0.5).astype(np.int8) average_padding_intensity = np.mean(np.ma.masked_array(vol, mask)) return average_padding_intensity def pad_or_crop_volume(vol, dim_pad=None, pad_value = None, crop_volume=False): if (dim_pad == None): return vol else: dim_pad = np.round(np.array(dim_pad)).astype('int') if pad_value == None: pad_value = 0 if (dim_pad[0] <= vol.shape[0] or dim_pad[1] <= vol.shape[1] or dim_pad[2] <= vol.shape[2]): crop_volume = True if crop_volume: crop_vol = vol[int(vol.shape[0]/2-dim_pad[0]/2):int(vol.shape[0]/2+dim_pad[0]/2+dim_pad[0]%2), :, :] crop_vol = crop_vol[:, int(vol.shape[1]/2-dim_pad[1]/2):int(vol.shape[1]/2+dim_pad[1]/2+dim_pad[1]%2), :] crop_vol = crop_vol[:, :, int(vol.shape[2]/2-dim_pad[2]/2):int(vol.shape[2]/2+dim_pad[2]/2+dim_pad[2]%2)] return crop_vol else: pad_vol = np.pad(vol, ((int(dim_pad[0]/2-vol.shape[0]/2), int(dim_pad[0]/2-vol.shape[0]/2+dim_pad[0]%2)), (0,0), (0,0) ), 'constant', constant_values=(pad_value,)) pad_vol = np.pad(pad_vol, ((0,0), (int(dim_pad[1]/2-vol.shape[1]/2), int(dim_pad[1]/2-vol.shape[1]/2+dim_pad[1]%2) ), (0,0)), 'constant', constant_values=(pad_value,)) pad_vol = np.pad(pad_vol, ((0,0), (0,0), (int(dim_pad[2]/2-vol.shape[2]/2), int(dim_pad[2]/2-vol.shape[2]/2+dim_pad[2]%2))), 'constant', constant_values=(pad_value,)) return pad_vol def check_for_window_bleeding(mask, wn): masked_xyz_locs, masked_indices, mask_shape = get_xyz_locs_and_indices_after_edge_cropping_and_masking(mask, 0) zs, ys, xs = masked_xyz_locs.T nk, nj, ni = mask_shape if xs.min() < wn / 2 or xs.max() > (ni - wn / 2) or \ ys.min() < wn / 2 or ys.max() > (nj - wn / 2) or \ zs.min() < wn / 2 or zs.max() > (nk - wn / 2): window_bleed = True else: window_bleed = False return window_bleed def get_xyz_locs_and_indices_after_edge_cropping_and_masking(mask, wn): mask = np.copy(mask); nk, nj, ni = mask.shape; kk, jj, ii = np.indices((mask.shape)); kk_flat = kk.ravel(); jj_flat = jj.ravel(); ii_flat = ii.ravel(); mask_bin = np.array(mask.ravel(), dtype=np.bool); indices = np.arange(mask.size); masked_indices = indices[mask_bin]; cropped_indices = indices[(wn / 2 <= kk_flat) & (kk_flat < (nk - wn / 2)) & (wn / 2 <= jj_flat) & (jj_flat < (nj - wn / 2)) & (wn / 2 <= ii_flat) & (ii_flat < (ni - wn / 2))]; cropp_n_mask_ind = np.intersect1d(masked_indices, cropped_indices); xyz_locs = np.column_stack((kk_flat[cropp_n_mask_ind], jj_flat[cropp_n_mask_ind], ii_flat[cropp_n_mask_ind])); return xyz_locs, cropp_n_mask_ind, mask.shape; def prepare_mask_and_maps_for_scaling(emmap, modelmap, apix, wn_locscale, windowSize, method, locResMap, noiseBox): mask = np.zeros(emmap.shape); if mask.shape[0] == mask.shape[1] and mask.shape[0] == mask.shape[2] and mask.shape[1] == mask.shape[2]: rad = (mask.shape[0] // 2) ; z,y,x = np.ogrid[-rad: rad+1, -rad: rad+1, -rad: rad+1]; mask = (x**2+y**2+z**2 <= rad**2).astype(np.int_).astype(np.int8); mask = pad_or_crop_volume(mask,emmap.shape); mask = (mask > 0.5).astype(np.int8); else: mask += 1; mask = mask[0:mask.shape[0]-1, 0:mask.shape[1]-1, 0:mask.shape[2]-1]; mask = pad_or_crop_volume(emmap, (emmap.shape), pad_value=0); if wn_locscale is None: wn_locscale = int(round(7 * 3 * apix)); # set default window size to 7 times average resolution elif wn_locscale is not None: wn_locscale = int(math.ceil(wn_locscale / 2.) * 2); #wn = wn_locscale; if windowSize is None: wn = wn_locscale; elif windowSize is not None: wn = int(math.ceil(windowSize / 2.) * 2); if method is not None: method = method; else: method = 'BY'; if noiseBox is not None: boxCoord = noiseBox; else: boxCoord = 0; window_bleed_and_pad = check_for_window_bleeding(mask, wn_locscale); if window_bleed_and_pad: pad_int_emmap = compute_padding_average(emmap, mask); pad_int_modmap = compute_padding_average(modelmap, mask); map_shape = [(emmap.shape[0] + wn_locscale), (emmap.shape[1] + wn_locscale), (emmap.shape[2] + wn_locscale)]; emmap = pad_or_crop_volume(emmap, map_shape, pad_int_emmap); modelmap = pad_or_crop_volume(modelmap, map_shape, pad_int_modmap); mask = pad_or_crop_volume(mask, map_shape, 0); if locResMap is not None: locResMap = pad_or_crop_volume(locResMap, map_shape, 100.0); #if wished so, do local filtration if locResMap is not None: locResMap[locResMap == 0.0] = 100.0; locResMap[locResMap >= 100.0] = 100.0; locFilt = True; else: locFilt = False; locResMap = np.ones(emmap.shape); return emmap, modelmap, mask, wn, wn_locscale, window_bleed_and_pad, method, locFilt, locResMap, boxCoord; def compute_radial_profile(volFFT, frequencyMap): dim = volFFT.shape; ps = np.real(np.abs(volFFT)); frequencies = np.fft.rfftfreq(dim[0]); #frequencies = np.linspace(0, 0.5, int(math.ceil(dim[0]/2.0))); bins = np.digitize(frequencyMap, frequencies); bins = bins - 1; radial_profile = np.bincount(bins.ravel(), ps.ravel()) / np.bincount(bins.ravel()) return radial_profile, frequencies; def compute_scale_factors(em_profile, ref_profile): np.seterr(divide='ignore', invalid='ignore'); #no error for division by zero #scale_factor = (ref_profile**2/em_profile**2); #scale_factor[ ~ np.isfinite( scale_factor )] = 0 #handle division by zero #scale_factor = np.sqrt(scale_factor); scale_factor = np.divide(np.abs(ref_profile), np.abs(em_profile)); scale_factor[ ~ np.isfinite( scale_factor )] = 0; #handle division by zero return scale_factor; def set_radial_profile(volFFT, scaleFactors, frequencies, frequencyMap, shape): scalingMap = np.interp(frequencyMap, frequencies, scaleFactors); scaledMapFFT = scalingMap * volFFT; scaledMap = np.real(np.fft.irfftn(scaledMapFFT, shape, norm='ortho')); return scaledMap, scaledMapFFT; def calculate_scaled_map(emmap, modmap, mask, wn, wn_locscale, apix, locFilt, locResMap, boxCoord, ecdfBool, stepSize): sizeMap = emmap.shape sharpened_map = np.zeros(sizeMap); sharpened_mean_vals = np.zeros(sizeMap); sharpened_var_vals = np.zeros(sizeMap); sharpened_ecdf_vals = np.zeros(sizeMap); central_pix = int(round(wn_locscale / 2.0)); center = np.array([0.5*sizeMap[0], 0.5*sizeMap[1], 0.5*sizeMap[2]]); #get the background noise sample if boxCoord == 0: noiseMap = emmap[int(center[0]-0.5*wn):(int(center[0]-0.5*wn) + wn), int(0.02*wn+wn_locscale/2.0):(int(0.02*wn+wn_locscale/2.0) + wn), (int(center[2]-0.5*wn)):(int((center[2]-0.5*wn) + wn))]; else: noiseMap = emmap[int(boxCoord[0]-0.5*wn +wn_locscale/2.0):(int(boxCoord[0]-0.5*wn + wn_locscale/2.0) + wn), int(boxCoord[1]-0.5*wn+ wn_locscale/2.0):(int(boxCoord[1]-0.5*wn + wn_locscale/2.0) + wn), (int(boxCoord[2]-0.5*wn + wn_locscale/2.0)):(int((boxCoord[2]-0.5*wn + wn_locscale/2.0)+wn))]; #prepare noise map for scaling frequencyMap_noise = FDRutil.calculate_frequency_map(noiseMap); noiseMapFFT = np.fft.rfftn(noiseMap, norm='ortho'); noise_profile, frequencies_noise = compute_radial_profile(noiseMapFFT, frequencyMap_noise); #prepare windows of particle for scaling frequencyMap_mapWindow = FDRutil.calculate_frequency_map(np.zeros((wn_locscale, wn_locscale, wn_locscale))); numSteps = len(range(0, sizeMap[0] - int(wn_locscale), stepSize))*len(range(0, sizeMap[1] - int(wn_locscale), stepSize))*len(range(0, sizeMap[2] - int(wn_locscale), stepSize)); print("Sart LocScale. This might take a minute ..."); counterSteps = 0; for k in range(0, sizeMap[0] - int(wn_locscale), stepSize): for j in range(0, sizeMap[1] - int(wn_locscale), stepSize): for i in range(0, sizeMap[2] - int(wn_locscale), stepSize): #print progress counterSteps = counterSteps + 1; progress = counterSteps/float(numSteps); if counterSteps%(int(numSteps/20.0)) == 0: output = "%.1f" %(progress*100) + "% finished ..." ; print(output); #crop windows emmap_wn = emmap[k: k + wn_locscale, j: j + wn_locscale, i: i + wn_locscale]; modmap_wn = modmap[k: k + wn_locscale, j: j + wn_locscale, i: i + wn_locscale]; #do sharpening of the sliding window emmap_wn_FFT = np.fft.rfftn(np.copy(emmap_wn), norm='ortho'); modmap_wn_FFT = np.fft.rfftn(np.copy(modmap_wn), norm='ortho'); em_profile, frequencies_map = compute_radial_profile(emmap_wn_FFT, frequencyMap_mapWindow); mod_profile, _ = compute_radial_profile(modmap_wn_FFT, frequencyMap_mapWindow); scale_factors = compute_scale_factors(em_profile, mod_profile); map_b_sharpened, map_b_sharpened_FFT = set_radial_profile(emmap_wn_FFT, scale_factors, frequencies_map, frequencyMap_mapWindow, emmap_wn.shape); #scale noise window with the interpolated scaling factors mapNoise_sharpened, mapNoise_sharpened_FFT = set_radial_profile(np.copy(noiseMapFFT), scale_factors, frequencies_map, frequencyMap_noise, noiseMap.shape); #local filtering routines if locFilt == True: tmpRes = round(apix/locResMap[k, j, i], 3); mapNoise_sharpened = FDRutil.lowPassFilter(mapNoise_sharpened_FFT, frequencyMap_noise, tmpRes, noiseMap.shape); map_b_sharpened = FDRutil.lowPassFilter(map_b_sharpened_FFT, frequencyMap_mapWindow, tmpRes, emmap_wn.shape); #calculate noise statistics map_noise_sharpened_data = mapNoise_sharpened; if ecdfBool: tmpECDF, sampleSort = FDRutil.estimateECDFFromMap(map_noise_sharpened_data, -1, -1); ecdf = np.interp(map_b_sharpened[central_pix, central_pix, central_pix], sampleSort, tmpECDF, left=0.0, right=1.0); else: ecdf = 0; mean = np.mean(map_noise_sharpened_data); var = np.var(map_noise_sharpened_data); if var < 0.5: var = 0.5; mean = 0.0; if tmpRes == round(apix/100.0, 3): mean = 0.0; var = 0.0; ecdf = 0; else: #calculate noise statistics map_noise_sharpened_data = np.copy(mapNoise_sharpened); if ecdfBool: tmpECDF, sampleSort = FDRutil.estimateECDFFromMap(map_noise_sharpened_data, -1, -1); ecdf = np.interp(map_b_sharpened, sampleSort, tmpECDF, left=0.0, right=1.0); else: ecdf = 0; mean = np.mean(map_noise_sharpened_data); var = np.var(map_noise_sharpened_data); if var < 0.5: var = 0.5; mean = 0.0; #put values back into the the original maps halfStep=int((wn_locscale/2.0) - (stepSize/2.0)); sharpened_map[k + halfStep : k + halfStep + stepSize, j + halfStep : j + halfStep + stepSize, i + halfStep : i + halfStep + stepSize] = np.copy(map_b_sharpened[halfStep:halfStep+stepSize, halfStep:halfStep+stepSize, halfStep:halfStep+stepSize]); sharpened_mean_vals[k + halfStep : k + halfStep + stepSize, j + halfStep : j + halfStep + stepSize, i + halfStep : i + halfStep + stepSize] = mean; sharpened_var_vals[k + halfStep : k + halfStep + stepSize, j + halfStep : j + halfStep + stepSize, i + halfStep : i + halfStep + stepSize] = var; if ecdfBool: sharpened_ecdf_vals[k + halfStep : k + halfStep + stepSize, j + halfStep : j + halfStep + stepSize, i + halfStep : i + halfStep + stepSize] = ecdf[halfStep:halfStep+stepSize, halfStep:halfStep+stepSize, halfStep:halfStep+stepSize]; else: sharpened_ecdf_vals[k + halfStep: k + halfStep + stepSize, j + halfStep: j + halfStep + stepSize, i + halfStep: i + halfStep + stepSize] = 0.0; return sharpened_map, sharpened_mean_vals, sharpened_var_vals, sharpened_ecdf_vals; def get_central_scaled_pixel_vals_after_scaling(emmap, modmap, masked_xyz_locs, wn, wn_locscale, apix, locFilt, locResMap, boxCoord, ecdfBool): sharpened_vals = []; sharpened_mean_vals = []; sharpened_var_vals = []; sharpened_ecdf_vals = []; central_pix = int(round(wn_locscale / 2.0)); sizeMap = emmap.shape; center = np.array([0.5*sizeMap[0], 0.5*sizeMap[1], 0.5*sizeMap[2]]); #get the background noise sample if boxCoord == 0: noiseMap = emmap[int(center[0]-0.5*wn):(int(center[0]-0.5*wn) + wn), int(0.02*wn+wn_locscale):(int(0.02*wn+wn_locscale) + wn), (int(center[2]-0.5*wn)):(int((center[2]-0.5*wn) + wn))]; else: noiseMap = emmap[int(boxCoord[0]-0.5*wn + wn_locscale):(int(boxCoord[0]-0.5*wn + wn_locscale) + wn), int(boxCoord[1]-0.5*wn+ wn_locscale):(int(boxCoord[1]-0.5*wn + wn_locscale) + wn), (int(boxCoord[2]-0.5*wn + wn_locscale)):(int((boxCoord[2]-0.5*wn + wn_locscale)+wn))]; #prepare noise map for scaling frequencyMap_noise = calculate_frequency_map(noiseMap); noiseMapFFT = np.fft.rfftn(noiseMap); noise_profile, frequencies_noise = compute_radial_profile(noiseMapFFT, frequencyMap_noise); #prepare windows of particle for scaling frequencyMap_mapWindow = calculate_frequency_map(np.zeros((wn_locscale, wn_locscale, wn_locscale))); for k, j, i in (masked_xyz_locs - wn_locscale / 2.0): emmap_wn = emmap[k: k+wn_locscale, j: j+wn_locscale, i: i+ wn_locscale]; modmap_wn = modmap[k: k+wn_locscale, j: j+wn_locscale, i: i+ wn_locscale]; #do sharpening of the sliding window emmap_wn_FFT = np.fft.rfftn(np.copy(emmap_wn)); modmap_wn_FFT = np.fft.rfftn(np.copy(modmap_wn)); em_profile, frequencies_map = compute_radial_profile(emmap_wn_FFT, frequencyMap_mapWindow); mod_profile, _ = compute_radial_profile(modmap_wn_FFT, frequencyMap_mapWindow); scale_factors = compute_scale_factors(em_profile, mod_profile); map_b_sharpened, map_b_sharpened_FFT = set_radial_profile(emmap_wn_FFT, scale_factors, frequencies_map, frequencyMap_mapWindow); #do interpolation of sharpening factors scale_factors_noise = np.interp(frequencies_noise, frequencies_map, scale_factors); #scale noise window with the interpolated scaling factors mapNoise_sharpened, mapNoise_sharpened_FFT = set_radial_profile(np.copy(noiseMapFFT), scale_factors_noise, frequencies_noise, frequencyMap_noise); #local filtering routines if locFilt == True: tmpRes = round(apix/locResMap[k, j, i], 3); mapNoise_sharpened = lowPassFilter(mapNoise_sharpened_FFT, frequencyMap_noise, tmpRes); map_b_sharpened = lowPassFilter(map_b_sharpened_FFT, frequencyMap_mapWindow, tmpRes); #calculate noise statistics map_noise_sharpened_data = mapNoise_sharpened; if ecdfBool: tmpECDF, sampleSort = estimateECDFFromMap(map_noise_sharpened_data, -1, -1); ecdf =
np.interp(map_b_sharpened[central_pix, central_pix, central_pix], sampleSort, tmpECDF, left=0.0, right=1.0)
numpy.interp
# -*- coding: utf-8 -*- """ Created on Tue Apr 30 18:38:13 2019 @author: PRJ """ import numpy as np import copy def fillmissing(X_raw, missing = 'median'): """ Fill missing value with specific value """ X = copy.deepcopy(X_raw) if len(X.shape) == 1: N = X.shape[0] if missing == 'mean': X_fill = np.nanmean(X) elif missing == 'median': X_fill = np.nanmedian(X) elif missing == 'max': X_fill = np.nanmax(X) elif missing == 'min': X_fill = np.nanmin(X) else: X_fill = 0 for it in range(N): X[it] = X_fill else: [N, M] = X.shape if missing == 'mean': X_fill = np.nanmean(X, axis = 0) elif missing == 'median': X_fill = np.nanmedian(X, axis = 0) elif missing == 'max': X_fill = np.nanmax(X, axis = 0) elif missing == 'min': X_fill = np.nanmin(X, axis = 0) else: X_fill = np.zeros(M) for it in range(N): for jt in range(M): if
np.isnan(X[it,jt])
numpy.isnan
from __future__ import print_function, division, absolute_import __author__ = '<NAME>' from rep import utils import numpy import pandas def test_calc(): prediction = numpy.random.random(10000) iron = utils.Flattener(prediction) assert numpy.allclose(numpy.histogram(iron(prediction), normed=True, bins=30)[0], numpy.ones(30), rtol=1e-02) x, y, yerr, xerr = utils.calc_hist_with_errors(iron(prediction), bins=30, x_range=(0, 1)) assert numpy.allclose(y, numpy.ones(len(y)), rtol=1e-02) width = 1. / 60 means = numpy.linspace(width, 1 - width, 30) assert numpy.allclose(x, means) assert numpy.allclose(xerr, numpy.zeros(len(xerr)) + width) assert numpy.allclose(yerr, numpy.zeros(len(yerr)) + yerr[0], rtol=1e-2) random_labels = numpy.random.choice(2, size=10000) (tpr, tnr), _, _ = utils.calc_ROC(prediction, random_labels) # checking for random classifier assert numpy.max(abs(1 - tpr - tnr)) < 0.05 # checking efficiencies for random mass, random prediction mass = numpy.random.random(10000) result = utils.get_efficiencies(prediction, mass) for threshold, (xval, yval) in result.items(): assert ((yval + threshold - 1) ** 2).mean() < 0.1 def test_train_test_split_group(): data = list(range(50)) * 2 group_column = list(range(50)) * 2 train, test = utils.train_test_split_group(group_column, data) assert len(set.intersection(set(test), set(train))) == 0 def test_corr_coeff_with_weights(n_samples=1000): """ testing that corrcoeff with equal weights works as default. """ weights = numpy.ones(n_samples) df = pandas.DataFrame(data=numpy.random.random([n_samples, 10])) z1 = numpy.corrcoef(df.values.T) z2 = utils.calc_feature_correlation_matrix(df) z3 = utils.calc_feature_correlation_matrix(df, weights=weights) assert numpy.allclose(z1, z2) assert numpy.allclose(z1, z3) def test_get_columns(n_samples=10000): x = numpy.random.random([n_samples, 3]) df = pandas.DataFrame(x, columns=['a', 'b', 'c']) result = utils.get_columns_in_df(df, ['a: a-b+b', 'b: b + 0 * c** 2.', 'c: c + 1 + c * (b - b)']) result['c'] -= 1 assert not
numpy.allclose(result, df + 1e-3)
numpy.allclose
import copy import numpy as np import logging logger = logging.getLogger(__name__) try: from pycqed.analysis import machine_learning_toolbox as ml except Exception: logger.warning('Machine learning packages not loaded. ' 'Run from pycqed.analysis import machine_learning_toolbox to see errors.') from sklearn.model_selection import GridSearchCV as gcv, train_test_split from scipy.optimize import fmin_l_bfgs_b,fmin,minimize,fsolve def nelder_mead(fun, x0, initial_step=0.1, no_improve_thr=10e-6, no_improv_break=10, maxiter=0, alpha=1., gamma=2., rho=-0.5, sigma=0.5, verbose=False): ''' parameters: fun (function): function to optimize, must return a scalar score and operate over a numpy array of the same dimensions as x0 x0 (numpy array): initial position initial_step (float/np array): determines the stepsize to construct the initial simplex. If a float is specified it uses the same value for all parameters, if an array is specified it uses the specified step for each parameter. no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with an improvement lower than no_improv_thr maxiter (int): always break after this number of iterations. Set it to 0 to loop indefinitely. alpha (float): reflection coefficient gamma (float): expansion coefficient rho (float): contraction coefficient sigma (float): shrink coefficient For details on these parameters see Wikipedia page return: tuple (best parameter array, best score) Pure Python/Numpy implementation of the Nelder-Mead algorithm. Implementation from https://github.com/fchollet/nelder-mead, edited by <NAME> for use in PycQED. Reference: https://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method ''' # init x0 = np.array(x0) # ensures algorithm also accepts lists dim = len(x0) prev_best = fun(x0) no_improv = 0 res = [[x0, prev_best]] if type(initial_step) is float: initial_step_matrix = np.eye(dim)*initial_step elif (type(initial_step) is list) or (type(initial_step) is np.ndarray): if len(initial_step) != dim: raise ValueError('initial_step array must be same lenght as x0') initial_step_matrix = np.diag(initial_step) else: raise TypeError('initial_step ({})must be list or np.array'.format( type(initial_step))) for i in range(dim): x = copy.copy(x0) x = x + initial_step_matrix[i] score = fun(x) res.append([x, score]) # simplex iter iters = 0 while 1: # order res.sort(key=lambda x: x[1]) best = res[0][1] # break after maxiter if maxiter and iters >= maxiter: # Conclude failure break the loop if verbose: print('max iterations exceeded, optimization failed') break iters += 1 if best < prev_best - no_improve_thr: no_improv = 0 prev_best = best else: no_improv += 1 if no_improv >= no_improv_break: # Conclude success, break the loop if verbose: print('No improvement registered for {} rounds,'.format( no_improv_break) + 'concluding succesful convergence') break # centroid x0 = [0.] * dim for tup in res[:-1]: for i, c in enumerate(tup[0]): x0[i] += c / (len(res)-1) # reflection xr = x0 + alpha*(x0 - res[-1][0]) rscore = fun(xr) if res[0][1] <= rscore < res[-2][1]: del res[-1] res.append([xr, rscore]) continue # expansion if rscore < res[0][1]: xe = x0 + gamma*(x0 - res[-1][0]) escore = fun(xe) if escore < rscore: del res[-1] res.append([xe, escore]) continue else: del res[-1] res.append([xr, rscore]) continue # contraction xc = x0 + rho*(x0 - res[-1][0]) cscore = fun(xc) if cscore < res[-1][1]: del res[-1] res.append([xc, cscore]) continue # reduction x1 = res[0][0] nres = [] for tup in res: redx = x1 + sigma*(tup[0] - x1) score = fun(redx) nres.append([redx, score]) res = nres # once the loop is broken evaluate the final value one more time as # verification fun(res[0][0]) return res[0] def SPSA(fun, x0, initial_step=0.1, no_improve_thr=10e-6, no_improv_break=10, maxiter=0, gamma=0.101, alpha=0.602, a=0.2, c=0.3, A=300, p=0.5, ctrl_min=0.,ctrl_max=np.pi, verbose=False): ''' parameters: fun (function): function to optimize, must return a scalar score and operate over a numpy array of the same dimensions as x0 x0 (numpy array): initial position no_improv_thr, no_improv_break (float, int): break after no_improv_break iterations with an improvement lower than no_improv_thr maxiter (int): always break after this number of iterations. Set it to 0 to loop indefinitely. alpha, gamma, a, c, A, (float): parameters for the SPSA gains (see refs for definitions) p (float): probability to get 1 in Bernoulli +/- 1 distribution (see refs for context) ctrl_min, ctrl_max (float/array): boundaries for the parameters. can be either a global boundary for all dimensions, or a numpy array containing the boundary for each dimension. return: tuple (best parameter array, best score) alpha, gamma, a, c, A and p, are parameters for the algorithm. Their function is described in the references below, and even optimal values have been discussed in the literature. Pure Python/Numpy implementation of the SPSA algorithm designed by Spall. Implementation from http://www.jhuapl.edu/SPSA/PDF-SPSA/Spall_An_Overview.PDF, edited by <NAME> for use in PycQED. Reference: http://www.jhuapl.edu/SPSA/Pages/References-Intro.htm ''' # init x0 = np.array(x0) # ensures algorithm also accepts lists dim = len(x0) prev_best = fun(x0) no_improv = 0 res = [[x0, prev_best]] x = copy.copy(x0) # SPSA iter iters = 0 while 1: # order res.sort(key=lambda x: x[1]) best = res[0][1] # break after maxiter if maxiter and iters >= maxiter: # Conclude failure break the loop if verbose: print('max iterations exceeded, optimization failed') break iters += 1 if best < prev_best - no_improve_thr: no_improv = 0 prev_best = best else: no_improv += 1 if no_improv >= no_improv_break: # Conclude success, break the loop if verbose: print('No improvement registered for {} rounds,'.format( no_improv_break) + 'concluding succesful convergence') break # step 1 a_k = a/(iters+A)**alpha c_k = c/iters**gamma # step 2 delta = np.where(np.random.rand(dim) > p, 1, -1) # step 3 x_plus = x+c_k*delta x_minus = x-c_k*delta y_plus = fun(x_plus) y_minus = fun(x_minus) # res.append([x_plus, y_plus]) # res.append([x_minus, y_minus]) # step 4 gradient = (y_plus-y_minus)/(2.*c_k*delta) # step 5 x = x-a_k*gradient x = np.where(x < ctrl_min, ctrl_min, x) x = np.where(x > ctrl_max, ctrl_max, x) score = fun(x) res.append([x, score]) # once the loop is broken evaluate the final value one more time as # verification fun(res[0][0]) return res[0] def generate_new_training_set(new_train_values, new_target_values, training_grid=None, target_values=None): if training_grid is None: training_grid =new_train_values target_values = new_target_values else: if np.shape(new_train_values)[1] != np.shape(training_grid)[1] or \ np.shape(new_target_values)[1] != np.shape(target_values)[1]: print('Shape missmatch between new training values and existing ones!' ' Returning None.') return None,None training_grid = np.append(training_grid,new_train_values,axis=0) target_values = np.append(target_values,new_target_values,axis=0) return training_grid,target_values def center_and_scale(X_in,y_in): ''' Preprocessing of Data. Mainly transform the data to mean 0 and interval [-1,1] :param X: training data list of parameters (each equally long). Standing vector! :param y: validation data list of parameters (each equally long).Standing vector! :output: :X: rescaled and centered training data :y: rescaled and centered test data :input_feature_means: mean values of initial training data parameters :output_feature_means: mean values of initial validation data parameters :input_feature_ext: abs(max-min) of initial training data parameters :output_feature_ext: abs(max-min) of initial validation data parameters ''' if not isinstance(X_in,np.ndarray): X_in = np.array(X_in) if X_in.ndim == 1: X_in.shape = (np.size(X_in),X_in.ndim) #X_in.reshape((np.size(X_in),X_in.ndim)) if not isinstance(y_in,np.ndarray): y_in= np.array(y_in) if y_in.ndim == 1: #y_in.reshape((np.size(y_in),y_in.ndim)) y_in.shape = (np.size(y_in),y_in.ndim) X = copy.deepcopy(X_in) y = copy.deepcopy(y_in) input_feature_means = np.zeros(np.size(X,1)) #saving means of training output_feature_means = np.zeros(np.size(y,1)) #and target features input_feature_ext= np.zeros(np.size(X,1)) output_feature_ext = np.zeros(np.size(y,1)) if np.size(X,1)==1: input_feature_means= [np.mean(X)] input_feature_ext = [np.max(X) \ -np.min(X)] X -= input_feature_means #offset to mean 0 X /= input_feature_ext #rescale to [-1,1] else: for it in range(np.size(X,1)): input_feature_means[it]= np.mean(X[:,it]) input_feature_ext[it] = np.max(X[:,it]) \ -np.min(X[:,it]) X[:,it] -= input_feature_means[it] #offset to mean 0 X[:,it] /= input_feature_ext[it] #rescale to [-1,1] if np.size(y,1) == 1: output_feature_means= [np.mean(y)] output_feature_ext = [np.max(y) \ -np.min(y)] y -= output_feature_means #offset to mean 0 y /= output_feature_ext #rescale to [-1,1] else: for it in range(np.size(y,1)): output_feature_means[it]= np.mean(y[:,it]) output_feature_ext[it] = np.max(y[:,it]) \ -np.min(y[:,it]) y[:,it] -= output_feature_means[it] #offset to mean 0 y[:,it] /= output_feature_ext[it] #rescale to [-1,1] return X,y,\ input_feature_means,input_feature_ext,\ output_feature_means,output_feature_ext def neural_network_opt(fun, training_grid, target_values = None, estimator='GRNN_neupy',hyper_parameter_dict=None, x_init = None): """ parameters: fun: Function that can be used to get data points if None, target_values have to be provided instead. training_grid: The values on which to train the Neural Network. It contains features as column vectors of length as the number of datapoints in the training set. target_values: The target values measured during data acquisition by a hard sweep over the traning grid. estimator: The estimator used to model the function mapping the training_grid on the target_values. hyper_parameter_dict: if None, the default hyperparameters of the selected estimator are used. Should contain estimator dependent hyperparameters such as hidden layer sizes for a neural network. See <machine_learning_toolbox> for specific information on available estimators. x_ini: Initial values for the minimization of the fitted function. output: optimal points where network is minimized. est: estimator instance representing the trained model. Consists of a predict(X) method, which computes the network response for a given input value X. """ ############################################################### ### create measurement data from test_grid ### ############################################################### #get input dimension, training grid contains parameters as row(!!) vectors if len(np.shape(training_grid)) == 1: training_grid = np.transpose(np.array([training_grid])) n_samples = np.size(training_grid,0) print('Nr Samples: ', n_samples) n_features = np.size(training_grid,1) print('Nr Features: ', n_features) if fun is None: output_dim = np.size(target_values,1) else: #if the sweep is adaptive, acquire data points by applying fun first_value = fun(training_grid[0]) output_dim = np.size(first_value) target_values = np.zeros((n_samples,output_dim)) target_values[0,:] = first_value for i in range(1,n_samples): target_values[i,:]=fun(training_grid[i]) #Preprocessing of Data. Mainly transform the data to mean 0 and interval [-1,1] training_grid_centered,target_values_centered,\ input_feature_means,input_feature_ext,\ output_feature_means,output_feature_ext \ = center_and_scale(training_grid,target_values) #Save the preprocessing information in order to be able to rescale the values later. pre_processing_dict ={'output': {'scaling': output_feature_ext, 'centering':output_feature_means}, 'input': {'scaling': input_feature_ext, 'centering':input_feature_means}} ################################################################## ### initialize grid search cross val with hyperparameter dict. ### ### and MLPR instance and fit a model functione to fun() ### ################################################################## def mlpr(): est = ml.MLP_Regressor_scikit(hyper_parameter_dict, output_dim=output_dim, n_feature=n_samples, pre_proc_dict=pre_processing_dict) est.fit(training_grid_centered, np.ravel(target_values_centered)) est.print_best_params() return est def dnnr(): est = ml.DNN_Regressor_tf(hyper_parameter_dict, output_dim=output_dim, n_feature=n_features, pre_proc_dict=pre_processing_dict) est.fit(training_grid_centered,target_values_centered) return est def grnn(): est = ml.GRNN_neupy(hyper_parameter_dict, pre_proc_dict=pre_processing_dict) cv_est = ml.CrossValidationEstimator(hyper_parameter_dict,est) cv_est.fit(training_grid_centered,target_values_centered) return cv_est def polyreg(): est = ml.Polynomial_Regression(hyper_parameter_dict, pre_proc_dict=pre_processing_dict) est.fit(training_grid_centered,target_values_centered) return est estimators = {'MLP_Regressor_scikit': mlpr, #defines all current estimators currently implemented 'DNN_Regressor_tf': dnnr, 'GRNN_neupy': grnn, 'Polynomial_Regression_scikit': polyreg} est = estimators[estimator]() #create and fit instance of the chosen estimator def estimator_wrapper(X): pred = est.predict([X]) print('pred: ', pred) if output_dim == 1.: return
np.abs(pred+1.)
numpy.abs
#!/usr/bin/env python # coding: utf-8 ### About # Simulating asset prices using Monte Carlo Simulations. ### Code import sys import os import logging import numpy as np import pandas as pd import boto3 from botocore.exceptions import ClientError # N.B.: Don't set random seed as we want randomness in our Monte Carlo simulations! # np.random.seed(42) ## ENVIRONMENT VARIABLES # No. of days to perform Monte Carlo simulations for N_PERIODS = os.getenv("N_PERIODS") # No. of Monte Carlo simulations to run in this job N_SIMS = os.getenv("N_SIMS") # bucket name to upload final results to BUCKET_NAME = os.getenv("AWS_BUCKET") # Folder for storing all data for this Batch job JOB_NAME = os.getenv("JOB_NAME") # get index of AWS Batch array job that this job is assigned JOB_INDEX = os.getenv("AWS_BATCH_JOB_ARRAY_INDEX") ## Helper functions def check_env_var(a_var, a_var_name): """ Check that an expected environment variable is actually present. :param a_var: Variable to be checked :param a_var_name: Name of environment variable that should be present :return: None; exit program if variable is not present """ if a_var is None: print(f"Environment variable {a_var_name} is not present!") sys.exit(2) # endif # # enddef check_env_var() # def upload_file(file_name, bucket, object_name=None): """Upload a file to an S3 bucket :param file_name: File to upload :param bucket: Bucket to upload to :param object_name: S3 object name. If not specified then file_name is used :return: True if file was uploaded, else False """ # If S3 object_name was not specified, use file_name if object_name is None: object_name = os.path.basename(file_name) # endif # # Upload the file s3_client = boto3.client('s3') try: response = s3_client.upload_file(file_name, bucket, object_name) except ClientError as e: logging.error(e) return False # endtry # return True # enddef upload_file() # def get_input_csv(bucket_name, file_name): """ Download and read CSV file from an S3 bucket :param bucket_name: Bucket in which CSV file is located :param file_name: key name of the CSV file to read :return: DataFrame constructed from CSV file """ s3 = boto3.client('s3') response = s3.get_object(Bucket=bucket_name, Key=file_name) status = response.get("ResponseMetadata", {}).get("HTTPStatusCode") if status == 200: print(f"Retrieved file {file_name} from bucket {bucket_name}") return pd.read_csv(response.get("Body"), index_col=0) else: print(f"Error in retrieving file {file_name} from bucket {bucket_name}; {status}") sys.exit(1) # endif # # enddef get_input_csv() # # check all required environment variables are defined check_env_var(N_PERIODS, "N_PERIODS") check_env_var(N_SIMS, "N_SIMS") check_env_var(BUCKET_NAME, "AWS_BUCKET") check_env_var(JOB_NAME, "JOB_NAME") check_env_var(JOB_INDEX, "AWS_BATCH_JOB_ARRAY_INDEX") # convert to appropriate data type N_PERIODS = int(N_PERIODS) N_SIMS = int(N_SIMS) # get asset prices from CSV file in S3 bucket asset_prices = get_input_csv(BUCKET_NAME, JOB_NAME+"/input/asset_prices.csv") # compute the quantities in Eq.(1) above from the data log_returns = np.log(1 + asset_prices.pct_change()) u = log_returns.mean() var = log_returns.var() drift = u - (0.5*var) stdev = log_returns.std() # generate standard normal variate of required size if len(u) > 1: Z = np.random.multivariate_normal(mean=[0]*len(u), cov=log_returns.cov(), size=(N_PERIODS, N_SIMS)) else: Z = np.random.normal(size=(N_PERIODS, N_SIMS)) # endif # # since mu and sigma are daily values, dt=1 daily_returns = np.exp(drift.values + stdev.values * Z) price_paths =
np.zeros_like(daily_returns)
numpy.zeros_like
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.one_hot_op.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf class OneHotTest(tf.test.TestCase): def _testOneHot(self, truth, use_gpu=False, expected_err_re=None, raises=None, **inputs): with self.test_session(use_gpu=use_gpu): if raises is not None: with self.assertRaises(raises): tf.one_hot(**inputs) else: ans = tf.one_hot(**inputs) if expected_err_re is None: tf_ans = ans.eval() self.assertAllEqual(tf_ans, truth) self.assertEqual(tf_ans.shape, ans.get_shape()) else: with self.assertRaisesOpError(expected_err_re): ans.eval() def _testBothOneHot(self, truth, expected_err_re=None, raises=None, **inputs): self._testOneHot(truth, True, expected_err_re, raises, **inputs) self._testOneHot(truth, False, expected_err_re, raises, **inputs) def _testBasic(self, dtype): indices = np.asarray([0, 2, -1, 1], dtype=np.int64) depth = 3 on_value = np.asarray(1.0, dtype=dtype) off_value = np.asarray(-1.0, dtype=dtype) truth = np.asarray( [[1.0, -1.0, -1.0], [-1.0, -1.0, 1.0], [-1.0, -1.0, -1.0], [-1.0, 1.0, -1.0]], dtype=dtype) # axis == -1 self._testBothOneHot( indices=indices, depth=depth, on_value=on_value, off_value=off_value, dtype=dtype, truth=truth) # axis == 0 self._testBothOneHot( indices=indices, depth=depth, on_value=on_value, off_value=off_value, axis=0, dtype=dtype, truth=truth.T) # Output is transpose version in this case def _testDefaultBasic(self, dtype): indices = np.asarray([0, 2, -1, 1], dtype=np.int64) depth = 3 truth = np.asarray( [[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype=dtype) # axis == -1 self._testBothOneHot( indices=indices, depth=depth, truth=truth) # axis == 0 self._testBothOneHot( indices=indices, depth=depth, axis=0, truth=truth.T) # Output is transpose version in this case def testFloatBasic(self): self._testBasic(np.float32) self._testDefaultBasic(np.float32) def testDoubleBasic(self): self._testBasic(np.float64) self._testDefaultBasic(np.float64) def testInt32Basic(self): self._testBasic(np.int32) self._testDefaultBasic(np.int32) def testInt64Basic(self): self._testBasic(np.int64) self._testDefaultBasic(np.int64) def testComplex64Basic(self): self._testBasic(np.complex64) self._testDefaultBasic(np.complex64) def testComplex128Basic(self): self._testBasic(np.complex128) self._testDefaultBasic(np.complex128) def _testBatch(self, dtype): indices = np.asarray([[0, 2, -1, 1], [1, 0, 1, -1]], dtype=np.int64) depth = 3 on_value = np.asarray(1.0, dtype=dtype) off_value = np.asarray(-1.0, dtype=dtype) truth = np.asarray( [[[1.0, -1.0, -1.0], [-1.0, -1.0, 1.0], [-1.0, -1.0, -1.0], [-1.0, 1.0, -1.0]], [[-1.0, 1.0, -1.0], [1.0, -1.0, -1.0], [-1.0, 1.0, -1.0], [-1.0, -1.0, -1.0]]], dtype=dtype) # axis == -1 self._testBothOneHot( indices=indices, depth=depth, on_value=on_value, off_value=off_value, dtype=dtype, truth=truth) # axis == 1 self._testBothOneHot( indices=indices, depth=depth, on_value=on_value, off_value=off_value, axis=1, dtype=dtype, truth=[truth[0].T, truth[1].T]) # Do not transpose the batch def _testDefaultValuesBatch(self, dtype): indices = np.asarray([[0, 2, -1, 1], [1, 0, 1, -1]], dtype=np.int64) depth = 3 truth = np.asarray( [[[1.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 1.0, 0.0]], [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 0.0]]], dtype=dtype) # axis == -1 self._testBothOneHot( indices=indices, depth=depth, dtype=dtype, truth=truth) # axis == 1 self._testBothOneHot( indices=indices, depth=depth, axis=1, dtype=dtype, truth=[truth[0].T, truth[1].T]) # Do not transpose the batch def _testValueTypeBatch(self, dtype): indices = np.asarray([[0, 2, -1, 1], [1, 0, 1, -1]], dtype=np.int64) depth = 3 on_value =
np.asarray(1.0, dtype=dtype)
numpy.asarray
# Reverse photography ##h3D-II sensor size # 36 * 48 mm, 0.036 x 0.048m ## focal length # 28mm, 0.028m ## multiplier # 1.0 from skimage import io import matplotlib.pyplot as plt import numpy as np import cv2 from scipy.spatial import distance import shapefile as shp def buildshape(corners, filename): """build a shapefile geometry from the vertices of the image in world coordinates, then save it using the image name. Sub critical""" #create a shapefile instance #shape = shp.writer(shape.POLYGON) #shape.poly(parts = [[proj_coords[:,0], proj_coords[:,1]], [proj_coords[:,1], proj_coords[:,2]] # [proj_coords[:,3], proj_coords[:,2]], [proj_coords[:,0], proj_coords[:,3]]] #shape.save("./", filename) def worldfile(corners, im_pix, filename, filepath): """build a world file from the vertices of the image in world coordinates, then save it using the image name. here we build a small array and then dump it to a file input is: - the image file name - projected corners in world coordinates (*not* bounding box) - pxel resolution as a two-element vector [pix_x, pix_y] - path to warped image files reference: http://support.esri.com/en/knowledgebase/techarticles/detail/17489 """ world_arr = np.zeros([6,1]) #line 1 is the X pixel resolution in M world_arr[0] = im_pix[0] #line 2 is the Y pixel resolution in M world_arr[3] = -im_pix[1] #now the X coord of the top left corner world_arr[4] = np.min(corners[0,:]) #and the Y coordinate of the top left corner world_arr[5] = np.max(corners[1,:]) #strip some parts from the filename filename = filename[0:len(filename)-4] np.savetxt(filepath + filename + '.jpgw', world_arr, "%.3f") #------ # 2D homogeneous vectors and transformations def hom2(x, y): """2D homogeneous column vector.""" return np.matrix([x, y, 1]).T def scale2d(s_x, s_y): """Scale matrix that scales 2D homogeneous coordinates""" return np.matrix([[s_x, 0, 0], [0, s_y, 0], [0, 0, 1]] ) def trans2d(t_x, t_y): """Translation matrix that moves a (homogeneous) vector [v_x, v_y, 1] to [v_x + t_x, v_y + t_y, 1]""" return np.matrix([[1, 0, t_x], [0, 1, t_y], [0, 0, 1]] ) #----- # 3D homogeneous vectors and transformations def hom3(x, y, z): """3D homogeneous column vector.""" return np.matrix([x, y, z, 1]).T def unhom(v): """Convert homogeneous coords (v_x, v_y, v_z, v_w) to 3D by (v_x, v_y, v_z) / v_w.""" return v[:-1]/v[-1] def trans3d(t): """Translation matrix that moves a (homogeneous) vector [v_x, v_y, v_z, 1] to [v_x + t_x, v_y + t_y, v_z + t_z, 1].""" I = np.matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) return np.hstack([I, t]) # return np.matrix([[1, 0, 0, t_x], # [0, 1, 0, t_y], # [0, 0, 1, t_z], # [0, 0, 0, 1 ]] ) def persp3d(v_x, v_y, v_z): """Perspective transformation in homogeneous coordinates where v represents the viewer's position relative to the display surface (i.e., (v_x, v_y) is centre, v_z is focal distance.""" return np.matrix([[1, 0, -v_x/v_z, 0], [0, 1, -v_y/v_z, 0], [0, 0, 1, 0], [0, 0, 1/v_z, 0]] ) def cross(a, b): """Compute 3D cross product of homogeneous vectors, returning the result as a 3D column vector.""" a3, b3 = unhom(a), unhom(b) return np.matrix(
np.cross(a3.T, b3.T)
numpy.cross
# -*- coding: utf-8 -*- """ Created on Tue Sep 7 17:37:57 2021 @author: jagtaps """ import numpy as np import networkx as nx import pandas as pd import requests import gzip import shutil import mygene import functions as f mirna_dat_normal = pd.read_csv("data//Pancancer_miRNA_Normal.csv" ) mirna_dat_tumor = pd.read_csv("data//Pancancer_miRNA_Tumor.csv" ) mrna_dat_normal = pd.read_csv("data//Pancancer_mRNA_Normal.csv" ) mrna_dat_tumor = pd.read_csv("data//Pancancer_mRNA_Tumor.csv" ) ref_net = nx.read_edgelist("data//ref_net") mirna_all = pd.concat([mirna_dat_normal, mirna_dat_tumor], axis=1) mirna_all = mirna_all.loc[:,~mirna_all.columns.duplicated()] mrna_all = pd.concat([mrna_dat_normal, mrna_dat_tumor], axis=1) mrna_all = mrna_all.loc[:,~mrna_all.columns.duplicated()] mirna_dat_N_mean = mirna_dat_normal.iloc[:,1:mirna_dat_normal.shape[1]].mean(axis=1) mirna_dat_T_mean = mirna_dat_tumor.iloc[:,1:mirna_dat_tumor.shape[1]].mean(axis=1) mrna_dat_N_mean = mrna_dat_normal.iloc[:,1:mrna_dat_normal.shape[1]].mean(axis=1) mrna_dat_T_mean = mrna_dat_tumor.iloc[:,1:mrna_dat_tumor.shape[1]].mean(axis=1) d = {'mirna' : np.array(mirna_dat_normal['miRNA'].values),'logFC' : np.log2(np.array(mirna_dat_T_mean)/np.array(mirna_dat_N_mean))} mirna_fc_dat = pd.DataFrame(d) mirna_fc_dat = mirna_fc_dat[mirna_fc_dat['logFC']>2] mirna_fc_dat_overxp = mirna_fc_dat.replace([np.inf, -np.inf], np.nan).dropna(axis=0) d = {'mrna' : np.array(mrna_dat_normal['mRNA'].values),'logFC' : np.log2(np.array(mrna_dat_T_mean)/np.array(mrna_dat_N_mean))} mrna_fc_dat = pd.DataFrame(d) mrna_fc_dat = mrna_fc_dat[mrna_fc_dat['logFC']<-2] mrna_fc_dat_underexp = mrna_fc_dat.replace([np.inf, -np.inf], np.nan).dropna(axis=0) mirna_overexp_dat = mirna_all.iloc[mirna_fc_dat_overxp.index] mirna_overexp_datt = mirna_overexp_dat.iloc[:,1:mirna_overexp_dat.shape[1]] mirna_overexp_datt.index = mirna_overexp_dat['miRNA'].values mirna_coexp_dat = mirna_overexp_datt.transpose().corr().stack().reset_index() mirna_coexp_dat = mirna_coexp_dat[mirna_coexp_dat[0]>0.8] mirna_coexp_dat.to_csv('mirna.coexpnet', sep='\t',index= None) mrna_overexp_dat = mrna_all.iloc[mrna_fc_dat_underexp.index] mrna_overexp_datt = mrna_overexp_dat.iloc[:,1:mrna_overexp_dat.shape[1]] mrna_overexp_datt.index = mrna_overexp_dat['mRNA'].values mrna_coexp_dat = mrna_overexp_datt.transpose().corr().stack().reset_index() mrna_coexp_dat = mrna_coexp_dat[mrna_coexp_dat[0]>0.8] mrna_coexp_dat.to_csv('mrna.coexpnet', sep='\t',index= None) mirna_mrna_coexp = pd.concat([mirna_coexp_dat,mrna_coexp_dat]) mirna_mrna_coexp_edgelist = mirna_mrna_coexp[['level_0','level_1']] mirna_fc_dat_overxp.to_csv('mirna_fc_dat_overxp') mrna_fc_dat_underexp.to_csv('mrna_fc_dat_underexp') url = 'http://mirdb.org/mirdb/download/miRDB_v6.0_prediction_result.txt.gz' r = requests.get(url) with open('mirdb', 'wb') as f_in: f_in.write(r.content) with gzip.open('mirdb', 'rb') as f_in: with open('mirdb.txt', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) mirna_db = pd.read_csv("miRDB_v6.0_prediction_result.txt", sep="\t", header=None) mirna_db = mirna_db[mirna_db[0].isin(np.array(mirna_fc_dat_overxp['mirna']))] mirna_db = mirna_db[mirna_db[2]>80] mg = mygene.MyGeneInfo() res = pd.DataFrame(mg.querymany(list(mirna_db[1].values), scopes='refseq')) mirna_mrna_target = pd.DataFrame({'level_0': mirna_db[0].values, 'level_1' : res['symbol'].values}) mirna_mrna_target=mirna_mrna_target[mirna_mrna_target['level_1'].isin(np.array(mrna_fc_dat_underexp['mrna']))] input_edgelist = pd.concat([mirna_mrna_coexp_edgelist,mirna_mrna_target]) input_edgelist.to_csv('input_edgelist', sep='\t',index= None, header = None) e1 = nx.read_edgelist('input_edgelist') a1 = nx.adjacency_matrix(e1) m1 = f.PPMI_matrix(a1,2,1) emb1 = f.embedd(m1,128) dat = pd.DataFrame(data = emb1) dat.index = e1.nodes dat.to_csv('test_branet.emb', sep=' ') mirna_list = mirna_fc_dat_overxp['mirna'] mrna_list =mrna_fc_dat_underexp['mrna'] top_mirna = mirna_fc_dat_overxp[:10] mirna_list = top_mirna['mirna'] Mat = dat.values @ dat.values.transpose() MatNorm = (Mat-Mat.min())/(Mat.max()-Mat.min()) Mat = pd.DataFrame(MatNorm,columns=
np.array(dat.index)
numpy.array
#!/usr/bin/env python # ---------------------------------------------------------------- # Programmer(s): <NAME> @ SMU # ---------------------------------------------------------------- # SUNDIALS Copyright Start # Copyright (c) 2002-2022, Lawrence Livermore National Security # and Southern Methodist University. # All rights reserved. # # See the top-level LICENSE and NOTICE files for details. # # SPDX-License-Identifier: BSD-3-Clause # SUNDIALS Copyright End # ---------------------------------------------------------------- # matplotlib-based plotting script # ---------------------------------------------------------------- # imports import glob import sys import pylab as plt import numpy as np # load mesh data file mesh = np.loadtxt('mesh.txt', dtype=np.double) # load output time file times = np.loadtxt('t.000000.txt', dtype=np.double) # load solution data files ufiles = glob.glob('u.' + ('[0-9]'*6) + '.txt'); ufiles.sort() vfiles = glob.glob('v.' + ('[0-9]'*6) + '.txt'); vfiles.sort() wfiles = glob.glob('w.' + ('[0-9]'*6) + '.txt'); wfiles.sort() udata = np.loadtxt(ufiles[0], dtype=np.double) vdata =
np.loadtxt(vfiles[0], dtype=np.double)
numpy.loadtxt
from flask import Flask, render_template, request import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np import sympy as sym import imageio import time app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/curiosities') def curiosities_and_wonders(): return render_template('curiosities.html') @app.route('/grad_des') def grad_des(): return render_template('grad_des.html', string_variable="gradient_descent", startx="-20", endx="20", starty="-20", endy="20", q00="1", q01="0", q10="0", q11="-1", b0="0", b1="0", c="0", x0="-15", y0="0.1", precision="0.0001", eps="0.05", max_iter="75") @app.route('/steepest_des') def steepest_des(): return render_template('steepest_des.html', string_variable="steepest_descent", startx="-20", endx="20", starty="-20", endy="20", q00="1", q01="0", q10="0", q11="2", b0="0", b1="0", c="0", x0="-15", y0="-15", precision="0.0001", max_iter="50") @app.route('/gdm') def gdm(): return render_template('gdm.html', string_variable="gdm", startx="-20", endx="20", starty="-20", endy="20", q00="1", q01="0", q10="0", q11="-1", b0="0", b1="0", c="0", x0="-15", y0="0.1", precision="0.0001", alpha="0.1", beta="0.9", max_iter="70") @app.route('/rmsprop') def RMSprop(): return render_template('rmsprop.html', string_variable="rmsprop", startx="-20", endx="20", starty="-20", endy="20", q00="1", q01="0", q10="0", q11="-1", b0="0", b1="0", c="0", x0="-15", y0="0.1", precision="0.0001", alpha="0.2", beta="0.9", max_iter="80") @app.route('/adam') def adam_alg(): return render_template('adam.html', string_variable="adam", startx="-20", endx="20", starty="-20", endy="20", q00="1", q01="0", q10="0", q11="-1", b0="0", b1="0", c="0", x0="-15", y0="0.1", precision="0.0001", alpha="0.2", beta1="0.9", beta2="0.999", max_iter="80", eps="0.00000001") def f(x, q, b, c, n=2): z = np.zeros(len(x)) for i in range(len(x)): for j in range(int(n)): for k in range(int(n)): z[i] += q[j][k] * x[i][j] * x[i][k] for j in range(int(n)): z[i] += b[j] * x[i][j] z[i] += c return z def f2(x, y, q, b, c): z = q[0][0] * x * x + q[0][1] * x * y + q[1][0] * y * x + q[1][1] * y * y + b[0] * x + b[1] * y + c return z def f_mesh(x, y, q, b, c): z = np.zeros(len(x)) z = q[0][0] * x * x + q[0][1] * x * y + q[1][0] * y * x + q[1][1] * y * y + b[0] * x + b[1] * y + c return z def z_func(x_old, q, b, c, eps=0.000000000001): x, y, t = sym.symbols('x y t') x1 = sym.Matrix([[x, y]]) t1 = sym.Matrix([[t]]) df = sym.Matrix([[sym.diff(f2(x, y, q, b, c), x), sym.diff(f2(x, y, q, b, c), y)]]) z = x1 - t1 * df z = f2(z[0], z[1], q, b, c) z_diff = sym.diff(z, t) eqn = sym.Eq(z_diff, 0) sol = sym.solve(eqn, t) sym.expr = sol[0] sym.expr = sym.expr.subs([(x, x_old[0][0]), (y, x_old[0][1] + eps)]) print("sym: ", sym.expr ) return sym.expr def init(start_x, end_x, start_y, end_y): X1 = np.arange(start_x, end_x, 0.1) Y1 = np.arange(start_y, end_y, 0.1) Z1 = np.zeros(len(X1)) X_new = np.zeros((len(X1), 2)) for i in range(len(X1)): X_new[i][0] = X1[i] X_new[i][1] = Y1[i] return X1, Y1, Z1, X_new def make_gif(X1, Y1, Z1, x_list, y_list, q, b, c, x0, y0): X1, Y1 = np.meshgrid(X1, Y1) Z1 = f_mesh(X1, Y1, q, b, c) x_list = np.delete(x_list, 0, axis=0) y_list = np.delete(y_list, 0, axis=0) frames = [] for i in range(1, len(x_list)): X, Y = zip(*x_list[:i]) Z = y_list[:i] xc = x_list[i][0] yc = x_list[i][1] ax = plt.subplots(nrows=1, ncols=1, figsize=(10, 10)) cs = plt.contour(X1, Y1, Z1) plt.suptitle('Starting point: ({}, {}) Iteration number: {} Current Point: ({}, {})'.format(x0, y0, i, round(xc, 2), round(yc, 2)), fontsize=14, fontweight='bold') plt.clabel(cs, inline=1, fontsize=10) colors = ['b', 'g', 'm', 'c', 'orange'] for j in range(1, len(X)): ax[1].annotate('', xy=(X[j], Y[j]), xytext=(X[j - 1], Y[j - 1]), arrowprops={'arrowstyle': '->', 'color': 'r', 'lw': 1}, va='center', ha='center') ax[1].scatter(X, Y, s=40, lw=0) ax[1].set_xlabel('X') ax[1].set_ylabel('Y') ax[1].set_title('Minimizing function') plt.savefig('img.png') plt.close('all') new_frame = imageio.imread('img.png') frames.append(new_frame) print("\r {}/{} written.".format(i, len(x_list))) name = str(time.time()) name = name.replace('.', '') imageio.mimsave('static/' + name + ".gif", frames) return name def grad_descent(q, b, c, x0, y0, eps=0.05, precision=0.0001, max_iter=200): X_old = np.zeros((1, 2)) X_new = np.zeros((1, 2)) Y_new = np.zeros(1) dfr = np.zeros((1, 2)) X_new[0][0] = x0 X_new[0][1] = y0 i = 0 Xs = np.zeros((1, 2)) Ys = np.zeros(1) x, y = sym.symbols('x y') df1 = sym.diff(f2(x, y, q, b, c), x) df2 = sym.diff(f2(x, y, q, b, c), y) while np.sum(abs(X_new - X_old)) > precision and max_iter > i: Xs = np.append(Xs, X_new, axis=0) Y_new[0] = f2(X_new[0][0], X_new[0][1], q, b, c) Ys = np.append(Ys, Y_new, axis=0) X_old = X_new dfr[0][0] = df1.evalf(subs={x: X_old[0][0], y: X_old[0][1]}) dfr[0][1] = df2.evalf(subs={x: X_old[0][0], y: X_old[0][1]}) X_new = X_new - eps * dfr i += 1 eps *= 0.99 print("Finished with {} step".format(i)) if i < max_iter: Xs = np.append(Xs, X_new, axis=0) Y_new[0] = f2(X_new[0][0], X_new[0][1], q, b, c) Ys = np.append(Ys, Y_new, axis=0) return Xs, Ys def steepest(q, b, c, x0, y0, precision=0.0001, max_iter=200): X_old = np.zeros((1, 2)) X_new = np.zeros((1, 2)) Y_new = np.zeros(1) dfr = np.zeros((1, 2)) X_new[0][0] = x0 X_new[0][1] = y0 i = 0 Xs = np.zeros((1, 2)) Ys = np.zeros(1) x, y = sym.symbols('x y') df1 = sym.diff(f2(x, y, q, b, c), x) df2 = sym.diff(f2(x, y, q, b, c), y) while np.sum(abs(X_new - X_old)) > precision and max_iter > i: Xs = np.append(Xs, X_new, axis=0) Y_new[0] = f2(X_new[0][0], X_new[0][1], q, b, c) Ys =
np.append(Ys, Y_new, axis=0)
numpy.append
import os import glob import tensorflow as tf import numpy as np import argparse import skimage.io import MODEL2 import skimage.transform import matplotlib.pyplot as plt h = 224 w = 224 parser = argparse.ArgumentParser() parser.add_argument('--input_dir', type=str, default='dataset/endoscope/val/img') parser.add_argument('--gt_dir', type=str, default='dataset/endoscope/val/label') parser.add_argument('--model_dir', type=str, default='model/multi_task') parser.add_argument('--model_name', type=str, default='model99.ckpt') parser.add_argument('--save_dir', type=str, default='./result/multi_task_99') parser.add_argument('--gpu', type=int, default=0) flags = parser.parse_args() def Iou(pred, label): h, w = pred.shape pred = np.reshape(pred, (h * w, 1)) label = np.reshape(label, (h * w, 1)) intersection = np.sum(np.multiply(label, pred)) union = np.sum(label) + np.sum(pred) iou = (intersection + 1e-7) /(union - intersection + 1e-7) return iou def precision(pred, label): h, w = pred.shape pred = np.reshape(pred, (h * w, 1)) label = np.reshape(label, (h * w, 1)) intersection = np.sum(np.equal(label, pred).astype(np.float32)) return intersection / (h * w) def precision_class(pred, label): if pred == label: return 1.0 else: return 0.0 def classification(output, gt): gt_label = np.unique(gt) group = 1 if len(gt_label) == 1: if gt_label == 0: group = 0 output_label = np.unique(output) if group == 1: if len(output_label) == 1 and output_label == 0: return 0, group return 1, group else: if len(output_label) == 1 and output_label == 0: return 1, group return 0, group def sigmiod(score): return 1 / (1 + np.exp(-1 * score)) def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def main(flags): filename = './dataset/last_fc.tfrecords' if not os.path.exists(flags.save_dir): os.mkdir(flags.save_dir) writer = tf.python_io.TFRecordWriter(filename) g = tf.Graph() with g.as_default(): X = tf.placeholder(tf.float32, shape=[None, h, w, 3], name='X') y = tf.placeholder(tf.float32, shape=[None, h, w, 1], name='y') image_label = tf.placeholder(tf.float32, shape=[None, 1], name='image_label') mode = tf.placeholder(tf.bool, name='mode') fc3, fc2, score_dsn6_up, score_dsn5_up, score_dsn4_up, score_dsn3_up, score_dsn2_up, score_dsn1_up, upscore_fuse = MODEL2.dss_model(X, y, mode) saver = tf.train.Saver() config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver.restore(sess, os.path.join(flags.model_dir, flags.model_name)) print(os.path.join(flags.model_dir, flags.model_name)) names=os.listdir(flags.input_dir) for name in names: inputname=os.path.join(flags.input_dir, name) print(inputname) img = skimage.io.imread(inputname) img = skimage.transform.resize(img, (h, w)) img = skimage.img_as_ubyte(img) img = img.astype(np.float32) inputgtname = os.path.join(flags.gt_dir, name) print(inputgtname) label1 = skimage.io.imread(inputgtname) label2 = skimage.transform.resize(label1, (h, w)) label2 = skimage.img_as_ubyte(label2) label = (label1 >= (0.5 * 255)).astype(np.float32) label_unique = np.unique(label) if len(label_unique) == 1 and label_unique[0] == 0: curr_image_label = 0 else: curr_image_label = 1 fc2_value = sess.run(fc2, feed_dict={X:
np.expand_dims(img, 0)
numpy.expand_dims
#!/usr/bin/python from visuals import GameWindow import argparse import ai2048demo import copy import numpy import math import struct import random import sys import pickle import time import theano import theano.tensor as T sys.path.append('../../vi') import vi.theano # Directions, DO NOT MODIFY UP = 0 DOWN = 1 LEFT = 2 RIGHT = 3 # Offsets for computing tile indices in each direction. # DO NOT MODIFY this dictionary. OFFSETS = { UP: ( 1, 0), DOWN: (-1, 0), LEFT: ( 0, 1), RIGHT: ( 0, -1) } def merge(line): # Helper function that merges a single row or column in 2048 # Move all non-zero values of list to the left nonzeros_removed = [] result = [] merged = False for number in line: if number != 0: nonzeros_removed.append(number) while len(nonzeros_removed) != len(line): nonzeros_removed.append(0) # Double sequental tiles if same value for number in range(0, len(nonzeros_removed) - 1): if nonzeros_removed[number] == nonzeros_removed[number + 1] and merged == False: result.append(nonzeros_removed[number] * 2) merged = True elif nonzeros_removed[number] != nonzeros_removed[number + 1] and merged == False: result.append(nonzeros_removed[number]) elif merged == True: merged = False if nonzeros_removed[-1] != 0 and merged == False: result.append(nonzeros_removed[-1]) while len(result) != len(nonzeros_removed): result.append(0) return result # https://github.com/jbutewicz/An-Introduction-to-Interactive-Programming-in-Python/blob/master/Principles%20of%20Computing%20Week%201/2048.py # Modified for convenience. class TwentyFortyEight: @staticmethod def count_line_merges(line): merges = 0 prev = 0 counter = 0 for i in range(4): rank = line[i] if rank: if prev == rank: counter += 1 elif counter > 0: merges += 1 + counter counter = 0 prev = rank if counter > 0: merges += 1 + counter return merges # Class to run the game logic. # Compute inital row dictionary to make move code cleaner initial = { UP : [[0,element] for element in range(4)], DOWN : [[4 - 1, element] for element in range(4)], LEFT : [[element, 0] for element in range(4)], RIGHT : [[element, 4 - 1] for element in range (4)] } def __init__(self, state=None): if state: self.cells = state else: self.reset() def __str__(self): # Print a string representation of the grid for debugging. for number in range(0, 4): print(self.cells[number]) def can_move(self, direction): temp = copy.deepcopy(self.cells) result = self.move(direction, with_spawn=False) self.cells = temp return result def copy_and_set_tile(self, row, col, value): new = TwentyFortyEight(self.cells) new.set_tile(row, col, value) return new def count_free(self): return sum(cell == 0 for row in self.cells for cell in row) def count_merges(self): return self.count_horizontal_merges() + \ self.count_vertical_merges() def count_horizontal_merges(self): return (self.count_line_merges(self.cells[0]) + self.count_line_merges(self.cells[1]) + self.count_line_merges(self.cells[2]) + self.count_line_merges(self.cells[3])) def count_vertical_merges(self): return (self.count_line_merges([self.cells[0][0], self.cells[1][0], self.cells[2][0], self.cells[3][0]]) + self.count_line_merges([self.cells[0][1], self.cells[1][1], self.cells[2][1], self.cells[3][1]]) + self.count_line_merges([self.cells[0][2], self.cells[1][2], self.cells[2][2], self.cells[3][2]]) + self.count_line_merges([self.cells[0][3], self.cells[1][3], self.cells[2][3], self.cells[3][3]])) def get_highest_tile(self): return max(cell for row in self.cells for cell in row) def get_tile(self, row, col): # Return the value of the tile at position row, col. return self.cells[row][col] def is_game_over(self): return not any(self.can_move(direction) for direction in [UP, DOWN, LEFT, RIGHT]) def move(self, direction, with_spawn=True): # Move all tiles in the given direction and add # a new tile if any tiles moved. initial_list = self.initial[direction] temporary_list = [] if(direction == UP): return self.move_helper(initial_list, direction, temporary_list, with_spawn) elif(direction == DOWN): return self.move_helper(initial_list, direction, temporary_list, with_spawn) elif(direction == LEFT): return self.move_helper(initial_list, direction, temporary_list, with_spawn) elif(direction == RIGHT): return self.move_helper(initial_list, direction, temporary_list, with_spawn) def move_helper(self, initial_list, direction, temporary_list, with_spawn): # Move all columns and merge self.cells_before = copy.deepcopy(self.cells) for element in initial_list: temporary_list.append(element) for index in range(1, 4): temporary_list.append([x + y for x, y in zip(temporary_list[-1], OFFSETS[direction])]) indices = [] for index in temporary_list: indices.append(self.get_tile(index[0], index[1])) merged_list = merge(indices) for index_x, index_y in zip(merged_list, temporary_list): self.set_tile(index_y[0], index_y[1], index_x) temporary_list = [] if self.cells_before != self.cells: if with_spawn: self.new_tile() return True else: return False def new_tile(self): # Create a new tile in a randomly selected empty # square. The tile should be 2 90% of the time and # 4 10% of the time. available_positions = [] for row in range(4): for col in range(4): if self.cells[row][col] == 0: available_positions.append([row, col]) if not available_positions: return False else: random_tile = random.choice(available_positions) weighted_choices = [(2, 9), (4, 1)] population = [val for val, cnt in weighted_choices for i in range(cnt)] tile = random.choice(population) self.set_tile(random_tile[0],random_tile[1], tile) return True def reset(self): # Reset the game so the grid is empty. self.cells = [[0 for col in range(4)] for row in range(4)] self.cells_before = copy.deepcopy(self.cells) def set_tile(self, row, col, value): # Set the tile at position row, col to have the given value. self.cells[row][col] = value def undo_move(self): self.cells = self.cells_before def generate_training_data(representation): game = TwentyFortyEight() game.new_tile() xdata = [] ydata = [] while not game.is_game_over(): num_free = game.count_free() moves_scored = sorted(((score_move(game, representation, move) - num_free, move) for move in range(4)), reverse=True) best_move = moves_scored[0][1] # Only use as training example if delta is positive and move is scored better than any other move: if moves_scored[0][0] > 0 and any(moves_scored[i][0] != moves_scored[0][0] for i in range(1, 4)): x = transform_state(game, representation) y = best_move xdata.append(x) ydata.append(y) game.move(best_move) return game.get_highest_tile(), xdata, ydata def score_move(game, representation, move): if game.move(move, with_spawn=False): score = game.count_free() game.undo_move() return score else: return -1 def play_ann_game(representation, predict_function): game = TwentyFortyEight() game.new_tile() while not game.is_game_over(): x = numpy.asarray(transform_state(game, representation)) move_probabilities = predict_function(x.reshape(1, x.shape[0]))[0] move_probabilities_sorted = sorted(((probability, move) for (move, probability) in enumerate(move_probabilities)), reverse=True) # Select the first valid move ranked by probability: for probability, move in move_probabilities_sorted: if game.move(move): break t = game.get_highest_tile() print(t) return t def play_ai_game(representation): game = TwentyFortyEight() game.new_tile() while not game.is_game_over(): game.move(max((score_move(game, representation, move), move) for move in range(4))[1]) return game.get_highest_tile() def play_random_game(): game = TwentyFortyEight() game.new_tile() while not game.is_game_over(): game.move(random.choice([UP, DOWN, LEFT, RIGHT])) return game.get_highest_tile() def transform_state(game, representation): if not representation: # Representation A: return [ TwentyFortyEight.count_line_merges(game.cells[0]), TwentyFortyEight.count_line_merges(game.cells[1]), TwentyFortyEight.count_line_merges(game.cells[2]), TwentyFortyEight.count_line_merges(game.cells[3]), TwentyFortyEight.count_line_merges([game.cells[0][0], game.cells[1][0], game.cells[2][0], game.cells[3][0]]), TwentyFortyEight.count_line_merges([game.cells[0][1], game.cells[1][1], game.cells[2][1], game.cells[3][1]]), TwentyFortyEight.count_line_merges([game.cells[0][2], game.cells[1][2], game.cells[2][2], game.cells[3][2]]), TwentyFortyEight.count_line_merges([game.cells[0][3], game.cells[1][3], game.cells[2][3], game.cells[3][3]]) ] else: # Representation B: values = [ game.cells[row][column] for row in range(4) for column in range(4) ] unique_nonzero = sorted(list(set(values) - set([0]))) return [ (unique_nonzero.index(value) + 1 if value in unique_nonzero else 0) for value in values ] def main(): parser = argparse.ArgumentParser() parser.add_argument('--A', action='store_true') parser.add_argument('--B', action='store_true') parser.add_argument('--L1', type=float) parser.add_argument('--L2', type=float) parser.add_argument('--ai', action='store_true') parser.add_argument('--benchmark', type=int) parser.add_argument('--compare', type=int) parser.add_argument('--data_a', default='training_data_a.pkl') parser.add_argument('--data_b', default='training_data_b.pkl') parser.add_argument('--demo', action='store_true') parser.add_argument('--dropout', type=float) parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--generate', type=int) parser.add_argument('--hidden_function', default='relu') parser.add_argument('--hidden_layers', nargs='*') parser.add_argument('--learning_rate', type=float, default=0.08) parser.add_argument('--max_time', type=int) parser.add_argument('--minibatch_size', type=int, default=40) parser.add_argument('--model_a', default='model_a.pkl') parser.add_argument('--model_b', default='model_b.pkl') parser.add_argument('--output_directory', default='../data') parser.add_argument('--runs', action='store_true') parser.add_argument('--seed', type=int) parser.add_argument('--training_ratio', type=float) args = parser.parse_args() if not args.A and not args.B and not args.compare: print('A or B representation must be chosen!') sys.exit(-1) print(args) random.seed(42) numpy.random.seed(random.randint(0, 2 ** 30)) if args.ai: if args.benchmark: La = list(play_ai_game(args.B) for _ in range(args.benchmark)) print('mean: {} std: {}'.format(numpy.mean(La), numpy.std(La))) else: Lr = list(play_random_game() for _ in range(50)) La = list(play_ai_game(args.B) for _ in range(50)) print('random play: {}'.format(Lr)) print('ann play: {}'.format(La)) print(ai2048demo.welch(Lr, La)) elif args.benchmark: network = pickle.load(open(args.model_a if args.A else args.model_b, 'rb')) predict_function = theano.function( inputs=[network.inputs], outputs=network.layers[-1].testing_outputs, allow_input_downcast=True) La = [ play_ann_game(args.B, predict_function) for _ in range(args.benchmark) ] print('mean: {} std: {}'.format(numpy.mean(La), numpy.std(La))) elif args.generate: training_data = [] training_labels = [] for i in range(args.generate): top_tile, x, y = generate_training_data(args.B) training_data.extend(x) training_labels.extend(y) print('{}/{} ({:.2f}%)'.format(i + 1, args.generate, 100.0 * (i + 1) / args.generate)) print('{} examples generated from {} games'.format(len(training_data), args.generate)) training_examples = list(zip(training_data, training_labels)) random.shuffle(training_examples) training_data[:], training_labels[:] = zip(*training_examples) with open(args.data_a if args.A else args.data_b, 'wb') as training_data_file: pickle.dump((training_data, training_labels), training_data_file) elif args.compare: import scipy.stats network_a = pickle.load(open(args.model_a, 'rb')) network_b = pickle.load(open(args.model_b, 'rb')) predict_function_a = theano.function( inputs=[network_a.inputs], outputs=network_a.layers[-1].testing_outputs, allow_input_downcast=True) predict_function_b = theano.function( inputs=[network_b.inputs], outputs=network_b.layers[-1].testing_outputs, allow_input_downcast=True) La_a = [ play_ann_game(False, predict_function_a) for _ in range(args.compare) ] La_b = [ play_ann_game(True, predict_function_b) for _ in range(args.compare) ] statistic, pvalue = scipy.stats.ttest_ind(La_a, La_b, equal_var=False) print('A mean: {} A std: {}'.format(numpy.mean(La_a), numpy.std(La_a))) print('B mean: {} B std: {}'.format(numpy.mean(La_b), numpy.std(La_b))) print('statistic = {:f} pvalue = {:f}'.format(statistic, pvalue)) elif args.demo: network = pickle.load(open(args.model_a if args.A else args.model_b, 'rb')) predict_function = theano.function( inputs=[network.inputs], outputs=network.layers[-1].testing_outputs, allow_input_downcast=True) La = [] for _ in range(50): game = TwentyFortyEight() game.new_tile() while not game.is_game_over(): x = numpy.asarray(transform_state(game, args.B)) move_probabilities = predict_function(x.reshape(1, x.shape[0]))[0] move_probabilities_sorted = sorted(((probability, move) for (move, probability) in enumerate(move_probabilities)), reverse=True) # Select the first valid move ranked by probability: for probability, move in move_probabilities_sorted: if game.move(move): break t = game.get_highest_tile() print(t) La.append(t) Lr = list(play_random_game() for _ in range(50)) print('random play: {}'.format(Lr)) print('ann play: {}'.format(La)) print(ai2048demo.welch(Lr, La)) else: def epoch_status_function(time, epoch, average_loss, testing_error, is_best): if is_best: with open(args.model_a if args.A else args.model_b, 'wb') as model_file: pickle.dump(network, model_file) print("Time: {:7.2f} sec, Epoch: {:4d}, Average loss: {:.5f}, Testing error: {:.5f}%".format( time, epoch, average_loss, testing_error * 100.0)) x_data, y_data = pickle.load(open(args.data_a if args.A else args.data_b, 'rb')) #x_data, y_data = shuffle(x_data, y_data, random_state=0) num_training_examples = int(math.ceil(args.training_ratio * len(x_data))) \ if args.training_ratio else len(x_data) input_size = len(x_data[0]) layer_sizes = [input_size] + list(map(int, args.hidden_layers or [])) + [4] print("Creating shared Theano dataset variables...") training_dataset = vi.theano.TheanoDataSet( theano.shared(
numpy.asarray(x_data[:num_training_examples], dtype=theano.config.floatX)
numpy.asarray
# <NAME> # 3/18/2019 # General object to run empirical sr actflow process # For group-level/cross-subject analyses import numpy as np import os import multiprocessing as mp import scipy.stats as stats import nibabel as nib import os os.environ['OMP_NUM_THREADS'] = str(1) import sklearn from scipy import signal import h5py import sys sys.path.append('glmScripts/') import glmScripts.taskGLMPipeline_v2 as tgp import sys import pandas as pd import pathlib import calculateFC as fc import tools # Using final partition networkdef = np.loadtxt('/home/ti61/f_mc1689_1/NetworkDiversity/data/network_partition.txt') networkorder = np.asarray(sorted(range(len(networkdef)), key=lambda k: networkdef[k])) networkorder.shape = (len(networkorder),1) # network mappings for final partition set networkmappings = {'fpn':7, 'vis1':1, 'vis2':2, 'smn':3, 'aud':8, 'lan':6, 'dan':5, 'con':4, 'dmn':9, 'pmulti':10, 'none1':11, 'none2':12} networks = networkmappings.keys() ## General parameters/variables nParcels = 360 class Model(): """ Class to perform empirical actflow for a given subject (stimulus-to-response) """ def __init__(self,projectdir='/home/ti61/f_mc1689_1/SRActFlow/',ruletype='12',n_hiddenregions=10,randomize=False,scratchfcdir=None): """ instantiate: indices for condition types indices for specific condition instances betas """ #### Set up basic model parameters self.projectdir = projectdir # Excluding 084 self.subjNums = ['013','014','016','017','018','021','023','024','026','027','028','030','031','032','033', '034','035','037','038','039','040','041','042','043','045','046','047','048','049','050', '053','055','056','057','058','062','063','066','067','068','069','070','072','074','075', '076','077','081','085','086','087','088','090','092','093','094','095','097','098','099', '101','102','103','104','105','106','108','109','110','111','112','114','115','117','119', '120','121','122','123','124','125','126','127','128','129','130','131','132','134','135', '136','137','138','139','140','141'] self.inputtypes = ['RED','VERTICAL','CONSTANT','HIGH'] self.ruletype = ruletype #### Load in atlas glasserfile2 = projectdir + 'data/Q1-Q6_RelatedParcellation210.LR.CorticalAreas_dil_Colors.32k_fs_RL.dlabel.nii' glasser2 = nib.load(glasserfile2).get_data() glasser2 = np.squeeze(glasser2) self.glasser2 = glasser2 #### # Define hidden units if n_hiddenregions!=None: ####################################### #### Select hidden layer regions hiddendir = projectdir + 'data/results/MAIN/RSA/' hiddenregions = np.loadtxt(hiddendir + 'RSA_Similarity_SortedRegions2.txt',delimiter=',') ####################################### #### Output directory if randomize: print("Constructing model with", n_hiddenregions, "randomly selected hidden regions") fcdir = scratchfcdir #### Necessary to optimize amarel pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists hiddenregions = np.random.choice(hiddenregions,size=n_hiddenregions,replace=False) else: print("Constructing model with", n_hiddenregions, "hidden regions") fcdir = projectdir + 'data/results/MAIN/fc/LayerToLayerFC_' + str(n_hiddenregions) + 'Hidden/' pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists # Select hidden layer if n_hiddenregions < 0: hiddenregions = hiddenregions[n_hiddenregions:] else: hiddenregions = hiddenregions[:n_hiddenregions] ## Set object attributes self.n_hiddenregions = n_hiddenregions self.hiddenregions = np.squeeze(hiddenregions) self.fcdir = fcdir self.hidden = True # Set this variable to true - indicates to run sr simulations with a hidden layer #### identify hidden region vertex indices hidden_ind = [] for roi in hiddenregions: hidden_ind.extend(np.where(self.glasser2==roi+1)[0]) self.hidden_ind = hidden_ind else: print("Constructing model with NO hidden layers") fcdir = projectdir + 'data/results/MAIN/fc/LayerToLayerFC_NoHidden/' pathlib.Path(fcdir).mkdir(parents=True, exist_ok=True) # Make sure directory exists self.hidden = False # Set this variable to true - indicates to run sr simulations with a hidden layer self.fcdir = fcdir self.hiddenregions = None self.n_hiddenregions = n_hiddenregions #### # Define task rule (input) layer ruledir = self.projectdir + 'data/results/MAIN/RuleDecoding/' if ruletype=='12': rule_regions = np.loadtxt(ruledir + self.ruletype + 'Rule_Regions.csv',delimiter=',') elif ruletype=='fpn': rule_regions = [] rule_regions.extend(np.where(networkdef==networkmappings['fpn'])[0]) rule_regions = np.asarray(rule_regions) elif ruletype=='nounimodal': allrule_regions = np.loadtxt(ruledir + '12Rule_Regions.csv',delimiter=',') unimodal_nets = ['vis1','aud'] unimodal_regions = [] for net in unimodal_nets: unimodal_regions.extend(np.where(networkdef==networkmappings[net])[0]) # only include regions that are in allrule_regions but also NOT in unimodal_regions rule_regions = [] for roi in allrule_regions: if roi in unimodal_regions: continue else: rule_regions.append(roi) rule_regions = np.asarray(rule_regions) rule_ind = [] for roi in rule_regions: rule_ind.extend(np.where(self.glasser2==roi+1)[0]) self.rule_ind = rule_ind #### # Define motor regions # Set indices for layer-by-layer vertices targetdir = projectdir + 'data/results/MAIN/MotorResponseDecoding/' motor_resp_regions_LH = np.loadtxt(targetdir + 'MotorResponseRegions_LH.csv',delimiter=',') motor_resp_regions_RH = np.loadtxt(targetdir + 'MotorResponseRegions_RH.csv',delimiter=',') targetROIs = np.hstack((motor_resp_regions_LH,motor_resp_regions_RH)) # Define all motor_ind motor_ind = [] for roi in targetROIs: roi_ind = np.where(glasser2==roi+1)[0] motor_ind.extend(roi_ind) motor_ind = np.asarray(motor_ind).copy() self.motor_ind = motor_ind #### override -- only pick the motor parcel with the greatest response decoding motor_ind_lh = [] for roi in motor_resp_regions_LH: # only include left hand responses in the right hemisphere if roi>=180: roi_ind = np.where(glasser2==roi+1)[0] motor_ind_lh.extend(roi_ind) motor_ind_rh = [] for roi in motor_resp_regions_RH: # only include left hand responses in the right hemisphere if roi<180: roi_ind = np.where(glasser2==roi+1)[0] motor_ind_rh.extend(roi_ind) # motor_ind_rh = np.asarray(motor_ind_rh).copy() motor_ind_lh = np.asarray(motor_ind_lh).copy() self.motor_ind_rh = motor_ind_rh self.motor_ind_lh = motor_ind_lh #### Load model task set filename= projectdir + 'data/results/MAIN/EmpiricalSRActFlow_AllTrialKeys_15stims_v3.csv' # Great self.trial_metadata = pd.read_csv(filename) def computeGroupFC(self,n_components=500,nproc='max'): """ Function that wraps _computeSubjFC() to compute FC for all subjs, and computes averaged groupFC """ if nproc=='max': nproc=mp.cpu_count() inputs = [] for subj in self.subjNums: inputs.append((subj,n_components)) pool = mp.Pool(processes=nproc) if self.hidden: pool.starmap_async(self._computeSubjFC,inputs) else: pool.starmap_async(self._computeSubjFC_NoHidden,inputs) pool.close() pool.join() #### Compute group FC for inputtype in self.inputtypes: if self.hidden: fc.computeGroupFC(inputtype,self.fcdir) else: fc.computeGroupFC_NoHidden(inputtype,self.fcdir) if self.hidden: fc.computeGroupFC(self.ruletype,self.fcdir) else: fc.computeGroupFC_NoHidden(self.ruletype,self.fcdir) def loadRealMotorResponseActivations(self,vertexmasks=True): #### Load motor response activations localized in output vertices only (for faster loading) if vertexmasks: print('Load real motor responses in output vertices') self.data_task_rh, self.data_task_lh = tools.loadMotorResponsesOutputMask() else: print('Load real motor responses in output parcels -- inefficient since need to load all vertices first') data_task_rh = [] data_task_lh = [] for subj in self.subjNums: tmp_rh = tools.loadMotorResponses(subj,hand='Right') tmp_lh = tools.loadMotorResponses(subj,hand='Left') data_task_rh.append(tmp_rh[self.motor_ind_rh,:].copy().T) data_task_lh.append(tmp_lh[self.motor_ind_lh,:].copy().T) self.data_task_rh = np.asarray(data_task_rh).T self.data_task_lh = np.asarray(data_task_lh).T def loadModelFC(self): if self.hidden: print('Load Model FC weights') fcdir = self.fcdir self.fc_input2hidden = {} self.eig_input2hidden = {} for inputtype in ['VERTICAL','RED','HIGH','CONSTANT']: self.fc_input2hidden[inputtype], self.eig_input2hidden[inputtype] = tools.loadGroupActFlowFC(inputtype,fcdir) # Load rule to hidden self.fc_12rule2hidden, self.eig_12rule2hidden = tools.loadGroupActFlowFC(self.ruletype,fcdir) # Load hidden to motor resp mappings self.fc_hidden2motorresp, self.eig_hidden2motorresp = tools.loadGroupActFlowFC('hidden2out',fcdir) else: print('Load Model FC weights -- No hidden layer') fcdir = self.fcdir self.fc_input2output = {} self.eig_input2output = {} for inputtype in ['VERTICAL','RED','HIGH','CONSTANT']: self.fc_input2output[inputtype], self.eig_input2output[inputtype] = tools.loadGroupActFlowFC_NoHidden(inputtype,fcdir) # Load rule to hidden self.fc_12rule2output, self.eig_12rule2output = tools.loadGroupActFlowFC_NoHidden('12',fcdir) def simulateGroupActFlow(self,thresh=0,nproc='max',vertexmasks=True): """ Simulate group level actflow (all subject simulations) """ if nproc=='max': nproc=mp.cpu_count() inputs = [] for subj in self.subjNums: inputs.append((subj,thresh)) if nproc == 1: results = [] for input1 in inputs: results.append(self._simulateSubjActFlow(input1[0],input1[1])) else: pool = mp.Pool(processes=nproc) results = pool.starmap_async(self._simulateSubjActFlow,inputs).get() pool.close() pool.join() actflow_predictions = np.zeros((len(self.subjNums),len(self.motor_ind),4)) #actflow_predictions_noReLU = np.zeros((len(self.subjNums),len(self.motor_ind),4)) scount = 0 for result in results: # actflow_predictions[scount,:,:] = result[0] # actflow_predictions_noReLU[scount,:,:] = result[1] actflow_predictions[scount,:,:] = result scount += 1 ## Reformat to fit shape of actual data array actflow_rh = np.zeros((len(self.glasser2),2,len(self.subjNums))) actflow_lh = np.zeros((len(self.glasser2),2,len(self.subjNums))) for scount in range(len(self.subjNums)): # RMID actflow_rh[self.motor_ind,0,scount] = actflow_predictions[scount,:,2] # RIND actflow_rh[self.motor_ind,1,scount] = actflow_predictions[scount,:,3] # LMID actflow_lh[self.motor_ind,0,scount] = actflow_predictions[scount,:,0] # LIND actflow_lh[self.motor_ind,1,scount] = actflow_predictions[scount,:,1] #### Now save out only relevant output mask vertices if vertexmasks: tmp = np.squeeze(nib.load(self.projectdir + 'data/results/MAIN/MotorRegionsMasksPerSubj/sractflow_smn_outputRH_mask.dscalar.nii').get_data()) rh_ind = np.where(tmp==True)[0] actflow_rh = actflow_rh[rh_ind,:,:] tmp = np.squeeze(nib.load(self.projectdir + 'data/results/MAIN/MotorRegionsMasksPerSubj/sractflow_smn_outputLH_mask.dscalar.nii').get_data()) lh_ind = np.where(tmp==True)[0] actflow_lh = actflow_lh[lh_ind,:,:].copy() else: actflow_rh = actflow_rh[self.motor_ind_rh,:,:].copy() actflow_lh = actflow_lh[self.motor_ind_lh,:,:].copy() return actflow_rh, actflow_lh def actflowDecoding(self,trainset,testset,outputfile, nbootstraps=1000,featsel=False,nproc='max',null=False,verbose=True): if nproc=='max': nproc=mp.cpu_count() # Decoding for i in range(nbootstraps): distances_baseline = np.zeros((1,len(self.subjNums)*2)) # subjs * nlabels distances_baseline[0,:],rmatch,rmismatch, confusion_mats = tools.actflowDecodings(testset,trainset, effects=True, featsel=featsel,confusion=True,permutation=null, ncvs=1, nproc=nproc) ##### Save out and append file # Open/create file filetxt = open(outputfile,"a+") # Write out to file print(np.mean(distances_baseline),file=filetxt) # Close file filetxt.close() if i%100==0 and verbose==True: print('Permutation', i) print('\tDecoding accuracy:', np.mean(distances_baseline), '| R-match:', np.mean(rmatch), '| R-mismatch:', np.mean(rmismatch)) def extractSubjActivations(self, subj, df_trials): """ extract activations for a sample subject, including motor response """ ## Set up data parameters X = tgp.loadTaskTiming(subj,'ALL') self.stimIndex = np.asarray(X['stimIndex']) self.stimCond = np.asarray(X['stimCond']) datadir = self.projectdir + 'data/postProcessing/hcpPostProcCiric/' h5f = h5py.File(datadir + subj + '_glmOutput_data.h5','r') self.betas = h5f['taskRegression/ALL_24pXaCompCorXVolterra_taskReg_betas_canonical'][:].copy() h5f.close() ## Set up task parameters self.logicRules = ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER'] self.sensoryRules = ['RED', 'VERTICAL', 'HIGH', 'CONSTANT'] self.motorRules = ['LMID', 'LIND', 'RMID', 'RIND'] self.colorStim = ['RED', 'BLUE'] self.oriStim = ['VERTICAL', 'HORIZONTAL'] self.pitchStim = ['HIGH', 'LOW'] self.constantStim = ['CONSTANT','ALARM'] # Begin extraction for specific trials n_trials = len(df_trials) stimData = np.zeros((n_trials,self.betas.shape[0])) logicRuleData = np.zeros((n_trials,self.betas.shape[0])) sensoryRuleData = np.zeros((n_trials,self.betas.shape[0])) motorRuleData = np.zeros((n_trials,self.betas.shape[0])) respData = np.zeros((n_trials,self.betas.shape[0])) sensoryRuleIndices = [] motorRespAll = [] for trial in range(n_trials): logicRule = df_trials.iloc[trial].logicRule sensoryRule = df_trials.iloc[trial].sensoryRule motorRule = df_trials.iloc[trial].motorRule motorResp = df_trials.iloc[trial].motorResp stim1 = df_trials.iloc[trial].stim1 stim2 = df_trials.iloc[trial].stim2 # if verbose: # print 'Running actflow predictions for:', logicRule, sensoryRule, motorRule, 'task' logicKey = 'RuleLogic_' + logicRule sensoryKey = 'RuleSensory_' + sensoryRule motorKey = 'RuleMotor_' + motorRule stimKey = 'Stim_' + stim1 + stim2 motorResp = solveInputs(logicRule, sensoryRule, motorRule, stim1, stim2, printTask=False) respKey = 'Response_' + motorResp stimKey_ind = np.where(self.stimCond==stimKey)[0] logicRule_ind = np.where(self.stimCond==logicKey)[0] sensoryRule_ind = np.where(self.stimCond==sensoryKey)[0] motorRule_ind = np.where(self.stimCond==motorKey)[0] respKey_ind = np.where(self.stimCond==respKey)[0] stimData[trial,:] = np.real(self.betas[:,stimKey_ind].copy()[:,0]) logicRuleData[trial,:] = np.real(self.betas[:,logicRule_ind].copy()[:,0]) sensoryRuleData[trial,:] = np.real(self.betas[:,sensoryRule_ind].copy()[:,0]) motorRuleData[trial,:] = np.real(self.betas[:,motorRule_ind].copy()[:,0]) respData[trial,:] = np.real(self.betas[:,respKey_ind].copy()[:,0]) motorRespAll.append(motorResp) sensoryRuleIndices.append(sensoryRule) self.motorRespAll = motorRespAll self.stimData = stimData self.logicRuleData = logicRuleData self.sensoryRuleData = sensoryRuleData self.motorRuleData = motorRuleData self.respData = respData self.sensoryRuleIndices = sensoryRuleIndices def extractSubjHiddenRSMActivations(self, subj): """ extract activations for a sample subject, including motor response """ ## Set up data parameters X = tgp.loadTaskTiming(subj,'ALL') self.stimIndex = np.asarray(X['stimIndex']) self.stimCond = np.asarray(X['stimCond']) datadir = self.projectdir + 'data/postProcessing/hcpPostProcCiric/' h5f = h5py.File(datadir + subj + '_glmOutput_data.h5','r') self.betas = h5f['taskRegression/ALL_24pXaCompCorXVolterra_taskReg_betas_canonical'][:].copy() h5f.close() ## Set up task parameters self.logicRules = ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER'] self.sensoryRules = ['RED', 'VERTICAL', 'HIGH', 'CONSTANT'] self.motorRules = ['LMID', 'LIND', 'RMID', 'RIND'] self.colorStim = ['RED', 'BLUE'] self.oriStim = ['VERTICAL', 'HORIZONTAL'] self.pitchStim = ['HIGH', 'LOW'] self.constantStim = ['CONSTANT','ALARM'] total_conds = 28 # 12 rules + 16 stimulus pairings rsm_activations = np.zeros((28,self.betas.shape[0])) labels = [] condcount = 0 ## # START for cond in self.logicRules: labels.append(cond) key = 'RuleLogic_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond in self.sensoryRules: labels.append(cond) key = 'RuleSensory_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond in self.motorRules: labels.append(cond) key = 'RuleMotor_' + cond ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition # This is nested for loop since stimuli come in pairs for cond1 in self.colorStim: for cond2 in self.colorStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond1 in self.oriStim: for cond2 in self.oriStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond1 in self.pitchStim: for cond2 in self.pitchStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition for cond1 in self.constantStim: for cond2 in self.constantStim: labels.append(cond1 + cond2) key = 'Stim_' + cond1 + cond2 ind = np.where(self.stimCond==key)[0] rsm_activations[condcount,:] = np.real(self.betas[:,ind].copy()[:,0]) condcount += 1 # go to next condition return rsm_activations, labels def generateHiddenUnitRSMPredictions(self,thresh=0,n_hiddenregions=10,filename='',verbose=False): """ Run all predictions for all 64 tasks """ hidden_ind = self.hidden_ind rule_ind = self.rule_ind all_actflow_unthresh = [] all_actflow_thresh = [] all_true_activity = [] for subj in self.subjNums: print('Predicting hidden layer activations for subject', subj) rsm_activations, labels = self.extractSubjHiddenRSMActivations(subj) tmp_actflow_unthresh = [] tmp_actflow_thresh = [] tmp_true_activity = [] labelcount = 0 for label in labels: # Dissociate sensory rules from sensory stimuli since stimuli have two stimulus words (e.g., 'REDRED') if label in ['BOTH', 'NOTBOTH', 'EITHER', 'NEITHER', 'RED', 'VERTICAL', 'HIGH', 'CONSTANT', 'LMID', 'LIND', 'RMID', 'RIND']: input_units = 'rule' if label in ['REDRED', 'REDBLUE', 'BLUERED', 'BLUEBLUE']: input_units = 'RED' # specify sensory rules for sensory activations if label in ['VERTICALVERTICAL', 'VERTICALHORIZONTAL', 'HORIZONTALVERTICAL', 'HORIZONTALHORIZONTAL']: input_units = 'VERTICAL' # this is the sensory rule if label in ['HIGHHIGH', 'HIGHLOW', 'LOWHIGH', 'LOWLOW']: input_units = 'HIGH' if label in ['CONSTANTCONSTANT', 'CONSTANTALARM', 'ALARMCONSTANT', 'ALARMALARM']: input_units = 'CONSTANT' if input_units!='rule': input_ind = self._getStimIndices(input_units) # Identify the vertices for stimulus layer of the ANN unique_input_ind = np.where(np.in1d(input_ind,hidden_ind)==False)[0] fc = self.fc_input2hidden[input_units] pc_act = np.matmul(rsm_activations[labelcount,:][unique_input_ind],self.eig_input2hidden[input_units].T) # Unthresholded actflow actflow_unthresh = np.matmul(pc_act,fc) # Thresholded actflow actflow_thresh = np.multiply(actflow_unthresh,actflow_unthresh>thresh) if input_units=='rule': unique_input_ind = np.where(np.in1d(rule_ind,hidden_ind)==False)[0] fc = self.fc_12rule2hidden pc_act = np.matmul(rsm_activations[labelcount,:][unique_input_ind],self.eig_12rule2hidden.T) # Unthresholded actflow actflow_unthresh = np.matmul(pc_act,fc) # Thresholded actflow actflow_thresh = np.multiply(actflow_unthresh,actflow_unthresh>thresh) tmp_actflow_unthresh.append(actflow_unthresh) tmp_actflow_thresh.append(actflow_thresh) tmp_true_activity.append(np.squeeze(rsm_activations[labelcount,hidden_ind])) labelcount += 1 # Compute subject-specific predicted activations for each condition all_actflow_unthresh.append(np.asarray(tmp_actflow_unthresh)) all_actflow_thresh.append(np.asarray(tmp_actflow_thresh)) all_true_activity.append(np.asarray(tmp_true_activity)) np.savetxt(filename + '.txt', labels, fmt='%s') h5f = h5py.File(filename + '.h5','a') try: h5f.create_dataset('actflow_unthresh',data=all_actflow_unthresh) h5f.create_dataset('actflow_thresh',data=all_actflow_thresh) h5f.create_dataset('true_activity',data=all_true_activity) except: del h5f['actflow_unthresh'], h5f['actflow_thresh'], h5f['true_activity'] h5f.create_dataset('actflow_unthresh',data=all_actflow_unthresh) h5f.create_dataset('actflow_thresh',data=all_actflow_thresh) h5f.create_dataset('true_activity',data=all_true_activity) h5f.close() def generateInputControlDecoding(self,n_hiddenregions=10,verbose=False): """ Run all predictions for all 64 tasks """ hidden_ind = self.hidden_ind rule_ind = self.rule_ind # Also exclude smn indices smn_rois = np.where(networkdef==networkmappings['smn'])[0] smn_ind = [] for roi in smn_rois: smn_ind.extend(np.where(self.glasser2==roi+1)[0]) smn_ind = np.asarray(smn_ind) target_vertices = self.fc_hidden2motorresp.shape[1] actflow = np.zeros((target_vertices,4)) #LMID, LIND, RMID, rIND -- 4 cols in 3rd dim for each sensory rule input_activations_lmid = [] input_activations_lind = [] input_activations_rmid = [] input_activations_rind = [] all_input_ind = [] for sensoryRule in self.sensoryRules: input_ind = self._getStimIndices(sensoryRule) # Identify the vertices for the stimulus layer of the ANN all_input_ind.extend(input_ind) all_input_ind = np.asarray(all_input_ind) #### Input activations unique_input_ind = np.where(np.in1d(all_input_ind,hidden_ind)==False)[0] unique_input_ind = np.where(np.in1d(unique_input_ind,smn_ind)==False)[0] input_act = self.stimData[:,:][:,unique_input_ind] #### 12 rule activations unique_input_ind = np.where(np.in1d(rule_ind,hidden_ind)==False)[0] unique_input_ind = np.where(np.in1d(unique_input_ind,smn_ind)==False)[0] rule_composition = self.logicRuleData[:,unique_input_ind] + self.sensoryRuleData[:,unique_input_ind] + self.motorRuleData[:,unique_input_ind] #rule_act = self.logicRuleData[:,:][:,unique_input_ind] ##### Concatenate input activations input_activations = np.hstack((input_act,rule_composition)) ## Apply threshold input_activations = np.multiply(input_act,input_act>0) #### Average into 4 different responses respIndex = np.asarray(self.motorRespAll) # LMID ind = np.where(respIndex=='LMID')[0] if len(ind)!=0: input_activations_lmid.append(np.sum(input_activations[ind,:],axis=0)) # LIND ind = np.where(respIndex=='LIND')[0] if len(ind)!=0: input_activations_lind.append(np.sum(input_activations[ind,:],axis=0)) # RMID ind = np.where(respIndex=='RMID')[0] if len(ind)!=0: input_activations_rmid.append(np.sum(input_activations[ind,:],axis=0)) # RIND ind = np.where(respIndex=='RIND')[0] if len(ind)!=0: input_activations_rind.append(np.sum(input_activations[ind,:],axis=0)) return input_activations_lmid, input_activations_lind, input_activations_rmid, input_activations_rind def generateActFlowPredictions_12Rule_PCFC(self,thresh=0,n_hiddenregions=10,verbose=False): """ Run all predictions for all 64 tasks """ hidden_ind = self.hidden_ind rule_ind = self.rule_ind target_vertices = self.fc_hidden2motorresp.shape[1] actflow = np.zeros((target_vertices,4)) #LMID, LIND, RMID, rIND -- 4 cols in 3rd dim for each sensory rule sensecount = 0 for sensoryRule in self.sensoryRules: sensoryIndices = np.where(np.asarray(self.sensoryRuleIndices)==sensoryRule)[0] input_ind = self._getStimIndices(sensoryRule) # Identify the vertices for stimulus layer of the ANN # Run activity flow #### Input to hidden regions # first identify non-overlapping indices unique_input_ind = np.where(np.in1d(input_ind,hidden_ind)==False)[0] fc = self.fc_input2hidden[sensoryRule] pc_act = np.matmul(self.stimData[sensoryIndices,:][:,unique_input_ind],self.eig_input2hidden[sensoryRule].T) actflow_stim = np.matmul(pc_act,fc) #### Rule compositions #### (12rule) to hidden regions unique_input_ind = np.where(np.in1d(rule_ind,hidden_ind)==False)[0] rule_composition = self.logicRuleData[sensoryIndices,:][:,unique_input_ind] + self.sensoryRuleData[sensoryIndices,:][:,unique_input_ind] + self.motorRuleData[sensoryIndices,:][:,unique_input_ind] # first identify non-overlapping indices fc = self.fc_12rule2hidden pc_act = np.matmul(rule_composition,self.eig_12rule2hidden.T) actflow_taskrules = np.matmul(pc_act,fc) hiddenlayer_composition = actflow_taskrules + actflow_stim # Apply a threshold if there is one if thresh==None: pass else: hiddenlayer_composition = np.multiply(hiddenlayer_composition,hiddenlayer_composition>thresh) #t, p = stats.ttest_1samp(hiddenlayer_composition,0,axis=0) # Trials x Vertices #p[t>0] = p[t>0]/2.0 #p[t<0] = 1.0 - p[t<0]/2.0 #h0 = mc.fdrcorrection0(p)[0] # Effectively a threshold linear func #h0 = p<0.05 #hiddenlayer_composition = np.multiply(hiddenlayer_composition,h0) ## multiplicative gating ##hiddenlayer_composition = np.multiply(np.multiply(np.multiply(actflow_stim, actflow_logicrule), actflow_sensoryrule), actflow_motorrule) #### Hidden to output regions unique_ind = np.where(
np.in1d(hidden_ind,self.motor_ind)
numpy.in1d
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 24 11:53:16 2020 @author: gregz """ import matplotlib matplotlib.use('agg') import seaborn as sns import matplotlib.pyplot as plt from astropy.io import fits import numpy as np import sys import glob from astropy.convolution import convolve, Gaussian1DKernel from matplotlib.ticker import MultipleLocator from astropy.table import Table from scipy.signal import savgol_filter, medfilt from math_utils import biweight filenames = [v.replace(' ', '') for v in sys.argv[1].split(',')] filenames2 = [v.replace(' ', '') for v in sys.argv[2].split(',')] sides = [v.replace(' ', '') for v in sys.argv[3].split(',')] outfile = sys.argv[4] sidedict = {'blue': ['uv', 'orange'], 'red': ['red', 'farred']} # Plot Style sns.set_context('talk') sns.set_style('ticks') plt.figure(figsize=(10, 6)) nexps = 1 waves_dict = {'uv': np.array([3670., 4050., 4200., 4420., 4500., 4560.]), 'orange': np.array([4750., 5050., 5600., 6000., 6650.]), 'red': np.array([6700., 7100., 7450., 7700., 8000.]), 'farred': np.array([8450, 8600., 8800., 9900., 10100.])} def get_cor(calbase, channel): waves = waves_dict[channel] k = fits.open('%s_exp01_%s.fits' % (calbase, channel)) if 'red' in channel: objname = k[0].header['OBJECT'].split('_066_')[0].lower() else: objname = k[0].header['OBJECT'].split('_056_')[0].lower() m = np.loadtxt('/work/03946/hetdex/maverick/virus_config/standards/m%s.dat.txt' % objname) flux = 10**(-0.4 * (m[:, 1]-23.9))*1e-29 * 2.99792e18 / m[:, 0]**2 if objname == 'gd248': sel = m[:, 0] > 6250. s = savgol_filter(flux[sel], 425, 2) t = np.hstack([flux[~sel], s]) plt.plot(m[:, 0], t) sel = m[:, 0] > 8500. p = np.polyfit(m[sel, 0], 1./t[sel], 3) d = m[-1, 0] - m[-2, 0] x = np.arange(m[-1, 0]+d, 10500+d, d) M = np.hstack([m[:, 0], x]) Y = np.hstack([t, 1./np.polyval(p, x)]) model = np.interp(k[0].data[0], M, Y) else: model = np.interp(k[0].data[0], m[:, 0], flux) Z = waves*0. for j, wave in enumerate(waves): Z[j] = np.nanmedian((k[0].data[1] / model)[np.abs(k[0].data[0] - wave)<5.]) p = np.polyfit(waves, Z, 2) init = np.polyval(p, k[0].data[0]) cor = k[0].data[1] / (model * init) cor[np.abs(k[0].data[0]-6563.)<50.] = np.nan cor[np.abs(k[0].data[0]-4861.)<50.] = np.nan cor[np.isnan(cor)] = np.interp(k[0].data[0][np.isnan(cor)], k[0].data[0][np.isfinite(cor)], cor[np.isfinite(cor)], left=1.0, right=1.0) cor[k[0].data[0] < 4550.] = 1. return init, cor def connect_channels(spec1, spec2, def_wave, w1, w2, w3, lw, hw): niter = 3 for j in np.arange(niter): n3 = np.nanmedian(spec1[np.abs(def_wave-w1)<10.]) n4 = np.nanmedian(spec2[np.abs(def_wave-w2)<10.]) n5 = np.nanmedian(spec2[np.abs(def_wave-w3)<10.]) sel = (def_wave > lw) * (def_wave < hw) sel1 = sel * np.isfinite(spec1) sel2 = sel * np.isfinite(spec2) p0 = np.polyfit([w1, w2, w3], [n3, n4, n5], 2) p1 = np.polyfit(def_wave[sel1], spec1[sel1], 2) p2 = np.polyfit(def_wave[sel2], spec2[sel2], 2) norm = np.polyval(p0, def_wave[sel]) norm1 = np.polyval(p1, def_wave[sel]) norm2 = np.polyval(p2, def_wave[sel]) spec1[sel] = spec1[sel] / norm1 * norm spec2[sel] = spec2[sel] / norm2 * norm nl = np.nanmedian(spec1[np.abs(def_wave-(lw-3.))<3.]) nh = np.nanmedian(spec1[np.abs(def_wave-(lw+3.))<3.]) mult = nh / nl / 1.01 spec1[def_wave<=lw] = spec1[def_wave<=lw] * mult nl = np.nanmedian(spec2[np.abs(def_wave-(hw-3.))<3.]) nh = np.nanmedian(spec2[np.abs(def_wave-(hw-3.))<3.]) mult = nl / nh / 1.01 spec2[def_wave>=hw] = spec2[def_wave>=hw] * mult return spec1, spec2 def_wave = np.arange(3650., 10500., 0.7) wave = {'uv': None, 'orange': None, 'red': None, 'farred': None} normdict = {'blue': [4260, 4800, 5100, 4580, 4690], 'red': [8000, 8600, 8700, 8150, 8560]} Spec = [] Cor = [] Err = [] Sky = [] allspec = [] redspec = [] bluespec = [] blueerr = [] rederr = [] bluesky = [] redsky = [] c = [] for base, calbase, side in zip(filenames, filenames2, sides): channels = sidedict[side] nexp = len(glob.glob('%s_exp*_%s.fits' % (base, channels[0]))) print('Found %i exposures' % nexp) for channel in channels: cor, CO = get_cor(calbase, channel) for i in np.arange(1, nexp+1): f = fits.open('%s_exp%02d_%s.fits' % (base, i, channel)) t = np.interp(def_wave, f[0].data[0], f[0].data[1] / CO / cor, left=0., right=0.) s = np.interp(def_wave, f[0].data[0], f[0].data[2] / CO / cor, left=0., right=0.) e = np.interp(def_wave, f[0].data[0], f[0].data[-1] / CO / cor, left=0., right=0.) wave[channel] = def_wave if side == 'blue': bluespec.append(t) blueerr.append(e) bluesky.append(s) else: redspec.append(t) rederr.append(e) redsky.append(s) c.append(np.interp(def_wave, f[0].data[0], CO*cor, left=0., right=0.)) N = nexp * len(channels) w1, w2, w3, lw, hw = normdict[side] # for i in np.arange(nexp): # ind1 = -N + i # ind2 = -N + nexp + i # allspec[ind1], allspec[ind2] = connect_channels(allspec[ind1], # allspec[ind2], # def_wave, w1, w2, w3, # lw, hw) bluespec = np.array(bluespec) bluespec[bluespec==0.] = np.nan redspec = np.array(redspec) redspec[redspec==0.] = np.nan blueerr = np.array(blueerr) blueerr[blueerr==0.] = np.nan rederr = np.array(rederr) rederr[rederr==0.] = np.nan bluesky = np.array(bluesky) bluesky[bluesky==0.] = np.nan redsky = np.array(redsky) redsky[redsky==0.] = np.nan c = np.array(c) c[c==0.] = np.nan Blue =
np.nanmean(bluespec, axis=0)
numpy.nanmean
""" @author: <NAME> @contact: <EMAIL> """ import matplotlib # type: ignore import matplotlib.pyplot as plt # type: ignore import matplotlib.patches as patches # type: ignore import configparser from ifpd import bioext, stats from joblib import Parallel, delayed # type: ignore import numpy as np # type: ignore import os import pandas as pd # type: ignore from rich.progress import track # type: ignore from typing import List matplotlib.use("svg") class OligoDatabase(object): """FISH-ProDe Oligonucleotide Database class.""" def __init__(self, dbDirPath): super(OligoDatabase, self).__init__() self.dirPath = dbDirPath self.chromData = {} assert not os.path.isfile( self.dirPath ), f'expected folder, file found: "{self.dirPath}"' assert os.path.isdir( self.dirPath ), f'database folder not found: "{self.dirPath}"' configPath = os.path.join(self.dirPath, ".config") assert os.path.isfile(configPath), f'missing "{configPath}" file.' with open(configPath, "r") as IH: self.config = configparser.ConfigParser() self.config.read_string("".join(IH.readlines())) def check_overlaps(self): hasOverlaps = False for chrom, chromData in self.chromData.items(): startPositions = np.array(chromData.iloc[:-1, 0]) endPositions = np.array(chromData.iloc[1:, 1]) - 1 foundOverlaps = any(startPositions <= endPositions) hasOverlaps |= foundOverlaps return hasOverlaps == self.has_overlaps() def get_oligo_length_range(self): """Reads oligo length range from Database .config""" return ( self.config.getint("OLIGOS", "min_length"), self.config.getint("OLIGOS", "max_length"), ) def get_oligo_min_dist(self): """Reads consecutive oligo minimum distance from Database .config""" return self.config.getint("OLIGOS", "min_dist") def get_name(self): """Reads Database name from Database .config""" return self.config["DATABASE"]["name"] def get_reference_genome(self): """Reads reference genome from Database .config""" return self.config["DATABASE"]["refGenome"] def has_overlaps(self): """Reads overlaps status from Database .config""" return self.config.getboolean("OLIGOS", "overlaps") def has_sequences(self): """Reads sequence status from Database .config""" return True def has_chromosome(self, chrom): return chrom in os.listdir(self.dirPath) def read_chromosome(self, chrom): assert self.has_chromosome(chrom) chromPath = os.path.join(self.dirPath, chrom) chromData = pd.read_csv(chromPath, "\t", header=None) chromData.columns = bioext.UCSCbed.FIELD_NAMES[1 : (chromData.shape[1] + 1)] assert 0 != chromData.shape[0], f'found empty chromosome file: "{chromPath}"' assert 2 <= chromData.shape[1], f'missing columns in "{chromPath}"' assert all( chromData.iloc[:, 0].diff()[1:] > 0 ), f'found unsorted file: "{chromPath}"' assert all( chromData.iloc[:, 1].diff()[1:] >= 0 ), 'found unsorted file: "{chromPath}"' oligoMinDist = self.get_oligo_min_dist() startValues = chromData.iloc[1:, 0].values endValues = chromData.iloc[:-1, 1].values if len(startValues) != 0: oligoMinD_observed = min(startValues - endValues) else: oligoMinD_observed = np.inf assert oligoMinD_observed >= oligoMinDist, "".join( [ "oligo min distance does not match: ", f"{oligoMinD_observed} instead of {oligoMinDist}.", ] ) oligoLengthRange = self.get_oligo_length_range() oligoLengthList = chromData.iloc[:, 1] - chromData.iloc[:, 0] assert all( oligoLengthList >= oligoLengthRange[0] ), f'oligo too small for ".config" in "{chromPath}"' assert all( oligoLengthList <= oligoLengthRange[1] ), f'oligo too big for ".config" in "{chromPath}"' if self.has_overlaps(): assert self.check_overlaps(), f'overlaps status mismatch in "{chromPath}"' if self.has_sequences(): assert chromData.shape[1] >= 3, f'missing sequence columns in "{chromPath}"' self.chromData[chrom] = chromData def read_all_chromosomes(self, verbose): chromList = [d for d in os.listdir(self.dirPath) if not d.startswith(".")] assert 0 < len(chromList), "no chromosome files found in {self.dirPath}" chromList = track(chromList) if verbose else chromList for chrom in chromList: self.read_chromosome(chrom) class OligoProbe(object): """Class for probe management.""" def __init__(self, chrom, oligos, database): super(OligoProbe, self).__init__() self.chrom = chrom self.oligoData = oligos self.refGenome = database.get_reference_genome() self.chromStart = self.oligoData.iloc[:, 0].min() self.chromEnd = self.oligoData.iloc[:, 1].max() self.midpoint = (self.chromStart + self.chromEnd) / 2 self.size = self.chromEnd - self.chromStart self.homogeneity = self.get_probe_homogeneity() def __str__(self): s = f"[{self.refGenome}]" s += f"{self.chrom}:{self.chromStart}-{self.chromEnd};" s += f" oligoSpread: {self.homogeneity}" return s def asDataFrame(self, region=None): if type(None) == type(region): return pd.DataFrame.from_dict( { "chrom": [self.chrom], "chromStart": [self.chromStart], "chromEnd": [self.chromEnd], "refGenome": [self.refGenome], "midpoint": [self.midpoint], "size": [self.size], "homogeneity": [self.homogeneity], } ) else: return pd.DataFrame.from_dict( { "chrom": [self.chrom], "chromStart": [self.chromStart], "chromEnd": [self.chromEnd], "refGenome": [self.refGenome], "midpoint": [self.midpoint], "size": [self.size], "homogeneity": [self.homogeneity], "regChromStart": region[0], "regChromEnd": region[1], } ) def get_probe_centrality(self, region): """Calculate centrality, as location of the probe midpoint relative to the region midpoint. 1 when overlapping, 0 when the probe midpoint is at either of the region extremities.""" region_halfWidth = (region[2] - region[1]) / 2 region_midPoint = region[1] + region_halfWidth return ( region_halfWidth - abs(region_midPoint - self.midpoint) ) / region_halfWidth def get_probe_size(self): """Probe size, defined as difference between start of first oligo and end of the last one.""" return self.oligoData.iloc[:, 1].max() - self.oligoData.iloc[:, 0].min() def get_probe_homogeneity(self): """Probe homogeneity, as the inverse of the standard deviation of the distance between consecutive oligos, calculated from their start position, disregarding oligo length.""" std = np.std(np.diff(self.oligoData.iloc[:, 1])) return np.inf if std == 0 else 1 / std def describe(self, region, path=None): """Builds a small pd.DataFrame describing a probe.""" description = pd.DataFrame.from_dict( { "chrom": [region[0]], "chromStart": [self.oligoData.iloc[:, 0].min()], "chromEnd": [self.oligoData.iloc[:, 1].max()], "centrality": [self.get_probe_centrality(region)], "size": [self.size], "homogeneity": [self.homogeneity], } ) if type(None) != type(path): config = configparser.ConfigParser() config["REGION"] = { "chrom": region[0], "chromStart": region[1], "chromEnd": region[2], } config["PROBE"] = { "chrom": description["chrom"].values[0], "chromStart": description["chromStart"].values[0], "chromEnd": description["chromEnd"].values[0], "nOligo": self.oligoData.shape[0], } config["FEATURES"] = { "centrality": description["centrality"].values[0], "size": description["size"].values[0], "homogeneity": description["homogeneity"].values[0], } with open(path, "w+") as OH: config.write(OH) return description def get_fasta(self, path=None, prefix=""): if not prefix.startswith(" "): prefix = " " + prefix fasta = "" for i in self.oligoData.index: oligo = self.oligoData.loc[i, :] chromStart, chromEnd, sequence = oligo[:3] fasta += f">{prefix}oligo_{i} [{self.refGenome}]" fasta += f"{self.chrom}:{chromStart}-{chromEnd}\n" fasta += f"{sequence}\n" if type(None) != type(path): assert os.path.isdir(os.path.dirname(path)) with open(path, "w+") as OH: OH.write(fasta) return fasta def get_bed(self, path=None, prefix=""): if not prefix.endswith("_"): prefix += "_" bed = f'track description="ref:{self.refGenome}"\n' for i in self.oligoData.index: oligo = self.oligoData.loc[i, :] chromStart, chromEnd, sequence = oligo[:3] bed += f"{self.chrom}\t{chromStart}\t{chromEnd}\t" bed += f"{prefix}oligo_{i}\n" if type(None) != type(path): assert os.path.isdir(os.path.dirname(path)) with open(path, "w+") as OH: OH.write(bed) return bed def _plot_region(self, outputDir, region): fig = plt.figure() chrom, start, stop = region plt.plot([start, stop], [0, 0], "k", linewidth=4.0, label="Genome") plt.plot( [start + (stop - start) / 2.0, start + (stop - start) / 2.0], [-1, 1], "r--", label="Window center", ) plt.plot( [self.chromStart, self.chromEnd], [0, 0], "c-", linewidth=4.0, label="Probe" ) plt.plot( [self.chromStart + self.size / 2.0, self.chromStart + self.size / 2.0], [-1, 1], "c--", label="Probe center", ) plt.gca().axes.get_yaxis().set_visible(False) plt.suptitle("%s:%d-%.0f" % (chrom, start, stop)) plt.xlabel("genomic coordinate [nt]") plt.legend(fontsize="small", loc="best") plt.savefig( os.path.join(outputDir, "window.png"), format="png", bbox_inches="tight" ) plt.close(fig) def _plot_oligo(self, outputDir): fig = plt.figure(figsize=(20, 5)) (genome_handle,) = plt.plot( [self.chromStart, self.chromEnd], [0, 0], "k", linewidth=4.0, label="Genome" ) for i in self.oligoData.index: oligo = self.oligoData.loc[i, :] oligo_midpoint = (oligo["chromStart"] + oligo["chromEnd"]) / 2.0 (oligo_handle,) = plt.plot( [oligo["chromStart"], oligo["chromEnd"]], [0, 0], "c", linewidth=2.0, label="Oligo", ) (oligoCenter_handle,) = plt.plot( [oligo_midpoint, oligo_midpoint], [-0.1, 0.1], "c:", label="Oligo center", ) plt.gca().axes.get_yaxis().set_visible(False) plt.ylim((-0.5, 0.5)) plt.gca().axes.get_xaxis().set_ticks( list( range( self.chromStart, self.chromEnd, max(1, int((self.chromEnd - self.chromStart) / 5.0)), ) ) ) plt.legend( handles=[genome_handle, oligo_handle, oligoCenter_handle], fontsize="small", loc="best", ) plt.suptitle((f"{self.chrom}:{self.chromStart}-{self.chromEnd}")) plt.xlabel("genomic coordinate [nt]") plt.savefig( os.path.join(outputDir, "probe.png"), format="png", bbox_inches="tight" ) plt.close(fig) def _plot_oligo_distr(self, outputDir): fig = plt.figure() plt.plot( [0, self.oligoData.shape[0] - 1], [self.chromStart, self.chromEnd], "k-", label="Homogeneous distribution", ) plt.plot( list(range(self.oligoData.shape[0])), self.oligoData["chromStart"].values, "r.", label="Oligo", ) plt.suptitle(f"{self.chrom}:{self.chromStart}-{self.chromEnd}") plt.xlabel("oligo number") plt.ylabel("genomic coordinate [nt]") plt.legend(fontsize="small", loc="best") plt.savefig(os.path.join(outputDir, "oligo.png"), format="png") plt.close(fig) def _plot_oligo_distance(self, outputDir): fig = plt.figure() if self.oligoData.shape[0] > 1: startPositions = self.oligoData.iloc[1:, 0].values endPositions = self.oligoData.iloc[:-1, 1].values diffs = startPositions - endPositions plt.hist(diffs, density=1, facecolor="green", alpha=0.5) density = stats.calc_density(diffs, alpha=0.5) plt.plot( density["x"].tolist(), density["y"].tolist(), "b--", label="Density distribution", ) plt.suptitle(f"{self.chrom}:{self.chromStart}-{self.chromEnd}") plt.legend(fontsize="small", loc="best") plt.xlabel("Distance between consecutive oligos [nt]") plt.ylabel("Density") plt.savefig(os.path.join(outputDir, "distance.png"), format="png") plt.close(fig) def plot(self, outputDir, region): assert os.path.isdir(outputDir), f'folder not found: "{outputDir}"' self._plot_region(outputDir, region) self._plot_oligo(outputDir) self._plot_oligo_distr(outputDir) self._plot_oligo_distance(outputDir) def describe_candidate(candidate, queried_region): return candidate.describe(queried_region) class ProbeFeatureTable(object): FEATURE_SORT = { "centrality": {"ascending": False}, "size": {"ascending": True}, "homogeneity": {"ascending": False}, } def __init__(self, candidateList, queried_region, verbose=False, threads=1): super(ProbeFeatureTable, self).__init__() assert 0 < len(candidateList) self.data = [] if threads != 1: verbose = 1 if verbose else 0 self.data = Parallel(n_jobs=threads, backend="threading", verbose=verbose)( delayed(describe_candidate)(candidate, queried_region) for candidate in candidateList ) else: candidateList = track(candidateList) if verbose else candidateList for candidate in candidateList: self.data.append(candidate.describe(queried_region)) self.data = pd.concat(self.data) self.data.index = range(self.data.shape[0]) self.discarded = None def reset(self): self.data = pd.concat([self.discarded, self.data]) self.discarded = None self.data.sort_index(inplace=True) def keep(self, condition, cumulative=False): if not cumulative: self.reset() self.discarded = pd.concat( [self.discarded, self.data.loc[np.logical_not(condition), :]] ) self.data = self.data.loc[condition, :] def filter(self, feature, thr, cumulative=False): assert ( feature in self.FEATURE_SORT.keys() ), f'fetature "{feature}" not recognized.' if not cumulative: self.reset() self.rank(feature) best_feature = self.data[feature].values[0] feature_delta = best_feature * thr feature_range = (best_feature - feature_delta, best_feature + feature_delta) discardCondition = [ self.data[feature] < feature_range[0], self.data[feature] > feature_range[1], ] discardCondition = np.logical_or(*discardCondition) self.discarded = pd.concat([self.discarded, self.data.loc[discardCondition, :]]) self.data = self.data.loc[np.logical_not(discardCondition), :] return (feature_range, feature) def rank(self, feature): self.data = self.data.sort_values( feature, ascending=self.FEATURE_SORT[feature]["ascending"] ) class GenomicWindow(object): def __init__(self, chrom, start, size): super(GenomicWindow, self).__init__() self.chrom = chrom self.chromStart = start self.chromEnd = start + size self.midpoint = (self.chromStart + self.chromEnd) / 2 self.size = size self.probe = None def __str__(self): s = f"[GenomicWindow]{self.chrom}:{self.chromStart}-{self.chromEnd}\n" s += f" Probe: {self.probe}" return s def asRegion(self): return (self.chrom, self.chromStart, self.chromEnd) def has_probe(self): return self.probe is not None def shift(self, n): return GenomicWindow(self.chrom, self.chromStart + n, self.size) def __repr__(self): return f"{self.chrom}:{self.chromStart}-{self.chromEnd}" class GenomicWindowList(object): """Both a list genomic window and associated probe set.""" data: List = [] def __init__(self, windows=None): super(GenomicWindowList, self).__init__() if type(None) != type(windows): self.data = windows def __getitem__(self, i): return self.data[i] def __iter__(self): yield from self.data def __len__(self): return len(self.data) def add(self, chrom, start, size): self.data.append(GenomicWindow(chrom, start, size)) def count_probes(self): return sum(w.has_probe() for w in self) def shift(self, n): return GenomicWindowList([window.shift(n) for window in self.data]) def sort(self): midpointList = np.array([w.midpoint for w in self.data]) self.data = [self.data[i] for i in
np.argsort(midpointList)
numpy.argsort
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy.sparse import issparse from pandas.api.types import is_numeric_dtype, is_categorical_dtype, is_list_like from scipy.stats import zscore from sklearn.metrics import adjusted_mutual_info_score from natsort import natsorted import anndata from pegasusio import UnimodalData, MultimodalData from typing import List, Tuple, Union, Optional, Callable import logging logger = logging.getLogger(__name__) from pegasus.tools import X_from_rep, slicing from .plot_utils import _transform_basis, _get_nrows_and_ncols, _get_marker_size, _get_dot_size, _get_subplot_layouts, _get_legend_ncol, _get_palette, RestrictionParser, DictWithDefault, _generate_categories, _plot_corners def scatter( data: Union[MultimodalData, UnimodalData, anndata.AnnData], attrs: Union[str, List[str]], basis: Optional[str] = "umap", matkey: Optional[str] = None, restrictions: Optional[Union[str, List[str]]] = None, show_background: Optional[bool] = False, alpha: Optional[Union[float, List[float]]] = 1.0, legend_loc: Optional[Union[str, List[str]]] = "right margin", legend_ncol: Optional[str] = None, palettes: Optional[Union[str, List[str]]] = None, cmaps: Optional[Union[str, List[str]]] = "YlOrRd", vmin: Optional[float] = None, vmax: Optional[float] = None, nrows: Optional[int] = None, ncols: Optional[int] = None, panel_size: Optional[Tuple[float, float]] = (4, 4), left: Optional[float] = 0.2, bottom: Optional[float] = 0.15, wspace: Optional[float] = 0.4, hspace: Optional[float] = 0.15, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """Generate scatter plots for different attributes Parameters ---------- data: ``pegasusio.MultimodalData`` Use current selected modality in data. attrs: ``str`` or ``List[str]`` Color scatter plots by attrs. Each attribute in attrs can be one key in data.obs, data.var_names (e.g. one gene) or data.obsm (attribute has the format of 'obsm_key@component', like 'X_pca@0'). If one attribute is categorical, a palette will be used to color each category separately. Otherwise, a color map will be used. basis: ``str``, optional, default: ``umap`` Basis to be used to generate scatter plots. Can be either 'umap', 'tsne', 'fitsne', 'fle', 'net_tsne', 'net_fitsne', 'net_umap' or 'net_fle'. matkey: ``str``, optional, default: None If matkey is set, select matrix with matkey as keyword in the current modality. Only works for MultimodalData or UnimodalData objects. restrictions: ``str`` or ``List[str]``, optional, default: None A list of restrictions to subset data for plotting. There are two types of restrictions: global restriction and attribute-specific restriction. Global restriction appiles to all attributes in ``attrs`` and takes the format of 'key:value,value...', or 'key:~value,value...'. This restriction selects cells with the ``data.obs[key]`` values belong to 'value,value...' (or not belong to if '~' shows). Attribute-specific restriction takes the format of 'attr:key:value,value...', or 'attr:key:~value,value...'. It only applies to one attribute 'attr'. If 'attr' and 'key' are the same, one can use '.' to replace 'key' (e.g. ``cluster_labels:.:value1,value2``). show_background: ``bool``, optional, default: False Only applicable if `restrictions` is set. By default, only data points selected are shown. If show_background is True, data points that are not selected will also be shown. alpha: ``float`` or ``List[float]``, optional, default: ``1.0`` Alpha value for blending, from 0.0 (transparent) to 1.0 (opaque). If this is a list, the length must match attrs, which means we set a separate alpha value for each attribute. legend_loc: ``str`` or ``List[str]``, optional, default: ``right margin`` Legend location. Can be either "right margin" or "on data". If a list is provided, set 'legend_loc' for each attribute in 'attrs' separately. legend_ncol: ``str``, optional, default: None Only applicable if legend_loc == "right margin". Set number of columns used to show legends. palettes: ``str`` or ``List[str]``, optional, default: None Used for setting colors for every categories in categorical attributes. Each string in ``palettes`` takes the format of 'attr:color1,color2,...,colorn'. 'attr' is the categorical attribute and 'color1' - 'colorn' are the colors for each category in 'attr' (e.g. 'cluster_labels:black,blue,red,...,yellow'). If there is only one categorical attribute in 'attrs', ``palletes`` can be set as a single string and the 'attr' keyword can be omitted (e.g. "blue,yellow,red"). cmaps: ``str`` or ``List[str]``, optional, default: ``YlOrRd`` Used for setting colormap for numeric attributes. Each string in ``cmaps`` takes the format of 'colormap' or 'attr:colormap'. 'colormap' sets the default colormap for all numeric attributes. 'attr:colormap' overwrites attribute 'attr's colormap as 'colormap'. vmin: ``float``, optional, default: None Minimum value to show on a numeric scatter plot (feature plot). vmax: ``float``, optional, default: None Maximum value to show on a numeric scatter plot (feature plot). nrows: ``int``, optional, default: None Number of rows in the figure. If not set, pegasus will figure it out automatically. ncols: ``int``, optional, default: None Number of columns in the figure. If not set, pegasus will figure it out automatically. panel_size: `tuple`, optional (default: `(6, 4)`) The panel size (width, height) in inches. left: `float`, optional (default: `0.2`) This parameter sets the figure's left margin as a fraction of panel's width (left * panel_size[0]). bottom: `float`, optional (default: `0.15`) This parameter sets the figure's bottom margin as a fraction of panel's height (bottom * panel_size[1]). wspace: `float`, optional (default: `0.4`) This parameter sets the width between panels and also the figure's right margin as a fraction of panel's width (wspace * panel_size[0]). hspace: `float`, optional (defualt: `0.15`) This parameter sets the height between panels and also the figure's top margin as a fraction of panel's height (hspace * panel_size[1]). return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: 300.0 The resolution of the figure in dots-per-inch. Returns ------- `Figure` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> pg.scatter(data, attrs=['louvain_labels', 'Channel'], basis='fitsne') >>> pg.scatter(data, attrs=['CD14', 'TRAC'], basis='umap') """ if not is_list_like(attrs): attrs = [attrs] nattrs = len(attrs) if not isinstance(data, anndata.AnnData): cur_matkey = data.current_matrix() if matkey is not None: assert not isinstance(data, anndata.AnnData) data.select_matrix(matkey) x = data.obsm[f"X_{basis}"][:, 0] y = data.obsm[f"X_{basis}"][:, 1] # four corners of the plot corners = np.array(np.meshgrid([x.min(), x.max()], [y.min(), y.max()])).T.reshape(-1, 2) basis = _transform_basis(basis) marker_size = _get_marker_size(x.size) nrows, ncols = _get_nrows_and_ncols(nattrs, nrows, ncols) fig, axes = _get_subplot_layouts(nrows=nrows, ncols=ncols, panel_size=panel_size, dpi=dpi, left=left, bottom=bottom, wspace=wspace, hspace=hspace, squeeze=False) if not is_list_like(alpha): alpha = [alpha] * nattrs if not is_list_like(legend_loc): legend_loc = [legend_loc] * nattrs legend_fontsize = [5 if x == "on data" else 10 for x in legend_loc] palettes = DictWithDefault(palettes) cmaps = DictWithDefault(cmaps) restr_obj = RestrictionParser(restrictions) restr_obj.calc_default(data) for i in range(nrows): for j in range(ncols): ax = axes[i, j] ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) if i * ncols + j < nattrs: pos = i * ncols + j attr = attrs[pos] if attr in data.obs: values = data.obs[attr].values elif attr in data.var_names: loc = data.var_names.get_loc(attr) values = slicing(data.X, col = loc) else: obsm_key, sep, component = attr.partition("@") if (sep != "@") or (obsm_key not in data.obsm) or (not component.isdigit()): raise KeyError(f"{attr} is not in data.obs, data.var_names or data.obsm!") values = data.obsm[obsm_key][:, int(component)] selected = restr_obj.get_satisfied(data, attr) if is_numeric_dtype(values): cmap = cmaps.get(attr, squeeze = True) if cmap is None: raise KeyError(f"Please set colormap for attribute {attr} or set a default colormap!") _plot_corners(ax, corners, marker_size) img = ax.scatter( x[selected], y[selected], c=values[selected], s=marker_size, marker=".", alpha=alpha[pos], edgecolors="none", cmap=cmap, vmin=vmin, vmax=vmax, rasterized=True, ) left, bottom, width, height = ax.get_position().bounds rect = [left + width * (1.0 + 0.05), bottom, width * 0.1, height] ax_colorbar = fig.add_axes(rect) fig.colorbar(img, cax=ax_colorbar) else: labels, with_background = _generate_categories(values, restr_obj.get_satisfied(data, attr)) label_size = labels.categories.size palette = palettes.get(attr) if palette is None: palette = _get_palette(label_size, with_background=with_background, show_background=show_background) elif with_background: palette = ["gainsboro" if show_background else "white"] + list(palette) text_list = [] for k, cat in enumerate(labels.categories): idx = labels == cat if idx.sum() > 0: scatter_kwargs = {"marker": ".", "alpha": alpha[pos], "edgecolors": "none", "rasterized": True} if cat != "": if legend_loc[pos] != "on data": scatter_kwargs["label"] = cat else: text_list.append((np.median(x[idx]), np.median(y[idx]), cat)) if cat != "" or (cat == "" and show_background): ax.scatter( x[idx], y[idx], c=palette[k], s=marker_size, **scatter_kwargs, ) else: _plot_corners(ax, corners, marker_size) if legend_loc[pos] == "right margin": legend = ax.legend( loc="center left", bbox_to_anchor=(1, 0.5), frameon=False, fontsize=legend_fontsize[pos], ncol=_get_legend_ncol(label_size, legend_ncol), ) for handle in legend.legendHandles: handle.set_sizes([300.0]) elif legend_loc[pos] == "on data": texts = [] for px, py, txt in text_list: texts.append(ax.text(px, py, txt, fontsize=legend_fontsize[pos], fontweight = "bold", ha = "center", va = "center")) # from adjustText import adjust_text # adjust_text(texts, arrowprops=dict(arrowstyle='-', color='k', lw=0.5)) ax.set_title(attr) else: ax.set_frame_on(False) if i == nrows - 1: ax.set_xlabel(f"{basis}1") if j == 0: ax.set_ylabel(f"{basis}2") # Reset current matrix if needed. if not isinstance(data, anndata.AnnData): if cur_matkey != data.current_matrix(): data.select_matrix(cur_matkey) return fig if return_fig else None def scatter_groups( data: Union[MultimodalData, UnimodalData, anndata.AnnData], attr: str, groupby: str, basis: Optional[str] = "umap", matkey: Optional[str] = None, restrictions: Optional[Union[str, List[str]]] = None, show_full: Optional[bool] = True, categories: Optional[List[str]] = None, alpha: Optional[float] = 1.0, legend_loc: Optional[str] = "right margin", legend_ncol: Optional[str] = None, palette: Optional[str] = None, cmap: Optional[str] = "YlOrRd", vmin: Optional[float] = None, vmax: Optional[float] = None, nrows: Optional[int] = None, ncols: Optional[int] = None, panel_size: Optional[Tuple[float, float]] = (4, 4), left: Optional[float] = 0.2, bottom: Optional[float] = 0.15, wspace: Optional[float] = 0.4, hspace: Optional[float] = 0.15, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """ Generate scatter plots of attribute 'attr' for each category in attribute 'group'. Optionally show scatter plot containing data points from all categories in 'group'. Parameters ---------- data: ``pegasusio.MultimodalData`` Use current selected modality in data. attr: ``str`` Color scatter plots by attribute 'attr'. This attribute should be one key in data.obs, data.var_names (e.g. one gene) or data.obsm (attribute has the format of 'obsm_key@component', like 'X_pca@0'). If it is categorical, a palette will be used to color each category separately. Otherwise, a color map will be used. groupby: ``str`` Generate separate scatter plots of 'attr' for data points in each category in 'groupby', which should be a key in data.obs representing one categorical variable. basis: ``str``, optional, default: ``umap`` Basis to be used to generate scatter plots. Can be either 'umap', 'tsne', 'fitsne', 'fle', 'net_tsne', 'net_fitsne', 'net_umap' or 'net_fle'. matkey: ``str``, optional, default: None If matkey is set, select matrix with matkey as keyword in the current modality. Only works for MultimodalData or UnimodalData objects. restrictions: ``str`` or ``List[str]``, optional, default: None A list of restrictions to subset data for plotting. Each restriction takes the format of 'key:value,value...', or 'key:~value,value...'. This restriction selects cells with the ``data.obs[key]`` values belong to 'value,value...' (or not belong to if '~' shows). show_full: ``bool``, optional, default: True Show the scatter plot with all categories in 'groupby' as the first plot. categories: ``List[str]``, optional, default: None Redefine group structure based on attribute 'groupby'. If 'categories' is not None, each string in the list takes the format of 'category_name:value,value', or 'category_name:~value,value...", where 'category_name' refers to new category name, 'value' refers to one of the category in 'groupby' and '~' refers to exclude values. alpha: ``float``, optional, default: ``1.0`` Alpha value for blending, from 0.0 (transparent) to 1.0 (opaque). legend_loc: ``str``, optional, default: ``right margin`` Legend location. Can be either "right margin" or "on data". legend_ncol: ``str``, optional, default: None Only applicable if legend_loc == "right margin". Set number of columns used to show legends. palette: ``str``, optional, default: None Used for setting colors for one categorical attribute (e.g. "black,blue,red,...,yellow"). cmap: ``str``, optional, default: ``YlOrRd`` Used for setting colormap for one numeric attribute. vmin: ``float``, optional, default: None Minimum value to show on a numeric scatter plot (feature plot). vmax: ``float``, optional, default: None Maximum value to show on a numeric scatter plot (feature plot). nrows: ``int``, optional, default: None Number of rows in the figure. If not set, pegasus will figure it out automatically. ncols: ``int``, optional, default: None Number of columns in the figure. If not set, pegasus will figure it out automatically. panel_size: `tuple`, optional (default: `(6, 4)`) The panel size (width, height) in inches. left: `float`, optional (default: `0.2`) This parameter sets the figure's left margin as a fraction of panel's width (left * panel_size[0]). bottom: `float`, optional (default: `0.15`) This parameter sets the figure's bottom margin as a fraction of panel's height (bottom * panel_size[1]). wspace: `float`, optional (default: `0.4`) This parameter sets the width between panels and also the figure's right margin as a fraction of panel's width (wspace * panel_size[0]). hspace: `float`, optional (defualt: `0.15`) This parameter sets the height between panels and also the figure's top margin as a fraction of panel's height (hspace * panel_size[1]). return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: 300.0 The resolution of the figure in dots-per-inch. Returns ------- `Figure` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> pg.scatter_groups(data, attr='louvain_labels', groupby='Individual', basis='tsne', nrows = 2, ncols = 4, alpha = 0.5) >>> pg.scatter_groups(data, attr='anno', groupby='Channel', basis='umap', categories=['new_cat1:channel1,channel2', 'new_cat2:channel3']) """ if not isinstance(data, anndata.AnnData): cur_matkey = data.current_matrix() if matkey is not None: assert not isinstance(data, anndata.AnnData) data.select_matrix(matkey) x = data.obsm[f"X_{basis}"][:, 0] y = data.obsm[f"X_{basis}"][:, 1] # four corners of the plot corners = np.array(np.meshgrid([x.min(), x.max()], [y.min(), y.max()])).T.reshape(-1, 2) basis = _transform_basis(basis) marker_size = _get_marker_size(x.size) if attr in data.obs: values = data.obs[attr].values elif attr in data.var_names: loc = data.var_names.get_loc(attr) values = slicing(data.X, col = loc) else: obsm_key, sep, component = attr.partition("@") if (sep != "@") or (obsm_key not in data.obsm) or (not component.isdigit()): raise KeyError(f"{attr} is not in data.obs, data.var_names or data.obsm!") values = data.obsm[obsm_key][:, int(component)] is_cat = is_categorical_dtype(values) if (not is_cat) and (not is_numeric_dtype(values)): values = pd.Categorical(values, categories=natsorted(np.unique(values))) is_cat = True assert groupby in data.obs groups = data.obs[groupby].values if not is_categorical_dtype(groups): groups = pd.Categorical(groups, categories=natsorted(np.unique(groups))) restr_obj = RestrictionParser(restrictions) restr_obj.calc_default(data) selected = restr_obj.get_satisfied(data) nsel = selected.sum() if nsel < data.shape[0]: x = x[selected] y = y[selected] values = values[selected] groups = groups[selected] df_g = pd.DataFrame() if show_full: df_g["All"] = np.ones(nsel, dtype=bool) if categories is None: for cat in groups.categories: df_g[cat] = groups == cat else: cat_obj = RestrictionParser(categories) for cat, idx in cat_obj.next_category(groups): df_g[cat] = idx nrows, ncols = _get_nrows_and_ncols(df_g.shape[1], nrows, ncols) fig, axes = _get_subplot_layouts(nrows=nrows, ncols=ncols, panel_size=panel_size, dpi=dpi, left=left, bottom=bottom, wspace=wspace, hspace=hspace, squeeze=False) legend_fontsize = 5 if legend_loc == 'on data' else 10 if is_cat: labels = values label_size = labels.categories.size palette = _get_palette(label_size) if palette is None else np.array(palette.split(",")) legend_ncol = _get_legend_ncol(label_size, legend_ncol) for i in range(nrows): for j in range(ncols): ax = axes[i, j] ax.grid(False) ax.set_xticks([]) ax.set_yticks([]) gid = i * ncols + j if gid < df_g.shape[1]: if is_cat: text_list = [] for k, cat in enumerate(labels.categories): idx = np.logical_and(df_g.iloc[:, gid].values, labels == cat) _plot_corners(ax, corners, marker_size) if idx.sum() > 0: scatter_kwargs = {"marker": ".", "alpha": alpha, "edgecolors": "none", "rasterized": True} if legend_loc != "on data": scatter_kwargs["label"] = str(cat) else: text_list.append((np.median(x[idx]), np.median(y[idx]), str(cat))) ax.scatter( x[idx], y[idx], c=palette[k], s=marker_size, **scatter_kwargs, ) if legend_loc == "right margin": legend = ax.legend( loc="center left", bbox_to_anchor=(1, 0.5), frameon=False, fontsize=legend_fontsize, ncol=legend_ncol, ) for handle in legend.legendHandles: handle.set_sizes([300.0]) elif legend_loc == "on data": texts = [] for px, py, txt in text_list: texts.append(ax.text(px, py, txt, fontsize=legend_fontsize, fontweight = "bold", ha = "center", va = "center")) else: _plot_corners(ax, corners, marker_size) idx_g = df_g.iloc[:, gid].values img = ax.scatter( x[idx_g], y[idx_g], s=marker_size, c=values[idx_g], marker=".", alpha=alpha, edgecolors="none", cmap=cmap, vmin=vmin, vmax=vmax, rasterized=True, ) left, bottom, width, height = ax.get_position().bounds rect = [left + width * (1.0 + 0.05), bottom, width * 0.1, height] ax_colorbar = fig.add_axes(rect) fig.colorbar(img, cax=ax_colorbar) ax.set_title(str(df_g.columns[gid])) else: ax.set_frame_on(False) if i == nrows - 1: ax.set_xlabel(basis + "1") if j == 0: ax.set_ylabel(basis + "2") if not isinstance(data, anndata.AnnData): if cur_matkey != data.current_matrix(): data.select_matrix(cur_matkey) return fig if return_fig else None def compo_plot( data: Union[MultimodalData, UnimodalData, anndata.AnnData], groupby: str, condition: str, style: Optional[str] = "frequency", restrictions: Optional[Union[str, List[str]]] = None, switch_axes: Optional[bool] = False, groupby_label: Optional[str] = None, sort_function: Union[Callable[[List[str]], List[str]], str] = 'natsorted', panel_size: Optional[Tuple[float, float]] = (6, 4), palette: Optional[List[str]] = None, color_unused: bool = False, left: Optional[float] = 0.15, bottom: Optional[float] = 0.15, wspace: Optional[float] = 0.3, hspace: Optional[float] = 0.15, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """Generate a composition plot, which shows the percentage of cells from each condition for every cluster. This function is used to generate composition plots, which are bar plots showing the cell compositions (from different conditions) for each cluster. This type of plots is useful to fast assess library quality and batch effects. Parameters ---------- data : ``AnnData`` or ``UnimodalData`` or ``MultimodalData`` object Single cell expression data. groupby : ``str`` A categorical variable in data.obs that is used to categorize the cells, e.g. cell type. condition: ``str`` A categorical variable in data.obs that is used to calculate frequency within each category defined by ``groupby``, e.g. donor. style: ``str``, optional (default: ``frequency``) Composition plot style. Can be either ``frequency``, or ``normalized``. Within each cluster, the ``frequency`` style show the percentage of cells from each ``condition`` within each category in ``groupby`` (stacked), the ``normalized`` style shows for each category in ``groupby`` the percentage of cells that are also in each ``condition`` over all cells that are in the same ``condition`` (not stacked). restrictions: ``str`` or ``List[str]``, optional, default: None A list of restrictions to subset data for plotting. Each restriction takes the format of 'key:value,value...', or 'key:~value,value...'. This restriction selects cells with the ``data.obs[key]`` values belong to 'value,value...' (or not belong to if '~' shows). switch_axes: ``bool``, optional, default: ``False`` By default, X axis is for groupby, and Y axis for frequencies with respect to condition. If this parameter is ``True``, switch the axes. groupby_label: ``str``, optional (default ``None``) Label for the axis displaying ``groupby`` categories. If ``None``, use ``groupby``. sort_function: ``Union[Callable[List[str], List[str]], str]``, optional, default: ``natsorted`` Function used for sorting both groupby and condition labels. If ``natsorted``, apply natsorted function to sort by natural order. If ``None``, don't sort. Otherwise, a callable function will be applied to the labels for sorting. panel_size: ``tuple``, optional (default: ``(6, 4)``) The plot size (width, height) in inches. palette: ``List[str]``, optional (default: ``None``) Used for setting colors for categories in ``condition``. Within the list, each string is the color for one category. left: ``float``, optional (default: ``0.15``) This parameter sets the figure's left margin as a fraction of panel's width (left * panel_size[0]). bottom: ``float``, optional (default: ``0.15``) This parameter sets the figure's bottom margin as a fraction of panel's height (bottom * panel_size[1]). wspace: ``float``, optional (default: ``0.3``) This parameter sets the width between panels and also the figure's right margin as a fraction of panel's width (wspace * panel_size[0]). hspace: ``float``, optional (defualt: ``0.15``) This parameter sets the height between panels and also the figure's top margin as a fraction of panel's height (hspace * panel_size[1]). return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. Returns ------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> fig = pg.compo_plot(data, 'louvain_labels', 'Donor', style = 'normalized') """ if groupby_label is None: groupby_label = groupby fig, ax = _get_subplot_layouts(panel_size=panel_size, dpi=dpi, left=left, bottom=bottom, wspace=wspace, hspace=hspace) # default nrows = 1 & ncols = 1 restr_obj = RestrictionParser(restrictions) restr_obj.calc_default(data) selected = restr_obj.get_satisfied(data) df = pd.crosstab(data.obs.loc[selected, groupby], data.obs.loc[selected, condition]) index_values = df.index.tolist() column_values = df.columns.tolist() if sort_function == "natsorted": sort_function = natsorted if callable(sort_function): index_values = sort_function(index_values) column_values = sort_function(column_values) if switch_axes: index_values.reverse() df = df.reindex(index = index_values, columns = column_values) if style == "frequency": df = df.div(df.sum(axis=1), axis=0) * 100.0 else: assert style == "normalized" df = df.div(df.sum(axis=0), axis=1) * 100.0 if color_unused: if palette is None: color_list = _get_palette(data.obs[condition].cat.categories.size) else: assert len(palette) >= data.obs[condition].cat.categories.size, "The palette provided has fewer colors than needed!" color_idx = df.columns.map(data.obs[condition].cat.categories.get_loc) color_list = palette[color_idx] else: if palette is None: color_list = _get_palette(df.shape[1]) else: assert len(palette) >= df.shape[1], "The palette provided has fewer colors than needed!" color_list = palette[0:df.shape[1]] df.plot( kind = "bar" if not switch_axes else "barh", stacked = style == "frequency", legend = False, color = color_list, ax = ax, ) ax.grid(False) if not switch_axes: ax.set_xlabel(groupby_label) ax.set_ylabel("Percentage") else: ax.set_xlabel("Percentage") ax.set_ylabel(groupby_label) ax.legend(loc="center left", bbox_to_anchor=(1.05, 0.5)) if len(max(df.index.astype(str), key=len)) >= 5: ax.set_xticklabels(ax.get_xticklabels(), rotation=-45, ha='left') return fig if return_fig else None def violin( data: Union[MultimodalData, UnimodalData, anndata.AnnData], attrs: Union[str, List[str]], groupby: str, hue: Optional[str] = None, matkey: Optional[str] = None, stripplot: Optional[bool] = False, inner: Optional[str] = None, scale: Optional[str] = 'width', panel_size: Optional[Tuple[float, float]] = (8, 0.5), palette: Optional[List[str]] = None, left: Optional[float] = 0.15, bottom: Optional[float] = 0.15, wspace: Optional[float] = 0.1, ylabel: Optional[str] = None, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """ Generate a stacked violin plot. Parameters ---------- data: ``AnnData`` or ``MultimodalData`` or ``UnimodalData`` object Single-cell expression data. attrs: ``str`` or ``List[str]`` Cell attributes or features to plot. Cell attributes must exist in ``data.obs`` and must be numeric. Features must exist in ``data.var``. groupby: ``str`` A categorical variable in data.obs that is used to categorize the cells, e.g. Clusters. hue: ``str``, optional, default: None 'hue' should be a categorical variable in data.obs that has only two levels. Set 'hue' will show us split violin plots. matkey: ``str``, optional, default: ``None`` If matkey is set, select matrix with matkey as keyword in the current modality. Only works for MultimodalData or UnimodalData objects. stripplot: ``bool``, optional, default: ``False`` Attach a stripplot to the violinplot or not. This option will be automatically turn off if 'hue' is set. inner: ``str``, optional, default: ``None`` Representation of the datapoints in the violin interior: - If ``box``, draw a miniature boxplot. - If ``quartiles``, draw the quartiles of the distribution. - If ``point`` or ``stick``, show each underlying datapoint. - If ``None``, will draw unadorned violins. scale: ``str``, optional, default: ``width`` The method used to scale the width of each violin: - If ``width``, each violin will have the same width. - If ``area``, each violin will have the same area. - If ``count``, the width of the violins will be scaled by the number of observations in that bin. panel_size: ``Tuple[float, float]``, optional, default: ``(8, 0.5)`` The size (width, height) in inches of each violin panel. palette: ``List[str]``, optional (default: ``None``) Used for setting colors for categories in ``groupby``. Within the list, each string is the color for one category. left: ``float``, optional, default: ``0.15`` This parameter sets the figure's left margin as a fraction of panel's width (left * panel_size[0]). bottom: ``float``, optional, default: ``0.15`` This parameter sets the figure's bottom margin as a fraction of panel's height (bottom * panel_size[1]). wspace: ``float``, optional, default: ``0.1`` This parameter sets the width between panels and also the figure's right margin as a fraction of panel's width (wspace * panel_size[0]). ylabel: ``str``, optional, default: ``None`` Y-axis label. No label to show if ``None``. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. kwargs Are passed to ``seaborn.violinplot``. Returns ------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``show == False`` Examples -------- >>> pg.violin(data, attrs=['CD14', 'TRAC', 'CD34'], groupby='louvain_labels') """ if not is_list_like(attrs): attrs = [attrs] if not isinstance(data, anndata.AnnData): cur_matkey = data.current_matrix() if matkey is not None: assert not isinstance(data, anndata.AnnData) data.select_matrix(matkey) nrows = len(attrs) fig, axes = _get_subplot_layouts(nrows=nrows, ncols=1, panel_size=panel_size, dpi=dpi, left=left, bottom=bottom, wspace=wspace, hspace=0, squeeze=False, sharey=False) obs_keys = [] genes = [] for key in attrs: if key in data.obs: assert is_numeric_dtype(data.obs[key]) obs_keys.append(key) else: if key not in data.var_names: logger.warning(f"Cannot find gene {key}. Please make sure all genes are included in data.var_names before running this function!") return None genes.append(key) df_list = [pd.DataFrame({"label": data.obs[groupby].values})] if hue is not None: df_list.append(pd.DataFrame({hue: data.obs[hue].values})) stripplot = False if len(obs_keys) > 0: df_list.append(data.obs[obs_keys].reset_index(drop=True)) if len(genes) > 0: expr_mat = slicing(data[:, genes].X) df_list.append(pd.DataFrame(data=expr_mat, columns=genes)) df = pd.concat(df_list, axis = 1) for i in range(nrows): ax = axes[i, 0] if stripplot: sns.stripplot(x="label", y=attrs[i], hue = hue, data=df, ax=ax, size=1, color="k", jitter=True) sns.violinplot(x="label", y=attrs[i], hue = hue, data=df, inner=inner, linewidth=1, ax=ax, cut=0, scale=scale, split=True, palette=palette, **kwargs) ax.grid(False) if hue is not None: if i == 0: ax.legend(loc="center left", bbox_to_anchor=(1.02, 0.5)) else: ax.get_legend().set_visible(False) if i < nrows - 1: ax.set_xlabel("") else: ax.set_xlabel(groupby) ax.set_xticklabels(ax.get_xticklabels(), rotation=90) ax.set_ylabel(attrs[i], labelpad=8, rotation=0, horizontalalignment='right', fontsize='medium') ax.tick_params(axis='y', right=True, left=False, labelright=True, labelleft=False, labelsize='small') if ylabel is not None: fig.text(0.02, 0.5, ylabel, rotation="vertical", fontsize="xx-large") # Reset current matrix if needed. if not isinstance(data, anndata.AnnData): if data.current_matrix() != cur_matkey: data.select_matrix(cur_matkey) return fig if return_fig else None def heatmap( data: Union[MultimodalData, UnimodalData, anndata.AnnData], attrs: Union[str, List[str]], groupby: str, matkey: Optional[str] = None, on_average: bool = True, switch_axes: bool = False, attrs_cluster: Optional[bool] = False, attrs_dendrogram: Optional[bool] = True, groupby_cluster: Optional[bool] = True, groupby_dendrogram: Optional[bool] = True, attrs_labelsize: Optional[float] = 10.0, groupby_labelsize: Optional[float] = 10.0, cbar_labelsize: Optional[float] = 10.0, panel_size: Tuple[float, float] = (10, 10), return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """ Generate a heatmap. Parameters ----------- data: ``AnnData`` or ``MultimodalData`` or ``UnimodalData`` object Single-cell expression data. attrs: ``str`` or ``List[str]`` Cell attributes or features to plot. Cell attributes must exist in ``data.obs`` and must be numeric. Features must exist in ``data.var``. By default, attrs are plotted as columns. groupby: ``str`` A categorical variable in data.obs that is used to categorize the cells, e.g. Clusters. By default, data.obs['groupby'] is plotted as rows. matkey: ``str``, optional, default: ``None`` If matkey is set, select matrix with matkey as keyword in the current modality. Only works for MultimodalData or UnimodalData objects. on_average: ``bool``, optional, default: ``True`` If ``True``, plot cluster average gene expression (i.e. show a Matrixplot); otherwise, plot a general heatmap. switch_axes: ``bool``, optional, default: ``False`` By default, X axis is for attributes, and Y axis for clusters. If this parameter is ``True``, switch the axes. Moreover, with ``on_average`` being ``False``, if ``switch_axes`` is ``False``, ``row_cluster`` is enforced to be ``False``; if ``switch_axes`` is ``True``, ``col_cluster`` is enforced to be ``False``. attrs_cluster: ``bool``, optional, default: ``False`` Cluster attributes and generate a attribute-wise dendrogram. attrs_dendrogram: ``bool``, optional, default: ``True`` Only matters if attrs_cluster is True. Show the dendrogram if this option is True. groupby_cluster: ``bool``, optional, default: ``True`` Cluster data.obs['groupby'] and generate a cluster-wise dendrogram. groupby_dendrogram: ``bool``, optional, default: ``True`` Only matters if groupby_cluster is True. Show the dendrogram if this option is True. attrs_labelsize: ``float``, optional, default: 10.0 Fontsize for labels of attrs. groupby_labelsize: ``float``, optional, default: 10.0 Fontsize for labels of data.obs['groupby']. cbar_labelsize: ``float``, optional, default: 10.0 Fontsize of the color bar. panel_size: ``Tuple[float, float]``, optional, default: ``(10, 10)`` Overall size of the heatmap in ``(width, height)`` form. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. kwargs Are passed to ``seaborn.heatmap``. .. _colormap documentation: https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html Returns ------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> pg.heatmap(data, genes=['CD14', 'TRAC', 'CD34'], groupby='louvain_labels') """ if not isinstance(data, anndata.AnnData): cur_matkey = data.current_matrix() if matkey is not None: assert not isinstance(data, anndata.AnnData) data.select_matrix(matkey) if isinstance(attrs, str): attrs = [attrs] obs_keys = [] genes = [] for key in attrs: if key in data.obs: assert is_numeric_dtype(data.obs[key]) obs_keys.append(key) else: if key not in data.var_names: logger.warning(f"Cannot find gene {key}. Please make sure all genes are included in data.var_names before running this function!") return None genes.append(key) clusters = data.obs[groupby].values if not is_categorical_dtype(clusters): clusters = pd.Categorical(clusters) else: clusters = clusters.remove_unused_categories() df_list = [pd.DataFrame({'cluster_name': clusters})] if len(obs_keys) > 0: df_list.append(data.obs[obs_keys].reset_index(drop=True)) if len(genes) > 0: expr_mat = slicing(data[:, genes].X) df_list.append(pd.DataFrame(data=expr_mat, columns=genes)) df = pd.concat(df_list, axis = 1) attr_names = df.columns[1:].values if on_average: if not 'cmap' in kwargs.keys(): kwargs['cmap'] = 'Reds' df = df.groupby('cluster_name').mean() cluster_ids = df.index else: cluster_ids = df.pop('cluster_name').values if not groupby_cluster: idx = cluster_ids.argsort(kind = 'mergesort') df = df.iloc[idx, :] # organize df by category order cluster_ids = cluster_ids[idx] cell_colors = np.zeros(df.shape[0], dtype=object) palette = _get_palette(cluster_ids.categories.size) for k, cat in enumerate(cluster_ids.categories): cell_colors[cluster_ids == cat] = palette[k] if not switch_axes: cg = sns.clustermap( data=df, row_colors=cell_colors if not on_average else None, col_colors=None, row_cluster=groupby_cluster, col_cluster=attrs_cluster, linewidths=0, yticklabels=cluster_ids if on_average else [], xticklabels=attr_names, figsize=panel_size, **kwargs, ) cg.ax_heatmap.set_ylabel("") if attrs_labelsize is not None: cg.ax_heatmap.tick_params(axis='x', labelsize=attrs_labelsize, labelrotation=75) else: cg = sns.clustermap( data=df.T, row_colors=None, col_colors=cell_colors if not on_average else None, row_cluster=attrs_cluster, col_cluster=groupby_cluster, linewidths=0, yticklabels=attr_names, xticklabels=cluster_ids if on_average else [], figsize=panel_size, **kwargs, ) cg.ax_heatmap.set_xlabel("") if attrs_labelsize is not None: cg.ax_heatmap.tick_params(axis='y', labelsize=attrs_labelsize) show_row_dendrogram = (attrs_cluster and attrs_dendrogram) if switch_axes else (groupby_cluster and groupby_dendrogram) show_col_dendrogram = (groupby_cluster and groupby_dendrogram) if switch_axes else (attrs_cluster and attrs_dendrogram) if show_row_dendrogram: cg.ax_heatmap.yaxis.tick_right() cg.ax_row_dendrogram.set_visible(True) # Avoid overlap of colorbar and row dendrogram. color_box = cg.ax_cbar.get_position() square_plot = cg.ax_heatmap.get_position() if square_plot.y1 > color_box.y0: y_diff = square_plot.y1 - color_box.y0 color_box.y0 = square_plot.y1 color_box.y1 += y_diff cg.ax_cbar.set_position(color_box) else: cg.ax_heatmap.yaxis.tick_left() cg.ax_row_dendrogram.set_visible(False) # Move the colorbar to the right-side. color_box = cg.ax_heatmap.get_position() color_box.x0 = color_box.x1 + 0.04 color_box.x1 = color_box.x0 + 0.02 cg.ax_cbar.set_position(color_box) cg.ax_cbar.yaxis.set_ticks_position("right") if show_col_dendrogram: cg.ax_heatmap.xaxis.tick_bottom() cg.ax_col_dendrogram.set_visible(True) else: cg.ax_heatmap.xaxis.tick_top() cg.ax_col_dendrogram.set_visible(False) cg.ax_cbar.tick_params(labelsize=cbar_labelsize) cg.fig.dpi = dpi if not on_average: if groupby_cluster: from matplotlib.patches import Patch legend_elements = [Patch(color = color, label = label) for color, label in zip(palette, cluster_ids.categories)] cg.ax_heatmap.legend(handles=legend_elements, loc='lower left', bbox_to_anchor = (1.02, 1.02), fontsize = groupby_labelsize) else: values = cluster_ids.value_counts().values ticks = np.cumsum(values) - values / 2 labels = cluster_ids.categories if not switch_axes: cg.ax_row_colors.yaxis.tick_left() cg.ax_row_colors.set_yticks(ticks) cg.ax_row_colors.set_yticklabels(labels) cg.ax_row_colors.tick_params(axis='y', left = False, length=10) else: cg.ax_col_colors.xaxis.tick_top() cg.ax_col_colors.set_xticks(ticks) cg.ax_col_colors.set_xticklabels(labels, rotation=45) cg.ax_col_colors.tick_params(axis='x', top = False, labelsize = groupby_labelsize, length=10) if not isinstance(data, anndata.AnnData): if cur_matkey != data.current_matrix(): data.select_matrix(cur_matkey) return cg.fig if return_fig else None def dotplot( data: Union[MultimodalData, UnimodalData, anndata.AnnData], genes: Union[str, List[str]], groupby: str, reduce_function: Callable[[np.ndarray], float] = np.mean, fraction_min: float = 0, fraction_max: float = None, dot_min: int = 0, dot_max: int = 20, switch_axes: bool = False, cmap: Union[str, List[str], Tuple[str]] = 'Reds', sort_function: Union[Callable[[List[str]], List[str]], str] = 'natsorted', grid: bool = True, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwds, ) -> Union[plt.Figure, None]: """ Generate a dot plot. Parameters ---------- data: ``AnnData`` or ``UnimodalData`` or ``MultimodalData`` object Single cell expression data. genes: ``str`` or ``List[str]`` Features to plot. groupby: ``str`` A categorical variable in data.obs that is used to categorize the cells, e.g. Clusters. reduce_function: ``Callable[[np.ndarray], float]``, optional, default: ``np.mean`` Function to calculate statistic on expression data. Default is mean. fraction_min: ``float``, optional, default: ``0``. Minimum fraction of expressing cells to consider. fraction_max: ``float``, optional, default: ``None``. Maximum fraction of expressing cells to consider. If ``None``, use the maximum value from data. dot_min: ``int``, optional, default: ``0``. Minimum size in pixels for dots. dot_max: ``int``, optional, default: ``20``. Maximum size in pixels for dots. switch_axes: ``bool``, optional, default: ``False``. If ``True``, switch X and Y axes. cmap: ``str`` or ``List[str]`` or ``Tuple[str]``, optional, default: ``Reds`` Color map. sort_function: ``Union[Callable[List[str], List[str]], str]``, optional, default: ``natsorted`` Function used for sorting groupby labels. If ``natsorted``, apply natsorted function to sort by natural order. If ``None``, don't sort. Otherwise, a callable function will be applied to the labels for sorting. grid: ``bool``, optional, default: ``True`` If ``True``, plot grids. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. **kwds: Are passed to ``matplotlib.pyplot.scatter``. Returns ------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> pg.dotplot(data, genes = ['CD14', 'TRAC', 'CD34'], groupby = 'louvain_labels') """ sns.set(font_scale=0.7, style='whitegrid') if not is_list_like(genes): geness = [genes] keywords = dict(cmap=cmap) keywords.update(kwds) from scipy.sparse import issparse X = slicing(data[:, genes].X) df = pd.DataFrame(data=X, columns=genes) df[groupby] = data.obs[groupby].values if df[groupby].isna().sum() > 0: logger.warning(f"Detected NaN values in attribute '{groupby}'! Please check if '{groupby}' is set correctly.") return None series = df[groupby].value_counts() idx = series == 0 if idx.sum() > 0: logger.warning(f"The following categories contain no cells and are removed: {','.join(list(series.index[idx]))}.") df[groupby] = df[groupby].cat.remove_unused_categories() def non_zero(g): return np.count_nonzero(g) / g.shape[0] summarized_df = df.groupby(groupby).aggregate([reduce_function, non_zero]) row_indices = summarized_df.index.tolist() if sort_function == "natsorted": row_indices = natsorted(row_indices) elif callable(sort_function): row_indices = sort_function(row_indices) row_indices.reverse() summarized_df = summarized_df.loc[row_indices] mean_columns = [] frac_columns = [] for j in range(len(summarized_df.columns)): if j % 2 == 0: mean_columns.append(summarized_df.columns[j]) else: frac_columns.append(summarized_df.columns[j]) # Genes on columns, groupby on rows fraction_df = summarized_df[frac_columns] mean_df = summarized_df[mean_columns] y, x = np.indices(mean_df.shape) y = y.flatten() x = x.flatten() fraction = fraction_df.values.flatten() if fraction_max is None: fraction_max = fraction.max() pixels = _get_dot_size(fraction, fraction_min, fraction_max, dot_min, dot_max) summary_values = mean_df.values.flatten() xlabel = [genes[i] for i in range(len(genes))] ylabel = [str(summarized_df.index[i]) for i in range(len(summarized_df.index))] xticks = genes yticks = summarized_df.index.map(str).values if switch_axes: x, y = y, x xlabel, ylabel = ylabel, xlabel xticks, yticks = yticks, xticks dotplot_df = pd.DataFrame(data=dict(x=x, y=y, value=summary_values, pixels=pixels, fraction=fraction, xlabel=np.array(xlabel)[x], ylabel=np.array(ylabel)[y])) import matplotlib.gridspec as gridspec width = int(np.ceil(((dot_max + 1) + 4) * len(xticks) + dotplot_df['ylabel'].str.len().max()) + dot_max + 100) height = int(np.ceil(((dot_max + 1) + 4) * len(yticks) + dotplot_df['xlabel'].str.len().max()) + 50) fig = plt.figure(figsize=(1.1 * width / 100.0, height / 100.0), dpi=dpi) gs = gridspec.GridSpec(3, 11, figure = fig) # Main plot mainplot_col_grid = -2 if len(xlabel) < 10 else -1 ax = fig.add_subplot(gs[:, :mainplot_col_grid]) sc = ax.scatter(x='x', y='y', c='value', s='pixels', data=dotplot_df, linewidth=0.5, edgecolors='black', **keywords) ax.spines["top"].set_color('black') ax.spines["bottom"].set_color('black') ax.spines["left"].set_color('black') ax.spines["right"].set_color('black') if not grid: ax.grid(False) if not switch_axes: ax.set_ylabel(str(groupby)) ax.set_xlabel('') else: ax.set_ylabel('') ax.set_xlabel(str(groupby)) ax.set_xlim(-1, len(xticks)) ax.set_ylim(-1, len(yticks)) ax.set_xticks(range(len(xticks))) ax.set_xticklabels(xticks) ax.set_yticks(range(len(yticks))) ax.set_yticklabels(yticks) plt.xticks(rotation=90) cbar = plt.colorbar(sc) #cbar.set_label("Mean of\nexpressing cells") size_range = fraction_max - fraction_min if 0.3 < size_range <= 0.6: size_legend_step = 0.1 elif size_range <= 0.3: size_legend_step = 0.05 else: size_legend_step = 0.2 size_ticks = np.arange(fraction_min if fraction_min > 0 or fraction_min > 0 else fraction_min + size_legend_step, fraction_max + size_legend_step, size_legend_step) legend_row_grid = 1 if height / 3 > 100 else 3 ax2 = gridspec.GridSpecFromSubplotSpec(1, 1, subplot_spec=gs[0:legend_row_grid, -1]) size_legend = fig.add_subplot(ax2[0]) size_tick_pixels = _get_dot_size(size_ticks, fraction_min, fraction_max, dot_min, dot_max) size_tick_labels = ["{:.0%}".format(x) for x in size_ticks] size_legend.scatter(x=np.repeat(0, len(size_ticks)), y=np.arange(0, len(size_ticks)), s=size_tick_pixels, c='black', linewidth=0.5) size_legend.title.set_text("Fraction of\nexpressing cells") size_legend.set_xlim(-0.1, 0.1) size_legend.set_xticks([]) ymin, ymax = size_legend.get_ylim() size_legend.set_ylim(ymin, ymax + 0.5) size_legend.set_yticks(np.arange(len(size_ticks))) size_legend.set_yticklabels(size_tick_labels) size_legend.tick_params(axis='y', labelleft=False, labelright=True) size_legend.spines["top"].set_visible(False) size_legend.spines["bottom"].set_visible(False) size_legend.spines["left"].set_visible(False) size_legend.spines["right"].set_visible(False) size_legend.grid(False) # Reset global settings. sns.reset_orig() return fig if return_fig else None def dendrogram( data: Union[MultimodalData, UnimodalData, anndata.AnnData], groupby: str, rep: str = 'pca', genes: Optional[List[str]] = None, correlation_method: str = 'pearson', n_clusters: Optional[int] = None, affinity: str = 'euclidean', linkage: str = 'complete', compute_full_tree: Union[str, bool] = 'auto', distance_threshold: Optional[float] = 0, panel_size: Tuple[float, float] = (6, 6), orientation: str = 'top', color_threshold: Optional[float] = None, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """ Generate a dendrogram on hierarchical clustering result. The metrics used here are consistent with SCANPY's dendrogram_ implementation. *scikit-learn* `Agglomerative Clustering`_ implementation is used for hierarchical clustering. .. _dendrogram: https://scanpy.readthedocs.io/en/stable/api/scanpy.tl.dendrogram.html .. _Agglomerative Clustering: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html Parameters ---------- data: ``MultimodalData``, ``UnimodalData``, or ``AnnData`` object Single cell expression data. genes: ``List[str]``, optional, default: ``None`` List of genes to use. Gene names must exist in ``data.var``. If set, use the counts in ``data.X`` for plotting; if set as ``None``, use the embedding specified in ``rep`` for plotting. rep: ``str``, optional, default: ``pca`` Cell embedding to use. It only works when ``genes``is ``None``, and its key ``"X_"+rep`` must exist in ``data.obsm``. By default, use PCA coordinates. groupby: ``str`` Categorical cell attribute to plot, which must exist in ``data.obs``. correlation_method: ``str``, optional, default: ``pearson`` Method of correlation between categories specified in ``data.obs``. Available options are: ``pearson``, ``kendall``, ``spearman``. See `pandas corr documentation <https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html>`_ for details. n_clusters: ``int``, optional, default: ``None`` The number of clusters to find, used by hierarchical clustering. It must be ``None`` if ``distance_threshold`` is not ``None``. affinity: ``str``, optional, default: ``correlation`` Metric used to compute the linkage, used by hierarchical clustering. Valid values for metric are: - From scikit-learn: ``cityblock``, ``cosine``, ``euclidean``, ``l1``, ``l2``, ``manhattan``. - From scipy.spatial.distance: ``braycurtis``, ``canberra``, ``chebyshev``, ``correlation``, ``dice``, ``hamming``, ``jaccard``, ``kulsinski``, ``mahalanobis``, ``minkowski``, ``rogerstanimoto``, ``russellrao``, ``seuclidean``, ``sokalmichener``, ``sokalsneath``, ``sqeuclidean``, ``yule``. Default is the correlation distance. See `scikit-learn distance documentation <https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise_distances.html>`_ for details. linkage: ``str``, optional, default: ``complete`` Which linkage criterion to use, used by hierarchical clustering. Below are available options: - ``ward`` minimizes the variance of the clusters being merged. - ``avarage`` uses the average of the distances of each observation of the two sets. - ``complete`` uses the maximum distances between all observations of the two sets. (Default) - ``single`` uses the minimum of the distances between all observations of the two sets. See `scikit-learn documentation <https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html>`_ for details. compute_full_tree: ``str`` or ``bool``, optional, default: ``auto`` Stop early the construction of the tree at ``n_clusters``, used by hierarchical clustering. It must be ``True`` if ``distance_threshold`` is not ``None``. By default, this option is ``auto``, which is ``True`` if and only if ``distance_threshold`` is not ``None``, or ``n_clusters`` is less than ``min(100, 0.02 * n_groups)``, where ``n_groups`` is the number of categories in ``data.obs[groupby]``. distance_threshold: ``float``, optional, default: ``0`` The linkage distance threshold above which, clusters will not be merged. If not ``None``, ``n_clusters`` must be ``None`` and ``compute_full_tree`` must be ``True``. panel_size: ``Tuple[float, float]``, optional, default: ``(6, 6)`` The size (width, height) in inches of figure. orientation: ``str``, optional, default: ``top`` The direction to plot the dendrogram. Available options are: ``top``, ``bottom``, ``left``, ``right``. See `scipy dendrogram documentation`_ for explanation. color_threshold: ``float``, optional, default: ``None`` Threshold for coloring clusters. See `scipy dendrogram documentation <https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.dendrogram.html>`_ for explanation. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. **kwargs: Are passed to ``scipy.cluster.hierarchy.dendrogram``. Returns ------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> pg.dendrogram(data, genes=data.var_names, groupby='louvain_labels') >>> pg.dendrogram(data, rep='pca', groupby='louvain_labels') """ if genes is None: embed_df = pd.DataFrame(X_from_rep(data, rep)) embed_df.set_index(data.obs[groupby], inplace=True) else: X = slicing(data[:, genes].X) embed_df = pd.DataFrame(X) embed_df.set_index(data.obs[groupby], inplace=True) mean_df = embed_df.groupby(level=0).mean() mean_df.index = mean_df.index.astype('category') from sklearn.cluster import AgglomerativeClustering from scipy.cluster.hierarchy import dendrogram corr_mat = mean_df.T.corr(method=correlation_method) clusterer = AgglomerativeClustering( n_clusters=n_clusters, affinity=affinity, linkage=linkage, compute_full_tree=compute_full_tree, distance_threshold=distance_threshold ) clusterer.fit(corr_mat) counts = np.zeros(clusterer.children_.shape[0]) n_samples = len(clusterer.labels_) for i, merge in enumerate(clusterer.children_): current_count = 0 for child_idx in merge: if child_idx < n_samples: current_count += 1 # Leaf node else: current_count += counts[child_idx - n_samples] counts[i] = current_count linkage_matrix = np.column_stack([clusterer.children_, clusterer.distances_, counts]).astype(float) fig, ax = _get_subplot_layouts(panel_size=panel_size, dpi=dpi) dendrogram(linkage_matrix, labels=mean_df.index.categories, ax=ax, **kwargs) plt.xticks(rotation=90, fontsize=10) plt.tight_layout() return fig if return_fig else None def hvfplot( data: Union[MultimodalData, UnimodalData, anndata.AnnData], top_n: int = 20, panel_size: Optional[Tuple[float, float]] = (6, 4), return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, ) -> Union[plt.Figure, None]: """ Generate highly variable feature plot. Only works for HVGs returned by ``highly_variable_features`` method with ``flavor=='pegasus'``. Parameters ----------- data: ``MultimodalData``, ``UnimodalData``, or ``anndata.AnnData`` object. Single cell expression data. top_n: ``int``, optional, default: ``20`` Number of top highly variable features to show names. panel_size: ``Tuple[float, float]``, optional, default: ``(6, 4)`` The size (width, height) in inches of figure. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. Returns -------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples --------- >>> pg.hvfplot(data) >>> pg.hvfplot(data, top_n=10, dpi=150) """ robust_idx = data.var["robust"].values x = data.var.loc[robust_idx, "mean"] y = data.var.loc[robust_idx, "var"] fitted = data.var.loc[robust_idx, "hvf_loess"] hvg_index = data.var.loc[robust_idx, "highly_variable_features"] hvg_rank = data.var.loc[robust_idx, "hvf_rank"] gene_symbols = data.var_names[robust_idx] fig, ax = _get_subplot_layouts(panel_size=panel_size, dpi=dpi) ax.scatter(x[hvg_index], y[hvg_index], s=5, c='b', marker='o', linewidth=0.5, alpha=0.5, label='highly variable features') ax.scatter(x[~hvg_index], y[~hvg_index], s=5, c='k', marker='o', linewidth=0.5, alpha=0.5, label = 'other features') ax.legend(loc = 'best', fontsize = 5) ax.set_xlabel("Mean log expression") ax.set_ylabel("Variance of log expression") order = x.argsort().values ax.plot(x[order], fitted[order], "r-", linewidth=1) ord_rank = hvg_rank.argsort().values texts = [] for i in range(top_n): pos = ord_rank[i] texts.append(ax.text(x[pos], y[pos], gene_symbols[pos], fontsize=5)) from adjustText import adjust_text adjust_text(texts, arrowprops=dict(arrowstyle='-', color='k', lw=0.5)) return fig if return_fig else None def qcviolin( data: Union[MultimodalData, UnimodalData, anndata.AnnData], plot_type: str, min_genes_before_filt: Optional[int] = 100, n_violin_per_panel: Optional[int] = 8, panel_size: Optional[Tuple[float, float]] = (6, 4), left: Optional[float] = 0.2, bottom: Optional[float] = 0.15, wspace: Optional[float] = 0.3, hspace: Optional[float] = 0.35, return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, ) -> Union[plt.Figure, None]: """ Plot quality control statistics (before filtration vs. after filtration) as violin plots. Require statistics such as "n_genes", "n_counts" and "percent_mito" precomputed. Parameters ----------- data: ``MultimodalData``, ``UnimodalData``, or ``anndata.AnnData`` object. Single cell expression data. plot_type: ``str`` Choose from ``gene``, ``count`` and ``mito``, which shows number of expressed genes, number of UMIs and percentage of mitochondrial rate. min_genes_before_filt: ``int``, optional, default: 100 If data loaded are raw data (i.e. min(n_genes) == 0), filter out cell barcodes with less than ``min_genes_before_filt`` for better visual effects. n_violin_per_panel: ``int``, optional, default: 8 Number of violin plots (samples) shown in one panel. panel_size: `tuple`, optional (default: `(6, 4)`) The panel size (width, height) in inches. left: `float`, optional (default: `0.2`) This parameter sets the figure's left margin as a fraction of panel's width (left * panel_size[0]). bottom: `float`, optional (default: `0.15`) This parameter sets the figure's bottom margin as a fraction of panel's height (bottom * panel_size[1]). wspace: `float`, optional (default: `0.4`) This parameter sets the width between panels and also the figure's right margin as a fraction of panel's width (wspace * panel_size[0]). hspace: `float`, optional (defualt: `0.15`) This parameter sets the height between panels and also the figure's top margin as a fraction of panel's height (hspace * panel_size[1]). return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. Returns -------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples --------- >>> pg.qcviolin(data, "mito", dpi = 500) """ pt2attr = {"gene": "n_genes", "count": "n_counts", "mito": "percent_mito"} pt2ylab = { "gene": "Number of expressed genes", "count": "Number of UMIs", "mito": "Percentage of mitochondrial UMIs", } if "df_qcplot" not in data.uns: if "Channel" not in data.obs: data.obs["Channel"] = pd.Categorical([""] * data.shape[0]) target_cols = np.array(["Channel", "n_genes", "n_counts", "percent_mito"]) target_cols = target_cols[np.isin(target_cols, data.obs.columns)] df = data.obs[data.obs["n_genes"] >= min_genes_before_filt] if data.obs["n_genes"].min() == 0 else data.obs df_plot_before = df[target_cols].copy() df_plot_before.reset_index(drop=True, inplace=True) df_plot_before["status"] = "original" df_plot_after = data.obs.loc[data.obs["passed_qc"], target_cols].copy() df_plot_after.reset_index(drop=True, inplace=True) df_plot_after["status"] = "filtered" df_qcplot = pd.concat((df_plot_before, df_plot_after), axis=0) df_qcplot["status"] = pd.Categorical(df_qcplot["status"].values, categories = ["original", "filtered"]) df_qcplot["Channel"] = pd.Categorical(df_qcplot["Channel"].values, categories = natsorted(df_qcplot["Channel"].astype(str).unique())) data.uns["df_qcplot"] = df_qcplot df_qcplot = data.uns["df_qcplot"] if pt2attr[plot_type] not in df_qcplot: logger.warning(f"Cannot find qc metric {pt2attr[plot_type]}!") return None channels = df_qcplot["Channel"].cat.categories n_channels = channels.size n_pannels = (n_channels - 1) // n_violin_per_panel + 1 nrows = ncols = None nrows, ncols = _get_nrows_and_ncols(n_pannels, nrows, ncols) fig, axes = _get_subplot_layouts(nrows=nrows, ncols=ncols, panel_size=panel_size, dpi=dpi, left=left, bottom=bottom, wspace=wspace, hspace=hspace, sharex = False, sharey = False, squeeze=False) for i in range(nrows): for j in range(ncols): ax = axes[i, j] ax.grid(False) panel_no = i * ncols + j if panel_no < n_pannels: start = panel_no * n_violin_per_panel end = min(start + n_violin_per_panel, n_channels) idx = np.isin(df_qcplot["Channel"], channels[start:end]) if start == 0 and end == n_channels: df_plot = df_qcplot else: df_plot = df_qcplot[idx].copy() df_plot["Channel"] = pd.Categorical(df_plot["Channel"].values, categories = natsorted(channels[start:end])) sns.violinplot( x="Channel", y=pt2attr[plot_type], hue="status", data=df_plot, split=True, linewidth=0.5, cut=0, inner=None, ax = ax, ) ax.set_xlabel("Channel") ax.set_ylabel(pt2ylab[plot_type]) ax.legend(loc="upper right", fontsize=8) if max([len(x) for x in channels[start:end]]) >= 5: ax.set_xticklabels(ax.get_xticklabels(), fontsize=8, rotation=-45) else: ax.set_frame_on(False) ax.set_xticks([]) ax.set_yticks([]) return fig if return_fig else None def volcano( data: Union[MultimodalData, UnimodalData, anndata.AnnData], cluster_id: str, de_key: str = "de_res", de_test: str = 'mwu', qval_threshold: float = 0.05, log2fc_threshold: float = 1.0, top_n: int = 20, panel_size: Optional[Tuple[float, float]] = (6, 4), return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, ) -> Union[plt.Figure, None]: """ Generate Volcano plots (-log10 p value vs. log2 fold change) for visualizing DE results. Parameters ----------- data: ``MultimodalData``, ``UnimodalData``, or ``anndata.AnnData`` object. Single cell expression data. cluster_id: ``str`` Cluster ID for the cluster we want to show DE results. There are two cases: * If ``condition`` is ``None`` in ``pg.de_analysis``: Just specify one cluster label in the cluster attribute used in ``pg.de_analysis``. * If ``condition`` is not ``None`` in ``pg.de_analysis``: Specify cluster ID in this format: **"cluster_label:cond_level"**, where **cluster_label** is the cluster label, and **cond_level** is the condition ID. And this shows result of cells within the cluster under the specific condition. de_key: ``str``, optional, default: ``de_res`` The varm keyword for DE results. data.varm[de_key] should store the full DE result table. de_test: ``str``, optional, default: ``mwu`` Which DE test results to show. Use MWU test result by default. qval_threshold: ``float``, optional, default: 0.05. Selected FDR rate. A horizontal line indicating this rate will be shown in the figure. log2fc_threshold: ``float``, optional, default: 1.0 Log2 fold change threshold to highlight biologically interesting genes. Two vertical lines representing negative and positive log2 fold change will be shown. top_n: ``int``, optional, default: ``20`` Number of top DE genes to show names. Genes are ranked by Log2 fold change. panel_size: ``Tuple[float, float]``, optional, default: ``(6, 4)`` The size (width, height) in inches of figure. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. Returns -------- ``Figure`` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples --------- >>> pg.volcano(data, cluster_id = '1', dpi=200) """ if de_key not in data.varm: logger.warning(f"Cannot find DE results '{de_key}'. Please conduct DE analysis first!") return None de_res = data.varm[de_key] fcstr = f"{cluster_id}:log2FC" pstr = f"{cluster_id}:{de_test}_pval" qstr = f"{cluster_id}:{de_test}_qval" columns = de_res.dtype.names if (fcstr not in columns) or (pstr not in columns) or (qstr not in columns): logger.warning(f"Please conduct DE test {de_test} first!") return None log2fc = de_res[fcstr] pvals = de_res[pstr] pvals[pvals == 0.0] = 1e-45 # very small pvalue to avoid log10 0 neglog10p = -np.log10(pvals) yconst = min(neglog10p[de_res[qstr] <= qval_threshold]) fig, ax = _get_subplot_layouts(panel_size=panel_size, dpi=dpi) idxsig = neglog10p >= yconst idxnsig = neglog10p < yconst idxfc = (log2fc <= -log2fc_threshold) | (log2fc >= log2fc_threshold) idxnfc = ~idxfc idx = idxnsig & idxnfc ax.scatter(log2fc[idx], neglog10p[idx], s=5, c='k', marker='o', linewidths=0.5, alpha=0.5, label="NS") idx = idxnsig & idxfc ax.scatter(log2fc[idx], neglog10p[idx], s=5, c='g', marker='o', linewidths=0.5, alpha=0.5, label=r"Log$_2$ FC") idx = idxsig & idxnfc ax.scatter(log2fc[idx], neglog10p[idx], s=5, c='b', marker='o', linewidths=0.5, alpha=0.5, label=r"q-value") idx = idxsig & idxfc ax.scatter(log2fc[idx], neglog10p[idx], s=5, c='r', marker='o', linewidths=0.5, alpha=0.5, label=r"q-value and log$_2$ FC") ax.set_xlabel(r"Log$_2$ fold change") ax.set_ylabel(r"$-$Log$_{10}$ $P$") legend = ax.legend( loc="center", bbox_to_anchor=(0.5, 1.1), frameon=False, fontsize=8, ncol=4, ) for handle in legend.legendHandles: # adjust legend size handle.set_sizes([50.0]) ax.axhline(y = yconst, c = 'k', lw = 0.5, ls = '--') ax.axvline(x = -log2fc_threshold, c = 'k', lw = 0.5, ls = '--') ax.axvline(x = log2fc_threshold, c = 'k', lw = 0.5, ls = '--') texts = [] idx = np.where(idxsig & (log2fc >= log2fc_threshold))[0] posvec = np.argsort(log2fc[idx])[::-1][0:top_n] for pos in posvec: gid = idx[pos] texts.append(ax.text(log2fc[gid], neglog10p[gid], data.var_names[gid], fontsize=5)) idx = np.where(idxsig & (log2fc <= -log2fc_threshold))[0] posvec = np.argsort(log2fc[idx])[0:top_n] for pos in posvec: gid = idx[pos] texts.append(ax.text(log2fc[gid], neglog10p[gid], data.var_names[gid], fontsize=5)) from adjustText import adjust_text adjust_text(texts, arrowprops=dict(arrowstyle='-', color='k', lw=0.5)) return fig if return_fig else None def rank_plot( data: Union[MultimodalData, UnimodalData, anndata.AnnData], panel_size: Optional[Tuple[float, float]] = (6, 4), return_fig: Optional[bool] = False, dpi: Optional[float] = 300.0, **kwargs, ) -> Union[plt.Figure, None]: """Generate a barcode rank plot, which shows the total UMIs against barcode rank (in descending order with respect to total UMIs) Parameters ---------- data : `AnnData` or `UnimodalData` or `MultimodalData` object The main data object. panel_size: `tuple`, optional (default: `(6, 4)`) The plot size (width, height) in inches. return_fig: ``bool``, optional, default: ``False`` Return a ``Figure`` object if ``True``; return ``None`` otherwise. dpi: ``float``, optional, default: ``300.0`` The resolution in dots per inch. Returns ------- `Figure` object A ``matplotlib.figure.Figure`` object containing the dot plot if ``return_fig == True`` Examples -------- >>> fig = pg.rank_plot(data, show = False, dpi = 500) """ fig, ax = _get_subplot_layouts(panel_size=panel_size, dpi=dpi) # default nrows = 1 & ncols = 1 numis = data.X.sum(axis = 1).A1 ords =
np.argsort(numis)
numpy.argsort
#! /usr/bin/env python3 import json import numpy as np import matplotlib.pyplot as plt from korali.plot.helpers import hlsColors, drawMulticoloredLine import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) plotSamples = True #Plot scatter plot in upper triangle of figure def plot_upper_triangle(ax, theta, f=None): dim = theta.shape[1] for i in range(dim): for j in range(i + 1, dim): if f: ax[i, j].scatter( theta[:, i], theta[:, j], marker='o', s=3, alpha=0.5, c=f) else: ax[i, j].plot(theta[:, i], theta[:, j], '.', markersize=3) ax[i, j].grid(b=True, which='both') ax[i, j].set_xlabel("F"+str(i)) ax[i, j].set_ylabel("F"+str(j)) #Plot scatter plot in lower triangle of figure def plot_lower_triangle(ax, theta, f=None): dim = theta.shape[1] for i in range(dim): for j in range(0, i): if f: ax[i, j].scatter( theta[:, i], theta[:, j], marker='o', s=3, alpha=0.5, c=f) else: ax[i, j].plot(theta[:, i], theta[:, j], '.', markersize=3) ax[i, j].grid(b=True, which='both') ax[i, j].set_xlabel("F"+str(i)) ax[i, j].set_ylabel("F"+str(j)) def plotGen(genList, idx): numgens = len(genList) lastGen = 0 for i in genList: if genList[i]['Current Generation'] > lastGen: lastGen = genList[i]['Current Generation'] numObjectives = genList[lastGen]['Problem']['Num Objectives'] if plotSamples and numObjectives > 1: sampleVals = np.array(genList[lastGen]['Solver']['Sample Value Collection']) isFinite = [~np.isnan(s - s).any() for s in sampleVals] # Filter trick sampleVals = sampleVals[isFinite] numentries = len(sampleVals) fig, ax = plt.subplots(numObjectives, numObjectives, figsize=(8, 8)) samplesTmp =
np.reshape(sampleVals, (numentries, numObjectives))
numpy.reshape
import pytest from brainlit.algorithms.generate_fragments.adaptive_thresh import ( get_seed, get_img_T1, thres_from_gmm, fast_marching_seg, level_set_seg, connected_threshold, confidence_connected_threshold, neighborhood_connected_threshold, otsu, gmm_seg, ) import SimpleITK as sitk from sklearn.mixture import GaussianMixture import numpy as np import matplotlib.pyplot as plt ################## ### validation ### ################## def test_get_seed(): # define voxel voxel = (10.131, 30.6001, 100) numpy_seed, sitk_seed = get_seed(voxel) assert numpy_seed == (10, 30, 100) assert sitk_seed == (100, 30, 10) def test_get_img_T1(): img = np.array([[[100, 250], [800, 300]], [[1200, 2000], [3000, 2500]]]) img_T1, img_T1_255 = get_img_T1(img) assert type(img_T1) == sitk.Image assert type(img_T1_255) == sitk.Image assert img_T1_255.GetPixelIDTypeAsString() == "8-bit unsigned integer" def test_thres_from_gmm(): # define two groups of Gaussian distribution points with distinct mean values Good1 = False Good2 = False # to ensure the random number does not fall below 0 (the minimum value of an 8-bit image) while Good1 == False: G1 = np.round(np.random.normal(loc=40, scale=10, size=(499, 1))) if min(G1) > 0: Good1 = True # to ensure the random number does not exceed 255 (the maximum value of an 8-bit image) while Good2 == False: G2 = np.round(np.random.normal(loc=220, scale=10, size=(499, 1))) if max(G2) < 255: Good2 = True # the minimum value of the high-mean Gaussian distribution determines the threshold thre_predicted = np.nanmin(G2) # construct a 3D image with the two groups of points img = np.append(np.concatenate((G1, G2)), np.array([[0.0], [255.0]])).reshape( (10, 10, 10) ) # calculate the threshold with `thres_from_gmm` thre = thres_from_gmm(img) assert thre == thre_predicted def test_fast_marching_seg(): # create an image comprised of repeated 1D Gaussian distribution with mean value at 50th pixel and standard deviation of 2 pixels Gx = np.array([]) for x in range(0, 101): Gx = np.insert(Gx, x, np.exp(-((x - 50) ** 2) / (2 * (2**2)))) img = np.repeat([Gx], repeats=30, axis=0) # place a seed in the region of mean value seed = (50, 15) # input default settings of the fast_marching_seg function stopping_value = 150 sigma = 0.5 # convert image format to comply with SimpleITK _, img_T1_255 = get_img_T1(img) # explicitly applying SimpleITK filters accordingly as in the fast_marching_seg function feature_img = sitk.GradientMagnitudeRecursiveGaussian(img_T1_255, sigma=sigma) speed_img = sitk.BoundedReciprocal(feature_img) fm_filter = sitk.FastMarchingBaseImageFilter() fm_filter.SetTrialPoints([seed]) fm_filter.SetStoppingValue(stopping_value) fm_img = fm_filter.Execute(speed_img) fm_img = sitk.Cast(sitk.RescaleIntensity(fm_img), sitk.sitkUInt8) labels_predicted = sitk.GetArrayFromImage(fm_img) # the prediceted labels is obtained by explicitly running the fast_marching function labels_predicted = (~labels_predicted.astype(bool)).astype(int) # acquire labels by employing the fast_marching_seg function labels = fast_marching_seg(img, seed, sigma=sigma) np.testing.assert_array_equal(labels, labels_predicted) def test_level_set_seg(): # create an image comprised of repeated 1D Gaussian distribution with mean value at 50th pixel and standard deviation of 2 pixels Gx = np.array([]) for x in range(0, 101): Gx = np.insert(Gx, x, np.exp(-((x - 50) ** 2) / (2 * (2**2)))) img = np.repeat([Gx], repeats=30, axis=0) # place a seed in the region of mean value seed = (50, 15) # input default settings of the fast_marching_seg function lower_threshold = None upper_threshold = None factor = 2 max_rms_error = 0.02 num_iter = 1000 curvature_scaling = 0.5 propagation_scaling = 1 # convert image format to comply with SimpleITK _, img_T1_255 = get_img_T1(img) # explicitly applying SimpleITK filters accordingly and run default threshold algorithms as in the level_seg_set function seg = sitk.Image(img_T1_255.GetSize(), sitk.sitkUInt8) seg.CopyInformation(img_T1_255) seg[seed] = 1 seg = sitk.BinaryDilate(seg, [1] * seg.GetDimension()) stats = sitk.LabelStatisticsImageFilter() stats.Execute(img_T1_255, seg) if lower_threshold == None: lower_threshold = stats.GetMean(1) - factor * stats.GetSigma(1) if upper_threshold == None: upper_threshold = stats.GetMean(1) + factor * stats.GetSigma(1) init_ls = sitk.SignedMaurerDistanceMap( seg, insideIsPositive=True, useImageSpacing=True ) lsFilter = sitk.ThresholdSegmentationLevelSetImageFilter() lsFilter.SetLowerThreshold(lower_threshold) lsFilter.SetUpperThreshold(upper_threshold) lsFilter.SetMaximumRMSError(max_rms_error) lsFilter.SetNumberOfIterations(num_iter) lsFilter.SetCurvatureScaling(curvature_scaling) lsFilter.SetPropagationScaling(propagation_scaling) lsFilter.ReverseExpansionDirectionOn() ls = lsFilter.Execute(init_ls, sitk.Cast(img_T1_255, sitk.sitkFloat32)) # the prediceted labels is obtained by explicitly running the level_set_seg function labels_predicted = sitk.GetArrayFromImage(ls > 0) # acquire labels by employing level_set_seg function labels = level_set_seg(img, seed, lower_threshold=None, upper_threshold=None) np.testing.assert_array_equal(labels, labels_predicted) def test_connected_threshold(): # create an image with 4 layers of gray scales G1 = np.full((4, 4), 255) G2 = np.full((4, 4), 200) G3 = np.full((4, 4), 100) G4 = np.full((4, 4), 0) img = np.concatenate((G1, G2, G3, G4)).reshape(4, 4, 4) # seed at the first layer with the highest gray level and give a lower_threshold labels = connected_threshold(img, [(0, 0, 0)], lower_threshold=150) # because the gray levels are arranged in a sequantial order, gray level above the threshold should be all labeled 1, otherwise 0 labels_predicted = np.concatenate( ((G1 / G1).astype(int), (G2 / G2).astype(int), G3 - G3, G4 - G4) ).reshape(4, 4, 4) np.testing.assert_array_equal(labels, labels_predicted) # seed at the first layer without giving a lower_threshold labels = connected_threshold(img, [(0, 0, 0)]) # since no threshold is given, the default is to use thres_from_gmm to determine the threshold (200 in this case) labels_predicted = np.concatenate( ((G1 / G1).astype(int), (G2 / G2).astype(int), G3 - G3, G4 - G4) ).reshape(4, 4, 4) np.testing.assert_array_equal(labels, labels_predicted) def test_confidence_connected_threshold(): # create a data set featured with Gaussian distribution Good = False # to ensure the random number does not fall outside of 0 to 255 range (dynamic range of an 8-bit image) while Good == False: G1 = np.round(np.random.normal(loc=125, scale=25, size=(62500, 1))) if min(G1) > 0 and max(G1) < 255: Good = True # the data is distributed in the image by the order of each pixel's intensity img = np.sort(G1).reshape(250, 250).astype(int) # if we set multiplier to be 2.5, we are expected to connect around 99% of the pixels labels = confidence_connected_threshold( img, [(124, 127)], multiplier=2.5, num_iter=180 ) assert sum(sum(labels.astype(float))) / 62500 > 0.98 def test_neighborhood_connected_threshold(): # define an image with 2D Gaussian distribution Gx = np.array([]) for x in range(0, 7): Gx = np.insert(Gx, x, np.exp(-((x - 3) ** 2) / (2 * (3**2)))) Gxy = np.zeros((7, 7)) for x in range(0, 7): for y in range(0, 7): Gxy[x, y] = (Gx[x]) * (Gx[y]) img = 255 * (Gxy / Gxy.max()) # pick the central pixel as the seed and threshold at 200 lower_threshold = 200 seed = (3, 3) labels = neighborhood_connected_threshold( img, [seed], lower_threshold=lower_threshold ) # all the neighbor pixels within radius=(1,1,1) should fit in the threshold labels_predicted = np.zeros((7, 7)) labels_predicted[3, 3] = 1 np.testing.assert_array_equal(labels, labels_predicted) def test_otsu(): G1 = np.append( np.round(np.random.normal(loc=40, scale=10, size=(499, 1))), np.array([0]) ) G2 = np.append( np.round(np.random.normal(loc=220, scale=10, size=(499, 1))), np.array([255]) ) img = np.concatenate((G1, G2)).reshape((10, 10, 10)) # seed inside labels = otsu(img, (9, 1, 6)) labels_predicted = np.concatenate( ((G1 - G1).astype(int), (G2 / G2).astype(int)) ).reshape((10, 10, 10)) np.testing.assert_array_equal(labels, labels_predicted) # seed outside labels = otsu(img, (1, 1, 3)) labels_predicted = np.concatenate( ((G1 + (255 - G1)).astype(int), (G2 - G2).astype(int)) ).reshape((10, 10, 10)) np.testing.assert_array_equal(labels, labels_predicted) def test_gmm_seg(): # define two groups of Gaussian distribution points with distinct mean values G1 = np.append( np.round(np.random.normal(loc=40, scale=10, size=(499, 1))), np.array([0]) ) G2 = np.append( np.round(np.random.normal(loc=220, scale=10, size=(499, 1))), np.array([255]) ) # construct a 3D image with the two groups of points img = np.concatenate((G1, G2)).reshape((10, 10, 10)) # 1s should be labeled to the positions where G2 population are located labels_predicted = np.concatenate( ((G1 - G1).astype(int), (G2 / G2).astype(int)) ).reshape((10, 10, 10)) # the seed is located at a randomly selected point within G2 distribution labels = gmm_seg(img, (9, 9, 6))
np.testing.assert_array_equal(labels, labels_predicted)
numpy.testing.assert_array_equal
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% [markdown] # # Setup # # ## Import TensorFlow and NumPy # %% # Import libraries import os import numpy as np import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import backend as K from tensorflow.keras.models import load_model from tensorflow.keras.datasets import cifar10 import argparse parser = argparse.ArgumentParser(description='Inference characterization.') parser.add_argument('i', type=int, help='i value to process') args = parser.parse_args() # %% [markdown] # ## Configure DNN settings # # Here, we specify the ResNet architecture parameters: # %% # Number of classes to infer num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True # Depth parameter n = 3 # Model version # Orig paper: version = 1 (ResNet v1), Improved ResNet: version = 2 (ResNet v2) version = 1 # Computed depth from supplied model parameter n if version == 1: depth = n * 6 + 2 elif version == 2: depth = n * 9 + 2 # %% [markdown] # ## Load dataset and preprocess # # We are working with the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html) here. # %% # Load the CIFAR10 data (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Input image dimensions input_shape = x_train.shape[1:] # Normalize data x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean =
np.mean(x_train, axis=0)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import json import math import numpy class Wavefront(): def __init__(self, path, triangulateQuads = True): # These are the arrays we're going to produce, and which might # make sense to manipulate from the outside: self.vertexCoords = None # XYZ coordinated for each vertex self.vertexNormals = None # Normal (in XYZ form) for each vertex self.faces = None # Faces, specified by listing indexes for participating vertices # These are internal work arrays self._rawVertices = [] self._rawTexCo = [] self._rawVertexTexCo = []; self._rawFaces = [] self._vertexBelongsToFaces = None self._faceVertCache = None self.triangulateQuads = triangulateQuads if not os.path.exists(path): raise IOError(path + " does not exist") self.content = [] with open(path,'r') as file: self.content = file.readlines() # self._mode can be: # ONLYTRIS: The incoming mesh only contains tris (so no need to do anything) # TRIANGULATE: The incoming mesh contains quads (and may contain tris). Triangulate to get only tris. # ONLYQUADS: The incoming mesh contains only quads. Keep these rather than triangulating self._mode = None # Check if mesh contains quads and/or tris self._scanForMode() # Make a sweep for vertices as faces need that information self._extractVertices() # Make a sweep for texture coordinates, as faces need that too self._extractTextureCoordinates() # Make a sweep for faces self._extractFaces() # TODO: Find texture coordinates for vertices # create numpy arrays to contain vertices, faces and normals self._createVerticesNumpyArray() self._createFacesNumpyArray() # These two operations need to be redone if vertex coordinates # are changed self.recalculateFaceNormals() self.recalculateVertexNormals() def _scanForMode(self): containsTris = False containsQuads = False for line in self.content: strippedLine = line.strip() if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#": parts = strippedLine.split(' ') if len(parts) > 4: containsQuads = True if len(parts) == 4: containsTris = True if len(parts) > 5: raise ValueError("Found a face with more than four vertices. N-gons are not supported.") # TODO: Check for n-gons? if containsQuads: if self.triangulateQuads: self._mode = "TRIANGULATE" else: if containsTris: raise ValueError("Since the mesh contains both tris and quads, requesting the mesh to not be triangulated is illegal") else: self._mode = "ONLYQUADS" else: if containsTris: self._mode = "ONLYTRIS" else: raise ValueError("The mesh didn't contain tris nor quads!?") if self._mode == "ONLYQUADS": raise ValueError("The ONLYQUADS mode is not implemented yet") print("Tris " + str(containsTris)) print("Quads " + str(containsQuads)) print(self._mode) def _extractVertices(self): for line in self.content: strippedLine = line.strip() if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#": parts = strippedLine.split(' ') if len(parts) > 1: command = parts[0] if command == "v": x = float(parts[1]) y = float(parts[2]) z = float(parts[3]) vertex = [x, y, z] self._rawVertices.append(vertex) self._rawVertexTexCo.append([0,0]) def _extractTextureCoordinates(self): self.hasTexCo = False for line in self.content: strippedLine = line.strip() if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#": parts = strippedLine.split(' ') if len(parts) > 1: command = parts[0] if command == "vt": x = float(parts[1]) y = float(parts[2]) texco = [x, y] self._rawTexCo.append(texco) def _distanceBetweenVerticesByIdx(self, idx1, idx2): vert1 = numpy.array(self._rawVertices[idx1]) vert2 = numpy.array(self._rawVertices[idx2]) difference = vert2 - vert1 x = difference[0] y = difference[1] z = difference[2] distance = math.sqrt( x*x + y*y + z*z ) return distance def _extractFaces(self): # Note that wavefront lists starts at 1, not 0 for line in self.content: strippedLine = line.strip() if not strippedLine is None and not strippedLine == "" and not strippedLine[0] == "#": parts = strippedLine.split(' ') if len(parts) > 1: command = parts[0] if command == "f": # Face info is vertIdx / texCoIdx / faceNormalIdx OR vertIdx / texCoIdx OR vertIdx vInfo1 = parts[1].split('/') vInfo2 = parts[2].split('/') vInfo3 = parts[3].split('/') # Find indexes of vertices making up the face. Note "-1" since wavefront indexes start # at 1 rather than 0 vidx1 = int(vInfo1[0]) - 1 vidx2 = int(vInfo2[0]) - 1 vidx3 = int(vInfo3[0]) - 1 if len(parts) == 4: if self._mode == "ONLYQUADS": raise ValueError("Found tri although mode was ONLYQUADS") face = [vidx1, vidx2, vidx3] self._rawFaces.append(face) else: vInfo4 = parts[4].split('/') vidx4 = int(vInfo4[0]) - 1 if self._mode == "ONLYTRIS": raise ValueError("Found quad although mode was ONLYTRIS") if self._mode == "ONLYQUADS": raise ValueError("ONLYQUADS mode not implemented yet") # Perform triangulation by splitting quad into two tris, using the shortest diagonal distance13 = self._distanceBetweenVerticesByIdx(vidx1, vidx3) distance24 = self._distanceBetweenVerticesByIdx(vidx2, vidx4) if distance13 > distance24: face = [vidx1, vidx2, vidx4] self._rawFaces.append(face) face = [vidx3, vidx4, vidx2] self._rawFaces.append(face) else: face = [vidx1, vidx3, vidx4] self._rawFaces.append(face) face = [vidx2, vidx3, vidx1] self._rawFaces.append(face) i = 1 while i < len(parts): f = parts[i].split('/') if len(f) > 1: vidx = int(f[0]) - 1 # Vertex index ti = f[1] # May be empty if no UV unwrap if ti != "": tidx = int(ti) - 1 # Texture coordinate index texco = self._rawTexCo[tidx] # Actual texture coordinats, x/y self._rawVertexTexCo[vidx] = texco self.hasTexCo = True i = i + 1 def _createFacesNumpyArray(self, assumeQuads = False): numberOfFaces = len(self._rawFaces) vertsPerFace = 3 if assumeQuads: vertsPerFace = 4 # Create a two-dimensional int array with shape (numFace/vertsPerFace) and # fill it values from the wavefront obj. This will contain vert indices. self.faces = numpy.array( self._rawFaces, dtype=int ) # Values will be copied from self._rawFaces # Create a two-dimensional float array with shape (numFace/ 3 ) and # fill it with zeros. This will contain faces normals, but needs to # be recalculated. self.faceNormals = numpy.zeros( (numberOfFaces, 3), dtype=float ) def _createVerticesNumpyArray(self): numberOfVertices = len(self._rawVertices) if numberOfVertices != len(self._rawVertexTexCo): raise ValueError("Not same number of elements in texco array") # Convert raw coords from wavefront into a 2d numpy array self.vertexCoords = numpy.array( self._rawVertices, dtype=float ) # Create a two-dimensional float array with shape (numVerts/3) and # fill it with zeros. This will contain vertex normals. self.vertexNormals = numpy.zeros( (numberOfVertices, 3), dtype=float ) # Create a two-dimensional float array with shape (numVerts/2) and # fill it with texture coordinates. self.vertexTexCo = numpy.array( self._rawVertexTexCo, dtype=float ) def recalculateVertexNormals(self, assumeQuads = False): # Build a cache where we, per vertex, list which faces are relevant # for it. We need this in order to calculate the vertex normal later, # as an average of the face normals surrounding it if self._vertexBelongsToFaces is None: self._vertexBelongsToFaces = [] numberOfFaces = len(self.faces) numberOfVertices = len(self.vertexCoords) vertsPerFace = 3 if assumeQuads: vertsPerFace = 4 currentVert = 0 while currentVert < numberOfVertices: self._vertexBelongsToFaces.append([]) currentVert = currentVert + 1 currentFace = 0 while currentFace < numberOfFaces: fv = self.faces[currentFace] currentVert = 0 while currentVert < vertsPerFace: vertexIndex = fv[currentVert] self._vertexBelongsToFaces[vertexIndex].append(currentFace) currentVert = currentVert + 1 currentFace = currentFace + 1 # Calculate vertex normals as an average of the surrounding face # normals. currentVert = 0 zeroNormal = numpy.array([0.0, 0.0, 0.0], dtype=float) while currentVert < numberOfVertices: faces = self._vertexBelongsToFaces[currentVert] numberOfFaces = len(faces) currentNormal = numpy.array([0,0,0], dtype=float) currentFace = 0 firstNormal = None while currentFace < numberOfFaces: fidx = faces[currentFace] fnormal = self.faceNormals[fidx] if firstNormal is None: firstNormal = fnormal currentNormal = currentNormal + fnormal currentFace = currentFace + 1 if numberOfFaces < 1: raise ValueError("Found a vertex (" + str(currentVert) + ") which did not belong to any face") averageNormal = currentNormal / numberOfFaces if
numpy.array_equal(averageNormal, zeroNormal)
numpy.array_equal
# -*- coding:utf-8 -*- # # Author : 寒江雪 # E-mail : # Date : 19/11/09 21:03:30 # Desc : 使用DDPG的方法玩flappy bird # """ Dependencies: tensorflow r1.14 pygame 1.9.4 """ from __future__ import print_function import tensorflow as tf import cv2 import sys sys.path.append("game/") import wrapped_flappy_bird as game import random import numpy as np from collections import deque import os class Config(object): GAME = 'bird' ACTIONS = 2 GAMMA = 0.99 OBSERVE = 100000.0 EXPLORE = 2000000.0 FINAL_EPSILON = 0.0001 INITIAL_EPSILON = 0.06 REPLAY_MEMORY = 50000 BATCH = 32 FRAME_PER_ACTION = 1 SAVE_MODEL_EVERY = 10000 S = tf.placeholder("float", [None, 80, 80, 4]) class PolicyGradient(object): def __init__(self, scope='estimator', log_dir=None, config=Config): self.scope = scope self.summary_writer = None self.config = config with tf.variable_scope(scope): self.a = self.build_graph() def weight_variable(self, shape): initial = tf.truncated_normal(shape, stddev = 0.01) return tf.Variable(initial) def bias_variable(self, shape): initial = tf.constant(0.01, shape = shape) return tf.Variable(initial) def conv2d(slef, x, W, stride): return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = "SAME") def max_pool_2x2(self, x): return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME") def build_graph(self): with tf.variable_scope("network"): # network weights W_conv1 = self.weight_variable([8, 8, 4, 32]) b_conv1 = self.bias_variable([32]) W_conv2 = self.weight_variable([4, 4, 32, 64]) b_conv2 = self.bias_variable([64]) W_conv3 = self.weight_variable([3, 3, 64, 64]) b_conv3 = self.bias_variable([64]) W_fc1 = self.weight_variable([1600, 512]) b_fc1 = self.bias_variable([512]) W_fc2 = self.weight_variable([512, self.config.ACTIONS]) b_fc2 = self.bias_variable([self.config.ACTIONS]) h_conv1 = tf.nn.relu(self.conv2d(S, W_conv1, 4) + b_conv1) h_pool1 = self.max_pool_2x2(h_conv1) h_conv2 = tf.nn.relu(self.conv2d(h_pool1, W_conv2, 2) + b_conv2) #h_pool2 = max_pool_2x2(h_conv2) h_conv3 = tf.nn.relu(self.conv2d(h_conv2, W_conv3, 1) + b_conv3) #h_pool3 = max_pool_2x2(h_conv3) #h_pool3_flat = tf.reshape(h_pool3, [-1, 256]) h_conv3_flat = tf.reshape(h_conv3, [-1, 1600]) h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1) # 输出动作的最大值 self.readout = tf.matmul(h_fc1, W_fc2) + b_fc2 #利用softmax函数得到每个动作的概率 self.all_act_prob = tf.nn.softmax(self.readout, name='act_prob') return self.all_act_prob def predict(self, sess, s_t): all_act_prob = sess.run(self.all_act_prob, feed_dict={S: s_t}) return np.argmax(all_act_prob[0].ravel()) class QValueEvaluation(object): def __init__(self, scope='estimator', actor=None, config=Config): self.scope = scope self.summary_writer = None self.config = config with tf.variable_scope(scope): self.a = self.build_graph(actor) def weight_variable(self, shape): initial = tf.truncated_normal(shape, stddev = 0.01) return tf.Variable(initial) def bias_variable(self, shape): initial = tf.constant(0.01, shape = shape) return tf.Variable(initial) def conv2d(slef, x, W, stride): return tf.nn.conv2d(x, W, strides = [1, stride, stride, 1], padding = "SAME") def max_pool_2x2(self, x): return tf.nn.max_pool(x, ksize = [1, 2, 2, 1], strides = [1, 2, 2, 1], padding = "SAME") def build_graph(self, actor): with tf.variable_scope("network"): # network weights W_conv1 = self.weight_variable([8, 8, 4, 32]) b_conv1 = self.bias_variable([32]) W_conv2 = self.weight_variable([4, 4, 32, 64]) b_conv2 = self.bias_variable([64]) W_conv3 = self.weight_variable([3, 3, 64, 64]) b_conv3 = self.bias_variable([64]) W_fc1 = self.weight_variable([1600, 512]) b_fc1 = self.bias_variable([512]) W_fc2 = self.weight_variable([512, self.config.ACTIONS]) b_fc2 = self.bias_variable([self.config.ACTIONS]) W_fc3 = self.weight_variable([2*self.config.ACTIONS, 1]) b_fc3 = self.bias_variable([1]) h_conv1 = tf.nn.relu(self.conv2d(S, W_conv1, 4) + b_conv1) h_pool1 = self.max_pool_2x2(h_conv1) h_conv2 = tf.nn.relu(self.conv2d(h_pool1, W_conv2, 2) + b_conv2) #h_pool2 = max_pool_2x2(h_conv2) h_conv3 = tf.nn.relu(self.conv2d(h_conv2, W_conv3, 1) + b_conv3) #h_pool3 = max_pool_2x2(h_conv3) #h_pool3_flat = tf.reshape(h_pool3, [-1, 256]) h_conv3_flat = tf.reshape(h_conv3, [-1, 1600]) h_fc1 = tf.nn.relu(tf.matmul(h_conv3_flat, W_fc1) + b_fc1) # readout layer self.readout = tf.matmul(h_fc1, W_fc2) + b_fc2 self.concat_1 = tf.concat([self.readout, actor], 1) self.q_values = tf.matmul(self.concat_1, W_fc3) + b_fc3 self.y = tf.placeholder("float", [None]) self.cost = tf.reduce_mean(tf.square(self.y - self.q_values)) self.train_step = tf.train.AdamOptimizer(1e-6).minimize(self.cost) def predict(self, sess, s_t): q_values = sess.run(self.readout, feed_dict={self.s: s_t}) return q_values def train(self, sess, s_j_batch, y_batch): _, summaries, global_step = sess.run( [self.train_step, self.summaries, tf.train.get_global_step()], feed_dict={ self.y: y_batch, S: s_j_batch} ) def n_step_copy_model_parameters(q_value, target_q): def get_params(estimator): params = [t for t in tf.trainable_variables() if t.name.startswith(estimator.scope)] params = sorted(params, key=lambda t: t.name) return params params = get_params(q_value) target_params = get_params(target_q) assign_ops = [] for t, target_t in zip(params, target_params): assign_op = tf.assign(ref=target_t, value=t) assign_ops.append(assign_op) """ for t, target_t in zip(params, target_params): assign_op = tf.assign(target_t, (1-0.9)*t + 0.9*target_t) assign_ops.append(assign_op) """ return assign_ops def preprocess_state(x_t): x_t = cv2.cvtColor(cv2.resize(x_t, (80, 80)), cv2.COLOR_BGR2GRAY) ret, x_t = cv2.threshold(x_t, 1, 255, cv2.THRESH_BINARY) return x_t def train_ddpg(sess, actor_eval_net, actor_target_net, actor_assign_ops, critic_eval_net, critic_target_net, critic_assign_ops): # 开始游戏 game_state = game.GameState() # 存储样本 D = deque() do_nothing = np.zeros(Config.ACTIONS) do_nothing[0] = 1 x_t, r_0, terminal = game_state.frame_step(do_nothing) x_t = preprocess_state(x_t) s_t =
np.stack((x_t, x_t, x_t, x_t), axis=2)
numpy.stack
import matplotlib.pyplot as plt import numpy as np import matplotlibex as plx import matplotlibex.mlplot as plx import dmp.equations as deq class LocalFunc(object): def __init__(self): pass def __call__(self, x): raise NotImplementedError() def plot(self, t, x): plt.plot(range(len(t)), self(x)) class RBFLocalFunc(LocalFunc): def __init__(self, center, sigmasqr): super(RBFLocalFunc, self).__init__() self.center = center self.sigmasqr = sigmasqr def __call__(self, x): return deq.RBF(self.center, self.sigmasqr, x) class MisesBFLocalFunc(LocalFunc): def __init__(self, center, sigmasqr): super(MisesBFLocalFunc, self).__init__() self.center = center self.sigmasqr = sigmasqr def __call__(self, x): return deq.MisesBF(self.center, self.sigmasqr, x) class LWR_1D(object): def __init__(self, x, y, npsi=20, regressor_func=None, local_funcs=None): self.x = x.copy() self.y = y.copy() if regressor_func is None: regressor_func = lambda x: np.ones_like(x) self.regressor_func = regressor_func if local_funcs is None: xmin = np.min(self.x) xmax = np.max(self.x) psi_cs = np.linspace(xmin, xmax, npsi) # basis functions centres psi_ls = np.zeros([npsi]) + 0.5 * ((xmax - xmin) / npsi)**2 local_funcs = [RBFLocalFunc(center=psi_cs[i], sigmasqr=psi_ls[i]) for i in range(npsi)] self.local_funcs = local_funcs self.npsi = len(self.local_funcs) ksi = self.regressor_func(x) self.ws = np.zeros([self.npsi]) for i in range(self.npsi): psi_i = self.get_psi_value(i, x) self.ws[i] = np.sum(ksi * psi_i * y) / np.sum(ksi * psi_i * ksi) def get_psi_value(self, i, x): return self.local_funcs[i](x) def predict(self, xstar): if not isinstance(xstar, np.ndarray): xstar = np.array([xstar]) ksi = self.regressor_func(xstar) #[N] psi = [self.get_psi_value(i, xstar) for i in range(self.npsi)] # [npsi][N] psi = np.vstack(psi).T # [N, npsi] res = np.sum(psi * ksi[:, np.newaxis] * self.ws[np.newaxis, :], axis=1) / np.sum(psi, axis=1) return res def plot_BFs(self, xstar): for i in range(self.npsi): plt.plot(xstar, self.get_psi_value(i, xstar)) class LWR(object): def __init__(self, x, y, npsi=20, regressor_func=None, local_funcs=None): self.D = y.shape[1] self.lwrs = [] for i in range(self.D): lwr = LWR_1D(x, y[:, i], npsi, None if regressor_func is None else regressor_func[i], local_funcs) self.lwrs.append(lwr) def predict(self, xstar): return np.array([lwr.predict(xstar) for lwr in self.lwrs]).T def plot_BFs(self, xstar): self.lwrs[0].plot_BFs(xstar) def test_LWR_1D(): T = np.linspace(0.0, 11.0, 100) Y =
np.sin(T)
numpy.sin
import numpy as np import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg import glob def find_lane_pixels(binary_warped): """ find lane in a binary_warped image input: binary_warped image output: left/right lane pixel poistion and a drawed search image """ # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[binary_warped.shape[0]//2:,:], axis=0) # plt.plot(histogram) # plt.show() # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped))*255 # Find the peak of the left and right havleve of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0]//2) # 1280/2=640 leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # HYPERPARAMETERS # Choose the number of sliding windows nWindows = 9 # Set the width of the windows +/- margin margin = 100 # Set minimu number of pixels found to recenter window min_pix = 50 # Set height of windows - based on nWindows above adn image shape window_height = np.int(binary_warped.shape[0]//nWindows) # Identify the x and y positions of all nonzero(i.e. activated) pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) # y is row, x is col nonzerox = np.array(nonzero[1]) # Current postions to be updated later for each window in n_window leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] for window in range(nWindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window+1)*window_height win_y_high = binary_warped.shape[0] - window*window_height win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # Draw the windows on the visulization image cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0,255,0),2) cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0,255,0),2) # plt.imshow(out_img) # plt.show() good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] # nonzero() return a tuple, get the list for tuple good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # nonzero() return a tuple, get the list for tuple # Append these indices to hte lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # # update the window center for next round window scan if len(good_left_inds) > min_pix: leftx_current = int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > min_pix: rightx_current = int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices (previously was a list of list) try: left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # print(len(nonzerox)) return (leftx, lefty, rightx, righty, out_img) def fit_polynomial(leftx, lefty, rightx, righty, out_img): # Find our lane pixels first #leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped) # check if there is search failure if leftx.size == 0 or lefty.size == 0: cv2.putText(out_img,"Search failure", (50,60), cv2.FONT_HERSHEY_SIMPLEX,2,(255,0,255),3) return out_img # Fit a second order polynomial to each using `np.polyfit` left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty =
np.linspace(0, out_img.shape[0]-1, out_img.shape[0] )
numpy.linspace
import itertools import pytest import numpy as np import tensorflow as tf from dlutils.dataset.cropping import random_crop CROP_TEST_PARAMS = list( itertools.product( [(5, 10, 11, 2), (20, 10, 3), (5, 10)], # patch_size [2, 5])) # n_inputs def pairwise(iterable): '''s -> (s0,s1), (s1,s2), (s2, s3), ... Snippet from https://docs.python.org/3.6/library/itertools.html ''' a, b = itertools.tee(iterable) next(b, None) return zip(a, b) @pytest.mark.parametrize('patch_size, n_inputs', CROP_TEST_PARAMS) def test_random_crop_on_dict(patch_size, n_inputs): '''test tf.data compatible random crop function on an input_dict. ''' tf.random.set_seed(17) img_shape = tuple(2 * val for val in patch_size) img = np.arange(np.prod(img_shape)).reshape(img_shape) cropper = random_crop(patch_size) input_dict = {key: key * img for key in range(1, n_inputs + 1)} first_patch = cropper(input_dict) for _ in range(10): patch = cropper(input_dict) # check if patches have the correct shape for key in input_dict.keys(): vals = patch[key].numpy() assert vals.ndim == img.ndim assert np.all(vals.shape == patch_size) assert len(patch.keys()) == n_inputs # check if all inputs were cropped in the same location for first_key, second_key in pairwise(patch): assert np.all(patch[first_key].numpy() * second_key == patch[second_key].numpy() * first_key) # make sure we're not drawing the same patch over and over for key in patch.keys(): assert not np.all(patch[key].numpy() == first_patch[key].numpy()) @pytest.mark.parametrize('patch_size, n_inputs', CROP_TEST_PARAMS) def test_random_crop_on_list(patch_size, n_inputs): '''test tf.data compatible random crop function on a list. NOTE we currently expect the test to fail as there's no extra handling of lists/tuples/dicts ''' tf.random.set_seed(17) img_shape = tuple(2 * val for val in patch_size) img = np.arange(np.prod(img_shape)).reshape(img_shape) cropper = random_crop(patch_size) input_list = [key * img for key in range(1, n_inputs + 1)] first_patch = cropper(input_list) for _ in range(10): patch = cropper(input_list) # check if patches have the correct shape for vals in patch: vals = vals.numpy() assert vals.ndim == img.ndim assert
np.all(vals.shape == patch_size)
numpy.all
import torch import numpy as np from math import sqrt import imghdr from .data_interface import DataInterface from torch import as_tensor, uint8 class BloscInterface(DataInterface): @staticmethod def blosc_opts(complevel=9, complib='blosc:lz4hc', shuffle: any = 'bit'): """ Code from https://github.com/h5py/h5py/issues/611#issuecomment-497834183 for issue https://github.com/h5py/h5py/issues/611 :param complevel: :param complib: :param shuffle: :return: """ shuffle = 2 if shuffle == 'bit' else 1 if shuffle else 0 compressors = ['blosclz', 'lz4', 'lz4hc', 'snappy', 'zlib', 'zstd'] complib = ['blosc:' + c for c in compressors].index(complib) args = { 'compression': 32001, 'compression_opts': (0, 0, 0, 0, complevel, shuffle, complib) } if shuffle: args['shuffle'] = False return args @staticmethod def load_sample(sample): from PIL import Image from skimage import io as skio import io path_key = 'path' if 'path' in sample.keys() else 'FilePath' type_key = 'type' if 'type' in sample.keys() else 'FileType' try: file_type = sample[type_key] except KeyError: file_type = imghdr.what(sample[path_key]) if file_type in ['tif', 'tiff']: spl = skio.imread(sample[path_key]) spl = np.moveaxis(np.array(spl), -1, 0) return spl, spl.shape elif file_type in ['numpy', 'np']: spl = np.load(sample[path_key]) return spl, spl.shape else: with open(sample[path_key], 'rb') as f: im = Image.open(io.BytesIO(f.read())) if len(im.getbands()) < 3: rgbimg = Image.new("RGB", im.size) rgbimg.paste(im) im = rgbimg im = np.array(im) im = np.moveaxis(np.array(im), -1, 0) return im, im.shape @staticmethod def stack_batch_data_padded(batch_list): max_height = max(batch_list, key=lambda x: x['height'])['height'] max_width = max(batch_list, key=lambda x: x['width'])['width'] batch_array = None batch_dimensions = None for sample_idx, sample in enumerate(batch_list): sample_shape = sample['shape'] im, im_shape = BloscInterface.load_sample(sample) ######################### if batch_array is None: batch_dimensions = ([len(batch_list)] + [im_shape[0], max_height, max_width]) batch_array = np.zeros(batch_dimensions, dtype=
np.array(im)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon 20th Apr 2020 @author: christoph """ import numpy as np from tqdm import tqdm import mom import pickle import pandas as pd import seaborn as sns import networkx as nx from sklearn.metrics import mean_squared_error import matplotlib import matplotlib.pyplot as plt import seaborn as sns np.set_printoptions(linewidth=200) np.set_printoptions(suppress=True) def align_columns(A, B): k = A.shape[1] G = nx.Graph() G.add_nodes_from(range(0, k), bipartite=0) G.add_nodes_from(range(k, k*2), bipartite=1) elist = [] for i in range(0, k): for j in range(0, k): # elist.append((i,k+j,wasserstein_distance(L2[h,:,i],L2R3[h,:,j]))) elist.append((i, k+j, np.abs(A[:, i]-B[:, j]).sum())) maximum = max(elist, key=lambda t: t[2])[2] elist = list(map(lambda x: (x[0], x[1], maximum-x[2]), elist)) G.add_weighted_edges_from(elist) matching = nx.max_weight_matching(G) sorted_matching = sorted([sorted(pair) for pair in matching]) indexes = np.array(list(map(lambda x: x[1]-k, sorted_matching))) return indexes def gen_data(k, c, d, l, alpha0, n): m = c+d # Draw alpha alpha = np.random.randint(1, high=5, size=k) alpha = alpha / alpha.sum() * alpha0 # Draw theta beta = np.array([1/d] * d) theta = np.zeros((k, c+d)) for i in range(k): # Draw continous parameters theta[i, :c] = np.random.randint(-10, high=10, size=c) # Draw discrete parameters theta[i, c:] = np.random.dirichlet(beta, 1) # Draw sigma sigma = np.random.randint(1, high=5, size=k) # Draw samples x = np.zeros((n, c+d)) # Sample distribution of topics omegas = np.random.dirichlet(alpha, n) for m in tqdm(range(n)): # Skip randoom document length for easier data handling # n_w = np.random.poisson(xi) n_w = l # Sample how often each topic occurs in the current document z =
np.random.multinomial(l, omegas[m])
numpy.random.multinomial
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 Scipp contributors (https://github.com/scipp) # flake8: noqa: E501 """ Tests for data module """ # author: <NAME> (arm61) import os import unittest import numpy as np from numpy.testing import assert_almost_equal, assert_equal import scipp as sc from ess.reflectometry import data from ..tools.io import file_location np.random.seed(1) N = 9 VALUES = np.ones(N) DETECTORS = np.random.randint(1, 5, size=(N)) DATA = sc.DataArray( data=sc.Variable( dims=["event"], unit=sc.units.counts, values=VALUES, dtype=sc.dtype.float32, ), coords={ "detector_id": sc.Variable(dims=["event"], values=DETECTORS, dtype=sc.dtype.int32) }, ) DETECTOR_ID = sc.Variable(dims=["detector_id"], values=np.arange(1, 5), dtype=sc.dtype.int32) BINNED = sc.bin(DATA, groups=[DETECTOR_ID]) PIXELS = np.array([[1, 1, 1], [1, 2, 1], [2, 1, 1], [2, 2, 1]]) X = sc.Variable( dims=["detector_id"], values=PIXELS[:, 0], dtype=sc.dtype.float64, unit=sc.units.m, ) Y = sc.Variable( dims=["detector_id"], values=PIXELS[:, 1], dtype=sc.dtype.float64, unit=sc.units.m, ) Z = sc.Variable( dims=["detector_id"], values=PIXELS[:, 2], dtype=sc.dtype.float64, unit=sc.units.m, ) BINNED.coords["position"] = sc.geometry.position(X, Y, Z) BINNED.attrs['instrument_name'] = sc.scalar(value='AMOR') BINNED.attrs['experiment_title'] = sc.scalar(value='test') class TestData(unittest.TestCase): # Commented out until the sample.nxs file has a home # def test_refldata_file(self): # file_path = (os.path.dirname(os.path.realpath(__file__)) + # os.path.sep + "sample.nxs") # p = data.ReflData(file_path) # assert_equal(isinstance(p.data, sc._scipp.core.DataArray), True) # assert_equal(p.data_file, file_path) def test_refldata_init(self): """ Testing the default initialisation of the ReflData objects. """ p = data.ReflData(BINNED.copy()) assert_equal(isinstance(p.data, sc._scipp.core.DataArray), True) assert_equal(isinstance(p.data.data, sc._scipp.core.Variable), True) assert_almost_equal(p.data.coords["position"].fields.x.values, X.values) assert_almost_equal(p.data.coords["position"].fields.y.values, Y.values) assert_almost_equal(p.data.coords["position"].fields.z.values, Z.values) assert_almost_equal( np.sort( p.data.bins.constituents["data"].coords["detector_id"].values), np.sort(DETECTORS), ) assert_almost_equal( np.sort(p.data.bins.constituents["data"].values), np.sort(VALUES), decimal=5, ) assert_almost_equal( np.sort(p.data.bins.constituents["data"].variances), np.sort(np.ones_like(VALUES)), decimal=5, ) assert_almost_equal(p.sample_angle_offset.values, 0) assert_equal(p.sample_angle_offset.unit, sc.units.deg) def test_refldata_init_sample_angle_offset(self): """ Testing the ReflData initialisation with a non-default sample_angle_offset. """ p = data.ReflData(BINNED.copy(), sample_angle_offset=2 * sc.units.deg) assert_almost_equal(p.sample_angle_offset.values, 2) assert_equal(p.sample_angle_offset.unit, sc.units.deg) def test_refldata_event(self): p = data.ReflData(BINNED.copy()) assert_equal(isinstance(p.event, sc._scipp.core.DataArray), True) assert_almost_equal(np.sort(p.event.coords["detector_id"].values), np.sort(DETECTORS)) assert_almost_equal(np.sort(p.event.values), np.sort(VALUES), decimal=5) assert_almost_equal( np.sort(p.event.variances), np.sort(
np.ones_like(VALUES)
numpy.ones_like
from typing import Dict, List, Optional, Tuple, Collection, Callable import networkx as nx import numpy as np def bucket_molecules(molecules: List[Dict], keys: List[Callable]) -> Dict: """ Organize molecules into nested dictionaries according to molecule properties specified by the "keys". The nested dictionary has keys based on the functions used in "keys", and the innermost value is a list. For example, if `keys = [ lambda x: x["formula_alphabetical"], lambda x: len(x.get("bonds", list())), lambda x: x["charge"] ]`, then the returned bucket dictionary is something like: bucket[formula][num_bonds][charge] = [mol_entry1, mol_entry2, ...] where mol_entry1, mol_entry2, ... have the same formula, number of bonds, and charge. Args: entries (List[Dict]): a list of molecule entries to bucket keys (List[Callable]): each function should return a property of the molecule Returns: Dict of molecule entry grouped according to keys. """ num_keys = len(keys) buckets = dict() # type: ignore for m in molecules: b = buckets for i, j in enumerate(keys): v = j(m) if i == num_keys - 1: b.setdefault(v, []).append(m) else: b.setdefault(v, {}) b = b[v] return buckets def _get_bond_lengths(m): """ Args: m: A dictionary representing a molecule entry in LIBE Returns: A list of tuple (species, length), where species are the two species associated with a bond and length is the corresponding bond length. """ coords = m["molecule"].cart_coords res = list() for a1, a2 in m["bonds"]: s1 = m["species"][a1] s2 = m["species"][a2] c1 = np.asarray(coords[a1]) c2 = np.asarray(coords[a2]) length =
np.linalg.norm(c1 - c2)
numpy.linalg.norm
from logging import log import numpy as np import pandas as pd from scipy import interpolate import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure from matplotlib.font_manager import FontProperties from matplotlib.ticker import ScalarFormatter from flask import Flask, render_template, request from tkinter import * from tkinter import ttk import sys import os import shutil import random from matplotlib.ticker import MaxNLocator from pathlib import Path import math import copy #from decimal import Decimal, ROUND_HALF_UP def readinput(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") symbol = csv_input['Symbol'] value = csv_input['Value'] unit = csv_input['Unit'] valueDict = {} unitDict = {} for i, j, k in zip(symbol, value, unit): valueDict[i] = float(j) unitDict[i] = str(k) return valueDict, unitDict def CeqLHVFunc(filename,fuelName): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] CeqLHV = csv_input['CeqLHV'] fuelDict = {} for i, j in zip(fuelType, CeqLHV): fuelDict[i] = float(j) return fuelDict[fuelName] def Cco2Func(filename,fuelName): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] Cco2 = csv_input['Cco2'] Cco2Dict = {} for i, j in zip(fuelType, Cco2): Cco2Dict[i] = float(j) return Cco2Dict[fuelName] def initialFleetFunc(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") year = csv_input['Year'] TEU = csv_input['TEU'] iniFleetDict = {} k = 0 for i, j in zip(year, TEU): iniFleetDict.setdefault(k,{}) iniFleetDict[k]['year'] = int(i) iniFleetDict[k]['TEU'] = float(j) k += 1 return iniFleetDict def decisionListFunc(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",").fillna(0) Year = csv_input['Year'] Order = csv_input['Order'] fuelType = csv_input['Fuel type'] WPS = csv_input['WPS'] SPS = csv_input['SPS'] CCS = csv_input['CCS'] CAP = csv_input['CAP'] Speed = csv_input['Speed'] Fee = csv_input['Fee'] valueDict = {} for i, j, k, l, m, n, o, p, q in zip(Year, Order, fuelType, WPS, SPS, CCS, CAP, Speed, Fee): valueDict.setdefault(int(i),{}) valueDict[int(i)]['Order'] = int(j) valueDict[int(i)]['fuelType'] = k valueDict[int(i)]['WPS'] = int(l) valueDict[int(i)]['SPS'] = int(m) valueDict[int(i)]['CCS'] = int(n) valueDict[int(i)]['CAP'] = float(o) valueDict[int(i)]['Speed'] = float(p) valueDict[int(i)]['Fee'] = float(q) return valueDict def fleetPreparationFunc(fleetAll,initialFleetFile,numCompany,startYear,lastYear,elapsedYear,tOpSch,tbid,valueDict,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): fleetAll.setdefault(numCompany,{}) fleetAll[numCompany].setdefault('total',{}) fleetAll[numCompany]['total']['sale'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['g'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['gTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['saleTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['cta'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['overDi'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costShipBasicHFO'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costShip'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costFuel'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['dcostFuel'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costAdd'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costAll'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['maxCta'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['rocc'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costRfrb'] =
np.zeros(lastYear-startYear+1)
numpy.zeros
import time import random import itertools # import gc import os import sys import datetime import numpy as np import yaml import pickle from operator import itemgetter from optparse import OptionParser from sklearn.model_selection import KFold from sklearn.metrics import roc_curve, auc, average_precision_score sys.path.insert(0, os.path.join(sys.path[0], "..")) from tiknib.utils import do_multiprocess, parse_fname from tiknib.utils import load_func_data from tiknib.utils import flatten from tiknib.utils import store_cache from tiknib.utils import load_cache from get_roc_graph import plot_roc_all import logging import coloredlogs logger = logging.getLogger(__name__) coloredlogs.install(level=logging.INFO) coloredlogs.install(level=logging.DEBUG) np.seterr(divide="ignore", invalid="ignore") def debughere(): import ipdb; ipdb.set_trace(sys._getframe().f_back) def get_package(func_key): return func_key[0] def get_binary(func_key): return func_key[1] def get_func(func_key): return (func_key[2], func_key[3]) def get_opti(option_key): return option_key[0] def get_arch(option_key): return option_key[1] def get_arch_nobits(option_key): return option_key[1].split("_")[0] def get_bits(option_key): return option_key[1].split("_")[1] def get_compiler(option_key): return option_key[2] def get_others(option_key): return option_key[3] def parse_other_options(bin_path): other_options = ["lto", "pie", "noinline"] for opt in other_options: if opt in bin_path: return opt return "normal" def get_optionidx_map(options): return {opt: idx for idx, opt in enumerate(sorted(options))} def is_valid(dictionary, s): return s in dictionary and dictionary[s] def load_options(config): options = ["opti", "arch", "compiler", "others"] src_options = [] dst_options = [] fixed_options = [] for idx, opt in enumerate(options): src_options.append(config["src_options"][opt]) dst_options.append(config["dst_options"][opt]) if is_valid(config, "fixed_options") and opt in config["fixed_options"]: fixed_options.append(idx) src_options = set(itertools.product(*src_options)) dst_options = set(itertools.product(*dst_options)) options = sorted(src_options.union(dst_options)) optionidx_map = get_optionidx_map(options) dst_options_filtered = {} # Filtering dst options for src_option in src_options: def _check_option(opt): if opt == src_option: return False for idx in fixed_options: if opt[idx] != src_option[idx]: return False return True candidates = list(filter(_check_option, dst_options)) # arch needs more filtering ... # - 32 vs 64 bits # - little vs big endian # need to have same archs without bits # TODO: move this file name checking into config option. if "arch_bits" in config["fname"]: def _check_arch_without_bits(opt): return get_arch_nobits(opt) == get_arch_nobits(src_option) candidates = list(filter(_check_arch_without_bits, candidates)) # need to have same bits elif "arch_endian" in config["fname"]: def _check_bits(opt): return get_bits(opt) == get_bits(src_option) candidates = list(filter(_check_bits, candidates)) candidates = list(set([optionidx_map[opt] for opt in candidates])) dst_options_filtered[optionidx_map[src_option]] = candidates logger.info("total %d options.", len(options)) logger.info("%d src options.", len(src_options)) logger.info("%d dst options.", len(dst_options)) logger.info("%d filtered dst options.", len(dst_options_filtered)) return options, dst_options_filtered def pre_k(ranks, k): count = 0 for r in ranks: if r <= k: count += 1 return count / len(ranks) def analyze_top_k_results(config, all_data): for target_key in all_data: logger.info("Analyzing %s", target_key) all_ranks=[] all_funcs=[] for target_option in all_data[target_key]: result_arch, result, scores = all_data[target_key][target_option] ranks, func_counts, other_ranks = result_arch ranks = list(ranks.values()) func_counts = list(func_counts.values()) logger.info("Top-K %s(%s)", target_key, target_option) logger.info("Avg Rank: %0.4f", np.mean(ranks)) logger.info("Std Rank: %0.4f", np.std(ranks)) logger.info("Prec Top 1: %0.4f", pre_k(ranks,1)) logger.info("Prec Top 10: %0.4f", pre_k(ranks,10)) logger.info("Prec Top 100: %0.4f", pre_k(ranks,100)) logger.info("Avg Counts: %0.4f", np.mean(func_counts)) all_ranks.extend(ranks) all_funcs.extend(func_counts) logger.info("Top-K %s", target_key) logger.info("Avg Rank: %0.4f", np.mean(all_ranks)) logger.info("Std Rank: %0.4f", np.std(all_ranks)) logger.info("Prec Top 1: %0.4f", pre_k(all_ranks,1)) logger.info("Prec Top 10: %0.4f", pre_k(all_ranks,10)) logger.info("Prec Top 100: %0.4f", pre_k(all_ranks,100)) logger.info("Avg Counts: %0.4f", np.mean(all_funcs)) logger.info("============= normal feature set=============") for target_key in all_data: logger.info("Analyzing %s", target_key) all_ranks=[] all_funcs=[] for target_option in all_data[target_key]: result_arch, result, scores = all_data[target_key][target_option] ranks, func_counts, other_ranks = result ranks = list(ranks.values()) func_counts = list(func_counts.values()) logger.info("Top-K %s(%s)", target_key, target_option) logger.info("Avg Rank: %0.4f", np.mean(ranks)) logger.info("Std Rank: %0.4f",
np.std(ranks)
numpy.std
# Copyright 2021 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Mapping, Optional, Sequence, Union, SupportsFloat import numpy as np from matplotlib import pyplot as plt def integrated_histogram( data: Union[Sequence[SupportsFloat], Mapping[Any, SupportsFloat]], ax: Optional[plt.Axes] = None, *, cdf_on_x: bool = False, axis_label: str = '', semilog: bool = True, median_line: bool = True, median_label: Optional[str] = 'median', mean_line: bool = False, mean_label: Optional[str] = 'mean', show_zero: bool = False, title: Optional[str] = None, **kwargs, ) -> plt.Axes: """Plot the integrated histogram for an array of data. Suppose the input is a list of gate fidelities. The x-axis of the plot will be gate fidelity, and the y-axis will be the probability that a random gate fidelity from the list is less than the x-value. It will look something like this 1.0 | | | ___| | | | ____| | | | | |_____|_______________ 0.0 Another way of saying this is that we assume the probability distribution function (pdf) of gate fidelities is a set of equally weighted delta functions at each value in the list. Then, the "integrated histogram" is the cumulative distribution function (cdf) for this pdf. Args: data: Data to histogram. If the data is a `Mapping`, we histogram the values. All nans will be removed. ax: The axis to plot on. If None, we generate one. cdf_on_x: If True, flip the axes compared the above example. axis_label: Label for x axis (y-axis if cdf_on_x is True). semilog: If True, force the x-axis to be logarithmic. median_line: If True, draw a vertical line on the median value. median_label: If drawing median line, optional label for it. mean_line: If True, draw a vertical line on the mean value. mean_label: If drawing mean line, optional label for it. title: Title of the plot. If None, we assign "N={len(data)}". show_zero: If True, moves the step plot up by one unit by prepending 0 to the data. **kwargs: Kwargs to forward to `ax.step()`. Some examples are color: Color of the line. linestyle: Linestyle to use for the plot. lw: linewidth for integrated histogram. ms: marker size for a histogram trace. label: An optional label which can be used in a legend. Returns: The axis that was plotted on. """ show_plot = not ax if ax is None: fig, ax = plt.subplots(1, 1) if isinstance(data, Mapping): data = list(data.values()) data = [d for d in data if not np.isnan(d)] n = len(data) if not show_zero: bin_values =
np.linspace(0, 1, n + 1)
numpy.linspace
# -*- coding: utf-8 -*- """ Reference: http://www.marine.csiro.au/~dunn/cars2009/ Evaluate at day-of-year 45 (mid February) t = 2pi x 45/366 feb = mean + an_cos*cos(t) + an_sin*sin(t) + sa_cos*cos(2*t) + sa_sin*sin(2*t) download_file('http://www.marine.csiro.au/atlas/export/temperature_cars2009a.nc.gz', '755ec973e4d9bd05de202feb696704c2') download_file('http://www.marine.csiro.au/atlas/export/salinity_cars2009a.nc.gz', '7f78173f4ef2c0a4ff9b5e52b62dc97d') """ from os.path import expanduser import re from datetime import datetime import numpy as np from numpy import ma import os from oceansdb.utils import dbsource try: import netCDF4 except: print("netCDF4 is not available") # try: # from pydap.client import open_url # import pydap.lib # pydap.lib.CACHE = expanduser('~/.cotederc/pydap_cache') # except: # print("PyDAP is not available") from scipy.interpolate import interp1d # RectBivariateSpline from scipy.interpolate import griddata def extract(filename, doy, latitude, longitude, depth): """ For now only the closest value For now only for one position, not an array of positions longitude 0-360 """ assert np.size(doy) == 1 assert np.size(latitude) == 1 assert np.size(longitude) == 1 assert np.size(depth) == 1 assert (longitude >= 0) & (longitude <= 360) assert depth >= 0 nc = netCDF4.Dataset(filename) t = 2 * np.pi * doy/366 Z = np.absolute(nc['depth'][:] - depth).argmin() I = np.absolute(nc['lat'][:] - latitude).argmin() J = np.absolute(nc['lon'][:] - longitude).argmin() # Naive solution value = nc['mean'][:, I, J] value[:64] += nc['an_cos'][Z, I, J] * np.cos(t) + \ nc['an_sin'][:, I, J] * np.sin(t) value[:55] += nc['sa_cos'][Z, I, J] * np.cos(2*t) + \ nc['sa_sin'][:, I, J] * np.sin(2*t) value = value[Z] std = nc['std_dev'][Z, I, J] return value, std def cars_profile(filename, doy, latitude, longitude, depth): """ For now only the closest value For now only for one position, not an array of positions longitude 0-360 """ assert np.size(doy) == 1 assert np.size(latitude) == 1 assert np.size(longitude) == 1 #assert np.size(depth) == 1 assert (longitude >= 0) & (longitude <= 360) assert depth >= 0 nc = netCDF4.Dataset(filename) t = 2 * np.pi * doy/366 # Improve this. Optimize to get only necessary Z Z = slice(0, nc['depth'].size) I = np.absolute(nc['lat'][:] - latitude).argmin() J = np.absolute(nc['lon'][:] - longitude).argmin() # Not efficient, but it works assert (nc['depth'][:64] == nc['depth_ann'][:]).all() assert (nc['depth'][:55] == nc['depth_semiann'][:]).all() value = nc['mean'][:, I, J] value[:64] += nc['an_cos'][Z, I, J] * np.cos(t) + \ nc['an_sin'][:, I, J] * np.sin(t) value[:55] += nc['sa_cos'][Z, I, J] * np.cos(2*t) + \ nc['sa_sin'][:, I, J] * np.sin(2*t) value = value output = {'depth': np.asanyarray(depth)} from scipy.interpolate import griddata output['value'] = griddata(nc['depth'][Z], value[Z], depth) for v in ['std_dev']: output[v] = griddata(nc['depth'][Z], nc[v][Z, I, J], depth) return output class CARS_var_nc(object): """ Reads the CARS Climatology NetCDF file and returns the corresponding values of salinity or temperature mean and standard deviation for the given time, lat, lon, depth. """ def __init__(self, source): import netCDF4 self.ncs = [] for s in source: self.ncs.append(netCDF4.Dataset(s, 'r')) self.load_dims() self.set_keys() def keys(self): return self.KEYS def load_dims(self): self.dims = {} for d in ['lat', 'lon', 'depth']: self.dims[d] = self.ncs[0].variables[d][:] for nc in self.ncs[1:]: assert (self.dims[d] == nc.variables[d][:]).all() #self.dims['time'] = [] #mfrac = 365/12. #for nc in self.ncs: # assert nc.variables['time'].size == 1 # self.dims['time'].append(mfrac * nc.variables['time'][0]) self.dims['time'] = np.array([]) def set_keys(self): """ """ self.KEYS = ['mn'] for v in self.ncs[0].variables.keys(): if self.ncs[0].variables[v].dimensions == \ (u'depth', u'lat', u'lon'): S = self.ncs[0].variables[v].shape for nc in self.ncs[1:]: assert v in nc.variables assert nc.variables[v].shape == S self.KEYS.append(v) def __getitem__(self, item): if item in self.KEYS: return self.ncs[0].variables[item] elif re.match('(?:[s,t]_)?sd', item): return self.ncs[0].variables['std_dev'] elif re.match('(?:[s,t]_)?dd', item): return self.ncs[0].variables['nq'] return "yooo" def closest(self, doy, depth, lat, lon, var): tn = (np.abs(doy - self.dims['time'][:])).argmin() zn = [(np.abs(z - self.dims['depth'][:])).argmin() for z in depth] yn = (np.abs(lat - self.dims['lat'][:])).argmin() # FIXME xn = (np.abs(lon - self.dims['lon'][:])).argmin() subset = {} for v in var: if v in self.KEYS: subset[v] = self.ncs[tn][v][0, zn, yn, xn] else: # FIXME: Ugly temporary solution tmp = [vv for vv in self.KEYS if vv[2:] == v] assert len(tmp) == 1 subset[v] = self.ncs[tn][tmp[0]][0, zn, yn, xn] return subset def subset(self, doy, depth, lat, lon, var): """ Subset the necessary data to interpolate in the right position Special cases that should be handled here: 0 to 360 versus -180 to 180 position near grenwich, or international date line """ dims = {} zn = slice( np.nonzero(self.dims['depth'] <= depth.min())[0].max(), np.nonzero( self.dims['depth'] >= min(self.dims['depth'].max(), depth.max()) )[0].min() + 1 ) # If a higher degree interpolation system uses more than one data # point in the edge, I should extend this selection one point on # each side, without go beyond 0 # if zn.start < 0: # zn = slice(0, zn.stop, zn.step) dims['depth'] = np.atleast_1d(self.dims['depth'][zn]) yn = slice( np.nonzero(self.dims['lat'] <= lat.min())[0].max(), np.nonzero(self.dims['lat'] >= lat.max())[0].min() + 1) dims['lat'] = np.atleast_1d(self.dims['lat'][yn]) lon_ext = np.array( (self.dims['lon'] - 360).tolist() + self.dims['lon'].tolist() + (self.dims['lon']+360).tolist()) xn_ext = np.array(3 * list(range(self.dims['lon'].shape[0]))) xn_start = np.nonzero(lon_ext <= lon.min())[0].max() xn_end = np.nonzero(lon_ext >= lon.max())[0].min() xn = xn_ext[xn_start:xn_end+1] dims['lon'] =
np.atleast_1d(lon_ext[xn_start:xn_end+1])
numpy.atleast_1d
"""Module for testing helper functions.""" from pytest import approx import numpy as np import tensorflow as tf from ..functions import log_loss def test_log_loss(sample_predictions): tf.reset_default_graph() session = tf.Session() y_true, y_pred = sample_predictions def calc_log_loss(true_pred, pred): log_loss = (-true_pred * np.log(pred)) - ( (1 - true_pred) *
np.log(1 - pred)
numpy.log
import os import pickle import logging import inspect from abc import ABC import numpy as np from barry.datasets.dataset import Dataset class CorrelationFunction(Dataset, ABC): def __init__(self, filename, name=None, min_dist=30, max_dist=200, recon=True, reduce_cov_factor=1, realisation=None): current_file = os.path.dirname(inspect.stack()[0][1]) self.data_location = os.path.normpath(current_file + f"/../data/{filename}") self.min_dist = min_dist self.max_dist = max_dist self.recon = recon with open(self.data_location, "rb") as f: self.data_obj = pickle.load(f) name = name or self.data_obj["name"] + " Recon" if recon else " Prerecon" super().__init__(name) self.cosmology = self.data_obj["cosmology"] self.all_data = self.data_obj["post-recon"] if recon else self.data_obj["pre-recon"] self.reduce_cov_factor = reduce_cov_factor if self.reduce_cov_factor == -1: self.reduce_cov_factor = len(self.all_data) self.logger.info(f"Setting reduce_cov_factor to {self.reduce_cov_factor}") self.cov, self.icov, self.data, self.mask = None, None, None, None self.set_realisation(realisation) self._compute_cov() def set_realisation(self, realisation): if realisation is None: self.data = np.array(self.all_data).mean(axis=0) else: self.data = self.all_data[realisation] self.mask = (self.data[:, 0] >= self.min_dist) & (self.data[:, 0] <= self.max_dist) self.data = self.data[self.mask, :] def set_cov(self, cov): self.cov = cov / self.reduce_cov_factor self.icov = np.linalg.inv(self.cov) def _compute_cov(self): # TODO: Generalise for other multipoles poles ad =
np.array(self.all_data)
numpy.array
# change random iteration methods to work with scipy optimize way more methods avalible """ #TODO: Sort out documentation for each method """ import typing import warnings from collections import defaultdict import numpy as np import scipy.stats from scipy.optimize import minimize from scipy.signal import fftconvolve from numba import njit from .ACF_class import ACF from .Surface_class import Surface, _Surface from ._johnson_utils import _fit_johnson_by_moments, _fit_johnson_by_quantiles __all__ = ['RandomFilterSurface', 'RandomPerezSurface'] class RandomPerezSurface(_Surface): """ Surfaces with set height distribution and PSD found by the Perez method Parameters ---------- target_psd: np.ndarray The PSD which the surface will approximate, the shape of the surface will be the same as the psd array (the same number of points in each direction) height_distribution: {scipy.stats.rv_continuous, sequence} Either a scipy.stats distribution or a sequence of the same size as the required output accuracy: float, optional (1e-3) The accuracy required for the solution to be considered converged, see the notes of the discretise method for more information max_it: int, optional (100) The maximum number of iterations used to discretise a realisation min_speed: float, optional (1e-10) The minimum speed of the iterations, if the iterations are converging slower than this they are deemed not to converge generate: bool, optional (False) If True the surface profile is found on instantiation grid_spacing: float, optional (None) The distance between grid points on the surface exact: {'psd', 'heights', 'best'}, optional ('best') Notes ----- This method iterates between a surface with the exact right height distribution and one with the exact right PSD this method is not guaranteed to converge for all surfaces, for more details see the reference. Examples -------- Making a surface with a normal height distribution and a given power spectra. >>> import numpy as np >>> import scipy.stats as stats >>> import slippy.surface as s >>> # making a surface with an exponential ACF as described in the original paper: >>> beta = 10 # the drop off length of the acf >>> sigma = 1 # the roughness of the surface >>> qx = np.arange(-128,128) >>> qy = np.arange(-128,128) >>> Qx, Qy = np.meshgrid(qx,qy) >>> Cq = sigma**2*beta/(2*np.pi*(beta**2+Qx**2+Qy**2)**0.5) # the PSD of the surface >>> Cq = np.fft.fftshift(Cq) >>> height_distribution = stats.norm() >>> my_surface = s.RandomPerezSurface(target_psd = Cq, height_distribution=height_distribution, >>> grid_spacing=1, >>> generate=True) >>> my_surface.show() References ---------- Based on the method and code given in: <NAME>, <NAME>, Generating randomly rough surfaces with given height probability distribution and power spectrum, Tribology International, Volume 131, 2019, Pages 591-604, ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2018.11.020. (http://www.sciencedirect.com/science/article/pii/S0301679X18305607) """ dist: scipy.stats.rv_continuous = None _rvs: np.ndarray = None def __init__(self, target_psd: np.ndarray, height_distribution: typing.Union[scipy.stats.rv_continuous, typing.Sequence] = None, accuracy: float = 1e-3, max_it: int = 100, min_speed: float = 1e-10, generate: bool = False, grid_spacing: float = None, exact: str = 'best'): super().__init__(grid_spacing, None, None) self._target_psd = target_psd if height_distribution is None: height_distribution = scipy.stats.norm() try: if hasattr(height_distribution, 'rvs'): self.dist = height_distribution elif len(height_distribution) == target_psd.size or height_distribution.size == target_psd.size: self._rvs = np.array(height_distribution).flatten() except AttributeError: raise ValueError('Unrecognised type for height distribution') self._accuracy = accuracy self._max_it = max_it self._min_speed = min_speed if exact not in {'psd', 'heights', 'best'}: raise ValueError("exact not recognised should be one of {'psd', 'heights', 'best'}") self._exact = exact if generate: self.discretise() def __repr__(self): pass def discretise(self, return_new: bool = False, accuracy: float = None, max_it: int = None, min_speed: float = None, suppress_errors: bool = False, return_original: bool = False): """Discretise the surface with a realisation Parameters ---------- return_new: bool, optional (False) If True a new surface is returned else Nothing is returned and the profile property of the surface is set accuracy: float, optional (None) The tolerance used to detect convergence of the psd and height distribution, if not set defaults to the value set on initialisation max_it: int, optional (None) The maximum number of iterations used to fit the PSD and height spectra, if not set defaults to the value set on initialisation min_speed: float, optional (None) The minimum speed which the iterations can be converging before they are stopped (assumed to be not converging), if not set defaults to the value set on initialisation suppress_errors: bool, optional (False) If True convergence errors are suppressed and the profile realisation is made even if the solution has not converged, warnings are produced return_original: bool, optional (False) If True the variables returned by the original code given in the paper are returned, these are: the estimated surface with the correct height distribution, the estimated surface with the correct PSD and a dict of errors with each element being a list of error values with one value for each iteration. Returns ------- Will return a new surface object if the return_new argument is True, otherwise sets the profile property of the parent surface Will return two surface estimates and a dict of errors if return_original is True Examples -------- >>> import numpy as np >>> import scipy.stats as stats >>> import slippy.surface as s >>> # making a surface with an exponential ACF as described in the original paper: >>> beta = 10 # the drop off length of the acf >>> sigma = 1 # the roughness of the surface >>> qx = np.arange(-128,128) >>> qy = np.arange(-128,128) >>> Qx, Qy = np.meshgrid(qx,qy) >>> Cq = sigma**2*beta/(2*np.pi*(beta**2+Qx**2+Qy**2)**0.5) # the PSD of the surface >>> height_distribution = stats.norm() >>> my_surface = s.RandomPerezSurface(target_psd = Cq, height_distribution=height_distribution, grid_spacing=1) >>> my_surface.discretise() >>> my_surface.show() Zh, Zs, error = fractal_surf_generator(np.fft.ifftshift(Cq), np.random.randn(256,256), min_speed = 1e-10,max_error=0.01) Notes ----- During iteration of this solution two surfaces are maintained, one which has the correct PSD and one which has the correct height distribution, the one returned is the one which was first deemed to have converged. To over ride this behaviour set return original to True References ---------- <NAME>, <NAME>, Generating randomly rough surfaces with given height probability distribution and power spectrum, Tribology International, Volume 131, 2019, Pages 591-604, ISSN 0301-679X, https://doi.org/10.1016/j.triboint.2018.11.020. (http://www.sciencedirect.com/science/article/pii/S0301679X18305607) """ if return_original and return_new: raise ValueError("Only one of return_new and return_original can be set to True") accuracy = self._accuracy if accuracy is None else accuracy max_it = self._max_it if max_it is None else max_it min_speed = self._min_speed if min_speed is None else min_speed # scale and centre the PSD power_spectrum = self._target_psd m, n = power_spectrum.shape power_spectrum[0, 0] = 0 power_spectrum = power_spectrum / np.sqrt(np.sum(power_spectrum.flatten() ** 2)) * m * n # generate random values for the surface if self.dist is not None: height_distribution = self.dist.rvs(power_spectrum.shape).flatten() elif self._rvs is not None: height_distribution = self._rvs else: raise ValueError("Height distribution not set, cannot descretise") # scale and centre the height probability distribution mean_height = np.mean(height_distribution.flatten()) height_guess = height_distribution - mean_height sq_roughness = np.sqrt(np.mean(height_guess.flatten() ** 2)) height_guess = height_guess / sq_roughness # sort height dist index_0 = np.argsort(height_guess.flatten()) sorted_target_heights = height_guess.flatten()[index_0] # find bins for height distribution error bin_width = 3.5 * sorted_target_heights.size ** (-1 / 3) # Scott bin method *note that the # values are normalised to have unit standard deviation n_bins = int(np.ceil((sorted_target_heights[-1] - sorted_target_heights[0]) / bin_width)) bin_edges = np.linspace(sorted_target_heights[0], sorted_target_heights[-1], n_bins + 1) n0, bin_edges = np.histogram(sorted_target_heights, bins=bin_edges, density=True) error = defaultdict(list) height_guess = height_guess.reshape(power_spectrum.shape) fft_height_guess = np.fft.fft2(height_guess) best = 'psd' while True: # Step 1: fix power spectrum by FFT filter # Zs = np.fft.ifft2(zh*power_spectrum/Ch) phase = np.angle(fft_height_guess) # phase = _conj_sym(phase, neg=True) psd_guess = np.fft.ifft2(power_spectrum * np.exp(1j * phase)).real # find error in height distribution n_hist, _ = np.histogram(psd_guess.flatten(), bin_edges, density=True) error['H'].append(np.sum(np.abs(n_hist - n0) * (bin_edges[1:] - bin_edges[:-1]))) # Step 2: Fix the height distribution rank ordering height_guess = psd_guess.flatten() index = np.argsort(height_guess) height_guess[index] = sorted_target_heights height_guess = height_guess.reshape((m, n)) fft_height_guess = np.fft.fft2(height_guess) # find error in the power spectrum fft_hg_abs = np.abs(fft_height_guess) # Ch = np.abs(zh**2)#*grid_spacing**2/(n*m*(2*np.pi)**2) error['PS'].append(np.sqrt(np.mean((1 - fft_hg_abs[power_spectrum > 0] / power_spectrum[power_spectrum > 0]) ** 2))) error['PS0'].append(np.sqrt(np.mean(fft_hg_abs[power_spectrum == 0] ** 2)) / np.mean(power_spectrum[power_spectrum > 0])) if len(error['H']) >= max_it: msg = 'Iterations for fractal surface failed to converge in the set number of iterations' break if len(error['H']) > 2 and abs(error['H'][-1] - error['H'][-2]) / error['H'][-1] < min_speed: msg = ('Solution for fractal surface convering is converging ' 'slower than the minimum speed, solution failed to converge') break if len(error['H']) > 2 and (error['H'][-2] - error['H'][-1]) < 0: msg = 'Solution is diverging, solution failed to converge' break if error['H'][-1] < accuracy: msg = '' best = 'heights' break if error['PS'][-1] < accuracy and error['PS0'][-1] < accuracy: msg = '' best = 'psd' break # solution converged if msg: if suppress_errors: warnings.warn(msg) else: raise StopIteration(msg) exact = self._exact if self._exact != 'best' else best if exact == 'psd': profile = psd_guess * sq_roughness + mean_height else: profile = height_guess * sq_roughness + mean_height if return_new: return Surface(profile=profile, grid_spacing=self.grid_spacing) if return_original: return height_guess, psd_guess, error self.profile = profile class RandomFilterSurface(_Surface): r""" Surfaces based on transformations of random sequences by a filter Filter coefficients can be found by fourier analysis or solving the least squares problem given by Patir. Parameters ---------- target_acf: slippy.surface.ACF An ACF object describing the trage autocorrelation function of the surface grid_spacing: float, optional (None) The distance between surface points, must be set before the filter coefficients can be found extent: 2 element sequence of floats, optional (None) The total size of the surface in the same units as the grid spacing shape: 2 element sequence of ints, optional (None) The number of points in each direction on the surface Attributes ---------- dist : scipy.stats.rv_continuous The statistical distribution which the random sequence is drawn from Methods ------- linear_transforms: find filter coefficients by Patir's method (with extentions) fir_filter: find filter coefficients by Hu and Tonder's method set_moments set_quantiles discretise See Also -------- surface_like Notes ----- This is a subclass of Surface and inherits all methods. All key words that can be passed to Surface on instantiation can also be passed to this class apart from 'profile' Examples -------- In the following example we will generate a randomly rough surface with an exponential ACF and a non gaussian height distribution. >>> import slippy.surface as s # surface generation and manipulation >>> import numpy as np # numerical functions >>> np.random.seed(0) >>> target_acf = s.ACF('exp', 2, 0.1, 0.2) # make an example ACF >>> # Finding the filter coefficients >>> lin_trans_surface = s.RandomFilterSurface(target_acf=target_acf, grid_spacing=0.01) >>> lin_trans_surface.linear_transform(filter_shape=(40,20), gtol=1e-5, symmetric=True) >>> # Setting the skew and kurtosis of the output surface >>> lin_trans_surface.set_moments(skew = -0.5, kurtosis=5) >>> # generating and showing a realisation of the surface >>> my_realisation = lin_trans_surface.discretise([512,512], periodic=False, create_new=True) >>> fig, axes = my_realisation.show(['profile', 'acf', 'histogram'], ['image', 'image'], figsize=(15,5)) References ---------- <NAME>., & <NAME>. (1992). Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. International Journal of Machine Tools, 32(1–2), 83–90. doi.org/10.1016/0890-6955(92)90064-N <NAME>. (1978). A numerical procedure for random generation of rough surfaces. Wear, 47(2), 263–277. doi.org/10.1016/0043-1648(78)90157-6 <NAME>., <NAME>., & <NAME>. (2020). Improvements to the linear transform technique for generating randomly rough surfaces with symmetrical autocorrelation functions. Tribology International, 151(April), 106487. doi.org/10.1016/j.triboint.2020.106487 """ surface_type = 'Random' dist = scipy.stats.norm(loc=0, scale=1) _filter_coefficients: np.ndarray = None target_acf: ACF = None is_discrete: bool = False _moments = None _method_keywords = None target_acf_array = None "An array of acf values used as the target for the fitting procedure" def __init__(self, target_acf: ACF = None, grid_spacing: typing.Optional[float] = None, extent: typing.Optional[typing.Sequence] = None, shape: typing.Optional[typing.Sequence] = None): super().__init__(grid_spacing=grid_spacing, extent=extent, shape=shape) if target_acf is not None: self.target_acf = target_acf def __repr__(self): string = 'RandomFilterSurface(' if self.target_acf is not None: string += f'target_acf={repr(self.target_acf)}, ' string += f'grid_spacing={self.grid_spacing}, ' if self._moments is not None: string += f'moments = {self._moments}, ' if self.shape is not None: string += f'shape = {self.shape}, ' string = string[:-2] return string + ')' def linear_transform(self, filter_shape: typing.Sequence = (14, 14), symmetric: bool = True, max_it: int = None, gtol: float = 1e-5, method='BFGS', **minimize_kwargs): r""" Generates a linear transform matrix Solves the non linear optimisation problem to generate a moving average filter that when convolved with a set of normally distributed random numbers will generate a surface profile with the specified ACF Parameters ---------- filter_shape: Sequence, optional (14, 14) The dimensions of the filter coefficient matrix to be generated the default is (35, 35), must be exactly 2 elements both elements must be ints symmetric: bool, optional (True) If true a symmetric filter will be fitted to the target ACF, this typically produces more realistic surfaces for the same filter shape but takes longer to fit the filter max_it: int, optional (100) The maximum number of iterations used gtol: float, optional (1e-11) The accuracy of the iterated solution method: str, optional ('BFGS') Type of solver. In most situations this should be one of the following: - Nelder-Mead - Powell - CG - BFGS - Newton-CG However other options exist, see the notes for more details minimize_kwargs Extra key word arguments which are passed to scipy.optimise.minimize function, valid arguments will depend on the choice of method Returns ------- None Sets the filter_coefficients property of the instance See Also -------- RandomFilterSurface.set_moments RandomFilterSurface.FIRfilter Notes ----- This problem has a unique solution for each grid spacing. This should be set before running this method, else it is assumed to be 1. For more information on each of the methods available the documentation of scipy.optimize.minimize should be consulted. Practically, for this problem only unconstrained, unbound solvers are appropriate, these are: - Nelder-Mead - Powell - CG - BFGS - Newton-CG - dogleg - trust-ncg - trust-krylov - trust-exact However, the dogleg, trust-ncg, trust-krylov, trust-exact additionally require the user to specify the hessian matrix for the problem which is currently unsupported. References ---------- ..[1] <NAME>, "A numerical procedure for random generation of rough surfaces (1978)" Wear, 47(2), 263–277. '<https://doi.org/10.1016/0043-1648(78)90157-6>'_ Examples -------- In the following example we will generate a randomly rough surface with an exponential ACF and a non gaussian height distribution. >>> import slippy.surface as s # surface generation and manipulation >>> import numpy as np # numerical functions >>> np.random.seed(0) >>> target_acf = s.ACF('exp', 2, 0.1, 0.2) # make an example ACF >>> # Finding the filter coefficients >>> lin_trans_surface = s.RandomFilterSurface(target_acf=target_acf, grid_spacing=0.01) >>> lin_trans_surface.linear_transform(filter_shape=(40,20), gtol=1e-5, symmetric=True) >>> # Setting the skew and kurtosis of the output surface >>> lin_trans_surface.set_moments(skew = -0.5, kurtosis=5) >>> # generating and showing a realisation of the surface >>> my_realisation = lin_trans_surface.discretise([512,512], periodic=False, create_new=True) >>> fig, axes = my_realisation.show(['profile', 'acf', 'histogram'], ['image', 'image'], figsize=(15,5)) """ self._method_keywords = {**locals()} del (self._method_keywords['self']) self.surface_type = 'linear_transform' if self.target_acf is None: raise ValueError("No target ACF given, a target ACF must be given before the filter coefficients can be " "found") # n by m ACF n = filter_shape[0] m = filter_shape[1] if max_it is None: max_it = n * m * 100 if self.grid_spacing is None: msg = ("Grid spacing is not set assuming grid grid_spacing is 1, the solution is unique for each grid " "spacing") warnings.warn(msg) self.grid_spacing = 1 # generate the acf array form the ACF object el = self.grid_spacing * np.arange(n) k = self.grid_spacing * np.arange(m) acf_array = self.target_acf(k, el) self.target_acf_array = acf_array # initial guess (n by m guess of filter coefficients) x0 = _initial_guess(acf_array) if symmetric: result = minimize(_min_fun_symmetric, x0/2, args=(acf_array,), method=method, jac=_get_grad_min_fun_symmetric, tol=gtol, **minimize_kwargs) else: result = minimize(_min_fun, x0, args=(acf_array,), method=method, jac=_get_grad_min_fun, tol=gtol, **minimize_kwargs) if not result.success: warnings.warn(result.message) alpha =
np.reshape(result.x, filter_shape)
numpy.reshape
import numpy as np from tf.transformations import euler_from_quaternion from geometry_msgs.msg import PoseStamped, TwistStamped from utilities import * class Stanley(object): def __init__(self, reference_waypoints, wheel_base, max_steering_angle): self.wheel_base = wheel_base self.max_steering_angle = max_steering_angle def step(self, current_pose): """ Parameters ---------- current_pose: PoseStamped the current pose of the ego vehicle Returns ------- steering: float the steering angle in degrees """ # Transform coordinates onto front axis ego_x, ego_y, _ = get_position_from(current_pose) ego_yaw = get_yaw_from(current_pose) ego_front_x = ego_x + self.wheel_base * np.cos(ego_yaw) ego_front_y = ego_y + self.wheel_base * np.sin(ego_yaw) # TODO: Yaw desired on basis of next waypoint # TODO: Crosstrack error on basis of next waypoint # Calculate cross track error offset = 100 min_dist = float("inf") min_idx = 0 for i in range(len(waypoints)): dist = np.linalg.norm( np.array([waypoints[i][0] - xf, waypoints[i][1] - yf])) if dist < min_dist: min_dist = dist min_idx = i wp1 = np.array(self._waypoints[min_idx][0:2]) if min_idx < len(self._waypoints) - offset - 1: wp2 = np.array(self._waypoints[min_idx + offset][0:2]) yaw_desired = np.arctan2(wp2[1] - wp1[1], wp2[0] - wp1[0]) else: wp2 =
np.array(self._waypoints[-offset][0:2])
numpy.array
""" Utilities to modify a given neural network and obtain a new one. --<EMAIL> """ # pylint: disable=import-error # pylint: disable=no-member # pylint: disable=invalid-name # pylint: disable=relative-import # pylint: disable=star-args # pylint: disable=too-many-branches from argparse import Namespace from copy import deepcopy import numpy as np # Local imports from ..nn.neural_network import ConvNeuralNetwork, MultiLayerPerceptron, MLP_RECTIFIERS, \ MLP_SIGMOIDS, is_a_pooling_layer_label, is_a_conv_layer_label,\ CNNImageSizeMismatchException, CNNNoConvAfterIPException from ..utils.general_utils import reorder_list_or_array, reorder_rows_and_cols_in_matrix from ..utils.option_handler import get_option_specs, load_options from ..utils.reporters import get_reporter _DFLT_CHANGE_FRAC = 0.125 _DFLT_CHANGE_NUM_UNITS_SPAWN = 'all' _DFLT_CHANGE_LAYERS_SPAWN = 20 _DFLT_NUM_SINGLE_STEP_MODIFICATIONS = 'all' _DFLT_NUM_TWO_STEP_MODIFICATIONS = 0 _DFLT_NUM_THREE_STEP_MODIFICATIONS = 0 _DFLT_WEDGE_LAYER_CNN_CANDIDATES = ['conv3', 'conv5', 'conv7', 'res3', 'res5', 'res7'] _DFLT_WEDGE_LAYER_MLP_CANDIDATES = MLP_RECTIFIERS + MLP_SIGMOIDS _DFLT_SIGMOID_SWAP = MLP_SIGMOIDS _DFLT_RECTIFIER_SWAP = MLP_RECTIFIERS _PRIMITIVE_PROB_MASSES = {'inc_single': 0.1, 'dec_single': 0.1, 'inc_en_masse': 0.1, 'dec_en_masse': 0.1, 'swap_layer': 0.2, 'wedge_layer': 0.1, 'remove_layer': 0.1, 'branch': 0.2, 'skip': 0.2, } nn_modifier_args = [ # Change fractions for increasing the number of units in layers. get_option_specs('single_inc_change_frac', False, _DFLT_CHANGE_FRAC, 'Default change fraction when increasing a single layer.'), get_option_specs('single_dec_change_frac', False, _DFLT_CHANGE_FRAC, 'Default change fraction when decreasing a single layer.'), get_option_specs('en_masse_inc_change_frac', False, _DFLT_CHANGE_FRAC, 'Default change fraction when increasing layers en_masse.'), get_option_specs('en_masse_dec_change_frac', False, _DFLT_CHANGE_FRAC, 'Default change fraction when decreasing layers en_masse.'), # Number of networks to spawn by changing number of units in a single layer. get_option_specs('spawn_single_inc_num_units', False, _DFLT_CHANGE_NUM_UNITS_SPAWN, 'Default number of networks to spawn by increasing # units in a single layer.'), get_option_specs('spawn_single_dec_num_units', False, _DFLT_CHANGE_NUM_UNITS_SPAWN, 'Default number of networks to spawn by decreasing # units in a single layer.'), # Number of networks to spawn by adding or deleting a single layer. get_option_specs('spawn_add_layer', False, _DFLT_CHANGE_LAYERS_SPAWN, 'Default number of networks to spawn by adding a layer.'), get_option_specs('spawn_del_layer', False, _DFLT_CHANGE_LAYERS_SPAWN, 'Default number of networks to spawn by deleting a layer.'), # Number of double/triple step candidates - i.e. applications of basic primitives # twice/thrice before executing candidates get_option_specs('num_single_step_modifications', False, _DFLT_NUM_SINGLE_STEP_MODIFICATIONS, 'Default number of networks to spawn via single step primitives.'), get_option_specs('num_two_step_modifications', False, _DFLT_NUM_TWO_STEP_MODIFICATIONS, 'Default number of networks to spawn via two step primitives.'), get_option_specs('num_three_step_modifications', False, _DFLT_NUM_THREE_STEP_MODIFICATIONS, 'Default number of networks to spawn via three step primitives.'), ] # Generic utilities we will need in all functions below ================================== def get_copies_from_old_nn(nn): """ Gets copies of critical parameters of the old network. """ layer_labels = deepcopy(nn.layer_labels) num_units_in_each_layer = deepcopy(nn.num_units_in_each_layer) conn_mat = deepcopy(nn.conn_mat) mandatory_child_attributes = Namespace() for mca_str in nn.mandatory_child_attributes: mca_val = deepcopy(getattr(nn, mca_str)) setattr(mandatory_child_attributes, mca_str, mca_val) return layer_labels, num_units_in_each_layer, conn_mat, mandatory_child_attributes def get_new_nn(old_nn, layer_labels, num_units_in_each_layer, conn_mat, mandatory_child_attributes): """ Returns a new neural network of the same type as old_nn. """ known_nn_class = True try: if old_nn.nn_class == 'cnn': new_cnn = ConvNeuralNetwork(layer_labels, conn_mat, num_units_in_each_layer, mandatory_child_attributes.strides, old_nn.all_layer_label_classes, old_nn.layer_label_similarities) return new_cnn elif old_nn.nn_class.startswith('mlp'): return MultiLayerPerceptron(old_nn.nn_class[4:], layer_labels, conn_mat, num_units_in_each_layer, old_nn.all_layer_label_classes, old_nn.layer_label_similarities) else: known_nn_class = False except (CNNImageSizeMismatchException, CNNNoConvAfterIPException, AssertionError): return None if not known_nn_class: raise ValueError('Unidentified nn_class %s.'%(old_nn.nn_class)) def add_layers_to_end_of_conn_mat(conn_mat, num_add_layers): """ Adds layers with no edges and returns. """ new_num_layers = conn_mat.shape[0] + num_add_layers conn_mat.resize((new_num_layers, new_num_layers)) return conn_mat # Change architecture of the network # ======================================================================================== # Add a layer ---------------------------------------------------------------------------- def wedge_layer(nn, layer_type, units_in_layer, layer_before, layer_after, new_layer_attributes=None): """ Wedges a layer of type layer_type after the layer given in layer_before. The output of the layer in layer_before goes to the new layer and the output of the new layer goes to layer_after. If an edge existed between layer_before and layer_after, it is removed. """ layer_labels, num_units_in_each_layer, conn_mat, mandatory_child_attributes = \ get_copies_from_old_nn(nn) layer_labels.append(layer_type) num_units_in_each_layer = np.append(num_units_in_each_layer, units_in_layer) if nn.nn_class == 'cnn': mandatory_child_attributes.strides.append(new_layer_attributes.stride) conn_mat = add_layers_to_end_of_conn_mat(conn_mat, 1) conn_mat[layer_before, -1] = 1 conn_mat[-1, layer_after] = 1 conn_mat[layer_before, layer_after] = 0 return get_new_nn(nn, layer_labels, num_units_in_each_layer, conn_mat, mandatory_child_attributes) def _get_non_None_elements(iter_of_vals): """ Returns non None values. """ return [x for x in iter_of_vals if x is not None] def _determine_num_units_for_wedge_layer(nn, edge): """ Determines the number of layers for wedging a layer. This is usually the average of the parent (edge[0]) and child (edge[1]). """ edge_num_layers = _get_non_None_elements( [nn.num_units_in_each_layer[idx] for idx in edge]) if len(edge_num_layers) > 0: return round(sum(edge_num_layers) / len(edge_num_layers)) else: parents = nn.get_parents(edge[0]) if len(parents) == 0: # Means you have reached the input node ip_children = nn.get_children(edge[0]) children_num_units = _get_non_None_elements( [nn.num_units_in_each_layer[ch] for ch in ip_children]) if len(children_num_units) == 0: # Create a layer with 16 units children_num_units = [16] return sum(children_num_units) / len(children_num_units) else: parent_num_units = _get_non_None_elements( [nn.num_units_in_each_layer[par] for par in parents]) if len(parent_num_units) > 0: return sum(parent_num_units) / len(parent_num_units) else: par_num_units = [] for par in parents: par_num_units.append(_determine_num_units_for_wedge_layer(nn, (par, edge[0]))) par_num_units = _get_non_None_elements(par_num_units) return sum(par_num_units) / len(par_num_units) def get_list_of_wedge_layer_modifiers(nn, num_modifications='all', internal_layer_type_candidates=None, choose_pool_with_prob=0.05, choose_stride_2_with_prob=0.05): """ Returns a list of operations for adding a layer in between two layers. """ # A local function for creating a modifier def _get_wedge_modifier(_layer_type, _num_units, _edge, _nl_attributes): """ Returns a modifier which wedges an edge between the edge. """ return lambda arg_nn: wedge_layer(arg_nn, _layer_type, _num_units, _edge[0], _edge[1], _nl_attributes) # Pre-process arguments nn_is_a_cnn = nn.nn_class == 'cnn' if internal_layer_type_candidates is None: if nn_is_a_cnn: internal_layer_type_candidates = _DFLT_WEDGE_LAYER_CNN_CANDIDATES else: internal_layer_type_candidates = _DFLT_WEDGE_LAYER_MLP_CANDIDATES if not nn_is_a_cnn: choose_pool_with_prob = 0 all_edges = nn.get_edges() num_modifications = len(all_edges) if num_modifications == 'all' else num_modifications op_layer_idx = nn.get_op_layer_idx() # Output layer ip_layer_idx = nn.get_ip_layer_idx() # Input layer # We won't change this below so keep it as it is nonconv_nl_attrs = Namespace(stride=None) conv_nl_attrs_w_stride_1 = Namespace(stride=1) conv_nl_attrs_w_stride_2 = Namespace(stride=2) # Iterate through all edges ret = [] for edge in all_edges: curr_layer_type = None # First handle the edges cases if edge[1] == op_layer_idx: continue elif nn_is_a_cnn and nn.layer_labels[edge[0]] == 'fc': curr_layer_type = 'fc' curr_num_units = nn.num_units_in_each_layer[edge[0]] nl_attrs = nonconv_nl_attrs elif not nn_is_a_cnn and edge[1] == op_layer_idx: # Don't add new layers just before the output for MLPs continue elif edge[0] == ip_layer_idx and nn_is_a_cnn: curr_pool_prob = 0 # No pooling layer right after the input for a CNN else: curr_pool_prob = choose_pool_with_prob if curr_layer_type is None: if
np.random.random()
numpy.random.random
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # LICENSE # # Copyright (C) 2010-2018 GEM Foundation, <NAME>, <NAME>, # <NAME>. # # The Hazard Modeller's Toolkit is free software: you can redistribute # it and/or modify it under the terms of the GNU Affero General Public # License as published by the Free Software Foundation, either version # 3 of the License, or (at your option) any later version. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/> # # DISCLAIMER # # The software Hazard Modeller's Toolkit (openquake.hmtk) provided herein # is released as a prototype implementation on behalf of # scientists and engineers working within the GEM Foundation (Global # Earthquake Model). # # It is distributed for the purpose of open collaboration and in the # hope that it will be useful to the scientific, engineering, disaster # risk and software design communities. # # The software is NOT distributed as part of GEM’s OpenQuake suite # (https://www.globalquakemodel.org/tools-products) and must be considered as a # separate entity. The software provided herein is designed and implemented # by scientific staff. It is not developed to the design standards, nor # subject to same level of critical review by professional software # developers, as GEM’s OpenQuake software suite. # # Feedback and contribution to the software is welcome, and can be # directed to the hazard scientific staff of the GEM Model Facility # (<EMAIL>). # # The Hazard Modeller's Toolkit (openquake.hmtk) is therefore distributed WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License # for more details. # # The GEM Foundation, and the authors of the software, assume no # liability for use of the software. import warnings import numpy as np from openquake.hmtk.seismicity.occurrence.base import ( SeismicityOccurrence, OCCURRENCE_METHODS) from openquake.hmtk.seismicity.occurrence.utils import (input_checks, get_completeness_counts) @OCCURRENCE_METHODS.add( 'calculate', completeness=True, reference_magnitude=0.0, magnitude_interval=0.1, bvalue=1.0, itstab=1E-5, maxiter=1000) class Weichert(SeismicityOccurrence): '''Class to Implement Weichert Algorithm''' def calculate(self, catalogue, config, completeness=None): '''Calculates recurrence using the Weichert (1980) method''' # Input checks cmag, ctime, ref_mag, _, config = input_checks(catalogue, config, completeness) if not "dtime" in catalogue.data.keys() or not\ len(catalogue.data["dtime"]): catalogue.data["dtime"] = catalogue.get_decimal_time() if not catalogue.end_year: catalogue.update_end_year() if completeness is None: start_year = float(np.min(catalogue.data["year"])) completeness = np.column_stack([ctime, cmag]) # Apply Weichert preparation cent_mag, t_per, n_obs = get_completeness_counts( catalogue, completeness, config["magnitude_interval"]) # A few more Weichert checks key_list = config.keys() if (not 'bvalue' in key_list) or (not config['bvalue']): config['bvalue'] = 1.0 if (not 'itstab' in key_list) or (not config['itstab']): config['itstab'] = 1E-5 if (not 'maxiter' in key_list) or (not config['maxiter']): config['maxiter'] = 1000 bval, sigma_b, rate, sigma_rate, aval, sigma_a = \ self.weichert_algorithm(t_per, cent_mag, n_obs, ref_mag, config['bvalue'], config['itstab'], config['maxiter']) if not config['reference_magnitude']: rate = np.log10(aval) sigma_rate = np.log10(aval + sigma_a) - np.log10(aval) return bval, sigma_b, rate, sigma_rate def weichert_algorithm(self, tper, fmag, nobs, mrate=0.0, bval=1.0, itstab=1E-5, maxiter=1000): """ Weichert algorithm :param tper: length of observation period corresponding to magnitude :type tper: numpy.ndarray (float) :param fmag: central magnitude :type fmag: numpy.ndarray (float) :param nobs: number of events in magnitude increment :type nobs: numpy.ndarray (int) :keyword mrate: reference magnitude :type mrate: float :keyword bval: initial value for b-value :type beta: float :keyword itstab: stabilisation tolerance :type itstab: float :keyword maxiter: Maximum number of iterations :type maxiter: Int :returns: b-value, sigma_b, a-value, sigma_a :rtype: float """ beta = bval *
np.log(10.)
numpy.log
# -*- coding: utf-8 -*- # # License: This module is released under the terms of the LICENSE file # contained within this applications INSTALL directory """ Defines the ForecastModel class, which encapsulates model functions used in forecast model fitting, as well as their number of parameters and initialisation parameters. """ # -- Coding Conventions # http://www.python.org/dev/peps/pep-0008/ - Use the Python style guide # http://sphinx.pocoo.org/rest.html - Use Restructured Text for # docstrings # -- Public Imports import itertools import logging import numpy as np import pandas as pd from pandas.tseries.holiday import Holiday, AbstractHolidayCalendar, \ MO, nearest_workday, next_monday, next_monday_or_tuesday, \ GoodFriday, EasterMonday, USFederalHolidayCalendar from pandas.tseries.offsets import DateOffset from datetime import datetime # -- Private Imports from anticipy import model_utils # -- Globals logger = logging.getLogger(__name__) # Fourier model configuration _dict_fourier_config = { # Default configuration for fourier-based models 'period': 365.25, # days in year 'harmonics': 10 # TODO: evaluate different harmonics values } _FOURIER_PERIOD = 365.25 _FOURIER_HARMONICS = 10 # TODO: evaluate different harmonics values _FOURIER_K = (2.0 * np.pi / _FOURIER_PERIOD) _FOURIER_I = np.arange(1, _FOURIER_HARMONICS + 1) _FOURIER_DATE_ORIGIN = datetime(1970, 1, 1) # -- Functions # ---- Utility functions def logger_info(msg, data): # Convenience function for easier log typing logger.info(msg + '\n%s', data) def _get_f_init_params_default(n_params): # Generate a default function for initialising model parameters: use # random values between 0 and 1 return lambda a_x=None, a_y=None, a_date=None, is_mult=False:\ np.random.uniform(low=0.001, high=1, size=n_params) def _get_f_bounds_default(n_params): # Generate a default function for model parameter boundaries. Default # boundaries are (-inf, inf) return lambda a_x=None, a_y=None, a_date=None: ( n_params * [-np.inf], n_params * [np.inf]) def _get_f_add_2_f_models(forecast_model1, forecast_model2): # Add model functions of 2 ForecastModels def f_add_2_f_models(a_x, a_date, params, is_mult=False, **kwargs): params1 = params[0:forecast_model1.n_params] params2 = params[forecast_model1.n_params:] return ( forecast_model1.f_model( a_x, a_date, params1, is_mult=False, **kwargs) + forecast_model2.f_model( a_x, a_date, params2, is_mult=False, **kwargs)) return f_add_2_f_models def _get_f_mult_2_f_models(forecast_model1, forecast_model2): # Multiply model functions of 2 ForecastModels def f_mult_2_f_models(a_x, a_date, params, is_mult=False, **kwargs): params1 = params[0:forecast_model1.n_params] params2 = params[forecast_model1.n_params:] return ( forecast_model1.f_model( a_x, a_date, params1, is_mult=True, **kwargs) * forecast_model2.f_model( a_x, a_date, params2, is_mult=True, **kwargs)) return f_mult_2_f_models def _get_f_add_2_f_init_params(f_init_params1, f_init_params2): # Compose parameter initialisation functions of 2 ForecastModels, using # addition def f_add_2_f_init_params(a_x, a_y, a_date=None, is_mult=False): return np.concatenate( [f_init_params1(a_x, a_y, a_date, is_mult=False), f_init_params2(a_x, a_y, a_date, is_mult=False)]) return f_add_2_f_init_params def _get_f_mult_2_f_init_params(f_init_params1, f_init_params2): # Compose parameter initialisation functions of 2 ForecastModels, using # multiplication def f_mult_2_f_init_params(a_x, a_y, a_date=None, is_mult=False): return np.concatenate( [f_init_params1(a_x, a_y, a_date, is_mult=True), f_init_params2(a_x, a_y, a_date, is_mult=True)]) return f_mult_2_f_init_params def _get_f_concat_2_bounds(forecast_model1, forecast_model2): # Compose parameter boundary functions of 2 ForecastModels def f_add_2_f_bounds(a_x, a_y, a_date=None): return np.concatenate( (forecast_model1.f_bounds( a_x, a_y, a_date), forecast_model2.f_bounds( a_x, a_y, a_date)), axis=1) return f_add_2_f_bounds def _f_validate_input_default(a_x, a_y, a_date): # Default input validation function for a ForecastModel. Always returns # True return True def _as_list(l): return l if isinstance(l, (list,)) else [l] # Functions used to initialize cache variables in a ForecastModel def _f_init_cache_a_month(a_x, a_date): return a_date.month - 1 def _f_init_cache_a_weekday(a_x, a_date): return a_date.weekday def _f_init_cache_a_t_fourier(a_x, a_date): # convert to days since epoch t = (a_date - _FOURIER_DATE_ORIGIN).days.values i = np.arange(1, _FOURIER_HARMONICS + 1) a_tmp = _FOURIER_K * i.reshape(i.size, 1) * t y = np.concatenate([np.sin(a_tmp), np.cos(a_tmp)]) return y # Dictionary to store functions used to initialize cache variables # in a ForecastModel # This is shared across all ForecastModel instances _dict_f_cache = dict( a_month=_f_init_cache_a_month, a_weekday=_f_init_cache_a_weekday, a_t_fourier=_f_init_cache_a_t_fourier ) # -- Classes class ForecastModel: """ Class that encapsulates model functions for use in forecasting, as well as their number of parameters and functions for parameter initialisation. A ForecastModel instance is initialized with a model name, a number of model parameters, and a model function. Class instances are callable - when called as a function, their internal model function is used. The main purpose of ForecastModel objects is to generate predicted values for a time series, given a set of parameters. These values can be compared to the original series to get an array of residuals:: y_predicted = model(a_x, a_date, params) residuals = (a_y - y_predicted) This is used in an optimization loop to obtain the optimal parameters for the model. The reason for using this class instead of raw model functions is that ForecastModel supports function composition:: model_sum = fcast_model1 + fcast_model2 # fcast_model 1 and 2 are ForecastModel instances, and so is model_sum a_y1 = fcast_model1( a_x, a_date, params1) + fcast_model2(a_x, a_date, params2) params = np.concatenate([params1, params2]) a_y2 = model_sum(a_x, a_date, params) a_y1 == a_y2 # True Forecast models can be added or multiplied, with the + and * operators. Multiple levels of composition are supported:: model = (model1 + model2) * model3 Model composition is used to aggregate trend and seasonality model components, among other uses. Model functions have the following signature: - f(a_x, a_date, params, is_mult) - a_x : array of floats - a_date: array of dates, same length as a_x. Only required for date-aware models, e.g. for weekly seasonality. - params: array of floats - model parameters - the optimisation loop updates this to fit our actual values. Each model function uses a fixed number of parameters. - is_mult: boolean. True if the model is being used with multiplicative composition. Required because some model functions (e.g. steps) have different behaviour when added to other models than when multiplying them. - returns an array of floats - with same length as a_x - output of the model defined by this object's modelling function f_model and the current set of parameters By default, model parameters are initialized as random values between 0 and 1. It is possible to define a parameter initialization function that picks initial values based on the original time series. This is passed during ForecastModel creation with the argument f_init_params. Parameter initialization is compatible with model composition: the initialization function of each component will be used for that component's parameters. Parameter initialisation functions have the following signature: - f_init_params(a_x, a_y, is_mult) - a_x: array of floats - same length as time series - a_y: array of floats - time series values - returns an array of floats - with length equal to this object's n_params value By default, model parameters have no boundaries. However, it is possible to define a boundary function for a model, that sets boundaries for each model parameter, based on the input time series. This is passed during ForecastModel creation with the argument f_bounds. Boundary definition is compatible with model composition: the boundary function of each component will be used for that component's parameters. Boundary functions have the following signature: - f_bounds(a_x, a_y, a_date) - a_x: array of floats - same length as time series - a_y: array of floats - time series values - a_date: array of dates, same length as a_x. Only required for date-aware models, e.g. for weekly seasonality. - returns a tuple of 2 arrays of floats. The first defines minimum parameter boundaries, and the second the maximum parameter boundaries. As an option, we can assign a list of input validation functions to a model. These functions analyse the inputs that will be used for fitting a model, returning True if valid, and False otherwise. The forecast logic will skip a model from fitting if any of the validation functions for that model returns False. Input validation functions have the following signature: - f_validate_input(a_x, a_y, a_date) - See the description of model functions above for more details on these parameters. Our input time series should meet the following constraints: - Minimum required samples depends on number of model parameters - May include null values - May include multiple values per sample - A date array is only required if the model is date-aware Class Usage:: model_x = ForecastModel(name, n_params, f_model, f_init_params, l_f_validate_input) # Get model name model_name = model_x.name # Get number of model parameters n_params = model_x.n_params # Get parameter initialisation function f_init_params = model_x.f_init_params # Get initial parameters init_params = f_init_params(t_values, y_values) # Get model fitting function f_model = model_x.f_model # Get model output y = f_model(a_x, a_date, parameters) The following pre-generated models are available. They are available as attributes from this module: # noqa .. csv-table:: Forecast models :header: "name", "params", "formula","notes" :widths: 20, 10, 20, 40 "model_null",0, "y=0", "Does nothing. Used to disable components (e.g. seasonality)" "model_constant",1, "y=A", "Constant model" "model_linear",2, "y=Ax + B", "Linear model" "model_linear_nondec",2, "y=Ax + B", "Non decreasing linear model. With boundaries to ensure model slope >=0" "model_quasilinear",3, "y=A*(x^B) + C", "Quasilinear model" "model_exp",2, "y=A * B^x", "Exponential model" "model_decay",4, "Y = A * e^(B*(x-C)) + D", "Exponential decay model" "model_step",2, "y=0 if x<A, y=B if x>=A", "Step model" "model_two_steps",4, "see model_step", "2 step models. Parameter initialization is aware of # of steps." "model_sigmoid_step",3, "y = A + (B - A) / (1 + np.exp(- D * (x - C))) ", "Sigmoid step model" "model_sigmoid",3, "y = A + (B - A) / (1 + np.exp(- D * (x - C)))", " Sigmoid model" "model_season_wday",7, "see desc.", "Weekday seasonality model. Assigns a constant value to each weekday" "model_season_wday",6, "see desc.", "6-param weekday seasonality model. As above, with one constant set to 0." "model_season_wday_2",2, "see desc.", "Weekend seasonality model. Assigns a constant to each of weekday/weekend" "model_season_month",12, "see desc.", "Month seasonality model. Assigns a constant value to each month" "model_season_fourier_yearly",10, "see desc", "Fourier yearly seasonality model" """ def __init__( self, name, n_params, f_model, f_init_params=None, f_bounds=None, l_f_validate_input=None, l_cache_vars=None, dict_f_cache=None, ): """ Create ForecastModel :param name: Model name :type name: basestring :param n_params: Number of parameters for model function :type n_params: int :param f_model: Model function :type f_model: function :param f_init_params: Parameter initialisation function :type f_init_params: function :param f_bounds: Boundary function :type f_bounds: function """ self.name = name self.n_params = n_params self.f_model = f_model if f_init_params is not None: self.f_init_params = f_init_params else: # Default initial parameters: random values between 0 and 1 self.f_init_params = _get_f_init_params_default(n_params) if f_bounds is not None: self.f_bounds = f_bounds else: self.f_bounds = _get_f_bounds_default(n_params) if l_f_validate_input is None: self.l_f_validate_input = [_f_validate_input_default] else: self.l_f_validate_input = _as_list(l_f_validate_input) if l_cache_vars is None: self.l_cache_vars = [] else: self.l_cache_vars = _as_list(l_cache_vars) if dict_f_cache is None: self.dict_f_cache = dict() else: self.dict_f_cache = dict_f_cache # TODO - REMOVE THIS - ASSUME NORMALIZED INPUT def _get_f_init_params_validated(f_init_params): # Adds argument validation to a parameter initialisation function def f_init_params_validated( a_x=None, a_y=None, a_date=None, is_mult=False): if a_x is not None and pd.isnull(a_x).any(): raise ValueError('a_x cannot have null values') return f_init_params(a_x, a_y, a_date, is_mult) return f_init_params_validated # Add logic to f_init_params that validates input self.f_init_params = _get_f_init_params_validated(self.f_init_params) def __call__(self, a_x, a_date, params, is_mult=False, **kwargs): # assert len(params)==self.n_params return self.f_model(a_x, a_date, params, is_mult, **kwargs) def __str__(self): return self.name def __repr__(self): return 'ForecastModel:{}'.format(self.name) def __add__(self, forecast_model): # Check for nulls if self.name == 'null': return forecast_model if forecast_model.name == 'null': return self name = '({}+{})'.format(self.name, forecast_model.name) n_params = self.n_params + forecast_model.n_params f_model = _get_f_add_2_f_models(self, forecast_model) f_init_params = _get_f_add_2_f_init_params( self.f_init_params, forecast_model.f_init_params) f_bounds = _get_f_concat_2_bounds(self, forecast_model) l_f_validate_input = list( set(self.l_f_validate_input + forecast_model.l_f_validate_input)) # Combine both dicts dict_f_cache = self.dict_f_cache.copy() dict_f_cache.update(forecast_model.dict_f_cache) l_cache_vars = list( set(self.l_cache_vars + forecast_model.l_cache_vars)) return ForecastModel( name, n_params, f_model, f_init_params, f_bounds=f_bounds, l_f_validate_input=l_f_validate_input, l_cache_vars=l_cache_vars, dict_f_cache=dict_f_cache ) def __radd__(self, other): return self.__add__(other) def __mul__(self, forecast_model): if self.name == 'null': return forecast_model if forecast_model.name == 'null': return self name = '({}*{})'.format(self.name, forecast_model.name) n_params = self.n_params + forecast_model.n_params f_model = _get_f_mult_2_f_models(self, forecast_model) f_init_params = _get_f_mult_2_f_init_params( self.f_init_params, forecast_model.f_init_params) f_bounds = _get_f_concat_2_bounds(self, forecast_model) l_f_validate_input = list( set(self.l_f_validate_input + forecast_model.l_f_validate_input)) # Combine both dicts dict_f_cache = self.dict_f_cache.copy() dict_f_cache.update(forecast_model.dict_f_cache) l_cache_vars = list( set(self.l_cache_vars + forecast_model.l_cache_vars)) return ForecastModel( name, n_params, f_model, f_init_params, f_bounds=f_bounds, l_f_validate_input=l_f_validate_input, l_cache_vars=l_cache_vars, dict_f_cache=dict_f_cache ) def __rmul__(self, other): return self.__mul__(other) def __eq__(self, other): if isinstance(self, other.__class__): return self.name == other.name return NotImplemented def __ne__(self, other): x = self.__eq__(other) if x is not NotImplemented: return not x return NotImplemented def __hash__(self): return hash(self.name) def __lt__(self, other): return self.name < other.name def validate_input(self, a_x, a_y, a_date): try: l_result = [f_validate_input(a_x, a_y, a_date) for f_validate_input in self.l_f_validate_input] except AssertionError: return False return True def init_cache(self, a_x, a_date): dict_cache_vars = dict() for k in self.l_cache_vars: f = _dict_f_cache.get(k) if f: dict_cache_vars[k] = f(a_x, a_date) else: logger.warning('Cache function not found: %s', k) # Search vars defined in internal cache function dictionary for k in self.dict_f_cache: f = self.dict_f_cache.get(k) if f: dict_cache_vars[k] = f(a_x, a_date) else: logger.warning('Cache function not found: %s', k) return dict_cache_vars # - Null model: 0 def _f_model_null(a_x, a_date, params, is_mult=False, **kwargs): # This model does nothing - used to disable model components # (e.g. seasonality) when adding/multiplying multiple functions return float(is_mult) # Returns 1 if multiplying, 0 if adding model_null = ForecastModel('null', 0, _f_model_null) # - Constant model: :math:`Y = A` def _f_model_constant(a_x, a_date, params, is_mult=False, **kwargs): [A] = params y = np.full(len(a_x), A) return y def _f_init_params_constant(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 1) else: return np.nanmean(a_y) + np.random.uniform(0, 1, 1) model_constant = ForecastModel( 'constant', 1, _f_model_constant, _f_init_params_constant) # - Naive model: Y = Y(x-1) # Note: This model requires passing the actuals data - it is not fitted by # regression. We still pass it to forecast.fit_model() for consistency # with the rest of the library def _f_model_naive(a_x, a_date, params, is_mult=False, df_actuals=None): if df_actuals is None: raise ValueError('model_naive requires a df_actuals argument') df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out = ( # This is not really intended to work with multiple values per sample df_actuals.drop_duplicates('x') .merge(df_out_tmp, how='outer') .sort_values('x') ) df_out['y'] = ( df_out.y.shift(1) .fillna(method='ffill') .fillna(method='bfill') ) df_out = df_out.loc[df_out.x.isin(a_x)] # df_out = df_out_tmp.merge(df_out, how='left') # TODO: CHECK THAT X,DATE order is preserved # TODO: df_out = df_out.merge(df_out_tmp, how='right') return df_out.y.values model_naive = ForecastModel('naive', 0, _f_model_naive) # - Seasonal naive model # Note: This model requires passing the actuals data - it is not fitted by # regression. We still pass it to forecast.fit_model() for consistency # with the rest of the library def _fillna_wday(df): """ In a time series, shift samples by 1 week and fill gaps with data from same weekday """ def add_col_y_out(df): df = df.assign(y_out=df.y.shift(1).fillna(method='ffill')) return df df_out = ( df .assign(wday=df.date.dt.weekday) .groupby('wday', as_index=False).apply(add_col_y_out) .sort_values(['x']) .reset_index(drop=True) ) return df_out def _f_model_snaive_wday(a_x, a_date, params, is_mult=False, df_actuals=None): """Naive model - takes last valid weekly sample""" if df_actuals is None: raise ValueError('model_snaive_wday requires a df_actuals argument') # df_actuals_model - table with actuals samples, # adding y_out column with naive model values df_actuals_model = _fillna_wday(df_actuals.drop_duplicates('x')) # df_last_week - table with naive model values from last actuals week, # to use in extrapolation df_last_week = ( df_actuals_model # Fill null actual values with data from previous weeks .assign(y=df_actuals_model.y.fillna(df_actuals_model.y_out)) .drop_duplicates('wday', keep='last') [['wday', 'y']] .rename(columns=dict(y='y_out')) ) # Generate table with extrapolated samples df_out_tmp = pd.DataFrame({'date': a_date, 'x': a_x}) df_out_tmp['wday'] = df_out_tmp.date.dt.weekday df_out_extrapolated = ( df_out_tmp .loc[~df_out_tmp.date.isin(df_actuals_model.date)] .merge(df_last_week, how='left') .sort_values('x') ) # Filter actuals table - only samples in a_x, a_date df_out_actuals_filtered = ( # df_actuals_model.loc[df_actuals_model.x.isin(a_x)] # Using merge rather than simple filtering to account for # dates with multiple samples df_actuals_model.merge(df_out_tmp, how='inner') .sort_values('x') ) df_out = ( pd.concat( [df_out_actuals_filtered, df_out_extrapolated], sort=False, ignore_index=True) ) return df_out.y_out.values model_snaive_wday = ForecastModel('snaive_wday', 0, _f_model_snaive_wday) # - Spike model: :math:`Y = A`, when x_min <= X < x_max def _f_model_spike(a_x, a_date, params, is_mult=False, **kwargs): [A, x_min, x_max] = params if is_mult: c = 1 else: c = 0 y = np.concatenate(( np.full(int(x_min), c), np.full(int(x_max - x_min), A), np.full(len(a_x) - int(x_max), c) )) return y def _f_init_params_spike(a_x=None, a_y=None, a_date=None, is_mult=False): """ params are spike height, x start, x end """ # if not a_y.any(): if a_y is None: return [1] + np.random.uniform(0, 1, 1) + [2] else: diffs = np.diff(a_y) # if diffs: if True: diff = max(diffs) x_start = np.argmax(diffs) x_end = x_start + 1 return np.array([diff, x_start, x_end]) model_spike = ForecastModel('spike', 3, _f_model_spike, _f_init_params_spike) # - Spike model for dates - dates are fixed for each model def _f_model_spike_date( a_x, a_date, params, date_start, date_end, is_mult=False): [A] = params mask_spike = (a_date >= date_start) * (a_date < date_end) if is_mult: y = mask_spike * A + ~mask_spike else: y = mask_spike * A return y def _f_init_params_spike(a_x=None, a_y=None, a_date=None, is_mult=False): """ params are spike height, x start, x end """ if a_y is None: return np.concatenate([np.array([1]) + np.random.uniform(0, 1, 1)]) else: diffs = np.diff(a_y) # if diffs: if True: diff = max(diffs) return np.array([diff]) # else: # rand = np.random.randint(1, len(a_y) - 1) # return [1] def get_model_spike_date(date_start, date_end): f_model = ( lambda a_x, a_date, params, is_mult=False, **kwargs: _f_model_spike_date(a_x, a_date, params, date_start, date_end, is_mult) ) model_spike_date = ForecastModel( 'spike_date[{},{}]'.format( pd.to_datetime(date_start).date(), pd.to_datetime(date_end).date()), 1, f_model, _f_init_params_spike) return model_spike_date # - Linear model: :math:`Y = A*x + B` def _f_model_linear(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params y = A * a_x + B return y def _f_init_params_linear(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(low=0, high=1, size=2) else: # TODO: Improve this if a_x is not None: a_x_size = np.unique(a_x).size - 1 else: a_x_size = a_y.size - 1 A = (a_y[-1] - a_y[0]) / a_x_size B = a_y[0] # Uniform low= 0*m, high = 1*m return np.array([A, B]) model_linear = ForecastModel( 'linear', 2, _f_model_linear, _f_init_params_linear) def f_init_params_linear_nondec( a_x=None, a_y=None, a_date=None, is_mult=False): params = _f_init_params_linear(a_x, a_y, a_date) if params[0] < 0: params[0] = 0 return params def f_bounds_linear_nondec(a_x=None, a_y=None, a_date=None): # first param should be between 0 and inf return [0, -np.inf], [np.inf, np.inf] model_linear_nondec = ForecastModel('linear_nondec', 2, _f_model_linear, f_init_params=f_init_params_linear_nondec, f_bounds=f_bounds_linear_nondec) # - QuasiLinear model: :math:`Y = A t^{B} + C` def _f_model_quasilinear(a_x, a_date, params, is_mult=False, **kwargs): (A, B, C) = params y = A * np.power(a_x, B) + C return y model_quasilinear = ForecastModel('quasilinear', 3, _f_model_quasilinear) # - Exponential model: math:: Y = A * B^t # TODO: Deprecate - not safe to use def _f_model_exp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params y = A * np.power(B, a_x) return y model_exp = ForecastModel('exponential', 2, _f_model_exp) # - Exponential decay model: math:: Y = A * e^(B*(x-C)) + D def _f_model_decay(a_x, a_date, params, is_mult=False, **kwargs): (A, B, D) = params y = A * np.exp(B * (a_x)) + D return y def _f_validate_input_decay(a_x, a_y, a_date): assert (a_y > 0).all() def f_init_params_decay(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.array([0, 0, 0]) A = a_y[0] - a_y[-1] B = np.log(np.min(a_y) / np.max(a_y)) / (len(a_y) - 1) if B > 0 or B == -np.inf: B = -0.5 C = a_y[-1] return np.array([A, B, C]) def f_bounds_decay(a_x=None, a_y=None, a_date=None): return [-np.inf, -np.inf, -np.inf], [np.inf, 0, np.inf] model_decay = ForecastModel('decay', 3, _f_model_decay, f_init_params=f_init_params_decay, f_bounds=f_bounds_decay, l_f_validate_input=_f_validate_input_decay) # - Step function: :math:`Y = {0, if x < A | B, if x >= A}` # A is the time of step, and B is the step def _f_step(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (B - 1) * np.heaviside(a_x - A, 1) else: y = B * np.heaviside(a_x - A, 1) return y # TODO: Implement initialisation for multiplicative composition def _f_init_params_step(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 2) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(1, 'diff').index[0] b = df['diff'].iloc[a] return np.array([a, b * 2]) # TODO: Add boundaries for X axis model_step = ForecastModel('step', 2, _f_step, _f_init_params_step) # - Spike model for dates - dates are fixed for each model def _f_model_step_date(a_x, a_date, params, date_start, is_mult=False): [A] = params mask_step = (a_date >= date_start).astype(float) if is_mult: # y = mask_step*A + ~mask_step y = mask_step * (A - 1) + 1 else: y = mask_step * A return y # TODO: Implement initialisation for multiplicative composition def _f_init_params_step_date(a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 1) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(1, 'diff').index[0] b = df['diff'].iloc[a] return np.array([b * 2]) def get_model_step_date(date_start): date_start = pd.to_datetime(date_start) f_model = ( lambda a_x, a_date, params, is_mult=False, **kwargs: _f_model_step_date(a_x, a_date, params, date_start, is_mult) ) model_step_date = ForecastModel('step_date[{}]'.format(date_start.date()), 1, f_model, _f_init_params_step_date) return model_step_date # Two step functions def _f_n_steps(n, a_x, a_date, params, is_mult=False): if is_mult: y = 1 else: y = 0 for i in range(0, n + 1, 2): A, B = params[i: i + 2] if is_mult: y = y * _f_step(a_x, a_date, (A, B), is_mult) else: y = y + _f_step(a_x, a_date, (A, B), is_mult) return y def _f_two_steps(a_x, a_date, params, is_mult=False, **kwargs): return _f_n_steps( n=2, a_x=a_x, a_date=a_date, params=params, is_mult=is_mult) def _f_init_params_n_steps( n=2, a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, n * 2) else: # max difference between consecutive values if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'b': a_y}) df['diff'] = df.diff().abs() # if is_mult, replace above line with something like # np.concatenate([[np.NaN],a_y[:-1]/a_y[1:]]) a = df.nlargest(n, 'diff').index[0:n].values b = df['diff'].iloc[a].values params = [] for i in range(0, n): params += [a[i], b[i]] return np.array(params) def _f_init_params_two_steps(a_x=None, a_y=None, a_date=None, is_mult=False): return _f_init_params_n_steps( n=2, a_x=a_x, a_y=a_y, a_date=a_date, is_mult=is_mult) model_two_steps = ForecastModel( 'two_steps', 2 * 2, _f_two_steps, _f_init_params_two_steps) # - Sigmoid step function: `Y = {A + (B - A) / (1 + np.exp(- D * (a_x - C)))}` # Spans from A to B, C is the position of the step in x axis # and D is how steep the increase is def _f_sigmoid(a_x, a_date, params, is_mult=False, **kwargs): (B, C, D) = params if is_mult: A = 1 else: A = 0 # TODO check if a_x is negative y = A + (B - A) / (1 + np.exp(- D * (a_x - C))) return y def _f_init_params_sigmoid_step( a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: return np.random.uniform(0, 1, 3) else: if a_y.ndim > 1: a_y = a_y[:, 0] df = pd.DataFrame({'y': a_y}) # max difference between consecutive values df['diff'] = df.diff().abs() c = df.nlargest(1, 'diff').index[0] b = df.loc[c, 'y'] d = b * b return b, c, d def _f_init_bounds_sigmoid_step(a_x=None, a_y=None, a_date=None): if a_y is None: return [-np.inf, -np.inf, 0.], 3 * [np.inf] if a_y.ndim > 1: a_y = a_y[:, 0] if a_x.ndim > 1: a_x = a_x[:, 0] diff = max(a_y) - min(a_y) b_min = -2 * diff b_max = 2 * diff c_min = min(a_x) c_max = max(a_x) d_min = 0. d_max = np.inf return [b_min, c_min, d_min], [b_max, c_max, d_max] # In this model, parameter initialization is aware of number of steps model_sigmoid_step = ForecastModel( 'sigmoid_step', 3, _f_sigmoid, _f_init_params_sigmoid_step, f_bounds=_f_init_bounds_sigmoid_step) model_sigmoid = ForecastModel('sigmoid', 3, _f_sigmoid) # Ramp functions - used for piecewise linear models # example : model_linear_pw2 = model_linear + model_ramp # example 2: model_linear_p23 = model_linear + model_ramp + model_ramp # - Ramp function: :math:`Y = {0, if x < A | B, if x >= A}` # A is the time of step, and B is the step def _f_ramp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (a_x - A) * (B) * np.heaviside(a_x - A, 1) else: y = (a_x - A) * B * np.heaviside(a_x - A, 1) return y def _f_init_params_ramp(a_x=None, a_y=None, a_date=None, is_mult=False): # TODO: set boundaries: a_x (0.2, 0.8) if a_y is None: if a_x is not None: nfirst_last = int(np.ceil(0.15 * a_x.size)) a = np.random.uniform(a_x[nfirst_last], a_x[-nfirst_last - 1], 1) else: a = np.random.uniform(0, 1, 1) b = np.random.uniform(0, 1, 1) return np.concatenate([a, b]) else: # TODO: FILTER A_Y BY 20-80 PERCENTILE IN A_X df = pd.DataFrame({'b': a_y}) if a_x is not None: # df['x'] = a_x # Required because we support input with multiple samples per x # value df = df.drop_duplicates('x') df = df.set_index('x') # max difference between consecutive values -- this assumes no null # values in series df['diff2'] = df.diff().diff().abs() # We ignore the last 15% of the time series skip_samples = int(np.ceil(df.index.size * 0.15)) a = (df.head(-skip_samples).tail( -skip_samples).nlargest(1, 'diff2').index[0] ) b = df['diff2'].loc[a] # TODO: replace b with estimation of slope in segment 2 # minus slope in segment 1 - see init_params_linear return np.array([a, b]) def _f_init_bounds_ramp(a_x=None, a_y=None, a_date=None): if a_x is None: a_min = -np.inf a_max = np.inf else: # a_min = np.min(a_x) nfirst_last = int(np.ceil(0.15 * a_x.size)) a_min = a_x[nfirst_last] a_max = a_x[-nfirst_last] # a_min = np.percentile(a_x, 15) # a_max = np.percentile(a_x,85) if a_y is None: b_min = -np.inf b_max = np.inf else: # TODO: FILTER A_Y BY 20-80 PERCENTILE IN A_X # df = pd.DataFrame({'b': a_y}) # #max_diff2 = np.max(df.diff().diff().abs()) # max_diff2 = np.max(np.abs(np.diff(np.diff(a_y)))) # # b_min = -2*max_diff2 # b_max = 2*max_diff2 b_min = -np.inf b_max = np.inf # logger_info('DEBUG: BOUNDS:',(a_min, b_min,a_max, b_max)) return ([a_min, b_min], [a_max, b_max]) model_ramp = ForecastModel( 'ramp', 2, _f_ramp, _f_init_params_ramp, _f_init_bounds_ramp) # - Weekday seasonality def _f_model_season_wday( a_x, a_date, params, is_mult=False, # cache variables a_weekday=None, **kwargs): # Weekday seasonality model, 6 params # params_long[0] is default series value, params_long = np.concatenate([[float(is_mult)], params]) if a_weekday is None: a_weekday = _f_init_cache_a_weekday(a_x, a_date) return params_long[a_weekday] def _f_validate_input_season_wday(a_x, a_y, a_date): assert a_date is not None assert a_date.weekday.drop_duplicates().size == 7 model_season_wday = ForecastModel( 'season_wday', 6, _f_model_season_wday, l_f_validate_input=_f_validate_input_season_wday, l_cache_vars=['a_weekday'] ) # - Month seasonality def _f_init_params_season_month( a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None or a_date is None: return np.random.uniform(low=-1, high=1, size=11) else: # TODO: Improve this l_params_long = [np.mean(a_y[a_date.month == i]) for i in np.arange(1, 13)] l_baseline = l_params_long[-1] l_params = l_params_long[:-1] if not is_mult: l_params_add = l_params - l_baseline return l_params_add else: l_params_mult = l_params / l_baseline return l_params_mult def _f_model_season_month( a_x, a_date, params, is_mult=False, # cache variables a_month=None, **kwargs): # Month of December is taken as default level, has no parameter # params_long[0] is default series value params_long = np.concatenate([[float(is_mult)], params]) if a_month is None: a_month = _f_init_cache_a_month(a_x, a_date) return params_long[a_month] model_season_month = ForecastModel( 'season_month', 11, _f_model_season_month, _f_init_params_season_month, l_cache_vars=['a_month'] ) model_season_month_old = ForecastModel( 'season_month_old', 11, _f_model_season_month) def _f_model_yearly_season_fourier( a_x, a_date, params, is_mult=False, # cache params a_t_fourier=None, **kwargs): if a_t_fourier is None: a_t_fourier = _f_init_cache_a_t_fourier(None, a_date) y = np.matmul(params, a_t_fourier) return y def _f_init_params_fourier_n_params( n_params, a_x=None, a_y=None, a_date=None, is_mult=False): if a_y is None: params = np.random.uniform(0.001, 1, n_params) else: # max difference in time series diff = a_y.max() - a_y.min() params = diff * np.random.uniform(0.001, 1, n_params) return params def _f_init_params_fourier(a_x=None, a_y=None, a_date=None, is_mult=False): n_params = 2 * _dict_fourier_config['harmonics'] return _f_init_params_fourier_n_params( n_params, a_x=a_x, a_y=a_y, a_date=a_date, is_mult=is_mult) def _f_init_bounds_fourier_nparams(n_params, a_x=None, a_y=None, a_date=None): return n_params * [-np.inf], n_params * [np.inf] def _f_init_bounds_fourier_yearly(a_x=None, a_y=None, a_date=None): n_params = 2 * _dict_fourier_config['harmonics'] return _f_init_bounds_fourier_nparams(n_params, a_x, a_y, a_date) model_season_fourier_yearly = ForecastModel( name='season_fourier_yearly', n_params=2 * _dict_fourier_config.get('harmonics'), f_model=_f_model_yearly_season_fourier, f_init_params=_f_init_params_fourier, f_bounds=_f_init_bounds_fourier_yearly, l_cache_vars='a_t_fourier' ) def get_fixed_model(forecast_model, params_fixed, is_mult=False): # Generate model with some fixed parameters if forecast_model.n_params == 0: # Nothing to do return forecast_model if len(params_fixed) != forecast_model.n_params: err = 'Wrong number of fixed parameters' raise ValueError(err) return ForecastModel( forecast_model.name + '_fixed', 0, f_model=lambda a_x, a_date, params, is_mult=is_mult, **kwargs: forecast_model.f_model( a_x=a_x, a_date=a_date, params=params_fixed, is_mult=is_mult)) def get_iqr_thresholds(s_diff, low=0.25, high=0.75): # Get thresholds based on inter quantile range q1 = s_diff.quantile(low) q3 = s_diff.quantile(high) iqr = q3 - q1 thr_low = q1 - 1.5 * iqr thr_hi = q3 + 1.5 * iqr return thr_low, thr_hi # TODO: Add option - estimate_outl_size # TODO: Add option - sigmoid steps # TODO: ADD option - gaussian spikes def get_model_outliers(df, window=3): """ Identify outlier samples in a time series :param df: Input time series :type df: pandas.DataFrame :param window: The x-axis window to aggregate multiple steps/spikes :type window: int :return: | tuple (mask_step, mask_spike) | mask_step: True if sample contains a step | mask_spike: True if sample contains a spike :rtype: tuple of 2 numpy arrays of booleans TODO: require minimum number of samples to find an outlier """ dfo = df.copy() # dfo - df for outliers # If df has datetime index, use date logic in steps/spikes with_dates = 'date' in df.columns x_col = 'date' if with_dates else 'x' if df[x_col].duplicated().any(): raise ValueError('Input cannot have multiple values per sample') # Get the differences dfo['dif'] = dfo.y.diff() # We consider as outliers the values that are # 1.5 * IQR (interquartile range) beyond the quartiles. # These thresholds are obtained here thr_low, thr_hi = get_iqr_thresholds(dfo.dif) # Now identify the changes dfo['ischange'] = ((dfo.dif < thr_low) | (dfo.dif > thr_hi)).astype(int) # Whenever there are two or more consecutive changes # (that is, within `window` samples), we group them together dfo['ischange_group'] = ( dfo.ischange.rolling(window, win_type=None, center=True).max().fillna( 0).astype(int) ) # We now have to calculate the difference within the # same group in order to identify if the consecutive changes # result in a step, a spike, or both. # We get the filtered difference dfo['dif_filt'] = (dfo.dif * dfo.ischange).fillna(0) # And the absolute value of that dfo['dif_filt_abs'] = dfo.dif_filt.abs() dfo['change_group'] = dfo.ischange_group.diff( ).abs().fillna(0).astype(int).cumsum() # this gets us the average difference of the outliers within each change # group df_mean_gdiff = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group')[ 'dif_filt'].mean().rename('mean_group_diff').reset_index()) # this gets us the average absolute difference of the outliers within each # change group df_mean_gdiff_abs = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group')[ 'dif_filt_abs'].mean().rename( 'mean_group_diff_abs').reset_index() ) # Merge the differences with the original dfo dfo = dfo.merge( df_mean_gdiff, how='left').merge( df_mean_gdiff_abs, how='left') # Fill missing values with zero -> no change dfo.mean_group_diff = dfo.mean_group_diff.fillna(0) dfo.mean_group_diff_abs = dfo.mean_group_diff_abs.fillna(0) # the change group is a step if the mean_group_diff exceeds the thresholds dfo['is_step'] = dfo['ischange_group'] & ( ((dfo.mean_group_diff < thr_low) | (dfo.mean_group_diff > thr_hi))) # the change group is a spike if the difference between the # mean_group_diff_abs and the average mean_group_diff exceeds # the average threshold value dfo['is_spike'] = (dfo.mean_group_diff_abs - dfo.mean_group_diff.abs()) > (thr_hi - thr_low) / 2 # Get the outlier start and end points for each group df_outl = ( dfo.loc[dfo.ischange.astype(bool)].groupby('change_group').apply( lambda x: pd.Series( {'outl_start': x[x_col].iloc[0], 'outl_end': x[x_col].iloc[-1]})).reset_index() ) if df_outl.empty: # No outliers - nothing to do return np.full(dfo.index.size, False),
np.full(dfo.index.size, False)
numpy.full
import math import numpy as np from pydmfet import qcwrap,tools,libgen def subocc_to_dens_part(P_ref, occ_imp, occ_bath, dim_imp, dim_bath): dim = dim_imp + dim_bath P_imp = np.zeros([dim,dim], dtype=float) P_bath = np.zeros([dim,dim], dtype=float) for i in range(dim): if(i < dim_imp): P_imp[i][i] = occ_imp[i] else: index = i-dim_imp if(index >= dim_imp): break if(occ_imp[index] > 0.8): P_imp[i][i] = 2.0 - occ_imp[index] P_imp[i][index] = P_ref[i][index] #can't determine sign #math.sqrt(2.0*occ_imp[index] - occ_imp[index]**2) P_imp[index][i] = P_imp[i][index] else: P_imp[index][index] = 0.0 ''' for i in range(dim): if(i < dim_bath): index = i+dim_imp if(occ_imp[i] <= 0.8 or occ_bath[i] > 1.9): P_bath[index][index] = occ_bath[i] P_bath[i][index] = P_ref[i][index] #math.sqrt(2.0*occ_bath[i]-occ_bath[i]**2) P_bath[index][i] = P_bath[i][index] P_bath[i][i] = 2.0 - occ_bath[i] ''' return (P_imp, P_bath) def mulliken_partition_loc(frag_orbs,dm_loc): dim = dm_loc.shape[0] P_frag = np.zeros([dim,dim],dtype=float) P_env = np.zeros([dim,dim],dtype=float) for i in range(dim): for j in range(dim): if(frag_orbs[i] == 1 and frag_orbs[j] == 1): P_frag[i,j] = dm_loc[i,j] elif(frag_orbs[i] == 0 and frag_orbs[j] == 0): P_env[i,j] = dm_loc[i,j] else: P_frag[i,j] = 0.5*dm_loc[i,j] P_env[i,j] = 0.5*dm_loc[i,j] print ("Ne_frag_loc = ", np.sum(np.diag(P_frag))) print ("Ne_env_loc = ", np.sum(np.diag(P_env))) return (P_frag,P_env) def loc_fullP_to_fragP(frag_orbs,mo_coeff,NOcc,NOrb): weight_frag = [] weight_env = [] for i in range(NOcc): sum_frag = 0.0 sum_env = 0.0 for j in range(NOrb): if(frag_orbs[j] == 1): sum_frag += mo_coeff[j,i] * mo_coeff[j,i] else: sum_env += mo_coeff[j,i] * mo_coeff[j,i] weight_frag.append(sum_frag) weight_env.append(sum_env) print (2.0*np.sum(weight_frag)) print (2.0*np.sum(weight_env)) P_frag = np.zeros([NOrb,NOrb],dtype=float) P_env = np.zeros([NOrb,NOrb],dtype=float) index = 0 dim = mo_coeff.shape[0] mo_frag = np.zeros((dim,NOcc)) mo_occ = np.zeros((NOcc)) for i in range(NOcc): P_tmp = 2.0*np.outer(mo_coeff[:,i], mo_coeff[:,i]) print (weight_frag[i], weight_env[i]) if(weight_frag[i] >= weight_env[i]): P_frag = P_frag + P_tmp mo_frag[:,index] = mo_coeff[:,i] mo_occ[index] = 2.0 index +=1 else: P_env = P_env + P_tmp print ("Ne_frag_loc = ", np.sum(np.diag(P_frag))) print ("Ne_env_loc = ", np.sum(np.diag(P_env))) return (P_frag, P_env, mo_frag, mo_occ) def fullP_to_fragP(obj, subTEI, Nelec,P_ref, dim, dim_imp, mf_method): loc2sub = obj.loc2sub core1PDM_loc = obj.core1PDM_loc fock_sub = obj.ints.fock_sub( loc2sub, dim, core1PDM_loc) energy, OneDM, mo_coeff = qcwrap.pyscf_rhf.scf( fock_sub, subTEI, dim, Nelec, P_ref, mf_method) P_imp = np.zeros([dim, dim],dtype = float) P_bath = np.zeros([dim, dim],dtype = float) NOcc = Nelec//2 for i in range(NOcc): isimp = classify_orb(mo_coeff[:,i],dim_imp) P_tmp = 2.0*np.outer(mo_coeff[:,i], mo_coeff[:,i]) if isimp : P_imp = P_imp + P_tmp else : P_bath = P_bath + P_tmp print ("Ne_imp = ", np.sum(np.diag(P_imp))) print ("Ne_bath = ", np.sum(np.diag(P_bath))) print ("|P_imp + P_bath - P_ref| = ", np.linalg.norm(P_imp+P_bath-P_ref)) return (P_imp,P_bath) def classify_orb(orb,dim_imp): sum_imp = 0.0 for i in range(dim_imp): sum_imp += orb[i]*orb[i] print (sum_imp) sum_bath = 1.0-sum_imp if(sum_imp > sum_bath): return True else: return False def build_Pimp(occ,loc2sub,tokeep_imp,dim): occ_loc = np.zeros([dim],dtype=float) occ_loc[:tokeep_imp] = occ[:tokeep_imp] Pimp_loc = np.dot( np.dot( loc2sub, np.diag( occ_loc ) ), loc2sub.T ) return Pimp_loc def build_core(occ,loc2sub,idx_imp): core_cutoff = 0.01 occ_frag = np.zeros( len(occ) ,dtype = float) NOrb_imp = 0 for cnt in range(len(occ)): if ( occ[ cnt ] < core_cutoff ): occ[ cnt ] = 0.0 elif ( occ[ cnt ] > 2.0 - core_cutoff ): occ[ cnt ] = 2.0 if(cnt < idx_imp): NOrb_imp += 1 occ_frag[cnt] = 2.0 else: print ("environment orbital occupation = ", occ[ cnt ]) raise Exception("subspace construction failed!") Nelec_core = int(round(np.sum( occ ))) core1PDM_loc = np.dot( np.dot( loc2sub, np.diag( occ ) ), loc2sub.T ) frag_core1PDM_loc = np.dot( np.dot( loc2sub, np.diag( occ_frag ) ), loc2sub.T ) return (core1PDM_loc, Nelec_core, NOrb_imp, frag_core1PDM_loc) def construct_subspace(ints,mol_frag,mol_env,OneDM, impurityOrbs, threshold=1e-13, dim_bath = None, dim_imp = None): ''' Subspace construction OneDM is in local orbital representation ''' numImpOrbs = np.sum( impurityOrbs ) numTotalOrbs = len( impurityOrbs ) impOrbs = impurityOrbs.copy() impOrbs = np.matrix(impOrbs) if (impOrbs.shape[0] > 1): impOrbs = impOrbs.T isImp = np.dot( impOrbs.T , impOrbs ) == 1 imp1RDM = np.reshape( OneDM[ isImp ], ( numImpOrbs , numImpOrbs ) ) eigenvals_imp, eigenvecs_imp = fix_virt(ints, mol_frag, imp1RDM, numImpOrbs,numTotalOrbs, threshold) tmp = [] for i in range(numImpOrbs): if(eigenvals_imp[i] < threshold): eigenvals_imp[i] = 0.0 elif(eigenvals_imp[i] > 2.0 - threshold): eigenvals_imp[i] = 2.0 tmp.append(i) if(len(tmp) == 0): tmp.append(numImpOrbs-1) last_imp_orb = -1 for i in range(tmp[0],-1,-1): if(eigenvals_imp[i] > 1.99): last_imp_orb = i break if(last_imp_orb == -1): tokeep_imp = np.sum( -np.maximum( -eigenvals_imp, eigenvals_imp - 2.0 ) > threshold ) else: tokeep_imp = last_imp_orb + 1 print ("occ_imp") print (eigenvals_imp) #print eigenvecs_imp ############################################### embeddingOrbs = 1 - impurityOrbs embeddingOrbs = np.matrix( embeddingOrbs ) if (embeddingOrbs.shape[0] > 1): embeddingOrbs = embeddingOrbs.T # Now certainly row-like matrix (shape = 1 x len(vector)) isEmbedding = np.dot( embeddingOrbs.T , embeddingOrbs ) == 1 numEmbedOrbs = np.sum( embeddingOrbs ) embedding1RDM = np.reshape( OneDM[ isEmbedding ], ( numEmbedOrbs , numEmbedOrbs ) ) eigenvals_bath, eigenvecs_bath = fix_virt(ints, mol_frag, embedding1RDM, numEmbedOrbs,numTotalOrbs, threshold) for i in range(numEmbedOrbs): if(eigenvals_bath[i] < threshold): eigenvals_bath[i] = 0.0 elif(eigenvals_bath[i] > 2.0-threshold): eigenvals_bath[i] = 2.0 #if (tokeep_bath > tokeep_imp): # print "Throwing out ", tokeep_bath - tokeep_imp, "bath orbitals" # tokeep_bath = tokeep_imp tokeep_bath = tokeep_imp #keep all bath orbitals if(dim_bath is not None): tokeep_bath = min(dim_bath, numTotalOrbs - numImpOrbs) tokeep_imp = min(dim_bath,numImpOrbs) if(dim_imp is not None): tokeep_imp = min(dim_imp,numImpOrbs) print ("occ_bath") print (eigenvals_bath) #print eigenvecs_bath #tokeep_imp = numImpOrbs #keep all imp orbitals in the active space if(tokeep_imp < numImpOrbs): frozenEigVals_imp = -eigenvals_imp[tokeep_imp:] frozenEigVecs_imp = eigenvecs_imp[:,tokeep_imp:] idx = frozenEigVals_imp.argsort() eigenvecs_imp[:,tokeep_imp:] = frozenEigVecs_imp[:,idx] frozenEigVals_imp = -frozenEigVals_imp[idx] eigenvals_imp[tokeep_imp:] = frozenEigVals_imp frozenEigVals_bath = -eigenvals_bath[tokeep_bath:] frozenEigVecs_bath = eigenvecs_bath[:,tokeep_bath:] idx = frozenEigVals_bath.argsort() eigenvecs_bath[:,tokeep_bath:] = frozenEigVecs_bath[:,idx] frozenEigVals_bath = -frozenEigVals_bath[idx] eigenvals_bath[tokeep_bath:] = frozenEigVals_bath #print eigenvals_bath #print eigenvecs_bath loc2sub = eigenvecs_bath for counter in range(0, numImpOrbs): loc2sub = np.insert(loc2sub, counter, 0.0, axis=1) #Stack columns with zeros in the beginning counter = 0 for counter2 in range(0, numTotalOrbs): if ( impurityOrbs[counter2] ): loc2sub =
np.insert(loc2sub, counter2, 0.0, axis=0)
numpy.insert
import numpy as np from scipy import interpolate,signal import matplotlib.pyplot as plt import math from scipy.io import wavfile import timeit class FDSAF: def __init__( self,filterlen): self.M = filterlen #self.w_f = np.fft.fft(np.concatenate((np.ones(1),np.zeros(2*self.M-1)))) self.w_f = np.fft.fft(np.zeros(2*self.M)) #self.w_f = np.fft.fft(np.concatenate((np.ones(self.M)/self.M,np.zeros(self.M)))) self.last_buffer = np.zeros(self.M, dtype='float') self.Cm = np.matrix(0.5 * np.array([[-1,3,-3,1], # Row major [2,-5,4,-1], [-1,0,1,0], [0,2,0,0]])) # Based on paper example 1 self.mu_w = 0.001 self.mu_q = 0.001 self.delta_x = 0.2 self.ordinates = np.arange(-2.2,2.3,self.delta_x) self.abscissas = np.arange(-2.2,2.3,self.delta_x) # Only for graphing self.N = len(self.ordinates)-1 self.e = 0 # For sample-wise filtering #self.w = np.concatenate((np.ones(1),np.zeros(self.M-1))) self.w = np.zeros(self.M) self.single_buffer = np.zeros(self.M) def est(self, x, d): if len(x) != self.M or len(d) != self.M: print("Wrong input length") exit() full_buffer = np.concatenate((self.last_buffer,x)) x_f = np.fft.fft(full_buffer) s = np.fft.ifft(x_f*self.w_f)[-self.M:] UT = [] UdotT = [] QT = [] IT = [] for j in range(self.M): i_j = int(np.floor(s[j].real/self.delta_x) + (self.N/2)) u_j = s[j].real/self.delta_x - np.floor(s[j].real/self.delta_x) u = [math.pow(u_j,3),math.pow(u_j,2),u_j,1] udot = [3*math.pow(u_j,2),2*u_j,1,0] if (abs(s[j])>2.0): q = np.asarray([(y-11)*self.delta_x for y in range(i_j-1,i_j+3)]) IT.append([-1,-1,-1,-1]) else: q = np.asarray(list(self.ordinates[i_j-1:i_j+3])) IT.append([i_j-1,i_j,i_j+1,i_j+2]) UT.append(u) UdotT.append(udot) QT.append(q) Um = np.matrix(UT).T Udotm = np.matrix(UdotT).T Qm = np.matrix(QT).T Im = np.matrix(IT).T y = np.matmul(self.Cm,Qm) y = np.multiply(y, Um) y = np.asarray(y) y = np.sum(y, axis=0) self.e = d - y deltadot = np.matmul(self.Cm,Qm) deltadot = np.multiply(deltadot,Udotm) deltadot = np.asarray(deltadot) deltadot = np.sum(deltadot,axis=0) e_s = np.multiply(deltadot/self.delta_x,self.e) e_f = np.fft.fft(np.concatenate((np.zeros(self.M),e_s))) deltaW = np.fft.ifft(np.multiply(e_f,np.conjugate(x_f)))[:self.M] self.w_f = self.w_f + self.mu_w * np.fft.fft(np.concatenate((deltaW,np.zeros(self.M)))) temp = np.asarray(np.matmul(self.Cm.T,Um)) deltaq = self.mu_q * self.e * temp Qm = Qm + deltaq Qm = np.reshape(Qm,-1) Im = np.reshape(Im,-1) deltaq = np.reshape(deltaq,-1) for i in range(np.shape(Im)[1]): if Im[0,i] != -1: self.ordinates[Im[0,i]] += deltaq[i] self.last_buffer = x return y def estsingle(self, x, d): # Filter self.single_buffer[1:] = self.single_buffer[:-1] self.single_buffer[0] = x s = np.dot(self.single_buffer,self.w) i_j = int(np.floor(s/self.delta_x) + (self.N/2)) u_j = s/self.delta_x - np.floor(s/self.delta_x) u = np.asarray([math.pow(u_j,3),math.pow(u_j,2),u_j,1]) udot = np.asarray([3*math.pow(u_j,2),2*u_j,1,0]) if (abs(s)>2.0): q = np.asarray([(y-11)*self.delta_x for y in range(i_j-1,i_j+3)]) else: q = np.asarray(list(self.ordinates[i_j-1:i_j+3])) y = np.matmul(u,self.Cm) y = np.matmul(y, q) y = float(y) self.e = d - y # Train filter deltaw = np.matmul(self.mu_w*self.e*udot,self.Cm) deltaw = float(np.matmul(deltaw, q)) self.w = self.w + deltaw*self.single_buffer if abs(s) <= 2.0: deltaq =
np.matmul(self.mu_q*self.e*self.Cm.T,u)
numpy.matmul
# -*- coding: utf-8 -*- ############################################################# # Copyright (c) 2020-2021 <NAME> # # # # This software is open-source and is distributed under the # # BSD 3-Clause "New" or "Revised" License # ############################################################# """functions to check if everything is going OK""" import mdtraj import numpy as np from scipy.spatial import ConvexHull # pylint: disable=no-name-in-module def _in_ellipsoid(X, center, rotation_matrix, radii): """private""" X = X.copy() X -= center X = rotation_matrix @ X x = X[0] y = X[1] z = X[2] result = (x / radii[0])**2 + (y / radii[1])**2 + (z / radii[2])**2 if result >= -1 and result <= 1: # pylint: disable=chained-comparison return True return False def get_atoms_in_pocket(ligand, pocket, pdb_file, top=None, make_molecules_whole=False): """Get the number of ligand atoms in the given pocket Parameters ----------- ligand : str or list(int) a mdtraj selection string or a list of atom indexes (0 indexed) pocket : str or list(int) a mdtraj selection string or a list of atom indexes (0 indexed) pdb_file : str or path or list(str or path) or mdtraj.Trajectory the path to any structure file supported by mdtraj.load (pdb, gro, ...) or a mdtraj.Trajectory top : str or path, optional this is the top keywor argument in mdtraj.load it is only needed if the structure file `pdb_file` doesn't contain topology information make_molecules_whole : bool, optional, default=False if True make_molecules_whole() method will be called on the mdtraj trajectory, I suggest not to use this option and to give whole molecules as input Notes ---------- This function uses mdtraj to parse the files Then creates a hollow hull with ```scipy.spatial.ConvexHull``` Then fits is with an arbitrary ellipsoid If at least `n_atoms_inside` atoms are inside the ellipsoid the ligand is still in the pocket Returns ----------- int or list(int) the number of atoms in the pocket if more than a frame was given it will be a list """ if isinstance(pdb_file, mdtraj.Trajectory): traj = pdb_file else: if isinstance(pdb_file, str) or not hasattr(pdb_file, '__iter__'): pdb_file = [pdb_file] #mdtraj can't manage Path objects pdb_file = [str(i) for i in pdb_file] if top is None: # For a more omogeneus mdtraj.load function call top = pdb_file[0] else: top = str(top) traj = mdtraj.load(pdb_file, top=top) #want only positive coordinates if make_molecules_whole: traj.make_molecules_whole(inplace=True) if isinstance(ligand, str): ligand = traj.top.select(ligand) if isinstance(pocket, str): pocket = traj.top.select(pocket) ligand_coord = traj.atom_slice(ligand).xyz pocket_coord = traj.atom_slice(pocket).xyz #free memory del traj del ligand del pocket atoms_in_pocket_list = [] for ligand_frame, pocket_frame in zip(ligand_coord, pocket_coord): atoms_in_pocket = 0 convex_hull_obj = ConvexHull(pocket_frame) convex_hull = convex_hull_obj.points[convex_hull_obj.vertices] center, rotation_matrix, radii, _ = ellipsoid_fit(convex_hull) for atom in ligand_frame: if _in_ellipsoid(atom, center, rotation_matrix, radii): atoms_in_pocket += 1 atoms_in_pocket_list.append(atoms_in_pocket) # I have a memory leak I couldn't # identify maybe this helps del convex_hull del convex_hull_obj if len(atoms_in_pocket_list) == 1: return atoms_in_pocket_list[0] return atoms_in_pocket_list def check_ligand_in_pocket(ligand, pocket, pdb_file, n_atoms_inside=1, top=None, make_molecules_whole=False): """Check if the ligand is in the pocket If you used some kind of enhanced sampling before the FSDAM or sometimes a simple equilibration the ligand may exit the binding pocket and therefore you want to discard the frames relative to this unwanted exits Parameters ----------- ligand : str or list(int) a mdtraj selection string or a list of atom indexes (0 indexed) pocket : str or list(int) a mdtraj selection string or a list of atom indexes (0 indexed) pdb_file : str or path or list(str or path) the path to any structure file supported by mdtraj.load (pdb, gro, ...) n_atoms_inside : int, optional, default=1 how many atoms of the ligand shall be inside the pocket to be considered in the pocket. With the default 1 if at leas one atom of the ligand is in the defined pocket the ligand is considered inside top : str or path, optional this is the top keywor argument in mdtraj.load it is only needed if the structure file `pdb_file` doesn't contain topology information make_molecules_whole : bool, optional, default=False if True make_molecules_whole() method will be called on the mdtraj trajectory, I suggest not to use this option and to give whole molecules as input Notes ---------- This function uses mdtraj to parse the files Then creates a hollow hull with ```scipy.spatial.ConvexHull``` Then fits is with an arbitrary ellipsoid If at least `n_atoms_inside` atoms are inside the ellipsoid the ligand is still in the pocket Returns ----------- bool or list(bool) True if the ligand is in the pocket False if the ligand is outside the pocket If you gave a list of structures as input you it will return a list of bool """ atoms_in_pocket_list = get_atoms_in_pocket( ligand=ligand, pocket=pocket, pdb_file=pdb_file, top=top, make_molecules_whole=make_molecules_whole) if not hasattr(atoms_in_pocket_list, '__iter__'): atoms_in_pocket_list = [atoms_in_pocket_list] is_in_pocket = [] for atoms_in_pocket in atoms_in_pocket_list: if atoms_in_pocket < n_atoms_inside: is_in_pocket.append(False) else: is_in_pocket.append(True) if len(is_in_pocket) == 1: return is_in_pocket[0] return is_in_pocket # https://github.com/aleksandrbazhin/ellipsoid_fit_python/blob/master/ellipsoid_fit.py # http://www.mathworks.com/matlabcentral/fileexchange/24693-ellipsoid-fit # for arbitrary axes # (Under MIT license) def ellipsoid_fit(X): """fits an arbitrary ellipsoid to a set of points """ x = X[:, 0] y = X[:, 1] z = X[:, 2] D = np.array([ x * x + y * y - 2 * z * z, x * x + z * z - 2 * y * y, 2 * x * y, 2 * x * z, 2 * y * z, 2 * x, 2 * y, 2 * z, 1 - 0 * x ]) d2 = np.array(x * x + y * y + z * z).T # rhs for LLSQ u = np.linalg.solve(D.dot(D.T), D.dot(d2)) a = np.array([u[0] + 1 * u[1] - 1]) b = np.array([u[0] - 2 * u[1] - 1]) c = np.array([u[1] - 2 * u[0] - 1]) v =
np.concatenate([a, b, c, u[2:]], axis=0)
numpy.concatenate
# from __future__ import division #------------------------------------- # # Started at 06/08/2018 (YuE) # # This script based on the previous script # threeApproachesComparison_v6.py # ## Upgraded version of python (python3.4): script was rewritten to take into # account some differences in the descriptions and using of some functions # (version cma_v3 and more earlier scripts are written under python2). # # 07/24/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # # But nevertheless, the dependences of the transmitted energy on the impact # parameter are close to the inverse quadratic (as it should be!) at all velocities. # # 07/27/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # The investigation of that is in progress. # # Some features were improved, some figures were corrected. # #------------------------------------- #======================================================== # # This code compairs two approaches: "classical" (from [1]) and # "magnus" (from [2]). # # For "classical" approach the magnetized interaction between ion # and electron is considered for ion velocities V_i > rmsTrnsvVe. # # References: # # [1] <NAME>, <NAME>, <NAME>, <NAME>. # "Physics guide of BETACOOL code. Version 1.1". C-A/AP/#262, November # 2006, Brookhaven National Laboratory, Upton, NY 11973. # [2] <NAME>, <NAME>. "New Algorithm for Dynamical Friction # of Ions in a Magnetized Electron Beam". AIP Conf. Proc. 1812, 05006 (2017). # #======================================================== ######################################################### # # Main issues of the calculations: # # 1) Friction force (FF) is calculated in the (P)article (R)est (F)rame, # i.e. in the frame moving together with both (cooled and cooling) # beams at a velocity V0; # 2) Friction force is calculated for each value of ion velocity # in the interval from .1*rmsTrnsvVe till 10*rmsTrnsvVe; # 3) Initially assumped that all electrons have a logitudinal # velocity rmsLongVe and transversal velocity rmsTrnsvVe; # 4) For each ion velocity the minimal and maximal values of the # impact parameter are defined. Radius of the shielding of the # electric field of the ion equals to the value of the maximal # impact parameter; # 5) For each impact parameter in the interval from minimal till # maximal values the transfered momenta deltap_x,y,z are # calculated; # 6) Founded transfered momenta allow to calculate the transfered # energy delta_E =deltap^2/(2*m_e) and to integrate it over # impact parameter; then (expressions (3.4), (3.5) from [1]): # FF =-2*pi*n_e*integral_rhoMin^rhoMax delta_E*rho*drho; # 7) For taking into account the velocity distribution of the # electrons it is necessary to repeat these calculations for # each value of the electron's velocity and then integrate result # over distribution of the velocities. # # 10/26/2018: # # 8) Item 6 is wrong and correct expression for transfered # energy delta_E will be used; # 9) Method (my own) Least Squares Method - LSM is used to fit the # dependence of transferred momenta on impact parameter; # # # 11/08/2018: # # 10) Two functions ('fitting' and 'errFitAB' are defined to realize # my LSM to find the parameters of the fitting end error of this # fitting; # # 11) Analys of different dependeces between values; graphical # presentation of these dependences; # ######################################################### import os, sys import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm from matplotlib import ticker from matplotlib import markers import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D import scipy.integrate as integrate from scipy.integrate import quad, nquad, dblquad from scipy.constants import pi from scipy import optimize from statistics import mean from array import array # # All physical constants have its dimension in units in the system CI. # This code uses units in the system CGS! # from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB pi=3.14159265358 # # Physical constants: # m_e=9.10938356e-28 # electron mass, g m_elec=m_e # to keep variable from previous script m_p=1.672621898e-24 # electron mass, g M_ion = m_p # to keep variable from previous script q_e=4.803204673e-10 # electron charge, CGSE unit: sqrt(g*cm^3/sec^2) q_elec=q_e # to keep variable from previous script Z_ion = q_e # to keep variable from previous script cLight=2.99792458e10 # speed of light, cm/sec eVtoErg=1.6021766208e-12 # 1 eV = 1.6...e-12 erg CtoPart=2.99792458e9 # 1 C = 1 A*sec = 2.9...e9 particles m_e_eV = m_e*cLight**2/eVtoErg # # Electron beam parameters: # Ekin=3.0e4 # kinetic energy, eV curBeam=0.5 # current density, A/cm^2 dBeam=3.0 # beam diameter, cm angSpread=3.0 # angular spread, mrad trnsvT=0.5 # transversal temperature, eV longT=2.0e-4 # longitudinal temperature, eV (was 2.0e-4) nField=1 # number ov values of the magnetic field fieldB=np.zeros(nField) # magnetic field fieldB[0]=3.e3 # Gs omega_p=1.0e9 # plasma frequency, 1/sec n_e=omega_p**2*m_e/(4.*pi*q_e**2) # plasma density, 3.1421e+08 cm-3 n_e1=8.e7 # plasma density, cm-3 omega_p1=np.sqrt(4.*pi*n_e1*q_e**2/m_e) # plasma frequency, 5.0459e+08 1/s # # Cooling system parameter: # coolLength=150.0 # typical length of the coolong section, cm # # HESR: # Ekin=90.8e4 # HESR kinetic energy, eV curBeam=0.5 # HESR current beam, A dBeam=2.0 # HESR beam diameter, cm angSpread=0.0 # HESR angular spread, mrad trnsvT=0.2 # HESR transversal temperature, eV longT=1.0e-2 # HESR longitudinal temperature, eV (was 2.0e-4) fieldB[0]=1.e3 # HESR, Gs coolLength=270.0 # HESR typical length of the coolong section, cm # # EIC: # angSpread=0.0 # EIC angular spread, mrad fieldB[0]=5.e4 # EIC, Gs coolLength=300.0 # EIC typical length of the coolong section, cm # # Calculated parameters of the electron beam: # V0 = cLight*np.sqrt(Ekin/m_e_eV*(Ekin/m_e_eV+2.))/(Ekin/m_e_eV+1.) print ('V0 =%e' % V0) tetaV0=0. # angle between V0 and magnetic field, rad B_mag=fieldB[0]*np.cos(tetaV0) # magnetic field acting on an electron, Gs rmsTrnsvVe=np.sqrt(2.*trnsvT*eVtoErg/m_e) # RMS transversal velocity, cm/s rmsLongVe=np.sqrt(2.*longT*eVtoErg/m_e) # RMS longitudinal velocity, cm/s # HESR: dens=curBeam*(CtoPart/q_e)/(pi*(.5*dBeam)**2*V0) # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('HESR: dens = %e,omega_p = %e' % (dens,omega_p)) # EIC: rmsLongVe = 1.0e+7 # cm/s longT = .5*m_e*rmsLongVe**2/eVtoErg rmsTrnsvVe = 4.2e+7 # cm/s trnsvT = .5*m_e*rmsTrnsvVe**2/eVtoErg print ('EIC: rmsLongVe = %e, longT = %e, rmsTrnsvVe = %e, trnsvT = %e' % \ (rmsLongVe,longT,rmsTrnsvVe,trnsvT)) dens=2.e9 # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('EIC: dens = %e,omega_p = %e' % (dens,omega_p)) cyclFreq=q_e*B_mag/(m_e*cLight) # cyclotron frequency, 1/s rmsRoLarm=rmsTrnsvVe*cyclFreq**(-1) # RMS Larmor radius, cm dens=omega_p**2*m_e/(4.*pi*q_e**2) # density, 1/cm^3 likeDebyeR=(3./dens)**(1./3.) # "Debye" sphere with 3 electrons, cm eTempTran=trnsvT # to keep variable from previous script eTempLong=longT # to keep variable from previous script coolPassTime=coolLength/V0 # time pass through cooling section, cm thetaVi=0. # polar angle ion and cooled electron beams, rad phiVi=0. # azimuth angle ion and cooled electron beams, rad powV0=round(np.log10(V0)) mantV0=V0/(10**powV0) pow_n_e=round(np.log10(n_e)) mant_n_e=n_e/(10**pow_n_e) # # Formfactor ffForm for friction force: # # ffForm = 2*pi*dens*q_e**4/(m_e*V0**2)= # = 0.5*omega_p**2*q_e**2/V0**2 # # Dimension of ffForm is force: g*cm/sec**2=erg/cm # # 1 MeV/m = 1.e6*eVtoErg/100. g*cm/sec**2 = 1.e4*eVtoErg erg/cm MeV_mToErg_cm=1.e4*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/MeV_mToErg_cm # MeV/m eV_mToErg_m=100.*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/eV_mToErg_m # =-6.8226e-12 eV/m eV_mInErg_cm=100.*eVtoErg ffForm=-.5*omega_p**2*q_e**2/V0**2/eVtoErg # =-6.8226e-10 eV/cm ffForm=100.*ffForm # =-6.8226e-08 eV/m ergToEV = 1./1.60218e-12 # # Relative velocities of electrons: # relVeTrnsv=rmsTrnsvVe/V0 relVeLong=rmsLongVe/V0 print ('V0=%e cm/s, rmsTrnsvVe=%e cm/s (rel = %e), rmsLongVe=%e cm/s (rel = %e)' % \ (V0,rmsTrnsvVe,relVeTrnsv,rmsLongVe,relVeLong)) # Indices: (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) stepsNumberOnGyro = 25 # number of the steps on each Larmour period ''' # # Opening the input file: # inputFile='areaOfImpactParameter_tAC-v6_fig110.data' print ('Open input file "%s"...' % inputFile) inpfileFlag=0 try: inpfile = open(inputFile,'r') inpfileFlag=1 except: print ('Problem to open input file "%s"' % inputFile) if inpfileFlag == 1: print ('No problem to open input file "%s"' % inputFile) lines=0 # Number of current line from input file dataNumber=0 # Number of current value of any types of Data xAboundary=np.zeros(100) xBboundary=np.zeros(100) while True: lineData=inpfile.readline() # print ('line=%d: %s' % (lines,lineData)) if not lineData: break lines += 1 if lines > 4: words=lineData.split() nWords=len(words) # print ('Data from %d: words=%s, number of entries = %d' % (lines,words,nWords)) xAboundary[dataNumber]=float(words[0]) xBboundary[dataNumber]=float(words[1]) dataNumber += 1 inpfile.close() print ('Close input file "%s"' % inputFile) ''' #==================================================================== # #------------------ Begin of defined functions ----------------------- # # Larmor frequency electron: # def omega_Larmor(mass,B_mag): return (q_elec)*B_mag/(mass*clight*1.e+2) # rad/sec # # Derived quantities: # omega_L = omega_Larmor(m_elec,B_mag) # rad/sec T_larm = 2*pi/omega_L # sec timeStep = T_larm/stepsNumberOnGyro # time step, sec print ('omega_Larmor= %e rad/sec, T_larm = %e sec, timeStep = %e sec' % \ (omega_L,T_larm,timeStep)) nLarmorAvrgng=10 # number of averaged Larmor rotations # # Data to integrate transferred momemta over the track: # timeStep_c=nLarmorAvrgng*stepsNumberOnGyro*timeStep # sec print ('timeStep_c = %e s' % timeStep_c) eVrmsTran = np.sqrt(2.*eTempTran*eVtoErg/m_elec) # cm/sec eVrmsLong = np.sqrt(2.*eTempLong*eVtoErg/m_elec) # cm/sec kinEnergy = m_elec*(eVrmsTran**2+eVrmsLong**2)/2. # kinetic energy; erg print ('eVrmsTran = %e cm/sec, eVrmsLong = %e cm/sec, kinEnergy = %e eV' % \ (eVrmsTran,eVrmsLong,ergToEV*kinEnergy)) ro_larmRMS = eVrmsTran/omega_L # cm print ('ro_larmRMS =%e mkm' % (1.e4*ro_larmRMS)) # # Electrons are magnetized for impact parameter >> rhoCrit: # rhoCrit=math.pow(q_elec**2/(m_elec*omega_L**2),1./3) # cm print ('rhoCrit (mkm) = ' , 1.e+4*rhoCrit) # # Convertion from 6-vector of relectron's "coordinates" to 6-vector # of guiding-center coordinates: # z_e=(x_e,px_e,y_e,py_e,z_e,pz_e) --> zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e); # def toGuidingCenter(z_e): mOmega=m_elec*omega_L # g/sec zgc_e=z_e.copy() # 6-vector zgc_e[Ix] = np.arctan2(z_e[Ipx]+mOmega*z_e[Iy],z_e[Ipy]) # radians zgc_e[Ipx]= (((z_e[Ipx]+mOmega*z_e[Iy])**2+z_e[Ipy]**2)/(2.*mOmega)) # g*cm**2/sec zgc_e[Iy] =-z_e[Ipx]/mOmega # cm zgc_e[Ipy]= z_e[Ipy]+mOmega*z_e[Ix] # g/sec return zgc_e # # Convertion from 6-vector of guiding-center coordinates to 6-vector # of electron's "coordinates": # zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e) --> z_e=(x_e,px_e,y_e,py_e,z_e,pz_e); # def fromGuidingCenter(zgc_e): mOmega=m_elec*omega_L # g/sec rho_larm=np.sqrt(2.*zgc_e[Ipx]/mOmega) # cm z_e = zgc_e.copy() # 6-vector z_e[Ix] = zgc_e[Ipy]/mOmega-rho_larm*np.cos(zgc_e[Ix]) # cm z_e[Ipx]=-mOmega*zgc_e[Iy] # g*cm/sec z_e[Iy] = zgc_e[Iy]+rho_larm*np.sin(zgc_e[Ix]) # cm z_e[Ipy]= mOmega*rho_larm*np.cos(zgc_e[Ix]) # g*cm/sec return z_e # # Matrix to dragg electron through the solenoid with field 'B_mag' # during time interval 'deltaT': # def solenoid_eMatrix(B_mag,deltaT): slndMtrx=np.identity(6) omega_L=omega_Larmor(m_elec,B_mag) # rad/sec mOmega= m_elec*omega_L # g/sec phi=omega_L*deltaT # phase, rad cosPhi=math.cos(phi) # dimensionless sinPhi=math.sin(phi) # dimensionless cosPhi_1=2.*math.sin(phi/2.)**2 # dimensionless slndMtrx[Iy, Iy ]= cosPhi # dimensionless slndMtrx[Ipy,Ipy]= cosPhi # dimensionless slndMtrx[Iy, Ipy]= sinPhi/mOmega # sec/g slndMtrx[Ipy,Iy ]=-mOmega*sinPhi # g/sec slndMtrx[Iz, Ipz]= deltaT/m_elec # sec/g slndMtrx[Ix, Ipx]= sinPhi/mOmega # sec/g slndMtrx[Ix, Iy ]= sinPhi # dimensionless slndMtrx[Ix, Ipy]= cosPhi_1/mOmega # sec/g slndMtrx[Iy, Ipx]=-cosPhi_1/mOmega # sec/g slndMtrx[Ipy,Ipx]=-sinPhi # dimensionless return slndMtrx # # Matrix to dragg particle through the drift during time interval 'deltaT': # def drift_Matrix(M_prtcl,deltaT): driftMtrx = np.identity(6) for i in (Ix,Iy,Iz): driftMtrx[i,i+1]=deltaT/M_prtcl # sec/g return driftMtrx # # Matrix to dragg electron in the "guiding center" system during time interval 'deltaT': # def guidingCenter_Matrix(deltaT): gcMtrx = np.identity(6) gcMtrx[Iz,Ipz]=deltaT/m_elec # sec/g return gcMtrx # # Description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron: # def guidingCenterCollision(vectrElec_gc,vectrIon,deltaT): dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3/2) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec b_gc=np.sqrt((vectrIon[0]-x_gc)**2+ \ (vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-dpFactor_gc*deltaT*(vectrIon[0]-x_gc)/b_gc**3 dpIon[1]=-dpFactor_gc*deltaT*(vectrIon[2]-vectrElec_gc[2])/b_gc**3 dpIon[2]=-dpFactor_gc*deltaT*(vectrIon[4]-vectrElec_gc[4])/b_gc**3 dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,b_gc # # "Magnus expansion" description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron and electron y_gc coordinate # as well calculated parameters C1,C2,C3,b,D1,D2,q for testing: # def MagnusExpansionCollision(vectrElec_gc,vectrIon,deltaT): # print ('Ion: x=%e, y=%e, z=%e' % (vectrIon[0],vectrIon[2],vectrIon[4])) # print ('Electron: x=%e, y=%e, z=%e' % # (vectrElec_gc[0],vectrElec_gc[4],vectrElec_gc[4])) dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3./2.) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec # C1=np.sqrt((vectrIon[0]-x_gc)**2+ \ # (vectrIon[2]-vectrElec_gc[2])**2+ \ # (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm^2 C1=(vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm # cm^2 C2=2.*((vectrIon[0]-x_gc)*vectrIon[1]/M_ion+ \ (vectrIon[2]-vectrElec_gc[2])*vectrIon[3]/M_ion+ \ (vectrIon[4]-vectrElec_gc[4])* \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)) # cm^2/sec C3=(vectrIon[1]/M_ion)**2+(vectrIon[3]/M_ion)**2+ \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)**2 # cm^2/sec^2 b=np.sqrt(C1+C2*deltaT+C3*deltaT**2) # cm D1=(2.*C3*deltaT+C2)/b-C2/np.sqrt(C1) # cm/sec D2=(C2*deltaT+2.*C1)/b-2.*np.sqrt(C1) # cm q=4.*C1*C3-C2**2 # cm^4/sec^2 # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-2.*dpFactor_gc/q*((vectrIon[0]-x_gc)*D1-vectrIon[1]/M_ion*D2) dpIon[1]=-2.*dpFactor_gc/q*((vectrIon[2]-vectrElec_gc[2])*D1- \ vectrIon[3]/M_ion*D2) dpIon[2]=-2.*dpFactor_gc/q*((vectrIon[4]-vectrElec_gc[4])*D1- \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)*D2) dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] dy_gc=dpIon[0]/mOmegaLarm # cm # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,dy_gc,C1,C2,C3,b,D1,D2,q # # Minimized functional (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # Funcional = {log10(funcY) - [fitB*log10(argX) + fitA]}^2 # def fitting(nPar1,nPar2,argX,funcY): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) for i in range(nVion): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) sumFuncY = np.zeros(nPar2) sumArgXfuncY= np.zeros(nPar2) fitA = np.zeros(nPar2) fitB = np.zeros(nPar2) for i in range(nPar2): for n in range(nPar1): sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 sumFuncY[i] += log10funcY[n,i] sumArgXfuncY[i] += log10argX[n,i]*log10funcY[n,i] delta = sumArgX[i]**2-nPar1*sumArgX2[i] fitA[i] = (sumArgX[i]*sumArgXfuncY[i]-sumArgX2[i]*sumFuncY[i])/delta fitB[i] = (sumArgX[i]*sumFuncY[i]-nPar1*sumArgXfuncY[i])/delta # print ('fitA(%d) = %e, fitB(%d) = %e' % (i,fitA[i],i,fitB[i])) argXfit = np.zeros((nPar1,nPar2)) funcYfit = np.zeros((nPar1,nPar2)) funcHi2 = np.zeros(nPar2) for i in range(nPar2): factorA = math.pow(10.,fitA[i]) for n in range(nPar1): argXfit[n,i] = math.pow(10.,log10argX[n,i]) funcYfit[n,i] = factorA*math.pow(argXfit[n,i],fitB[i]) funcHi2[i] += (np.log10(abs(funcY[n,i])) - np.log10(abs(funcYfit[n,i])))**2 return fitA,fitB,funcHi2,argXfit,funcYfit # # +-Errors for fitied parameters fitA and fitB: # def errFitAB(nPar1,nPar2,argX,funcY,fitA,fitB,funcHi2,errVar,errType): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) posErrFit = np.zeros(nPar2) negErrFit = np.zeros(nPar2) # return posErrFit,negErrFit stepA = 5.e-4*mean(funcHi2) stepB = 1.e-4*mean(funcHi2) # print ('errFitAB: mean(funcHi2) = %e, stepA = %e, stepB = %e' % (mean(funcHi2),stepA,stepB)) for i in range(nPar2): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); positive error) for %d' % (errVar,i)) break # print ('i=%d: fitParamtr = %e, funcHi2 = %e' % (i,fitParamtr[i], funcHi2[i])) curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] + k*stepA curFuncHi2 = 0. factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] + k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): posErrFit[i] = abs(curFitA - fitA[i]) else: posErrFit[i] = abs(curFitB - fitB[i]) func1sigma2 = funcHi2[i]/(nPar2-3) if (int(errVar) == 1): fitSigma = np.sqrt(sumArgX2[i]/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) else: fitSigma = np.sqrt(nPar2/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) if (int(errType) == 2): posErrFit[i] = fitSigma # if (int(errVar) == 1): # print ('i=%d: fitA = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); negative error) for %d' % (errVar,i)) break curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] - k*stepA factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] - k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): negErrFit[i] = abs(curFitA - fitA[i]) else: negErrFit[i] = abs(curFitB - fitB[i]) if (int(errType) == 2): negErrFit[i] = posErrFit[i] # if (errVar == 1): # print ('i=%d: fitA = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],negErrFit[i],funcHi2[i],k,curFuncHi2)) return posErrFit,negErrFit def fittedGKintegration(xMin,xMax,fitA,fitB): # # "Gauss-Kronrod" method of integration (GK) # # # Points (psi_i) and weigths (w_i) to integrate for interval from -1 to 1; # These data are from <NAME>. "Handbook of Mathematical Science". # 5th Edition, CRC Press, Inc, 1978. # # To integrate for interval from 0 to 1 it is necessary to change points # psi_i with points ksi_i=(1+psi_i)/2; # # For method with order N for function F(x): # int_(-1)^1 = sum_1^N [w_i* F(psi_i)]; # # In case of integration over interval from a to b: # int_(a)^b = (b-a)/2 * sum_1^N [w_i* F(x_i)], where # x_i = (b-a)*psi_i/2+(a+b)/2. # #---------------------------------------------------- # # Data for GK: # #---------------------------------------------------- nPoints_GK = 16 psi_16=np.array([-0.9894009, -0.9445750, -0.8656312, -0.7554044, -0.6178762, \ -0.4580168, -0.2816036, -0.0950125, 0.0950125, 0.2816036, \ 0.4580168, 0.6178762, 0.7554044, 0.8656312, 0.9445750, \ 0.9894009]) w_16 =np.array([ 0.0271525, 0.0622535, 0.0951585, 0.1246290, 0.1495960, \ 0.1691565, 0.1826034, 0.1894506, 0.1894506, 0.1826034, \ 0.1691565, 0.1495960, 0.1246290, 0.0951585, 0.0622535, \ 0.0271525]) y = np.zeros(nPoints_GK) yIntegrated = 0. for n in range(nPoints_GK): xCrrnt = psi_16[n]*(xMax-xMin)/2 + (xMax+xMin)/2. factorA = math.pow(10.,fitA) y[n] = factorA*math.pow(xCrrnt,fitB) yIntegrated += (xMax-xMin)*w_16[n]*y[n]*xCrrnt return y,yIntegrated #------------------ End of defined functions ----------------------- # #==================================================================== sphereNe=3. R_e=math.pow(sphereNe/n_e,1./3) # cm print ('R_e (cm)=%e' % R_e) ro_Larm = eVrmsTran/omega_L # cm print ('ro_Larm (cm)=%e' % ro_Larm) impctPrmtrMin=2.*ro_Larm # rhoDependenceFlag = 1 # skip calculation of rho dependence if = 0! #============ Important flags =========================== # # Taking into account the transfer of momenta for both particles # (for "classical" only): dpTransferFlag = 1 # no taking into account if = 0! # saveFilesFlag = 0 # no saving if = 0! # plotFigureFlag = 1 # plot if = 1! # #======================================================== nVion=50 Vion=np.zeros(nVion) VionLong=np.zeros(nVion) VionTrnsv=np.zeros(nVion) VionRel=np.zeros(nVion) vIonMin=4.e-3*eVrmsTran vIonMax=10.*eVrmsTran vIonMinRel=vIonMin/V0 vIonMaxRel=vIonMax/V0 print ('VionMin=%e (vIonMinRel=%e), vIonMax=%e (vIonMaxRel=%e)' % \ (vIonMin,vIonMinRel,vIonMax,vIonMaxRel)) vIonLogStep=math.log10(vIonMax/vIonMin)/(nVion-1) R_debye=np.zeros(nVion) R_pass=np.zeros(nVion) R_pass_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. impctPrmtrMax=np.zeros(nVion) impctPrmtrMax_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. for i in range(nVion): crrntLogVionRel=math.log10(vIonMinRel)+i*vIonLogStep VionRel[i]=math.pow(10.,crrntLogVionRel) Vion[i]=VionRel[i]*V0 VionLong[i]=Vion[i]*np.cos(thetaVi) VionTrnsv[i]=Vion[i]*np.sin(thetaVi) R_debye[i]=np.sqrt(Vion[i]**2+eVrmsTran**2+eVrmsLong**2)/omega_p R_pass[i]=np.sqrt(Vion[i]**2+eVrmsLong**2)*coolPassTime R_pass_1[i]=np.sqrt(Vion[i]**2+0.*eVrmsLong**2)*coolPassTime help=max(R_debye[i],R_e) impctPrmtrMax[i]=min(help,R_pass[i]) impctPrmtrMax_1[i]=min(help,R_pass_1[i]) #----------------------------------------------------------------- # Checking of corection of the maximal impact parameter on depence # of preset number of minimal Larmor turns # larmorTurnsMin=[10,20,30,40] impctPrmtrMaxCrrctd=np.zeros((nVion,4)) impctPrmtrMaxCrrctdRel=np.zeros((nVion,4)) for n in range (4): for i in range(nVion): impctPrmtrMaxCrrctd[i,n]=impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurnsMin[n]*eVrmsLong/omega_L/impctPrmtrMax[i])**2) impctPrmtrMaxCrrctdRel[i,n]=impctPrmtrMaxCrrctd[i,n]/impctPrmtrMax[i] # # First plotting: # if (plotFigureFlag == 0): fig10 = plt.figure(10) plt.semilogx(impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,0],'-r', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,1],'-b', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,2],'-g', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,3],'-m',linewidth=2) plt.grid(True) hold=True plt.xlabel('Maximal Impact parameter $R_{max}$, cm',color='m',fontsize=16) plt.ylabel('$R_{max}^{Crrctd}/R_{Max}$',color='m',fontsize=16) # plt.xlim([.9*min(impctPrmtrMax),1.1*max(impctPrmtrMax)]) plt.xlim([1.e-2,1.1*max(impctPrmtrMax)]) plt.ylim([.986,1.001]) titleHeader='$R_{max}^{Crrctd}=R_{Max} \cdot [1-(\pi\cdot N_{Larm} \cdot' titleHeader += '\Delta_{e||}/(\omega_{Larm} \cdot R_{max})]^{1/2}$' plt.title(titleHeader,color='m',fontsize=16) plt.legend([('$N_{Larm}=$%2d' % larmorTurnsMin[0]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[1]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[2]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[3])],loc='lower center',fontsize=14) if (saveFilesFlag == 1): fig10.savefig('picturesCMA/correctedRmax_fig10cma.png') print ('File "picturesCMA/correctedRmax_fig10cma.png" is written') xLimit=[.9*VionRel[0],1.1*VionRel[nVion-1]] # # Typs of collisions: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'Types of Collisions: $V_{e0}=%4.2f\cdot10^{%2d}$ cm/s, $B=%6.1f$ Gs' plt.title(titleHeader % (mantV0,powV0,fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,.0018,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-4,1.75e-3,'$R_{min}=2\cdot<rho_\perp>$',color='k',fontsize=16) plt.text(7.e-4,5.e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.85e-5,3.3e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(1.e-4,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(1.e-4,10.e-4,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.25e-5,.275,'Collisions are Screened',color='r',fontsize=20) plt.text(1.6e-5,1.e-3,'$ \cong 20\cdot R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') # # Picture for HESR: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'HESR Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(4.4e-4,8.4e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.e-4,8.4e-4,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.7e-6,3.4e-3,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(2.8e-4,.1,'$R_{max}$',color='k',fontsize=16) plt.text(1.e-4,1.8e-2,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(6.8e-5,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(2.3e-5,1.95e-3,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.e-5,.275,'Screened Collisions',color='r',fontsize=20) plt.text(3.58e-6,2.05e-3,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('HESRimpctPrmtr_fig3151cma.png') print ('File "HESRimpctPrmtr_fig3151cma.png" is written') # # Picture for EIC: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'EIC Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[5.e-5,.3] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(9.e-4,4.e-5,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.7e-4,3.e-5,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(6.3e-6,1.1e-4,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(1.e-4,2.1e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.57e-5,5.e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(2.3e-5,1.e-3,'Magnetized Collisions',color='r',fontsize=20) # plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(1.1e-5,5.7e-5,'Weak or Adiabatic or Fast Collisions',color='r',fontsize=16) plt.text(2.e-5,.15,'Screened Collisions',color='r',fontsize=20) plt.text(2.5e-3,1.7e-4,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('EICimpctPrmtr_fig3151cma.png') print ('File "EICimpctPrmtr_fig3151cma.png" is written') # plt.show() # sys.exit() # # Magnetized collisions: # if (plotFigureFlag == 0): fig209=plt.figure (209) plt.loglog(VionRel,R_debye,'-r',VionRel,R_pass,'-b', \ VionRel,R_pass_1,'--b',linewidth=2) plt.grid(True) hold=True plt.plot([VionRel[0],VionRel[nVion-1]],[R_e,R_e],color='m',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$R_{Debye}$, $R_{Pass}$, $R_e$, cm',color='m',fontsize=16) # titleHeader='Magnetized Collision: $R_{Debye}$, $R_{Pass}$, $R_e$: $V_{e0}=%5.3f\cdot10^{%2d}$cm/s' # plt.title(titleHeader % (mantV0,powV0),color='m',fontsize=16) plt.title('Magnetized Collisions: $R_{Debye}$, $R_{Pass}$, $R_e$',color='m',fontsize=16) plt.xlim(xLimit) yLimit=[1.e-3,10.] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.5e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,0.001175,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-5,2.45e-3,'$R_e$',color='k',fontsize=16) plt.text(3.e-5,5.e-2,'$R_{Debye}$',color='k',fontsize=16) plt.text(3.e-5,1.8e-2,'$R_{Pass}$',color='k',fontsize=16) plt.text(4.5e-5,4.8e-3,'$R_{Pass}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.text(8.3e-5,4.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) if (saveFilesFlag == 1): fig209.savefig('picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png') print ('File "picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png" is written') # # Coulomb logarithm evaluation: # clmbLog = np.zeros(nVion) for i in range(nVion): clmbLog[i] = math.log(impctPrmtrMax[i]/impctPrmtrMin) # clmbLog[i] = math.log(impctPrmtrMax_1[i]/impctPrmtrMin) if (plotFigureFlag == 0): fig3155=plt.figure (3155) plt.semilogx(VionRel,clmbLog,'-xr',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Coulomb Logarithm $L_c$',color='m',fontsize=14) plt.title('Coulomb Logarithm: $L_c$ = $ln(R_{max}/R_{min})$',color='m',fontsize=16) yLimit=[min(clmbLog)-.1,max(clmbLog)+.1] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.4e-5,5.,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3155.savefig('picturesCMA_v7/coulombLogrthm_fig3155cma.png') print ('File "picturesCMA_v7/coulombLogrthm_fig3155cma.png" is written') # # matrix for electron with .5*timeStep_c: # matr_elec_c=guidingCenter_Matrix(.5*timeStep_c) # # matrix for ion with mass M_ion and .5*timeStep_c: # matr_ion_c=drift_Matrix(M_ion,.5*timeStep_c) larmorTurns = 10 nImpctPrmtr = 50 rhoMin = impctPrmtrMin rhoMax = np.zeros(nVion) log10rhoMin = math.log10(rhoMin) crrntImpctPrmtr = np.zeros(nImpctPrmtr) halfLintr = np.zeros((nImpctPrmtr,nVion)) pointAlongTrack = np.zeros((nImpctPrmtr,nVion)) totalPoints = 0 for i in range(nVion): rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! # print ('rhoMax(%d) = %e' % (i,rhoMax[i])) log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # print (' rhoCrrnt(%d) = %e' % (n,rhoCrrnt)) halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm timeHalfPath = halfLintr[n,i]/eVrmsLong # 0.5 time of interaction; sec numbLarmor = int(2.*timeHalfPath/T_larm) pointAlongTrack[n,i] = int(2.*timeHalfPath/timeStep_c) totalPoints += pointAlongTrack[n,i] # print (' %d: rhoCrrnt = %e, numbLarmor = %d, pointAlongTrack = %d' % \ # (n,rhoCrrnt,numbLarmor,pointAlongTrack[n,i])) # print ('totalPoints = %d' % totalPoints) totalPoints = int(totalPoints) nnTotalPoints=np.arange(0,2*totalPoints-1,1) arrayA=np.zeros(2*totalPoints) arrayB=np.zeros(2*totalPoints) bCrrnt_c = np.zeros(2*totalPoints) # # Variables for different testing: # b_gc = np.zeros(totalPoints) action_gc = np.zeros(totalPoints) C1test = np.zeros(totalPoints) C2test = np.zeros(totalPoints) C3test = np.zeros(totalPoints) b_ME = np.zeros(totalPoints) D1test = np.zeros(totalPoints) D2test = np.zeros(totalPoints) qTest = np.zeros(totalPoints) action_ME = np.zeros(totalPoints) actn_gc_ME_rel = np.zeros(totalPoints) indxTest = 0 rhoInit = np.zeros((nImpctPrmtr,nVion)) # # "Classical" approach: # deltaPx_c = np.zeros((nImpctPrmtr,nVion)) deltaPy_c = np.zeros((nImpctPrmtr,nVion)) deltaPz_c = np.zeros((nImpctPrmtr,nVion)) ionVx_c = np.zeros((nImpctPrmtr,nVion)) ionVy_c = np.zeros((nImpctPrmtr,nVion)) ionVz_c = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_c = np.zeros((nImpctPrmtr,nVion)) # # "Magnus Expand" approach: # deltaPx_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_m = np.zeros((nImpctPrmtr,nVion)) ionVx_m = np.zeros((nImpctPrmtr,nVion)) ionVy_m = np.zeros((nImpctPrmtr,nVion)) ionVz_m = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m = np.zeros((nImpctPrmtr,nVion)) # # Comparison of approaches (ratio deltaEnrgIon_c/deltaEnrgIon_m): # deltaPx_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_c_m = np.zeros((nImpctPrmtr,nVion)) dEion_c_m = np.zeros((nImpctPrmtr,nVion)) # # Factor to calculate transferred energy to ion # (the friction force is defined by this transfered energy): # deFactor = 0.5/M_ion # 1/g frctnForce_cSM = np.zeros(nVion) # integration, using Simpson method frctnForce_mSM = np.zeros(nVion) # integration, using Simpson method numberWrongSign_c=0 numberWrongSign_m=0 posSignDeltaEnrgIon_c=0 negSignDeltaEnrgIon_c=0 posSignDeltaEnrgIon_m=0 negSignDeltaEnrgIon_m=0 timeRun = np.zeros(nVion) totalTimeRun = 0. indx = 0 # ----------------- Main simulation --------------- # for i in range(nVion): # Taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) # Without taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) timeStart=os.times() for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # rhoInit[i*nImpctPrmtr+n] = rhoCrrnt rhoInit[n,i] = rhoCrrnt halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm z_ionCrrnt_c = np.zeros(6) # Zeroing out of vector for ion ("GC"-approach) z_elecCrrnt_c = np.zeros(6) # Zeroing out of vector for electron ("GC"-approach) z_ionCrrnt_m = np.zeros(6) # Zeroing out of vector for ion ("ME"-approach) z_elecCrrnt_m = np.zeros(6) # Zeroing out of vector for electron ("ME"-approach) # Zeroing out of "guiding center" vector for electron (both approaches): z_elecCrrnt_gc_c = np.zeros(6) z_elecCrrnt_gc_m = np.zeros(6) # Current values of transfered momemta # (second index numerates "Guiding Center", (if 0) and # "Magnus Expantion" (if 1) approaches: dpCrrnt = np.zeros((3,2)) # Intermediate arrays: dpIon_c = np.zeros(3) dpIon_m = np.zeros(3) dpElec_c = np.zeros(3) dpElec_m = np.zeros(3) # Current initial vector for electron: z_elecCrrnt_c[Ix] = rhoCrrnt # x, cm z_elecCrrnt_c[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_c[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_c[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec z_elecCrrnt_m[Ix] = rhoCrrnt # x, cm z_elecCrrnt_m[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_m[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_m[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec # Current initial vector for ion velocity for both approaches: ionVx_c[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_c[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_c[n,i] = VionLong[i] ionVx_m[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_m[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_m[n,i] = VionLong[i] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # # Main loop along the each track: # for k in range(int(pointAlongTrack[n,i])): # # Dragging both particles through first half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Dragging both particles through interaction during this step of track # (for both approaches): # # "Guiding Center": dpIon_c,dpElec_c,action,b_gc_c = \ guidingCenterCollision(z_elecCrrnt_gc_c,z_ionCrrnt_c,timeStep_c) # "Magnus Expantion": dpIon_m,dpElec_m,actionME,dy_gc_m,C1,C2,C3,b,D1,D2,q = \ MagnusExpansionCollision(z_elecCrrnt_gc_m,z_ionCrrnt_m,timeStep_c) # Save data for testing: b_gc[indxTest] = b_gc_c # "Guiding Center" approach action_gc[indxTest] = action # -"- -"- -"- -"- -"- -"- C1test[indxTest] = C1 # "Magnus expansion" approach C2test[indxTest] = abs(C2) # -"- -"- -"- -"- -"- -"- C3test[indxTest] = C3 # -"- -"- -"- -"- -"- -"- b_ME[indxTest] = b # -"- -"- -"- -"- -"- -"- D1test[indxTest] = D1 # -"- -"- -"- -"- -"- -"- D2test[indxTest] = D2 # -"- -"- -"- -"- -"- -"- qTest[indxTest] = q #-"- -"- -"- -"- -"- -"- action_ME[indxTest] = actionME #-"- -"- -"- -"- -"- -"- indxTest += 1 indxTestMax = indxTest # # Taking into account transfer of momentum for both particles: # if (dpTransferFlag == 1): for ic in range(3): z_ionCrrnt_c[2*ic+1] += dpIon_c[ic] z_elecCrrnt_c[2*ic+1] += dpElec_c[ic] z_ionCrrnt_m[2*ic+1] += dpIon_m[ic] z_elecCrrnt_m[2*ic+1] += dpElec_m[ic] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # Accumulation of the transfered momenta to ion along the track for both approaches: for ic in range(3): # if i == 0: # print ('dpIon_c[%2d] = %20.14e, dpIon_m[%2d] = %20.14e' % \ # (ic,dpIon_c[ic],ic,dpIon_m[ic])) dpCrrnt[ic,0] += dpIon_c[ic] # "Guiding Center", g*cm/sec dpCrrnt[ic,1] += dpIon_m[ic] # "Magnus Expansion", g*cm/sec # # Ion's elocity change along the track - both approaches: # ionVx_c[n,i] += dpCrrnt[0,0]/M_ion # cm/sec ionVy_c[n,i] += dpCrrnt[1,0]/M_ion # cm/sec ionVz_c[n,i] += dpCrrnt[2,0]/M_ion # cm/sec ionVx_m[n,i] += dpCrrnt[0,1]/M_ion # cm/sec ionVy_m[n,i] += dpCrrnt[1,1]/M_ion # cm/sec ionVz_m[n,i] += dpCrrnt[2,1]/M_ion # cm/sec # # Dragging both particles through second half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Transferred momenta along the track - "Guiding Center" approach: # deltaPx_c[n,i] = dpCrrnt[0,0] # dpx, g*cm/sec # if deltaPx_c[n,i] <= 0.: # print ('deltaPx_c[%2d,%2d] = %e, dpCrrnt[%2d,%2d] = %e' % \ # (n,i,deltaPx_c[n,i],n,i,dpCrrnt[0,0])) deltaPy_c[n,i] = dpCrrnt[1,0] # dpy, g*cm/sec # if deltaPy_c[n,i] <= 0.: # print ('deltaPy_c[%2d,%2d] = %e' % (n,i,deltaPy_c[n,i])) deltaPz_c[n,i] = dpCrrnt[2,0] # dpz, g*cm/sec # if deltaPz_c[n,i] <= 0.: # print ('deltaPz_c[%2d,%2d] = %e' % (n,i,deltaPz_c[n,i])) # Incorrect value: # deltaEnrgIon_c[n,i] = (dpCrrnt[0,0]**2+dpCrrnt[1,0]**2+dpCrrnt[2,0]**2)* \ # deFactor/eVtoErg # eV # Correct value: crrntDeltaEnrg = (dpCrrnt[0,0]*ionVx_c[n,i]+ \ dpCrrnt[1,0]*ionVy_c[n,i]+ \ dpCrrnt[2,0]*ionVz_c[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_c = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_c = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_c[n,i] = crrntDeltaEnrg if (deltaEnrgIon_c[n,i] > 0.): posSignDeltaEnrgIon_c += 1 else: negSignDeltaEnrgIon_c += 1 # # Transferred momenta along the track - "Magnus expansion" approach: # deltaPx_m[n,i] = dpCrrnt[0,1] # dpx, g*cm/sec # if deltaPx_m[n,i] <= 0.: # print ('deltaPx_m[%2d,%2d] = %e' % (n,i,deltaPx_m[n,i])) deltaPy_m[n,i] = dpCrrnt[1,1] # if deltaPy_m[n,i] <= 0.: # print ('deltaPy_m[%2d,%2d] = %e' % (n,i,deltaPy_m[n,i])) deltaPz_m[n,i] = dpCrrnt[2,1] # if deltaPz_m[n,i] <= 0.: # print ('deltaPz_m[%2d,%2d] = %e' % (n,i,deltaPz_m[n,i])) # Incorrect value: # deltaEnrgIon_m[n,i] = (dpCrrnt[0,1]**2+dpCrrnt[1,1]**2+dpCrrnt[2,1]**2)* \ # deFactor/eVtoErg # eV # Correct value absolute value): crrntDeltaEnrg = (dpCrrnt[0,1]*ionVx_m[n,i]+ \ dpCrrnt[1,1]*ionVy_m[n,i]+ \ dpCrrnt[2,1]*ionVz_m[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_m = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_m = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_m[n,i] = crrntDeltaEnrg if (deltaEnrgIon_m[n,i] > 0.): posSignDeltaEnrgIon_m += 1 else: negSignDeltaEnrgIon_m += 1 # # Comparison of the approaches (%): # if (deltaPx_m[n,i] != 0.): deltaPx_c_m[n,i] = 100.*(deltaPx_c[n,i]/deltaPx_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPx_m[%d,%d] = ' % (n,i)) if (deltaPy_m[n,i] != 0.): deltaPy_c_m[n,i] = 100.*(deltaPy_c[n,i]/deltaPy_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPy_m[%d,%d] = ' % (n,i)) if (deltaPz_m[n,i] != 0.): deltaPz_c_m[n,i] = 100.*(deltaPz_c[n,i]/deltaPz_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPz_m[%d,%d] = ' % (n,i)) if (deltaEnrgIon_m[n,i] != 0.): dEion_c_m[n,i] = 100.*(deltaEnrgIon_c[n,i]/deltaEnrgIon_m[n,i]-1.) else: print ('Bad value (=0.) of deltaEnrgIon_m[%d,%d] = ' % (n,i)) # # Integration using Simpson method: # if (n > 0): frctnForce_cSM[i] += pi*n_e*100.*(deltaEnrgIon_c[n,i]+deltaEnrgIon_c[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m frctnForce_mSM[i] += pi*n_e*100.*(deltaEnrgIon_m[n,i]+deltaEnrgIon_m[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m timeEnd = os.times() timeRun[i] = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec totalTimeRun += timeRun[i] print ('timeRun(%2d) = %6.3f seconds' % (i,timeRun[i])) print ('Total time (icluding Simpson integration) = %6.3f seconds' % totalTimeRun) print ('deltaEnrgIon_c: nPos=%d, nNeg=%d; deltaEnrgIon_m: nPos=%d, nNeg=%d' % \ (posSignDeltaEnrgIon_c,negSignDeltaEnrgIon_c, \ posSignDeltaEnrgIon_m,negSignDeltaEnrgIon_m)) # # Output for checking: # # print \ # ('n Px_c Px_m Py_c Py_m Pz_c Pz_m Pz_c_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e %e %e %e %e %e' % \ # (n,deltaPx_c[n,i],deltaPx_m[n,i],deltaPy_c[n,i], \ # deltaPy_m[n,i],deltaPz_c[n,i],deltaPz_m[n,i],deltaPz_c_m[n,i])) # print ('n dEion_c dEion_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e ' % (n,deltaEnrgIon_c[n,i],deltaEnrgIon_m[n,i])) # print ('indxTestMax = %d' % indxTestMax) # # Plotting of the tests: # nn=np.arange(0,indxTestMax-1,1) # # C1: # if (plotFigureFlag == 0): fig2020=plt.figure (2020) plt.plot(nn,C1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C1$, $cm^2$',color='m',fontsize=16) plt.title('$C1=[x_{gc}^2+y_{gc}^2+z_e^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2020.savefig('picturesCMA_v7/magnusExpansion_C1_fig2020cma.png') print ('File "picturesCMA_v7/magnusExpansion_C1_fig2020cma.png" is written') # # C2: # if (plotFigureFlag == 0): fig2030=plt.figure (2030) plt.plot(nn,1.e-5*C2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C2$, $\cdot 10^5$ $cm^2/s$',color='m',fontsize=16) plt.title('$C2=2\cdot[V_{ix}\cdot(x_i-x_{gc})+V_{iy}\cdot(y_i-y_{gc})+(V_{iz}-V_{ez})\cdot(z_i-z_e)]$', \ color='m',fontsize=14) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2030.savefig('picturesCMA_v7/magnusExpansion_C2_fig2030cma.png') print ('File "picturesCMA_v7/magnusExpansion_C2_fig2030cma.png" is written') # # C3: # if (plotFigureFlag == 0): fig2040=plt.figure (2040) plt.plot(nn,1e-11*C3test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C3$, $\cdot 10^{11}$ $cm^2/s^2$',color='m',fontsize=16) plt.title('$C3=V_{ix}^2+V_{iy}^2+(V_{iz}-V_{ez})^2$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2040.savefig('picturesCMA_v7/magnusExpansion_C3_fig2040cma.png') print ('File "picturesCMA_v7/magnusExpansion_C3_fig2040cma.png" is written') # # D1: # if (plotFigureFlag == 0): fig2025=plt.figure (2025) plt.plot(nn,1.e-5*D1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^{-5}\cdot D1$, $cm/s$',color='m',fontsize=16) plt.title('$D1=(2C_3\cdot \Delta t+C_2)/b_{ME}$ $-$ $C_2/C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2025.savefig('picturesCMA_v7/magnusExpansion_D1_fig2025cma.png') print ('File "picturesCMA_v7/magnusExpansion_D1_fig2025cma.png" is written') # # D2: # if (plotFigureFlag == 0): fig2035=plt.figure (2035) plt.plot(nn,1.e4*D2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^4\cdot D2$, $cm$',color='m',fontsize=16) plt.title('$D2=(2C_1+C_2\cdot \Delta t)/b_{ME}$ $-$ $2C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2035.savefig('picturesCMA_v7/magnusExpansion_D2_fig2035cma.png') print ('File "picturesCMA_v7/magnusExpansion_D2_fig2035cma.png" is written') # # Distance b_ME between particles for "ME" approach: # if (plotFigureFlag == 0): fig2050=plt.figure (2050) plt.plot(nn,b_ME[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{ME}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{ME}$ between Particles for "ME" Approach', color='m',fontsize=16) plt.text(3500,.4,'$b_{ME}=[C1+C2\cdot \Delta t +C3 \cdot \Delta t^2]^{0.5}$', \ color='m',fontsize=16) plt.text(33000,.36,('$(\Delta t=%8.2e$ $s)$' % timeStep_c),color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2050.savefig('picturesCMA_v7/particleDistance_me_fig2050cma.png') print ('File "picturesCMA_v7/particleDistance_me_fig2050cma.png" is written') # # Distance b_gc between particles for "GC" approach: # if (plotFigureFlag == 0): fig2055=plt.figure (2055) plt.plot(nn,b_gc[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{GC}$ between Particles for "GC" Approach', color='m',fontsize=16) plt.text(0,.4,'$b_{GC}=[(x_i-x_{gc})^2+(y_i-y_{gc})^2+$',color='m',fontsize=16) plt.text(55500,.36,'$+(z_i-z_e)^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2055.savefig('picturesCMA/particleDistance_gc_fig2055cma.png') print ('File "picturesCMA/particleDistance_gc_fig2055cma.png" is written') # # Comparison of bCrrnt_c from "Guiding Center" with bTest from # "Magnus expansion" approaches: # bCrrnt_cTest = np.zeros(indxTestMax) bCrrnt_cTestRel = np.zeros(indxTestMax) b_gc_ME_rel = np.zeros(indxTestMax) for k in range(indxTestMax): bCrrnt_cTest[k] = .5*(bCrrnt_c[2*k]+bCrrnt_c[2*k+1]) # bCrrnt_cTestRel[k] = bCrrnt_cTest[k]/b_ME[k] b_gc_ME_rel[k] = b_gc[k]/b_ME[k] actn_gc_ME_rel[k] = 1.e7*(action_gc[k]/action_ME[k]-1.) if (plotFigureFlag == 0): fig2060=plt.figure (2060) # plt.semilogy(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.plot(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('Test $b_{crrntTest}$, $cm$',color='m',fontsize=16) plt.title('Test $b_{crrntTest} = .5 \cdot [b_{crrnt}(k)+b_{crrnt}(k+1)]$',color='m', \ fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(bCrrnt_cTest),1.1*max(bCrrnt_cTest)]) plt.grid(True) # # Ratio b_gc/b_ME (absolute value): # if (plotFigureFlag == 0): fig2070=plt.figure (2070) # plt.semilogy(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}/b_{ME}$',color='m',fontsize=16) plt.title('Comparison of Distances $b_{GC}$ and $b_{ME}$ between Particles',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(b_gc_ME_rel),1.1*max(b_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2070.savefig('picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png') print ('File "picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png" is written') # # Ratio b_gc/b_ME (relative value): # if (plotFigureFlag == 0): fig2080=plt.figure (2080) # plt.semilogy(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^7\cdot (J_{GC}/J_{ME}$ $-$ $1)$',color='m',fontsize=16) plt.title('Comparison of Actions $J_{GC}$ and $J_{ME}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.ylim([.99*min(actn_gc_ME_rel),1.01*max(actn_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2080.savefig('picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png') print ('File "picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png" is written') # # Total length of interaction (1/2 of value): # nn=np.arange(0,nVion*nImpctPrmtr,1) halfLintrTest = np.zeros(nVion*nImpctPrmtr) for i in range(nVion): for n in range(nImpctPrmtr): halfLintrTest[nVion*i+n] = halfLintr[i,n] if (plotFigureFlag == 0): fig2090=plt.figure (2090) plt.semilogy(nn,halfLintrTest,'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$0.5 \cdot L_{Intrctn}$, $cm$',color='m',fontsize=16) plt.title('Total Length of Interaction: $L_{Intrctn}=2 \cdot [R_{max}^2-rho_{Init}^2)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-100,nVion*nImpctPrmtr+100]) plt.ylim([.9*min(halfLintrTest),1.1*max(halfLintrTest)]) plt.grid(True) if (saveFilesFlag == 1): fig2090.savefig('picturesCMA/totalLengthIntrsctn_fig2090cma.png') print ('File "picturesCMA/totalLengthIntrsctn_fig2090cma.png" is written') #=================================================== # # There is fitting for correct values of deltaEnrgIon_m # #=================================================== # # Fitting for figures with deltaEnrgIon_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # |deltaEnrgIon| = 10^fitA * rho^fitB, # so that # # log10(|deltaEnrgIon|) = fitB*log10(rho) + fitA # # So, the dimension of expression (10^fitA * rho^fitB) is the same # as deltaEnrgIon, i.e. eV # timeStart = os.times() fitA_dEion = np.zeros(nVion) # dimensionless fitB_dEion = np.zeros(nVion) # dimensionless rhoInitFit_dEion = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2_dEion = np.zeros(nVion) fitA_dEion,fitB_dEion,funcHi2_dEion,rhoInitFit_dEion, deltaEnrgIon_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m) dPosA_dEion = np.zeros(nVion) dNegA_dEion = np.zeros(nVion) dPosA_dEion,dNegA_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,1,2) dPosB_dEion = np.zeros(nVion) dNegB_dEion = np.zeros(nVion) dPosB_dEion,dNegB_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,2,2) # print ('Fitting for deltaEion:') # for i in range(nVion): # print ('i=%2d: fitA_dEion = %e (+%e,-%e), fitB_dEion = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_dEion[i],dPosA_dEion[i],dNegA_dEion[i], \ # fitB_dEion[i],dPosB_dEion[i],dNegB_dEion[i],funcHi2_dEion[i])) # # Analytical Integration of the fitted dependence 10**A*rho**B. # # For this dependece on rho: # # Friction force = 10**A*n_e*integral_rhoMin^rhoMax (rho**B*rho)*dRho = # = 10**A*n_e/(B+2)*[rhoMax**(B+2)-rhoMax**(B+2)] (dimension=eV/cm): # frctnForce_AI = np.zeros(nVion) for i in range(nVion): factorA1 = math.pow(10.,fitA_dEion[i]) factorB1 = 2.+fitB_dEion[i] frctnForce_AI[i] = 2.*pi*n_e*100.*factorA1/factorB1* \ (math.pow(impctPrmtrMax[i],factorB1)- \ math.pow(impctPrmtrMin,factorB1)) # eV/m timeEnd = os.times() timeFitting = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec print ('Time of integration = %6.3f seconds' % timeFitting) # # Dependences of transferred energy to ion on ion velocity for # different initial impact parameters: # rhoSlctd = [.004,.02,.06,.1] nRhoSlctd = len(rhoSlctd) deltaEnrgIon_dpnd_Vi = np.zeros((nRhoSlctd,nVion)) npStart = np.zeros((nRhoSlctd,), dtype=int) for k in range(nRhoSlctd): slctdFlag = 0 for i in range(nVion): if (slctdFlag == 0): for n in range(nImpctPrmtr): if (rhoInit[n,i] >= rhoSlctd[k]): npStart[k] = i slctdFlag = 1 break for k in range(nRhoSlctd): for i in range(npStart[k],nVion,1): factorA = math.pow(10.,fitA_dEion[i]) deltaEnrgIon_dpnd_Vi[k,i] = factorA*math.pow(rhoSlctd[k],fitB_dEion[i]) # print ('deltaEnrgIon_dpnd_Vi[%d,%d] = %e' %(k,i,deltaEnrgIon_dpnd_Vi[k,i])) #=================================================== # # There is fitting of deltaPz_m (these values > 0 always) !!! # #=================================================== # # Fitting for figures with deltaPz_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # deltaPz_m = 10^fitA_pz * rho^fitB_pz, # so that # # log10(deltaPz_m) = fitB_pz*log10(rho) + fitA_pz # # So, the dimension of expression (10^fitA_pz * rho^fitB_pz) is the same # as deltaPz_m, i.e. eV # fitA_pz = np.zeros(nVion) # dimensionless fitB_pz = np.zeros(nVion) # dimensionless rhoInitFit_pz = np.zeros((nImpctPrmtr,nVion)) deltaPz_m_fit = np.zeros((nImpctPrmtr,nVion)) fitA_pz,fitB_pz,funcHi2_pz,rhoInitFit_pz, deltaPz_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPz_m) dPosA_pz = np.zeros(nVion) dNegA_pz = np.zeros(nVion) dPosA_pz,dNegA_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,1,2) dPosB_pz = np.zeros(nVion) dNegB_pz = np.zeros(nVion) dPosB_pz,dNegB_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,2,2) # print ('Fitting fordeltaPz_m:') # for i in range(nVion): # print ('i=%2d: fitA_pz = %e (+%e,-%e), fitB_pz = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_pz[i],dPosA_pz[i],dNegA_pz[i], \ # fitB_pz[i],dPosB_pz[i],dNegB_pz[i],funcHi2_pz[i])) # print ('<fitA_pz> = %e +- %e' % (mean(fitA_pz),mean(dNegA_pz))) # print ('<fitB_pz> = %e +- %e' % (mean(fitB_pz),mean(dNegB_pz))) #=================================================== # # There is fitting of deltaPx_m (these values > 0 always) !!! # #=================================================== # rhoInitFit_px = np.zeros((nImpctPrmtr,nVion)) deltaPx_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2__px = np.zeros(nVion) fitA_px = np.zeros(nVion) # dimensionless fitB_px = np.zeros(nVion) # dimensionless fitA_px,fitB_px,funcHi2_px,rhoInitFit_px, deltaPx_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPx_m) dPosA_px = np.zeros(nVion) dNegA_px = np.zeros(nVion) dPosA_px,dNegA_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,1,2) dPosB_px = np.zeros(nVion) dNegB_px = np.zeros(nVion) dPosB_px,dNegB_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,2,2) # print ('Fitting for deltaPx_m:') # for i in range(nVion): # print ('i=%2d: fitA_px = %e (+%e,-%e), fitB_px = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_px[i],dPosA_px[i],dNegA_px[i], \ # fitB_px[i],dPosB_px[i],dNegB_px[i],funcHi2_px[i])) xLimit = [1.015*np.log10(VionRel[0]),.95*np.log10(VionRel[nVion-1])] yLimMin = 0. yLimMax = 10.*min(fitA_pz) if (min(fitA_pz) > 0): yLimMin = 10.*max(fitA_pz) yLimMax = 0. for i in range(nVion): if (fitA_pz[i] - dNegA_pz[i]) < yLimMin: yLimMin = fitA_pz[i] - dNegA_pz[i] if (fitA_pz[i] + dPosA_pz[i]) > yLimMax: yLimMax = fitA_pz[i] + dPosA_pz[i] # print ('Exponent A (pz): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.25,yLimMax+.25] if (plotFigureFlag == 0): fig3000=plt.figure (3000) plt.errorbar(np.log10(VionRel),fitA_pz,yerr=[dNegA_pz,dPosA_pz],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $A$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_z$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-26.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-4.0,-28.,('<A>=%7.3f $\pm$ %5.3f' % (mean(fitA_pz),mean(dNegA_pz))), \ color='r',fontsize=16) # plt.text(-3.25,-29.65,('$-$%5.3f' % (mean(dNegA_pz))),color='r',fontsize=12) # plt.text(-3.25,-29.15,('$+$%5.3f' % (mean(dPosA_pz))),color='r',fontsize=12) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-28.25,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-28.25,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3000.savefig('picturesCMA_v7/fitA_dPz_fig3000cma.png') print ('File "picturesCMA_v7/fitA_dPz_fig3000cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitB_pz) if (min(fitB_pz) > 0): yLimMin = 10.*max(fitB_pz) yLimMax = 0. for i in range(nVion): if (fitB_pz[i] - dNegB_pz[i]) < yLimMin: yLimMin = fitB_pz[i] - dNegB_pz[i] if (fitB_pz[i] + dPosB_pz[i]) > yLimMax: yLimMax = fitB_pz[i] + dPosB_pz[i] # print ('Exponent B (pz): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.1,yLimMax+.1] if (plotFigureFlag == 0): fig3010=plt.figure (3010) plt.errorbar(np.log10(VionRel),fitB_pz,yerr=[dNegB_pz,dPosB_pz],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $B$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_z$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-.87,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-1.55,('<B>=%6.3f $\pm$ %5.3f' % (mean(fitB_pz),mean(dNegB_pz))), \ color='r',fontsize=16) # plt.text(-2.85,-2.25,('$-$%5.3f' % (mean(dNegB_pz))),color='r',fontsize=12) # plt.text(-2.85,-1.75,('$+$%5.3f' % (mean(dPosB_pz))),color='r',fontsize=12) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-1.74,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-1.74,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3010.savefig('picturesCMA_v7/fitB_dPz_fig3010cma.png') print ('File "picturesCMA_v7/fitB_dPz_fig3010cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitA_px) if (min(fitA_px) > 0): yLimMin = 10.*max(fitA_px) yLimMax = 0. for i in range(nVion): if (fitA_px[i] - dNegA_px[i]) < yLimMin: yLimMin = fitA_px[i] - dNegA_px[i] if (fitA_px[i] + dPosA_px[i]) > yLimMax: yLimMax = fitA_px[i] + dPosA_px[i] # print ('Exponent A (px): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.15,yLimMax+.15] if (plotFigureFlag == 0): fig3020=plt.figure (3020) plt.errorbar(np.log10(VionRel),fitA_px,yerr=[dNegA_px,dPosA_px],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $A$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_x$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-24.2,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-24.8,('<A>=%6.3f $\pm$ %5.3f' % (mean(fitA_px),mean(dNegA_px))), \ color='r',fontsize=16) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-25.05,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-25.05,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3020.savefig('picturesCMA_v7/fitA_dPx_fig3020cma.png') print ('File "picturesCMA_v7/fitA_dPx_fig3020cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitB_px) if (min(fitB_px) > 0): yLimMin = 10.*max(fitB_px) yLimMax = 0. for i in range(nVion): if (fitB_px[i] - dNegB_px[i]) < yLimMin: yLimMin = fitB_px[i] - dNegB_px[i] if (fitB_px[i] + dPosB_px[i]) > yLimMax: yLimMax = fitB_px[i] + dPosB_px[i] # print ('Exponent B (px): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.05,yLimMax+.05] if (plotFigureFlag == 0): fig3030=plt.figure (3030) plt.errorbar(np.log10(VionRel),fitB_px,yerr=[dNegB_px,dPosB_px],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $B$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_x$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-.95,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-1.15,('<B>=%6.3f $\pm$ %5.3f' % (mean(fitB_px),mean(dNegB_px))), \ color='r',fontsize=16) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-1.22,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-1.22,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3030.savefig('picturesCMA_v7/fitB_dPx_fig3030cma.png') print ('File "picturesCMA/_v7/fitB_dPx_fig3030cma.png" is written') # plt.show() # sys.exit() # #======================================================= # # Main plotting: # if (plotFigureFlag == 0): fig110=plt.figure (110) plt.plot(arrayA,arrayB,'.r') plt.xlabel('$A=log_{10}(q_e^2/b/E_{kin})$',color='m',fontsize=16) plt.ylabel('$B=log_{10}(R_{Larm}/b)$',color='m',fontsize=16) plt.title('Map of Parameters A,B', color='m',fontsize=16) # plt.xlim([minA,maxA]) # plt.ylim([minB,maxB]) plt.grid(True) if (saveFilesFlag == 1): fig110.savefig('picturesCMA/mapA-B_fig110cma.png') print ('File "picturesCMA/mapA-B_fig110cma.png" is written') if (plotFigureFlag == 0): fig20=plt.figure (20) plt.plot(nnTotalPoints,bCrrnt_c[0:2*totalPoints-1],'.r') # plt.semilogy(nn,bCrrnt_c[0:2*totalPoints-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{Lab.Sys}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{Lab.Sys}$ between Particles in Lab.System', color='m',fontsize=16) plt.xlim([-5000,2*totalPoints+5000]) # plt.xlim([0,2000]) plt.grid(True) if (saveFilesFlag == 1): fig20.savefig('picturesCMA/particleDistance_ls_fig20cma.png') print ('File "picturesCMA/particleDistance_ls_fig20cma.png" is written') if (plotFigureFlag == 0): fig30=plt.figure (30) plt.plot(nnTotalPoints,arrayA[0:2*totalPoints-1],'.r', \ nnTotalPoints,arrayB[0:2*totalPoints-1],'.b') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$A$, $B$',color='m',fontsize=16) plt.title('$A=log_{10}(q_e^2/b/E_{kin})$, $B=log_{10}(R_{Larm}/b)$',color='m',fontsize=16) plt.xlim([-5000,2*totalPoints+5000]) # plt.ylim([minB,maxB]) plt.grid(True) plt.legend(['A','B'],loc='lower left',fontsize=14) if (saveFilesFlag == 1): fig30.savefig('picturesCMA/parametersA-B_fig30cma.png') print ('File "picturesCMA/parametersA-B_fig30cma.png" is written') xVionRel = np.zeros((nImpctPrmtr,nVion)) for i in range(nVion): for n in range(nImpctPrmtr): xVionRel[n,i] = VionRel[i] if (plotFigureFlag == 0): fig40=plt.figure (40) for i in range(nVion): plt.semilogx(xVionRel[0:nImpctPrmtr,i],rhoInit[0:nImpctPrmtr,i],'.r') plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$rho_{Init}$, cm',color='m',fontsize=16) plt.title('Subdivisions for $rho_{Init}$ for Integration: Simpson Method', \ color='m',fontsize=16) plt.grid(True) yLimit=[0.,.405] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,-.026,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.9e-5,.05,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig40.savefig('picturesCMA/initialImpactParameter_SM_fig40cma.png') print ('File "picturesCMA/initialImpactParameter_SM_fig40cma.png" is written') if (plotFigureFlag == 0): fig45=plt.figure (45) for i in range(nVion): plt.loglog(xVionRel[0:nImpctPrmtr,i],rhoInit[0:nImpctPrmtr,i],'.r') plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$rho_{Init}$, cm',color='m',fontsize=16) plt.title('Subdivisions for $rho_{Init}$ for Integration: Simpson Method', \ color='m',fontsize=16) plt.grid(True) yLimit=[1.3e-3,.45] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,.15,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.9e-5,.15,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig45.savefig('picturesCMA/initialImpactParameter_SM_fig45cma.png') print ('File "picturesCMA/initialImpactParameter_SM_fig45cma.png" is written') ''' # # Figure compares calculated values of of deltaEnrgIon (their dependences # on impact parameter for different ion velocities) for two approaches # (figure numbrFigures[0]+1 is the same and taking into account positive and # negative values of the deltaEnrgIon_c for guiding center approach): # VionCrrnt = V0*VionRel[0] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (50) plt.loglog(rhoInit[0:nImpctPrmtr-1,0],deltaEnrgIon_c[0:nImpctPrmtr-1,0],'-xr', \ rhoInit[0:nImpctPrmtr-1,0],deltaEnrgIon_m[0:nImpctPrmtr-1,0],'--or', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,0],1.05*rhoInit[nImpctPrmtr-1,0]]) plt.grid(True) xRhoInitPx_c = np.zeros(nImpctPrmtr*nVion) xRhoInitPx_m = np.zeros(nImpctPrmtr*nVion) yDeltaPx_c = np.zeros(nImpctPrmtr*nVion) yDeltaPx_m = np.zeros(nImpctPrmtr*nVion) indx_c = 0 indx_m = 0 for n in range(nImpctPrmtr): if deltaPx_c[n,0] > 0.: xRhoInitPx_c[indx_c] = rhoInit[n,0] yDeltaPx_c[indx_c] = deltaPx_c[n,0] # print ('n_c=%2d: xRhoInitPx_c = %e, yDeltaPx_c = %e' % \ # (indx_c,xRhoInitPx_c[indx_c],yDeltaPx_c[indx_c])) indx_c += 1 if deltaPx_m[n,0] > 0.: xRhoInitPx_m[indx_c] = rhoInit[n,0] yDeltaPx_m[indx_c] = deltaPx_m[n,0] # print ('n_m=%2d: xRhoInitPx_m = %e, yDeltaPx_m = %e' % \ # (indx_m,xRhoInitPx_m[indx_m],yDeltaPx_m[indx_m])) indx_m += 1 maxIndx_c = indx_c-1 maxIndx_m = indx_m-1 # print ('maxIndx_c = %d, maxIndx_m = %d' % (maxIndx_c,maxIndx_m)) # # Figure compares calculated values of of deltaPx (their dependences # on impact parameter for different ion velocities) for two approaches # (figure numbrFigures[0]+2 is the same and taking into account positive and # negative values of the deltaPx_c for guiding center approach): # plt.figure (51) plt.loglog(xRhoInitPx_c[0:maxIndx_c],yDeltaPx_c[0:maxIndx_c],'-xr', \ xRhoInitPx_m[0:maxIndx_m],yDeltaPx_m[0:maxIndx_m],'--or', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$, $cm$', \ color='m',fontsize=16) plt.ylabel('$\Delta P_{ix}$, $g\cdot cm/s$', color='m',fontsize=16) titleHeader = 'Transferred Momenta $\Delta P_{ix}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*min(xRhoInitPx_c[0],xRhoInitPx_m[0]), \ 1.05*max(xRhoInitPx_c[maxIndx_c],xRhoInitPx_m[maxIndx_m])]) plt.grid(True) xRhoInitPz_c = np.zeros(nImpctPrmtr*nVion) xRhoInitPz_m = np.zeros(nImpctPrmtr*nVion) yDeltaPz_c = np.zeros(nImpctPrmtr*nVion) yDeltaPz_m = np.zeros(nImpctPrmtr*nVion) indx_c = 0 indx_m = 0 for n in range(nImpctPrmtr): if deltaPz_c[n,0] > 0.: xRhoInitPz_c[indx_c] = rhoInit[n,0] yDeltaPz_c[indx_c] = deltaPz_c[n,0] # print ('n_c=%2d: xRhoInitPz_c = %e, yDeltaPz_c = %e' % \ # (indx_c,xRhoInitPz_c[indx_c],yDeltaPz_c[indx_c])) indx_c += 1 if deltaPz_m[n,0] > 0.: xRhoInitPz_m[indx_c] = rhoInit[n,0] yDeltaPz_m[indx_c] = deltaPz_m[n,0] # print ('n_m=%2d: xRhoInitPz_m = %e, yDeltaPz_m = %e' % \ # (indx_m,xRhoInitPz_m[indx_m],yDeltaPz_m[indx_m])) indx_m += 1 maxIndx_c = indx_c-1 maxIndx_m = indx_m-1 # print ('maxIndx_c = %d, maxIndx_m = %d' % (maxIndx_c,maxIndx_m)) # # Figure compares calculated values of of deltaPz (their dependences # on impact parameter for different ion velocities) for two approaches # (figure numbrFigures[0]+5): # plt.figure (53) plt.loglog(xRhoInitPz_c[0:maxIndx_c],yDeltaPz_c[0:maxIndx_c],'-xr', \ xRhoInitPz_m[0:maxIndx_m],yDeltaPz_m[0:maxIndx_m],'--or', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$, $cm$', \ color='m',fontsize=16) plt.ylabel('$\Delta P_{iz}$, $g\cdot cm/s$', color='m',fontsize=16) titleHeader = 'Transferred Momenta $\Delta P_{iz}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*min(xRhoInitPz_c[0],xRhoInitPz_m[0]), \ 1.05*max(xRhoInitPz_c[maxIndx_c],xRhoInitPz_m[maxIndx_m])]) plt.grid(True) ''' # # Figures 60,70,80, and 90 compare calculated values of of deltaEnrgIon # (their dependences on impact parameter for first values of ion velocities) # for two approaches (figure numbrFigures[*]+1 is the same and taking into # account positive and negative values of the deltaEnrgIon_c for guiding center approach): # ''' VionCrrnt = V0*VionRel[1] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (60) plt.loglog(rhoInit[0:nImpctPrmtr-1,1],deltaEnrgIon_c[0:nImpctPrmtr-1,1],'-xb', \ rhoInit[0:nImpctPrmtr-1,1],deltaEnrgIon_m[0:nImpctPrmtr-1,1],'--ob', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,1],1.05*rhoInit[nImpctPrmtr-1,1]]) plt.grid(True) VionCrrnt = V0*VionRel[2] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (70) plt.loglog(rhoInit[0:nImpctPrmtr-1,2],deltaEnrgIon_c[0:nImpctPrmtr-1,2],'-xg', \ rhoInit[0:nImpctPrmtr-1,2],deltaEnrgIon_m[0:nImpctPrmtr-1,2],'--og', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,2],1.05*rhoInit[nImpctPrmtr-1,2]]) plt.grid(True) VionCrrnt = V0*VionRel[3] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (80) plt.loglog(rhoInit[0:nImpctPrmtr-1,3],deltaEnrgIon_c[0:nImpctPrmtr-1,3],'-xk', \ rhoInit[0:nImpctPrmtr-1,3],deltaEnrgIon_m[0:nImpctPrmtr-1,3],'--ok', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,3],1.05*rhoInit[nImpctPrmtr-2,3]]) plt.grid(True) VionCrrnt = V0*VionRel[4] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) plt.figure (90) plt.loglog(rhoInit[0:nImpctPrmtr-1,4],deltaEnrgIon_c[0:nImpctPrmtr-1,4],'-xm', \ rhoInit[0:nImpctPrmtr-1,4],deltaEnrgIon_m[0:nImpctPrmtr-1,4],'--om', \ linewidth=1) plt.xlabel('Track Initial Impact Parameter $rho_{Init}$', \ color='m',fontsize=16) plt.ylabel('$\Delta E_{ion}$, $erg$', color='m',fontsize=16) titleHeader = 'Transferred Energy $\Delta E_{ion}$ to Ion for ' titleHeader += ' $V_{ion}=%5.3f\cdot10^{%2d}$ $cm/s$' plt.title(titleHeader % (mantVionCrrnt,powVionCrrnt),color='m',fontsize=16) plt.xlim([.95*rhoInit[0,4],1.05*rhoInit[nImpctPrmtr-1,4]]) plt.grid(True) ''' # # Dependences of transferred energy to ion and different momenta on initial # impact parameter for different ion velocity (calculated and fitted values): # indxFigures = [0,9,12,18,19,23,27,29,31,34,39,49] numbrFigures = [500,600,630,660,700,730,760,800,830,860,900,1000] xPos = [.00218,.0022,.0024,.0027,.0026,.00265,.00265,.00265,.00265,.0028,.0029,.0035] yPos = [6.4e-9,6.7e-9,6.4e-9,5.9e-9,6.2e-9,5.6e-9,5.8e-9,6.3e-9,5.8e-9,5.9e-9,5.8e-9,4.7e-9] if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(np.log10(VionCrrnt)) mantVionCrrnt = VionCrrnt/(10**powVionCrrnt) # # Pz: # posPz_c = np.zeros((12,nImpctPrmtr)) rhoPosPz_c = np.zeros((12,nImpctPrmtr)) negPz_c = np.zeros((12,nImpctPrmtr)) rhoNegPz_c = np.zeros((12,nImpctPrmtr)) posPz_m = np.zeros((12,nImpctPrmtr)) rhoPosPz_m = np.zeros((12,nImpctPrmtr)) negPz_m = np.zeros((12,nImpctPrmtr)) rhoNegPz_m = np.zeros((12,nImpctPrmtr)) nPosPz_c = array('i',[0]*12) nNegPz_c = array('i',[0]*12) nPosPz_m = array('i',[0]*12) nNegPz_m = array('i',[0]*12) for i in range(12): nPosPz_c[i] = -1 nNegPz_c[i] = -1 nPosPz_m[i] = -1 nNegPz_m[i] = -1 for k in range(nImpctPrmtr): if (deltaPz_c[k,indxFigures[i]] > 0): nPosPz_c[i] += 1 rhoPosPz_c[i,nPosPz_c[i]] = rhoInit[k,indxFigures[i]] posPz_c[i,nPosPz_c[i]] = deltaPz_c[k,indxFigures[i]] if (deltaPz_c[k,indxFigures[i]] <= 0): nNegPz_c[i] += 1 rhoNegPz_c[i,nNegPz_c[i]] = rhoInit[k,indxFigures[i]] negPz_c[i,nNegPz_c[i]] = abs(deltaPz_c[k,indxFigures[i]]) if (deltaPz_m[k,indxFigures[i]] > 0): nPosPz_m[i] += 1 rhoPosPz_m[i,nPosPz_m[i]] = rhoInit[k,indxFigures[i]] posPz_m[i,nPosPz_m[i]] = deltaPz_m[k,indxFigures[i]] if (deltaPz_m[k,indxFigures[i]] <= 0): nNegPz_m[i] += 1 rhoNegPz_m[i,nNegPz_m[i]] = rhoInit[k,indxFigures[i]] negPz_m[i,nNegPz_m[i]] = abs(deltaPz_m[k,indxFigures[i]]) # print ('i=%d: nPosPz_c=%d, nNegPz_c=%d, nPosPz_m=%d, nNegPz_m=%d' % \ # (i,nPosPz_c[i],nNegPz_c[i],nPosPz_m[i],nNegPz_m[i])) # # Figures to compare calculated values of of deltaPz (their dependences # on impact parameter for different ion velocities) for two approaches # if (plotFigureFlag == 0): for i in range(12): VionCrrnt = V0*VionRel[indxFigures[i]] powVionCrrnt = math.floor(
np.log10(VionCrrnt)
numpy.log10
import numpy as np import pdb import pywt ## This file is imported from the modwt wavelet transform provided at: ## https://github.com/pistonly/modwtpy ## It appears that pywavelet does not have the maximal ovalap discrete wavelet transform. def upArrow_op(li, j): if j == 0: return [1] N = len(li) li_n = np.zeros(2 ** (j - 1) * (N - 1) + 1) for i in range(N): li_n[2 ** (j - 1) * i] = li[i] return li_n def period_list(li, N): n = len(li) # append [0 0 ...] n_app = N - np.mod(n, N) li = list(li) li = li + [0] * n_app if len(li) < 2 * N: return np.array(li) else: li = np.array(li) li = np.reshape(li, [-1, N]) li = np.sum(li, axis=0) return li def circular_convolve_mra(h_j_o, w_j): ''' calculate the mra D_j''' N = len(w_j) l = np.arange(N) D_j = np.zeros(N) for t in range(N): index = np.mod(t + l, N) w_j_p = np.array([w_j[ind] for ind in index]) D_j[t] = (np.array(h_j_o) * w_j_p).sum() return D_j def circular_convolve_d(h_t, v_j_1, j): ''' jth level decomposition h_t: \tilde{h} = h / sqrt(2) v_j_1: v_{j-1}, the (j-1)th scale coefficients return: w_j (or v_j) ''' N = len(v_j_1) L = len(h_t) w_j = np.zeros(N) l = np.arange(L) for t in range(N): index = np.mod(t - 2 ** (j - 1) * l, N) v_p = np.array([v_j_1[ind] for ind in index]) w_j[t] = (np.array(h_t) * v_p).sum() return w_j def circular_convolve_s(h_t, g_t, w_j, v_j, j): ''' (j-1)th level synthesis from w_j, w_j see function circular_convolve_d ''' N = len(v_j) L = len(h_t) v_j_1 = np.zeros(N) l = np.arange(L) for t in range(N): index = np.mod(t + 2 ** (j - 1) * l, N) w_p = np.array([w_j[ind] for ind in index]) v_p = np.array([v_j[ind] for ind in index]) v_j_1[t] = (np.array(h_t) * w_p).sum() v_j_1[t] = v_j_1[t] + (np.array(g_t) * v_p).sum() return v_j_1 def modwt(x, filters, level): ''' filters: 'db1', 'db2', 'haar', ... return: see matlab ''' # filter wavelet = pywt.Wavelet(filters) h = wavelet.dec_hi g = wavelet.dec_lo h_t = np.array(h) / np.sqrt(2) g_t = np.array(g) / np.sqrt(2) wavecoeff = [] v_j_1 = x for j in range(level): w = circular_convolve_d(h_t, v_j_1, j + 1) v_j_1 = circular_convolve_d(g_t, v_j_1, j + 1) wavecoeff.append(w) wavecoeff.append(v_j_1) return
np.vstack(wavecoeff)
numpy.vstack
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Mar 17 13:53:36 2020 @author: chrisbartel """ from compmatscipy.CompAnalyzer import CompAnalyzer import numpy as np from scipy.optimize import nnls from compmatscipy.TrianglePlots import get_label class ReactionAnalysis(object): def __init__(self, reactants, products, el_open, num_closed): self.reactants = list(set(reactants)) self.products = list(set([p for p in products if p not in reactants])) self.el_open = el_open self.num_closed = num_closed @property def all_els(self): r, p = self.reactants, self.products els = [CompAnalyzer(c).els for c in r+p] els = [j for i in els for j in i] return sorted(list(set(els))) @property def balance_els(self): els = self.all_els el_open = self.el_open if not el_open: return els return [el for el in els if el != el_open] @property def A(self): r, p = self.reactants, self.products balance_els = self.balance_els A = np.zeros(shape=(len(r)+len(p), len(balance_els)+len(p))) A = A.T for i in range(len(balance_els)): count = 0 for j in range(len(r)+len(p)): count += 1 if count <= len(r): sign = 1 cmpd = r[j] else: sign = -1 cmpd = p[j-len(r)] A[i, j] = sign*CompAnalyzer(cmpd).amt_of_el(balance_els[i]) line = [0 for i in range(len(r))] for j in range(len(p)): line.append(np.sum([CompAnalyzer(p[j]).amt_of_el(el) for el in balance_els])) A[-1] = line return np.array(A) @property def b(self): r, p = self.reactants, self.products balance_els = self.balance_els b = np.zeros(shape=(len(balance_els)+len(p), 1)) b[-1] = self.num_closed b = [b[i][0] for i in range(len(b))] return np.array(b) @property def solution(self): A, b = self.A, self.b return nnls(A, b) @property def species(self): coefs = {} r, p = self.reactants, self.products components = r + p solution = self.solution for i in range(len(components)): coefs[components[i]] = solution[0][i] species = {reac : {'side' : 'left', 'amt' : coefs[reac]} for reac in r} for prod in p: species[prod] = {'side' : 'right', 'amt' : coefs[prod]} return species def fancy_reaction_string(self, order): species = self.species rxn = r'' reactants = [s for s in species if species[s]['side'] == 'left'] products = [s for s in species if species[s]['side'] == 'right'] count = 0 for r in reactants: amt = species[r]['amt'] if amt == 0: continue if amt != 1: rxn += str(amt) rxn += get_label(r, order) count += 1 if count < len(reactants): rxn += '+' rxn += r'$\rightarrow$' count = 0 for p in products: amt = species[p]['amt'] if amt == 0: continue if amt != 1: rxn += str(amt) rxn += get_label(p, order) count += 1 if count < len(products): rxn += '+' rxn += r'' return rxn def reaction_string(self, order): species = self.species rxn = r'' reactants = [s for s in species if species[s]['side'] == 'left'] products = [s for s in species if species[s]['side'] == 'right'] count = 0 for r in reactants: count += 1 amt = species[r]['amt'] amt = np.round(amt, 3) if amt < 1e-4: continue if amt != 1: rxn += str(amt) rxn += '_' rxn += r if count < len(reactants): rxn += ' + ' count = 0 rxn += ' ---> ' for p in products: count += 1 amt = species[p]['amt'] amt =
np.round(amt, 3)
numpy.round
from sklearn.preprocessing import LabelEncoder import numpy as np ''' By using LabelEncoder to create the labelencoder of slot-tags ''' class TagsVectorizer: def __init__(self): pass def tokenize(self, tags_str_arr): return [s.split() for s in tags_str_arr] def fit(self, train_tags_str_arr, val_tags_str_arr): ## in order to avoid, in valid_dataset, there is tags which not exit in train_dataset. like: ATIS datset self.label_encoder = LabelEncoder() data = ["[padding]", "[CLS]", "[SEP]"] + [item for sublist in self.tokenize(train_tags_str_arr) for item in sublist] data = data + [item for sublist in self.tokenize(val_tags_str_arr) for item in sublist] ## # data: ["[padding]", "[CLS]", "[SEP]", all of the real tags]; add the "[padding]", "[CLS]", "[SEP]" for the real tag list self.label_encoder.fit(data) def transform(self, tags_str_arr, valid_positions): ## if we set the maximum length is 50, then the seq_length is 50; otherwise, it will be equal to the maximal length of dataset seq_length = valid_positions.shape[1] # .shape[0]: number of rows, .shape[1]: number of columns data = self.tokenize(tags_str_arr) ## we added the 'CLS' and 'SEP' token as the first and last token for every sentence respectively data = [self.label_encoder.transform(["[CLS]"] + x + ["[SEP]"]).astype(np.int32) for x in data] #upper 'O', not 0 output = np.zeros((len(data), seq_length)) for i in range(len(data)): idx = 0 for j in range(seq_length): if valid_positions[i][j] == 1: output[i][j] = data[i][idx] idx += 1 return output def inverse_transform(self, model_output_3d, valid_position): ## model_output_3d is the predicted slots output of trained model seq_length = valid_position.shape[1] slots = np.argmax(model_output_3d, axis=-1) slots = [self.label_encoder.inverse_transform(y) for y in slots] output = [] for i in range(len(slots)): y = [] for j in range(seq_length): if valid_position[i][j] == 1: ## only valid_positions = 1 have the real slot-tag y.append(str(slots[i][j])) output.append(y) return output def load(self): pass def save(self): pass if __name__ == '__main__': train_tags_str_arr = ['O O B-X B-Y', 'O B-Y O'] val_tags_str_arr = ['O O B-X B-Y', 'O B-Y O XXX'] valid_positions =
np.array([[1, 1, 1, 1, 0, 1, 1], [1, 1, 0, 1, 1, 0, 1]])
numpy.array
""" Unit testing for the hessian directory. """ from unittest import TestCase import numpy as np from fitbenchmarking.cost_func.nlls_cost_func import NLLSCostFunc from fitbenchmarking.cost_func.weighted_nlls_cost_func import\ WeightedNLLSCostFunc from fitbenchmarking.cost_func.hellinger_nlls_cost_func import\ HellingerNLLSCostFunc from fitbenchmarking.cost_func.poisson_cost_func import\ PoissonCostFunc from fitbenchmarking.hessian.analytic_hessian import Analytic from fitbenchmarking.hessian.numdifftools_hessian import Numdifftools from fitbenchmarking.hessian.scipy_hessian import Scipy from fitbenchmarking.jacobian.analytic_jacobian import Analytic\ as JacobianClass from fitbenchmarking.hessian.hessian_factory import create_hessian from fitbenchmarking.parsing.fitting_problem import FittingProblem from fitbenchmarking.utils import exceptions from fitbenchmarking.utils.options import Options def f_ls(x, p1, p2): """ Test function for numerical Hessians, to be used with nlls cost functions """ return (x*(p1+p2)**2)**2 def J_ls(x, p): """ Analyic Jacobian evaluation of f_ls """ return np.column_stack((4*x**2*(p[0]+p[1])**3, 4*x**2*(p[0]+p[1])**3)) def H_ls(x, p): """ Analyic Hessian evaluation of f_ls """ return np.array([[12*x**2*(p[0]+p[1])**2, 12*x**2*(p[0]+p[1])**2], [12*x**2*(p[0]+p[1])**2, 12*x**2*(p[0]+p[1])**2], ]) def grad2_r_nlls(x, p): """ Calculate 2nd partial derivatives of residuals (y-f_ls) for nlls cost function """ return np.array([[-12*x**2*(p[0]+p[1])**2, -12*x**2*(p[0]+p[1])**2], [-12*x**2*(p[0]+p[1])**2, -12*x**2*(p[0]+p[1])**2], ]) def grad2_r_weighted_nlls(x, e, p): """ Calculate 2nd partial derivatives of residuals (y-f_ls)/e for weighted nlls cost function """ return np.array([[-12*x**2*(p[0]+p[1])**2/e, -12*x**2*(p[0]+p[1])**2/e], [-12*x**2*(p[0]+p[1])**2/e, -12*x**2*(p[0]+p[1])**2/e], ]) def grad2_r_hellinger(x): """ Calculate 2nd partial derivatives of residuals (sqrt(y)-sqrt(f_ls)) for hellinger nlls cost function """ return np.array([[-2*x, -2*x], [-2*x, -2*x], ]) def f_poisson(x, p1, p2): """ Test function for numerical Hessians, to be used with poisson cost function """ return p1*np.exp(p2*x) def J_poisson(x, p): """ Analyic Jacobian evaluation of f_poisson """ return np.column_stack((np.exp(p[1]*x), p[0]*x*np.exp(p[1]*x))) def H_poisson(x, p): """ Analyic Hessian evaluation of f_poisson """ return np.array([[np.zeros(x.shape[0]), x*np.exp((x*p[1]))], [x*np.exp((x*p[1])), p[0]*x**2*np.exp((x*p[1]))], ]) def grad2_r_poisson(x, y, p): """ Calculate 2nd partial derivatives of residuals (y(log(y)-log(f_poisson))-(y-f_poisson)) for poisson cost function """ return np.array([[y/p[0]**2, x*
np.exp(p[1]*x)
numpy.exp