prompt
stringlengths 19
879k
| completion
stringlengths 3
53.8k
| api
stringlengths 8
59
|
---|---|---|
"""
Numerical Integration
---------------------
Here is an introduction to Numerical Integration with Python!
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
###############################################################################
# Let's look at a simple function:
#
# .. math::
#
# g(x) = \sin(x)
#
# which we know the analytical integral as:
#
# .. math::
#
# G(x) = - \cos(x)
#
# and let's integrate that from 0 to :math:`\frac{5\pi}{4}`. Analytically, this is:
#
# .. math::
#
# \int_0^{\frac{5\pi}{4}} g(x) \, dx = - \cos(x) |_0^{\frac{5\pi}{4}} = - \cos(\frac{5\pi}{4}) + \cos(0) = \frac{\sqrt{2}}{2} + 1 = 1.7071
np.sqrt(2) / 2 + 1
###############################################################################
# We can visualize this as the area under the curve - which is all a numerical
# integral is; an approximation of the area under the curve.
# To do a numerical integration, we simply discretize our x space and then
# evaluate our function. Once we have that, we can sum the evaluation and
# multiply by the discretization factor to yield the effective area under the
# curve.
#
# So let's discretize :math:`g(x)` into several rectangles which we can use to
# solve for the area under this curve.
g = lambda x: np.sin(x)
a, b = 0, 5 * np.pi / 4
y = | np.linspace(a, b) | numpy.linspace |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Jan 2018
do metropolis sampling to estimate PDF of chessboard calibration. this involves
intrinsic and extrinsic parameters, so it's a very high dimensional search
space (before it was only intrinsic)
@author: sebalander
"""
# %%
# import glob
import os
import numpy as np
import scipy.stats as sts
import matplotlib.pyplot as plt
from copy import deepcopy as dc
from importlib import reload
import corner
import time
# %env THEANO_FLAGS='device=cuda, floatX=float32'
import theano
import theano. tensor as T
import pymc3 as pm
import scipy as sc
import seaborn as sns
import scipy.optimize as opt
import sys
sys.path.append("/home/sebalander/Code/sebaPhD")
from calibration import calibrator as cl
from dev import bayesLib as bl
import pickle
from calibration.calibrator import datafull, real, realdete, realbalk, realches
from calibration.calibrator import synt, syntextr, syntches, syntintr
print('libraries imported')
# %%
def stereoFromFisheye(distcoeffs):
'''
takes 4 distcoeffs of the opencv fisheye model and returns the
corresponding k stereografic parameter suche on average they are equal
(integrating over the angle 0 to pi/2)
from wolfram site:
https://www.wolframalpha.com/input/?i=integral+of+K*tan(x%2F2)+-+(x%2Bk1*x%5E3%2Bk2*x%5E5%2Bk3*x%5E7%2Bk4*x%5E9)+from+0+to+pi%2F2
'''
piPow = np.pi**(np.arange(1,6)*2)
numAux = np.array([3840, 480, 80, 15, 3])
fisheyeIntegral = np.sum(piPow * numAux) / 30720
return fisheyeIntegral / np.log(2)
'''
para ver que tan disperso es el paso de cada propuesta. como las propuestas se
sacan de una pdf gaussiana n-dimendional pasa que empieza a haber mucho volumen
de muestras que se acumulan mucho a un cierto radio. hay un compromiso entre
que el volumen aumenta
'''
def radiusStepsNdim(n):
'''
retorna moda, la media y la desv est del radio de pasos al samplear
de gaussianas hiperdimensionales de sigma 1
'''
# https://www.wolframalpha.com/input/?i=integrate+x%5E(n-1)+exp(-x%5E2%2F2)+from+0+to+infinity
# integral_0^∞ x^(n - 1) exp(-x^2/2) dx = 2^(n/2 - 1) Γ(n/2) for Re(n)>0
Inorm = 2**(n / 2 - 1) * sc.special.gamma(n / 2)
# https://www.wolframalpha.com/input/?i=integrate+x%5En+exp(-x%5E2%2F2)+from+0+to+infinity
# integral_0^∞ x^n exp(-x^2/2) dx = 2^((n - 1)/2) Γ((n + 1)/2) for Re(n)>-1
ExpectedR = 2**((n - 1) / 2) * sc.special.gamma((n + 1) / 2)
# https://www.wolframalpha.com/input/?i=integrate+x%5E(n%2B1)+exp(-x%5E2%2F2)+from+0+to+infinity
# integral_0^∞ x^(n + 1) exp(-x^2/2) dx = 2^(n/2) Γ(n/2 + 1) for Re(n)>-2
ExpectedR2 = 2**(n / 2) * sc.special.gamma(n / 2 + 1)
ModeR = np.sqrt(n - 1)
# normalizo las integrales:
ExpectedR /= Inorm
ExpectedR2 /= Inorm
DesvEstR = np.sqrt(ExpectedR2 - ExpectedR**2)
return np.array([ModeR, ExpectedR, DesvEstR])
# %% LOAD DATA
# input
plotCorners = False
#import collections as clt
fullDataFile = "./resources/fullDataIntrExtr.npy"
dataFile = open(fullDataFile, "rb")
fullData = pickle.load(dataFile)
dataFile.close()
# cam puede ser ['vca', 'vcaWide', 'ptz'] son los datos que se tienen
camera = fullData.Synt.Intr.camera
#modelos = ['poly', 'rational', 'fisheye', 'stereographic']
model = fullData.Synt.Intr.model
Ns = [2, 3]
nPt = fullData.Synt.Ches.nPt # cantidad de imagenes
nIm = fullData.Synt.Ches.nIm # puntos por imagen
# ## load data
stdPix = 1.0
imagePoints = fullData.Synt.Ches.imgPt + stdPix * fullData.Synt.Ches.imgNse
chessboardModel = fullData.Synt.Ches.objPt
imgSize = fullData.Synt.Intr.s
# images = glob.glob(imagesFolder+'*.png')
# Parametros de entrada/salida de la calibracion
objpoints2D = np.reshape([chessboardModel[:, :2]] * nIm, (nIm, nPt, 2))
fkVT = np.concatenate([fullData.Synt.Intr.uv, [fullData.Synt.Intr.k]]) #
# load model specific data
cameraMatrixT, distCoeffsT = bl.flat2int(fkVT, Ns, model)
rVecsT = fullData.Synt.Ches.rVecs
tVecsT = fullData.Synt.Ches.tVecs
print('raw data loaded')
# %%
# pongo en forma flat los valores iniciales
XintT, Ns = bl.int2flat(cameraMatrixT, distCoeffsT, model)
XextListT = np.array([bl.ext2flat(rVecsT[i], tVecsT[i]) for i in range(nIm)])
xAllT = np.concatenate([XintT, XextListT.reshape(-1)])
nIntr = XintT.shape[0]
nExtr = nIm * 6
nFree = nExtr + nIntr
nData = nIm * nPt
# 0.1pix as image std
# https://stackoverflow.com/questions/12102318/opencv-findcornersubpix-precision
# increase to 1pix porque la posterior da demasiado rara
Ci = np.repeat([stdPix**2 * np.eye(2)], nData, axis=0).reshape(nIm, nPt, 2, 2)
Crt = np.repeat([False], nIm) # no RT error
# output file
#intrinsicParamsOutFile = imagesFolder + camera + model + "intrinsicParamsML"
#intrinsicParamsOutFile = intrinsicParamsOutFile + str(stdPix) + ".npy"
## pruebo con un par de imagenes
#for j in range(0, nIm, 3):
# xm, ym, Cm = cl.inverse(imagePoints[j, 0], rVecs[j], tVecs[j],
# cameraMatrix,
# distCoeffs, model, Cccd=Ci[j], Cf=False, Ck=False,
# Crt=False, Cfk=False)
# print(xm, ym, Cm)
# datos medidos, observados, experimentalmente en el mundo y en la imagen
yObs = objpoints2D.reshape(-1)
print('data formated')
# %% testeo el error calculado como antes
params = dict()
params["imagePoints"] = imagePoints
params["model"] = model
params["chessboardModel"] = chessboardModel
params["Cccd"] = Ci
params["Cf"] = False
params["Ck"] = False
params["Crt"] = [False] * nIm
params["Cfk"] = False
reload(bl)
reload(cl)
Eint = bl.errorCuadraticoInt(XintT, Ns, XextListT, params)
# %% defino la funcion a minimizar
def objective(xAll):
Xint = xAll[:Ns[1]]
XextList = xAll[Ns[1]:].reshape((-1, 6))
Eint = bl.errorCuadraticoInt(Xint, Ns, XextList, params)
return np.sum(Eint)
objective(xAllT)
# %% result of optimisation:
#xAllOpt = np.array([
# 8.16472244e+02, 4.72646126e+02, 7.96435717e+02, -1.77272668e-01,
# 7.67281179e-02, -9.03548594e-02, -3.33339378e+00, -5.54790259e+00,
# 5.99651705e+00, 9.30295123e-01, 6.21785570e-02, -6.96743493e-02,
# -3.13558219e+00, -4.25053069e+00, 3.87610434e+00, 9.19901975e-01,
# -3.59066370e-01, 9.74042501e-01, 9.47115482e+00, -6.02396770e+00,
# 3.96904837e+00, 1.36935625e-01, -5.42713201e-01, 6.43889150e-01,
# -6.55503634e+00, -4.13393364e+00, 3.64817246e+00, -2.13080979e-02,
# 8.53474025e-01, 1.11909981e-03, -3.06900646e-01, -2.53776109e+00,
# 7.57360018e+00, 8.52154654e-01, 5.11584688e-01, 8.97896445e-01,
# 7.68107905e+00, -6.95803581e+00, 5.21527990e+00, 6.29435124e-01,
# 9.12272513e-01, 1.83799323e+00, 1.85151971e+01, 6.08915024e+00,
# 7.66699884e+00, -7.78003463e-01, 6.73711760e-02, 1.10490676e+00,
# -5.06829679e+00, -3.74958656e+00, 1.11505467e+01, 2.54343546e-02,
# 4.05416594e-03, -1.58361597e+00, -2.48236025e+00, 4.84091669e+00,
# 5.20689047e+00, -4.43952330e-02, -7.01522701e-02, -3.09646881e+00,
# 3.89079512e+00, 4.85194798e+00, 5.49819233e+00, 1.69406316e-01,
# 5.40372043e-02, 3.00215179e-02, -3.90828973e+00, 1.99912411e+00,
# 5.13066284e+00, 6.62491305e-01, 1.92824964e-01, 2.29515447e-01,
# -9.10653837e-01, -2.04052824e+01, 1.42154590e+01, -6.37592106e-02,
# -2.53455685e-02, -3.58656047e-02, -5.00455800e+00, -8.12217250e-01,
# 1.95699162e+01, -1.32713680e+00, -1.01306097e-01, 2.89174569e+00,
# -1.77829953e+01, -3.26660847e+00, 1.20506102e+01, -1.55204173e-01,
# -1.05546726e+00, 1.68382535e+00, -1.88353255e+00, -5.31860869e+00,
# 7.82312257e+00, -4.37144137e-01, -5.52910372e-01, 1.37146393e+00,
# -5.16628075e+00, -5.62202475e+00, 1.23453259e+01, -2.16223315e-01,
# 8.37239606e-01, 1.69334147e+00, 9.75590372e-01, 1.57674791e+01,
# 2.01951559e+01, -1.99116907e-01, 1.10314769e+00, 5.88264305e-01,
# 1.61820088e+01, 6.60128144e+00, 1.72941117e+01, 5.40902817e-02,
# 7.62769730e-02, -1.49449032e-01, -2.63389072e+00, -1.06080724e+01,
# 1.82899752e+01, -8.56471354e-03, -2.45078027e-01, -1.64320059e-01,
# -9.59370234e+00, -8.45154875e-01, 2.38798610e+00, 3.77548626e-01,
# 9.98276457e-01, 1.41182263e+00, 1.17437175e+01, -4.32923051e+00,
# 7.43836485e+00, 6.96268996e-01, 3.95929202e-02, -2.98359684e+00,
# 3.33863256e+00, 2.87001819e-01, 1.45762698e+01, -6.78229876e-02,
# -5.67645552e-01, 2.88318506e-01, -1.14904508e+01, 1.70303908e+00,
# 3.30095194e+00, 2.42190792e-02, -1.27367655e+00, 1.54813038e-03,
# -5.20891681e+00, -2.45320303e+00, 1.31695324e+00, -1.06274465e+00,
# 2.08679680e-01, 2.60268127e+00, -1.68834508e+01, 6.90152958e+00,
# 1.16182962e+01, -8.95894326e-01, 6.12672038e-01, 2.07821135e+00,
# -1.08799650e+01, 1.38492242e+01, 1.47120196e+01, -1.60848855e-01,
# -9.06361915e-01, -2.94268629e+00, 1.16721052e+00, 1.60323027e+01,
# 1.19152148e+01, 6.91402436e-01, 3.94207470e-01, 1.34789930e+00,
# 9.09838596e+00, -6.69821565e+00, 4.36094691e+00, -6.55471764e-01,
# -1.34010450e-01, -3.01528340e+00, 1.66529059e+00, 6.84657929e+00,
# 9.77907952e+00, 3.24220688e-02, -4.44796297e-02, -6.42984860e-02,
# -3.98798128e+00, -2.77091915e+00, 4.16758939e+00, 3.48300864e-01,
# 5.05710578e-01, -3.11771835e-01, 1.29033074e+01, -9.27263245e+00,
# 1.49798210e+01, 4.11331979e-02, 7.36662257e-01, 2.92912667e-03,
# 1.62603380e+01, -3.00052137e+00, 1.05005924e+01, -7.00610553e-02,
# 9.00948402e-01, 5.66637445e-01, 1.72115713e+01, 1.75486781e+00,
# 1.02325778e+01])
xAllOpt = xAllT.copy()
XintOpt = xAllOpt[:Ns[1]]
XextListOpt = xAllOpt[Ns[1]:].reshape((-1,6))
# %%
#ret = opt.minimize(objective, xAllT, method='Powell', tol=1e-1)
#ret2 = opt.minimize(objective, ret.x, method='Powell', tol=1e-3)
#ret3 = opt.minimize(objective, ret2.x, method='Powell', tol=1e-6)
#ret4 = opt.minimize(objective, ret3.x, method='Powell', tol=1e-6)
#ret5 = opt.minimize(objective, ret4.x, tol=1e-4)
#ret = opt.minimize(objective, xAllOCV, tol=1e-4)
if False:
ret = opt.minimize(objective, xAllOpt, tol=1e-4)
errAbs = np.abs(ret.x - xAllOpt)
valAbs = np.abs(ret.x)
plt.plot(valAbs, errAbs, '.')
epAbs = np.sort(errAbs)
epRel = np.sort(errAbs / valAbs)
A, R = np.meshgrid(epAbs, epRel)
validity = R.reshape((nFree, nFree,1)) * valAbs.reshape((1, 1, -1))
validity += A.reshape((nFree, nFree, 1))
validity = errAbs < validity
validPoints = np.sum(validity, axis=2) / errAbs.shape[0]
plt.pcolormesh(A, R, validPoints, cmap='gray')
plt.loglog()
plt.xlabel('Abs Error')
plt.ylabel('Rel Error')
C = np.linalg.inv(ret.hess_inv)
sig = np.sqrt(np.diag(C))
Corr = C / (sig.reshape((-1, 1)) * sig.reshape((1, -1)))
plt.matshow(Corr, vmin=-1, vmax=1, cmap='coolwarm')
# %% trato de hacerle una derivada
#import numdifftools as ndf
#
#J = ndf.Jacobian(objective)
# %%
'''
aca defino la proyeccion para que la pueda usar thean0
http://deeplearning.net/software/theano/extending/extending_theano.html
'''
class ProjectionT(theano.Op):
# itypes and otypes attributes are
# compulsory if make_node method is not defined.
# They're the type of input and output respectively
# xAll # xInt, xExternal
itypes = [T.dvector] # , T.dmatrix]
# xm, ym, cM
otypes = [T.dtensor3] # , T.dtensor4]
# Python implementation:
def perform(self, node, inputs_storage, output_storage):
# print('IDX %d projection %d, global %d' %
# (self.idx, self.count, projCount))
Xint = inputs_storage[0][:Ns[1]]
Xext = inputs_storage[0][Ns[1]:].reshape((-1,6))
# xyM, cM = output_storage
# saco los parametros de flat para que los use la func de projection
# print(Xint)
cameraMatrix, distCoeffs = bl.flat2int(Xint, Ns, model)
# print(cameraMatrix, distCoeffs)
xy = np.zeros((nIm, nPt, 2))
cm = np.zeros((nIm, nPt, 2, 2))
for j in range(nIm):
rVec, tVec = bl.flat2ext(Xext[j])
xi, yi = imagePoints.reshape((nIm, nPt, 2))[j].T
xy[j, :, 0], xy[j, :, 1], cm[j] = cl.inverse(
xi, yi, rVec, tVec,
cameraMatrix, distCoeffs, model, Cccd=Ci[j])
xy -= objpoints2D
S = np.linalg.inv(cm)
u, s, v = np.linalg.svd(S)
sdiag = np.zeros_like(u)
sdiag[:, :, [0, 1], [0, 1]] = np.sqrt(s)
A = (u.reshape((nIm, nPt, 2, 2, 1, 1)) *
sdiag.reshape((nIm, nPt, 1, 2, 2, 1)) *
v.transpose((0, 1, 3, 2)).reshape((nIm, nPt, 1, 1, 2, 2))
).sum(axis=(3, 4))
xy = np.sum(xy.reshape((nIm, nPt, 2, 1)) * A, axis=3)
output_storage[0][0] = xy
# optional:
check_input = True
print('projection defined for theano')
# %% pruebo si esta bien como OP
#try:
# del XintOP, XextOP, projTheanoWrap, projTfunction
#except:
# pass
#else:
# pass
#XintOper = T.dvector('XintOP')
#XextOper = T.dmatrix('XextOP')
xAllOper = T.dvector('xAllOper')
projTheanoWrap = ProjectionT()
projTfunction = theano.function([xAllOper],# XextOper],
projTheanoWrap(xAllOper))# , XextOper))
try:
# outOpt = projTfunction(XintOpt, XextListOpt)
outOpt = projTfunction(xAllOper)
except:
# sys.exit("no anduvo el wrapper de la funciona theano")
print("no anduvo el wrapper de la funciona theano")
else:
pass
# print(out)
# # no comparo con OCV para no meter un tema y despues tener que explicarlo
#outOCV = np.zeros_like(outOpt)
#for i in range(nIm):
# xi, yi = imagePoints[i,0].T
# outOCV[i,:,0], outOCV[i,:,1], _ = cl.inverse(xi, yi, rVecsOCV[i],
# tVecsOCV[i], cameraMatrixOCV, distCoeffsOCV, modelos[2])
#
#outOCV -= objpoints2D
plotBool = False
if plotBool:
plt.figure()
plt.plot(outOpt[:, :, 0].flatten(), outOpt[:, :, 1].flatten(), '.k',
markersize=0.7)
#plt.plot(outOCV[:, :, 0].flatten(), outOCV[:, :, 1].flatten(), '+r')
# %%
# from importlib import reload
# reload(cl)
# reload(bl)
# indexes to read diagona 2x2 blocks of a matrix
# nTot = 2 * nIm * nPt
# xInxs = [[[i, i], [i+1, i+1]] for i in range(0, nTot, 2)]
# yInxs = [[[i, i+1], [i, i+1]] for i in range(0, nTot, 2)]
projectionModel = pm.Model()
projTheanoWrap = ProjectionT()
# set lower and upper bounds for uniform prior distributions
# for camera matrix is important to avoid division by zero
# intrDelta = np.abs([100, 100, 200, 100,
# Xint[4] / 2, Xint[5] / 2, Xint[6] / 2, Xint[7] / 2])
intrDelta = np.abs([100, 100, 100])
intrLow = XintOpt - intrDelta # intrinsic
intrUpp = XintOpt + intrDelta
extrDelta = np.array([[0.3, 0.3, 0.3, 3, 3, 3]]*nIm)
extrLow = XextListOpt - extrDelta
extrUpp = XextListOpt + extrDelta
allLow = np.concatenate([intrLow, extrLow.reshape(-1)])
allUpp = np.concatenate([intrUpp, extrUpp.reshape(-1)])
xAll0 = np.concatenate([XintOpt, XextListOpt.reshape(-1)], 0)
observedNormed = np.zeros((nIm * nPt * 2))
with projectionModel:
# Priors for unknown model parameters
# xIn = pm.Uniform('xIn', lower=intrLow, upper=intrUpp, shape=(NintrParams,),
# transform=None)
# xEx = pm.Uniform('xEx', lower=extrLow, upper=extrUpp, shape=(nIm, 6),
# transform=None)
xAl = pm.Uniform('xAl', lower=allLow, upper=allUpp, shape=allLow.shape,
transform=None)
# apply numpy based function
xyMNor = projTheanoWrap(xAl) # xIn, xEx)
mu = T.reshape(xyMNor, (-1, ))
Y_obs = pm.Normal('Y_obs', mu=mu, sd=1, observed=observedNormed)
print('model defined')
#
# # %% saco de las sampleadas anteriores
#
# pathFiles = "/home/sebalander/Code/VisionUNQextra/Videos y Mediciones/extraDataSebaPhD/"
#
# Smean = np.load(pathFiles + "Smean.npy")
# Scov = np.load(pathFiles + "Scov.npy")
#
# Sintr = np.sqrt(np.diag(Scov[:NintrParams,:NintrParams]))
# Sextr = np.sqrt(np.diag(Scov)[NintrParams:])
# %% aca harcodeo buenas condiciones iniciales
try:
covOPdiag = np.diag(ret.hess_inv)
except:
covOPdiag = np.array(
[0.99666917, 1.01725545, 0.99230996, 0.92448788, 0.81269367,
0.46444881, 0.98598025, 0.98665314, 0.99619757, 0.97972878,
0.96732291, 0.48881261, 1.02317142, 0.99738691, 1.02176324,
0.98016844, 0.99053176, 0.98051997, 1.0045555 , 0.99957425,
1.02122366, 0.87471028, 0.97719328, 0.55544213, 0.99778134,
0.99827303, 1.00659944, 0.85216935, 0.98208789, 0.13934568,
0.96463168, 1.01624222, 0.97889943, 0.97044974, 1.01869262,
0.74040321, 1.01927562, 1.04108516, 1.14922666, 0.93030665,
1.03253671, 0.97825876, 1.00254591, 1.0122422 , 1.00003419,
1.01133444, 0.95523071, 0.84140185, 1.01104793, 1.04161458,
1.13881759, 0.85826757, 0.60880472, 0.02773636, 0.99311584,
1.02451849, 1.06699635, 0.99782994, 0.99631883, 0.8033285 ,
0.94975035, 1.01521908, 1.01211061, 0.92451836, 0.81870015,
0.82183431, 1.00520635, 0.99902623, 0.99371426, 1.09465475,
1.06197124, 0.95492071, 0.99968204, 1.02553992, 1.02736384,
1.11058998, 1.00785108, 0.91943086, 1.06795506, 1.03985036,
0.99997106, 1.06452488, 0.99176444, 0.86202203, 1.01531346,
1.03781383, 1.01318191, 0.90510674, 1.26167704, 0.87964094,
1.02313256, 1.09463896, 1.0245659 , 1.0194543 , 1.00324881,
0.99926508, 1.00268766, 1.01389343, 1.00373701, 1.01620944,
1.0904048 , 1.05922911, 1.20156496, 1.00189132, 1.00447545,
1.04580116, 1.01109723, 0.96776504, 1.00422124, 1.01554554,
1.04860152, 1.00164859, 1.00463207, 0.90290399, 1.00116518,
1.01461016, 1.01009007, 0.7869471 , 0.77256265, 0.13678561,
0.93776702, 1.04072775, 1.1266469 , 0.99732331, 1.00230652,
0.98210756, 1.02949382, 1.00271666, 1.02334042, 1.10331503,
1.02724226, 0.99579062, 1.23285126, 1.06129086, 1.00075568,
0.87217687, 0.94557873, 0.80048822, 1.05378651, 1.06405655,
1.00725197, 0.81407575, 0.94466406, 0.58668429, 1.03874161,
1.15654318, 1.00558437, 1.00568688, 1.22975702, 0.974743 ,
1.03104617, 1.0591857 , 1.00597734, 1.05657699, 1.45644042,
0.99690871, 1.20990415, 1.00970418, 1.30362057, 0.99993822,
1.00001622, 0.99922863, 1.0002478 , 1.00094582, 1.00347633,
0.96679911, 0.98195348, 0.8624708 , 1.00320789, 0.99922754,
0.99894586, 0.99635016, 0.99876612, 0.94421186, 0.99904539,
1.00533761, 1.00080393, 0.97327825, 0.9260509 , 0.05477286,
0.98552962, 0.98541202, 1.00898964, 1.07033115, 0.98371253,
0.99367689, 1.01665865, 1.0236957 , 1.05833444, 1.01003038,
1.01508945, 0.955479 , 1.00029497, 1.00148514, 1.02546372,
1.00120396, 0.99943828, 0.99830778, 1.01370469, 1.0046385 ,
0.99987442])
## esto es para el modelo wide fisheye
#inMean = np.array(
# [ 3.98204193e+02, 4.11166644e+02, 8.08151855e+02, 4.67128941e+02,
# 9.58414611e-02, -1.79782629e-02, 1.71555867e-02, -4.14991611e-03])
#
#Sin = np.array(
# [1.10881031e-01, 1.02037362e-01, 4.34863593e-02, 4.69344339e-02,
# 7.05596265e-05, 2.74114158e-06, 3.53176045e-06, 2.32011924e-07])
#inCov = np.array(
# [[ 9.03278324e-02, 8.01184408e-02, 5.93501910e-03,
# -3.28437427e-03, -1.37613801e-04, -2.13500585e-06,
# 1.37155732e-05, 3.80320535e-07],
# [ 8.01184408e-02, 9.03987874e-02, 9.05846356e-03,
# -4.98390308e-03, -1.34137229e-04, -1.73441031e-06,
# 1.69912087e-05, 3.51041632e-07],
# [ 5.93501910e-03, 9.05846356e-03, 9.05394824e-03,
# -7.48250515e-04, -3.81539942e-07, -8.56656518e-07,
# 1.44193878e-06, 4.07269304e-08],
# [-3.28437427e-03, -4.98390308e-03, -7.48250515e-04,
# 1.01802146e-02, 4.58709928e-06, -1.55095197e-06,
# -1.32518335e-06, 1.01157804e-07],
# [-1.37613801e-04, -1.34137229e-04, -3.81539942e-07,
# 4.58709928e-06, 4.99190949e-07, -1.04398026e-08,
# -7.71458599e-08, 2.34150723e-09],
# [-2.13500585e-06, -1.73441031e-06, -8.56656518e-07,
# -1.55095197e-06, -1.04398026e-08, 3.49035741e-09,
# 1.30677751e-09, -2.78472504e-10],
# [ 1.37155732e-05, 1.69912087e-05, 1.44193878e-06,
# -1.32518335e-06, -7.71458599e-08, 1.30677751e-09,
# 1.71681579e-08, -6.80709826e-10],
# [ 3.80320535e-07, 3.51041632e-07, 4.07269304e-08,
# 1.01157804e-07, 2.34150723e-09, -2.78472504e-10,
# -6.80709826e-10, 1.22395226e-10]])
#
#inMean = np.array([816.52306533, 472.6509038 , 795.35757785])
#
#
##inCov = np.array(
## [[ 0.1336706 , 0.04361427, -0.17582661],
## [ 0.04361427, 0.33718186, -0.22929851],
## [-0.17582661, -0.22929851, 1.36442735]])
#
#
#inCov = Sin = np.array(
# [[ 0.22201776, 0.02473017, -0.07705355],
# [ 0.02473017, 0.02946335, -0.02757416],
# [-0.07705355, -0.02757416, 0.90622708]])
#
#
#exMean = np.array([[-1.80167178e-01, 7.70878291e-02, -9.11332085e-02,
# -3.33767486e+00, -5.53933063e+00, 5.99338849e+00],
# [ 9.30252815e-01, 6.29244768e-02, -7.00228922e-02,
# -3.13657634e+00, -4.25220832e+00, 3.87072930e+00],
# [ 9.18770862e-01, -3.59104432e-01, 9.72840572e-01,
# 9.46331750e+00, -6.02505143e+00, 3.95175051e+00],
# [ 1.38368094e-01, -5.40701641e-01, 6.43722864e-01,
# -6.55540744e+00, -4.13410627e+00, 3.63578192e+00],
# [-2.38996202e-02, 8.51708791e-01, 1.10038464e-03,
# -3.13671548e-01, -2.53169888e+00, 7.56497691e+00],
# [ 8.54461633e-01, 5.12248498e-01, 8.97735395e-01,
# 7.67730295e+00, -6.95649265e+00, 5.19809539e+00],
# [ 6.24022772e-01, 9.11974627e-01, 1.84133535e+00,
# 1.85380532e+01, 6.10095731e+00, 7.65631705e+00],
# [-7.77273102e-01, 6.73312499e-02, 1.10478194e+00,
# -5.07150815e+00, -3.75016477e+00, 1.11403444e+01],
# [ 2.66400052e-02, 3.85463199e-03, -1.58203501e+00,
# -2.49082973e+00, 4.83656452e+00, 5.20168570e+00],
# [-4.49425065e-02, -6.68025381e-02, -3.09784857e+00,
# 3.89631162e+00, 4.84452886e+00, 5.49198735e+00],
# [ 1.69530683e-01, 5.42945198e-02, 2.92943607e-02,
# -3.90946819e+00, 2.00034637e+00, 5.12276745e+00],
# [ 6.60246221e-01, 1.92566621e-01, 2.29654105e-01,
# -9.12700556e-01, -2.04042003e+01, 1.41847163e+01],
# [-6.00258060e-02, -2.68463338e-02, -3.60838138e-02,
# -5.00649319e+00, -8.11922768e-01, 1.95246215e+01],
# [-1.33185030e+00, -1.00501354e-01, 2.88778409e+00,
# -1.77998534e+01, -3.27404467e+00, 1.20315003e+01],
# [-1.56715071e-01, -1.05864768e+00, 1.68304519e+00,
# -1.88651720e+00, -5.31981199e+00, 7.81543480e+00],
# [-4.39015924e-01, -5.54065974e-01, 1.37152066e+00,
# -5.16910099e+00, -5.62044311e+00, 1.23354915e+01],
# [-2.12725179e-01, 8.36348015e-01, 1.69324731e+00,
# 9.71432308e-01, 1.57485182e+01, 2.01341204e+01],
# [-2.00938217e-01, 1.10426149e+00, 5.88735787e-01,
# 1.61808550e+01, 6.60226030e+00, 1.72631491e+01],
# [ 5.12075282e-02, 7.65048634e-02, -1.49076892e-01,
# -2.63534470e+00, -1.06133112e+01, 1.82756012e+01],
# [-8.07593457e-03, -2.48448650e-01, -1.65477009e-01,
# -9.59574683e+00, -8.35501930e-01, 2.36221967e+00],
# [ 3.79958987e-01, 9.99906946e-01, 1.41113308e+00,
# 1.17419291e+01, -4.32946182e+00, 7.41637272e+00],
# [ 6.93547538e-01, 4.27537532e-02, -2.98380624e+00,
# 3.33789720e+00, 2.84884758e-01, 1.45640980e+01],
# [-6.77337244e-02, -5.66907521e-01, 2.88282057e-01,
# -1.14902588e+01, 1.70107787e+00, 3.28529706e+00],
# [ 2.71373754e-02, -1.27192954e+00, 1.49621469e-03,
# -5.21038889e+00, -2.45187911e+00, 1.30818072e+00],
# [-1.06429943e+00, 2.12329072e-01, 2.59992594e+00,
# -1.68895300e+01, 6.89918253e+00, 1.15891882e+01],
# [-9.01672732e-01, 6.10882974e-01, 2.07802477e+00,
# -1.08991531e+01, 1.38690599e+01, 1.47006073e+01],
# [-1.61219868e-01, -9.08374670e-01, -2.94221168e+00,
# 1.16533329e+00, 1.60280144e+01, 1.18848337e+01],
# [ 6.89585013e-01, 3.94733743e-01, 1.34967818e+00,
# 9.10776785e+00, -6.69747467e+00, 4.34937548e+00],
# [-6.52008590e-01, -1.34253326e-01, -3.01545982e+00,
# 1.66521547e+00, 6.85216957e+00, 9.77746025e+00],
# [ 3.18205199e-02, -4.38767512e-02, -6.64824468e-02,
# -3.99451213e+00, -2.76141393e+00, 4.15847115e+00],
# [ 3.47395592e-01, 5.07440498e-01, -3.11362863e-01,
# 1.29073933e+01, -9.27749780e+00, 1.49588435e+01],
# [ 4.11161529e-02, 7.38634608e-01, 2.96523788e-03,
# 1.62627796e+01, -3.00193706e+00, 1.04785773e+01],
# [-6.95117072e-02, 9.03717658e-01, 5.66261359e-01,
# 1.72162297e+01, 1.75659780e+00, 1.02105909e+01]])
#
#
#Sex = np.array([[1.52479303e-03, 1.68167445e-03, 8.98754252e-04, 8.72151718e-03,
# 5.15530424e-03, 1.28739102e-02],
# [2.19472514e-03, 1.97445265e-03, 8.25030686e-04, 6.34301814e-03,
# 7.98991959e-03, 1.25097042e-02],
# [2.51606013e-03, 2.08482813e-03, 1.94829836e-03, 1.87353192e-02,
# 1.09968352e-02, 2.06112199e-02],
# [2.57611391e-03, 2.48998555e-03, 1.18997992e-03, 1.20328431e-02,
# 4.14362996e-03, 1.58189060e-02],
# [1.26963587e-03, 1.35893135e-03, 7.06690137e-05, 9.22476480e-03,
# 3.45503719e-03, 9.21037232e-03],
# [7.47604475e-03, 6.03579932e-03, 2.90351842e-03, 2.68711520e-02,
# 1.65873650e-02, 2.55882018e-02],
# [1.69496695e-02, 1.81995874e-02, 1.11309217e-02, 6.44843305e-02,
# 3.14112593e-02, 5.07653062e-02],
# [3.13279083e-03, 3.01720583e-03, 1.36930239e-03, 1.70649961e-02,
# 8.55825145e-03, 1.72046343e-02],
# [2.20576561e-03, 1.19789546e-03, 6.52279865e-04, 7.83241475e-03,
# 3.61458349e-03, 9.72823174e-03],
# [2.82787519e-03, 3.61501197e-03, 8.70681686e-04, 8.22622430e-03,
# 5.38497796e-03, 1.53320458e-02],
# [1.58642973e-03, 1.79285300e-03, 1.20556659e-03, 6.80597694e-03,
# 6.46813167e-03, 1.42327812e-02],
# [1.84009515e-02, 1.41779306e-02, 6.79883320e-03, 3.12334884e-02,
# 4.48088419e-02, 6.95537796e-02],
# [7.98732941e-03, 5.79336575e-03, 2.07111388e-03, 2.51199486e-02,
# 1.44062150e-02, 6.01547813e-02],
# [1.38209459e-02, 1.43769694e-02, 8.94933084e-03, 9.84376142e-02,
# 2.58117457e-02, 6.11061713e-02],
# [4.18011113e-03, 4.62053996e-03, 2.18349714e-03, 1.41098763e-02,
# 1.12261060e-02, 2.15771037e-02],
# [1.04489156e-02, 1.19281751e-02, 3.12076298e-03, 1.93509174e-02,
# 7.66211865e-03, 3.51358863e-02],
# [1.52623685e-02, 1.45045138e-02, 7.69081751e-03, 3.13981700e-02,
# 8.35139512e-02, 1.00461429e-01],
# [1.69990048e-02, 1.78319288e-02, 1.11578108e-02, 5.95182716e-02,
# 3.45686089e-02, 5.34271482e-02],
# [5.80086828e-03, 8.31709423e-03, 3.13288245e-03, 2.40468109e-02,
# 2.49542601e-02, 5.48008967e-02],
# [1.33222368e-03, 1.70249875e-03, 6.94106616e-04, 6.44673519e-03,
# 4.07957995e-03, 1.55058279e-02],
# [5.36821821e-03, 5.70037415e-03, 3.06505616e-03, 2.38766239e-02,
# 8.12687807e-03, 1.84587611e-02],
# [8.07127230e-03, 7.12536903e-03, 1.98864206e-03, 1.93546834e-02,
# 1.15530610e-02, 2.81182943e-02],
# [2.28407405e-03, 2.61409513e-03, 1.90622518e-03, 1.34921667e-02,
# 7.23600715e-03, 1.87651943e-02],
# [1.57477733e-03, 1.56273289e-03, 3.54651310e-04, 8.70370344e-03,
# 3.68166414e-03, 9.08649200e-03],
# [1.01786601e-02, 9.81502545e-03, 5.21805738e-03, 7.38352975e-02,
# 2.77284642e-02, 5.23798554e-02],
# [1.74118881e-02, 1.41258355e-02, 8.98176608e-03, 6.52864189e-02,
# 6.99362974e-02, 7.41618321e-02],
# [1.45806489e-02, 1.85215233e-02, 6.75793917e-03, 2.12389346e-02,
# 5.36688843e-02, 5.87534234e-02],
# [5.77746496e-03, 5.66282304e-03, 2.20897842e-03, 1.50999702e-02,
# 8.42518896e-03, 2.07843349e-02],
# [6.02643031e-03, 6.72757792e-03, 1.42294416e-03, 1.36019522e-02,
# 1.45002870e-02, 3.14657651e-02],
# [1.79992842e-03, 1.16831095e-03, 6.03507314e-04, 6.17583094e-03,
# 3.81726175e-03, 9.42681515e-03],
# [8.13872308e-03, 7.98843619e-03, 3.53079514e-03, 6.31883706e-02,
# 3.33131466e-02, 7.42287605e-02],
# [3.17841141e-03, 6.56346679e-03, 3.88077619e-04, 6.64711504e-02,
# 9.47797196e-03, 4.63800137e-02],
# [8.60052456e-03, 1.01189668e-02, 5.30223279e-03, 7.01465438e-02,
# 2.25246945e-02, 4.98055332e-02]]).reshape(-1)
#
#exCov = np.diag(Sex**2)
##inMean = xAllOpt[:Ns[-1]]
##exMean = xAllOpt[Ns[-1]:].reshape((-1,6))
##Sin = np.abs(inMean) * 1e-4 # np.sqrt(covOPdiag[:Ns[-1]])
##inCov = np.diag(Sin**2)
##Sex = np.abs(exMean).reshape(-1) * 1e-3 # np.sqrt(covOPdiag[Ns[-1]:])
#
## del rejunte de todos en un solo vector
##alMean = np.concatenate((inMean, exMean.reshape(-1)))
##Sal = np.concatenate((np.sqrt(np.diag(inCov)), Sex.reshape(-1)))
#alMean = np.array([ 8.16506629e+02, 4.72673059e+02, 7.95248657e+02, -1.80478563e-01,
# 7.64854287e-02, -9.13167238e-02, -3.33719539e+00, -5.53946684e+00,
# 5.99255238e+00, 9.29933477e-01, 6.19355734e-02, -7.00424639e-02,
# -3.13797135e+00, -4.25570589e+00, 3.86833239e+00, 9.17789946e-01,
# -3.58883359e-01, 9.73287512e-01, 9.46048391e+00, -6.02816511e+00,
# 3.94251842e+00, 1.37838383e-01, -5.41364386e-01, 6.43248684e-01,
# -6.55482426e+00, -4.13328724e+00, 3.63596850e+00, -2.38513022e-02,
# 8.51751654e-01, 1.10610313e-03, -3.14546183e-01, -2.53041905e+00,
# 7.56580076e+00, 8.56005898e-01, 5.14018197e-01, 8.97799747e-01,
# 7.69065670e+00, -6.95962313e+00, 5.20488180e+00, 6.23861542e-01,
# 9.07658868e-01, 1.84114876e+00, 1.85393052e+01, 6.10918872e+00,
# 7.65143246e+00, -7.77124379e-01, 6.73641024e-02, 1.10484213e+00,
# -5.06958316e+00, -3.74651708e+00, 1.11385232e+01, 2.62123326e-02,
# 3.73425061e-03, -1.58203856e+00, -2.49044348e+00, 4.83634426e+00,
# 5.20088990e+00, -4.53474123e-02, -6.70142923e-02, -3.09737531e+00,
# 3.89492548e+00, 4.84259754e+00, 5.49126684e+00, 1.68757081e-01,
# 5.51274089e-02, 3.01891954e-02, -3.90800567e+00, 1.99927315e+00,
# 5.12494645e+00, 6.51909976e-01, 1.92633771e-01, 2.30285713e-01,
# -9.08773459e-01, -2.04135586e+01, 1.41970471e+01, -6.09647229e-02,
# -2.65710826e-02, -3.58392354e-02, -5.01073081e+00, -8.15060747e-01,
# 1.95226844e+01, -1.33030011e+00, -1.00740285e-01, 2.88939332e+00,
# -1.78299160e+01, -3.28421749e+00, 1.20380072e+01, -1.57007396e-01,
# -1.05776631e+00, 1.68235217e+00, -1.88811121e+00, -5.32016635e+00,
# 7.81677071e+00, -4.39487926e-01, -5.52374368e-01, 1.37220110e+00,
# -5.17298218e+00, -5.61705099e+00, 1.23312359e+01, -2.12694378e-01,
# 8.32349680e-01, 1.69271964e+00, 9.70210098e-01, 1.57458590e+01,
# 2.01492648e+01, -2.03789791e-01, 1.10557197e+00, 5.91258391e-01,
# 1.61868046e+01, 6.59290887e+00, 1.72540554e+01, 4.96549370e-02,
# 7.67211759e-02, -1.47759496e-01, -2.63552624e+00, -1.06133907e+01,
# 1.82639239e+01, -7.96856171e-03, -2.48460077e-01, -1.65610423e-01,
# -9.59497165e+00, -8.36512749e-01, 2.36010278e+00, 3.79257271e-01,
# 9.99197068e-01, 1.41127756e+00, 1.17297458e+01, -4.32981464e+00,
# 7.40401101e+00, 6.94625060e-01, 4.57226834e-02, -2.98443871e+00,
# 3.34134712e+00, 2.82935803e-01, 1.45668003e+01, -6.80804948e-02,
# -5.67228819e-01, 2.88547968e-01, -1.14894620e+01, 1.69994102e+00,
# 3.28692344e+00, 2.67102999e-02, -1.27192764e+00, 1.46289441e-03,
# -5.20922383e+00, -2.45358811e+00, 1.30578398e+00, -1.06493140e+00,
# 2.13265822e-01, 2.60029027e+00, -1.68824830e+01, 6.89455023e+00,
# 1.15901814e+01, -8.95878272e-01, 6.12391234e-01, 2.07658464e+00,
# -1.09091479e+01, 1.38673819e+01, 1.46946244e+01, -1.60969752e-01,
# -9.06123611e-01, -2.94298417e+00, 1.16075333e+00, 1.60273796e+01,
# 1.18827903e+01, 6.90335841e-01, 3.94638640e-01, 1.34933522e+00,
# 9.10414512e+00, -6.69531155e+00, 4.34699026e+00, -6.52507041e-01,
# -1.34994918e-01, -3.01553671e+00, 1.66947579e+00, 6.85081848e+00,
# 9.78286214e+00, 3.21234004e-02, -4.41984517e-02, -6.60370727e-02,
# -3.99407691e+00, -2.76264180e+00, 4.15719060e+00, 3.46736788e-01,
# 5.07381453e-01, -3.11723058e-01, 1.28913800e+01, -9.27486012e+00,
# 1.49524197e+01, 4.14732064e-02, 7.34576856e-01, 2.95779932e-03,
# 1.62799390e+01, -3.00104746e+00, 1.04736719e+01, -7.08114403e-02,
# 9.04428936e-01, 5.65636587e-01, 1.72047391e+01, 1.75827641e+00,
# 1.02059229e+01])
#
#Sal = np.array([0.73434837, 0.79484514, 1.94896611, 0.01064089, 0.007827 ,
# 0.00540884, 0.03623457, 0.04738548, 0.07399149, 0.01152841,
# 0.00817604, 0.00477024, 0.03336005, 0.04019474, 0.05191765,
# 0.01041313, 0.01205988, 0.00968695, 0.09017543, 0.06120177,
# 0.08552671, 0.01399467, 0.01140009, 0.00624284, 0.05411949,
# 0.0363931 , 0.06303563, 0.00997974, 0.00737276, 0.00304918,
# 0.04007265, 0.03372606, 0.03966415, 0.02800276, 0.0249353 ,
# 0.01340348, 0.10421091, 0.0638665 , 0.10075593, 0.0578897 ,
# 0.07776158, 0.03842367, 0.22659351, 0.16098488, 0.1522148 ,
# 0.01820332, 0.01714404, 0.00770563, 0.07033052, 0.06160929,
# 0.0906178 , 0.01096375, 0.0106074 , 0.00376827, 0.02925374,
# 0.0328036 , 0.0532061 , 0.01264768, 0.02106561, 0.00406399,
# 0.02964809, 0.03931641, 0.06214912, 0.00770163, 0.00691567,
# 0.00461308, 0.03449499, 0.04312548, 0.04434128, 0.08213891,
# 0.05449966, 0.02377892, 0.12394149, 0.22277477, 0.19684114,
# 0.08910111, 0.09032757, 0.01132697, 0.09741995, 0.10641567,
# 0.50621088, 0.04790375, 0.0651413 , 0.0292078 , 0.29515115,
# 0.12894486, 0.1484297 , 0.0195152 , 0.02363329, 0.00996783,
# 0.06149686, 0.04985875, 0.07990743, 0.04771264, 0.05066176,
# 0.01432414, 0.10210573, 0.06544174, 0.17441317, 0.06893023,
# 0.05240582, 0.03272606, 0.1217859 , 0.33839886, 0.34902672,
# 0.07013438, 0.0874054 , 0.037837 , 0.25673323, 0.18909744,
# 0.19009876, 0.04628884, 0.04072337, 0.01581049, 0.09900818,
# 0.15728465, 0.31381459, 0.00879968, 0.00874784, 0.00429785,
# 0.03016648, 0.03464576, 0.05176297, 0.02194274, 0.03070409,
# 0.01388094, 0.10591455, 0.0597149 , 0.08732278, 0.03963004,
# 0.04074681, 0.00884056, 0.06541606, 0.07777651, 0.13247497,
# 0.01274164, 0.01389309, 0.00867428, 0.06625915, 0.06332858,
# 0.05949822, 0.01046015, 0.0070262 , 0.00625293, 0.04065399,
# 0.02948325, 0.03944661, 0.06160629, 0.05840838, 0.02992609,
# 0.29674191, 0.11975091, 0.18906597, 0.07123335, 0.05896813,
# 0.03562417, 0.23699893, 0.25788698, 0.22948624, 0.05912923,
# 0.07876134, 0.0281562 , 0.09335165, 0.22654509, 0.21637966,
# 0.02753915, 0.02783914, 0.01160911, 0.10604998, 0.05368515,
# 0.07781311, 0.02616466, 0.04122096, 0.00716101, 0.05923833,
# 0.07215889, 0.14929459, 0.01045039, 0.00690386, 0.00258632,
# 0.0303048 , 0.02859566, 0.04636717, 0.04666154, 0.04400014,
# 0.02046472, 0.26745975, 0.15747167, 0.27465553, 0.02591351,
# 0.03357364, 0.01608692, 0.3493999 , 0.10970748, 0.14581197,
# 0.0325685 , 0.04981978, 0.02198706, 0.3115405 , 0.11843307,
# 0.16055191])
#Sal *= 4
alMean = xAllOpt
#Sal = np.abs(alMean) * 1e-4
# SAl para el chessboard sintetico
Sal = np.array([4.97269631e-02, 6.15436319e-02, 1.33887907e-01, 2.47572147e-03,
1.09773103e-03, 7.73976837e-04, 2.88911749e-04, 4.60523601e-03,
2.67480288e-03, 2.72113239e-03, 9.60805953e-04, 8.49012919e-04,
2.66524527e-03, 5.96999822e-03, 6.55244465e-03, 2.19982286e-03,
2.21884765e-03, 2.83005134e-03, 1.74400582e-02, 7.10555059e-03,
9.78828071e-03, 1.63226776e-03, 3.57376674e-03, 1.69022272e-03,
5.85092605e-03, 3.00806317e-03, 7.83594584e-03, 5.18571940e-04,
3.00842673e-04, 1.01369443e-05, 1.34808219e-03, 1.02005659e-03,
4.29604111e-03, 3.94279775e-03, 3.55765925e-03, 2.42212541e-03,
1.60479856e-02, 8.16608579e-03, 1.19213344e-02, 4.52789765e-03,
1.06512055e-02, 3.34143267e-03, 2.41937365e-02, 1.38355585e-02,
1.59866969e-02, 2.95131115e-03, 8.77000773e-04, 1.31871001e-03,
9.82772594e-03, 7.91222565e-03, 1.53331231e-02, 2.50138790e-04,
2.14325167e-04, 8.91578059e-04, 3.79774423e-03, 1.29390402e-03,
4.45521978e-03, 6.39243875e-04, 3.00996276e-04, 9.58941517e-04,
2.98825619e-04, 6.08646086e-03, 5.79228627e-03, 1.92751678e-03,
8.95452672e-04, 2.72763177e-04, 2.49237858e-03, 7.80077285e-03,
4.82285308e-03, 6.37604607e-03, 2.69327532e-03, 2.30809518e-03,
6.41977889e-03, 2.57821618e-02, 2.10233785e-02, 7.78676187e-04,
2.69075170e-04, 4.98064517e-04, 1.45417618e-02, 6.75809750e-03,
8.41441147e-02, 6.31382231e-03, 3.46288740e-04, 4.35102461e-03,
2.81951141e-02, 1.56394829e-02, 1.41566332e-02, 2.32327653e-03,
4.92409777e-03, 1.62993209e-03, 8.79460811e-03, 5.36309951e-03,
3.32517278e-03, 5.76027053e-03, 5.26616598e-03, 2.38665833e-03,
1.34585828e-02, 1.79621889e-03, 2.45400134e-02, 4.07461321e-03,
8.63564906e-03, 3.43723285e-03, 1.25307843e-02, 2.87817917e-02,
4.32218938e-02, 3.68559166e-03, 1.06853062e-02, 4.50799695e-03,
2.83907098e-02, 2.03711073e-02, 1.57266028e-02, 3.96493521e-04,
1.14351485e-03, 1.78289473e-03, 1.39217991e-02, 1.70355016e-02,
3.84423546e-02, 7.69974003e-05, 1.63679817e-03, 8.40993926e-04,
5.79521184e-03, 4.62172588e-03, 6.12570639e-03, 3.03303603e-03,
8.01384696e-03, 6.84344576e-04, 1.69414594e-02, 8.34157078e-03,
1.20239105e-02, 7.42138733e-03, 4.93631855e-05, 1.91847726e-03,
6.26876320e-03, 5.96886451e-03, 3.15955628e-02, 5.91096265e-04,
2.71848007e-03, 2.07892707e-03, 2.67077780e-03, 8.21266908e-03,
5.52593614e-03, 2.38290688e-04, 1.53109494e-03, 1.07433387e-04,
7.89940758e-03, 3.91939711e-03, 4.82255912e-03, 8.13783825e-03,
2.60936858e-03, 4.26697239e-03, 3.05645685e-02, 2.31201897e-02,
1.92537715e-02, 1.09162244e-02, 7.33198528e-03, 4.50404005e-03,
2.39482731e-02, 2.38547956e-02, 1.80547956e-02, 1.64335294e-03,
1.02100886e-02, 2.42202370e-03, 1.31497599e-02, 2.41517856e-02,
2.94305172e-02, 4.24815349e-03, 4.34183683e-03, 1.76030675e-03,
1.13995016e-02, 5.74103468e-03, 1.18470734e-02, 5.25706349e-03,
1.83369003e-03, 1.55775353e-03, 9.30777450e-03, 8.33832801e-03,
2.26188593e-02, 2.97124664e-04, 4.12501151e-04, 5.71793779e-04,
4.23352974e-03, 2.77624954e-03, 5.28643615e-04, 5.78843989e-03,
4.40187449e-03, 2.66357740e-03, 2.72485729e-02, 8.78640411e-03,
1.90690189e-02, 4.20796879e-04, 7.72717105e-03, 1.19263699e-05,
3.88104787e-02, 1.01434504e-02, 1.31774712e-02, 2.90266114e-04,
7.96588387e-03, 2.99194180e-03, 2.32545322e-02, 1.13869592e-02,
1.15827228e-02])
print('defined harcoded initial conditions')
# %% calculate estimated radius step
ModeR, ExpectedR, DesvEstR = radiusStepsNdim(nFree)
print("moda, la media y la desv est del radio\n", ModeR, ExpectedR, DesvEstR)
# %% metropolis desde MAP. a ver si zafo de la proposal dist
'''
http://docs.pymc.io/api/inference.html
'''
nDraws = 1000
nTune = 0
nTuneInter = 0
tuneBool = nTune != 0
tune_thr = False
nChains = 2 * int(1.1 * nFree)
nCores = 1
indexSave = 5
header = "nDraws %d, nChains %d"%(nDraws, nChains)
pathFiles = "/home/sebalander/Code/VisionUNQextra/Videos y Mediciones/"
pathFiles += "extraDataSebaPhD/tracesSynt" + str(indexSave) + "All"
tallyBool = False
convChecksBool = False
rndSeedBool = True
# escalas características del tipical set
#scaIn = 1 / radiusStepsNdim(NintrParams)[1] / 5
#scaEx = 1 / radiusStepsNdim(NextrParams)[1] / 2
# escala para compensar el radio del set tipico
scaNdim = 1 / radiusStepsNdim(nFree)[1]
# lamb = 2.38 / np.sqrt(2 * Sal.size)
# scaIn = scaEx = 1 / radiusStepsNdim(NfreeParams)[1]
# determino la escala y el lambda para las propuestas
scaAl = scaNdim / np.sqrt(3)
# %%
if rndSeedBool:
# InSeed = pm.MvNormal.dist(mu=inMean, cov=inCov).random(size=nChains)
# exSeed = np.random.randn(nIm, 6, nChains) * Sex.reshape((nIm, 6, 1))
# exSeed += exMean.reshape((nIm, 6, 1))
alSeed = np.random.randn(nChains, nFree) * Sal# .reshape((-1, 1))
alSeed += alMean# .reshape((-1, 1))
if nChains is not 1:
# start = [dict({'xIn': InSeed[i], 'xEx': exSeed[:,:,i]})
# for i in range(nChains)]
start = [dict({'xAl': alSeed[i]}) for i in range(nChains)]
else:
start = dict({'xAl': alSeed})
else:
start = dict({'xAl': alMean})
#zIn = np.zeros_like(inMean)
#def propIn(S, n=1):
# return pm.MvNormal.dist(mu=zIn, cov=S).random(size=n)
#
#def propEx(S, n=1):
# return np.random.randn(n, nIm, 6) * Sex.reshape((nIm, 6))
#propIn = pm.step_methods.MultivariateNormalProposal # (Sin)
#propEx = pm.step_methods.MultivariateNormalProposal # (np.diag(Sex**2))
propAl = pm.step_methods.MultivariateNormalProposal # (np.diag(Sex**2))
#propAl = sc.stats.norm(scale=Sal).rvs
#print("starting metropolis",
# "|nnDraws =", nDraws, " nChains = ", nChains,
# "|nscaIn = ", scaIn, "scaEx = ", scaEx)
'''
aca documentacion copada
https://pymc-devs.github.io/pymc/modelfitting.html
https://github.com/pymc-devs/pymc3/blob/75f64e9517a059ce678c6b4d45b7c64d77242ab6/pymc3/step_methods/metropolis.py
'''
simulBool = True
if simulBool:
with projectionModel:
# stepInt = pm.DEMetropolis(vars=[xIn], S=Sin, tune=tuneBool,
# tune_interval=nTuneInter, tune_throughout=tune_thr,
# tally=tallyBool, scaling=scaIn, proposal_dist=propIn)
# stepInt.scaling = scaIn
#
# stepExt = pm.DEMetropolis(vars=[xEx], S=exCov, tune=tuneBool,
# tune_interval=nTuneInter, tune_throughout=tune_thr,
# tally=tallyBool, scaling=scaEx, proposal_dist=propEx)
# stepExt.scaling = scaEx
#
# step = [stepInt, stepExt]
step = pm.DEMetropolis(vars=[xAl], S=np.diag(Sal**2), tune=tuneBool,
tune_interval=nTuneInter, tune_throughout=tune_thr,
tally=tallyBool, scaling=scaAl, proposal_dist=propAl)
step.tune = tuneBool
step.lamb = scaAl
step.scaling = scaAl
trace = pm.sample(draws=nDraws, step=step, njobs=nChains, start=start,
tune=nTune, chains=nChains, progressbar=True,
discard_tuned_samples=False, cores=nCores,
compute_convergence_checks=convChecksBool,
parallelize=True)
saveBool = True
if saveBool:
# np.save(pathFiles + "Int", trace['xIn'])
# np.save(pathFiles + "Ext", trace['xEx'])
trace['docs'] = header
np.save(pathFiles, trace)
print("saved data to")
print(pathFiles)
print("exiting")
sys.exit()
# %%
loadBool = True
if loadBool:
trace = dict()
trace = np.load(pathFiles + ".npy").all()
print(trace['docs'])
#corner.corner(trace['xIn'])
##corner.corner(trace['xEx'][:,2])
#corner.corner(trace['xAl'][:,:3])
#concDat = np.concatenate([trace['xIn'], trace['xEx'].reshape((-1, nIm*6))], axis=1)
traceArray = trace['xAl'].reshape((nChains, -1, nFree)).transpose((2, 1, 0))
# queda con los indices (parametro, iteracion, cadena)
plt.figure()
plt.plot(traceArray[3], alpha=0.2)
plt.xlabel('iteración')
plt.ylabel('parámetro k')
plt.title('%d trazas de DEMetropolis'% traceArray.shape[2])
plt.figure()
plt.plot(traceArray[1], alpha=0.2)
plt.xlabel('iteración')
plt.ylabel('parámetro pose')
plt.title('%d trazas de DEMetropolis'% traceArray.shape[2])
difAll = np.diff(traceArray, axis=1)
repeats = np.zeros_like(traceArray)
repeats[:, 1:] = difAll == 0
repsRate = repeats.sum() / np.prod(repeats.shape)
print("tasa de repetidos", repsRate)
#print("tasa de repetidos Intrinsico",
# repeats[:,:NintrParams].sum() / (repeats.shape[0] * NintrParams))
#print("tasa de repetidos extrinseco",
# repeats[:,NintrParams:].sum() / (repeats.shape[0] * nIm * 6))
repTrace = repeats.sum(axis=(0, 1))
elimConst = False
if elimConst:
# como veo que hay una traza que es constante, la elimino
plt.hist(repTrace, 30)
indRepsMax = np.argwhere(repTrace > np.prod(traceArray.shape[:2]) * 0.98).reshape(-1)[0]
traceArray = np.delete(traceArray, indRepsMax, axis=2)
indexCut = 0
traceCut = traceArray[:, indexCut:]
del traceArray
del repeats
del difAll
# saco la desvest y hago un ajuste
stdIte = np.std(traceCut, axis=2)
itime = np.arange(stdIte.shape[1])
plt.figure()
plt.plot(stdIte.T, alpha=0.2)
plt.xlabel('iteración')
plt.ylabel('std parámetro')
plt.plot(stdIte[0], 'k')
from scipy.optimize import curve_fit
def funcExp(x, a, b, c):
return a * np.exp(- x / b) + c
# ajuste exponencial
linFitList = list()
expFitList = list()
for i in range(nFree):
p0 = [stdIte[i, 0], 1e3, 5 * stdIte[i, 0]]
popt, pcov = curve_fit(funcExp, itime, stdIte[i], p0)
expFitList.append([popt, np.sqrt(np.diag(pcov))])
popt, pcov = np.polyfit(itime, stdIte[i], 1, cov=True)
linFitList.append([popt, np.sqrt(np.diag(pcov))])
linFitList = np.array(linFitList)
expFitList = np.array(expFitList)
Tnext = 3e2
stdNext = Tnext * linFitList[:, 0, 0] + linFitList[:, 0, 1]
plt.figure()
plt.plot(Sal, stdNext, '+')
_, nDraws, nTrac = traceCut.shape
# % proyecto sobre los dos autovectores ppales
traceMean = np.mean(traceCut, axis=(1, 2))
traceDif = traceCut - traceMean.reshape((-1, 1, 1))
U, S, Vh = np.linalg.svd(traceDif.reshape((nFree, -1)).T,
full_matrices=False)
traceCov = np.cov(traceDif.reshape((nFree, -1)))
traceSig = np.sqrt(np.diag(traceCov))
traceCrr = traceCov / (traceSig.reshape((-1, 1)) * traceSig.reshape((1, -1)))
saveIntrBool = False
if saveIntrBool:
np.save("/home/sebalander/Code/sebaPhD/resources/nov16/syntIntrCalib.npy",
{'mean': traceMean,
'cov': traceCov,
"camera": camera,
"model": model,
"trueVals": xAllT,
"datafile": fullDataFile})
plt.matshow(traceCrr, vmin=-1, vmax=1, cmap='coolwarm')
cols = np.array([[1] * 3, [2] * 3] * nIm).reshape(-1)
cols = np.concatenate([[0] * 3, cols])
plt.figure()
plt.scatter(np.abs(traceMean), traceSig)
print(traceMean[:3], traceCov[:3,:3])
versors = Vh[:2].T / S[:2]
ppalXY = traceDif.T.dot(versors)
ppalX, ppalY = ppalXY.T
plt.figure()
plt.plot(ppalX, ppalY, linewidth=0.5)
plt.axis('equal')
plt.figure()
plt.plot(ppalX, linewidth=0.5)
plt.plot(ppalX[:,::50], linewidth=2)
plt.figure()
plt.plot(ppalY, linewidth=0.5)
plt.plot(ppalY[:,::50], linewidth=2)
# %% corner de los intirnsecos
fig, ax = plt.subplots(3,3)
corner.corner(traceCut[:3].T.reshape((-1,3)), labels=['u', 'v', 'k'],
fig=fig, hist_kwargs={'normed': True})
cl.plotEllipse(ax[1, 0], traceCov[:2,:2], traceMean[0], traceMean[1], 'b')
cl.plotEllipse(ax[2, 0], traceCov[0:3:2, 0:3:2], traceMean[0], traceMean[2], 'b')
cl.plotEllipse(ax[2, 1], traceCov[1:3, 1:3], traceMean[1], traceMean[2], 'b')
ax[1, 0].scatter(xAllT[0], xAllT[1])
ax[2, 0].scatter(xAllT[0], xAllT[2])
ax[2, 1].scatter(xAllT[1], xAllT[2])
xlims = np.array([axx.get_xlim() for axx in ax[[0,1,2], [0,1,2]]])
xplotGaus = np.diff(xlims) * np.linspace(0, 1).reshape((1, -1))
xplotGaus = (xplotGaus.T + xlims[:, 0]).T
yplotGaus = [sc.stats.norm.pdf(xplotGaus[i], traceMean[i], traceSig[i])
for i in [0, 1, 2]]
for i in [0, 1, 2]:
ax[i, i].plot(xplotGaus[i], yplotGaus[i], 'b')
ax[i, i].plot([xAllT[i], xAllT[i]], [0, 1.05 * np.max(yplotGaus[i])], 'b')
plt.savefig()
# %%
#plt.figure()
#plt.plot((trace['xIn'][:, 2] - trace['xIn'][-1, 2]).reshape((nChains,
# nDraws + nTune)).T)
# %%
# las 5 y 6 posrian considerarse cuasi definitivas
# la 7 le pongo un paso un poco mas grande a ver que onda pero sigue siendo
# con tuneo
# la 8 le saco el tuneo y el paso es fijo en
# 1 / 10 / radiusStepsNdim(NintrParams)[1]
# en la 9 pongo 1 / 20 para extrinseco. la proxima tengo que cambiar el inicio?
# no el inicio esta bien pero en todas las cadenas es igual y eso hace que
# tarde en hacer una exploracion hasta que se separan
# el 10 tiene starts aleatoriso distribuidos
# el 11 tiene actualizado covarianza y media con start distribuido
# el 12 ademas escaleado apra evitar cond iniciales demasiado lejanas y es
# larga
# como veo que la 12 va mejorando pero falta converger le mando la 13 con cond actualizadas
# la 14 la largo con cond iniciales mas dispersas y parece que es casi
# la definitiva si le saco el burnin!!!
# la 15 ya tiene que se rla ultima. nop. todavia es transitoria
# 16: datos con la corrección. todavia no converge. 50mil en 6 procesos
# 17: usnado las desv est de 16, mil en 6 procesos
# 18: tentaiva de definitivo, no adaptivo
# 19: sets posteado a PyMC discourse
# 20: sacando los factores 2 y 5. no da muy bonito
# https://discourse.pymc.io/t/metropolis-ideal-balance-between-slow-mixing-and-high-rejection-rate/1205
# 21: con lo que salio de la corrida 19 que parecia buena
# 22: corrida con DEMetropolis
# 24: DEMet pero dejando que tunee todo lo que quiera
# 25: tune y 16 cadenas
# 26: reduzco la escala de intrinseco (x10) para que no haya tantos repetidos
# 27: metropolis adaptativo
# 28: DEmetropolis adaptativo
# 27: DEmet bien largo
# 28: otro de igual longitud
# 29: pruebas para ver si cambio la acntidad de cadenas. UNI LOS xIn Y xEx
# PARA QUE SEA TODA UNA SOLA VARIABLE. MUCHO MEJOR!!
# 30: un DEM largo ahora que las variables estan unificadas y parece que
# converge a algo.
# 31: ya con la Sal en su valor masomenos de convergencia! muchas cadenas.
# 33: un DEM largo con mi invento del lambda y el escaleo de la propuesta
# %%
pathFiles = "/home/sebalander/Code/VisionUNQextra/Videos y Mediciones/"
pathFiles += "extraDataSebaPhD/tracesSynt" + str(0)
trace = dict()
trace['xAl'] = np.load(pathFiles + "All.npy")
#trace['xIn'] = np.load(pathFiles + "Int.npy")
#trace['xEx'] = np.load(pathFiles + "Ext.npy")
# %% concateno y calculo la diferencia
## %% calculo los estadísticos para analizar ocnvergencia
## medias de cada cadena
#traceIn = trace['xIn'].reshape((-1, nDraws, NintrParams)).transpose((2,0,1))
#traceEx = trace['xEx'].reshape((-1, nDraws, n, 6)).transpose((2,3,0,1))
#
#inMeanChain = np.mean(traceIn, axis=-1)
#exMeanChain = np.mean(traceEx, axis=-1)
#
#inDifChain = (traceIn.T - inMeanChain.T).T
#exDifChain = (traceEx.T - exMeanChain.T).T
#
#inCovChain = np.mean(inDifChain**2, axis=-1)
#exCovChain = np.mean(exDifChain**2, axis=-1)
#
#nDrawsSqrt = np.sqrt(nDraws)
#
## calculo la diferencia mutua de la media
#inMeanChainDiff = (inMeanChain.reshape((NintrParams, -1, 1)) -
# inMeanChain.reshape((NintrParams, 1, -1)))
#inMeanChainDiff *= nDrawsSqrt / np.sqrt(inCovChain).reshape((NintrParams, -1,1))
# %%
corner.corner(trace['xIn'])
corner.corner(trace['xEx'][:,2])
# %%
plt.figure()
plt.plot(trace['xIn'][:,2].reshape((nChains, nDraws)).T)
plt.plot(concDat[:,2].reshape((nChains, nDraws)).T + 1)
# %%
# indices para elegir que traza extrínseca
a = 2
b = 1
trazaSelect = trace['xEx'][:,a,b].reshape((nChains, -1)).T
trazaMean = np.mean(trazaSelect, axis=1)
trazaStd = np.sqrt(np.mean((trazaSelect.T - trazaMean)**2, axis=0))
trazaMeanAll = np.mean(trazaMean)
trazaStdAll = np.sqrt(np.mean((trazaSelect.T - trazaMeanAll)**2))
trazaStdMax = trazaMeanAll + trazaStdAll
trazaStdMin = trazaMeanAll - trazaStdAll
plt.figure()
plt.plot(trazaSelect, linewidth=2)
plt.plot(trazaMean, 'k-', linewidth=3)
plt.fill_between(range(nDraws), trazaMean - trazaStd, trazaMean + trazaStd,
facecolor='black', alpha=0.3)
plt.fill_between([0, nDraws - 1], [trazaStdMax, trazaStdMax],
[trazaStdMin, trazaStdMin], facecolor='green', alpha=0.2)
# %% select to prune burn in
leChain = trace['xEx'].shape[0] / nChains
indexCut = 50000
noBurnInIndexes = np.arange(indexCut, leChain, dtype=int)
noBurnInIndexes = np.array(noBurnInIndexes.reshape((1,-1)) +
(np.arange(nChains) * leChain).reshape((-1,1)),
dtype=int)
noBurnInIndexes = np.concatenate(noBurnInIndexes)
trace['xIn'] = trace['xIn'][noBurnInIndexes]
trace['xEx'] = trace['xEx'][noBurnInIndexes]
plt.figure()
plt.plot(trace['xEx'][:,1,0].reshape((-1, int(leChain - indexCut))).T)
corner.corner(trace['xIn'])
corner.corner(trace['xEx'][:,4])
inTraceMean = np.mean(trace['xIn'], axis=0)
inTraceCov = np.cov(trace['xIn'].T)
exTraceMean = np.mean(trace['xEx'], axis=0)
exTraceDif = trace['xEx'] - exTraceMean
exTraceCov = np.mean(exTraceDif.reshape((-1, nIm, 6, 1)) *
exTraceDif.reshape((-1, nIm, 1, 6)),
axis=0)
# saco las desviaciones estandar
SinTrace = np.sqrt(np.diag(inTraceCov))
SexTrace = np.sqrt(exTraceCov[:, range(6), range(6)])
# %%
plt.figure()
Smin = np.min(trace['xIn'], axis=0)
plt.plot(np.abs(trace['xIn'] - Smin), 'x-', markersize=1)
plt.matshow(inCorr, cmap='coolwarm', vmin=-1, vmax=1)
# %%
plt.figure()
#ax = fig.gca()
ticksCovMatrix = np.arange(NintrParams, NfreeParams, 6) - 0.5
plt.grid('on')
plt.xticks(ticksCovMatrix)
plt.yticks(ticksCovMatrix)
plt.imshow(exCorr, cmap='coolwarm', vmin=-1, vmax=1)
# %%
a, b = [4, 5]
tira = 2*nDraws
plt.figure()
for i in range(nChains):
plt.plot(trace['xEx'][i*tira:(i+1)*tira, 0, a],
trace['xEx'][i*tira:(i+1)*tira, 0, b])
for i in range(nChains):
plt.plot(trace['xEx'][i*tira, 0, a],
trace['xEx'][i*tira, 0, b], 'o', markersize=10)
# %%
corner.corner(trace['xEx'][:, 4])
# par graficar histogramas de los parametros extrisnecos
difEx = trace['xEx'] - exMean
normedDifEx = difEx / Sex.reshape((n, 6))
paramInd = 0
plt.figure()
for i in range(n):
plt.hist(normedDifEx[:,i,paramInd], 50, normed=True)
plt.figure()
plt.hist(normedDifEx[:,:,paramInd].reshape(-1), 50, normed=True)
# %% saco un histograma de la distancia desplazada en cada paso
stepsIn = np.linalg.norm(np.diff(trace['xIn'], axis=0) / Sin, axis=1)
# saco los ceros
stepsIn = stepsIn[stepsIn != 0]
stepsIn = stepsIn[stepsIn < 1]
plt.figure()
plt.hist(stepsIn,50)
print(radiusStepsNdim(NintrParams))
print(np.mean(stepsIn), np.std(stepsIn))
# %%
stepsEx = np.linalg.norm(np.diff(trace['xEx'], axis=0) / Sex.reshape((n,-1)), axis=2)
stepsEx = stepsEx[stepsEx.all(axis=1)]
plt.figure()
plt.hist(stepsEx.reshape(-1),100)
plt.figure()
plt.plot(stepsEx[:,1])
print(radiusStepsNdim(6))
print(np.mean(stepsIn), np.std(stepsIn))
# %% pruebo la estadistica de paso promedio en muchas dimensiones
ndimshit = 100
randomshit = np.random.randn(ndimshit,10000)
rads = np.linalg.norm(randomshit, axis=0)
plt.figure()
plt.hist(rads,100)
radiusStepsNdim(ndimshit)
# %% saco media y varianza
inMean = np.mean(trace['xIn'], axis=0)
inCov = np.cov(trace['xIn'].T)
Sin = np.sqrt(np.diag(inCov))
inCorr = inCov / (Sin.reshape((-1, 1)) * Sin.reshape((1, -1)))
exMean = np.mean(trace['xEx'], axis=0)
exCov = np.cov(trace['xEx'].reshape(-1, n*6).T)
Sex = np.sqrt(np.diag(exCov)).reshape((n,6))
exCorr = exCov / (Sex.reshape((-1, 1)) * Sex.reshape((1, -1)))
# %% testeo sobre la imagen
cameraMatrix, distCoeffs = bl.flat2int(inMean, Ns, model)
Cint = intrCalibResults['inCov']
Cf = np.zeros((4,4))
Cf[2:,2:] = inCov[:2,:2]
Ck = inCov[2, 2]
Cfk = inCov[:2, 2]
xy = np.zeros((n, m, 2))
cm = np.zeros((n, m, 2, 2))
Xext = exMean.reshape((n,6))
for j in range(n):
rVec, tVec = bl.flat2ext(Xext[j])
xy[j, :, 0], xy[j, :, 1], cm[j] = cl.inverse(
imagePoints.reshape((n, m, 2))[j], rVec, tVec,
cameraMatrix, distCoeffs, model, Ci[j], Cf, Ck, Crt=False, Cfk=Cfk)
plt.figure()
plt.scatter(xy[:,:,0], xy[:,:,1])
fig = plt.figure()
ax = fig.gca()
C = cm.reshape(-1,2,2)
mux = xy[:, :, 0].reshape(-1)
muy = xy[:, :, 1].reshape(-1)
col = 'k'
cl.plotPointsUncert(ax, C, mux, muy, col)
# %% guardo los resultdos de la calibracion intrinseca
intrCalibResults = dict()
intrCalibResults['model'] = model
intrCalibResults['inMean'] = inMean
intrCalibResults['exMean'] = exMean
intrCalibResults['inCov'] = inCov
intrCalibResults['exCov'] = exCov
intrCalibResults['nChains'] = nChains
intrCalibResults['chainLength'] = np.int(trace['xEx'].shape[0] / nChains)
intrCalibResults['filenameStem'] = pathFiles
intrCalibResults['help'] = '''
este diccionario tiene los resultados de la calibracion intrinseca
inMean : promedio de los puntos sampleados con Metropolis
exMean : promedio de los puntos sampleados, parametros extrinsecos
inCov : matriz de covarianza de los parametros intrinsecos
exCov : covarianza de los parametros extrinsecos
nChains : cantidad decadenas de sampleo Metropolis
chainLength : longitud de las cadenas de markov
pathFiles : nombre del archivo con las muestras, agregar Int.py o Ext.py
'''
np.save(pathFiles + "IntrCalibResults", intrCalibResults)
# %%
# %%
#
#
#plt.figure()
#plt.plot(Sex, 'r')
#plt.plot(Sex / np.abs(exMean.reshape(-1)), 'b')
#
## trunco para que no sea demasiado chico que no puede ser
#Sin = np.max([Sin, np.abs(inMean.reshape(-1)) * 1e-6], axis=0)
#Sex = np.max([Sex, np.abs(exMean.reshape(-1)) * 1e-6], axis=0)
#
#plt.figure()
#plt.plot(np.abs(inMean), Sin, '+')
#plt.plot(np.abs(exMean), Sex.reshape((n,6)), '*')
#
#
#stepsDist = np.linalg.norm(np.diff(trace['xEx'][1:]),axis=(1,2))
#plt.figure()
#
#
#plt.figure()
#for i in range(nChains):
# plt.hist(stepsDist[i*2*nDraws:(i+1)*2*nDraws],30)
# %%
# indexes to read diagona 2x2 blocks of a matrix
nTot = 6 * n
irange = np.arange(0, nTot, 6, dtype=int)
jrange = np.array([range(6)] * 6, dtype=int)
xInxs = irange.reshape((-1,1,1)) + jrange.reshape((1,6,6))
yInxs = np.transpose(xInxs, (0,2,1))
#xInxs = [[[i, i], [i+1, i+1]] for i in range(0, nTot, 6)]
#yInxs = [[[i, i+1], [i, i+1]] for i in range(0, nTot, 6)]
# extraigo los bloques de 6x6 de cada pose
exCovBloks = exCov[xInxs, yInxs]
## chequeo que la lectura en bloques da bien
#i = 0
#j0 = 6*i
#j1 = j0+6
#print(exCovBloks[i] == exCov[j0:j1, j0:j1])
corner.corner(trace['xEx'][:,1])
exCovBloks[1]
u, s, v = np.linalg.svd(exCovBloks[1])
#l, v2 = np.linalg.eig(exCovBloks[1])
# tomo el sing val mas chico
s[-1] * u[:,-1]
# multiplico por el autovector correspondiente
# %% pruebo grficar las elipses para ciertas correlaciones, para pensar mejor
# como proponer la escala caracteristica de cada parametro
sabc = np.array([3, 5, 7], dtype=float)
rabc = np.array([-0.81, 0.1, 0.5])
fakeCov = sabc.reshape((-1,1)) * sabc.reshape((1,-1))
fakeCov[np.tril_indices_from(fakeCov,k=-1) ] *= rabc
fakeCov[np.triu_indices_from(fakeCov,k=1) ] *= rabc
fakeDist = pm.MvNormal.dist(mu=[0,0,0], cov=fakeCov)
fakeX = fakeDist.random(size=100000)
corner.corner(fakeX)
fakeCovInv = np.linalg.inv(fakeCov)
fakeCovInvdiagsqrt = np.sqrt(np.diag(fakeCovInv))
fakeCov
np.sqrt(np.abs(fakeCovInv))
fakeCovInvdiagsqrt
fakeCovEstim = np.cov(fakeX.T)
Sfake = np.sqrt(np.diag(fakeCovEstim))
1 / Sfake
# %%
# %%
#Smean = np.mean(trace['xAll'], axis=0)
#Scov = np.cov(trace['xAll'].T)
Smean = np.load(pathFiles + "Smean.npy")
Scov = np.load(pathFiles + "Scov.npy")
#Smean = np.mean(traceConc, axis=0)
#Scov = np.cov(traceConc.T)
sigmas = np.sqrt(np.diag(Scov))
Scorr = Scov / ( sigmas.reshape((-1,1)) * sigmas.reshape((1,-1)))
plt.matshow(Scorr, cmap='coolwarm')
# saco el promedio de las matrices de covarianza de los bloques 6x6 extrinsecos
xBlk = [[0, 1, 2, 3, 4, 5]] * 6
xBlkAll = np.arange(NintrParams,NfreeParams,6).reshape((-1,1,1)) + [xBlk]*n
yBlkAll = xBlkAll.transpose((0,2,1))
extrS = np.mean(Scov[xBlkAll, yBlkAll], axis=0)
plt.matshow(extrS, cmap='coolwarm')
'''
Smean = np.array(
[ 3.98213840e+02, 4.11224396e+02, 8.08170703e+02, 4.67121459e+02,
9.58412207e-02, -1.79782432e-02, 1.71556081e-02, -4.14991879e-03,
-2.28322462e-01, 9.20027735e-02, -8.14613082e-02, -3.17308934e+00,
-5.38585657e+00, 6.26164383e+00, 9.45077936e-01, 8.08304282e-02,
-7.51600297e-02, -3.03507465e+00, -4.06491057e+00, 4.00096601e+00,
9.50916102e-01, -3.38361474e-01, 9.60425885e-01, 9.60555438e+00,
-5.72674887e+00, 3.88570300e+00, 1.46053354e-01, -5.57198700e-01,
6.43733030e-01, -6.43676977e+00, -4.00413471e+00, 3.72567547e+00,
-3.27605373e-02, 8.62886207e-01, -6.78201432e-04, -1.27359412e-01,
-2.44355042e+00, 7.63205909e+00, 8.88361698e-01, 5.26028732e-01,
8.64146244e-01, 7.80177035e+00, -6.70277531e+00, 5.20695030e+00,
7.30336876e-01, 8.99827967e-01, 1.78243857e+00, 1.86150936e+01,
5.98526378e+00, 7.29298765e+00, -8.08738428e-01, 1.02303559e-01,
1.09629125e+00, -4.95598455e+00, -3.51410147e+00, 1.14528430e+01,
1.75068619e-02, 1.48805221e-02, -1.58488521e+00, -2.35995566e+00,
4.91849779e+00, 5.37940157e+00, -6.50590283e-02, -3.22829044e-02,
-3.09914039e+00, 4.02494559e+00, 4.89104703e+00, 5.56949282e+00,
1.97581406e-01, 6.88105109e-02, 2.27910698e-02, -3.79923073e+00,
1.99756603e+00, 5.16839394e+00, 5.68235709e-01, 1.93106014e-01,
2.22484490e-01, -4.74288722e-01, -1.97951364e+01, 1.48902312e+01,
-5.40230272e-02, -2.11437124e-02, -3.46421590e-02, -4.59416797e+00,
-5.82225412e-01, 1.97710238e+01, -1.41653099e+00, 3.38020448e-02,
2.78678950e+00, -1.75695022e+01, -2.96368188e+00, 1.23532714e+01,
-1.18460309e-01, -1.05137374e+00, 1.69773008e+00, -1.69412489e+00,
-5.06532137e+00, 7.90455051e+00, -4.14649903e-01, -4.94426169e-01,
1.38043596e+00, -5.03135277e+00, -5.43547007e+00, 1.26991966e+01,
-2.50042201e-01, 8.02786932e-01, 1.72645413e+00, 1.47947989e+00,
1.60842477e+01, 2.09283726e+01, -2.68805247e-01, 1.03164360e+00,
6.40659057e-01, 1.68264894e+01, 6.68865788e+00, 1.73046827e+01,
-3.58352735e-02, 8.85232394e-02, -1.41836937e-01, -2.20225564e+00,
-1.01215599e+01, 1.87058555e+01, -7.46207061e-03, -2.65485197e-01,
-1.61748892e-01, -9.54394554e+00, -7.97594735e-01, 2.41651826e+00,
3.29768724e-01, 1.04935133e+00, 1.43090193e+00, 1.22238773e+01,
-4.11740103e+00, 7.54633038e+00, 6.08319706e-01, -3.85403982e-03,
-2.99504577e+00, 3.68058002e+00, 5.48597576e-01, 1.45748882e+01,
-4.18170179e-02, -5.97130394e-01, 3.06790855e-01, -1.12050748e+01,
1.66399217e+00, 3.24935875e+00, 1.63730986e-02, -1.23804169e+00,
6.87577835e-03, -5.26068417e+00, -2.40616638e+00, 1.44066156e+00,
-1.21411378e+00, 2.17619172e-01, 2.55174591e+00, -1.73766332e+01,
7.20953855e+00, 1.22812383e+01, -9.95886791e-01, 6.40191151e-01,
2.05514621e+00, -1.08960679e+01, 1.41197214e+01, 1.53498848e+01,
-1.24198097e-01, -8.39867265e-01, -2.94574793e+00, 1.48699765e+00,
1.61442015e+01, 1.23622436e+01, 7.38455019e-01, 4.61661711e-01,
1.33651323e+00, 9.35040071e+00, -6.55144173e+00, 4.39687080e+00,
-6.33742277e-01, -1.13585852e-01, -3.01844512e+00, 1.92689848e+00,
6.99976307e+00, 1.01504128e+01, 1.81275476e-02, -2.97138175e-02,
-6.27459196e-02, -3.89081176e+00, -2.70593243e+00, 4.32909703e+00,
3.42741379e-01, 6.03378276e-01, -3.02368589e-01, 1.38806225e+01,
-9.07390614e+00, 1.55793088e+01, 3.82664071e-02, 8.75231097e-01,
9.78528144e-04, 1.74233332e+01, -2.79635047e+00, 1.07892644e+01,
-3.29153925e-02, 1.08510732e+00, 5.22249671e-01, 1.81473165e+01,
1.98678517e+00, 1.03291327e+01])
Scov = np.zeros((Smean.shape[0], Smean.shape[0]))
Scov[:NintrParams,:NintrParams] = np.array(
[[ 4.50624463e-06, -4.45948406e-07, 2.59841173e-07,
1.54850295e-06, -1.49079806e-22, -7.24359240e-28,
-2.01264916e-27, -9.97816956e-28],
[-4.45948406e-07, 1.47318063e-05, -2.32025200e-06,
-1.09655759e-06, -8.29869100e-21, 9.17866270e-28,
2.55030500e-27, 1.26437266e-27],
[ 2.59841173e-07, -2.32025200e-06, 4.58277279e-06,
-5.42906035e-08, -1.29573103e-21, 1.66673555e-28,
4.63106387e-28, 2.29595598e-28],
[ 1.54850295e-06, -1.09655759e-06, -5.42906035e-08,
2.32529916e-06, 5.86264191e-22, -1.00901083e-27,
-2.80356099e-27, -1.38992936e-27],
[-1.49079806e-22, -8.29869100e-21, -1.29573103e-21,
5.86264191e-22, 1.59799658e-28, -6.53517210e-30,
-1.81581292e-29, -9.00230922e-30],
[-7.24359240e-28, 9.17866270e-28, 1.66673555e-28,
-1.00901083e-27, -6.53517210e-30, 2.67262657e-31,
7.42595570e-31, 3.68158794e-31],
[-2.01264916e-27, 2.55030500e-27, 4.63106387e-28,
-2.80356099e-27, -1.81581292e-29, 7.42595570e-31,
2.06331923e-30, 1.02293786e-30],
[-9.97816956e-28, 1.26437266e-27, 2.29595598e-28,
-1.38992936e-27, -9.00230922e-30, 3.68158794e-31,
1.02293786e-30, 5.07144916e-31]])
extrS = np.array(
[[ 4.74447530e-27, 4.53038827e-28, -9.40778298e-29,
6.21366640e-26, 2.17814537e-25, -9.40559558e-25],
[ 4.53038827e-28, 6.30658437e-27, 6.74397365e-28,
8.33772783e-26, 1.41196774e-24, -3.16477259e-25],
[-9.40778298e-29, 6.74397365e-28, 3.79095768e-26,
8.74665288e-25, 1.75611480e-25, 9.40061577e-25],
[ 6.21366640e-26, 8.33772783e-26, 8.74665288e-25,
5.45773843e-19, -2.24294151e-20, 1.31456205e-19],
[ 2.17814537e-25, 1.41196774e-24, 1.75611480e-25,
-2.24294151e-20, 7.34643697e-19, 3.96008448e-20],
[-9.40559558e-25, -3.16477259e-25, 9.40061577e-25,
1.31456205e-19, 3.96008448e-20, 4.35689213e-19]])
'''
# %%
ScovNew = np.zeros_like(Scov)
ScovNew[:NintrParams,:NintrParams] = Scov[:NintrParams,:NintrParams]
ScovNew[xBlkAll, yBlkAll] = extrS
diagmin = (Smean * 1e-6) **2 # minimo relativo para la covarianza
diagmin < np.diag(ScovNew)
plt.figure()
plt.plot(np.diag(ScovNew))
plt.plot(diagmin)
ScovNew[ | np.diag_indices_from(Scov) | numpy.diag_indices_from |
from datetime import date, timedelta
import numpy as np
##############
def dates_till_target(days=365, target=date.today()):
factors = | np.arange(days-1,-1,step=-1) | numpy.arange |
import numpy as np
from numpy.testing import assert_almost_equal as aae
from pytest import raises
from functools import reduce
from .. import utils
def test_prime_radius_bad_semiaxes():
'major semiaxis lower than minor semiaxis'
latitude = np.ones(100)
raises(AssertionError, utils.prime_vertical_curv, 10, 23, latitude)
def test_prime_radius_negative_semiaxes():
'null semiaxis'
latitude = np.ones(100)
raises(AssertionError, utils.prime_vertical_curv, -10, -23, latitude)
def test_meridian_radius_bad_semiaxes():
'major semiaxis lower than minor semiaxis'
latitude = np.ones(100)
raises(AssertionError, utils.meridian_curv, 10, 23, latitude)
def test_meridian_radius_negative_semiaxes():
'null semiaxis'
latitude = np.ones(100)
raises(AssertionError, utils.meridian_curv, -10, -23, latitude)
def test_relationship_curvatures():
'verify relationship between the curvatures'
latitude = np.linspace(-90, 90, 181)
a = 6378137.0
f = 1.0/298.257223563
b = a*(1-f)
N = utils.prime_vertical_curv(a, b, latitude)
M = utils.meridian_curv(a, b, latitude)
e2 = (a*a - b*b)/(a*a)
sin2lat = np.sin(np.deg2rad(latitude))
sin2lat *= sin2lat
M_relationship = ((1 - e2)/(1 - e2*sin2lat))*N
aae(M, M_relationship, decimal=8)
def test_prime_radius_known_input():
'verify results obtained for known input'
a = 6378137.0
f = 1.0/298.257223563
b = a*(1-f)
e2 = (a*a - b*b)/(a*a)
N_true_0 = a
N_true_90 = a/np.sqrt(1 - e2)
N_calc_0 = utils.prime_vertical_curv(a, b, 0)
N_calc_90 = utils.prime_vertical_curv(a, b, 90)
aae(N_true_0, N_calc_0, decimal=15)
aae(N_true_90, N_calc_90, decimal=15)
def test_prime_radius_known_input_2():
'verify results obtained for known input'
# true geodetic coordinates
lat_true = np.array([0, -15, 22.5, -30, 45, -60, 75, -90])
sinlat = np.array([0, -(np.sqrt(6) - np.sqrt(2))/4,
(np.sqrt(2 - np.sqrt(2)))/2, -0.5,
np.sqrt(2)/2, -np.sqrt(3)/2,
(np.sqrt(6) + np.sqrt(2))/4, -1])
# major semiaxis, flattening, minor semiaxis and squared first eccentricity
a = 6378137.0
f = 1.0/298.257223563
b = a*(1-f)
# squared first eccentricity
e2 = (a**2. - b**2.)/(a**2.)
# true prime vertical radius of curvature
N_true = a/np.sqrt(1 - e2*sinlat*sinlat)
# computed prime vertical radius of curvature
N = utils.prime_vertical_curv(a, b, lat_true)
aae(N_true, N, decimal=15)
def test_meridian_radius_known_input():
'verify results obtained for known input'
a = 6378137.0
f = 1.0/298.257223563
b = a*(1-f)
e2 = (a*a - b*b)/(a*a)
M_true_0 = a*(1 - e2)
M_true_90 = a/np.sqrt(1 - e2)
M_calc_0 = utils.meridian_curv(a, b, 0)
M_calc_90 = utils.meridian_curv(a, b, 90)
aae(M_true_0, M_calc_0, decimal=15)
aae(M_true_90, M_calc_90, decimal=8)
def test_meridian_radius_known_input_2():
'verify results obtained for known input'
# true geodetic coordinates
lat_true = np.array([0, -15, 22.5, -30, 45, -60, 75, -90])
sinlat = np.array([0, -(np.sqrt(6) - np.sqrt(2))/4,
(np.sqrt(2 - np.sqrt(2)))/2, -0.5,
np.sqrt(2)/2, -np.sqrt(3)/2,
(np.sqrt(6) + np.sqrt(2))/4, -1])
# major semiaxis, flattening, minor semiaxis and squared first eccentricity
a = 6378137.0
f = 1.0/298.257223563
b = a*(1-f)
# squared first eccentricity
e2 = (a**2. - b**2.)/(a**2.)
# true meridian radius of curvature
M_true = (a*(1 - e2))/np.power(1 - e2*sinlat*sinlat, 1.5)
# computed meridian radius of curvature
M = utils.meridian_curv(a, b, lat_true)
aae(M_true, M, decimal=8)
def test_rotation_NEU_known_values():
'verify results obtained for known input'
latitude = np.array([0, -15, 22.5, -30, 45, -60, 75, -90])
longitude = np.array([0, 0, 0, 90, 90, 90, 180, 180])
sinlat = np.array([0, -(np.sqrt(6) - np.sqrt(2))/4,
(np.sqrt(2 - np.sqrt(2)))/2, -0.5,
np.sqrt(2)/2, -np.sqrt(3)/2,
(np.sqrt(6) + np.sqrt(2))/4, -1])
coslat = np.array([1, (np.sqrt(6) + np.sqrt(2))/4,
(np.sqrt(2 + np.sqrt(2)))/2, np.sqrt(3)/2,
np.sqrt(2)/2, 0.5, (np.sqrt(6) - np.sqrt(2))/4, 0])
sinlon = np.array([0, 0, 0, 1, 1, 1, 0, 0])
coslon = np.array([1, 1, 1, 0, 0, 0, -1, -1])
R11_true = -sinlat*coslon
R12_true = -sinlon
R13_true = coslat*coslon
R21_true = -sinlat*sinlon
R22_true = coslon
R23_true = coslat*sinlon
R31_true = coslat
#R32_true = 0.
R33_true = sinlat
R_true = np.vstack([R11_true, R12_true, R13_true,
R21_true, R22_true, R23_true,
R31_true, R33_true]).T
R = utils.rotation_NEU(latitude, longitude)
aae(R_true, R, decimal=15)
def test_rotation_NEU_known_values_floats():
'verify results obtained for known input'
latitude = -15
longitude = 0
sinlat = -(np.sqrt(6) - np.sqrt(2))/4
coslat = (np.sqrt(6) + np.sqrt(2))/4
sinlon = 0
coslon = 1
R11_true = -sinlat*coslon
R12_true = -sinlon
R13_true = coslat*coslon
R21_true = -sinlat*sinlon
R22_true = coslon
R23_true = coslat*sinlon
R31_true = coslat
#R32_true = 0.
R33_true = sinlat
R_true = np.array([[R11_true, R12_true, R13_true,
R21_true, R22_true, R23_true,
R31_true, R33_true]])
R = utils.rotation_NEU(latitude, longitude)
aae(R_true, R, decimal=15)
def test_rotation_NEU_orthogonality():
'Rotation matrix must be mutually orthogonal'
latitude = np.array([0, -15, 22.5, -30, 45, -60, 75, -90])
longitude = np.array([-17, 0, 30, 9, 90, 23, 180, 1])
R = utils.rotation_NEU(latitude, longitude)
for Ri in R:
M = np.array([[Ri[0], Ri[1], Ri[2]],
[Ri[3], Ri[4], Ri[5]],
[Ri[6], 0, Ri[7]]])
aae(np.dot(M.T, M), np.identity(3), decimal=15)
aae(np.dot(M, M.T), np.identity(3), decimal=15)
def test_rotation_NEU_lines_bad_arguments():
'latitude and longitude with different number of elements'
latitude = np.ones(100)
longitude = np.zeros(34)
raises(AssertionError, utils.rotation_NEU, latitude, longitude)
def test_rotation_NED_orthogonality():
'Rotation matrix must be mutually orthogonal'
latitude = np.array([0, -15, 22.5, -30, 45, -60, 75, -90])
longitude = np.array([-17, 0, 30, 9, 90, 23, 180, 1])
R = utils.rotation_NED(latitude, longitude)
for Ri in R:
M = np.array([[Ri[0], Ri[1], Ri[2]],
[Ri[3], Ri[4], Ri[5]],
[Ri[6], 0, Ri[7]]])
aae( | np.dot(M.T, M) | numpy.dot |
import numpy as np
import matplotlib
matplotlib.use("Agg")
from rlkit.torch.multitask.gym_relabelers import ContinuousRelabeler
class AntDirectionRelabeler(ContinuousRelabeler): # todo: flip all the sin and cosines here
def sample_task(self):
return np.random.uniform(low=[0.0, -np.pi], high=[np.pi / 2, np.pi / 2],
size=2) # todo: is the second thing accurate? why is it pi/2
def reward_done(self, obs, action, latent, env_info=None):
theta = float(latent[0])
alpha = float(latent[1])
# return np.cos(alpha) * env_info['reward_run'] + np.sin(alpha) * (1 + env_info['reward_ctrl']), False
reward_run = env_info['torso_velocity'][0] * np.cos(theta) + env_info['torso_velocity'][1] * np.sin(theta)
return np.sin(alpha) * reward_run + np.cos(alpha) * (env_info['reward_ctrl']), False
def calculate_path_reward(self, path, latent):
env_infos = path['env_infos']
# done_rewards = np.array([env_info['reward_run'] for env_info in env_infos])
action_rewards = np.array([env_info['reward_ctrl'] for env_info in env_infos])
theta = float(latent[0])
alpha = float(latent[1])
torso_velocities = np.array([env_info['torso_velocity'][:2] for env_info in env_infos])
done_rewards = torso_velocities[:, 0] * np.cos(theta) + torso_velocities[:, 1] * np.sin(theta)
# return np.cos(alpha) * done_rewards + np.sin(alpha) * action_rewards
return np.sin(alpha) * done_rewards + np.cos(alpha) * action_rewards
def get_features(self, path, latent=None):
env_infos = path['env_infos']
action_rewards = np.array([env_info['reward_ctrl'] for env_info in env_infos])
theta = float(latent[0])
torso_velocities = np.array([env_info['torso_velocity'][:2] for env_info in env_infos])
done_rewards = torso_velocities[:, 0] * | np.cos(theta) | numpy.cos |
import pandas as pd
import numpy as np
import networkx as nx
from random import randint
from tqdm import tqdm
class MultibindDriver(object):
def __init__(self, multibind):
if not type(multibind.states) is None and not type(multibind.graph) is None:
self.multibind = multibind
else:
raise ValueError(
"Multibind driver must be passed a Multibind object that has states and a graph file loaded.")
def create_tensor(self, pH_array):
num_states = self.multibind.states.name.shape[0]
self.tensor = np.zeros((num_states, num_states, len(pH_array)))
for i, p in enumerate(pH_array):
self.multibind.build_cycle(pH=p)
self.multibind.MLE()
for j in range(self.tensor.shape[1]):
self.tensor[j, :, i] = self.multibind.g_mle - self.multibind.g_mle[j]
class Multibind(object):
def __init__(self, states_filename=None, graph_filename=None):
# If states are specified in a CSV, may as well fill them in
# here. The same goes for the graph information
if states_filename:
self.read_states(states_filename)
else:
self.states = None
if graph_filename:
self.read_graph(graph_filename)
else:
self.graph = None
self.cycle = None
self.concentrations = {}
def build_cycle(self, pH=5):
"""Constructs the cycle used for calculation"""
# Determine if we have enough information to continue,
# ie states information and graph information
if type(self.states) is None or type(self.graph) is None:
msg = "Need to specify both the state and graph \
information. Try using `read_states` and `read_graph`."
raise RuntimeError(msg)
# Select all ligands that are not H+ and check if their concentrations
# have been defined in the concentrations dictionary
ligands = np.array(self.graph.ligand[(self.graph.ligand != "helm") & (self.graph.ligand != "H+") & (
self.graph.ligand != "h+")])
ligand_map = [x in self.concentrations.keys() for x in ligands]
# if there are undefined ligand concentrations, raise an error and
# warn the user
if not all(ligand_map):
missing_ligands = ligands[[not i for i in ligand_map]]
msg = "Missing ligand concentrations for: {0}\n".format(" ".join(missing_ligands))
msg += "Set them using the `concentrations` attribute"
raise RuntimeError(msg)
G = nx.DiGraph()
# All states are defined in the states dataframe, use them for nodes
G.add_nodes_from(self.states.name)
# iterate through all connections
for i in self.graph.index:
# unpack for readability
state1, state2, value, variance, ligand, standard_state = self.graph.iloc[i]
# if we have protons, it must be a pKa
if ligand.lower() == "h+":
energy = np.log(10) * (pH - value)
var = np.log(10) ** 2 * variance
# using a direct helmholtz free energy
elif ligand == "helm":
energy = value
var = variance
# dealing with binding energies
else:
energy = value - np.log(self.concentrations[ligand] / standard_state)
var = variance # already in kT!
# add a forward and direction energy
G.add_edge(state1, state2, energy=energy, weight=var)
G.add_edge(state2, state1, energy=-energy, weight=var)
self.cycle = G
def MLE(self):
"""Performs a maximum likelihood estimation on the current cycle"""
from scipy.optimize import root
N = len(self.states.name)
def kd(i, j):
return int(i == j)
def grad_log_likelihood(g_t):
"""Returns the gradient of the log likelihood function.
g_t : array of theoretical values for g
"""
# state vector [g1, g2, g3, ... , gn-1, gn]
state_vector = np.zeros(N)
# factor that will be added to one node and subtracted from another
def alphaij(gj, gi, deltaij, varij):
return ((gj - gi) - deltaij) / varij
# indices of state vector
# Iterate over all connections
for r in self.graph.index:
state1, state2, value, variance, ligand, standard_state = self.graph.iloc[r]
i = self.states[self.states.name == state1].index[0]
j = self.states[self.states.name == state2].index[0]
gj = g_t[j]
gi = g_t[i]
edge_attr = self.cycle.edges()[(state1, state2)]
deltaij = edge_attr['energy'] # measured difference
varij = edge_attr['weight'] # measured variance
shared_alpha = alphaij(gj, gi, deltaij, varij)
state_vector[i] += shared_alpha
state_vector[j] -= shared_alpha
return state_vector
def jacobian(g_t):
# g_t here is not used deliberately as it is actually not needed except to avoid throwing an error
J = np.zeros((N, N))
for n in range(N): # component of f
for m in range(N): # derivative with g_m
for k in self.graph.index: # sum over ij
state1, state2, value, variance, ligand, standard_state = self.graph.iloc[k]
i = self.states[self.states.name == state1].index[0]
j = self.states[self.states.name == state2].index[0]
kdelta_factor = kd(n, j) * kd(m, i) - kd(n, j) * kd(m, j) - kd(n, i) * kd(m, i) + kd(n, i) * kd(
m, j)
J[n, m] += 1 / variance * kdelta_factor
return J
# use dijkstra_path to get the initial guess
self.initial_guess = np.zeros(N)
for i in range(1, N):
edge_energies = nx.get_edge_attributes(self.cycle, 'energy')
# edge_var = nx.get_edge_attributes(self.cycle, 'weight')
path = nx.dijkstra_path(self.cycle, self.states.name[0], self.states.name[i])
linked = [(path[j], path[j + 1]) for j, _ in enumerate(path[:-1])]
self.initial_guess[i] = sum([edge_energies[x] for x in linked])
self.MLE_res = root(grad_log_likelihood, self.initial_guess, jac=jacobian)
self.g_mle = self.MLE_res.x - self.MLE_res.x[0]
self.mle_linear_distortion = self.g_mle - (self.initial_guess - self.initial_guess[0])
self.prob_mle = pd.DataFrame(np.exp(-self.g_mle) / np.sum(np.exp(-self.g_mle)), columns=["probability"])
self.prob_mle["name"] = self.states.name
return self.MLE_res
def MLE_dist(self, N_steps=int(1e6), nt=1):
"""Run Monte-Carlo steps to assess quality of MLE results.
"""
def potential(g_t):
potential = 0
# factor that will be added to one node and subtracted from another
# indices of state vector
# Iterate over all connections
for r in self.graph.index:
state1, state2, value, variance, ligand, standard_state = self.graph.iloc[r]
i = self.states[self.states.name == state1].index[0]
j = self.states[self.states.name == state2].index[0]
gj = g_t[j]
gi = g_t[i]
edge_attr = self.cycle.edges()[(state1, state2)]
deltaij = edge_attr['energy'] # measured difference
varij = edge_attr['weight'] # measured variance
potential += - 1 / (2 * varij) * ((gj - gi) - deltaij) ** 2
return potential
def accept(ns, cs):
potential_ns = potential(ns)
potential_cs = potential(cs)
diff = potential_cs - potential_ns
prob = min([1, np.exp(-50 * diff)])
return | np.random.random_sample() | numpy.random.random_sample |
from unittest import TestCase
from recolo import kinematic_fields_from_deflections
import numpy as np
class TestConstantDeflection(TestCase):
def setUp(self):
self.tol = 1e-6
self.acceleration = 1.7
n_pts_x = 400
n_pts_y = 400
pixel_size = 1.5
time_ramp = 0.5 * self.acceleration * np.arange(0, 100, 1) ** 2.
sampling_rate = 1
deflection_field = np.ones((n_pts_x, n_pts_y))
deflection_fields = deflection_field[np.newaxis, :, :] * time_ramp[:, np.newaxis, np.newaxis]
self.field_stack = kinematic_fields_from_deflections(deflection_fields, pixel_size, sampling_rate=sampling_rate)
def test_acceleration(self):
for i, field in enumerate(self.field_stack):
# We need to skip the first and last values as they are affected by the edges
if i > 5 and i < 95:
if np.max(np.abs(field.acceleration - self.acceleration)) > self.tol:
self.fail("For frame %i, the acceleration calculation is wrong by %f" % (
i, np.max(np.abs(field.acceleration - self.acceleration))))
def test_curvature_xx(self):
for i, field in enumerate(self.field_stack):
if np.max(np.abs(field.curv_xx)) > self.tol:
self.fail("Curvature was not zero")
def test_curvature_xy(self):
for i, field in enumerate(self.field_stack):
if np.max(np.abs(field.curv_xy)) > self.tol:
self.fail("Curvature was not zero")
def test_curvature_yy(self):
for i, field in enumerate(self.field_stack):
if np.max(np.abs(field.curv_yy)) > self.tol:
self.fail("Curvature was not zero")
def test_slope_x(self):
for i, field in enumerate(self.field_stack):
if np.max(np.abs(field.slope_x)) > self.tol:
self.fail("Curvature was not zero")
def test_slope_y(self):
for i, field in enumerate(self.field_stack):
if np.max(np.abs(field.slope_y)) > self.tol:
self.fail("Curvature was not zero")
class TestHalfSineDeflection(TestCase):
def setUp(self):
self.tol = 1e-6
self.curv_rel_tol = 1e-2
self.acceleration = 1.7
n_pts_x = 200
n_pts_y = 200
pixel_size = 1
time_ramp = 0.5 * self.acceleration * np.arange(0, 100, 1) ** 2.
sampling_rate = 1
xs,ys = np.meshgrid(np.linspace(0,1,n_pts_x),np.linspace(0,1,n_pts_y))
deflection_field = np.sin(np.pi * xs) * np.sin(np.pi * ys)
deflection_fields = deflection_field[np.newaxis, :, :] * time_ramp[:, np.newaxis, np.newaxis]
self.acceleration_field = self.acceleration * deflection_field
# Note the minus sign which is used for compliance with the formulation of the rotational degrees of freedom
self.slope_x_fields = -(np.cos(np.pi * xs) * | np.sin(np.pi * ys) | numpy.sin |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 19 22:19:17 2020
@editor: zhantao
"""
from os.path import join as pjn
from glob import glob
from ast import literal_eval
import pickle as pickle
import torch
from torch.utils.data import Dataset
from torchvision.transforms import Normalize
import numpy as np
import cv2
from models import camera as perspCamera
from models.geometric_layers import axisAngle_to_rotationMatrix
from models.geometric_layers import rotMat_to_rot6d
from models.geometric_layers import axisAngle_to_Rot6d
from utils.vis_util import read_Obj
# from utils.mesh_util import generateSMPLmesh
from utils.render_util import camera as cameraClass
from utils.imutils import crop, flip_img, background_replacing
class BaseDataset(Dataset):
"""
Base Dataset Class - Handles data loading and augmentation.
"""
def __init__(self, options, use_augmentation=True, split='train'):
super(BaseDataset, self).__init__()
# store options
self.options = options
# split the dataset into 80%, 10% and 10%
# for train, test and validation
assert split in ('train', 'test', 'validation')
self.split = split
self.cameraObj = perspCamera()
print('**since we predict camera, image flipping is disabled**')
print('**since we only predict body rot, image rot is disabled**')
print('**all params are under the original coordinate sys**')
_, self.smplMesh, _, _ = read_Obj(self.options.smpl_objfile_path)
self.obj_dir = sorted( glob(pjn(options.mgn_dir, '*')) )
numOBJ = len(self.obj_dir)
if split == 'train':
self.obj_dir = self.obj_dir[0:int(numOBJ*0.8)]
elif split == 'test':
self.obj_dir = self.obj_dir[int(numOBJ*0.8) : int(numOBJ*0.9)]
else:
self.obj_dir = self.obj_dir[int(numOBJ*0.9):]
# background image dir
# for rendered images, their background will be replaced by random
# images in the folder, if required.
#
# training images and testing/validation image have backgrounds
# from differernt folder.
if options.replace_background:
self.bgimages = []
imgsrc = ('images/validation/*', 'images/training/*')[split == 'train']
for subfolder in sorted(glob(pjn(options.bgimg_dir, imgsrc))):
for subsubfolder in sorted( glob( pjn(subfolder, '*') ) ):
if 'room' in subsubfolder:
self.bgimages += sorted(glob( pjn(subsubfolder, '*.jpg')))
assert len(self.bgimages) > 0, 'No background image found.'
else:
self.bgimages = None
# load datatest
self.objname, self.imgname, self.center, self.scale = [], [], [], []
self.camera, self.lights = [], []
self.GToffsets, self.GTsmplParas, self.GTtextureMap = [],[],[]
for obj in self.obj_dir:
self.objname.append(obj.split('/')[-1])
# read images and rendering settings
for path_to_image in sorted( glob( pjn(obj, 'rendering/*smpl_registered.png')) ):
# control the pose to be used for training
cameraPath, lightPath = path_to_image.split('/')[-1].split('_')[:2]
cameraIdx, lightIdx = int(cameraPath[6:]), int(lightPath[5:])
if self.options.obj_usedImageIdx is not None:
if cameraIdx not in self.options.obj_usedImageIdx:
continue
self.imgname.append( path_to_image )
path_to_rendering = '/'.join(path_to_image.split('/')[:-1])
with open( pjn( path_to_rendering,'camera%d_boundingbox.txt'%(cameraIdx)) ) as f:
# Bounding boxes in mgn are top left, bottom right format
# we need to convert it to center and scalse format.
# "center" represents the center in the input image space
# "scale" is the size of bbox compared to a square of 200pix.
# In both matplotlib and cv2, image is stored as [numrow, numcol, chn]
# i.e. [y, x, c]
boundbox = literal_eval(f.readline())
self.center.append( [(boundbox[0]+boundbox[2])/2,
(boundbox[1]+boundbox[3])/2] )
self.scale.append( max((boundbox[2]-boundbox[0])/200,
(boundbox[3]-boundbox[1])/200) )
# read and covert camera parameters
with open( pjn( path_to_rendering,'camera%d_intrinsic_smpl_registered.txt'%(cameraIdx)) ) as f:
cameraIntrinsic = literal_eval(f.readline())
with open( pjn( path_to_rendering,'camera%d_extrinsic_smpl_registered.txt'%(cameraIdx)) ) as f:
cameraExtrinsic = literal_eval(f.readline())
camthis = cameraClass(
projModel ='perspective',
intrinsics = np.array(cameraIntrinsic)
)
camthis.setExtrinsic(
rotation = np.array(cameraExtrinsic[0]),
location = np.array(cameraExtrinsic[1])
)
self.camera.append( camthis.getGeneralCamera() )
# light settings
with open( pjn( path_to_rendering,'light%d.txt'%(lightIdx)) ) as f:
lightSettings = literal_eval(f.readline())
self.lights.append(lightSettings)
# read original offsets in t-pose
path_to_offsets = pjn(obj, 'gt_offsets')
offsets_t = np.load( pjn(path_to_offsets, 'offsets_std.npy') ) # hres offsets is in offsets_hres.npy
self.GToffsets.append({'offsets': offsets_t})
# read smpl parameters
# The 6D rotation representation is used here.
# be careful to the global rotation (first 3 or 6), it is under
# the orignal coordinate system.
registration = pickle.load(open( pjn(obj, 'registration.pkl'), 'rb'), encoding='iso-8859-1')
jointsRot6d = axisAngle_to_Rot6d(torch.as_tensor(registration['pose'].reshape([-1, 3])))
bodyBetas = (registration['betas'], registration['betas'][0])[len(registration['betas'].shape) == 2]
bodyTrans = (registration['trans'], registration['trans'][0])[len(registration['trans'].shape) == 2]
self.GTsmplParas.append({'betas': torch.as_tensor(bodyBetas),
'pose': jointsRot6d,
'trans': torch.as_tensor(bodyTrans) })
# read and resize UV texture map same for the segmentation
UV_textureMap = cv2.imread( pjn(obj, 'registered_tex.jpg') )[:,:,::-1]/255.0
UV_textureMap = cv2.resize(UV_textureMap, (self.options.img_res, self.options.img_res), cv2.INTER_CUBIC)
self.GTtextureMap.append(UV_textureMap)
# since every new dataset would have difference mean and std, we need
# to compute and save (mean, std) for training set of each new dataset.
# Otherewise there could be ill valued offsets, e.g. 1e4 or 1e6.
#
# similarly, we need to mask out some offsets in test and validation
# sets, as these vertices are not covered in the training set. If not
# mask them, the normalized offsets would be wrong, e.g. 1e4 or 1e6.
#
# currently, we normalize vertex by vertex, but it might be better to
# nomalize all offsets as a whole, i.e. 1 mean and 1 std.
dispPara = []
offsets_t = np.array([item['offsets'] for item in self.GToffsets])
offsets_mask = np.zeros_like(self.GToffsets[0]['offsets']).astype('int')>0
if split == 'train': # compute mean, std and save them to the given path
dispPara.append(offsets_t.mean(axis=0))
dispPara.append(offsets_t.std(axis=0))
with open(self.options.MGN_offsMeanStd_path, 'wb') as f:
np.save(f, dispPara)
else: # read the computed mean and std of the training set
dispPara = np.load(self.options.MGN_offsMeanStd_path)
offsets_mask = (dispPara[0] == 0)*(dispPara[1] == 0)
offsets_tn = (offsets_t - dispPara[0])/(dispPara[1]+1e-8) # normalize offsets
for cnt in range(len(self.GToffsets)):
offsets_tn[cnt][offsets_mask] = 0
self.GToffsets[cnt]['offsets'] = offsets_tn[cnt]
IMG_NORM_MEAN = [0.485, 0.456, 0.406]
IMG_NORM_STD = [0.229, 0.224, 0.225]
self.normalize_img = Normalize(mean=IMG_NORM_MEAN, std=IMG_NORM_STD)
# If False, do not do augmentation
self.use_augmentation_rot = use_augmentation and self.options.use_augmentation_rot # rotation augmentation
self.use_augmentation_rgb = use_augmentation and self.options.use_augmentation_rgb # channel augmentation
# lenght of dataset
self.length = len(self.imgname)
# define the correspondence between image and background in advance
if options.replace_background:
self.bgperm = np.random.randint(0, len(self.bgimages), size = self.length)
# img = cv2.imread(self.imgname[251])[:,:,::-1].copy().astype(np.float32)
# bgimg = cv2.imread(self.bgimages[251])[:,:,::-1].copy().astype(np.float32)
# img = background_replacing(img, bgimg)
# plt.imshow(img/255)
# self.__getitem__(10)
def augm_params(self):
"""Get augmentation parameters."""
flip = 0 # flipping
pn = np.ones(3) # per channel pixel-noise
rot = 0 # rotation
sc = 1 # scaling
if self.split == 'train':
# flip with probability 1/2, but now we set it to 0
if np.random.uniform() < 0.0:
flip = 1
# Each channel is multiplied with a number
# in the area [1-opt.noiseFactor,1+opt.noiseFactor]
pn = np.random.uniform(1-self.options.noise_factor, 1+self.options.noise_factor, 3)
# The rotation is a number in the area [-2*rotFactor, 2*rotFactor]
rot = min(2*self.options.rot_factor,
max(-2*self.options.rot_factor, np.random.randn()*self.options.rot_factor))
# The scale is multiplied with a number
# in the area [1-scaleFactor,1+scaleFactor]
sc = min(1+self.options.scale_factor,
max(1-self.options.scale_factor, np.random.randn()*self.options.scale_factor+1))
# we set the rotation to 0 all the time now
if np.random.uniform() <= 1:
rot = 0
return flip, pn, rot, sc
def rgb_processing(self, rgb_img, center, scale, rot, flip, pn):
"""Process rgb image and do augmentation."""
# crop and rotate the image
if self.use_augmentation_rot:
rgb_img = crop(rgb_img, center, scale,
[self.options.img_res, self.options.img_res], rot=rot)
else:
rgb_img = crop(rgb_img, center, scale,
[self.options.img_res, self.options.img_res], rot=0)
# flip the image
if flip:
rgb_img = flip_img(rgb_img)
# in the rgb image we add pixel noise in a channel-wise manner
if self.use_augmentation_rgb:
rgb_img[:,:,0] = np.minimum(255.0, np.maximum(0.0, rgb_img[:,:,0]*pn[0]))
rgb_img[:,:,1] = np.minimum(255.0, np.maximum(0.0, rgb_img[:,:,1]*pn[1]))
rgb_img[:,:,2] = np.minimum(255.0, np.maximum(0.0, rgb_img[:,:,2]*pn[2]))
# (3,224,224),float,[0,1]
rgb_img = np.transpose(rgb_img.astype('float32'),(2,0,1))/255.0
return rgb_img
def camera_trans(self, img, center, scale, rot, flip, cameraOrig, options):
"""Generate GT camera corresponding to the augmented image"""
assert flip == 0 and rot == 0,\
'We do not supoprt image rotation and flip in this task'
# In crop, if there is rotation it would padd the image to the length
# of diagnal, so we should consider the effect. Besides, it uses scipy
# rotate function which would further ZoomOut a bit.
new_res = img.shape[1]
origres = scale*200
if rot == 0:
res_ratio = new_res/origres
else:
padd = round(origres*(np.sqrt(2)-1)/2)
newE = round((padd + origres/2)* | np.sqrt(2) | numpy.sqrt |
import pathlib
import cv2
import numpy as np
import torch
from .utils import load_data
class IMDBWikiDataset:
def __init__(self, root, transform=None, target_transform=None, split='train'):
self.root = pathlib.Path(root) / split
self.transform = transform
self.target_transform = target_transform
self.image_paths = self._load_data()
self.class_names = ['BACKGROUND', 'face']
self.num_gender_classes = 2
def __getitem__(self, index):
image_path = self.image_paths[index]
label_path = image_path.replace('/images/', '/labels/').replace('.jpg', '.txt')
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
img_h, img_w = image.shape[:2]
boxes, labels, genders = self._load_label(label_path, img_h, img_w)
if self.transform:
image, boxes, labels, genders = self.transform(image, boxes, labels, genders)
if self.target_transform:
boxes, labels, genders = self.target_transform(boxes, labels, genders)
return image, boxes, labels, genders
def _load_data(self):
image_dir = self.root / 'images'
image_paths = [str(p) for p in image_dir.glob('*.jpg')]
return image_paths
def _load_label(self, label_path, img_h, img_w):
with open(label_path) as f:
bboxes = []
labels = []
genders = []
for line in f:
row = list(map(float, line.strip().split(' ')))
class_id, cx, cy, w, h, gender = row
x1 = int((cx - w/2) * img_w)
y1 = int((cy - h/2) * img_h)
x2 = int((cx + w/2) * img_w)
y2 = int((cy + h/2) * img_h)
bboxes.append((x1, y1, x2, y2))
assert int(class_id) == 0
labels.append(int(class_id)+1) # 0 is preserved for background
genders.append(int(gender) + 1) # 0 is preserved for background
return (
np.array(bboxes, dtype=np.float32),
np.array(labels, dtype=np.int64),
| np.array(genders, dtype=np.int64) | numpy.array |
import os,sys
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt2
import matplotlib
from sklearn.preprocessing import StandardScaler,MinMaxScaler
from math import sqrt
from numpy import concatenate
from matplotlib import pyplot
from pandas import read_csv
from pandas import DataFrame
from datetime import datetime
from pandas import concat
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
import random
import sys
sys.path.insert(0, '/home/doctor/Desktop/batarya')
from prepare import PrepareDataset
from scrapping_weather_data import WeatherData
class main():
def __init__(self):
print("Welcome Machine Learning!")
self.ProcessBeginning()
self.dataset_to_LSTM = self.ProcessContinious()
#
#
n_hours = 3
n_features = 3
self.LSTM_train_X,self.LSTM_train_y,self.LSTM_test_X,self.LSTM_test_y,self.scaler,self.LSTM_test_24 = PrepareDataset.SupervisorNormalization3D(self.dataset,n_hours,n_features)
#
(self.x_train,
self.x_test,
self.y_train,
self.y_test,
self.x_normal_24,
self.y_normal_24,
self.x_24_real,
self.y_24_real,
self.dates_float,
self.sx,
self.sy) = PrepareDataset.ConvertandNormalization2D(self.dataset)
self.LSTM(n_hours, n_features,self.scaler)
self.knn()
self.linear()
self.SVR()
self.DecisionTree()
self.ann()
self.errors()
min_rmse = self.ControlRMSE()
print(min_rmse)
self.Plot()
def ProcessBeginning(self):
self.dataset=PrepareDataset.ReadDatas()
self.dataset.to_json(r'/home/doctor/Desktop/batarya/dataset_ready.json')
def ProcessContinious(self):
#www
#web scrpping
temp,humidity = WeatherData.Scrapping()
###
self.dataset= pd.read_csv('/home/doctor/Desktop/batarya/dataset_ready_24.csv', index_col=0) ## sql gelecek bu araya
self.df_24 = self.dataset.tail(24)
n = self.df_24.columns[1]
self.df_24.drop(n, axis = 1, inplace = True)
self.df_24[n] = temp
n = self.df_24.columns[2]
self.df_24.drop(n, axis = 1, inplace = True)
self.df_24[n] = humidity
print(self.df_24)
self.df_24.sort_index(inplace=True)
self.js = pd.read_json(r'/home/doctor/Desktop/batarya/dataset_ready.json',orient='Index')
self.js=self.js.append(self.df_24)
self.js.to_json(r'/home/doctor/Desktop/batarya/dataset_ready.json')
self.dataset = self.js
self.last_datetime = self.dataset[-1:].index[0]
return self.dataset
def ControlContainerWithPredictionResults(self):
pass
def LSTM(self,n_hours, n_features,scaler):
# design network
model = Sequential()
model.add(LSTM(50, input_shape=(self.LSTM_train_X.shape[1], self.LSTM_train_X.shape[2])))
model.add(Dense(1))
model.compile(loss='mae', optimizer='adam')
# fit network
history = model.fit(self.LSTM_train_X, self.LSTM_train_y, epochs=10, batch_size=72, validation_data=(self.LSTM_test_X, self.LSTM_test_y), verbose=2, shuffle=False)
# make a prediction
yhat = model.predict(self.LSTM_test_X)
LSTM_test_X = self.LSTM_test_X.reshape((self.LSTM_test_X.shape[0], n_hours*n_features))
print(LSTM_test_X,LSTM_test_X.shape)
# invert scaling for forecast
inv_yhat = concatenate((yhat, LSTM_test_X[:, -2:]), axis=1)
inv_yhat = self.scaler.inverse_transform(inv_yhat)
inv_yhat = inv_yhat[:,0]
# invert scaling for actual
LSTM_test_y = self.LSTM_test_y.reshape((len(self.LSTM_test_y), 1))
print(LSTM_test_y,LSTM_test_y.shape)
inv_y = concatenate((LSTM_test_y, LSTM_test_X[:, -2:]), axis=1)
inv_y = self.scaler.inverse_transform(inv_y)
inv_y = inv_y[:,0]
# calculate RMSE
rmse = sqrt(mean_squared_error(inv_y, inv_yhat))
print('Test RMSE: %.3f' % rmse)
pyplot.plot(inv_y, label='real')
pyplot.plot(inv_yhat, label='pred')
pyplot.legend()
pyplot.show()
##for 24
yhat_24 = model.predict(self.LSTM_test_24)
LSTM_test_24 = self.LSTM_test_24.reshape((self.LSTM_test_24.shape[0], n_hours*n_features))
print(LSTM_test_24,LSTM_test_24.shape)
# invert scaling for forecast
inv_yhat_24 = concatenate((yhat_24, LSTM_test_24[:, -2:]), axis=1)
inv_yhat_24 = self.scaler.inverse_transform(inv_yhat_24)
self.inv_yhat_24 = inv_yhat_24[:,0]
# invert scaling for actual
LSTM_test_y_24 = self.LSTM_test_y[-24:].reshape((len(self.LSTM_test_y[-24:]), 1))
print(LSTM_test_24.shape,LSTM_test_y_24 .shape)
inv_y_24 = concatenate((LSTM_test_y_24 , LSTM_test_24[:, -2:]), axis=1)
inv_y_24 = self.scaler.inverse_transform(inv_y_24)
self.inv_y_24 = inv_y_24[:,0]
# calculate RMSE
rmse = sqrt(mean_squared_error(inv_y_24 , inv_yhat_24 ))
print('Test RMSE: %.3f' % rmse)
pyplot.plot(inv_y_24.reshape(-1,1), label='real')
pyplot.plot(inv_yhat_24.reshape(-1,1), label='pred')
pyplot.legend()
pyplot.show()
##
t_h_a=self.dataset.tail(24)
t_h_a=t_h_a[['temp','humidity']]
t=[i for i in t_h_a.reset_index(drop=True)['temp']]
h=[i for i in t_h_a.reset_index(drop=True)['humidity']]
i=[i for i in self.inv_yhat_24]
a={'temp':t,'humidity':h,'active_power':i}
a=pd.DataFrame(a)
a=a[['temp','humidity','active_power','active_power']]
a.columns = ['temp','humidity','active_power','active_power_y']
print("///////////////////////////",self.inv_yhat_24, self.inv_y_24, self.y_24_real,"//////////////")
sx=MinMaxScaler()
sy=MinMaxScaler()
self.x_normal_24_fromLSTM=sx.fit_transform(a)[:,0:3]
self.y_normal_24_fromLSTM=sy.fit_transform(a)[:,3]
return history
def knn(self):
from sklearn.neighbors import KNeighborsRegressor
#find k values
score_list={}
for each in range(1,10):
knn2=KNeighborsRegressor(n_neighbors=each)
knn2.fit(self.x_train,self.y_train)
score_list['%d'%each]=knn2.score(self.x_test,self.y_test)
k_max=max(score_list,key=score_list.get) #score list içerisindeki value yu almak için score_list.get bunu kullandık
neigh = KNeighborsRegressor(n_neighbors=int(k_max))
neigh.fit(self.x_train,self.y_train) #datayı training etmek
self.y_pred_knn_24 = neigh.predict(self.x_normal_24_fromLSTM)
#y_pred_knn_24 = y_pred_knn_24.reshape(-1,1) #size larını uydurmak için reshape yapılır
self.knn_score = neigh.score(self.x_test,self.y_test)
n_d = dict(zip(score_list.keys(), [float(value) for value in score_list.values()])) #zip iki tane listeyi birleştirdi.Dictinary değerleri birbiriyle birleştirdi
k=[] # key'leri listeye çevirdik
v=[] #value ları listeye çevirdik
for key,value in n_d.items(): #nd içindeki itemlarda key ve value için
k.append(float(key)) #listeye key float ı append komudu ile eklemek
v.append(float(value))
plt.figure()
plt.plot(k,v,color='r')
plt.xlabel("k values")
plt.ylabel("Accuracy")
self.y_pred_knn_24_real=self.sy.inverse_transform(self.y_pred_knn_24)
plt.figure()
plt.plot_date(self.dates_float, | np.array(self.y_24_real) | numpy.array |
from unittest import TestCase
import numpy as np
from giant import rotations as at
class TestAttitude(TestCase):
def check_attitude(self, attitude, quaternion, mupdate, vupdate):
np.testing.assert_array_almost_equal(quaternion, attitude.q)
np.testing.assert_array_almost_equal(quaternion[:3], attitude.q_vector)
self.assertAlmostEqual(quaternion[-1], attitude.q_scalar)
self.assertIs(attitude._mupdate, mupdate)
self.assertIs(attitude._vupdate, vupdate)
def test_init(self):
att = at.Rotation()
self.check_attitude(att, [0, 0, 0, 1], True, True)
att = at.Rotation([0, 0, 0, 1])
self.check_attitude(att, [0, 0, 0, 1], True, True)
att = at.Rotation(data=[0, 0, 0, 1])
self.check_attitude(att, [0, 0, 0, 1], True, True)
att = at.Rotation(np.eye(3))
self.check_attitude(att, [0, 0, 0, 1], False, True)
att = at.Rotation([0, 0, 0])
self.check_attitude(att, [0, 0, 0, 1], True, False)
att = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2])
self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True)
att = at.Rotation([np.sqrt(2) / 2, 0, 0, -np.sqrt(2) / 2])
self.check_attitude(att, [-np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True)
att2 = att
att = at.Rotation(att2)
self.check_attitude(att, [-np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True)
self.assertIs(att, att2)
# with self.assertWarns(UserWarning):
#
# at.Rotation([1, 2, 3, 4])
def test_quaternion_setter(self):
att = at.Rotation()
att._mupdate = False
att._vupdate = False
att.quaternion = [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2]
self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True)
att.quaternion = [np.sqrt(2)/2, 0, 0, -np.sqrt(2)/2]
self.check_attitude(att, [-np.sqrt(2)/2, 0, 0, | np.sqrt(2) | numpy.sqrt |
# Standard Library
import re
# Third Party
import numpy as np
from bokeh.io import output_notebook, push_notebook, show
from bokeh.layouts import gridplot
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure, show
output_notebook(hide_banner=True)
class MetricsHistogram:
def __init__(self, metrics_reader):
self.metrics_reader = metrics_reader
self.system_metrics = {}
self.select_dimensions = []
self.select_events = []
self.sources = {}
self.target = None
self.available_dimensions = []
self.available_events = []
"""
@param starttime is starttime_since_epoch_in_micros. Default value 0, which means start
@param endtime is endtime_since_epoch_in_micros. Default value is MetricsHistogram.last_timestamp , i.e., last_timestamp seen by system_metrics_reader
@param select_metrics is array of metrics to be selected, Default ["cpu", "gpu"]
"""
def plot(
self,
starttime=0,
endtime=None,
select_dimensions=[".*"],
select_events=[".*"],
show_workers=True,
):
if endtime == None:
endtime = self.metrics_reader.get_timestamp_of_latest_available_file()
all_events = self.metrics_reader.get_events(starttime, endtime)
print(
f"Found {len(all_events)} system metrics events from timestamp_in_us:{starttime} to timestamp_in_us:{endtime}"
)
self.last_timestamp = endtime
self.select_dimensions = select_dimensions
self.select_events = select_events
self.show_workers = show_workers
self.system_metrics = self.preprocess_system_metrics(
all_events=all_events, system_metrics={}
)
self.create_plot()
def clear(self):
self.system_metrics = {}
self.sources = {}
def preprocess_system_metrics(self, all_events=[], system_metrics={}):
# read all available system metric events and store them in dict
for event in all_events:
if self.show_workers is True:
event_unique_id = f"{event.dimension}-nodeid:{str(event.node_id)}"
else:
event_unique_id = event.dimension
if event_unique_id not in system_metrics:
system_metrics[event_unique_id] = {}
self.available_dimensions.append(event_unique_id)
if event.name not in system_metrics[event_unique_id]:
system_metrics[event_unique_id][event.name] = []
self.available_events.append(event.name)
system_metrics[event_unique_id][event.name].append(event.value)
# compute total utilization per event dimension
for event_dimension in system_metrics:
n = len(system_metrics[event_dimension])
total = [sum(x) for x in zip(*system_metrics[event_dimension].values())]
system_metrics[event_dimension]["total"] = | np.array(total) | numpy.array |
# Audio processing tools
#
# <NAME> 2020
#
# Some code modified from original MATLAB rastamat package.
#
import numpy as np
from scipy.signal import hanning, spectrogram, resample, hilbert, butter, filtfilt
from scipy.io import wavfile
# import spectools
# from .fbtools import fft2melmx
from matplotlib import pyplot as plt
import parselmouth as pm
# from soundsig import sound
def get_meanF0s_v2(fileName, steps=1/128.0, f0min=50, f0max=300):
"""
Uses parselmouth Sound and Pitch object to generate frequency spectrum of
wavfile, 'fileName'. Mean F0 frequencies are calculated for each phoneme
in 'phoneme_times' by averaging non-zero frequencies within a given
phoneme's time segment. A range of 10 log spaced center frequencies is
calculated for pitch classes. A pitch belongs to the class of the closest
center frequency bin that falls below one standard deviation of the center
frequency range.
"""
#fileName = wav_dirs + wav_name
sound_obj = pm.Sound(fileName)
pitch = sound_obj.to_pitch(steps, f0min, f0max) #create a praat pitch object
pitch_values = pitch.selected_array['frequency']
return pitch_values
def fft2melmx(nfft, sr=8000, nfilts=0, bwidth=1.0, minfreq=0, maxfreq=4000, htkmel=False, constamp=0):
'''
# Generate a matrix of weights to combine FFT bins into Mel
# bins. nfft defines the source FFT size at sampling rate sr.
# Optional nfilts specifies the number of output bands required
# (else one per "mel/width"), and width is the constant width of each
# band relative to standard Mel (default 1).
# While wts has nfft columns, the second half are all zero.
# Hence, Mel spectrum is fft2melmx(nfft,sr)*abs(fft(xincols,nfft));
# minfreq is the frequency (in Hz) of the lowest band edge;
# default is 0, but 133.33 is a common standard (to skip LF).
# maxfreq is frequency in Hz of upper edge; default sr/2.
# You can exactly duplicate the mel matrix in Slaney's mfcc.m
# as fft2melmx(512, 8000, 40, 1, 133.33, 6855.5, 0);
# htkmel=1 means use HTK's version of the mel curve, not Slaney's.
# constamp=1 means make integration windows peak at 1, not sum to 1.
# frqs returns bin center frqs.
# 2004-09-05 <EMAIL> based on fft2barkmx
'''
if nfilts == 0:
nfilts = np.ceil(hz2mel(maxfreq, htkmel)/2);
wts = np.zeros((nfilts, nfft))
# Center freqs of each FFT bin
fftfrqs = np.arange(0,nfft/2.)/nfft*sr
# 'Center freqs' of mel bands - uniformly spaced between limits
minmel = hz2mel(minfreq, htkmel)
maxmel = hz2mel(maxfreq, htkmel)
binfrqs = mel2hz(minmel+np.arange(0.,nfilts+2)/(nfilts+2.)*(maxmel-minmel), htkmel);
binbin = np.round(binfrqs/sr*(nfft-1.))
for i in np.arange(nfilts):
fs = binfrqs[i+[0, 1, 2]]
#print fs
# scale by width
fs = fs[1]+bwidth*(fs - fs[1]);
# lower and upper slopes for all bins
loslope = (fftfrqs - fs[0])/(fs[1] - fs[0])
hislope = (fs[2] - fftfrqs)/(fs[2] - fs[1])
w = np.min((loslope, hislope), axis=0)
w[w<0] = 0
# .. then intersect them with each other and zero
wts[i, 0:np.int(nfft/2)] = w
if constamp == 0:
# Slaney-style mel is scaled to be approx constant E per channel
wts = np.dot(np.diag(2./(binfrqs[2+np.arange(nfilts)]-binfrqs[ | np.arange(nfilts) | numpy.arange |
import os
import sys
cwd = os.getcwd()
sys.path.append(cwd)
import pickle
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from plot.helper import plot_joints, plot_task, plot_weights, plot_rf_z_max, plot_rf, plot_vector_traj, plot_momentum_task
tasks = [
'task_com_pos', 'task_com_vel', 'icp', 'icp_dot', 'task_cam_vel',
'task_torso_ori_pos', 'task_torso_ori_vel', 'task_rfoot_lin_pos',
'task_rfoot_lin_vel', 'task_rfoot_ori_pos', 'task_rfoot_ori_vel',
'task_lfoot_lin_pos', 'task_lfoot_lin_vel', 'task_lfoot_ori_pos',
'task_lfoot_ori_vel', 'task_upper_body_pos', 'task_upper_body_vel'
]
neck_pos_label = ["neck_pitch"]
rfoot_label = [
"r_hip_ie", "r_hip_aa", "r_hip_fe", "r_knee_fe_jp", "r_knee_fe_jd",
"r_ankle_fe", "r_ankle_ie"
]
lfoot_label = [
"l_hip_ie", "l_hip_aa", "l_hip_fe", "l_knee_fe_jp", "l_knee_fe_jd",
"l_ankle_fe", "l_ankle_ie"
]
upper_body_pos_label = [
"neck_pitch", "l_shoulder_fe", "l_shoulder_aa", "l_shoulder_ie",
"l_elbow_fe", "l_wrist_ps", "l_wrist_pitch", "r_shoulder_fe",
"r_shoulder_aa", "r_shoulder_ie", "r_elbow_fe", "r_wrist_ps",
"r_wrist_pitch"
]
joint_label = [
"l_hip_ie", "l_hip_aa", "l_hip_fe", "l_knee_fe_jp", "l_knee_fe_jd",
"l_ankle_fe", "l_ankle_ie", "l_shoulder_fe", "l_shoulder_aa",
"l_shoulder_ie", "l_elbow_fe", "l_wrist_ps", "l_wrist_pitch", "neck_pitch",
"r_hip_ie", "r_hip_aa", "r_hip_fe", "r_knee_fe_jp", "r_knee_fe_jd",
"r_ankle_fe", "r_ankle_ie", "r_shoulder_fe", "r_shoulder_aa",
"r_shoulder_ie", "r_elbow_fe", "r_wrist_ps", "r_wrist_pitch"
]
time = []
phase = []
cmd_lfoot_rf = []
cmd_rfoot_rf = []
cmd_joint_positions = []
cmd_joint_velocities = []
cmd_joint_torques = []
joint_positions = []
joint_velocities = []
task_com_local_pos_err = []
task_com_local_vel_err = []
task_torso_ori_local_pos_err = []
task_torso_ori_local_vel_err = []
task_cam_local_vel_err = []
des, act = dict(), dict()
for topic in tasks:
des[topic] = []
act[topic] = []
w = dict()
with open('experiment_data/pnc.pkl', 'rb') as file:
while True:
try:
d = pickle.load(file)
time.append(d['time'])
phase.append(d['phase'])
for topic in tasks:
des[topic].append(d[topic + '_des'])
act[topic].append(d[topic])
cmd_lfoot_rf.append(d['cmd_lfoot_rf'])
cmd_rfoot_rf.append(d['cmd_rfoot_rf'])
cmd_joint_positions.append(d['cmd_joint_positions'])
cmd_joint_velocities.append(d['cmd_joint_velocities'])
cmd_joint_torques.append(d['cmd_joint_torques'])
joint_positions.append(d['joint_positions'])
joint_velocities.append(d['joint_velocities'])
task_com_local_pos_err.append(d['task_com_local_pos_err'])
task_cam_local_vel_err.append(d['task_cam_local_vel_err'])
task_com_local_vel_err.append(d['task_com_local_vel_err'])
task_torso_ori_local_pos_err.append(
d['task_torso_ori_local_pos_err'])
task_torso_ori_local_vel_err.append(
d['task_torso_ori_local_vel_err'])
except EOFError:
break
for k, v in des.items():
des[k] = np.stack(v, axis=0)
for k, v in act.items():
act[k] = np.stack(v, axis=0)
# right foot first
cmd_rf = np.concatenate((cmd_rfoot_rf, cmd_lfoot_rf), axis=1)
phase = np.stack(phase, axis=0)
cmd_joint_positions = np.stack(cmd_joint_positions, axis=0)
cmd_joint_velocities = np.stack(cmd_joint_velocities, axis=0)
cmd_joint_torques = np.stack(cmd_joint_torques, axis=0)
joint_positions = np.stack(joint_positions, axis=0)
joint_velocities = np.stack(joint_velocities, axis=0)
task_com_local_pos_err = np.stack(task_com_local_pos_err, axis=0)
task_com_local_vel_err = np.stack(task_com_local_vel_err, axis=0)
task_cam_local_vel_err = | np.stack(task_cam_local_vel_err, axis=0) | numpy.stack |
#!/usr/bin/python
# -*- coding: utf-8 -*-
import sys
from sys import argv as a
import datetime
import locale
import numpy as np
import cv2
def NormalMap(temp,param):
(w,h) = temp.shape
print(np.average(temp))
temp_r = np.zeros((w,h),dtype=np.float)
temp_g = np.zeros((w,h),dtype=np.float)
temp_b = np.zeros((w,h),dtype=np.float)
#temp_r[0:w-1,0:h ] = temp[1:w,0:h] / 255.0
#temp_r[w-1 ,0:h ] = temp[0 ,0:h] / 255.0
#temp_g[0:w ,0:h-1] = temp[0:w,1:h] / 255.0
#temp_g[0:w , h-1] = temp[0:w,0 ] / 255.0
#temp_b[:,:] = temp[:,:] / 255.0
temp_r[:,:] = np.roll(temp,-1,axis=1) / 255.0
temp_g[:,:] = np.roll(temp,1,axis=0) / 255.0
temp_b[:,:] = temp[:,:] / 255.0
r = temp_b - temp_r
g = temp_b - temp_g
b = | np.ones((w,h),dtype=np.float) | numpy.ones |
"""
Optimal binning 2D algorithm.
"""
# <NAME> <<EMAIL>>
# Copyright (C) 2021
import numbers
import time
import numpy as np
from joblib import effective_n_jobs
from sklearn.tree import DecisionTreeClassifier
from ...information import solver_statistics
from ...logging import Logger
from ..binning import OptimalBinning
from ..binning_statistics import target_info
from ..prebinning import PreBinning
from .binning_statistics_2d import BinningTable2D
from .cp_2d import Binning2DCP
from .mip_2d import Binning2DMIP
from .model_data_2d import model_data
from .model_data_cart_2d import model_data_cart
from .preprocessing_2d import split_data_2d
from .transformations_2d import transform_binary_target
logger = Logger(__name__).logger
def _check_parameters(name_x, name_y, dtype_x, dtype_y, prebinning_method,
strategy, solver, divergence, max_n_prebins_x,
max_n_prebins_y, min_prebin_size_x, min_prebin_size_y,
min_n_bins, max_n_bins, min_bin_size, max_bin_size,
min_bin_n_nonevent, max_bin_n_nonevent, min_bin_n_event,
max_bin_n_event, monotonic_trend_x, monotonic_trend_y,
min_event_rate_diff_x, min_event_rate_diff_y, gamma,
special_codes_x, special_codes_y, split_digits, n_jobs,
time_limit, verbose):
if not isinstance(name_x, str):
raise TypeError("name_x must be a string.")
if not isinstance(name_y, str):
raise TypeError("name_y must be a string.")
if dtype_x not in ("numerical",):
raise ValueError('Invalid value for dtype_x. Allowed string '
'values is "numerical".')
if dtype_y not in ("numerical",):
raise ValueError('Invalid value for dtype_y. Allowed string '
'values is "numerical".')
if prebinning_method not in ("cart", "mdlp", "quantile", "uniform"):
raise ValueError('Invalid value for prebinning_method. Allowed string '
'values are "cart", "mdlp", "quantile" '
'and "uniform".')
if strategy not in ("grid", "cart"):
raise ValueError('Invalid value for strategy. Allowed string '
'values are "grid" and "cart".')
if solver not in ("cp", "ls", "mip"):
raise ValueError('Invalid value for solver. Allowed string '
'values are "cp", "ls" and "mip".')
if divergence not in ("iv", "js", "hellinger", "triangular"):
raise ValueError('Invalid value for divergence. Allowed string '
'values are "iv", "js", "helliger" and "triangular".')
if (not isinstance(max_n_prebins_x, numbers.Integral) or
max_n_prebins_x <= 1):
raise ValueError("max_prebins_x must be an integer greater than 1; "
"got {}.".format(max_n_prebins_x))
if (not isinstance(max_n_prebins_y, numbers.Integral) or
max_n_prebins_y <= 1):
raise ValueError("max_prebins_y must be an integer greater than 1; "
"got {}.".format(max_n_prebins_y))
if not 0. < min_prebin_size_x <= 0.5:
raise ValueError("min_prebin_size_x must be in (0, 0.5]; got {}."
.format(min_prebin_size_x))
if not 0. < min_prebin_size_y <= 0.5:
raise ValueError("min_prebin_size_y must be in (0, 0.5]; got {}."
.format(min_prebin_size_y))
if min_n_bins is not None:
if not isinstance(min_n_bins, numbers.Integral) or min_n_bins <= 0:
raise ValueError("min_n_bins must be a positive integer; got {}."
.format(min_n_bins))
if max_n_bins is not None:
if not isinstance(max_n_bins, numbers.Integral) or max_n_bins <= 0:
raise ValueError("max_n_bins must be a positive integer; got {}."
.format(max_n_bins))
if min_n_bins is not None and max_n_bins is not None:
if min_n_bins > max_n_bins:
raise ValueError("min_n_bins must be <= max_n_bins; got {} <= {}."
.format(min_n_bins, max_n_bins))
if min_bin_size is not None:
if (not isinstance(min_bin_size, numbers.Number) or
not 0. < min_bin_size <= 0.5):
raise ValueError("min_bin_size must be in (0, 0.5]; got {}."
.format(min_bin_size))
if max_bin_size is not None:
if (not isinstance(max_bin_size, numbers.Number) or
not 0. < max_bin_size <= 1.0):
raise ValueError("max_bin_size must be in (0, 1.0]; got {}."
.format(max_bin_size))
if min_bin_size is not None and max_bin_size is not None:
if min_bin_size > max_bin_size:
raise ValueError("min_bin_size must be <= max_bin_size; "
"got {} <= {}.".format(min_bin_size,
max_bin_size))
if min_bin_n_nonevent is not None:
if (not isinstance(min_bin_n_nonevent, numbers.Integral) or
min_bin_n_nonevent <= 0):
raise ValueError("min_bin_n_nonevent must be a positive integer; "
"got {}.".format(min_bin_n_nonevent))
if max_bin_n_nonevent is not None:
if (not isinstance(max_bin_n_nonevent, numbers.Integral) or
max_bin_n_nonevent <= 0):
raise ValueError("max_bin_n_nonevent must be a positive integer; "
"got {}.".format(max_bin_n_nonevent))
if min_bin_n_nonevent is not None and max_bin_n_nonevent is not None:
if min_bin_n_nonevent > max_bin_n_nonevent:
raise ValueError("min_bin_n_nonevent must be <= "
"max_bin_n_nonevent; got {} <= {}."
.format(min_bin_n_nonevent, max_bin_n_nonevent))
if min_bin_n_event is not None:
if (not isinstance(min_bin_n_event, numbers.Integral) or
min_bin_n_event <= 0):
raise ValueError("min_bin_n_event must be a positive integer; "
"got {}.".format(min_bin_n_event))
if max_bin_n_event is not None:
if (not isinstance(max_bin_n_event, numbers.Integral) or
max_bin_n_event <= 0):
raise ValueError("max_bin_n_event must be a positive integer; "
"got {}.".format(max_bin_n_event))
if min_bin_n_event is not None and max_bin_n_event is not None:
if min_bin_n_event > max_bin_n_event:
raise ValueError("min_bin_n_event must be <= "
"max_bin_n_event; got {} <= {}."
.format(min_bin_n_event, max_bin_n_event))
if monotonic_trend_x is not None:
if monotonic_trend_x not in ("ascending", "descending"):
raise ValueError('Invalid value for monotonic trend x. Allowed '
'string values are "ascending" and "descending".')
if monotonic_trend_y is not None:
if monotonic_trend_y not in ("ascending", "descending"):
raise ValueError('Invalid value for monotonic trend y. Allowed '
'string values are "ascending" and "descending".')
if (not isinstance(min_event_rate_diff_x, numbers.Number) or
not 0. <= min_event_rate_diff_x <= 1.0):
raise ValueError("min_event_rate_diff_x must be in [0, 1]; got {}."
.format(min_event_rate_diff_x))
if (not isinstance(min_event_rate_diff_y, numbers.Number) or
not 0. <= min_event_rate_diff_y <= 1.0):
raise ValueError("min_event_rate_diff_y must be in [0, 1]; got {}."
.format(min_event_rate_diff_y))
if not isinstance(gamma, numbers.Number) or gamma < 0:
raise ValueError("gamma must be >= 0; got {}.".format(gamma))
if special_codes_x is not None:
if not isinstance(special_codes_x, (np.ndarray, list)):
raise TypeError("special_codes_x must be a list or numpy.ndarray.")
if special_codes_y is not None:
if not isinstance(special_codes_y, (np.ndarray, list)):
raise TypeError("special_codes_y must be a list or numpy.ndarray.")
if split_digits is not None:
if (not isinstance(split_digits, numbers.Integral) or
not 0 <= split_digits <= 8):
raise ValueError("split_digits must be an integer in [0, 8]; "
"got {}.".format(split_digits))
if n_jobs is not None:
if not isinstance(n_jobs, numbers.Integral):
raise ValueError("n_jobs must be an integer or None; got {}."
.format(n_jobs))
if not isinstance(time_limit, numbers.Number) or time_limit < 0:
raise ValueError("time_limit must be a positive value in seconds; "
"got {}.".format(time_limit))
if not isinstance(verbose, bool):
raise TypeError("verbose must be a boolean; got {}.".format(verbose))
class OptimalBinning2D(OptimalBinning):
"""Optimal binning of two numerical variables with respect to a binary
target.
Parameters
----------
name_x : str, optional (default="")
The name of variable x.
name_y : str, optional (default="")
The name of variable y.
dtype_x : str, optional (default="numerical")
The data type of variable x. Supported data type is "numerical" for
continuous and ordinal variables.
dtype_y : str, optional (default="numerical")
The data type of variable y. Supported data type is "numerical" for
continuous and ordinal variables.
prebinning_method : str, optional (default="cart")
The pre-binning method. Supported methods are "cart" for a CART
decision tree, "mdlp" for Minimum Description Length Principle (MDLP),
"quantile" to generate prebins with approximately same frequency and
"uniform" to generate prebins with equal width. Method "cart" uses
`sklearn.tree.DecistionTreeClassifier
<https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html>`_.
strategy: str, optional (default="grid")
The strategy used to create the initial prebinning 2D after computing
prebinning splits on the x and y axis. The strategy "grid" creates a
prebinning 2D with n_prebins_x times n_prebins_y elements. The strategy
"cart" (experimental) reduces the number of elements by pruning. The
latter is recommended when the number of prebins is large.
solver : str, optional (default="cp")
The optimizer to solve the optimal binning problem. Supported solvers
are "mip" to choose a mixed-integer programming solver, and "cp" to
choose a constrained programming solver.
divergence : str, optional (default="iv")
The divergence measure in the objective function to be maximized.
Supported divergences are "iv" (Information Value or Jeffrey's
divergence), "js" (Jensen-Shannon), "hellinger" (Hellinger divergence)
and "triangular" (triangular discrimination).
max_n_prebins_x : int (default=5)
The maximum number of bins on variable x after pre-binning (prebins).
max_n_prebins_y : int (default=5)
The maximum number of bins on variable y after pre-binning (prebins).
min_prebin_size_x : float (default=0.05)
The fraction of mininum number of records for each prebin on variable
x.
min_prebin_size_y : float (default=0.05)
The fraction of mininum number of records for each prebin on variable
y.
min_n_bins : int or None, optional (default=None)
The minimum number of bins. If None, then ``min_n_bins`` is
a value in ``[0, max_n_prebins]``.
max_n_bins : int or None, optional (default=None)
The maximum number of bins. If None, then ``max_n_bins`` is
a value in ``[0, max_n_prebins]``.
min_bin_size : float or None, optional (default=None)
The fraction of minimum number of records for each bin. If None,
``min_bin_size = min_prebin_size``.
max_bin_size : float or None, optional (default=None)
The fraction of maximum number of records for each bin. If None,
``max_bin_size = 1.0``.
min_bin_n_nonevent : int or None, optional (default=None)
The minimum number of non-event records for each bin. If None,
``min_bin_n_nonevent = 1``.
max_bin_n_nonevent : int or None, optional (default=None)
The maximum number of non-event records for each bin. If None, then an
unlimited number of non-event records for each bin.
min_bin_n_event : int or None, optional (default=None)
The minimum number of event records for each bin. If None,
``min_bin_n_event = 1``.
max_bin_n_event : int or None, optional (default=None)
The maximum number of event records for each bin. If None, then an
unlimited number of event records for each bin.
monotonic_trend_x : str or None, optional (default=None)
The **event rate** monotonic trend on the x axis. Supported trends are
“ascending”, and "descending". If None, then the monotonic constraint
is disabled.
monotonic_trend_y : str or None, optional (default=None)
The **event rate** monotonic trend on the y axis. Supported trends are
“ascending”, and "descending". If None, then the monotonic constraint
is disabled.
min_event_rate_diff_x : float, optional (default=0)
The minimum event rate difference between consecutives bins on the x
axis.
min_event_rate_diff_y : float, optional (default=0)
The minimum event rate difference between consecutives bins on the y
axis.
gamma : float, optional (default=0)
Regularization strength to reduce the number of dominating bins. Larger
values specify stronger regularization.
special_codes_x : array-like or None, optional (default=None)
List of special codes for the variable x. Use special codes to specify
the data values that must be treated separately.
special_codes_y : array-like or None, optional (default=None)
List of special codes for the variable y. Use special codes to specify
the data values that must be treated separately.
split_digits : int or None, optional (default=None)
The significant digits of the split points. If ``split_digits`` is set
to 0, the split points are integers. If None, then all significant
digits in the split points are considered.
n_jobs : int or None, optional (default=None)
Number of cores to run in parallel while binning variables.
``None`` means 1 core. ``-1`` means using all processors.
time_limit : int (default=100)
The maximum time in seconds to run the optimization solver.
verbose : bool (default=False)
Enable verbose output.
"""
def __init__(self, name_x="", name_y="", dtype_x="numerical",
dtype_y="numerical", prebinning_method="cart",
strategy="grid", solver="cp", divergence="iv",
max_n_prebins_x=5, max_n_prebins_y=5, min_prebin_size_x=0.05,
min_prebin_size_y=0.05, min_n_bins=None, max_n_bins=None,
min_bin_size=None, max_bin_size=None, min_bin_n_nonevent=None,
max_bin_n_nonevent=None, min_bin_n_event=None,
max_bin_n_event=None, monotonic_trend_x=None,
monotonic_trend_y=None, min_event_rate_diff_x=0,
min_event_rate_diff_y=0, gamma=0, special_codes_x=None,
special_codes_y=None, split_digits=None, n_jobs=1,
time_limit=100, verbose=False):
self.name_x = name_x
self.name_y = name_y
self.dtype_x = dtype_x
self.dtype_y = dtype_y
self.prebinning_method = prebinning_method
self.strategy = strategy
self.solver = solver
self.divergence = divergence
self.max_n_prebins_x = max_n_prebins_x
self.max_n_prebins_y = max_n_prebins_y
self.min_prebin_size_x = min_prebin_size_x
self.min_prebin_size_y = min_prebin_size_y
self.min_n_bins = min_n_bins
self.max_n_bins = max_n_bins
self.min_bin_size = min_bin_size
self.max_bin_size = max_bin_size
self.min_bin_n_event = min_bin_n_event
self.max_bin_n_event = max_bin_n_event
self.min_bin_n_nonevent = min_bin_n_nonevent
self.max_bin_n_nonevent = max_bin_n_nonevent
self.monotonic_trend_x = monotonic_trend_x
self.monotonic_trend_y = monotonic_trend_y
self.min_event_rate_diff_x = min_event_rate_diff_x
self.min_event_rate_diff_y = min_event_rate_diff_y
self.gamma = gamma
self.special_codes_x = special_codes_x
self.special_codes_y = special_codes_y
self.split_digits = split_digits
self.n_jobs = n_jobs
self.time_limit = time_limit
self.verbose = verbose
# auxiliary
self._n_event = None
self._n_nonevent = None
self._n_event_special = None
self._n_nonevent_special = None
self._n_event_missing = None
self._n_nonevent_missing = None
self._problem_type = "classification"
# info
self._binning_table = None
self._n_prebins = None
self._n_refinements = 0
self._n_samples = None
self._optimizer = None
self._solution = None
self._splits_x_optimal = None
self._splits_y_optimal = None
self._status = None
# timing
self._time_total = None
self._time_preprocessing = None
self._time_prebinning = None
self._time_solver = None
self._time_optimizer = None
self._time_postprocessing = None
self._is_fitted = False
def fit(self, x, y, z, check_input=False):
"""Fit the optimal binning 2D according to the given training data.
Parameters
----------
x : array-like, shape = (n_samples,)
Training vector x, where n_samples is the number of samples.
y : array-like, shape = (n_samples,)
Training vector y, where n_samples is the number of samples.
z : array-like, shape = (n_samples,)
Target vector relative to x and y.
check_input : bool (default=False)
Whether to check input arrays.
Returns
-------
self : OptimalBinning2D
Fitted optimal binning 2D.
"""
return self._fit(x, y, z, check_input)
def fit_transform(self, x, y, z, metric="woe", metric_special=0,
metric_missing=0, show_digits=2, check_input=False):
"""Fit the optimal binning 2D according to the given training data,
then transform it.
Parameters
----------
x : array-like, shape = (n_samples,)
Training vector x, where n_samples is the number of samples.
y : array-like, shape = (n_samples,)
Training vector y, where n_samples is the number of samples.
z : array-like, shape = (n_samples,)
Target vector relative to x and y.
metric : str (default="woe")
The metric used to transform the input vector. Supported metrics
are "woe" to choose the Weight of Evidence, "event_rate" to
choose the event rate, "indices" to assign the corresponding
indices of the bins and "bins" to assign the corresponding
bin interval.
metric_special : float or str (default=0)
The metric value to transform special codes in the input vector.
Supported metrics are "empirical" to use the empirical WoE or
event rate, and any numerical value.
metric_missing : float or str (default=0)
The metric value to transform missing values in the input vector.
Supported metrics are "empirical" to use the empirical WoE or
event rate and any numerical value.
show_digits : int, optional (default=2)
The number of significant digits of the bin column. Applies when
``metric="bins"``.
check_input : bool (default=False)
Whether to check input arrays.
Returns
-------
z_new : numpy array, shape = (n_samples,)
Transformed array.
"""
return self.fit(x, y, z, check_input).transform(
x, y, metric, metric_special, metric_missing, show_digits,
check_input)
def transform(self, x, y, metric="woe", metric_special=0, metric_missing=0,
show_digits=2, check_input=False):
"""Transform given data to Weight of Evidence (WoE) or event rate using
bins from the fitted optimal binning 2D.
Parameters
----------
x : array-like, shape = (n_samples,)
Training vector x, where n_samples is the number of samples.
y : array-like, shape = (n_samples,)
Training vector y, where n_samples is the number of samples.
metric : str (default="woe")
The metric used to transform the input vector. Supported metrics
are "woe" to choose the Weight of Evidence, "event_rate" to
choose the event rate, "indices" to assign the corresponding
indices of the bins and "bins" to assign the corresponding
bin interval.
metric_special : float or str (default=0)
The metric value to transform special codes in the input vector.
Supported metrics are "empirical" to use the empirical WoE or
event rate and any numerical value.
metric_missing : float or str (default=0)
The metric value to transform missing values in the input vector.
Supported metrics are "empirical" to use the empirical WoE or
event rate and any numerical value.
show_digits : int, optional (default=2)
The number of significant digits of the bin column. Applies when
``metric="bins"``.
check_input : bool (default=False)
Whether to check input arrays.
Returns
-------
z_new : numpy array, shape = (n_samples,)
Transformed array.
"""
self._check_is_fitted()
return transform_binary_target(
self._splits_x_optimal, self._splits_y_optimal, x, y,
self._n_nonevent, self._n_event, self.special_codes_x,
self.special_codes_y, metric, metric_special, metric_missing,
show_digits, check_input)
def _fit(self, x, y, z, check_input):
time_init = time.perf_counter()
if self.verbose:
logger.info("Optimal binning started.")
logger.info("Options: check parameters.")
_check_parameters(**self.get_params())
# Pre-processing
if self.verbose:
logger.info("Pre-processing started.")
self._n_samples = len(x)
if self.verbose:
logger.info("Pre-processing: number of samples: {}"
.format(self._n_samples))
time_preprocessing = time.perf_counter()
[x_clean, y_clean, z_clean, x_missing, y_missing, z_missing,
x_special, y_special, z_special] = split_data_2d(
self.dtype_x, self.dtype_y, x, y, z, self.special_codes_x,
self.special_codes_y, check_input)
self._time_preprocessing = time.perf_counter() - time_preprocessing
if self.verbose:
n_clean = len(x_clean)
n_missing = len(x_missing)
n_special = len(x_special)
logger.info("Pre-processing: number of clean samples: {}"
.format(n_clean))
logger.info("Pre-processing: number of missing samples: {}"
.format(n_missing))
logger.info("Pre-processing: number of special samples: {}"
.format(n_special))
if self.verbose:
logger.info("Pre-processing terminated. Time: {:.4f}s"
.format(self._time_preprocessing))
# Pre-binning
if self.verbose:
logger.info("Pre-binning started.")
time_prebinning = time.perf_counter()
splits_x = self._fit_prebinning(self.dtype_x, x_clean, z_clean,
self.max_n_prebins_x,
self.min_prebin_size_x)
splits_y = self._fit_prebinning(self.dtype_y, y_clean, z_clean,
self.max_n_prebins_y,
self.min_prebin_size_y)
NE, E = self._prebinning_matrices(
splits_x, splits_y, x_clean, y_clean, z_clean, x_missing,
y_missing, z_missing, x_special, y_special, z_special)
if self.strategy == "cart":
if self.verbose:
logger.info("Prebinning: applying strategy cart...")
n_splits_x = len(splits_x)
n_splits_y = len(splits_y)
clf_nodes = n_splits_x * n_splits_y
indices_x = np.digitize(x_clean, splits_x, right=False)
n_bins_x = n_splits_x + 1
indices_y = np.digitize(y_clean, splits_y, right=False)
n_bins_y = n_splits_y + 1
xt = np.empty(len(x_clean), dtype=int)
yt = np.empty(len(y_clean), dtype=int)
for i in range(n_bins_x):
xt[(indices_x == i)] = i
for i in range(n_bins_y):
yt[(indices_y == i)] = i
xyt = np.c_[xt, yt]
min_prebin_size = min(self.min_prebin_size_x,
self.min_prebin_size_y) * 0.25
clf = DecisionTreeClassifier(min_samples_leaf=min_prebin_size,
max_leaf_nodes=clf_nodes)
clf.fit(xyt, z_clean)
self._clf = clf
self._time_prebinning = time.perf_counter() - time_prebinning
self._n_prebins = E.size
if self.verbose:
logger.info("Pre-binning: number of prebins: {}"
.format(self._n_prebins))
logger.info("Pre-binning terminated. Time: {:.4f}s"
.format(self._time_prebinning))
# Optimization
rows, n_nonevent, n_event = self._fit_optimizer(
splits_x, splits_y, NE, E)
# Post-processing
if self.verbose:
logger.info("Post-processing started.")
logger.info("Post-processing: compute binning information.")
time_postprocessing = time.perf_counter()
# Refinements
m, n = E.shape
self._n_refinements = (m * n * (m + 1) * (n + 1)) // 4 - len(rows)
# solution matrices
D = np.empty(m * n, dtype=float)
P = np.empty(m * n, dtype=int)
selected_rows = np.array(rows, dtype=object)[self._solution]
self._selected_rows = selected_rows
self._m, self._n = m, n
n_selected_rows = selected_rows.shape[0] + 2
opt_n_nonevent = np.empty(n_selected_rows, dtype=int)
opt_n_event = np.empty(n_selected_rows, dtype=int)
for i, r in enumerate(selected_rows):
_n_nonevent = n_nonevent[self._solution][i]
_n_event = n_event[self._solution][i]
_event_rate = _n_event / (_n_event + _n_nonevent)
P[r] = i
D[r] = _event_rate
opt_n_nonevent[i] = _n_nonevent
opt_n_event[i] = _n_event
opt_n_nonevent[-2] = self._n_nonevent_special
opt_n_event[-2] = self._n_event_special
opt_n_nonevent[-1] = self._n_nonevent_missing
opt_n_event[-1] = self._n_event_missing
self._n_nonevent = opt_n_nonevent
self._n_event = opt_n_event
D = D.reshape((m, n))
P = P.reshape((m, n))
# optimal bins
bins_x = np.concatenate([[-np.inf], splits_x, [np.inf]])
bins_y = np.concatenate([[-np.inf], splits_y, [np.inf]])
bins_str_x = np.array([[bins_x[i], bins_x[i+1]]
for i in range(len(bins_x) - 1)])
bins_str_y = np.array([[bins_y[i], bins_y[i+1]]
for i in range(len(bins_y) - 1)])
splits_x_optimal = []
splits_y_optimal = []
for i in range(len(selected_rows)):
pos_y, pos_x = | np.where(P == i) | numpy.where |
import time
import numpy as np
import galsim
import ngmix
from cs_interpolate import interpolate_image_and_noise_cs
def test_interpolate_image_and_noise_cs_gauss_linear(show=False):
"""
test that our interpolation works decently for a linear
piece missing from a gaussian image
"""
rng = np.random.RandomState(seed=31415)
noise = 0.001
sigma = 4.0
is2 = 1.0/sigma**2
dims = 51, 51
cen = (np.array(dims)-1.0)/2.0
rows, cols = np.mgrid[
0:dims[0],
0:dims[1],
]
rows = rows - cen[0]
cols = cols - cen[1]
image_unmasked = np.exp(-0.5*(rows**2 + cols**2)*is2)
weight = image_unmasked*0 + 1.0/noise**2
noise_image = rng.normal(scale=noise, size=image_unmasked.shape)
badcol = int(cen[1]-3)
bw = 3
rr = badcol-bw, badcol+bw+1
weight[rr[0]:rr[1], badcol] = 0.0
image_masked = image_unmasked.copy()
image_masked[rr[0]:rr[1], badcol] = 0.0
bmask = np.zeros_like(image_unmasked, dtype=np.int32)
bad_flags = 0
iimage, inoise = interpolate_image_and_noise_cs(
image=image_masked,
weight=weight,
bmask=bmask,
bad_flags=bad_flags,
noise=noise_image,
rng=np.random.RandomState(seed=45),
c=1,
)
maxdiff = np.abs(image_unmasked-iimage).max()
if show:
from espy import images
images.view_mosaic([image_masked, weight])
images.compare_images(
image_unmasked,
iimage,
width=1000,
height=int(1000*2/3),
)
print('max diff:', maxdiff)
assert maxdiff < 0.5
def test_interpolate_image_and_noise_cs_gauss_circle(show=False):
"""
test that our interpolation works decently for a linear
piece missing from a gaussian image
"""
rng = np.random.RandomState(seed=31415)
noise = 0.001
sigma = 4.0
is2 = 1.0/sigma**2
dims = 51, 51
cen = (np.array(dims)-1.0)/2.0
rows, cols = np.mgrid[
0:dims[0],
0:dims[1],
]
rows = rows - cen[0]
cols = cols - cen[1]
radius2 = rows**2 + cols**2
image_unmasked = np.exp(-0.5*(radius2)*is2)
weight = image_unmasked*0 + 1.0/noise**2
noise_image = rng.normal(scale=noise, size=image_unmasked.shape)
wbad = np.where(radius2 <= 3**2)
weight[wbad] = 0.0
image_masked = image_unmasked.copy()
image_masked[wbad] = 0.0
bmask = np.zeros_like(image_unmasked, dtype=np.int32)
bad_flags = 0
iimage, inoise = interpolate_image_and_noise_cs(
image=image_masked,
weight=weight,
bmask=bmask,
bad_flags=bad_flags,
noise=noise_image,
rng=np.random.RandomState(seed=45),
# sampling_rate=0.1,
c=0.001,
)
# iimage[wbad] *= 2.75
# iimage[wbad] *= 1.5
maxdiff = np.abs(image_unmasked-iimage).max()
if show:
from espy import images
images.view_mosaic([image_masked, weight])
images.compare_images(
image_unmasked,
iimage,
width=1000,
height=int(1000*2/3),
)
print('max diff:', maxdiff)
assert maxdiff < 0.5
def test_interpolate_image_and_noise_cs_gauss_circle_many(
*,
seed,
sampling_rate=1.0,
c=0.1,
show=False):
"""
test that our interpolation works decently for a linear
piece missing from a gaussian image
"""
rng = np.random.RandomState(seed=seed)
flux_pdf = ngmix.priors.LogNormal(500, 500, rng=rng)
hlr_pdf = ngmix.priors.LogNormal(0.5, 0.5, rng=rng)
noise = 1
dims = 500, 500
imcen = ( | np.array(dims) | numpy.array |
#############################################
# A script to read, manipulate, and test
# the data published in Konrad et al. (2018)
#
# Created 22/01/2019 by <NAME>.
# Modified 3/27/2019 by <NAME>.
#############################################
# ***** Import Statements *****
#--------------------------------------------
import os,glob
import pandas as pd
import cartopy.feature as cfeature
import cartopy.crs as ccrs
from geographiclib.geodesic import Geodesic
import rasterio
from rasterio.enums import Resampling
import pyproj
import pyskew.utilities as utl
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import re
from functools import cmp_to_key
def get_sandwell(window,down_sample_factor,sandwell_files_path="../raw_data/gravity/Sandwell/*.tiff",resample_method=Resampling.average):
sandwell_files = glob.glob(sandwell_files_path)
def cmp_grav_files(x,y): #sorting function utilizing file names to order concatonation of sandwell data
xfile = os.path.basename(x)
yfile = os.path.basename(y)
xlat,xlon = list(map(float,re.findall(r'\d+',xfile)))
ylat,ylon = list(map(float,re.findall(r'\d+',yfile)))
if "S" in xfile: xlat = -xlat
if "W" in xfile: xlon = 360-xlon
if "S" in yfile: ylat = -ylat
if "W" in yfile: ylon = 360-ylon
if xlat-ylat==0: return (utl.convert_to_0_360(ylon)-utl.convert_to_0_360(window[1]))%360 - (utl.convert_to_0_360(xlon)-utl.convert_to_0_360(window[1]))%360
# if (ylon-window[1])==0: return -1
# elif (xlon-window[1])==0: return 1
# else: return (ylon-window[1])%360 - (xlon-window[1])%360
else: return ylat-xlat
idx,all_gravs,prev_file,all_lats,all_lons = 0,[],None,np.array([]),np.array([])
for filepath in sorted(sandwell_files,key=cmp_to_key(cmp_grav_files)):
with rasterio.open(filepath) as dataset:
lats = np.arange(dataset.bounds[3],dataset.bounds[1],-dataset.res[1]*down_sample_factor)
lons = np.arange(dataset.bounds[0],dataset.bounds[2],dataset.res[0]*down_sample_factor)
if utl.convert_to_0_360(round(window[0],3))>utl.convert_to_0_360(round(dataset.bounds[0],3)): lon_lb = int((utl.convert_to_0_360(window[0])-utl.convert_to_0_360(dataset.bounds[0]))/(dataset.res[0]*down_sample_factor) + .5)
else: lon_lb = 0
if utl.convert_to_0_360(round(window[1],3))<utl.convert_to_0_360(round(dataset.bounds[2],3)): lon_ub = int((utl.convert_to_0_360(window[1])-utl.convert_to_0_360(dataset.bounds[2]))/(dataset.res[0]*down_sample_factor) + .5)
else: lon_ub = -1
if round(window[2],3)>round(dataset.bounds[1],3): lat_lb = int((window[2]-dataset.bounds[1])/(dataset.res[1]*down_sample_factor) + .5)
else: lat_lb = 0
if round(window[3],3)<round(dataset.bounds[3],3): lat_ub = int((window[3]-dataset.bounds[3])/(dataset.res[1]*down_sample_factor) + .5)
else: lat_ub = -1
lats = lats[-(lat_ub):-lat_lb-1]
lons = lons[abs(lon_lb):lon_ub-1]
if len(lons)==0 or len(lats)==0: continue
print("Loading: %s"%str(filepath))
grav = dataset.read(1,
# window=gwindow,
out_shape=(int(dataset.height / down_sample_factor + .5), int(dataset.width / down_sample_factor + .5)),
# resampling=Resampling.gauss
# resampling=Resampling.nearest
resampling=resample_method
)
grav = grav[-(lat_ub):-lat_lb-1,abs(lon_lb):lon_ub-1]
if len(lats)>grav.shape[0]: lats = lats[:grav.shape[0]]
if len(lons)>grav.shape[1]: lons = lons[:grav.shape[1]]
if prev_file!=None:
xfile = os.path.basename(prev_file)
yfile = os.path.basename(filepath)
xlat,xlon = list(map(float,re.findall(r'\d+',xfile)))
ylat,ylon = list(map(float,re.findall(r'\d+',yfile)))
if "S" in xfile: xlat = -xlat
if "W" in xfile: xlon = 360-xlon
if "S" in yfile: ylat = -ylat
if "W" in yfile: ylon = 360-ylon
if abs(round(xlat-ylat))!=0:
#create new entry
idx +=1
all_lats = np.hstack([all_lats,lats])
all_gravs.append(grav)
elif abs(round(xlon-ylon))==60:
#concatonate left
if idx==0: all_lons = np.hstack([lons,all_lons])
all_gravs[idx] = np.hstack([grav,all_gravs[idx]])
else: raise RuntimeError("Couldn't coordinate how to concatonate %s to gravity array"%str(filepath))
else:
all_lats = np.hstack([all_lats,lats])
all_lons = np.hstack([lons,all_lons])
all_gravs.append(grav)
prev_file = filepath
try:
all_grav = all_gravs[0]
for next_grav in all_gravs[1:]:
all_grav = np.vstack([all_grav,next_grav])
except (UnboundLocalError,IndexError) as err: return np.array([]), | np.array([]) | numpy.array |
import numpy as np
from numba import jit
from functools import partial
from tilitools.opt_subgradient import min_subgradient_descent
from tilitools.profiler import profile
class LpOcSvmPrimalSGD:
""" Lp-norm regularized primal one-class support vector machine.
"""
PRECISION = 1e-3 # important: effects the threshold, support vectors and speed!
w = None # (vector) parameter vector
nu = 1.0 # (scalar) the regularization constant 1/n <= nu <= 1
pnorm = 2.0 # (scalar) p-norm
threshold = 0.0 # (scalar) the optimized threshold (rho)
outliers = None # (vector) indices of real outliers in the training sample
def __init__(self, pnorm=2., nu=1.0):
self.nu = nu
self.pnorm = pnorm
# print('Creating new primal lp (p={0}) one-class svm with C=1/(n*nu) (nu={1}).'.format(pnorm, nu))
@profile
def fit(self, X, max_iter=1000, prec=1e-3, step_rate=0.01, step_method=1, verbosity=0):
# number of training examples
feats, n = X.shape
x0 = np.zeros(feats+1)
x0[1:] = np.mean(X, axis=1)
x0[1:] /= np.linalg.norm(x0[1:])
x0[0] = np.linalg.norm(np.mean(X, axis=1))
if verbosity > 0:
print('Threshold is {0}'.format(x0[0]))
print('Norm of w is {0}'.format(np.linalg.norm(x0[1:])))
# x0 = np.random.randn(feats+1)
xstar, obj, iter = min_subgradient_descent(x0,
partial(fun, data=X, p=self.pnorm, nu=self.nu),
partial(grad, data=X, p=self.pnorm, nu=self.nu),
max_iter, prec, step_rate, step_method=step_method)
self.threshold = xstar[0]
self.w = xstar[1:]
scores = self.apply(X)
self.outliers = np.where(scores < 0.)[0]
if verbosity > 0:
print('---------------------------------------------------------------')
print('Stats:')
print('Number of samples: {0}, nu: {1}; C: ~{2:1.2f}; %Outliers: {3:3.2f}%.'
.format(n, self.nu, 1./(self.nu*n),np.float(self.outliers.size) / np.float(n) * 100.0))
print('Threshold is {0}'.format(self.threshold))
print('Norm of w is {0}'.format(np.linalg.norm(self.w)))
print('Objective is {0}'.format(fun(xstar, X, self.pnorm, self.nu)))
print('Iterations {0}'.format(iter))
print('---------------------------------------------------------------')
def get_threshold(self):
return self.threshold
def get_outliers(self):
return self.outliers
def apply(self, X):
return self.w.T.dot(X) - self.threshold
def fun1(x, data, p, nu):
feat, n = data.shape
C = 1./(np.float(n)*nu)
w = x[1:]
slacks = 1. - w.T.dot(data)
slacks[slacks < 0.] = 0.
return np.sum( | np.abs(w) | numpy.abs |
# -*- coding: iso-8859-15 -*-
#
# This software was written by <NAME> (<NAME>)
# Copyright <NAME>
# All rights reserved
# This software is licenced under a 3-clause BSD style license
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions are met:
#
#Redistributions of source code must retain the above copyright notice,
#this list of conditions and the following disclaimer.
#
#Redistributions in binary form must reproduce the above copyright notice,
#this list of conditions and the following disclaimer in the documentation
#and/or other materials provided with the distribution.
#
#Neither the name of the University College London nor the names
#of the code contributors may be used to endorse or promote products
#derived from this software without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
#AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
#THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
#PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
#CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
#EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
#PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
#OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
#WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
#OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
#ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
# Developed by <NAME> (MSSL/UCL)
# uvotpy
# (c) 2009-2017, see Licence
from future.builtins import str
from future.builtins import input
from future.builtins import range
__version__ = '2.9.0 20171209'
import sys
import optparse
import numpy as np
import matplotlib.pyplot as plt
try:
from astropy.io import fits as pyfits
from astropy import wcs
except:
import pyfits
import re
import warnings
try:
import imagestats
except:
import stsci.imagestats as imagestats
import scipy
from scipy import interpolate
from scipy.ndimage import convolve
from scipy.signal import boxcar
from scipy.optimize import leastsq
from scipy.special import erf
from numpy import polyfit, polyval
'''
try:
#from uvotpy import uvotplot,uvotmisc,uvotwcs,rationalfit,mpfit,uvotio
import uvotplot
import uvotmisc
import uvotwcs
import rationalfit
import mpfit
import uvotio
except:
pass
'''
from uvotmisc import interpgrid, uvotrotvec, rdTab, rdList
from generate_USNOB1_cat import get_usnob1_cat
import datetime
import os
if __name__ != '__main__':
anchor_preset = list([None,None])
bg_pix_limits = list([-100,-70,70,100])
bg_lower_ = list([None,None]) # (offset, width) in pix, e.g., [20,30], default [50,50]
bg_upper_ = list([None,None]) # (offset, width) in pix, e.g., [20,30], default [50,50]
offsetlimit = None
#set Global parameters
status = 0
do_coi_correction = True # if not set, disable coi_correction
tempnames = list()
tempntags = list()
cval = -1.0123456789
interactive = True
update_curve = True
contour_on_img = False
give_result = False # with this set, a call to getSpec returns all data
give_new_result = False
use_rectext = False
background_method = 'boxcar' # alternatives 'splinefit' 'boxcar'
background_smoothing = [50,7] # 'boxcar' default smoothing in dispersion and across dispersion in pix
background_interpolation = 'linear'
trackcentroiding = True # default (= False will disable track y-centroiding)
global trackwidth
trackwidth = 2.5 # width of extraction region in sigma (alternative default = 1.0) 2.5 was used for flux calibration.
bluetrackwidth = 1.3 # multiplier width of non-order-overlapped extraction region [not yet active]
write_RMF = False
background_source_mag = 18.0
zeroth_blim_offset = 1.0
coi_half_width = None
slit_width = 200
_PROFILE_BACKGROUND_ = False # start with severe sigma-clip f background, before going to smoothing
today_ = datetime.date.today()
datestring = today_.isoformat()[0:4]+today_.isoformat()[5:7]+today_.isoformat()[8:10]
fileversion=1
calmode=True
typeNone = type(None)
senscorr = True # do sensitivity correction
print(66*"=")
print("uvotpy module uvotgetspec version=",__version__)
print("<NAME> (c) 2009-2017, see uvotpy licence.")
print("please use reference provided at http://github.com/PaulKuin/uvotpy")
print(66*"=","\n")
def getSpec(RA,DEC,obsid, ext, indir='./', wr_outfile=True,
outfile=None, calfile=None, fluxcalfile=None,
use_lenticular_image=True,
offsetlimit=None, anchor_offset=None, anchor_position=[None,None],
background_lower=[None,None], background_upper=[None,None],
background_template=None,
fixed_angle=None, spextwidth=13, curved="update",
fit_second=False, predict2nd=True, skip_field_src=False,
optimal_extraction=False, catspec=None,write_RMF=write_RMF,
get_curve=None,fit_sigmas=True,get_sigma_poly=False,
lfilt1=None, lfilt1_ext=None, lfilt2=None, lfilt2_ext=None,
wheelpos=None, interactive=interactive, sumimage=None, set_maglimit=None,
plot_img=True, plot_raw=True, plot_spec=True, zoom=True, highlight=False,
uvotgraspcorr_on=True, ank_c_0offset = False,
update_pnt=True, ifmotion=False, motion_file=None, anchor_x_offset=False,
replace=None,ifextended=False, singleside_bkg = False, fixwidth = False,
clobber=False, chatter=1):
'''Makes all the necessary calls to reduce the data.
Parameters
----------
ra, dec : float
The Sky position (J2000) in **decimal degrees**
obsid : str
The observation ID number as a **String**. Typically that is
something like "00032331001" and should be part of your
grism filename which is something like "sw00032331001ugu_dt.img"
ext : int
number of the extension to process
kwargs : dict
optional keyword arguments, possible values are:
- **fit_second** : bool
fit the second order. Off since it sometimes causes problems when the
orders overlap completely. Useful for spectra in top part detector
- **background_lower** : list
instead of default background list offset from spectrum as list
of two numbers, like [20, 40]. Distance relative to spectrum
- **background_upper** : list
instead of default background list offset from spectrum as list
of two numbers, like [20, 40]. Distance relative to spectrum
- **offsetlimit** : None,int,[center,range]
Default behaviour is to determine automatically any required offset from
the predicted anchor position to the spectrum, and correct for that.
The automated method may fail in the case of a weak spectrum and strong zeroth
or first order next to the spectrum. Two methods are provided:
(1) provide a number which will be used to limit the allowed offset. If
within that limit no peak is identified, the program will stop and require
you to provide a manual offset value. Try small numbers like 1, -1, 3, etc..
(2) if you already know the approximate y-location of the spectrum at the
anchor x-position in the rotated small image strip around the spectrum, you
can give this with a small allowed range for fine tuning as a list of two
parameter values. The first value in the list must be the y-coordinate
(by default the spectrum falls close to y=100 pixels), the second parameter
the allowed adjustment to a peak value in pixels. For example, [105,2].
This will require no further interactive input, and the spectrum will be
extracted using that offset.
- **wheelpos**: {160,200,955,1000}
filter wheel position for the grism filter mode used. Helpful for
forcing Vgrism or UVgrism input when both are present in the directory.
160:UV Clocked, 200:UV Nominal, 955:V clocked, 1000:V nominal
- **zoom** : bool
when False, the whole extracted region is displayed, including zeroth
order when present.
- **clobber** : bool
When True, overwrite earlier output (see also outfile)
- **write_RMF** : bool
When True, write the rmf file (will take extra time due to large matrix operations)
- **use_lenticular_image** : bool
When True and a lenticular image is present, it is used. If False,
the grism image header WCS-S system will be used for the astrometry,
with an automatic call to uvotgraspcorr for refinement.
- **sumimage** : str
Name summed image generated using ``sum_Extimage()``, will extract spectrum
from summed image.
- **wr_outfile** : bool
If False, no output file is written
- **outfile** : path, str
Name of output file, other than automatically generated.
- **calfile** : path, str
calibration file name
- **fluxcalfile** : path, str
flux calibration file name or "CALDB" or None
- **predict2nd** : bool
predict the second order flux from the first. Overestimates in centre a lot.
- **skip_field_src** : bool
if True do not locate zeroth order positions. Can be used if
absence internet connection or USNO-B1 server causes problems.
- **optimal_extraction** : bool, obsolete
Do not use.Better results with other implementation.
- **catspec** : path
optional full path to the catalog specification file for uvotgraspcorr.
- **get_curve** : bool or path
True: activate option to supply the curvature coefficients of all
orders by hand.
path: filename with coefficients of curvature
- **uvotgraspcorr_on** : bool
enable/disable rerun of uvotgraspcorr to update the WCS keywords
- **update_pnt** : bool
enable/disable update of the WCS keywords from the attitude file
(this is done prior to running uvotgraspcorr is that is enabled)
- **fit_sigmas** : bool
fit the sigma of trackwidths if True (not implemented, always on)
- **get_sigma_poly** : bool
option to supply the polynomial for the sigma (not implemented)
- **lfilt1**, **lfilt2** : str
name if the lenticular filter before and after the grism exposure
(now supplied by fileinfo())
- **lfilt1_ext**, **lfilt2_ext** : int
extension of the lenticular filter (now supplied by fileinfo())
- **plot_img** : bool
plot the first figure with the det image
- **plot_raw** : bool
plot the raw spectrum data
- **plot_spec** : bool
plot the flux spectrum
- **highlight** : bool
add contours to the plots to highlight contrasts
- **chatter** : int
verbosity of program
- **set_maglimit** : int
specify a magnitude limit to seach for background sources in the USNO-B1 catalog
- **background_template** : numpy 2D array
User provides a background template that will be used instead
determining background. Must be in counts. Size and alignment
must exactly match detector image.
Returns
-------
None, (give_result=True) compounded data (Y0, Y1, Y2, Y3, Y4) which
are explained in the code, or (give_new_result=True) a data dictionary.
Notes
-----
**Quick Start**
`getSpec(ra,dec,obsid, ext,)`
should produce plots and output files
**Which directory?**
The program needs to be started from the CORRECT data directory.
The attitude file [e.g., "sw<OBSID>pat.fits" ]is needed!
A link or copy of the attitude file needs to be present in the directory
or "../../auxil/" directory as well.
**Global parameters**
These parameters can be reset, e.g., during a (i)python session, before calling getSpec.
- **trackwidth** : float
width spectral extraction in units of sigma. The default is trackwidth = 2.5
The alternative default is trackwidth = 1.0 which gives better results for
weak sources, or spectra with nearby contamination. However, the flux
calibration and coincidence-loss correction give currently inconsistent
results. When using trackwidth=1.0, rescale the flux to match trackwidth=2.5
which value was used for flux calibration and coincidence-loss correction.
- **give_result** : bool
set to False since a call to getSpec with this set will return all the
intermediate results. See returns
When the extraction slit is set to be straight ``curved="straight"`` it cuts off the UV part of the
spectrum for spectra located in the top left and bottom right of the image.
History
-------
Version 2011-09-22 NPMK(MSSL) : handle case with no lenticular filter observation
Version 2012-01-15 NPMK(MSSL) : optimal extraction is no longer actively supported until further notice
Version 2013-10-23 NPMK(MSSL) : fixed bug so uvotgraspcorr gives same accuracy as lenticular filter
Version 2014-01-01 NPMK(MSSL) : aperture correction for background added; output dictionary
Version 2014-07-23 NPMK(MSSL) : coi-correction using new calibrared coi-box and factor
Version 2014-08-04 NPMK(MSSL/UCL): expanded offsetlimit parameter with list option to specify y-range.
Version 2015-12-03 NPMK(MSSL/UCL): change input parameter 'get_curve' to accept a file name with coefficients
Version 2016-01-16 NPMK(MSSL/UCL): added options for background; disable automated centroiding of spectrum
Example
-------
from uvotpy.uvotgetspec import getSpec
from uvotpy import uvotgetspec
import os, shutil
indir1 = os.getenv('UVOTPY') +'/test'
indir2 = os.getcwd()+'/test/UVGRISM/00055900056/uvot/image'
shutil.copytree(indir1, os.getcwd()+'/test' )
getSpec( 254.7129625, 34.3148667, '00055900056', 1, offsetlimit=1,indir=indir2, clobber=True )
'''
# (specfile, lfilt1_, lfilt1_ext_, lfilt2_, lfilt2_ext_, attfile), (method), \
# (Xphi, Yphi, date1), (dist12, ankerimg, ZOpos), expmap, bgimg, bg_limits_used, bgextra = Y0
#
#( (dis,spnet,angle,anker,anker2,anker_field,ank_c), (bg,bg1,bg2,extimg,spimg,spnetimg,offset),
# (C_1,C_2,img), hdr,m1,m2,aa,wav1 ) = Y1
#
#fit,(coef0,coef1,coef2,coef3),(bg_zeroth,bg_first,bg_second,bg_third),(borderup,borderdown),apercorr,expospec=Y2
#
#counts, variance, borderup, borderdown, (fractions,cnts,vars,newsigmas) = Y3
#
#wav2p, dis2p, flux2p, qual2p, dist12p = Y4[0]
#
# where,
#
#(present0,present1,present2,present3),(q0,q1,q2,q3), \
# (y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(y1,dlim1L,dlim1U,sig1coef,sp_first,co_first),\
# (y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(y3,dlim3L,dlim3U,sig3coef,sp_third,co_third),\
# (x,xstart,xend,sp_all,quality,co_back) = fit
#
# dis = dispersion with zero at ~260nm[UV]/420nm[V] ; spnet = background-substracted spectrum from 'spnetimg'
# angle = rotation-angle used to extract 'extimg' ; anker = first order anchor position in DET coordinates
# anker2 = second order anker X,Y position ; anker_field = Xphi,Yphy input angles with respect to reference
# ank_c = X,Y position of axis of rotation (anker) in 'extimg'
# bg = mean background, smoothed, with sources removed
# bg1 = one-sided background, sources removed, smoothed ; bg2 = same for background opposite side
# extimg = image extracted of source and background, 201 pixels wide, all orders.
# spimg = image centered on first order position ; spnetimg = background-subtracted 'spimg'
# offset = offset of spectrum from expected position based on 'anchor' at 260nm[UVG]/420nm[VG], first order
# C_1 = dispersion coefficients [python] first order; C_2 = same for second order
# img = original image ;
# WC_lines positions for selected WC star lines ; hdr = header for image
# m1,m2 = index limits spectrum ; aa = indices spectrum (e.g., dis[aa])
# wav1 = wavelengths for dis[aa] first order (combine with spnet[aa])
#
# when wr_outfile=True the program produces a flux calibrated output file by calling uvotio.
# [fails if output file is already present and clobber=False]
#
# The background must be consistent with the width of the spectrum summed.
from uvotio import fileinfo, rate2flux, readFluxCalFile
from uvotplot import plot_ellipsoid_regions
if (type(RA) == np.ndarray) | (type(DEC) == np.array):
raise IOError("RA, and DEC arguments must be of float type ")
if type(offsetlimit) == list:
if len(offsetlimit) != 2:
raise IOError("offsetlimit list must be [center, distance from center] in pixels")
get_curve_filename = None
a_str_type = type(curved)
if chatter > 4 :
print ("\n*****\na_str_type = ",a_str_type)
print ("value of get_curve = ",get_curve)
print ("type of parameter get_curve is %s\n"%(type(get_curve)) )
print ("type curved = ",type(curved))
if type(get_curve) == a_str_type:
# file name: check this file is present
if os.access(get_curve,os.F_OK):
get_curve_filename = get_curve
get_curve = True
else:
raise IOError(
"ERROR: get_curve *%s* is not a boolean value nor the name of a file that is on the disk."
%(get_curve) )
elif type(get_curve) == bool:
if get_curve:
get_curve_filename = None
print("requires input of curvature coefficients")
elif type(get_curve) == type(None):
get_curve = False
else:
raise IOError("parameter get_curve should by type str or bool, but is %s"%(type(get_curve)))
# check environment
CALDB = os.getenv('CALDB')
if CALDB == '':
print('WARNING: The CALDB environment variable has not been set')
HEADAS = os.getenv('HEADAS')
if HEADAS == '':
print('WARNING: The HEADAS environment variable has not been set')
print('That is needed for the calls to uvot Ftools ')
#SCAT_PRESENT = os.system('which scat > /dev/null')
#if SCAT_PRESENT != 0:
# print('WARNING: cannot locate the scat program \nDid you install WCSTOOLS ?\n')
SESAME_PRESENT = os.system('which sesame > /dev/null')
#if SESAME_PRESENT != 0:
# print 'WARNING: cannot locate the sesame program \nDid you install the cdsclient tools?\n'
# fix some parameters
framtime = 0.0110329 # all grism images are taken in unbinned mode
splineorder=3
getzmxmode='spline'
smooth=50
testparam=None
msg = "" ; msg2 = "" ; msg4 = ""
attime = datetime.datetime.now()
logfile = 'uvotgrism_'+obsid+'_'+str(ext)+'_'+'_'+attime.isoformat()[0:19]+'.log'
if type(fluxcalfile) == bool: fluxcalfile = None
tempnames.append(logfile)
tempntags.append('logfile')
tempnames.append('rectext_spectrum.img')
tempntags.append('rectext')
lfiltnames=np.array(['uvw2','uvm2','uvw1','u','b','v','wh'])
ext_names =np.array(['uw2','um2','uw1','uuu','ubb','uvv','uwh'])
filestub = 'sw'+obsid
histry = ""
for x in sys.argv: histry += x + " "
Y0 = None
Y2 = None
Y3 = None
Y4 = None
Yfit = {}
Yout = {"coi_level":None} # output dictionary (2014-01-01; replace Y0,Y1,Y2,Y3)
lfilt1_aspcorr = "not initialized"
lfilt2_aspcorr = "not initialized"
qflag = quality_flags()
ZOpos = None
# parameters getSpec()
Yout.update({'indir':indir,'obsid':obsid,'ext':ext})
Yout.update({'ra':RA,'dec':DEC,'wheelpos':wheelpos})
if type(sumimage) == typeNone:
if background_template is not None:
# convert background_template to a dictionary
background_template = {'template':np.asarray(background_template),
'sumimg':False}
try:
ext = int(ext)
except:
print("fatal error in extension number: must be an integer value")
# locate related lenticular images
specfile, lfilt1_, lfilt1_ext_, lfilt2_, lfilt2_ext_, attfile = \
fileinfo(filestub,ext,directory=indir,wheelpos=wheelpos,chatter=chatter)
# set some flags and variables
lfiltinput = (lfilt1 != None) ^ (lfilt2 != None)
lfiltpresent = lfiltinput | (lfilt1_ != None) | (lfilt2_ != None)
if (type(lfilt1_) == typeNone) & (type(lfilt2_) == typeNone):
# ensure the output is consistent with no lenticular filter solution
use_lenticular_image = False
# translate
filt_id = {"wh":"wh","v":"vv","b":"bb","u":"uu","uvw1":"w1","uvm2":"m2","uvw2":"w2"}
lfiltflag = False
if ((type(lfilt1) == typeNone)&(type(lfilt1_) != typeNone)):
lfilt1 = lfilt1_
lfilt1_ext = lfilt1_ext_
if chatter > 0: print("lenticular filter 1 from search lenticular images"+lfilt1+"+"+str(lfilt1_ext))
lfiltflag = True
lfilt1_aspcorr = None
try:
hdu_1 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt1]+"_sk.img",lfilt1_ext)
lfilt1_aspcorr = hdu_1["ASPCORR"]
except:
hdu_1 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt1]+"_sk.img.gz",lfilt1_ext)
lfilt1_aspcorr = hdu_1["ASPCORR"]
if ((type(lfilt2) == typeNone)&(type(lfilt2_) != typeNone)):
lfilt2 = lfilt2_
lfilt2_ext = lfilt2_ext_
if chatter > 0: print("lenticular filter 2 from search lenticular images"+lfilt2+"+"+str(lfilt2_ext))
lfiltflag = True
lfilt2_aspcorr = None
try:
hdu_2 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt2]+"_sk.img",lfilt2_ext)
lfilt2_aspcorr = hdu_2["ASPCORR"]
except:
hdu_2 = pyfits.getheader(indir+"/sw"+obsid+"u"+filt_id[lfilt2]+"_sk.img.gz",lfilt2_ext)
lfilt2_aspcorr = hdu_2["ASPCORR"]
# report
if chatter > 4:
msg2 += "getSpec: image parameter values\n"
msg2 += "ra, dec = (%6.1f,%6.1f)\n" % (RA,DEC)
msg2 += "filestub, extension = %s[%i]\n"% (filestub, ext)
if lfiltpresent & use_lenticular_image:
msg2 += "first/only lenticular filter = "+lfilt1+" extension first filter = "+str(lfilt1_ext)+'\n'
msg2 += " Aspect correction keyword : %s\n"%(lfilt1_aspcorr)
if lfilt2_ext != None:
msg2 += "second lenticular filter = "+lfilt2+" extension second filter = "+str(lfilt2_ext)+'\n'
msg2 += " Aspect correction keyword : %s\n"%(lfilt2_aspcorr)
if not use_lenticular_image:
msg2 += "anchor position derived without lenticular filter\n"
msg2 += "spectrum extraction preset width = "+str(spextwidth)+'\n'
#msg2 += "optimal extraction "+str(optimal_extraction)+'\n'
hdr = pyfits.getheader(specfile,int(ext))
if chatter > -1:
msg += '\nuvotgetspec version : '+__version__+'\n'
msg += ' Position RA,DEC : '+str(RA)+' '+str(DEC)+'\n'
msg += ' Start date-time : '+str(hdr['date-obs'])+'\n'
msg += ' grism file : '+specfile.split('/')[-1]+'['+str(ext)+']\n'
msg += ' attitude file : '+attfile.split('/')[-1]+'\n'
if lfiltpresent & use_lenticular_image:
if ((lfilt1 != None) & (lfilt1_ext != None)):
msg += ' lenticular file 1: '+lfilt1+'['+str(lfilt1_ext)+']\n'
msg += ' aspcorr: '+lfilt1_aspcorr+'\n'
if ((lfilt2 != None) & (lfilt2_ext != None)):
msg += ' lenticular file 2: '+lfilt2+'['+str(lfilt2_ext)+']\n'
msg += ' aspcorr: '+lfilt2_aspcorr+'\n'
if not use_lenticular_image:
msg += "anchor position derived without lenticular filter\n"
if not 'ASPCORR' in hdr: hdr['ASPCORR'] = 'UNKNOWN'
Yout.update({'hdr':hdr})
tstart = hdr['TSTART']
tstop = hdr['TSTOP']
wheelpos = hdr['WHEELPOS']
expo = hdr['EXPOSURE']
expmap = [hdr['EXPOSURE']]
Yout.update({'wheelpos':wheelpos})
if 'FRAMTIME' not in hdr:
# compute the frametime from the CCD deadtime and deadtime fraction
#deadc = hdr['deadc']
#deadtime = 600*285*1e-9 # 600ns x 285 CCD lines seconds
#framtime = deadtime/(1.0-deadc)
framtime = 0.0110329
hdr.update('framtime',framtime,comment='frame time computed from deadc ')
Yout.update({'hdr':hdr})
if chatter > 1:
print("frame time computed from deadc - added to hdr")
print("with a value of ",hdr['framtime']," ",Yout['hdr']['framtime'])
if not 'detnam' in hdr:
hdr.update('detnam',str(hdr['wheelpos']))
msg += ' exposuretime : %7.1f \n'%(expo)
maxcounts = 1.1 * expo/framtime
if chatter > 0:
msg += ' wheel position : '+str(wheelpos)+'\n'
msg += ' roll angle : %5.1f\n'% (hdr['pa_pnt'])
msg += 'coincidence loss version: 2 (2014-07-23)\n'
msg += '======================================\n'
try:
if ( (np.abs(RA - hdr['RA_OBJ']) > 0.4) ^ (np.abs(DEC - hdr['DEC_OBJ']) > 0.4) ):
sys.stderr.write("\nWARNING: It looks like the input RA,DEC and target position in header are different fields\n")
except (RuntimeError, TypeError, NameError, KeyError):
pass
msg2 += " cannot read target position from header for verification\n"
if lfiltinput:
# the lenticular filter(s) were specified on the command line.
# check that the lenticular image and grism image are close enough in time.
if type(lfilt1_ext) == typeNone:
lfilt1_ext = int(ext)
lpos = np.where( np.array([lfilt1]) == lfiltnames )
if len(lpos[0]) < 1: sys.stderr.write("WARNING: illegal name for the lenticular filter\n")
lnam = ext_names[lpos]
lfile1 = filestub+lnam[0]+'_sk.img'
hdr_l1 = pyfits.getheader(lfile1,lfilt1_ext)
tstart1 = hdr_l1['TSTART']
tstop1 = hdr_l1['TSTOP']
if not ( (np.abs(tstart-tstop1) < 20) ^ (np.abs(tstart1-tstop) < 20) ):
sys.stderr.write("WARNING: check that "+lfile1+" matches the grism image\n")
if lfilt2 != None:
if type(lfilt2_ext) == typeNone:
lfilt2_ext = lfilt1_ext+1
lpos = np.where( np.array([lfilt2]) == lfiltnames )
if len(lpos[0] < 1): sys.stderr.write("WARNING: illegal name for the lenticular filter\n")
lnam = ext_names[lpos]
lfile2 = filestub+lnam[0]+'_sk.img'
hdr_l2 = pyfits.getheader(lfile1,lfilt1_ext)
tstart2 = hdr_l2['TSTART']
tstop2 = hdr_l2['TSTOP']
if not ( (np.abs(tstart-tstop1) < 20) ^ (np.abs(tstart1-tstop) < 20) ):
sys.stderr.write("WARNING: check that "+lfile2+" matches the grism image\n")
if (not lfiltpresent) | (not use_lenticular_image):
method = "grism_only"
else:
method = None
if not senscorr: msg += "WARNING: No correction for sensitivity degradation applied.\n"
# get the USNO-B1 catalog data for the field, & find the zeroth orders
if (not skip_field_src):
if chatter > 2: print("============== locate zeroth orders due to field sources =============")
if wheelpos > 500: zeroth_blim_offset = 2.5
ZOpos = find_zeroth_orders(filestub, ext, wheelpos,indir=indir,
set_maglimit=set_maglimit,clobber="yes", chatter=chatter, )
# use for the ftools the downloaded usnob1 catalog in file "search.ub1" using the
# catspec parameter in the calls
if os.access('catalog.spec',os.F_OK) & (catspec == None):
catspec= 'catalog.spec'
# retrieve the input angle relative to the boresight
Xphi, Yphi, date1, msg3, lenticular_anchors = findInputAngle( RA, DEC, filestub, ext,
uvotgraspcorr_on=uvotgraspcorr_on, update_pnt=update_pnt, msg="", \
wheelpos=wheelpos, lfilter=lfilt1, lfilter_ext=lfilt1_ext, \
lfilt2=lfilt2, lfilt2_ext=lfilt2_ext, method=method, \
attfile=attfile, catspec=catspec, indir=indir, chatter=chatter)
Yout.update({"Xphi":Xphi,"Yphi":Yphi})
Yout.update({'lenticular_anchors':lenticular_anchors})
# read the anchor and dispersion out of the wavecal file
anker, anker2, C_1, C_2, angle, calibdat, msg4 = getCalData(Xphi,Yphi,wheelpos, date1, \
calfile=calfile, chatter=chatter)
hdrr = pyfits.getheader(specfile,int(ext))
if (hdrr['aspcorr'] == 'UNKNOWN') & (not lfiltpresent):
msg += "WARNING: No aspect solution found. Anchor uncertainty large.\n"
msg += "first order anchor position on detector in det coordinates:\n"
msg += "anchor1=(%8.2f,%8.2f)\n" % (anker[0],anker[1])
msg += "first order dispersion polynomial (distance anchor, \n"
msg += " highest term first)\n"
for k in range(len(C_1)):
msg += "DISP1_"+str(k)+"=%12.4e\n" % (C_1[k])
msg += "second order anchor position on detector in det coordinates:\n"
msg += "anchor2=(%8.2f,%8.2f)\n" % (anker2[0],anker2[1])
msg += "second order dispersion polynomial (distance anchor2,\n"
msg += " highest term first)\n"
for k in range(len(C_2)):
msg += "DISP2_"+str(k)+"=%12.4e\n" % (C_2[k])
#sys.stderr.write( "first order anchor = %s\n"%(anker))
#sys.stderr.write( "second order anchor = %s\n"%(anker2))
msg += "first order dispersion = %s\n"%(str(C_1))
msg += "second order dispersion = %s\n"%(str(C_2))
if chatter > 1:
sys.stderr.write( "first order dispersion = %s\n"%(str(C_1)) )
sys.stderr.write( "second order dispersion = %s\n"%(str(C_2)) )
msg += "lenticular filter anchor positions (det)\n"
msg += msg3
# override angle
if fixed_angle != None:
msg += "WARNING: overriding calibration file angle for extracting \n\t"\
"spectrum cal: "+str(angle)+'->'+str(fixed_angle)+" \n"
angle = fixed_angle
# override anchor position in det pixel coordinates
if anchor_position[0] != None:
cal_anker = anker
anker = np.array(anchor_position)
msg += "overriding anchor position with value [%8.1f,%8.1f]\n" % (anker[0],anker[1])
anker2 = anker2 -cal_anker + anker
msg += "overriding anchor position 2nd order with value [%8.1f,%8.1f]\n"%(anker2[0],anker2[1])
anker_field = np.array([Xphi,Yphi])
theta=np.zeros(5)+angle # use the angle from first order everywhere.
C_0 = np.zeros(3) # not in calibration file. Use uvotcal/zemax to get.
C_3 = np.zeros(3)
Cmin1 = np.zeros(3)
msg += "field coordinates:\n"
msg += "FIELD=(%9.4f,%9.4f)\n" % (Xphi,Yphi)
# order distance between anchors
dist12 = np.sqrt( (anker[0]-anker2[0])**2 + (anker[1]-anker2[1])**2 )
msg += "order distance 1st-2nd anchors :\n"
msg += "DIST12=%7.1f\n" % (dist12)
Yout.update({"anker":anker,"anker2":anker2,"C_1":C_1,"C_2":C_2,"theta":angle,"dist12":dist12})
# determine x,y locations of certain wavelengths on the image
# TBD: add curvature
if wheelpos < 500:
wavpnt = np.arange(1700,6800,slit_width)
else:
wavpnt = np.arange(2500,6600,slit_width)
dispnt=pixdisFromWave(C_1,wavpnt) # pixel distance to anchor
if chatter > 0: msg2 += 'first order angle at anchor point: = %7.1f\n'%(angle)
crpix = crpix1,crpix2 = hdr['crpix1'],hdr['crpix2']
crpix = np.array(crpix) # centre of image
ankerimg = anker - np.array([1100.5,1100.5])+crpix
xpnt = ankerimg[0] + dispnt*np.cos((180-angle)*np.pi/180)
ypnt = ankerimg[1] + dispnt*np.sin((180-angle)*np.pi/180)
msg += "1st order anchor on image at (%7.1f,%7.1f)\n"%(ankerimg[0],ankerimg[1])
if chatter > 4: msg += "Found anchor point; now extracting spectrum.\n"
if chatter > 2: print("==========Found anchor point; now extracting spectrum ========")
if type(offsetlimit) == typeNone:
if wheelpos > 300:
offsetlimit = 9
sys.stdout.write("automatically set the value for the offsetlimit = "+str(offsetlimit)+'\n')
# find position zeroth order on detector from WCS-S after update from uvotwcs
#if 'hdr' not in Yout:
# hdr = pyfits.getheader(specfile,int(ext))
# Yout.update({'hdr':hdr})
zero_xy_imgpos = [-1,-1]
if chatter > 1: print("zeroth order position on image...")
try:
wS =wcs.WCS(header=hdr,key='S',relax=True,)
zero_xy_imgpos = wS.wcs_world2pix([[RA,DEC]],0)
print("position not corrected for SIP = ", zero_xy_imgpos[0][0],zero_xy_imgpos[0][1])
zero_xy_imgpos = wS.sip_pix2foc(zero_xy_imgpos, 0)[0]
if chatter > 1:
"print zeroth order position on image:",zero_xy_imgpos
except:
pass
Yout.update({'zeroxy_imgpos':zero_xy_imgpos})
# provide some checks on background inputs:
if background_lower[0] != None:
background_lower = np.abs(background_lower)
if np.sum(background_lower) >= (slit_width-10):
background_lower = [None,None]
msg += "WARNING: background_lower set too close to edge image\n Using default\n"
if background_upper[0] != None:
background_upper = np.abs(background_upper)
if np.sum(background_upper) >= (slit_width-10):
background_upper = [None,None]
msg += "WARNING: background_upper set too close to edge image\n Using default\n"
# in case of summary file:
if (not skip_field_src) & (ZOpos == None):
if chatter > 2: print("DEBUG 802 ================== locate zeroth orders due to field sources =============")
if wheelpos > 500: zeroth_blim_offset = 2.5
try:
ZOpos = find_zeroth_orders(filestub, ext, wheelpos,indir=indir,
set_maglimit=set_maglimit,clobber="yes", chatter=chatter, )
except:
if type(sumimage) == typeNone:
print ("exception to call find_zeroth_orders : skip_field_src = ",skip_field_src)
pass
# use for the ftools the downloaded usnob1 catalog in file "search.ub1" using the
# catspec parameter in the calls
if os.access('catalog.spec',os.F_OK) & (catspec == None):
catspec= 'catalog.spec'
if (not skip_field_src):
Xim,Yim,Xa,Yb,Thet,b2mag,matched,ondetector = ZOpos
pivot_ori=np.array([(ankerimg)[0],(ankerimg)[1]])
Y_ZOpos={"Xim":Xim,"Yim":Yim,"Xa":Xa,"Yb":Yb,"Thet":Thet,"b2mag":b2mag,
"matched":matched,"ondetector":ondetector}
Yout.update({"ZOpos":Y_ZOpos})
else:
Yout.update({"ZOpos":None})
# find background, extract straight slit spectrum
if chatter > 3 : print ("DEBUG 827 compute background")
if sumimage != None:
# initialize parameters for extraction summed extracted image
print('reading summed image file : '+sumimage)
print('ext label for output file is set to : ', ext)
Y6 = sum_Extimage (None, sum_file_name=sumimage, mode='read')
extimg, expmap, exposure, wheelpos, C_1, C_2, dist12, anker, \
(coef0, coef1,coef2,coef3,sig0coef,sig1coef,sig2coef,sig3coef), hdr = Y6
if background_template != None:
background_template = {'extimg': background_template,
'sumimg': True}
if (background_template['extimg'].size != extimg.size):
print("ERROR")
print("background_template.size=",background_template['extimg'].size)
print("extimg.size=",extimg.size)
raise IOError("The template does not match the sumimage dimensions")
msg += "order distance 1st-2nd anchors :\n"
msg += "DIST12=%7.1f\n" % (dist12)
for k in range(len(C_1)):
msg += "DISP1_"+str(k)+"=%12.4e\n" % (C_1[k])
msg += "second order dispersion polynomial (distance anchor2,\n"
msg += " highest term first)\n"
for k in range(len(C_2)):
msg += "DISP2_"+str(k)+"=%12.4e\n" % (C_2[k])
print("first order anchor = ",anker)
print("first order dispersion = %s"%(str(C_1)))
print("second order dispersion = %s"%(str(C_2)))
tstart = hdr['tstart']
ank_c = [100,500,0,2000]
if type(offsetlimit) == typeNone:
offset = 0
elif type(offsetlimit) == list:
offset = offsetlimit[0]-96
ank_c[0] = offsetlimit[0]
else:
offset = offsetlimit # for sumimage used offsetlimit to set the offset
ank_c[0] = 96+offsetlimit
dis = np.arange(-500,1500)
img = extimg
# get background
bg, bg1, bg2, bgsig, bgimg, bg_limits_used, bgextra = findBackground(extimg,
background_lower=background_lower,
background_upper=background_upper,)
if singleside_bkg == 'bg1':
bg2 = bg1
elif singleside_bkg == 'bg2':
bg1 = bg2
else:
pass
skip_field_src = True
spnet = bg1 # placeholder
expo = exposure
maxcounts = exposure/0.01
anker2 = anker + [dist12,0]
spimg,spnetimg,anker_field = None, None, (0.,0.)
m1,m2,aa,wav1 = None,None,None,None
if type(outfile) == typeNone:
outfile='sum_image_'
Yfit.update({"coef0":coef0,"coef1":coef1,"coef2":coef2,"coef3":coef3,
"sig0coef":sig0coef,"sig1coef":sig1coef,"sig2coef":sig2coef,"sig3coef":sig3coef} )
Yout.update({"anker":anker,"anker2":None,
"C_1":C_1,"C_2":C_2,
"Xphi":0.0,"Yphi":0.0,
"wheelpos":wheelpos,"dist12":dist12,
"hdr":hdr,"offset":offset})
Yout.update({"background_1":bg1,"background_2":bg2})
dropout_mask = None
Yout.update({"zeroxy_imgpos":[1000,1000]})
else:
# default extraction
if chatter > 2 : print ("DEBUG 894 default extraction")
# start with a quick straight slit extraction
exSpIm = extractSpecImg(specfile,ext,ankerimg,angle,spwid=spextwidth,
background_lower=background_lower, background_upper=background_upper,
template = background_template, x_offset = anchor_x_offset, ank_c_0offset=ank_c_0offset,
offsetlimit=offsetlimit, replace=replace, chatter=chatter, singleside_bkg=singleside_bkg)
dis = exSpIm['dis']
spnet = exSpIm['spnet']
bg = exSpIm['bg']
bg1 = exSpIm['bg1']
bg2 = exSpIm['bg2']
bgsig = exSpIm['bgsigma']
bgimg = exSpIm['bgimg']
bg_limits_used = exSpIm['bg_limits_used']
bgextra = exSpIm['bgextras']
extimg = exSpIm['extimg']
spimg = exSpIm['spimg']
spnetimg = exSpIm['spnetimg']
offset = exSpIm['offset']
ank_c = exSpIm['ank_c']
if background_template != None:
background_template ={"extimg":exSpIm["template_extimg"]}
Yout.update({"template":exSpIm["template_extimg"]})
if exSpIm['dropouts']:
dropout_mask = exSpIm['dropout_mask']
else: dropout_mask = None
Yout.update({"background_1":bg1,"background_2":bg2})
#msg += "1st order anchor offset from spectrum = %7.1f\n"%(offset)
#msg += "anchor position in rotated extracted spectrum (%6.1f,%6.1f)\n"%(ank_c[1],ank_c[0])
calibdat = None # free the memory
if chatter > 2: print("============ straight slit extraction complete =================")
if np.max(spnet) < maxcounts: maxcounts = 2.0*np.max(spnet)
# initial limits spectrum (pixels)
m1 = ank_c[1]-400
if wheelpos > 500: m1 = ank_c[1]-370
if m1 < 0: m1 = 0
if m1 < (ank_c[2]+30): m1 = ank_c[2]+30
m2 = ank_c[1]+2000
if wheelpos > 500: m2 = ank_c[1]+1000
if m2 >= len(dis): m2 = len(dis)-2
if m2 > (ank_c[3]-40): m2=(ank_c[3]-40)
aa = list(range(int(m1),int(m2)))
wav1 = polyval(C_1,dis[aa])
# get grism det image
img = pyfits.getdata(specfile, ext)
if isinstance(replace,np.ndarray):
img = replace
try:
offset = np.asscalar(offset)
except:
pass
Yout.update({"offset":offset})
Zbg = bg, bg1, bg2, bgsig, bgimg, bg_limits_used, bgextra
net = extimg-bgextra[-1]
var = extimg.copy()
dims = np.asarray( img.shape )
dims = np.array([dims[1],dims[0]])
dims2 = np.asarray(extimg.shape)
dims2 = np.array([dims2[1],dims2[0]])
msg += "Lower background from y = %i pix\nLower background to y = %i pix\n" % (bg_limits_used[0],bg_limits_used[1])
msg += "Upper background from y = %i pix\nUpper background to y = %i pix\n" % (bg_limits_used[2],bg_limits_used[3])
msg += "TRACKWID =%4.1f\n" % (trackwidth)
# collect some results:
if sumimage == None:
Y0 = (specfile, lfilt1_, lfilt1_ext_, lfilt2_, lfilt2_ext_, attfile), (method), \
(Xphi, Yphi, date1), (dist12, ankerimg, ZOpos), expmap, bgimg, bg_limits_used, bgextra
else:
Y0 = None, None, None, (dist12, None, None), expmap, bgimg, bg_limits_used, bgextra
angle = 0.0
# curvature from input (TBD how - placeholder with raw_input)
# choose input coef or pick from plot
# choose order to do it for
if (get_curve & interactive) | (get_curve & (get_curve_filename != None)):
if chatter > 3 : print ("DEBUG 978 get user-provided curve coefficients and extract spectrum")
spextwidth = None
# grab coefficients
poly_1 = None
poly_2 = None
poly_3 = None
if get_curve_filename == None:
try:
poly_1 = eval(input("give coefficients of first order polynomial array( [X^3,X^2,X,C] )"))
poly_2 = eval(input("give coefficients of second order polynomial array( [X^2,X,C] )"))
poly_3 = eval(input("give coefficients of third order polynomial array( [X,C] )"))
except:
print("failed")
if (type(poly_1) != list) | (type(poly_2) != list) | (type(poly_3) != list):
print("poly_1 type = ",type(poly_1))
print("poly_2 type = ",type(poly_2))
print("poly_3 type = ",type(poly_3))
raise IOError("the coefficients must be a list")
poly_1 = np.asarray(poly_1)
poly_2 = np.asarray(poly_2)
poly_3 = np.asarray(poly_3)
else:
try:
curfile = rdList(get_curve_filename)
poly_1 = np.array(curfile[0][0].split(','),dtype=float)
poly_2 = np.array(curfile[1][0].split(','),dtype=float)
poly_3 = np.array(curfile[2][0].split(','),dtype=float)
except:
print("There seems to be a problem when readin the coefficients out of the file")
print("The format is a list of coefficient separated by comma's, highest order first")
print("The first line for the first order")
print("The second line for the secons order")
print("The third line for the third order")
print("like, \n1.233e-10,-7.1e-7,3.01e-3,0.0.\n1.233e-5,-2.3e-2,0.03.0\n1.7e-1,0.9\n")
print(get_curve_filename)
print(curfile)
print(poly_1)
print(poly_2)
print(poly_3)
raise IOError("ERROR whilst reading curvature polynomial from file\n")
print("Curvature coefficients were read in...\npoly_1: %s \npoly_2: %s \npoly_3: %s \n"%
(poly_1,poly_2,poly_3))
fitorder, cp2, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,\
bg_second,bg_third), (borderup,borderdown), apercorr, expospec, msg, curved \
= curved_extraction(
extimg, ank_c, anker, wheelpos,
ZOpos=ZOpos, skip_field_sources=skip_field_src,
offsetlimit=offsetlimit,
predict_second_order=predict2nd,
background_template=background_template,
angle=angle, offset=offset,
poly_1=poly_1, poly_2=poly_2, poly_3=poly_3,
msg=msg, curved=curved,
outfull=True, expmap=expmap,
fit_second=fit_second,
fit_third=fit_second,
C_1=C_1,C_2=C_2,dist12=dist12,
dropout_mask=dropout_mask, ifmotion=ifmotion,
obsid=obsid,indir=indir,motion_file=motion_file,
ank_c_0offset=ank_c_0offset,
chatter=chatter,ifextended=ifextended,
fixwidth=fixwidth)
# fit_sigmas parameter needs passing
(present0,present1,present2,present3),(q0,q1,q2,q3), (
y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(
y1,dlim1L,dlim1U,sig1coef,sp_first,co_first),(
y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(
y3,dlim3L,dlim3U,sig3coef,sp_third,co_third),(
x,xstart,xend,sp_all,quality,co_back) = fitorder
# update the anchor y-coordinate
if chatter > 3 : print ("DEBUG 1048 update anchor coordinate\noriginal ank_c=%s\ny1=%s"%(ank_c,y1))
ank_c[0] = y1[np.int(ank_c[1])]
Yfit.update({"coef0":coef0,"coef1":coef1,"coef2":coef2,"coef3":coef3,
"bg_zeroth":bg_zeroth,"bg_first":bg_first,"bg_second":bg_second,"bg_third":bg_third,
"borderup":borderup,"borderdown":borderdown,
"sig0coef":sig0coef,"sig1coef":sig1coef,"sig2coef":sig2coef,"sig3coef":sig3coef,
"present0":present0,"present1":present1,"present2":present2,"present3":present3,
"q0":q0,"q1":q1,"q2":q2,"q3":q3,
"y0":y0,"dlim0L":dlim0L,"dlim0U":dlim0U,"sp_zeroth":sp_zeroth,"bg_zeroth":bg_zeroth,"co_zeroth":co_zeroth,
"y1":y1,"dlim1L":dlim1L,"dlim1U":dlim1U,"sp_first": sp_first, "bg_first": bg_first, "co_first": co_first,
"y2":y2,"dlim2L":dlim2L,"dlim2U":dlim2U,"sp_second":sp_second,"bg_second":bg_second,"co_second":co_second,
"y3":y3,"dlim3L":dlim3L,"dlim3U":dlim3U,"sp_third": sp_third, "bg_third": bg_third, "co_third":co_third,
"x":x,"xstart":xstart,"xend":xend,"sp_all":sp_all,"quality":quality,"co_back":co_back,
"apercorr":apercorr,"expospec":expospec})
Yout.update({"ank_c":ank_c,"extimg":extimg,"expmap":expmap})
# curvature from calibration
if spextwidth != None:
if chatter > 3 : print ("DEBUG 1067 get curve coefficients from cal file and extract spectrum ")
fitorder, cp2, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,\
bg_second,bg_third), (borderup,borderdown) , apercorr, expospec, msg, curved \
= curved_extraction(
extimg,ank_c,anker, wheelpos,
ZOpos=ZOpos, skip_field_sources=skip_field_src,
offsetlimit=offsetlimit,
background_lower=background_lower,
background_upper=background_upper, \
background_template=background_template,\
angle=angle, offset=offset,
outfull=True, expmap=expmap,
msg = msg, curved=curved,
fit_second=fit_second,
fit_third=fit_second, C_1=C_1,C_2=C_2,dist12=dist12,
dropout_mask=dropout_mask, ifmotion=ifmotion,
obsid=obsid,indir=indir,motion_file=motion_file,
ank_c_0offset=ank_c_0offset,
chatter=chatter,ifextended=ifextended,
fixwidth=fixwidth)
(present0,present1,present2,present3),(q0,q1,q2,q3), \
(y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(
y1,dlim1L,dlim1U,sig1coef,sp_first,co_first),\
(y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(
y3,dlim3L,dlim3U,sig3coef,sp_third,co_third),\
(x,xstart,xend,sp_all,quality,co_back) = fitorder
Yfit.update({"coef0":coef0,"coef1":coef1,"coef2":coef2,"coef3":coef3,
"bg_zeroth":bg_zeroth,"bg_first":bg_first,"bg_second":bg_second,"bg_third":bg_third,
"borderup":borderup,"borderdown":borderdown,
"sig0coef":sig0coef,"sig1coef":sig1coef,"sig2coef":sig2coef,"sig3coef":sig3coef,
"present0":present0,"present1":present1,"present2":present2,"present3":present3,
"q0":q0,"q1":q1,"q2":q2,"q3":q3,
"y0":y0,"dlim0L":dlim0L,"dlim0U":dlim0U,"sp_zeroth":sp_zeroth,"bg_zeroth":bg_zeroth,"co_zeroth":co_zeroth,
"y1":y1,"dlim1L":dlim1L,"dlim1U":dlim1U,"sp_first": sp_first, "bg_first": bg_first, "co_first": co_first,
"y2":y2,"dlim2L":dlim2L,"dlim2U":dlim2U,"sp_second":sp_second,"bg_second":bg_second,"co_second":co_second,
"y3":y3,"dlim3L":dlim3L,"dlim3U":dlim3U,"sp_third": sp_third, "bg_third": bg_third, "co_third":co_third,
"x":x,"xstart":xstart,"xend":xend,"sp_all":sp_all,"quality":quality,"co_back":co_back,
"apercorr":apercorr,"expospec":expospec})
ank_c[0] = y1[int(ank_c[1])]
Yout.update({"ank_c":ank_c,"extimg":extimg,"expmap":expmap})
msg += "orders present:"
if present0: msg += "0th order, "
if present1: msg += "first order"
if present2: msg += ", second order"
if present3: msg += ", third order "
print('1224 CCCCCCCCCCCCC', coef1)
print(RA,DEC)
print(anker)
print(ank_c)
msg += '\nparametrized order curvature:\n'
if present0:
for k in range(len(coef0)):
msg += "COEF0_"+str(k)+"=%12.4e\n" % (coef0[k])
if present1:
for k in range(len(coef1)):
msg += "COEF1_"+str(k)+"=%12.4e\n" % (coef1[k])
if present2:
for k in range(len(coef2)):
msg += "COEF2_"+str(k)+"=%12.4e\n" % (coef2[k])
if present3:
for k in range(len(coef3)):
msg += "COEF3_"+str(k)+"=%12.4e\n" % (coef3[k])
msg += '\nparametrized width slit:\n'
if present0:
for k in range(len(sig0coef)):
msg += "SIGCOEF0_"+str(k)+"=%12.4e\n" % (sig0coef[k])
if present1:
for k in range(len(sig1coef)):
msg += "SIGCOEF1_"+str(k)+"=%12.4e\n" % (sig1coef[k])
if present2:
for k in range(len(sig2coef)):
msg += "SIGCOEF2_"+str(k)+"=%12.4e\n" % (sig2coef[k])
if present3:
for k in range(len(sig3coef)):
msg += "SIGCOEF3_"+str(k)+"=%12.4e\n" % (sig3coef[k])
if chatter > 3 : print ("DEBUG 1142 done spectral extraction, now calibrate")
offset = ank_c[0]-slit_width/2
msg += "best fit 1st order anchor offset from spectrum = %7.1f\n"%(offset)
msg += "anchor position in rotated extracted spectrum (%6.1f,%6.1f)\n"%(ank_c[1],y1[int(ank_c[1])])
msg += msg4
Yout.update({"offset":offset})
#2012-02-20 moved updateFitorder to curved_extraction
#if curved == "update":
# fit = fitorder2
#else:
# fit = fitorder
fit = fitorder
if optimal_extraction:
# development dropped, since mod8 causes slit width oscillations
# also requires a good second order flux and coi calibration for
# possible further development of order splitting.
# result in not consistent now.
print("Starting optimal extraction: This can take a few minutes ......\n\t "\
"........\n\t\t .............")
Y3 = get_initspectrum(net,var,fit,160,ankerimg,C_1=C_1,C_2=C_2,dist12=dist12,
predict2nd=predict2nd,
chatter=1)
counts, variance, borderup, borderdown, (fractions,cnts,vars,newsigmas) = Y3
# need to test that C_2 is valid here
if predict2nd:
Y4 = predict_second_order(dis,(sp_first-bg_first), C_1,C_2, dist12, quality,dlim1L, dlim1U,wheelpos)
wav2p, dis2p, flux2p, qual2p, dist12p = Y4[0]
# retrieve the effective area
Y7 = readFluxCalFile(wheelpos,anchor=anker,spectralorder=1,arf=fluxcalfile,msg=msg,chatter=chatter)
EffArea1 = Y7[:-1]
msg = Y7[-1]
Y7 = readFluxCalFile(wheelpos,anchor=anker,spectralorder=2,arf=None,msg=msg,chatter=chatter)
if type(Y7) == tuple:
EffArea2 = Y7[:-1]
else:
if type(Y7) != typeNone: msg = Y7
EffArea2 = None
# note that the output differs depending on parameters given, i.e., arf, anchor
Yout.update({"effarea1":EffArea1,"effarea2":EffArea2})
if interactive:
import matplotlib.pyplot as plt
if (plot_img) & (sumimage == None):
#plt.winter()
# make plot of model on image [figure 1]
#xa = np.where( (dis < 1400) & (dis > -300) )
bga = bg.copy()
fig1 = plt.figure(1); plt.clf()
img[img <=0 ] = 1e-16
plt.imshow(np.log(img),vmin=np.log(bga.mean()*0.1),vmax=np.log(bga.mean()*4))
levs = np.array([5,15,30,60,120,360]) * bg.mean()
if highlight: plt.contour(img,levels=levs)
# plot yellow wavelength marker
# TBD : add curvature
plt.plot(xpnt,ypnt,'+k',markersize=14)
if not skip_field_src:
plot_ellipsoid_regions(Xim,Yim,
Xa,Yb,Thet,b2mag,matched,ondetector,
pivot_ori,pivot_ori,dims,17.,)
if zoom:
#plt.xlim(np.max(np.array([0.,0.])),np.min(np.array([hdr['NAXIS1'],ankerimg[0]+400])))
#plt.ylim(np.max(np.array([0.,ankerimg[1]-400 ])), hdr['NAXIS2'])
plt.xlim(0,2000)
plt.ylim(0,2000)
else:
plt.xlim(0,2000)
plt.ylim(0,2000)
plt.savefig(indir+'/'+obsid+'_map.png',dpi=150)
#plt.show()
plt.close()
if (plot_raw):
#plt.winter()
nsubplots = 2
#if not fit_second: nsubplots=3
# make plot of spectrum [figure 2]
fig2 = plt.figure(2); plt.clf()
plt.subplots_adjust(top=1,hspace=0, wspace=0)
# image slice
ax21 = plt.subplot(nsubplots,1,1)
ac = -ank_c[1]
net[net<=0.] = 1e-16
#plt.imshow(np.log10(net),vmin=-0.8,vmax=0.8, #~FIXME:
# extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]),
# origin='lower',cmap=plt.cm.winter)
plt.imshow(np.log10(net),vmin=-10,vmax=2,
extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]),
origin='lower')#,cmap=plt.cm.winter)
#plt.imshow(extimg,vmin=0,vmax=50,
# extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]),
# origin='lower')#,cmap=plt.cm.winter)
if highlight:
plt.contour(np.log10(net),levels=[1,1.3,1.7,2.0,3.0],
extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]),
origin='lower')
#plt.imshow( extimg,vmin= (bg1.mean())*0.1,vmax= (bg1.mean()+bg1.std())*2, extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]) )
#levels = np.array([5,10,20,40,70,90.])
#levels = spnet[ank_c[2]:ank_c[3]].max() * levels * 0.01
#if highlight: plt.contour(net,levels=levels,extent=(ac,ac+extimg.shape[1],0,extimg.shape[0]))
# cross_section_plot:
cp2 = cp2/np.max(cp2)*100
#plt.plot(ac+cp2+ank_c[1],np.arange(len(cp2)),'k',lw=2,alpha=0.6,ds='steps') #~TODO:
# plot zeroth orders
if not skip_field_src:
pivot= np.array([ank_c[1],ank_c[0]-offset])
#pivot_ori=ankerimg
mlim = 17.
if wheelpos > 500: mlim = 15.5
plot_ellipsoid_regions(Xim,Yim,Xa,Yb,Thet,b2mag,
matched,ondetector,
pivot,pivot_ori,
dims2,mlim,
img_angle=angle-180.0,ax=ax21)
# plot line on anchor location
#plt.plot([ac+ank_c[1],ac+ank_c[1]],[0,slit_width],'k',lw=2)
plt.plot(0,ank_c[0],'kx',MarkerSize=5) #~TODO:
# plot position centre of orders
#if present0: plt.plot(ac+q0[0],y0[q0[0]],'k--',lw=1.2)
#plt.plot( ac+q1[0],y1[q1[0]],'k--',lw=1.2)
#if present2: plt.plot(ac+q2[0],y2[q2[0]],'k--',alpha=0.6,lw=1.2)
#if present3: plt.plot(ac+q3[0],y3[q3[0]],'k--',alpha=0.3,lw=1.2)
# plot borders slit region
if present0:
plt.plot(ac+q0[0],borderup [0,q0[0]],'r-')
plt.plot(ac+q0[0],borderdown[0,q0[0]],'r-')
if present1:
plt.plot(ac+q1[0],borderup [1,q1[0]],'r-',lw=1.2)
plt.plot(ac+q1[0],borderdown[1,q1[0]],'r-',lw=1.2)
if present2:
plt.plot(ac+q2[0],borderup [2,q2[0]],'r-',alpha=0.6,lw=1)
plt.plot(ac+q2[0],borderdown[2,q2[0]],'r-',alpha=0.6,lw=1)
if present3:
plt.plot(ac+q3[0],borderup [3,q3[0]],'r-',alpha=0.3,lw=1.2)
plt.plot(ac+q3[0],borderdown[3,q3[0]],'r-',alpha=0.3,lw=1.2)
# plot limits background
plt_bg = np.ones(len(q1[0]))
if (background_lower[0] == None) & (background_upper[0] == None):
background_lower = [0,50] ; background_upper = [slit_width-50,slit_width]
plt.plot(ac+q1[0],plt_bg*(background_lower[1]),'-k',lw=1.5 )
plt.plot(ac+q1[0],plt_bg*(background_upper[0]),'-k',lw=1.5 )
else:
if background_lower[0] != None:
plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]-background_lower[0]),'-k',lw=1.5 )
plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]-background_lower[1]),'-k',lw=1.5 )
elif background_lower[1] != None:
plt.plot(ac+q1[0],plt_bg*(background_lower[1]),'-k',lw=1.5 )
if background_upper[1] != None:
plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]+background_upper[0]),'-k',lw=1.5 )
plt.plot(ac+q1[0],plt_bg*(y1[int(ank_c[1])]+background_upper[1]),'-k',lw=1.5 )
elif background_upper[0] != None:
plt.plot(ac+q1[0],plt_bg*(background_upper[0]),'-k',lw=1.5 )
# rescale, title
plt.ylim(0,slit_width)
#plt.ylim(50,150)
if not zoom:
xlim1 = ac+ank_c[2]
xlim2 = ac+ank_c[3]
else:
xlim1 = max(ac+ank_c[2], -420)
xlim2 = min(ac+ank_c[3],1400)
plt.xlim(xlim1,xlim2)
plt.title(obsid+'+'+str(ext))
# first order raw data plot
ax22 = plt.subplot(nsubplots,1,2)
plt.rcParams['legend.fontsize'] = 'small'
if curved == 'straight':
p1, = plt.plot( dis[ank_c[2]:ank_c[3]], spnet[ank_c[2]:ank_c[3]],'k',
ds='steps',lw=0.5,alpha=0.5,label='straight')
p2, = plt.plot( dis[ank_c[2]:ank_c[3]],
spextwidth*(bg1[ank_c[2]:ank_c[3]]+bg2[ank_c[2]:ank_c[3]])*0.5,
'b',alpha=0.5,label='background')
plt.legend([p1,p2],['straight','background'],loc=0,)
if curved != "straight":
p3, = plt.plot(x[q1[0]],(sp_first-bg_first)[q1[0]],'r',ds='steps',label='spectrum')
plt.plot(x[q1[0]],(sp_first-bg_first)[q1[0]],'k',alpha=0.2,ds='steps',label='_nolegend_')
p7, = plt.plot(x[q1[0]], bg_first[q1[0]],'y',alpha=0.5,lw=1.1,ds='steps',label='background')
# bad pixels:
qbad = np.where(quality[q1[0]] > 0)
p4, = plt.plot(x[qbad],(sp_first-bg_first)[qbad],'xk',markersize=4)
#p7, = plt.plot(x[q1[0]],(bg_first)[q1[0]],'r-',alpha=0.3,label='curve_bkg')
# annotation
#plt.legend([p3,p4,p7],['spectrum','suspect','background'],loc=0,)
plt.legend([p3,p7],['spectrum','background'],loc=0,)
maxbg = np.max(bg_first[q1[0]][np.isfinite(bg_first[q1[0]])])
topcnt = 1.2 * np.max([np.max(spnet[q1[0]]),maxbg, np.max((sp_first-bg_first)[q1[0]])])
plt.ylim(np.max([ -20, np.min((sp_first-bg_first)[q1[0]])]), np.min([topcnt, maxcounts]))
if optimal_extraction:
p5, = plt.plot(x[q1[0]],counts[1,q1[0]],'g',alpha=0.5,ds='steps',lw=1.2,label='optimal' )
p6, = plt.plot(x[q1[0]],counts[1,q1[0]],'k',alpha=0.5,ds='steps',lw=1.2,label='_nolegend_' )
p7, = plt.plot(x[q1[0]], bg_first[q1[0]],'y',alpha=0.7,lw=1.1,ds='steps',label='background')
plt.legend([p3,p5,p7],['spectrum','optimal','background'],loc=0,)
topcnt = 1.2 * np.max((sp_first-bg_first)[q1[0]])
ylim1,ylim2 = -10, np.min([topcnt, maxcounts])
plt.ylim( ylim1, ylim2 )
#plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1])
plt.xlim(xlim1,xlim2)
plt.ylabel('1st order counts')
'''
# plot second order
ax23 = plt.subplot(nsubplots,1,3)
plt.rcParams['legend.fontsize'] = 'small'
#plt.xlim(ank_c[2],ank_c[3])
if fit_second:
if curved != 'straight':
p1, = plt.plot(x[q2[0]],(sp_second-bg_second)[q2[0]],'r',label='spectrum')
plt.plot(x[q2[0]],(sp_second-bg_second)[q2[0]],'k',alpha=0.2,label='_nolegend_')
p7, = plt.plot(x[q2[0]],(bg_second)[q2[0]],'y',alpha=0.7,lw=1.1,label='background')
qbad = np.where(quality[q2[0]] > 0)
p2, = plt.plot(x[qbad],(sp_second-bg_second)[qbad],'+k',alpha=0.3,label='suspect')
plt.legend((p1,p7,p2),('spectrum','background','suspect'),loc=2)
plt.ylim(np.max([ -100, np.min((sp_second-bg_second)[q2[0]])]), \
np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts]))
plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1])
if optimal_extraction:
p3, = plt.plot(x[q2[0]],counts[2,q2[0]],'g',alpha=0.5,ds='steps',label='optimal' )
plt.legend((p1,p7,p2,p3),('spectrum','background','suspect','optimal',),loc=2)
#plt.ylim(np.max([ -10,np.min(counts[2,q2[0]]), np.min((sp_second-bg_second)[q2[0]])]),\
# np.min([np.max(counts[2,q2[0]]), np.max((sp_second-bg_second)[q2[0]]), maxcounts]))
plt.ylim( ylim1,ylim2 )
if predict2nd :
p4, = plt.plot(dis2p+dist12,flux2p, ds='steps',label='predicted')
p5, = plt.plot(dis2p[np.where(qual2p != 0)]+dist12,flux2p[np.where(qual2p != 0)],'+k',label='suspect',markersize=4)
if optimal_extraction & fit_second:
plt.legend((p1,p2,p3,p4,p5),('curved','suspect','optimal','predicted','suspect'),loc=2)
#plt.ylim(np.max([ -100,np.min(counts[2,q2[0]]), np.min((sp_second-bg_second)[q2[0]])]),\
# np.min([np.max(counts[2,q2[0]]), np.max((sp_second-bg_second)[q2[0]]), maxcounts]))
plt.ylim( ylim1,ylim2 )
elif optimal_extraction:
plt.legend((p1,p7,p4,p5),('curved','background','predicted','suspect'),loc=2)
plt.ylim(np.max([ -10, np.min((sp_second-bg_second)[q2[0]])]), \
np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts]))
elif fit_second:
plt.legend((p1,p2,p4,p5),('curved','suspect','predicted','suspect'),loc=2)
plt.ylim(np.max([ -10, np.min((sp_second-bg_second)[q2[0]])]), \
np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts]))
else:
plt.legend((p4,p5),('predicted','suspect'),loc=2)
plt.ylim(np.max([ -10, np.min((sp_second-bg_second)[q2[0]])]), \
np.min([np.max((sp_second-bg_second)[q2[0]]), maxcounts]))
plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1])
plt.xlim(xlim1,xlim2)
plt.ylabel('2nd order counts')
'''
'''
if fit_second:
ax24 = plt.subplot(nsubplots,1,4)
plt.rcParams['legend.fontsize'] = 'small'
if (len(q3[0]) > 1) & (curved != "xxx"):
p1, = plt.plot(x[q3[0]],(sp_third-bg_third)[q3[0]],'r',label='spectrum')
plt.plot(x[q3[0]],(sp_third-bg_third)[q3[0]],'k',alpha=0.2,label='_nolegend_')
qbad = np.where(quality[q3[0]] > 0)
p2, = plt.plot(x[qbad],(sp_third-bg_third)[qbad],'xk',alpha=0.3,label='suspect')
p3, = plt.plot(x[q3[0]],bg_third[q3[0]],'y',label='background')
plt.legend([p1,p3,p2],['spectrum','background','suspect'],loc=2)
plt.ylim(np.max([ -100, np.min((sp_second-bg_second)[q3[0]])]),\
np.min([np.max((sp_third-bg_third)[q3[0]]), maxcounts]))
if optimal_extraction:
p4, = plt.plot(x[q3[0]],counts[3,q3[0]],'b',alpha=0.5,ds='steps',label='optimal' )
plt.legend([p1,p3,p2,p4],['spectrum','background','suspect','optimal',],loc=2)
#plt.ylim(np.max([ -100,np.min(counts[3,q3[0]]), np.min((sp_second-bg_second)[q3[0]])]),\
# np.min([np.max(counts[3,q3[0]]), np.max((sp_third-bg_third)[q3[0]]), maxcounts]))
plt.ylim( ylim1,ylim2 )
#plt.xlim(ank_c[2]-ank_c[1],ank_c[3]-ank_c[1])
plt.xlim(xlim1,xlim2)
plt.ylabel(u'3rd order counts')
plt.xlabel(u'pixel distance from anchor position')
'''
plt.savefig(indir+'/'+obsid+'_count.png',dpi=150)
#plt.show()
if (plot_spec):
#plt.winter()
# NEED the flux cal applied!
nsubplots = 1
if not fit_second:
nsubplots = 1
fig3 = plt.figure(3)
plt.clf()
wav1 = polyval(C_1,x[q1[0]])
ax31 = plt.subplot(nsubplots,1,1)
if curved != "xxx":
# PSF aperture correction applies on net rate, but background
# needs to be corrected to default trackwidth linearly
rate1 = ((sp_first[q1[0]]-bg_first[q1[0]] ) * apercorr[1,[q1[0]]]
/expospec[1,[q1[0]]]).flatten()
bkgrate1 = ((bg_first)[q1[0]] * (2.5/trackwidth)
/expospec[1,[q1[0]]]).flatten()
print("computing flux for plot; frametime =",framtime)
flux1,wav1,coi_valid1 = rate2flux(wav1,rate1, wheelpos,
bkgrate=bkgrate1,
co_sprate = (co_first[q1[0]]/expospec[1,[q1[0]]]).flatten(),
co_bgrate = (co_back [q1[0]]/expospec[1,[q1[0]]]).flatten(),
pixno=x[q1[0]],
#sig1coef=sig1coef, sigma1_limits=[2.6,4.0],
arf1=fluxcalfile, arf2=None, effarea1=EffArea1,
spectralorder=1, swifttime=tstart,
#trackwidth = trackwidth,
anker=anker,
#option=1, fudgespec=1.32,
frametime=framtime,
debug=False,chatter=1)
#flux1_err = 0.5*(rate2flux(,,rate+err,,) - rate2flux(,,rate-err,,))
p1, = plt.plot(wav1[np.isfinite(flux1)],flux1[np.isfinite(flux1)],
color='darkred',label=u'curved')
p11, = plt.plot(wav1[np.isfinite(flux1)&(coi_valid1==False)],
flux1[np.isfinite(flux1)&(coi_valid1==False)],'.',
color='lawngreen',
label="too bright")
# PROBLEM quality flags !!!
qbad1 = np.where((quality[np.array(x[q1[0]],dtype=int)] > 0) & (quality[np.array(x[q1[0]],dtype=int)] < 16))
qbad2 = np.where((quality[np.array(x[q1[0]],dtype=int)] > 0) & (quality[np.array(x[q1[0]],dtype=int)] == qflag.get("bad")))
plt.legend([p1,p11],[u'calibrated spectrum',u'too bright - not calibrated'])
if len(qbad2[0]) > 0:
p2, = plt.plot(wav1[qbad2],flux1[qbad2],
'+k',markersize=4,label=u'bad data')
plt.legend([p1,p2],[u'curved',u'bad data'])
plt.ylabel(u'1st order flux $(erg\ cm^{-2} s^{-1} \AA^{-1)}$')
# find reasonable limits flux
get_flux_limit = flux1[int(len(wav1)*0.3):int(len(wav1)*0.7)]
get_flux_limit[get_flux_limit==np.inf] = np.nan
get_flux_limit[get_flux_limit==-np.inf]= np.nan
qf = np.nanmax(get_flux_limit)
if qf > 2e-12:
qf = 2e-12
plt.ylim(0.001*qf,1.2*qf)
plt.xlim(1600,6000)
if optimal_extraction: # no longer supported (2013-04-24)
print("OPTIMAL EXTRACTION IS NO LONGER SUPPORTED")
wav1 = np.polyval(C_1,x[q1[0]])
#flux1 = rate2flux(wav1, counts[1,q1[0]]/expo, wheelpos, spectralorder=1, arf1=fluxcalfile)
flux1,wav1,coi_valid1 = rate2flux(wav1,counts[1,q1[0]]/expo, wheelpos, bkgrate=bgkrate1,
co_sprate = (co_first[q1[0]]/expospec[1,[q1[0]]]).flatten(),
co_bgrate = (co_back [q1[0]]/expospec[1,[q1[0]]]).flatten(),
pixno=x[q1[0]], #sig1coef=sig1coef, sigma1_limits=[2.6,4.0],
arf1=fluxcalfile, arf2=None, spectralorder=1, swifttime=tstart,
#trackwidth = trackwidth,
anker=anker, #option=1, fudgespec=1.32,
frametime=framtime,
debug=False,chatter=1)
p3, = plt.plot(wav1, flux1,'g',alpha=0.5,ds='steps',lw=2,label='optimal' )
p4, = plt.plot(wav1,flux1,'k',alpha=0.5,ds='steps',lw=2,label='_nolegend_' )
#plt.legend([p1,p2,p3],['curved','suspect','optimal'],loc=0,)
plt.legend([p1,p3],['curved','optimal'],loc=0,)
qf = (flux1 > 0.) & (flux1 < 1.0e-11)
plt.ylim( -0.01*np.max(flux1[qf]), 1.2*np.max(flux1[qf]) )
plt.ylabel(u'1st order count rate')
plt.xlim(np.min(wav1)-10,np.max(wav1))
plt.title(obsid+'+'+str(ext))
'''
if fit_second:
ax32 = plt.subplot(nsubplots,1,2)
plt.plot([1650,3200],[0,1])
plt.text(2000,0.4,'NO SECOND ORDER DATA',fontsize=16)
if curved != 'xxx':
wav2 = polyval(C_2,x[q2[0]]-dist12)
rate2 = ((sp_second[q2[0]]-bg_second[q2[0]])*
apercorr[2,[q2[0]]].flatten()/expospec[2,[q2[0]]].flatten() )
bkgrate2 = ((bg_second)[q2[0]] * (2.5/trackwidth)
/expospec[2,[q2[0]]]).flatten()
flux2,wav2,coi_valid2 = rate2flux(wav2, rate2, wheelpos,
bkgrate=bkgrate2,
co_sprate = (co_second[q2[0]]/expospec[2,[q2[0]]]).flatten(),
co_bgrate = (co_back [q2[0]]/expospec[2,[q2[0]]]).flatten(),
pixno=x[q2[0]],
arf1=fluxcalfile, arf2=None,
frametime=framtime, effarea2=EffArea2,
spectralorder=2,swifttime=tstart,
anker=anker2,
debug=False,chatter=1)
#flux1_err = rate2flux(wave,rate_err, wheelpos, spectralorder=1,)
plt.cla()
print('#############################')
print(wav2[100],flux2[100],wav2,flux2)
p1, = plt.plot(wav2,flux2,'r',label='curved')
plt.plot(wav2,flux2,'k',alpha=0.2,label='_nolegend_')
qbad1 = np.where((quality[np.array(x[q2[0]],dtype=int)] > 0) & (quality[np.array(x[q2[0]],dtype=int)] < 16))
p2, = plt.plot(wav2[qbad1],flux2[qbad1],'+k',markersize=4,label='suspect data')
plt.legend(['uncalibrated','suspect data'])
plt.ylabel(u'estimated 2nd order flux')
plt.xlim(1600,3200)
qf = (flux1 > 0.) & (flux1 < 1.0e-11)
if np.sum(qf[0]) > 0:
plt.ylim( -0.01*np.max(flux1[qf]), 1.2*np.max(flux1[qf]) )
#else: plt.ylim(1e-16,2e-12)
else: plt.ylim(1e-12,1e-11)
# final fix to limits of fig 3,1
y31a,y31b = ax31.get_ylim()
setylim = False
if y31a < 1e-16:
y31a = 1e-16
setylim = True
if y31b > 1e-12:
y31b = 1e-12
setylim = True
if setylim: ax31.set_ylim(bottom=y31a,top=y31b)
#
'''
plt.xlabel(u'$\lambda(\AA)$',fontsize=16)
plt.savefig(indir+'/'+obsid+'_flux.png',dpi=150)
# to plot the three figures
#plt.show()
# output parameter
Y1 = ( (dis,spnet,angle,anker,anker2,anker_field,ank_c), (bg,bg1,bg2,extimg,spimg,spnetimg,offset),
(C_1,C_2,img), hdr,m1,m2,aa,wav1 )
# output parameter
Y2 = fit, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,
bg_second,bg_third), (borderup,borderdown), apercorr, expospec
Yout.update({"Yfit":Yfit})
# writing output to a file
#try:
if wr_outfile: # write output file
if ((chatter > 0) & (not clobber)): print("trying to write output files")
import uvotio
if (curved == 'straight') & (not optimal_extraction):
ank_c2 = np.copy(ank_c) ; ank_c2[1] -= m1
F = uvotio.wr_spec(RA,DEC,filestub,ext,
hdr,anker,anker_field[0],anker_field[1],
dis[aa],wav1,
spnet[aa]/expo,bg[aa]/expo,
bg1[aa]/expo,bg2[aa]/expo,
offset,ank_c2,extimg, C_1,
history=None,chatter=1,
clobber=clobber,
calibration_mode=calmode,
interactive=interactive)
elif not optimal_extraction:
if fileversion == 2:
Y = Yout
elif fileversion == 1:
Y = (Y0,Y1,Y2,Y4)
F = uvotio.writeSpectrum(RA,DEC,filestub,ext, Y,
fileoutstub=outfile,
arf1=fluxcalfile, arf2=None,
fit_second=fit_second,
write_rmffile=write_RMF, fileversion=1,
used_lenticular=use_lenticular_image,
history=msg,
calibration_mode=calmode,
chatter=chatter,
clobber=clobber )
elif optimal_extraction:
Y = (Y0,Y1,Y2,Y3,Y4)
F = uvotio.OldwriteSpectrum(RA,DEC,filestub,ext, Y, mode=2,
quality=quality, interactive=False,fileout=outfile,
updateRMF=write_rmffile, \
history=msg, chatter=5, clobber=clobber)
#except (RuntimeError, IOError, ValueError):
# print "ERROR writing output files. Try to call uvotio.wr_spec."
# pass
# clean up fake file
if tempntags.__contains__('fakefilestub'):
filestub = tempnames[tempntags.index('fakefilestub')]
os.system('rm '+indir+filestub+'ufk_??.img ')
# update Figure 3 to use the flux...
# TBD
# write the summary
sys.stdout.write(msg)
sys.stdout.write(msg2)
flog = open(logfile,'a')
flog.write(msg)
flog.write(msg2)
flog.close()
#plt.show()
if give_result: return Y0, Y1, Y2, Y3, Y4
if give_new_result: return Yout
def extractSpecImg(file,ext,anker,angle,anker0=None,anker2=None, anker3=None,\
searchwidth=35,spwid=13,offsetlimit=None, fixoffset=None,
background_lower=[None,None], background_upper=[None,None],
template=None, x_offset = False, ank_c_0offset=False, replace=None,
clobber=True,chatter=2,singleside_bkg=False):
'''
extract the grism image of spectral orders plus background
using the reference point at 2600A in first order.
Parameters
----------
file : str
input file location
ext : int
extension of image
anker : list, ndarray
X,Y coordinates of the 2600A (1) point on the image in image coordinates
angle : float
angle of the spectrum at 2600A in first order from zemax e.g., 28.8
searchwidth : float
find spectrum with this possible offset ( in crowded fields
it should be set to a smaller value)
template : dictionary
template for the background.
use_rectext : bool
If True then the HEADAS uvotimgrism program rectext is used to extract the image
This is a better way than using ndimage.rotate() which does some weird smoothing.
offsetlimit : None, float/int, list
if None, search for y-offset predicted anchor to spectrum using searchwidth
if float/int number, search for offset only up to a distance as given from y=100
if list, two elements, no more. [y-value, delta-y] for search of offset.
if delta-y < 1, fixoffset = y-value.
History
-------
2011-09-05 NPMK changed interpolation in rotate to linear, added a mask image to
make sure to keep track of the new pixel area.
2011-09-08 NPMK incorporated rectext as new extraction and removed interactive plot,
curved, and optimize which are now olsewhere.
2014-02-28 Add template for the background as an option
2014-08-04 add option to provide a 2-element list for the offsetlimit to constrain
the offset search range.
'''
import numpy as np
import os, sys
try:
from astropy.io import fits as pyfits
except:
import pyfits
import scipy.ndimage as ndimage
#out_of_img_val = -1.0123456789 now a global
Tmpl = (template != None)
if Tmpl:
if template['sumimg']:
raise IOError("extractSpecImg should not be called when there is sumimage input")
if chatter > 4:
print('extractSpecImg parameters: file, ext, anker, angle')
print(file,ext)
print(anker,angle)
print('searchwidth,chatter,spwid,offsetlimit, :')
print(searchwidth,chatter,spwid,offsetlimit)
img, hdr = pyfits.getdata(file,ext,header=True)
if isinstance(replace,np.ndarray):
img = replace
# wcs_ = wcs.WCS(header=hdr,) # detector coordinates DETX,DETY in mm
# wcsS = wcs.WCS(header=hdr,key='S',relax=True,) # TAN-SIP coordinate type
if Tmpl:
if (img.shape != template['template'].shape) :
print("ERROR")
print("img.shape=", img.shape)
print("background_template.shape=",template['template'].shape)
raise IOError("The templare array does not match the image")
wheelpos = hdr['WHEELPOS']
if chatter > 4: print('wheelpos:', wheelpos)
if not use_rectext:
# now we want to extend the image array and place the anchor at the centre
s1 = 0.5*img.shape[0]
s2 = 0.5*img.shape[1]
d1 = -(s1 - anker[1]) # distance of anker to centre img
d2 = -(s2 - anker[0])
n1 = 2.*abs(d1) + img.shape[0] + 400 # extend img with 2.x the distance of anchor
n2 = 2.*abs(d2) + img.shape[1] + 400
#return img, hdr, s1, s2, d1, d2, n1, n2
if 2*int(n1/2) == int(n1): n1 = n1 + 1
if 2*int(n2/2) == int(n2): n2 = n2 + 1
c1 = n1 / 2 - anker[1]
c2 = n2 / 2 - anker[0]
n1 = int(n1)
n2 = int(n2)
c1 = int(c1)
c2 = int(c2)
if chatter > 3: print('array info : ',img.shape,d1,d2,n1,n2,c1,c2)
# the ankor is now centered in array a; initialize a with out_of_img_val
a = np.zeros( (n1,n2), dtype=float) + cval
if Tmpl : a_ = np.zeros( (n1,n2), dtype=float) + cval
# load array in middle
a[c1:c1+img.shape[0],c2:c2+img.shape[1]] = img
if Tmpl: a_[c1:c1+img.shape[0],c2:c2+img.shape[1]] = template['template']
# patch outer regions with something like mean to get rid of artifacts
mask = abs(a - cval) < 1.e-8
# Kludge:
# test image for bad data and make a fix by putting the image average in its place
dropouts = False
aanan = np.isnan(a) # process further for flagging
aagood = np.isfinite(a)
aaave = a[np.where(aagood)].mean()
a[np.where(aanan)] = aaave
if len( np.where(aanan)[0]) > 0 :
dropouts = True
print("extractSpecImg WARNING: BAD IMAGE DATA fixed by setting to mean of good data whole image ")
# now we want to rotate the array to have the dispersion in the x-direction
if angle < 40. :
theta = 180.0 - angle
else: theta = angle
if not use_rectext:
b = ndimage.rotate(a,theta,reshape = False,order = 1,mode = 'constant',cval = cval)
if Tmpl:
b_ = ndimage.rotate(a_,theta,reshape = False,order = 1,mode = 'constant',cval = cval)
if dropouts: #try to rotate the boolean image
aanan = ndimage.rotate(aanan,theta,reshape = False,order = 1,mode = 'constant',)
e2 = int(0.5*b.shape[0])
c = b[e2-int(slit_width/2):e2+int(slit_width/2),:]
if Tmpl: c_ = b_[e2-int(slit_width/2):e2+int(slit_width/2),:]
if dropouts: aanan = aanan[e2-int(slit_width/2):e2+int(slit_width/2),:]
ank_c = [ (c.shape[0]-1)/2+1, (c.shape[1]-1)/2+1 , 0, c.shape[1]] #~TODO:
if x_offset == False:
pass
else:
ank_c[1] += x_offset
if use_rectext:
# history: rectext is a fortran code that maintains proper density of quantity when
# performing a rotation.
# build the command for extracting the image with rectext
outfile= tempnames[tempntags.index('rectext')]
cosangle = np.cos(theta/180.*np.pi)
sinangle = np.sin(theta/180.*np.pi)
# distance anchor to pivot
dx_ank = - (hdr['naxis1']-anker[0])/cosangle + slit_width/2*sinangle #~FIXME: I am not sure if this is "+ 100.*sinangle" or "+ slit_width/2*sinangle"
if np.abs(dx_ank) > 760: dx_ank = 760 # include zeroth order (375 for just first order)
# distance to end spectrum
dx_2 = -anker[0] /cosangle + slit_width/2/sinangle # to lhs edge #~FIXME: I am not sure if this is "+ 100.*sinangle" or "+ slit_width/2*sinangle"
dy_2 = (hdr['naxis2']-anker[1])/sinangle - slit_width/2/cosangle # to top edge #~FIXME: I am not sure if this is "+ 100.*sinangle" or "+ slit_width/2*sinangle"
dx = int(dx_ank + np.array([dx_2,dy_2]).min() ) # length rotated spectrum
dy = slit_width # width rotated spectrum
# pivot x0,y0
x0 = anker[0] - dx_ank*cosangle + dy/2.*sinangle
y0 = anker[1] - dx_ank*sinangle - dy/2.*cosangle
command= "rectext infile="+file+"+"+str(ext)
command+=" outfile="+outfile
command+=" angle="+str(theta)+" width="+str(dx)
command+=" height="+str(dy)+" x0="+str(x0)+" y0="+str(y0)
command+=" null="+str(cval)
command+=" chatter=5 clobber=yes"
print(command)
os.system(command)
c = extimg = pyfits.getdata(outfile,0)
ank_c = np.array([int(slit_width/2),dx_ank,0,extimg.shape[1]])
# out_of_img_val = 0.
if clobber:
os.system("rm "+outfile)
if Tmpl:
raise("background_template cannot be used with use_rectext option")
# version 2016-01-16 revision:
# the background can be extracted via a method from the strip image
#
# extract the strips with the background on both sides, and the spectral orders
# find optimised place of the spectrum
# first find parts not off the detector -> 'qofd'
eps1 = 1e-15 # remainder after resampling for intel-MAC OSX system (could be jacked up)
qofd = np.where( abs(c[int(slit_width/2),:] - cval) > eps1 )
# define constants for the spectrum in each mode
if wheelpos < 300: # UV grism
disrange = 150 # perhaps make parameter in call?
disscale = 10 # ditto
minrange = disrange/10 # 300 is maximum
maxrange = np.array([disrange*disscale,c.shape[1]-ank_c[1]-2]).min() # 1200 is most of the spectrum
else: # V grism
disrange = 120 # perhaps make parameter in call?
disscale = 5 # ditto
minrange = np.array([disrange/2,ank_c[1]-qofd[0].min() ]).max() # 300 is maximum
maxrange = np.array([disrange*disscale,c.shape[1]-ank_c[1]-2],qofd[0].max()-ank_c[1]).min() # 600 is most of the spectrum
if chatter > 1:
#print 'image was rotated; anchor in extracted image is ', ank_c[:2]
#print 'limits spectrum are ',ank_c[2:]
print('finding location spectrum from a slice around anchor x-sized:',minrange,':',maxrange)
print('offsetlimit = ', offsetlimit)
d = (c[:,int(ank_c[1]-minrange):int(ank_c[1]+maxrange)]).sum(axis=1).squeeze()
if len(qofd[0]) > 0:
ank_c[2] = min(qofd[0])
ank_c[3] = max(qofd[0])
else:
ank_c[2] = -1
ank_c[3] = -1
# y-position of anchor spectrum in strip image (allowed y (= [50,150], but search only in
# range defined by searchwidth (default=35) )
y_default=int(slit_width/2) # reference y
if (type(offsetlimit) == list):
if (len(offsetlimit)==2):
# sane y_default
if (offsetlimit[0] > 50) & (offsetlimit[0] < 150):
y_default=int(offsetlimit[0]+0.5) # round to nearest pixel
else:
raise IOError("parameter offsetlimit[0]=%i, must be in range [51,149]."+
"\nIs the aspect correction right (in reference images)?"%(offsetlimit[0]))
if offsetlimit[1] < 1:
fixoffset = offsetlimit[0]-int(slit_width/2)
else:
searchwidth=int(offsetlimit[1]+0.5)
if fixoffset == None:
offset = ( (np.where(d == (d[y_default-searchwidth:y_default+searchwidth]).max() ) )[0] - y_default )
if chatter>0: print('offset found from y=%i is %i '%(y_default ,-offset))
if len(offset) == 0:
print('offset problem: offset set to zero')
offset = 0
offset = offset[0]
if (type(offsetlimit) != list):
if (offsetlimit != None):
if abs(offset) >= offsetlimit:
offset = 0
print('This is larger than the offsetlimit. The offset has been set to 0')
if interactive:
offset = float(input('Please give a value for the offset: '))
else:
offset = fixoffset
if ank_c_0offset == True:
offset = 0
if chatter > 0:
print('offset used is : ', -offset)
if (type(offsetlimit) == list) & (fixoffset == None):
ank_c[0] = offsetlimit[0]-offset
else:
ank_c[0] += offset
print('image was rotated; anchor in extracted image is [', ank_c[0],',',ank_c[1],']')
print('limits spectrum on image in dispersion direction are ',ank_c[2],' - ',ank_c[3])
# Straight slit extraction (most basic extraction, no curvature):
sphalfwid = int(spwid-0.5)/2
splim1 = int(slit_width/2)+offset-sphalfwid+1
splim2 = splim1 + spwid
spimg = c[int(splim1):int(splim2),:]
if chatter > 0:
print('Extraction limits across dispersion: splim1,splim2 = ',splim1,' - ',splim2)
bg, bg1, bg2, bgsigma, bgimg, bg_limits, bgextras = findBackground(c,
background_lower=background_lower, background_upper=background_upper,yloc_spectrum=ank_c[0] )
if singleside_bkg == 'bg1':
bg2 = bg1
elif singleside_bkg == 'bg2':
bg1 = bg2
else:
pass
bgmean = bg
bg = 0.5*(bg1+bg2)
if chatter > 0: print('Background : %10.2f +/- %10.2f (1-sigma error)'%( bgmean,bgsigma))
# define the dispersion with origen at the projected position of the
# 2600 point in first order
dis = np.arange((c.shape[1]),dtype=np.int16) - ank_c[1]
# remove the background
#bgimg_ = 0.* spimg.copy()
#for i in range(bgimg_.shape[0]): bgimg_[i,:]=bg
spnetimg = spimg - bg
spnet = spnetimg.sum(axis=0)
result = {"dis":dis,"spnet":spnet,"bg":bg,"bg1":bg1,
"bg2":bg2,"bgsigma":bgsigma,"bgimg":bgimg,
"bg_limits_used":bg_limits,"bgextras":bgextras,
"extimg":c,"spimg":spimg,"spnetimg":spnetimg,
"offset":offset,"ank_c":ank_c,'dropouts':dropouts}
if dropouts: result.update({"dropout_mask":aanan})
if Tmpl: result.update({"template_extimg":c_})
return result
def sigclip1d_mask(array1d, sigma, badval=None, conv=1e-5, maxloop=30):
"""
sigma clip array around mean, using number of sigmas 'sigma'
after masking the badval given, requiring finite numbers, and
either finish when converged or maxloop is reached.
return good mask
"""
import numpy as np
y = np.asarray(array1d)
if badval != None:
valid = (np.abs(y - badval) > 1e-6) & np.isfinite(y)
else:
valid = np.isfinite(y)
yv = y[valid]
mask = yv < (yv.mean() + sigma * yv.std())
ym_ = yv.mean()
ymean = yv[mask].mean()
yv = yv[mask]
while (np.abs(ym_-ymean) > conv*np.abs(ymean)) & (maxloop > 0):
ym_ = ymean
mask = ( yv < (yv.mean() + sigma * yv.std()) )
yv = yv[mask]
ymean = yv.mean()
maxloop -= 1
valid[valid] = y[valid] < ymean + sigma*yv.std()
return valid
def background_profile(img, smo1=30, badval=None):
"""
helper routine to determine for the rotated image
(spectrum in rows) the background using sigma clipping.
"""
import numpy as np
from scipy import interpolate
bgimg = img.copy()
nx = bgimg.shape[1] # number of points in direction of dispersion
ny = bgimg.shape[0] # width of the image
# look at the summed rows of the image
u_ysum = []
for i in range(ny):
u_ysum.append(bgimg[i,:].mean())
u_ysum = np.asarray(u_ysum)
u_ymask = sigclip1d_mask(u_ysum, 2.5, badval=badval, conv=1e-5, maxloop=30)
u_ymean = u_ysum[u_ymask].mean()
# look at the summed columns after filtering bad rows
u_yindex = np.where(u_ymask)[0]
u_xsum = []
u_std = []
for i in range(nx):
u_x1 = bgimg[u_yindex, i].squeeze()
# clip u_x1
u_x1mask = sigclip1d_mask(u_x1, 2.5, badval=None, conv=1e-5, maxloop=30)
u_xsum.append(u_x1[u_x1mask].mean())
u_std.append(u_x1[u_x1mask].std())
#print u_x1[u_x1mask]
#if np.isfinite(u_x1mask.mean()) & len(u_x1[u_x1mask])>0:
# print "%8.2f %8.2f %8.2f "%(u_x1[u_x1mask].mean(),u_x1[u_x1mask].std(),u_x1[u_x1mask].max())
# the best background estimate of the typical row is now u_xsum
# fit a smooth spline through the u_xsum values (or boxcar?)
#print "u_x means "
#print u_xsum
u_xsum = np.asarray(u_xsum)
u_std = np.asarray(u_std)
u_xsum_ok = np.isfinite(u_xsum)
bg_tcp = interpolate.splrep(np.arange(nx)[u_xsum_ok],
np.asarray(u_xsum)[u_xsum_ok], s=smo1)
# representative background profile in column
u_x = interpolate.splev(np.arange(nx), bg_tcp, )
return u_xsum, u_x, u_std
def findBackground(extimg,background_lower=[None,None], background_upper=[None,None],yloc_spectrum=int(slit_width/2),
smo1=None, smo2=None, chatter=2):
'''Extract the background from the image slice containing the spectrum.
Parameters
----------
extimg : 2D array
image containing spectrum. Dispersion approximately along x-axis.
background_lower : list
distance in pixels from `yloc_spectrum` of the limits of the lower background region.
background_upper : list
distance in pixels from `yloc_spectrum` of the limits of the upper background region.
yloc_spectrum : int
pixel `Y` location of spectrum
smo1 : float
smoothing parameter passed to smoothing spline fitting routine. `None` for default.
smo2 : float
smoothing parameter passed to smoothing spline fitting routine. `None` for default.
chatter : int
verbosity
Returns
-------
bg : float
mean background
bg1, bg2 : 1D arrays
bg1 = lower background; bg2 = upper background
inherits size from extimg.shape x-xoordinate
bgsig : float
standard deviation of background
bgimg : 2D array
image of the background constructed from bg1 and/or bg2
bg_limits_used : list, length 4
limits used for the background in the following order: lower background, upper background
(bg1_good, bg1_dis, bg1_dis_good, bg2_good, bg2_dis, bg2_dis_good, bgimg_lin) : tuple
various other background measures
Notes
-----
**Global parameter**
- **background_method** : {'boxcar','splinefit'}
The two background images can be computed 2 ways:
1. 'splinefit': sigma clip image, then fit a smoothing spline to each
row, then average in y for each background region
2. 'boxcar': select the background from the smoothed image created
by method 1 below.
3. 'sigmaclip': do sigma clipping on rows and columns to get column
profile background, then clip image and mask, interpolate over masked
bits.
extimg is the image containing the spectrum in the 1-axis centered in 0-axis
`ank` is the position of the anchor in the image
I create two background images:
1. split the image strip into 40 portions in x, so that the background variation is small
compute the mean
sigma clip (3 sigma) each area to to the local mean
replace out-of-image pixels with mean of whole image (2-sigma clipped)
smooth with a boxcar by the smoothing factor
2. compute the background in two regions upper and lower
linearly interpolate in Y between the two regions to create a background image
bg1 = lower background; bg2 = upper background
smo1, smo2 allow one to relax the smoothing factor in computing the smoothing spline fit
History
-------
- 8 Nov 2011 NPM Kuin complete overhaul
things to do: get quality flagging of bad background points, edges perhaps done here?
- 13 Aug 2012: possible problem was seen of very bright sources not getting masked out properly
and causing an error in the background that extends over a large distance due to the smoothing.
The cause is that the sources are more extended than can be handled by this method.
A solution would be to derive a global background
- 30 Sep 2014: background fails in visible grism e.g., 57977004+1 nearby bright spectrum
new method added (4x slower processing) to screen the image using sigma clipping
'''
import sys
import numpy as np
try:
from convolve import boxcar
except:
from stsci.convolve import boxcar
from scipy import interpolate
import stsci.imagestats as imagestats
# initialize parameters
bgimg = extimg.copy()
out = np.where( (np.abs(bgimg-cval) <= 1e-6) )
in_img = np.where( (np.abs(bgimg-cval) > 1e-6) & np.isfinite(bgimg) )
nx = bgimg.shape[1] # number of points in direction of dispersion
ny = bgimg.shape[0] # width of the image
# sigma screening of background taking advantage of the dispersion being
# basically along the x-axis
if _PROFILE_BACKGROUND_:
bg, u_x, bg_sig = background_profile(bgimg, smo1=30, badval=cval)
u_mask = np.zeros((ny,nx),dtype=bool)
for i in range(ny):
u_mask[i,(bgimg[i,:].flatten() < u_x) &
np.isfinite(bgimg[i,:].flatten())] = True
bkg_sc = np.zeros((ny,nx),dtype=float)
# the following leaves larger disps in the dispersion but less noise;
# tested but not implemented, as it is not as fast and the mean results
# are comparable:
#for i in range(ny):
# uf = interpolate.interp1d(np.where(u_mask[i,:])[0],bgimg[i,u_mask[i,:]],bounds_error=False,fill_value=cval)
# bkg_sc[i,:] = uf(np.arange(nx))
#for i in range(nx):
# ucol = bkg_sc[:,i]
# if len(ucol[ucol != cval]) > 0:
# ucol[ucol == cval] = ucol[ucol != cval].mean()
for i in range(nx):
ucol = bgimg[:,i]
if len(ucol[u_mask[:,i]]) > 0:
ucol[np.where(u_mask[:,i] == False)[0] ] = ucol[u_mask[:,i]].mean()
bkg_sc[:,i] = ucol
if background_method == 'sigmaclip':
return bkg_sc
else:
# continue now with the with screened image
bgimg = bkg_sc
kx0 = 0 ; kx1 = nx # default limits for valid lower background
kx2 = 0 ; kx3 = nx # default limits for valid upper background
ny4 = int(0.25*ny) # default width of each default background region
sig1 = 1 # unit for background offset, width
bg_limits_used = [0,0,0,0] # return values used
## in the next section I replace the > 2.5 sigma peaks with the mean
## after subdividing the image strip to allow for the
## change in background level which can be > 2 over the
## image. Off-image parts are set to image mean.
# this works most times in the absence of the sigma screening,but
# can lead to overestimates of the background.
# the call to the imagestats package is only done here, and should
# consider replacement. Its not critical for the program.
#
xlist = np.linspace(0,bgimg.shape[1],80)
xlist = np.asarray(xlist,dtype=int)
imgstats = imagestats.ImageStats(bgimg[in_img[0],in_img[1]],nclip=3)
bg = imgstats.mean
bgsig = imgstats.stddev
if chatter > 2:
sys.stderr.write( 'background statistics: mean=%10.2f, sigma=%10.2f '%
(imgstats.mean, imgstats.stddev))
# create boolean image flagging good pixels
img_good = np.ones(extimg.shape,dtype=bool)
# flag area out of picture as bad
img_good[out] = False
# replace high values in image with estimate of mean and flag them as not good
for i in range(78):
# after the sigma screening this is a bit of overkill, leave in for now
sub_bg = boxcar(bgimg[:,xlist[i]:xlist[i+2]] , (5,5), mode='reflect', cval=cval)
sub_bg_use = np.where( np.abs(sub_bg - cval) > 1.0e-5 ) # list of coordinates
imgstats = None
if sub_bg_use[0].size > 0:
imgstats = imagestats.ImageStats(sub_bg[sub_bg_use],nclip=3)
# patch values in image (not out of image) with mean if outliers
aval = 2.0*imgstats.stddev
img_clip_ = (
(np.abs(bgimg[:,xlist[i]:xlist[i+2]]-cval) < 1e-6) |
(np.abs(sub_bg - imgstats.mean) > aval) |
(sub_bg <= 0.) | np.isnan(sub_bg) )
bgimg[:,xlist[i]:xlist[i+2]][img_clip_] = imgstats.mean # patch image
img_good[:,xlist[i]:xlist[i+2]][img_clip_] = False # flag patches
# the next section selects the user-selected or default background for further processing
if chatter > 1:
if background_method == 'boxcar':
sys.stderr.write( "BACKGROUND METHOD: %s; background smoothing = %s\n"%
(background_method,background_smoothing))
else:
sys.stderr.write( "BACKGROUND METHOD:%s\n"%(background_method ))
if not ((background_method == 'splinefit') | (background_method == 'boxcar') ):
sys.stderr.write('background method missing; currently reads : %s\n'%(background_method))
if background_method == 'boxcar':
# boxcar smooth in x,y using the global parameter background_smoothing
bgimg = boxcar(bgimg,background_smoothing,mode='reflect',cval=cval)
if background_lower[0] == None:
bg1 = bgimg[0:ny4,:].copy()
bg_limits_used[0]=0
bg_limits_used[1]=ny4
bg1_good = img_good[0:ny4,:]
kx0 = np.min(np.where(img_good[0,:]))+10 # assuming the spectrum is in the top two thirds of the detector
kx1 = np.max(np.where(img_good[0,:]))-10
else:
# no curvature, no second order: limits
bg1_1= np.max(np.array([yloc_spectrum - sig1*background_lower[0],20 ]))
#bg1_0= np.max(np.array([yloc_spectrum - sig1*(background_lower[0]+background_lower[1]),0]))
bg1_0= np.max(np.array([yloc_spectrum - sig1*(background_lower[1]),0]))
bg1 = bgimg[int(bg1_0):int(bg1_1),:].copy()
bg_limits_used[0]=bg1_0
bg_limits_used[1]=bg1_1
bg1_good = img_good[int(bg1_0):int(bg1_1),:]
kx0 = np.min(np.where(img_good[int(bg1_0),:]))+10 # assuming the spectrum is in the top two thirds of the detector
kx1 = np.max(np.where(img_good[int(bg1_0),:]))-10 # corrected for edge effects
#if ((kx2-kx0) < 20):
# print 'not enough valid upper background points'
if background_upper[0] == None:
bg2 = bgimg[-ny4:ny,:].copy()
bg_limits_used[2]=ny-ny4
bg_limits_used[3]=ny
bg2_good = img_good[-ny4:ny,:]
kx2 = np.min(np.where(img_good[ny-1,:]))+10 # assuming the spectrum is in the top two thirds of the detector
kx3 = np.max(np.where(img_good[ny-1,:]))-10
else:
bg2_0= np.min(np.array([yloc_spectrum + sig1*background_upper[0],(slit_width-20) ]))
#bg2_1= np.min(np.array([yloc_spectrum + sig1*(background_upper[0]+background_upper[1]),ny]))
bg2_1= np.min(np.array([yloc_spectrum + sig1*(background_upper[1]),ny]))
bg2 = bgimg[int(bg2_0):int(bg2_1),:].copy()
bg_limits_used[2]=bg2_0
bg_limits_used[3]=bg2_1
bg2_good = img_good[int(bg2_0):int(bg2_1),:]
kx2 = np.min(np.where(img_good[int(bg2_1),:]))+10 # assuming the spectrum is in the top two thirds of the detector
kx3 = np.max(np.where(img_good[int(bg2_1),:]))-10
#if ((kx3-kx2) < 20):
# print 'not enough valid upper background points'
if background_method == 'boxcar':
bg1 = bg1_dis = bg1.mean(0)
bg2 = bg2_dis = bg2.mean(0)
bg1_dis_good = np.zeros(nx,dtype=bool)
bg2_dis_good = np.zeros(nx,dtype=bool)
for i in range(nx):
bg1_dis_good[i] = np.where(bool(int(bg1_good[:,i].mean(0))))
bg2_dis_good[i] = np.where(bool(int(bg2_good[:,i].mean(0))))
if background_method == 'splinefit':
# mean bg1_dis, bg2_dis across dispersion
bg1_dis = np.zeros(nx) ; bg2_dis = np.zeros(nx)
for i in range(nx):
bg1_dis[i] = bg1[:,i][bg1_good[:,i]].mean()
if not bool(int(bg1_good[:,i].mean())):
bg1_dis[i] = cval
bg2_dis[i] = bg2[:,i][bg2_good[:,i]].mean()
if not bool(int(bg2_good[:,i].mean())):
bg2_dis[i] = cval
# some parts of the background may have been masked out completely, so
# find the good points and the bad points
bg1_dis_good = np.where( np.isfinite(bg1_dis) & (np.abs(bg1_dis - cval) > 1.e-7) )
bg2_dis_good = np.where( np.isfinite(bg2_dis) & (np.abs(bg2_dis - cval) > 1.e-7) )
bg1_dis_bad = np.where( ~(np.isfinite(bg1_dis) & (np.abs(bg1_dis - cval) > 1.e-7)) )
bg2_dis_bad = np.where( ~(np.isfinite(bg2_dis) & (np.abs(bg2_dis - cval) > 1.e-7)) )
# fit a smoothing spline to each background
x = bg1_dis_good[0]
s = len(x) - np.sqrt(2.*len(x))
if smo1 != None: s = smo1
if len(x) > 40: x = x[7:len(x)-7] # clip end of spectrum where there is downturn
w = np.ones(len(x))
tck1 = interpolate.splrep(x,bg1_dis[x],w=w,xb=bg1_dis_good[0][0],xe=bg1_dis_good[0][-1],k=3,s=s)
bg1 = np.ones(nx) * (bg1_dis[x]).mean()
bg1[np.arange(kx0,kx1)] = interpolate.splev(np.arange(kx0,kx1), tck1)
x = bg2_dis_good[0]
s = len(x) - np.sqrt(2.*len(x))
if smo2 != None: s = smo1
if len(x) > 40: x = x[10:len(x)-10] # clip
w = np.ones(len(x))
tck2 = interpolate.splrep(x,bg2_dis[x],w=w,xb=bg2_dis_good[0][0],xe=bg2_dis_good[0][-1],k=3,s=s)
bg2 = np.ones(nx) * (bg2_dis[x]).mean()
bg2[np.arange(kx2,kx3)] = interpolate.splev(np.arange(kx2,kx3), tck2)
# force bg >= 0:
# spline can do weird things ?
negvals = bg1 < 0.0
if negvals.any():
bg1[negvals] = 0.0
if chatter > 1:
print("background 1 set to zero in ",len(np.where(negvals)[0])," points")
negvals = bg2 < 0.0
if negvals.any():
bg2[negvals] = 0.0
if chatter > 1:
print("background 1 set to zero in ",len(np.where(negvals)[0])," points")
# image constructed from linear inter/extra-polation of bg1 and bg2
bgimg_lin = np.zeros(ny*nx).reshape(ny,nx)
dbgdy = (bg2-bg1)/(ny-1)
for i in range(ny):
bgimg_lin[i,:] = bg1 + dbgdy*i
# interpolate background and generate smooth interpolation image
if ( (background_lower[0] == None) & (background_upper[0] == None)):
# default background region
dbgdy = (bg2-bg1)/150.0 # assuming height spectrum 200 and width extraction regions 30 pix each
for i9 in range(bgimg.shape[0]):
bgimg[i9,kx0:kx1] = bg1[kx0:kx1] + dbgdy[kx0:kx1]*(i9-25)
bgimg[i9,0:kx0] = bg2[0:kx0]
bgimg[i9,kx1:nx] = bg2[kx1:nx]
if chatter > 2: print("1..BACKGROUND DEFAULT from BG1 and BG2")
elif ((background_lower[0] != None) & (background_upper[0] == None)):
# set background to lower background region
for i9 in range(bgimg.shape[0]):
bgimg[i9,:] = bg1
if chatter > 2: print("2..BACKGROUND from lower BG1 only")
elif ((background_upper[0] != None) & (background_lower[0] == None)):
# set background to that of upper background region
for i9 in range(bgimg.shape[0]):
bgimg[i9,:] = bg2
if chatter > 2: print("3..BACKGROUND from upper BG2 only")
else:
# linear interpolation of the two background regions
dbgdy = (bg2-bg1)/(background_upper[0]+0.5*background_upper[1]+background_lower[0]+0.5*background_lower[1])
for i9 in range(bgimg.shape[0]):
bgimg[i9,kx0:kx1] = bg1[kx0:kx1] + dbgdy[kx0:kx1]*(i9-int(int(slit_width/2)-(background_lower[0]+0.5*background_lower[1])))
bgimg[i9,0:kx0] = bg2[0:kx0] # assuming that the spectrum in not in the lower left corner
bgimg[i9,kx1:nx] = bg2[kx1:nx]
if chatter > 2: print("4..BACKGROUND from BG1 and BG2")
return bg, bg1, bg2, bgsig, bgimg, bg_limits_used, (bg1_good, bg1_dis,
bg1_dis_good, bg2_good, bg2_dis, bg2_dis_good, bgimg_lin)
def interpol(xx,x,y):
'''
linearly interpolate a function y(x) to return y(xx)
no special treatment of boundaries
2011-12-10 NPMKuin skip all data points which are not finite
'''
import numpy as np
x = np.asarray(x.ravel())
y = np.asarray(y.ravel())
q0 = np.isfinite(x) & np.isfinite(y) # filter out NaN values
q1 = np.where(q0)
if len(q1[0]) == 0:
print("error in arrays to be interpolated")
print("x:",x)
print("y:",y)
print("arg:",xx)
x1 = x[q1[0]]
y1 = y[q1[0]]
q2 = np.where( np.isfinite(xx) ) # filter out NaN values
kk = x1.searchsorted(xx[q2])-1
# should extrapolate if element of k = len(a)
#q = np.where(k == len(a)) ; k[q] = k[q]-1
n = len(kk)
f = np.zeros(n)
f2 = np.zeros(len(xx))
for i in range(n):
k = kk[i]
if k > (len(x1)-2):
k = len(x1) - 2
s = (y1[k+1]-y1[k])/(x1[k+1]-x1[k])
f[i] = y1[k]+s*(xx[q2[0]][i]-x1[k])
f2[q2] = f
f2[int(not q2)] = np.NaN
return f2
def hydrogen(n,l):
'''
Return roughly the wavelength of the Hydrogen lines
Lymann spectrum: l=0, n>l+1
Balmer spectrum: l=1, n>2
Pachen spectrum: l=2, n>3
'''
# Rydberg constant in m-1 units
R = 1.097e7
inv_lam = R*(1./(l+1)**2 - 1./n**2)
lam = 1./inv_lam * 1e10
return lam
def boresight(filter='uvw1',order=1,wave=260,
r2d=77.0,date=0,chatter=0):
''' provide reference positions on the
UVOT filters for mapping and as function of
time for grisms.
This function name is for historical reasons,
and provides a key mapping function for the
spectral extraction.
The correct boresight of the (lenticular) filters
should be gotten from the Swift UVOT CALDB
as maintained by HEASARC. The positions here
are in some cases substantially different from
the boresight in the CALDB. They are reference
positions for the spectral extraction algorithms
rather than boresight.
The grism boresight positions at 260nm (uv grism)
and 420nm (visible grism) in first order are served
in an uncommon format (in DET pixels)
by adding (77,77) to the lenticular filter
RAW coordinate.(see TELDEF file) the grism
boresight was measured in DET coordinates,
not RAW. (offset correction should be 104,78)
Parameters
----------
filter : str
one of {'ug200','uc160','vg1000','vc955',
'wh','v','b','u','uvw1','uvm2','uvw2'}
order : {0,1,2}
order for which the anchor is needed
wave : float
anchor wavelength in nm
r2d : float
additive factor in x,y to anchor position
date: long
format in swift time (s)
if 0 then provide the first order anchor
coordinates of the boresight for mapping
from the lenticular filter position
chatter : int
verbosity
Returns
-------
When *date* = 0:
For translation: The boresight for a filter
(in DET pixels) by adding (77,77) to the
lenticular filter RAW coordinate (see TELDEF file)
the grism boresight was measured in DET
(The default r2d=77 returns the correct
boresight for the grisms in detector
coordinates. To get the grism boresight in
detector image coordinates, subtract (104,78)
typically. The difference is due to the distortion
correction from RAW to DET)
When *date* is non-zero, and *order*=0:
The zeroth order boresight
NOTE:
-----
THE TRANSLATION OF LENTICULAR IMAGE TO GRISM
IMAGE IS ALWAYS THE SAME, INDEPENDENT OF THE
BORESIGHT.
THEREFORE THE BORESIGHT DRIFT DOES NOT AFFECT
THE GRISM ANCHOR POSITIONS AS LONG AS THE DEFAULT
BORESIGHT POSITIONS ARE USED.
[Becase those were used for the calibration].
However, the zeroth order "reference" position
drift affects the "uvotgraspcorr" - derived
WCS-S. The positions used
History:
2014-01-04 NPMK : rewrite to inter/extrapolate
the boresight positions
'''
from scipy.interpolate import interp1d
import numpy as np
filterlist = ['ug200','uc160','vg1000','vc955',
'wh','v','b','u','uvw1','uvm2','uvw2']
if filter == 'list': return filterlist
grismfilters = ['ug200','uc160','vg1000','vc955']
lenticular = ['v','b','u','uvw1','uvm2','uvw2']
#old pixel offset anchor based on pre-2010 data
# dates in swift time, drift [x.y] in pixels
#dates=[209952000,179971200,154483349,139968000,121838400]
#drift=[ [0,0], [+2.4,-2.0], [+3.4,-3.0], [+6.4,-10], [+6.4,-10]]
# data from Frank's plot (email 2 dec 2013, uvw1 filter)
# original plot was in arcsec, but the drift converted
# to pixels. uvw1 seems representative (except for white)
swtime = np.array([
1.25000000e+08, 1.39985684e+08, 1.60529672e+08,
1.89248438e+08, 2.23489068e+08, 2.46907209e+08,
2.66126366e+08, 2.79601770e+08, 2.89763794e+08,
3.01251301e+08, 3.13180634e+08, 3.28423998e+08,
3.43445470e+08, 3.59351249e+08, 3.75257678e+08,
4.50000000e+08])
boredx = (np.array([-1.6, -0.870,0.546,1.174,2.328,2.47,
2.813,3.076,3.400,3.805,4.149,4.656,
5.081,5.607,6.072,8.56 ])-1.9)/0.502
boredy = (np.array([ -0.75,-2.197,-4.857,-6.527,
-7.098,-7.252,-7.142,-7.560,
-7.670,-8.000,-8.043,-8.395,
-8.637,-9.142,-9.670,-11.9])+6.8)/0.502
# I assume the same overall drift for the grism
# boresight (in pixels). Perhaps a scale factor for the
# grism would be closer to 0.56 pix/arcsec
# the range has been extrapolated for better interpolation
# and also to support the near future. The early
# time extrapolation is different from the nearly constant
# boresight in the teldef but within about a pixel.
# I think the extrapolation is more accurate.
fx = interp1d(swtime,boredx,bounds_error=False,fill_value="extrapolate")
fy = interp1d(swtime,boredy,bounds_error=False,fill_value="extrapolate")
# reference anchor positions
reference0 = {'ug200': [1449.22, 707.7],
'uc160': [1494.9 , 605.8], #[1501.4 , 593.7], # ?[1494.9, 605.8],
'vg1000':[1506.8 , 664.3],
'vc955': [1542.5 , 556.4]}
# DO NOT CHANGE THE FOLLOWING VALUES AS THE WAVECAL DEPENDS ON THEM !!!
reference1 = {'ug200': [ 928.53,1002.69],
'uc160': [1025.1 , 945.3 ],
'vg1000':[ 969.3 ,1021.3 ],
'vc955': [1063.7 , 952.6 ]}
if (filter in grismfilters):
if (date > 125000000) and (order == 0):
anchor = reference0[filter]
anchor[0] += r2d-fx(date)
anchor[1] += r2d-fy(date)
return anchor
elif (date > 125000000) and (order == 1):
anchor = reference1[filter]
anchor[0] += r2d-fx(date)
anchor[1] += r2d-fy(date)
return anchor
elif order == 1:
anchor = reference1[filter]
anchor[0] += r2d
anchor[1] += r2d
return anchor
elif order == 0:
raise RuntimeError(
"The zeroth order reference position needs a date")
else:
return reference1[filter]
elif (date > 125000000) and (filter in lenticular):
ref_lent = {'v':[951.74,1049.89],
'b':[951.87,1049.67],
'u':[956.98,1047.84],
'uvw1':[951.20,1049.36],
'uvm2':[949.75,1049.30],
'uvw2':[951.11,1050.18]}
anchor = ref_lent[filter]
anchor[0] += r2d-fx(date)
anchor[1] += r2d-fy(date)
return anchor
elif (date > 122000000) and (filter == 'wh'):
print("approximate static white filter boresight")
if date > 209952000:
return 949.902+r2d, 1048.837+r2d
elif date > 179971200:
return 953.315+r2d, 1048.014+r2d
elif date > 154483349:
return 954.506+r2d, 1043.486+r2d
elif date > 139968000:
return 956.000+r2d, 1039.775+r2d
elif date > 121838400:
return 956.000+r2d, 1039.775+r2d
else: return filterlist
else:
# this is the version used initially *(changed 2 june 2009)
# DO NOT CHANGE THESE VALUES AS THE WAVECAL DEPENDS ON THEM !!!
if filter == 'uvw1': return 954.61+r2d, 1044.66+r2d
elif filter == 'wh' : return 954.51+r2d, 1043.49+r2d
elif filter == 'v' : return 955.06+r2d, 1045.98+r2d
elif filter == 'b' : return 955.28+r2d, 1045.08+r2d
elif filter == 'u' : return 960.06+r2d, 1043.33+r2d
elif filter == 'uvm2': return 953.23+r2d, 1044.90+r2d
elif filter == 'uvw2': return 953.23+r2d, 1044.90+r2d
elif filter == 'w1' : return 954.61+r2d, 1044.66+r2d
elif filter == 'm2' : return 953.23+r2d, 1044.90+r2d
elif filter == 'w2' : return 953.23+r2d, 1044.90+r2d
elif filter == 'ug200':
if order == 1:
if wave == 260: return 928.53+r2d,1002.69+r2d
elif filter == 'uc160':
if order == 1:
if wave == 260: return 1025.1+27+r2d,945.3+r2d
elif filter == 'vg1000':
#elif order == 1: return 948.4+r2d, 1025.9+r2d
if order == 1: return 969.3+r2d, 1021.3+r2d
elif filter == 'vc955':
if order == 1: return 1063.7+r2d, 952.6+r2d
raise IOError("valid filter values are 'wh','v',"\
"'b','u','uvw1','uvm2','uvw2','ug200',"\
"'uc160','vg1000','vc955'\n")
def makeXspecInput(lamdasp,countrate,error,lamda_response=None,chatter=1):
''' Convert the count rate spectrum per pixel into a spectrum
on the given bins of the response function.
Parameters
----------
lamdasp : array
wavelengths spectrum
countrate : array
count rates at wavelengths
error : array
errors at wavelengths
kwargs : dict
- **lamda_response** : array
the wavelength for the response bins
- **chatter** : int
verbosity
Returns
-------
lambda : array
wavelengths of the bins
countrate : array
count rate in the bins
error : array
errors in the bins
Notes
-----
errors are summed as sqrt( sum (errors**2 ) )
'''
# calculate bin size response, data
if type(lamda_response) == typeNone:
print('need to read in response matrix file')
print(' please code it up')
return None
new_countrate = np.zeros(len(lamda_response))
new_error = np.zeros(len(lamda_response))
# find bin widths
dlamresp = lamda_response.copy()*0
for i in range(len(dlamresp) -1):
dlamresp[i+1] = lamda_response[i+1] - lamda_response[i]
dlamresp[0] = dlamresp[1] # set width first two data bins equal (could inter/extrapolate the lot)
dlam = lamdasp.copy()*0
for i in range(len(dlam) -1):
dlam[i+1]=lamdasp[i+1] - lamdasp[i]
dlam[0] = dlam[1]
#
for i in range(len(lamda_response)):
# find the pixels to use that have contributions to the bin
lam1 = lamda_response[i] - dlamresp[i]/2.0
lam2 = lamda_response[i] + dlamresp[i]/2.0
if ( (lam1 >= (np.max(lamdasp)+dlam[len(lamdasp)-1])) ^ (lam2 <= (np.min(lamdasp)-dlam[0]))):
# no count data
new_countrate[i] = 0
if ((chatter > 2) & (i < 450) & (i > 400)) :
print(' i = ',i,' lam1 = ',lam1,' lam2 = ', lam2,' <<< counts set to zero ')
print(' i = ',i,' term 1 ',(np.max(lamdasp)-dlam[len(lamdasp)-1]))
print(' i = ',i,' term 2 ',(np.min(lamdasp)+dlam[0] ))
else:
if chatter > 2: print('new bin ',i,' lam = ',lam1,' - ',lam2)
# find the bits to add
k = np.where( (lamdasp+dlam/2 > lam1) & (lamdasp-dlam/2 <= lam2) )
# the countrate in a bin is proportional to its width; make sure only
# the part of the data array that fall within the new bin is added
if chatter > 2:
print('data in ',k[0],' wavelengths ',lamdasp[k[0]])
print('counts are ',countrate[k[0]])
nk = len(k[0])
factor = np.zeros( nk )
for m in range(nk): # now loop over all bins that might contribute
wbin1 = lamdasp[k[0][m]] - dlam[k[0][m]]/2
wbin2 = lamdasp[k[0][m]] + dlam[k[0][m]]/2
# width bin_form override with limits bin_to
factor[m] = (np.min(np.array( (wbin2,lam2) )) - np.max(np.array((wbin1 ,lam1))))/ (wbin2-wbin1)
if chatter > 2 :
print(' ... m = ',m,' bin= ',wbin1,' - ',wbin2)
print(' ... trimmed ',np.min(np.array( (wbin2,lam2) )),' - ',np.max(np.array((wbin1 ,lam1))))
new_countrate[i] = (factor * countrate[k[0]]).sum()
new_error[i] = np.sqrt( ( (factor * error[k[0]])**2 ).sum() )
if chatter > 2:
print(' scaled factor = ', factor)
print(' new_countrate = ', new_countrate[i])
#
# check that the total number of counts is the same
print('total counts in = ', countrate.sum())
print('total counts out= ', new_countrate.sum())
#
return lamda_response, new_countrate, new_error
def find_zeroth_orders(filestub, ext, wheelpos, region=False,indir='./',
set_maglimit=None, clobber="NO", chatter=0):
'''
The aim is to identify the zeroth order on the grism image.
This is done as follows:
We run uvotdetect to get the zeroth orders in the detector image.
We also grab the USNO B1 source list and predict the positions on the image using the WCSS header.
Bases on a histogram of minimum distances, as correction is made to the WCSS header, and
also to the USNO-B1 predicted positions.
'''
import os
try:
from astropy.io import fits, ascii
except:
import pyfits as fits
from numpy import array, zeros, log10, where
import datetime
import uvotwcs
from astropy import wcs
if chatter > 0:
print("find_zeroth_orders: determining positions zeroth orders from USNO-B1")
if ((wheelpos == 160) ^ (wheelpos == 200)):
grtype = "ugu"
zp = 19.46 # zeropoint uv nominal zeroth orders for 10 arcsec circular region
else:
grtype = "ugv"
zp = 18.90 # estimated visible grism zeropoint for same
exts = repr(ext)
gfile = os.path.join(indir,filestub+grtype+"_dt.img")
infile = os.path.join(indir,filestub+grtype+"_dt.img["+exts+"]")
outfile = os.path.join(indir,filestub+grtype+"_"+exts+"_detect.fits")
if ((wheelpos == 160) ^ (wheelpos == 200)):
command = "uvotdetect infile="+infile+ " outfile="+outfile + \
' threshold=6 sexargs = "-DEBLEND_MINCONT 0.1" '+ \
" expopt = BETA calibrate=NO expfile=NONE "+ \
" clobber="+clobber+" chatter=0 > /dev/null"
else:
command = "uvotdetect infile="+infile+ " outfile="+outfile + \
' threshold=6 sexargs = "-DEBLEND_MINCONT 0.1" '+ \
" expopt = BETA calibrate=NO expfile=NONE "+ \
" clobber="+clobber+" chatter=0 > /dev/null"
if chatter > 1:
print("find_zeroth_orders: trying to detect the zeroth orders in the grism image")
print(command)
useuvotdetect = True
tt = os.system(command)
if tt != 0:
raise('find_zeroth_orders: uvotdetect had a problem with this image\nIs HEASOFT initialised?')
if not os.access(outfile,os.F_OK):
# so you can provide it another way
useuvotdetect = False
rate = 0
if useuvotdetect:
f = fits.open(outfile)
g = f[1].data
h = f[1].header
refid = g.field('refid')
rate = g.field('rate')
rate_err = g.field('rate_err')
rate_bkg = g.field('rate_bkg') # counts/sec/arcsec**2
x_img = g.field('ux_image')
y_img = g.field('uy_image')
a_img = g.field('ua_image') # semi axis
b_img = g.field('ub_image') # semi axis
theta = g.field('utheta_image') # angle of the detection ellipse
prof_major = g.field('prof_major')
prof_minor = g.field('prof_minor')
prof_theta = g.field('prof_theta')
threshold = g.field('threshold') # sigma
flags = g.field('flags')
f.close()
else:
rate_bkg = array([0.08])
hh = fits.getheader(gfile, ext)
exposure = hh['exposure']
ra = hh['RA_PNT']
dec = hh['DEC_PNT']
if "A_ORDER" in hh:
distortpresent = True
else:
distortpresent = False
if chatter > 1:
print("find_zeroth_orders: pointing position ",ra,dec)
# unfortunately uvotdetect will pick up spurious stuff as well near the spectra
# need real sources.
# get catalog sources (B magnitude most closely matches zeroth order)
CALDB = os.getenv('CALDB')
if CALDB == '':
print('find_zeroth_orders: the CALDB environment variable has not been set')
return None
HEADAS = os.getenv('HEADAS')
if HEADAS == '':
print('find_zeroth_orders: The HEADAS environment variable has not been set')
print('That is needed for the uvot Ftools ')
return None
if set_maglimit == None:
b_background = zp + 2.5*log10( (rate_bkg.std())*1256.6 )
# some typical measure for the image
blim= b_background.mean() + b_background.std() + zeroth_blim_offset
else:
blim = set_maglimit
if blim < background_source_mag: blim = background_source_mag
if np.isnan(blim): blim = 18
# if usno-b1 catalog is present for this position,
# do not retrieve again
if os.access('searchcenter.ub1',os.F_OK):
searchcenterf = open( 'searchcenter.ub1' )
searchcenter= searchcenterf.readline().split(',')
searchcenterf.close()
racen,decen = float(searchcenter[0]),float(searchcenter[1])
if np.abs(ra-racen) + np.abs(dec-decen) < 0.01:
use_previous_search = True
else:
use_previous_search = False
else:
use_previous_search = False
# empty file
if os.access('search.ub1',os.F_OK) :
searchf = open('search.ub1')
stab = searchf.readlines()
searchf.close()
if len(stab) < 3: use_previous_search = False
# retrieve catalog data
if (not os.access('search.ub1',os.F_OK)) | (not use_previous_search):
if (chatter > 4): print ("get_usnob1_cat(%f,%f,%f)"%(ra,dec,blim))
status = get_usnob1_cat(ra, dec, blim)
if status is None:
print('ra={}, dec={}, blim={}'.format(ra, dec, blim))
print("find_zeroth_orders: could not get source list from USNO-B1")
sys.exit()
else:
if chatter > 1:
print("find_zeroth_orders: using the USNO-B1 source list from file search.ub1")
# generate a new catspecfile
_write_catspecfile()
# remove reliance on astropy tables as it fails on debian linux
searchf = open('search.ub1')
stab = searchf.readlines()
searchf.close()
M = len(stab)
ra = []
dec = []
b2mag = []
for row in stab:
row_values = row.split()
if len(row_values) > 6:
ra.append(row_values[1])
dec.append(row_values[2])
b2mag.append(row_values[5])
M = len(ra)
if M == 0:
return
ra = np.asarray(ra,dtype=np.float64)
dec = np.asarray(dec,dtype=np.float64)
b2mag = np.asarray(b2mag,dtype=np.float)
Xa = zeros(M)
Yb = zeros(M)
Thet= zeros(M)
ondetector = zeros(M,dtype=bool)
matched = zeros(M,dtype=bool)
# now find the image coordinates:
#
wcsS = wcs.WCS(header=hh,key='S',relax=True,) # TAN-SIP coordinate type
Xim,Yim = wcsS.wcs_world2pix(ra,dec,0)
xdim, ydim = hh['naxis1'],hh['naxis2']
wheelpos = hh['wheelpos']
if wheelpos == 200:
q1 = (rate > 2.5*rate_bkg) & (rate < 125*rate_bkg)
defaulttheta = 151.4-180.
bins = np.arange(-29.5,29.5,1)
midbin = np.arange(-29,29,1)
elif wheelpos == 160:
q1 = (rate > 2.5*rate_bkg) & (rate < 125*rate_bkg) & (x_img > 850)
defaulttheta = 144.4-180.
bins = np.arange(-29.5,29.5,1)
midbin = np.arange(-29,29,1)
elif wheelpos == 955:
q1 = (rate > 2.5*rate_bkg) & (rate < 175*rate_bkg) & (x_img > 850)
defaulttheta = 140.5-180
bins = np.arange(-49.5,49.5,1)
midbin = np.arange(-49,49,1)
elif wheelpos == 1000:
q1 = (rate > 2.5*rate_bkg) & (rate < 175*rate_bkg)
defaulttheta = 148.1-180.
bins = np.arange(-49.5,49.5,1)
midbin = np.arange(-49,49,1)
Thet -= defaulttheta
Xa += 17.0
Yb += 5.5
# convert sky coord. to positions (Xim , Yim) , and set flag ondetector
for i in range(M):
if not distortpresent:
# now we need to apply the distortion correction:
Xim[i], Yim[i] = uvotwcs.correct_image_distortion(Xim[i],Yim[i],hh)
ondetector[i] = ((Xim[i] > 8) & (Xim[i] < xdim) & (Yim[i] > 8) & (Yim[i] < ydim-8))
xoff = 0.0
yoff = 0.0
# derive offset :
# find the minimum distances between sources in lists pair-wise
distance = []
distx = []
disty = []
kx = -1
dxlim = 100 # maximum distance in X
dylim = 100 # maximum distance in Y
tol = 5 # tolerance in x and y match
xim = x_img[q1]
yim = y_img[q1]
M2 = int(len(xim)*0.5)
for i2 in range(M2): # loop over the xdetect results
i = 2*i2
i1 = 2*i2+1
if (ondetector[i] and useuvotdetect):
dx = np.abs(Xim - xim[i ])
dy = np.abs(Yim - yim[i ])
dx1 = np.abs(Xim - xim[i1])
dy1 = np.abs(Yim - yim[i1])
op = (dx < dxlim) & (dy < dylim)
if op.sum() != 0:
dis = np.sqrt(dx[op]**2+dy[op]**2)
kx = dis == np.min(dis)
kx = np.arange(len(op))[op][kx]
op1 = (dx1 < dxlim) & (dy1 < dylim)
if op1.sum() != 0:
dis = np.sqrt(dx1[op1]**2+dy1[op1]**2)
kx1 = dis == np.min(dis)
kx1 = np.arange(len(op1))[op1][kx1]
if (np.abs(dx[kx] - dx1[kx1]) < tol ) & (np.abs(dy[kx] - dy1[kx1]) < tol ):
distx.append( Xim[kx] - xim[i ] )
disty.append( Yim[kx] - yim[i ] )
distx.append( Xim[kx1] - xim[i1] )
disty.append( Yim[kx1] - yim[i1] )
if ((type(kx) == int) & (chatter > 3)):
print("Xim: ",Xim[kx])
print("xim:",xim)
print("dx: ",dx)
if len(distx) > 0 :
hisx = np.histogram(distx,bins=bins)
#xoff = hisx[1][:-1][hisx[0] == hisx[0].max()].mean()
xoff = midbin[hisx[0] == hisx[0].max()].mean()
hisy = np.histogram(disty,bins=bins)
#yoff = hisy[1][:-1][hisy[0] == hisy[0].max()].mean()
yoff = midbin[hisy[0] == hisy[0].max()].mean()
# subtract xoff, yoff from Xim, Yim or add to origin ( hh[CRPIX1S],hh[CRPIX2S] ) if offset
# is larger than 1 pix
if (np.sqrt(xoff**2+yoff**2) > 1.0):
if ("forceshi" not in hh):
hh['crpix1s'] += xoff
hh['crpix2s'] += yoff
hh["forceshi"] = "%f,%f"%(xoff,yoff)
hh["forcesh0"] = "%f,%f"%(xoff,yoff)
print("offset (%5.1f,%5.1f) found"%(xoff,yoff))
print("offset found has been applied to the fits header of file: %s\n"%(gfile))
else:
# do not apply shift to crpix*s for subsequent shifts, but record overall ahift
# original shift is in "forcesh0" which actually WAS applied. Both items are needed
# to reconstruct shifts between pointing image and the source locations (in case
# we allow interactive adjustments of zeroth orders, that would enable pointing updates
# however, the keyword must be reset at start of reprocessing (not done now)
xoff_,yoff_ = np.array((hh["forceshi"]).split(','),dtype=float)
hh["forceshi"] = "%f,%f"%(xoff_+xoff,yoff_+yoff)
f = fits.open(gfile,mode='update')
f[ext].header = hh
f.close()
print("find_zeroth_orders result (binary matched offset): \n")
print("\tAfter comparing uvotdetect zeroth order positions to USNO-B1 predicted source positions ")
print("\tthere was found an overall offset equal to (%5.1f.%5.1f) pix "%(xoff,yoff))
Xim -= xoff
Yim -= yoff
else:
# if binary matched offsets don't pan out at all, compute simple offsets
for i in range(len(xim)): # loop over the xdetect results
if (ondetector[i] and useuvotdetect):
dx = np.abs(Xim - xim[i ])
dy = np.abs(Yim - yim[i ])
op = (dx < dxlim) & (dy < dylim)
if op.sum() != 0:
dis = np.sqrt(dx[op]**2+dy[op]**2)
kx = dis == np.min(dis)
kx = np.arange(len(op))[op][kx]
distx.append( Xim[kx] - xim[i ] )
disty.append( Yim[kx] - yim[i ] )
hisx = np.histogram(distx,bins=bins)
#xoff = hisx[1][hisx[0] == hisx[0].max()].mean()
xoff = midbin[hisx[0] == hisx[0].max()].mean()
hisy = np.histogram(disty,bins=bins)
#yoff = hisy[1][hisy[0] == hisy[0].max()].mean()
yoff = midbin[hisy[0] == hisy[0].max()].mean()
if (np.sqrt(xoff**2+yoff**2) > 1.0):
if ("forceshi" not in hh):
hh['crpix1s'] += xoff
hh['crpix2s'] += yoff
hh["forceshi"] = "%f,%f"%(xoff,yoff)
hh["forcesh0"] = "%f,%f"%(xoff,yoff)
print("offset (%5.1f,%5.1f) found"%(xoff,yoff))
print("offset found has been applied to the fits header of file: %s\n"%(gfile))
else:
# do not apply shift to crpix*s for subsequent shifts, but record overall ahift
# original shift is in "forcesh0" which actually WAS applied. Both items are needed
# to reconstruct shifts between pointing image and the source locations (in case
# we allow interactive adjustments of zeroth orders, that would enable pointing updates
# however, the keyword must be reset at start of reprocessing (not done now)
xoff_,yoff_ = np.array((hh["forceshi"]).split(','),dtype=float)
hh["forceshi"] = "%f,%f"%(xoff_+xoff,yoff_+yoff)
f = fits.open(gfile,mode='update')
f[ext].header = hh
f.close()
print("find_zeroth_orders result (simple offset): \n")
print("\tAfter comparing uvotdetect zeroth order positions to USNO-B1 predicted source positions ")
print("\tthere was found an overall offset equal to (%5.1f.%5.1f) pix "%(xoff,yoff))
Xim -= xoff
Yim -= yoff
# find ellipse belonging to source from uvotdetect output, or make up one for all ondetector
xacc = 10
yacc = 6
for i in range(M):
if (ondetector[i] and useuvotdetect):
kx = where ( abs(Xim[i] - x_img) < xacc )
if len(kx[0]) != 0:
kxy = where( abs(Yim[i] - y_img[kx]) < yacc)
if len(kxy[0]) == 1:
k = kx[0][kxy[0][0]]
Xa[i] = prof_major[k]*5.
Yb[i] = prof_minor[k]*5.
Thet[i]= -theta[k]
matched[i] = True
else:
# make up some ellipse axes in pix
Xa[i] = 17.0
Yb[i] = 5.0
if chatter > 0:
print("find_zeroth_orders: there were %i matches found between the uvotdetect sources and the USNO B1 list"%(matched.sum()))
if region:
a = datetime.date.today()
datetime = a.isoformat()[0:4]+a.isoformat()[5:7]+a.isoformat()[8:10]
# make region file for sources on detector
f = open(filestub+'_'+exts+'.reg','w')
f.write('# Region file format: DS9 version 4.1\n')
#f.write('# written by uvotgetspec.findzerothorders python program '+datetime+'\n')
f.write('# Filename: '+infile+'\n')
f.write('global color=green dashlist=8 3 width=1 font="helvetica 10 normal" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1 \n')
f.write('physical\n')
for i in range(M):
if (ondetector[i] and useuvotdetect):
f.write('ellipse(%12.2f,%12.2f,%12.2f,%12.2f,%12.2f)\n' % (Xim[i],Yim[i],Xa[i],Yb[i],180.-Thet[i]) )
f.close()
# make a second region file for sources with first order on detector [TBD]
# the sources on the detector are Xim[ondetector] etc.,
# matched[ondetector] are those sources which have both been found by uvotdetect and in the catalog
# the complete list also includes sources off the detector which may have first orders on the
# detector when the B magnitude > ~14.
# the ellipse parameters for the sources which have no uvotdetection (matched=False) are some
# arbitrary mean values. They should be scaled to brightness.
return Xim,Yim,Xa,Yb,Thet,b2mag,matched,ondetector
def spec_curvature(wheelpos,anchor,order=1,):
'''Find the coefficients of the polynomial for the curvature.
Parameters
----------
wheelpos : int, {160,200,955,1000}
grism filter position in filter wheel
anchor : list, array
anchor position in detector coordinates (pixels)
order : int
the desired spectral order
Returns
-------
Provides the polynomial coefficients for y(x).
Notes
-----
The curvature is defined with argument the pixel coordinate in the dispersion
direction with reference to the the anchor coordinates in det-img
coordinates. The polynomial returns the offset normal to the dispersion.
- 2011-03-07 <NAME>, initial version
- 2011-08-02 fixed nominal coefficients order=1
'''
from scipy import interpolate
from numpy import array
xin = anchor[0] -104
yin = anchor[1] -78
if ((wheelpos == 1000) ^ (wheelpos == 955)):
# return y = 0 + 0.0*x coefficient
return array([0.,0.])
elif wheelpos == 160:
if order == 1:
tck_c1= [array([0.,0.,0.,0.,2048., 2048., 2048., 2048.]), \
array([0.,0.,0.,0., 2048., 2048., 2048., 2048.]), \
array([ 0.1329227 , -0.28774943, 0.13672294, -0.18436127, -0.19086855,\
0.23071908, -0.21803703, 0.11983982, 0.16678715, -0.2004285 ,\
0.12813155, -0.13855324, -0.1356009 , 0.11504641, -0.10732287,\
0.03374111]),3,3]
tck_c2 = [array([0.,0.,0.,0., 2048., 2048., 2048., 2048.]),\
array([0.,0.,0.,0., 2048., 2048., 2048., 2048.]),\
array([ -3.17463632e-04, 2.53197376e-04, -3.44611897e-04,\
4.81594388e-04, 2.63206764e-04, -3.03314305e-04,\
3.25032065e-04, -2.97050826e-04, -3.06358032e-04,\
3.32952612e-04, -2.79473410e-04, 3.95150704e-04,\
2.56203495e-04, -2.34524716e-04, 2.75320861e-04,\
-6.64416547e-05]),3,3]
tck_c3 = [array([ 0.,0.,0.,0.,2048., 2048., 2048., 2048.]),\
array([ 0.,0.,0.,0.,2048., 2048., 2048., 2048.]),\
array([ -4.14989592e-07, 5.09851884e-07, -4.86551197e-07,\
1.33727326e-07, 4.87557866e-07, -5.51120320e-07,\
5.76975007e-07, -3.29793632e-07, -3.42589204e-07,\
3.00002959e-07, -2.90718693e-07, 5.57782883e-08,\
2.20540397e-07, -1.62674045e-07, 8.70230076e-08,\
-1.13489556e-07]),3,3]
#coef = array([interpolate.bisplev(xin,yin,tck_c3),interpolate.bisplev(xin,yin,tck_c2),\
# interpolate.bisplev(xin,yin,tck_c1), 0.])
coef = array([interpolate.bisplev(xin,yin,tck_c3)*0.5,interpolate.bisplev(xin,yin,tck_c2)*0.5,\
interpolate.bisplev(xin,yin,tck_c1)*0.5, 0.]) #~FIXME:
return coef
elif order == 2:
tck_c0 = [array([ 0., 0., 0., 0., 1134.78683, 2048., 2048., 2048., 2048.]), \
array([ 0., 0., 0., 0., 871.080060, 2048., 2048., 2048., 2048.]), \
array([-110.94246902, 15.02796289, -56.20252149, -12.04954456,\
311.31851187, -31.09148174, -48.44676102, 85.82835905,\
-73.06964994, 99.58445164, 46.47352776, 11.29231744,\
-68.32631894, 88.68570087, -34.78582366, -33.71033771,\
6.89774103, 25.59082616, 23.37354026, 49.61868235,\
-438.17511696, -31.63936231, 28.8779241 , 51.03055925,\
16.46852299]), 3, 3]
tck_c1 = [array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 0.52932582, -0.76118033, 0.38401924, -0.189221 , -0.45446129,\
0.73092481, -0.53433133, 0.12702548, 0.21033591, -0.45067611,\
0.32032545, -0.25744487, -0.06022942, 0.22532666, -0.27174491,\
0.03352306]), 3, 3]
tck_c2 = [array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ -4.46331730e-04, 3.94044533e-04, -1.77072490e-04,\
2.09823843e-04, 3.02872440e-04, -6.23869655e-04,\
5.44400661e-04, -3.70038727e-04, -1.60398389e-04,\
4.90085648e-04, -4.91436626e-04, 4.62904236e-04,\
4.05692472e-05, -2.34521165e-04, 3.04866621e-04,\
-1.25811263e-04]), 3, 3]
#tck_c0 = [array([0.,0., 1132.60995961, 2048.,2048.]),
# array([0.,0., 814.28303687, 2048.,2048.]),
# array([-49.34868162, -0.22692399, -11.06660953, 5.95510567,
# -3.13109456, 37.63588808, -38.7797533 , 24.43177327, 43.27243297]),1,1]
#tck_c1 = [array([ 0., 0., 2048., 2048.]),
# array([ 0., 0., 2048., 2048.]),
# array([ 0.01418938, -0.06999955, -0.00446343, -0.06662488]),1,1]
#tck_c2 = [array([ 0., 0., 2048., 2048.]),
# array([ 0., 0., 2048., 2048.]),
# array([ -9.99564069e-05, 8.89513468e-05, 4.77910984e-05, 1.44368445e-05]),1,1]
coef = array([interpolate.bisplev(xin,yin,tck_c2),interpolate.bisplev(xin,yin,tck_c1),\
interpolate.bisplev(xin,yin,tck_c0)])
return coef
elif order == 3:
# not a particularly good fit.
tck_c0 = [array([0., 0., 1101.24169141, 2048.,2048.]),
array([0., 0., 952.39879838, 2048.,2048.]),
array([ -74.75453915, 7.63095536, -131.36395787, 11.14709189,
-5.52089337, 73.59327202, -57.25048374, 37.8898465 ,
65.90098406]), 1, 1]
tck_c1 = [array([ 0., 0., 2048., 2048.]),
array([ 0., 0., 2048., 2048.]),
array([-0.04768498, -0.02044308, 0.02984554, -0.04408517]), 1, 1]
coef = array([interpolate.bisplev(xin,yin,tck_c1),interpolate.bisplev(xin,yin,tck_c0)])
return coef
elif order == 0:
tck_c0 = [array([ 0., 0., 1075.07521348, 2048. ,2048.]),
array([ 0., 0., 1013.70915889, 2048. ,2048.]),
array([ 130.89087966, 25.49195385, 5.7585513 , -34.68684878,
-52.13229007, -168.75159696, 711.84382717, -364.9631271 ,
374.9961278 ]),1,1]
tck_c1 = [array([ 0., 0., 2048., 2048.]),
array([ 0., 0., 2048., 2048.]),
array([ 0.08258587, -0.06696916, -0.09968132, -0.31579981]),1,1]
coef = array([interpolate.bisplev(xin,yin,tck_c1),interpolate.bisplev(xin,yin,tck_c0)])
return coef
else:
raise (ValueError)
elif wheelpos == 200:
if order == 1:
tck_c1 = [array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([-0.00820665, -0.06820851, 0.04475057, -0.06496112, 0.062989 , \
-0.05069771, -0.01397332, 0.03530437, -0.17563673, 0.12602437,\
-0.10312421, -0.02404978, 0.06091811, -0.02879142, -0.06533121,\
0.07355998]), 3, 3]
tck_c2 = [array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 1.69259046e-04, -1.67036380e-04, -9.95915869e-05, \
2.87449321e-04, -4.90398133e-04, 3.27190710e-04, \
2.12389405e-04, -3.55245720e-04, 7.41048332e-04, \
-4.68649092e-04, -1.11124841e-04, 6.72174552e-04, \
-3.26167775e-04, 1.15602175e-04, 5.78187743e-04, \
-8.79488201e-04]), 3, 3]
tck_c3 = [array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 0., 0., 0., 0., 2048., 2048., 2048., 2048.]),\
array([ 1.11106098e-07, 2.72305072e-07, -7.24832745e-07,\
4.65025511e-07, -2.35416547e-07, -3.87761080e-07,\
1.05955881e-06, -6.46388216e-07, 3.15103869e-07,\
5.48402086e-07, -1.44488974e-06, 6.52867676e-07,\
1.14004672e-08, -9.48879026e-07, 1.64082320e-06,\
-8.07897628e-07]), 3, 3]
# the linear fit fails at the right side (57020002) but is quite good otherwise:
#tck_c1 = [array([ 0., 0., 2048., 2048.]), array([ 0., 0., 2048., 2048.]),\
# array([-0.02212781, -0.00873168, -0.00377861, -0.02478484]), 1, 1]
#
#tck_c2 = [array([ 0., 0., 2048., 2048.]), array([ 0., 0., 2048., 2048.]),\
# array([ -6.75189230e-05, 6.19498966e-05, 5.22322103e-05, 7.75736030e-05]), 1, 1]
#
#tck_c3 = [array([ 0., 0., 2048., 2048.]), array([ 0., 0., 2048., 2048.]), \
# array([ -1.75056810e-09, -3.61606998e-08, -6.00321832e-09, -1.39611943e-08]), 1, 1]
coef = array([interpolate.bisplev(xin,yin,tck_c3),interpolate.bisplev(xin,yin,tck_c2),\
interpolate.bisplev(xin,yin,tck_c1), 0.])
return coef
elif order == 2:
tck_c0 = [array([0.,0., 956.25596245, 2048.,2048.]),
array([0.,0., 1067.40622524, 2048.,2048.]),
array([ 17.82135471, -4.93884392, 20.55439437, -18.22869669,
13.11429182, 41.2680039 , 9.8050793 , 32.72362507, -6.56524782]), 1, 1]
tck_c1 = [array([ 0., 0., 2048., 2048.]),
array([ 0., 0., 2048., 2048.]),
array([ 0.02362119, -0.03992572, 0.0177935 , -0.10163929]),1, 1]
tck_c2 = [array([ 0., 0., 2048., 2048.]),
array([ 0., 0., 2048., 2048.]),
array([ -6.32035759e-05, 5.28407967e-05, -8.87338917e-06, 8.58873870e-05]),1,1]
coef = array([interpolate.bisplev(xin,yin,tck_c2),interpolate.bisplev(xin,yin,tck_c1),\
interpolate.bisplev(xin,yin,tck_c0)])
return coef
elif order == 3:
tck_c0 = [array([ 0. , 0. , 807.44415249, 2048.,2048.]),
array([ 0. , 0. , 1189.77686531, 2048.,2048.]),
array([-5436.10353688, 218.93823252, -254.71035527, -24.35684969,
23.26131493, 51.66273635, 37.89898456, 46.77095978,
63.22039872]), 1, 1]
tck_c1 = [array([ 0., 0., 2048., 2048.]),
array([ 0., 0., 2048., 2048.]),
array([-0.02591263, -0.03092398, 0.00352404, -0.01171369]), 1, 1]
coef = array([interpolate.bisplev(xin,yin,tck_c1),interpolate.bisplev(xin,yin,tck_c0)])
return coef
elif order == 0:
tck_c0 = [array([0.,0., 798.6983833, 2048., 2048.]),
array([0.,0., 1308.9171309, 2048., 2048.]),
array([ 1244.05322027, 24.35223956, -191.8634177 , -170.68236661,
-4.57013926, 20.35393124, -365.28237355, -235.44828185, -2455.96232688]), 1, 1]
tck_c1 = [array([ 0., 0., 2048., 2048.]),
array([ 0., 0., 2048., 2048.]),
array([ 0.54398146, -0.04547362, -0.63454342, -0.49417562]),1,1]
coef = array([interpolate.bisplev(xin,yin,tck_c1),interpolate.bisplev(xin,yin,tck_c0)])
return coef
else:
raise (ValueError)
else:
print('spec_curvature: illegal wheelpos value')
raise (ValueError)
def get_coi_box(wheelpos):
# provide half-width, length coi-box and factor
# typical angle spectrum varies with wheelpos
# 29,27,31,28 3x8/cos([144.5,151.4,140.5,148.1]) for wheelpos = 160,200,955,1000
coistuff = {'160':(7.5,29,1.11),
'200':(7.5,27,1.12),
'955':(6.5,31,1.09),
'1000':(7.0,28,1.13),}
return coistuff[str(wheelpos)]
def curved_extraction(extimg,ank_c,anchor1, wheelpos, expmap=None, offset=0., \
anker0=None, anker2=None, anker3=None, angle=None, offsetlimit=None, \
background_lower=[None,None], background_upper=[None,None],background_template=None,\
trackonly=False, trackfull=False, caldefault=True, curved="noupdate", \
poly_1=None,poly_2=None,poly_3=None, set_offset=False, \
composite_fit=True, test=None, chatter=0, skip_field_sources=False,\
predict_second_order=True, ZOpos=None,outfull=False, msg='',\
fit_second=True,fit_third=True,C_1=None,C_2=None,dist12=None, ifmotion=True,\
dropout_mask=None,obsid=None,indir=None,motion_file=None,ank_c_0offset=False,ifextended=False,fixwidth=False):
'''This routine knows about the curvature of the spectra in the UV filters
can provide the coefficients of the tracks of the orders
can provide a gaussian fit to the orders
extimg = extracted image
ank_c = array( [ X pos anchor, Y pos anchor, start position spectrum, end spectrum]) in extimg
anchor1 = anchor position in original image in det coordinates
wheelpos = filter wheel position
ZOpos variables defining Zeroth Order positions
angle [req with ZOpos]
background_template - if provided, the background will be based on this
dropout_mask from extractSpecImg
override curvature polynomial coefficients with poly_1,poly_2,poly_3
i.e., after a call to updateFitorder()
output new array of sum across fixed number of pixels across spectrum for coincidence loss
width of box depends on parameter coi_half_width
NPMK, 2010-07-09 initial version
2012-02-20 There was a problem with the offset/track y1 position/borderup,borderdown consistency
when using a prescribed offset. Changing handling. Always make a fine yank adjustment < 3 pix.
disabled for now the set_offset (it does not do anything).
2012-02-20 moved the call to updateFitorder() to curved_extraction. The result is that the
spectrum will be extracted using the updated track parameters.
2014-06-02 add support for fixed box extraction coincidence loss.
2014-08-04 add parameter curved_extraction to limit y-positioning extraction slit with list option
2014-08-06 changed code to correctly adjust y1 position
2014-08-25 fixed error in curve of location orders except first one
2016-01-17 trackcentroiding parameter added to disable centroiding
'''
import pylab as plt
from numpy import array,arange,where, zeros,ones, asarray, abs, int
from uvotplot import plot_ellipsoid_regions
import uvotmisc
anky,ankx,xstart,xend = ank_c
xstart -= ankx
xend -= ankx
anchor2 = anchor1
if test == 'cal':
from cal3 import get_1stOrderFit, get_2ndOrderFit ,get_3rdOrderFit, get_0thOrderFit
from cal3 import nominaluv, clockeduv
if wheelpos == 160:
curves = clockeduv
elif wheelpos == 200:
curves = nominaluv
else:
print("use straight extraction for V grism modes")
return
if wheelpos > 300:
return
# coincidence loss box
coi_half_width,coilength,coifactor = get_coi_box(wheelpos)
# read the table of coefficients/get the coeeficients of the Y(dis) offsets and limits[]
# stored with array of angles used.
# ZEROTH ORDER CURVATURE
if test == 'notyetcal':
coef0 = get_0thOrderFit(xin=anchor2[0],yin=anchor2[1],curvedata=curves)
else:
coef0 = spec_curvature(wheelpos,anchor2,order=0)
dlim0L=-820
dlim0U=-570
present0=True
if (xstart > dlim0U):
present0=False
coef0 = array([0.,0.])
if (xstart > dlim0L): dlim0L = xstart
# FIRST ORDER CURVATURE
if test == 'cal':
coef1 = get_1stOrderFit(xin=anchor2[0],yin=anchor2[1],curvedata=curves)
else:
coef1 = spec_curvature(wheelpos,anchor2,order=1)
#coef1[0] = -3.08e-9
#coef1[1] = 5.89e-6
#coef1[2] = -9.21e-3
dlim1L=-400
dlim1U=1150
present1=True
if (xstart > dlim1L): dlim1L = xstart
if (xend < dlim1U): dlim1U = xend
# SECOND ORDER CURVATURE
if test == 'cal':
coef2 = get_2ndOrderFit(xin=anchor2[0],yin=anchor2[1],curvedata=curves)
else:
coef2 = spec_curvature(wheelpos,anchor2,order=2)
dlim2L=25
dlim2U=3000
if (xstart > dlim2L): dlim2L = xstart
if (xend < dlim2U): dlim2U = xend
if (xend > dlim2L):
present2=True
else: present2=False
# THIRD ORDER CURVATURE
if test == 'cal':
coef3 = get_3rdOrderFit(xin=anchor2[0],yin=anchor2[1],curvedata=curves)
else:
coef3 = spec_curvature(wheelpos,anchor2,order=3)
dlim3L=425
dlim3U=3000
if (xstart > dlim3L): dlim3L = xstart
if (xend < dlim3U): dlim3U = xend
if (xend > dlim3L):
present3=True
else: present3=False
# good first approximation:
# if wheelpos == 160:
sig0coef=array([4.7])
sig1coef=array([-8.22e-09, 6.773e-04, 3.338])
#sig1coef=array([1.6*(-8.22e-09), 1.6*(6.773e-04), 1.6*3.338]) #~FIXME: try changing sigma
#sig1coef=array([ 3.0])
sig2coef=array([-5.44e-07, 2.132e-03, 3.662])
sig3coef=array([0.0059,1.5])
# override coefficients y(x):
print ("DEBUG 3431 type coef1 is ", type(coef1) )
print ("DEBUG 3432 type poly_1 is ",type(poly_1))
if (type(poly_1) != typeNone): coef1 = poly_1
if (type(poly_2) != typeNone): coef2 = poly_2
if (type(poly_3) != typeNone): coef3 = poly_3
#===================================================================
if chatter > 0:
print('================== curvature fits for y ==============')
print('zeroth order poly: ',coef0)
print('first order poly: ',coef1)
print('second order poly: ',coef2)
print('third order poly: ',coef3)
print('======================================================')
#===================================================================
# remove background
#if cval == None: cval = out_of_img_val = -1.0123456789 cval now global
if chatter > 3 : print ("DEBUG 3453 remove background")
bg, bg1, bg2, bgsig, bgimg, bg_limits, \
(bg1_good, bg1_dis, bg1_dis_good, bg2_good, bg2_dis, bg2_dis_good, bgimg_lin) \
= findBackground(extimg,background_lower=background_lower,
background_upper=background_upper,yloc_spectrum=anky, chatter=2)
if background_template != None:
bgimg = background_template['extimg']
spimg = extimg - bgimg
ny,nx = spimg.shape
# initialise quality array, exposure array for spectrum and flags
quality = zeros(nx,dtype=int)
expospec = zeros(5*nx,dtype=int).reshape(5,nx)
qflag = quality_flags()
# get the mask for zeroth orders in the way
if chatter > 3 : print ("DEBUG 3470 get mask zeroth orders ")
# set bad done while extracting spectra below
set_qual = ((not skip_field_sources) & (ZOpos != None) & (angle != None))
if set_qual:
Xim,Yim,Xa,Yb,Thet,b2mag,matched,ondetector = ZOpos
# find_zeroth_orders(filestub, ext, wheelpos,clobber="yes", )
dims = array([nx,ny])
pivot_ori=array([(anchor1)[0],(anchor1)[1]])
pivot= array([ank_c[1],ank_c[0]])
# map down to 18th magnitude in B2 (use global variable uvotgetspec.background_source_mag)
m_lim = background_source_mag
map_all = plot_ellipsoid_regions(Xim.copy(),Yim.copy(),Xa.copy(),Yb.copy(),Thet.copy(),\
b2mag.copy(),matched.copy(), ondetector,pivot,pivot_ori,dims,m_lim,img_angle=angle-180.0,\
lmap=True,makeplot=False,chatter=chatter)
if chatter > 2:
print("zeroth order map all: shape=",map_all.shape," min, max =",map_all.min(), map_all.max())
# map down to 16th magnitude in B2
m_lim = 16.0
map_strong = plot_ellipsoid_regions(Xim.copy(),Yim.copy(),Xa.copy(),Yb.copy(),Thet.copy(),\
b2mag.copy(),matched.copy(), ondetector,pivot,pivot_ori,dims,m_lim,img_angle=angle-180.0,\
lmap=True,makeplot=False,chatter=chatter)
if chatter > 2:
print("zeroth order map strong: shape=",map_strong.shape," min, max =",map_strong.min(), map_strong.max())
# tracks - defined as yi (delta) = 0 at anchor position (ankx,anky)
if chatter > 3 : print ("DEBUG 3500 set up y arrays ")
# shift to first order anchor
x = array(arange(nx))-ankx
y = zeros(nx)+anky
y0 = zeros(nx)+anky - polyval(coef1,0)
y1 = zeros(nx)+anky - polyval(coef1,0)
y2 = zeros(nx)+anky - polyval(coef1,0)
y3 = zeros(nx)+anky - polyval(coef1,0)
q0 = where((x >= dlim0L) & (x <= dlim0U))
x0 = x[q0]
if present0: y0[q0] += polyval(coef0,x[q0])
q1 = where((x >= dlim1L) & (x <= dlim1U))
x1 = x[q1]
if present1: y1[q1] += polyval(coef1,x[q1])
q2 = where((x >= dlim2L) & (x <= dlim2U))
x2 = x[q2]
if present2: y2[q2] += polyval(coef2,x[q2])
q3 = where((x >= dlim3L) & (x <= dlim3U))
x3 = x[q3]
if present3: y3[q3] += polyval(coef3,x[q3])
if trackcentroiding: # global (default = True)
if chatter > 3 : print ("DEBUG 3522 centroid track")
# refine the offset by determining where the peak in the
# first order falls.
# We NEED a map to exclude zeroth orders that fall on/near the spectrum
ny = int(ny)
cp2 = zeros(ny)
cp2_spimg = zeros(spimg.shape) #~TODO:
delpix = 50
if wheelpos == 200: delpix=25 # the accuracy for the nominal uv anchor is not as good.
offsetset = False
if type(offsetlimit) == list:
offsetval = offsetlimit[0]
delpix = array([abs(offsetlimit[1]),1],dtype=int).max() # at least 1
if offsetlimit[1] < 1.:
offsetset = True
else:
print('curved_extraction: offsetlimit=',offsetlimit,' delpix=',delpix)
eo = int(anky-slit_width/2)
if set_offset:
eo = int(offset-slit_width/2)
for q in q1[0]:
if ((x[q] < 600) & (x[q] > -200) & (quality[q] == 0)):
try:
m0 = 0.5*ny-delpix + eo #int( (ny+1)/4)
m1 = 0.5*ny+delpix + eo #int( 3*(ny+1)/4)+1
yoff = y1[q] - anky # this is just the offset from the anchor since y1[x=0] was set to anky
cp2[int(m0-yoff):int(m1-yoff)] += spimg[int(m0):int(m1),q].flatten()
cp2_spimg[int(m0-yoff):int(m1-yoff),q] += spimg[int(m0):int(m1),q].flatten()
except:
print("skipping slice %5i in adjusting first order y-position"%(q))
pass
fig = plt.figure()
plt.title(obsid)
#plt.show()
#print(np.sum(cp2_spimg[:,1632:1832],axis=1),len(np.sum(cp2_spimg[:,200:400],axis=1)))
plt.plot(arange(slit_width),np.sum(cp2_spimg[:,1032:1232],axis=1)/expmap[0],label='-200-0/1032-1232')
plt.plot(arange(slit_width),np.sum(cp2_spimg[:,1232:1432],axis=1)/expmap[0],label='0-200/1232-1432')
plt.plot(arange(slit_width),np.sum(cp2_spimg[:,1432:1632],axis=1)/expmap[0],label='200-400/1432-1632')
plt.plot(arange(slit_width),np.sum(cp2_spimg[:,1632:1832],axis=1)/expmap[0],label='400-600/1632-1832')
plt.legend()
plt.ylabel('count rate per bin')
plt.title(obsid)
plt.savefig(indir+'/'+obsid+'_wing.png')
#plt.show()
plt.close()
if offsetset:
yof = offsetval - anky
if chatter > 1:
print("spectrum location set with input parameter to: y=%5.1f"%(offsetval))
msg += "spectrum location set with input parameter to: y=%5.1f\n"%(offsetval)
else:
if ifmotion:
motion = abs(obsid2motion(obsid,motion_file)['V'])
(p0,p1,p2), ier = leastsq(Fun4, (cp2.max(),anky,3.2), args=(cp2,arange(slit_width),motion) ) #~FIXME:
sigma_mean=np.mean(polyval(sig1coef,x))
#p3= motion
elif fixwidth:
(p0,p1,p2), ier = leastsq(Fun1, (cp2.max(),anky,3.2), args=(cp2,arange(slit_width)) )
sigma_mean=fixwidth/trackwidth #np.mean(polyval(sig1coef,x))
times = sigma_mean/np.mean(polyval(sig1coef,x))
sig0coef = times*sig0coef
sig1coef = times*sig1coef
sig2coef = times*sig2coef
sig3coef = times*sig3coef
elif ifextended:
(p0,p1,p2), ier = leastsq(Fun1, (cp2.max(),anky,3.2), args=(cp2,arange(slit_width)) )
sigma_mean = p2
times = p2/np.mean(polyval(sig1coef,x))
#times = 1.
#sigma_mean = times*np.mean(polyval(sig1coef,x))
sig0coef = times*sig0coef
sig1coef = times*sig1coef
sig2coef = times*sig2coef
sig3coef = times*sig3coef
else:
(p0,p1), ier = leastsq(Fun1b, (cp2.max(),anky), args=(cp2,arange(slit_width),3.2) )
sigma_mean=np.mean(polyval(sig1coef,x))
#print(p0,p1,p2,p3,sigma_mean)
fig = plt.figure()
if ifmotion:
plt.plot(arange(slit_width),cp2)
plt.plot(arange(slit_width),smeargaussian(arange(slit_width),p0,p1,sigma_mean,motion))
plt.vlines(p1-(trackwidth *sigma_mean+motion/2),0,np.max(cp2),color='k')
plt.vlines(p1+(trackwidth *sigma_mean+motion/2),0,np.max(cp2),color='k')
plt.xlabel('y pixels')
plt.ylabel('total counts')
plt.title(obsid+' motion:'+"%.2f"%motion)
elif fixwidth:
np.savetxt(indir+'/'+obsid+'_fit.txt',np.transpose(np.array([arange(slit_width),cp2])),delimiter=',',fmt='%.2f') #~FIXME:
with open(indir+'/'+obsid+'_fit.txt','r+') as f:
content = f.read()
f.seek(0,0)
f.write('A:'+f'{p0:.2f}'+' mu:'+f'{p1:.2f}'+' sigma:'+f'{p2:.2f}'+'\n'+content)
f.close()
plt.plot(arange(slit_width),cp2)
plt.plot(arange(slit_width),singlegaussian(arange(slit_width),p0,p1,p2))
plt.vlines(p1-(trackwidth *sigma_mean),0,np.max(cp2),color='k')
plt.vlines(p1+(trackwidth *sigma_mean),0,np.max(cp2),color='k')
plt.xlabel('y pixels')
plt.ylabel('total counts')
plt.title(obsid)
else:
plt.plot(arange(slit_width),cp2)
plt.plot(arange(slit_width),singlegaussian(arange(slit_width),p0,p1,sigma_mean))
plt.vlines(p1-(trackwidth *sigma_mean),0,np.max(cp2),color='k')
plt.vlines(p1+(trackwidth *sigma_mean),0,np.max(cp2),color='k')
plt.xlabel('y pixels')
plt.ylabel('total counts')
plt.title(obsid)
plt.savefig(indir+'/'+obsid+'_fit.png')
#plt.show()
plt.close()
yof = (p1-anky)
if ank_c_0offset == True:
yof = 0
if chatter > 1:
print("\n *** cross-spectrum gaussian fit parameters: ",p0,p1)
print("the first anchor fit with gaussian peaks at %5.1f, and the Y correction\nis %5.1f (may not be used)" % (p1,yof))
#### should also estimate the likely wavelength error from the offset distance p1 and print
#msg += "cross-spectrum gaussian fit parameters: (%5.1f ,%5.1f)\n" % (p0,p1)
#msg += "the first anchor fit with gaussian peaks at %5.1f, and the Y correction was %5.1f\n" % (p1,yof)
else:
set_offset = True
offsetset = False
# so now shift the location of the curves to match the first order uv part.
if set_offset:
# ignore computed offset and offsetlimit [,] but used passed offset argument
y0 += offset
y1 += offset
y2 += offset
y3 += offset
print("shifting the y-curve with offset passed by parameter")
else:
# assuming the relative position of the orders is correct, just shift the whole bunch
y0 += yof
y1 += yof
y2 += yof
y3 += yof
if not set_qual:
map = None
print("no zeroth order contamination quality information available ")
quality[:] = qflag['good']
# OUTPUT PARAMETER spectra, background, slit init - full dimension retained
if chatter > 3 : print ("DEBUG 3594 set up spectrum arrays ")
# initialize
sp_all = zeros(nx) + cval # straight slit
bg_all = zeros(nx) + cval # straight slit
# spectrum arrays
sp_zeroth = zeros(nx) + cval # curved extraction
sp_first = zeros(nx) + cval # curved extraction
sp_second = zeros(nx) + cval # curved extraction
sp_third = zeros(nx) + cval # curved extraction
bg_zeroth = zeros(nx) + cval # curved extraction
bg_first = zeros(nx) + cval # curved extraction
bg_second = zeros(nx) + cval # curved extraction
bg_third = zeros(nx) + cval # curved extraction
# coi-area arrays
co_zeroth = zeros(nx) + cval
co_first = zeros(nx) + cval
co_second = zeros(nx) + cval
co_third = zeros(nx) + cval
co_back = zeros(nx) + cval
# quality flag arrays
at1 = zeros(nx,dtype=bool)
at2 = zeros(nx,dtype=bool)
at3 = zeros(nx,dtype=bool)
apercorr = zeros(5*nx).reshape(5,nx) + cval
borderup = zeros(5*nx).reshape(5,nx) + cval
borderdown = zeros(5*nx).reshape(5,nx) + cval
fitorder = (present0,present1,present2,present3),(q0,q1,q2,q3),(
y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(
y1,dlim1L,dlim1U,sig1coef,sp_first, co_first ),(
y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(
y3,dlim3L,dlim3U,sig3coef,sp_third,co_third ),(
x,xstart,xend,sp_all,quality,co_back)
if trackonly: # output the coordinates on the extimg image which specify the lay of
# each order
if outfull:
return fitorder, cp2, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,
bg_second,bg_third), (borderup,borderdown), apercorr #, expospec, msg, curved
else: return fitorder
if not trackfull:
if (curved == "update") & (not trackcentroiding):
# the hope is, that with more data the calibration can be improved to eliminate this step
#try:
fitorder2, fval, fvalerr = updateFitorder(extimg, fitorder, wheelpos, full=True,
predict2nd=predict_second_order, fit_second=fit_second, fit_third=fit_second,
C_1=C_1, C_2=C_2, d12=dist12, chatter=chatter)
msg += "updated the curvature and width fit parameters\n"
(present0,present1,present2,present3),(q0,q1,q2,q3), (
y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(
y1,dlim1L,dlim1U,sig1coef,sp_first,co_first ),(
y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(
y3,dlim3L,dlim3U,sig3coef,sp_third,co_third ),(
x,xstart,xend,sp_all,quality,co_back) = fitorder2
# update the anchor y-coordinate
ank_c[0] = y1[int(ank_c[1])]
#except:
# msg += "WARNING: fit order curvature update has failed\n"
# curved = "curve"
if offsetset & (not trackcentroiding):
mess = "%s\nWARNING Using offsetlimit with parameter *curved = 'update'* \n"\
"WARNING Therefore we updated the curvature, and besides the curvature, the\n"\
"Y-position of the extraction region was updated to y1[ankx]=%5.1f and \n"\
"does not equal the offsetlimit value of %5.1f \n%s"%(30*"=*=",
y1[int(ankx)],offsetlimit[0],30*"=*=")
print(mess)
mess = "Updated the curvature, and besides the curvature, the Y-position \n"\
" of the extraction region was updated to y1[ankx]=%5.1f and does\n"\
" not equal the offsetlimit value of %5.1f \n"%(y1[int(ankx)],offsetlimit[0])
msg += mess+"\n"
# default single track extraction
sphalfwid = 4.*sig1coef[0]
spwid = 2*sphalfwid
splim1 = int(slit_width/2+offset-sphalfwid+1)
splim2 = int(splim1 + spwid)
sp_all = extimg[splim1:splim2,:].sum(axis=0).flatten()
bg_all = bgimg[splim1:splim2,:].sum(axis=0).flatten()
borderup[4,:] = splim2
borderdown[4,:] = splim1
# background for coi-loss box - using a 3x larger sampling region
k1 = int(anky-3*coi_half_width+0.5)
co_back = bgimg[k1:k1+int(6*coi_half_width),:].sum(axis=0)/3.0
if present0:
for i in range(nx):
sphalfwid = trackwidth*polyval(sig0coef,x[i])
spwid = 2*sphalfwid
#splim1 = 100+offset-sphalfwid+1 changes 19-feb-2012
#splim2 = splim1 + spwid
#k1 = splim1+y0[i]-anky
k1 = int(y0[i] - sphalfwid + 0.5)
k2 = k1 + int(spwid+0.5)
k3 = int(y0[i] - coi_half_width + 0.5)
k4 = k1 + int(2*coi_half_width)
if i in q0[0]:
co_zeroth[i] = extimg[k3:k4,i].sum()
sp_zeroth[i] = extimg[k1:k2,i].sum()
bg_zeroth[i] = bgimg[k1:k2,i].sum()
borderup[0,i] = k2
borderdown[0,i] = k1
apercorr[0,i] = x_aperture_correction(k1,k2,sig0coef,x[i],norder=0,wheelpos=wheelpos,fixwidth=fixwidth)
if len(expmap) == 1: expospec[0,i] = expmap[0]
else: expospec[0,i] = expmap[k1:k2,i].mean()
if present1:
#if ifmotion:
# apercorr_value = x_aperture_correction(0,0,sig1coef,100,norder=1,mode='gaussian',
# sigma=p2,motion=motion,tw=trackwidth,ifmotion=ifmotion)
for i in range(nx):
if ifmotion:
sphalfwid = trackwidth *polyval(sig1coef,x[i])+motion/2 #~FIXME:
else:
sphalfwid = trackwidth * polyval(sig1coef,x[i])
# if (x[i] < 30): sphalfwid *= bluetrackwidth
spwid = 2*sphalfwid
#splim1 = 100+offset-sphalfwid+1 changes 19-feb-2012
#splim2 = splim1 + spwid
#k1 = int(splim1+y1[i]-anky+0.5)
k1 = int(y1[i] - sphalfwid + 0.5)
k2 = k1 + int(spwid+0.5)
k3 = int(y1[i] - coi_half_width + 0.5)
k4 = k3 + int(2*coi_half_width) #--TODO:FIXME:
k5 = y1[i]
if i in q1[0]:
co_first[i] = extimg[k3:k4,i].sum()
sp_first[i] = extimg[k1:k2,i].sum()
bg_first[i] = bgimg[k1:k2,i].sum()
borderup[1,i] = k2
borderdown[1,i] = k1
if ifmotion:
apercorr[1,i] = x_aperture_correction(k1,k2,sig1coef,x[i],norder=1,mode='gaussian',
sigma=polyval(sig1coef,x[i]),motion=motion,ifmotion=ifmotion,wheelpos=wheelpos,fixwidth=fixwidth)
# apercorr[1,i] = apercorr_value
else:
apercorr[1,i] = x_aperture_correction(k1,k2,sig1coef,x[i],norder=1,wheelpos=wheelpos,fixwidth=fixwidth)
if len(expmap) == 1: expospec[1,i] = expmap[0]
else: expospec[1,i] = expmap[k1:k2,i].mean()
if dropout_mask != None:
at3[i] = dropout_mask[k1:k2,i].any()
if set_qual:
k5 = int(y1[i] - 49 + 0.5)
k6 = k1 + int(98+0.5)
if ny > 20:
# all zeroth orders of sources within coi-distance:
at1[i] = (map_all[i,k3:k4] == False).any()
if ny > 100:
# strong sources: circle 49 pix radius hits the centre of the track
at2[i] = (map_strong[i,k5:k6] == False).any()
quality[at1] = qflag['weakzeroth']
quality[at2] = qflag['zeroth']
quality[at3] = qflag['bad']
if present2:
for i in range(nx):
sphalfwid = trackwidth * polyval(sig2coef,x[i])
spwid = 2*sphalfwid
#splim1 = 100+offset-sphalfwid+1 changes 19-feb-2012
#splim2 = splim1 + spwid
#k1 = int(splim1+y2[i]-anky+0.5)
k1 = int(y2[i] - sphalfwid +0.5)
k2 = k1 + int(spwid+0.5)
k3 = int(y2[i] - coi_half_width + 0.5)
k4 = k1 + int(2*coi_half_width)
if i in q2[0]:
co_second[i] = extimg[k3:k4,i].sum()
sp_second[i] = extimg[k1:k2,i].sum()
bg_second[i] = bgimg[k1:k2,i].sum()
borderup[2,i] = k2
borderdown[2,i] = k1
apercorr[2,i] = x_aperture_correction(k1,k2,sig2coef,x[i],norder=2,wheelpos=wheelpos,fixwidth=fixwidth)
if len(expmap) == 1: expospec[2,i] = expmap[0]
else: expospec[2,i] = expmap[k1:k2,i].mean()
y1_y2 = np.abs(0.5*(k2+k1) - 0.5*(borderup[1,i]-borderdown[1,i]))
s1_s2 = 0.5*(np.polyval(sig1coef,x[i]) + np.polyval(sig2coef, x[i]) )
if ( y1_y2 < s1_s2) : quality[i] += qflag.get('overlap')
if present3:
for i in range(nx):
sphalfwid = trackwidth * polyval(sig3coef,x[i])
spwid = 2*sphalfwid
#splim1 = 100+offset-sphalfwid+1
#splim2 = splim1 + spwid
#k1 = int(splim1+y3[i]-anky+0.5)
k1 = int(y3[i] - sphalfwid +0.5)
k2 = k1 + int(spwid+0.5)
k3 = int(y3[i] - coi_half_width + 0.5)
k4 = k1 + int(2*coi_half_width)
if i in q3[0]:
co_third[i] = extimg[k3:k4,i].sum(axis=0)
sp_third[i] = extimg[k1:k2,i].sum(axis=0)
bg_third[i] = bgimg[k1:k2,i].sum(axis=0)
borderup[3,i] = k2
borderdown[3,i] = k1
apercorr[3,i] = x_aperture_correction(k1,k2,sig3coef,x[i],norder=3,wheelpos=wheelpos,fixwidth=fixwidth)
if len(expmap) == 1: expospec[3,i] = expmap[0]
else: expospec[3,i] = expmap[k1:k2,i].mean()
# y0,y1,y2,y3 now reflect accurately the center of the slit used.
if chatter > 3 : print ("DEBUG 3792 stacking results in structure fitorder")
fitorder = (present0,present1,present2,present3),(q0,q1,q2,q3), (
y0,dlim0L,dlim0U,sig0coef,sp_zeroth,co_zeroth),(
y1,dlim1L,dlim1U,sig1coef,sp_first, co_first ),(
y2,dlim2L,dlim2U,sig2coef,sp_second,co_second),(
y3,dlim3L,dlim3U,sig3coef,sp_third, co_third ),(
x,xstart,xend,sp_all,quality,co_back)
#~FIXME:
if outfull:
return fitorder, cp2, (coef0,coef1,coef2,coef3), (bg_zeroth,bg_first,
bg_second,bg_third), (borderup,borderdown), apercorr, expospec, msg, curved
else: return fitorder
#===================
# Now calculate the probability distributions across the orders using gaussian fits
# this section was for development only
if trackfull: #~FIXME: # fit the cross profile with gaussians; return the gaussian fit parameters
if chatter > 3 : print ("DEBUG 3810 full-track update with mfit")
# output parameter gfit:
# define output per x[i]: numpy array gfit.shape= (6,nx) of: (x,order,amplitude,y_pix_position,sig,flags)
gfit = np.zeros( 4*6*nx ).reshape(4,6,nx) -1
#check that y1,y2,y3 are full length arrays
if not ( (len(y1) == nx) & (len(y2) == nx) & (len(y3) == nx) ):
print("FATAL error in uvotgetspec.curved_extraction array sizes wrong")
# this parameter allows you to restrict the range along the dispersion being considered
if (test == None) | (test == 'cal'):
ileft = 2
irite = nx -2
else:
ileft = test[0]
irite = test[1]
for i in range(ileft,irite):
if chatter > 3: print("uvotgetspec.curved_extraction [trackfull] fitting i = %2i x=%6.2f"%(i,x[i]))
# do the zeroth order
if i in q0[0]:
Ypos = (array( [y0[i]])).flatten()
Xpos = arange(i-2,i+3)
sigmas = sig0coef
(par, flag), junk = get_components(Xpos,spimg,Ypos,wheelpos,\
caldefault=caldefault,sigmas=sigmas)
flags = str(flag[0])+str(flag[1])+str(flag[2])+str(flag[3])+str(flag[4])+str(flag[5])
iflags = int(flags)
gfit[0,:,i] = [i,0,par[0],par[1],par[2],iflags]
if chatter > 3: print(i, par, flag)
# do the first order
if ((i in q1[0]) & (i not in q2[0])) :
Ypos = array( [y1[i]] ).flatten()
Xpos = arange(i-2,i+3)
sigmas = sig1coef
(par, flag), junk = get_components(Xpos,spimg,Ypos,wheelpos,\
caldefault=caldefault,sigmas=sigmas)
flags = str(flag[0])+str(flag[1])+str(flag[2])+str(flag[3])+str(flag[4])+str(flag[5])
iflags = int(flags)
gfit[1,:,i] = [i,1,par[0],par[1],par[2],iflags]
if chatter > 3: print(i, par, flag)
# do the second order
if ((i in q1[0]) & (i in q2[0]) & (i not in q3[0])):
Ypos = array( [y1[i],y2[i]]).flatten()
Xpos = arange(i-3,i+4)
sigmas = array([ sig1coef[0], sig2coef[0] ])
if chatter > 3: print('++++ second order Xpos:',Xpos,' Ypos: ', Ypos,' wheelpos ',wheelpos)
Z = get_components(Xpos,spimg,Ypos,wheelpos,composite_fit=composite_fit,\
caldefault=caldefault,sigmas=sigmas)
par, flag = Z[0]
flags = str(flag[0])+str(flag[1])+str(flag[2])+str(flag[3])+str(flag[4])+str(flag[5])
iflags = int(flags)
gfit[1,:,i] = [i,1,par[0],par[1],par[2],iflags]
if len(par) == 6:
gfit[2,:,i] = [i,2,par[3],par[4],par[5],iflags]
if chatter > 3: print(i); print(par[0:3]); print(par[3:6]); print(flag)
# do the third order
if ((i in q1[0]) & (i in q2[0]) & (i in q3[0])):
Ypos = array([y1[i],y2[i],y3[i]]).flatten()
Xpos = arange(i-4,i+5)
sigmas = array([sig1coef[0], sig2coef[0], sig3coef[0]])
if chatter > 3: print('+++++ third order Xpos:',Xpos,' Ypos: ', Ypos,' * * * 3 3 3 3 3 * * *')
width = abs( polyval(array([2.0e-05, 0.034, -70]),(anchor2[1]-1200.)))+5.0 # rough limits
try:
Z = get_components(Xpos,spimg,Ypos,wheelpos,chatter=chatter,width=width,\
composite_fit=composite_fit,caldefault=caldefault,sigmas=sigmas)
par, flag = Z[0]
except:
print("failed 3rd order fitting width = ",width)
print("Ypos = ",Ypos)
print("Xpos range ",i-4,i+5, " sigmas = ",sigmas, " wheelpos = ",wheelpos)
print("composite_fit:",composite_fit," caldefault:",caldefault)
print(par)
print(flag)
par = array([0.,y1[i],3.,0.,y2[i],4.,0.,y3[i],6.])
flag = array([9,9,9,9,9,9])
flags = str(flag[0])+str(flag[1])+str(flag[2])+str(flag[3])+str(flag[4])+str(flag[5])
iflags = int(flags)
gfit[1,:,i] = [i,1,par[0],par[1],par[2],iflags]
if len(par) > 4:
gfit[2,:,i] = [i,2,par[3],par[4],par[5],iflags]
if len(par) == 9:
gfit[3,:,i] = [i,3,par[6],par[7],par[8],iflags]
if chatter > 3:
print(i); print(par[0:3]) ; print(par[3:6]) ; print(par[6:9]) ; print(iflags)
# thing not covered (properly):
# -- the second order falls on the first and the third order not
# -- one of the orders is not on the detector
# -- order overlap
# -- minus one order
return fitorder, gfit, (bgimg,)
def x_aperture_correction(k1,k2,sigcoef,x,norder=None, mode='best', coi=None, wheelpos=None, sigma=3.2,motion=10, tw=2.5, ifmotion=True, fixwidth=False):
'''Returns the aperture correction factor
parameters
----------
k1,k2 : int
k1 edge of track, k2 opposite track edge
in pixel coordinates
sigcoef : list
polynomial coefficient of the fit to the track width
so that sigma = polyval(sigcoef,x)
x : float
pixel/channel position
norder: int
order of the spectrum
mode : 'best'|'gaussian'
'gaussian' option causes first order to be treated as a gaussian PSF
coi : None
not implemented
wheelpos : 160|200|955|1000
filter wheel position
Notes
-----
The aperture correction is returned for given sigcoef and position x
Using the measured cumulative profile normal to the dispersion for the
first order (faint spectrum) or gaussians for orders zero,second, third.
History:
2012-02-20 Split out in preparation of non-gaussian aperture correction factor
2012-10-06 Dependence on coi-factor identified as a likely parameter
changing the PSF (no further action)
2013-12-15 revised aperture functions, one for each grism (low coi)
'''
import uvotmisc
import scipy
from scipy.interpolate import interp1d, splev
import numpy as np
apercorr = 1.0
if fixwidth:
apercorr = np.ones(np.shape(apercorr)) #~FIXME: I must remove this line to do apercorr
return apercorr
if norder == 0:
apercorr = 1.0/uvotmisc.GaussianHalfIntegralFraction( 0.5*(k2-k1)/np.polyval(sigcoef,x) )
if norder == 1:
# low coi apertures (normalised to 1 at aperture with half-width 2.5 sigma)
# fitted polynomials to the aperture (low-coi)
#for 0<aperture<6 sig
polycoef160 = np.array([ 1.32112392e-03, -2.69269447e-02, 2.10636905e-01,
-7.89493710e-01, 1.43691688e+00, -2.43239325e-02])
polycoef200 = np.array([ 1.29297314e-03, -2.66018405e-02, 2.10241179e-01,
-7.93941262e-01, 1.44678036e+00, -2.51078365e-02])
#y200 = polyval(polycoef200,x)
polycoef1000a = np.array([ 0.00260494, -0.04792046, 0.33581242, -1.11237223, 1.74086898,
-0.04026319]) # for aperture <= 2.2 sig, and for larger:
polycoef1000b = np.array([ 0.00128903, 0.00107042, 0.98446801])
polycoef955 = np.array([ 0.00213156, -0.03953134, 0.28146284, -0.96044626, 1.58429093,
-0.02412411]) # for aperture < 4 sig
# best curves for the apertures (using aperture.py plots WD1657+343)
aper_160_low = {
# half-width in units of sig
"sig": [0.00,0.30,0.51,0.700,0.90,1.000,1.100,1.200,1.400,
1.600,1.800,2.000,2.20,2.5,2.900,3.31,4.11,6.00],
# aperture correction, normalised
"ape": [0.00,0.30,0.52,0.667,0.77,0.818,0.849,0.872,0.921,
0.947,0.968,0.980,0.99,1.0,1.008,1.01,1.01,1.01]
}
aper_200_low = {
"sig": [0.0,0.300,0.510,0.700,0.800,0.900,1.000,1.10,1.20,
1.40, 1.60, 1.80, 2.0, 2.2, 2.5, 2.7, 3.0,4.0,6.0],
"ape": [0.0,0.308,0.533,0.674,0.742,0.780,0.830,0.86,0.89,
0.929,0.959,0.977,0.986,0.991,1.0,1.002,1.003,1.004,1.005 ]
}
aper_1000_low = {
"sig": [0.0, 0.3, 0.5, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 2.0,2.2,2.5,3.0 ,4.0 ,6.0 ],
"ape": [0.0,0.37,0.55,0.68,0.74,0.80,0.85,0.91,0.96,0.98,0.995,1. ,1. ,1.004,1.01,1.01]
}
aper_955_med = {
"sig": [0.0,0.30,0.60,0.80,1.00,1.30,1.60,1.80,2.00,2.50,3.00, 4.00,6.00],
"ape": [0.0,0.28,0.47,0.64,0.75,0.86,0.93,0.96,0.97,1.00,1.013,1.02,1.02]
}
aper_1000_med = {
"sig": [0.0,0.30,0.50,0.70,0.80,0.90,1.00,1.20,1.40,1.60,
1.80,2.00,2.20,2.50,3.00,4.00,6.00],
"ape": [0.0,0.34,0.46,0.63,0.68,0.73,0.76,0.87,0.90,0.94,
0.96,0.98,0.99,1.00,1.015,1.027,1.036]
}
renormal = 1.0430 # calibration done with aperture correction 1.043 (sig=2.5)
sig = | np.polyval(sigcoef,x) | numpy.polyval |
"""
Test Surrogates Overview
========================
"""
# Author: <NAME> <<EMAIL>>
# License: new BSD
from PIL import Image
import numpy as np
import scripts.surrogates_overview as exo
import scripts.image_classifier as imgclf
import sklearn.datasets
import sklearn.linear_model
SAMPLES = 10
BATCH = 50
SAMPLE_IRIS = False
IRIS_SAMPLES = 50000
def test_bilmey_image():
"""Tests surrogate image bLIMEy."""
# Load the image
doggo_img = Image.open('surrogates_overview/img/doggo.jpg')
doggo_array = np.array(doggo_img)
# Load the classifier
clf = imgclf.ImageClassifier()
explain_classes = [('tennis ball', 852),
('golden retriever', 207),
('Labrador retriever', 208)]
# Configure widgets to select occlusion colour, segmentation granularity
# and explained class
colour_selection = {
i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green']
}
granularity_selection = {'low': 13, 'medium': 30, 'high': 50}
# Generate explanations
blimey_image_collection = {}
for gran_name, gran_number in granularity_selection.items():
blimey_image_collection[gran_name] = {}
for col_name in colour_selection:
blimey_image_collection[gran_name][col_name] = \
exo.build_image_blimey(
doggo_array,
clf.predict_proba,
explain_classes,
explanation_size=5,
segments_number=gran_number,
occlusion_colour=col_name,
samples_number=SAMPLES,
batch_size=BATCH,
random_seed=42)
exp = []
for gran_ in blimey_image_collection:
for col_ in blimey_image_collection[gran_]:
exp.append(blimey_image_collection[gran_][col_]['surrogates'])
assert len(exp) == len(EXP_IMG)
for e, E in zip(exp, EXP_IMG):
assert sorted(list(e.keys())) == sorted(list(E.keys()))
for key in e.keys():
assert e[key]['name'] == E[key]['name']
assert len(e[key]['explanation']) == len(E[key]['explanation'])
for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']):
assert e_[0] == E_[0]
assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True)
def test_bilmey_tabular():
"""Tests surrogate tabular bLIMEy."""
# Load the iris data set
iris = sklearn.datasets.load_iris()
iris_X = iris.data # [:, :2] # take the first two features only
iris_y = iris.target
iris_labels = iris.target_names
iris_feature_names = iris.feature_names
label2class = {lab: i for i, lab in enumerate(iris_labels)}
# Fit the classifier
logreg = sklearn.linear_model.LogisticRegression(C=1e5)
logreg.fit(iris_X, iris_y)
# explained class
_dtype = iris_X.dtype
explained_instances = {
'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype),
'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype),
'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype)
}
petal_length_idx = iris_feature_names.index('petal length (cm)')
petal_length_bins = [1, 2, 3, 4, 5, 6, 7]
petal_width_idx = iris_feature_names.index('petal width (cm)')
petal_width_bins = [0, .5, 1, 1.5, 2, 2.5]
discs_ = []
for i, ix in enumerate(petal_length_bins): # X-axis
for iix in petal_length_bins[i + 1:]:
for j, jy in enumerate(petal_width_bins): # Y-axis
for jjy in petal_width_bins[j + 1:]:
discs_.append({
petal_length_idx: [ix, iix],
petal_width_idx: [jy, jjy]
})
for inst_i in explained_instances:
for cls_i in iris_labels:
for disc_i, disc in enumerate(discs_):
inst = explained_instances[inst_i]
cls = label2class[cls_i]
exp = exo.build_tabular_blimey(
inst, cls, iris_X, iris_y, logreg.predict_proba, disc,
IRIS_SAMPLES, SAMPLE_IRIS, 42)
key = '{}&{}&{}'.format(inst_i, cls, disc_i)
exp_ = EXP_TAB[key]
assert exp['explanation'].shape[0] == exp_.shape[0]
assert np.allclose(
exp['explanation'], exp_, atol=.001, equal_nan=True)
EXP_IMG = [
{207: {'explanation': [(13, -0.24406872165780585),
(11, -0.20456180387430317),
(9, -0.1866779131424261),
(4, 0.15001224157793785),
(3, 0.11589480417160983)],
'name': 'golden retriever'},
208: {'explanation': [(13, -0.08395966359346249),
(0, -0.0644986107387837),
(9, 0.05845584633658977),
(1, 0.04369763085720947),
(11, -0.035958188394941866)],
'name': '<NAME>'},
852: {'explanation': [(13, 0.3463529698715463),
(11, 0.2678050131923326),
(4, -0.10639863421417416),
(6, 0.08345792378117327),
(9, 0.07366945242386444)],
'name': '<NAME>'}},
{207: {'explanation': [(13, -0.0624167912596456),
(7, 0.06083359545295548),
(3, 0.0495953943686462),
(11, -0.04819787147412231),
(2, -0.03858823761391199)],
'name': '<NAME>'},
208: {'explanation': [(13, -0.08408428146916162),
(7, 0.07704235920590158),
(3, 0.06646468388122273),
(11, -0.0638326572126609),
(2, -0.052621478002380796)],
'name': '<NAME>'},
852: {'explanation': [(11, 0.35248212611685886),
(13, 0.2516925608037859),
(2, 0.13682853028454384),
(9, 0.12930134856644754),
(6, 0.1257747954095489)],
'name': '<NAME>'}},
{207: {'explanation': [(3, 0.21351937934930917),
(10, 0.16933456312772083),
(11, -0.13447244552856766),
(8, 0.11058919217055371),
(2, -0.06269239798368743)],
'name': '<NAME>'},
208: {'explanation': [(8, 0.05995551486884414),
(9, -0.05375302972380482),
(11, -0.051997353324246445),
(6, 0.04213181405953071),
(2, -0.039169895361928275)],
'name': '<NAME>'},
852: {'explanation': [(7, 0.31382219776986503),
(11, 0.24126214884275987),
(13, 0.21075924370226598),
(2, 0.11937652039885377),
(8, -0.11911265319329697)],
'name': '<NAME>'}},
{207: {'explanation': [(3, 0.39254403293049134),
(9, 0.19357165018747347),
(6, 0.16592079671652987),
(0, 0.14042059731407297),
(1, 0.09793027079765507)],
'name': '<NAME>'},
208: {'explanation': [(9, -0.19351859273276703),
(1, -0.15262967987262344),
(3, 0.12205127112235375),
(2, 0.11352141032313934),
(6, -0.11164209893429898)],
'name': '<NAME>'},
852: {'explanation': [(7, 0.17213007100844877),
(0, -0.1583030948868859),
(3, -0.13748574615069775),
(5, 0.13273283867075436),
(11, 0.12309551170070354)],
'name': '<NAME>'}},
{207: {'explanation': [(3, 0.4073533182995105),
(10, 0.20711667988142463),
(8, 0.15360813290032324),
(6, 0.1405424759832785),
(1, 0.1332920685413575)],
'name': '<NAME>'},
208: {'explanation': [(9, -0.14747910525112617),
(1, -0.13977061235228924),
(2, 0.10526833898161611),
(6, -0.10416022118399552),
(3, 0.09555992655161764)],
'name': '<NAME>'},
852: {'explanation': [(11, 0.2232260929107954),
(7, 0.21638443149433054),
(5, 0.21100464215582274),
(13, 0.145614853795006),
(1, -0.11416523431311262)],
'name': '<NAME>'}},
{207: {'explanation': [(1, 0.14700178977744183),
(0, 0.10346667279328238),
(2, 0.10346667279328238),
(7, 0.10346667279328238),
(8, 0.10162900633690726)],
'name': '<NAME>'},
208: {'explanation': [(10, -0.10845134816658476),
(8, -0.1026920429226184),
(6, -0.10238154733842847),
(18, 0.10094164937411244),
(16, 0.08646888450232793)],
'name': '<NAME>'},
852: {'explanation': [(18, -0.20542297091894474),
(13, 0.2012751176130666),
(8, -0.19194747162742365),
(20, 0.14686930696710473),
(15, 0.11796990086271067)],
'name': '<NAME>'}},
{207: {'explanation': [(13, 0.12446259821701779),
(17, 0.11859084421095789),
(15, 0.09690553833007137),
(12, -0.08869743701731962),
(4, 0.08124900427893789)],
'name': '<NAME>'},
208: {'explanation': [(10, -0.09478194981909983),
(20, -0.09173392507039077),
(9, 0.08768898801254493),
(17, -0.07553994244536394),
(4, 0.07422905503397653)],
'name': '<NAME>'},
852: {'explanation': [(21, 0.1327882942965061),
(1, 0.1238236573086363),
(18, -0.10911712271717902),
(19, 0.09707191051320978),
(6, 0.08593672504338913)],
'name': '<NAME>'}},
{207: {'explanation': [(6, 0.14931728779865114),
(14, 0.14092073957103526),
(1, 0.11071480021464616),
(4, 0.10655287976934531),
(8, 0.08705404649152573)],
'name': '<NAME>'},
208: {'explanation': [(8, -0.12242580400886727),
(9, 0.12142729544158742),
(14, -0.1148252787068248),
(16, -0.09562322208795092),
(4, 0.09350160975513132)],
'name': '<NAME>'},
852: {'explanation': [(6, 0.04227675072263027),
(9, -0.03107924340879173),
(14, 0.028007115650713045),
(13, 0.02771190348545554),
(19, 0.02640441416071482)],
'name': '<NAME>'}},
{207: {'explanation': [(19, 0.14313680656283245),
(18, 0.12866508562342843),
(8, 0.11809779264185447),
(0, 0.11286255403442104),
(2, 0.11286255403442104)],
'name': '<NAME>'},
208: {'explanation': [(9, 0.2397917428082761),
(14, -0.19435572812170654),
(6, -0.1760894833446507),
(18, -0.12243333818399058),
(15, 0.10986343675377105)],
'name': '<NAME>'},
852: {'explanation': [(14, 0.15378038774613365),
(9, -0.14245940635481966),
(6, 0.10213601012183973),
(20, 0.1009180838986786),
(3, 0.09780065767815548)],
'name': '<NAME>'}},
{207: {'explanation': [(15, 0.06525850448807077),
(9, 0.06286791243851698),
(19, 0.055189970374185854),
(8, 0.05499197604401475),
(13, 0.04748220842936177)],
'name': '<NAME>'},
208: {'explanation': [(6, -0.31549091899770765),
(5, 0.1862302670824446),
(8, -0.17381478451341995),
(10, -0.17353516098662508),
(14, -0.13591542421754205)],
'name': '<NAME>'},
852: {'explanation': [(14, 0.2163853942943355),
(6, 0.17565046338282214),
(1, 0.12446193028474549),
(9, -0.11365789839746396),
(10, 0.09239073691962967)],
'name': '<NAME>'}},
{207: {'explanation': [(19, 0.1141207265647932),
(36, -0.08861425922625768),
(30, 0.07219209872026074),
(9, -0.07150939547859836),
(38, -0.06988288637544438)],
'name': '<NAME>'},
208: {'explanation': [(29, 0.10531073909547647),
(13, 0.08279642208039652),
(34, -0.0817952443980797),
(33, -0.08086848205765082),
(12, 0.08086848205765082)],
'name': '<NAME>'},
852: {'explanation': [(13, -0.1330452414595897),
(4, 0.09942366413042845),
(12, -0.09881995683190645),
(33, 0.09881995683190645),
(19, -0.09596925317560831)],
'name': '<NAME>'}},
{207: {'explanation': [(37, 0.08193926967758253),
(35, 0.06804043021426347),
(15, 0.06396269230810163),
(11, 0.062255657227065296),
(8, 0.05529200233091672)],
'name': '<NAME>'},
208: {'explanation': [(19, 0.05711957286614678),
(27, -0.050230108135410824),
(16, -0.04743034616549999),
(5, -0.046717346734255705),
(9, -0.04419100026638039)],
'name': '<NAME>'},
852: {'explanation': [(3, -0.08390967998497496),
(30, -0.07037680222442452),
(22, 0.07029819368543713),
(8, -0.06861396187180349),
(37, -0.06662511956402824)],
'name': '<NAME>'}},
{207: {'explanation': [(19, 0.048418845359024805),
(9, -0.0423869575883795),
(30, 0.04012650790044438),
(36, -0.03787242980067195),
(10, 0.036557999380695635)],
'name': '<NAME>'},
208: {'explanation': [(10, 0.12120686823129677),
(17, 0.10196564232230493),
(7, 0.09495133975425854),
(25, -0.0759657891182803),
(2, -0.07035244568286837)],
'name': '<NAME>'},
852: {'explanation': [(3, -0.0770578003457272),
(28, 0.0769372258280398),
(6, -0.06044725989272927),
(22, 0.05550155775286349),
(31, -0.05399028046597057)],
'name': '<NAME>'}},
{207: {'explanation': [(14, 0.05371383110181226),
(0, -0.04442539316084218),
(18, 0.042589475382826494),
(19, 0.04227647855354252),
(17, 0.041685661662754295)],
'name': '<NAME>'},
208: {'explanation': [(29, 0.14419601354489464),
(17, 0.11785174500536676),
(36, 0.1000501679652906),
(10, 0.09679790134851017),
(35, 0.08710376081189208)],
'name': '<NAME>'},
852: {'explanation': [(8, -0.02486237985832769),
(3, -0.022559886154747102),
(11, -0.021878686669239856),
(36, 0.021847953817988534),
(19, -0.018317598300716522)],
'name': '<NAME>'}},
{207: {'explanation': [(37, 0.08098729255605368),
(35, 0.06639102704982619),
(15, 0.06033721190370432),
(34, 0.05826267856117829),
(28, 0.05549505160798173)],
'name': '<NAME>'},
208: {'explanation': [(17, 0.13839012042250542),
(10, 0.11312187488346881),
(7, 0.10729071207480922),
(25, -0.09529127965797404),
(11, -0.09279834572979286)],
'name': '<NAME>'},
852: {'explanation': [(3, -0.028385651836694076),
(22, 0.023364702783498722),
(8, -0.023097812578270233),
(30, -0.022931236620034406),
(37, -0.022040170736525342)],
'name': '<NAME>'}}
]
EXP_TAB = {
'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]),
'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]),
'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&0&75': np.array([0.0, 0.95124502153736]),
'setosa&0&76': np.array([0.0, 0.9708703761803881]),
'setosa&0&77': np.array([0.0, 0.5659706098422994]),
'setosa&0&78': np.array([0.0, 0.3962828716108186]),
'setosa&0&79': np.array([0.0, 0.2538069363248767]),
'setosa&0&80': np.array([0.0, 0.95124502153736]),
'setosa&0&81': np.array([0.0, 0.95124502153736]),
'setosa&0&82': np.array([0.0, 0.95124502153736]),
'setosa&0&83': np.array([0.0, 0.95124502153736]),
'setosa&0&84': np.array([0.0, 0.9708703761803881]),
'setosa&0&85': np.array([0.0, 0.9708703761803881]),
'setosa&0&86': np.array([0.0, 0.9708703761803881]),
'setosa&0&87': np.array([0.0, 0.5659706098422994]),
'setosa&0&88': np.array([0.0, 0.5659706098422994]),
'setosa&0&89': np.array([0.0, 0.3962828716108186]),
'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]),
'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]),
'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]),
'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]),
'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]),
'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]),
'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]),
'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]),
'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]),
'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]),
'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]),
'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]),
'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]),
'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]),
'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]),
'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]),
'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]),
'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]),
'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]),
'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]),
'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]),
'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]),
'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]),
'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&1&75': np.array([0.0, -0.4756207622944677]),
'setosa&1&76': np.array([0.0, -0.4854334805210761]),
'setosa&1&77': np.array([0.0, 0.16885577975809635]),
'setosa&1&78': np.array([0.0, 0.395805885538554]),
'setosa&1&79': np.array([0.0, 0.2538072707138344]),
'setosa&1&80': np.array([0.0, -0.4756207622944677]),
'setosa&1&81': np.array([0.0, -0.4756207622944677]),
'setosa&1&82': np.array([0.0, -0.4756207622944677]),
'setosa&1&83': np.array([0.0, -0.4756207622944677]),
'setosa&1&84': np.array([0.0, -0.4854334805210761]),
'setosa&1&85': np.array([0.0, -0.4854334805210761]),
'setosa&1&86': np.array([0.0, -0.4854334805210761]),
'setosa&1&87': np.array([0.0, 0.16885577975809635]),
'setosa&1&88': np.array([0.0, 0.16885577975809635]),
'setosa&1&89': np.array([0.0, 0.395805885538554]),
'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]),
'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]),
'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]),
'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]),
'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]),
'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]),
'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]),
'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]),
'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]),
'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]),
'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]),
'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]),
'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]),
'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]),
'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]),
'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]),
'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]),
'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]),
'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]),
'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]),
'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]),
'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]),
'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]),
'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]),
'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]),
'setosa&2&75': np.array([0.0, -0.47562425924289314]),
'setosa&2&76': np.array([0.0, -0.48543689565931186]),
'setosa&2&77': np.array([0.0, -0.7348263896003956]),
'setosa&2&78': np.array([0.0, -0.7920887571493729]),
'setosa&2&79': np.array([0.0, -0.507614207038711]),
'setosa&2&80': np.array([0.0, -0.47562425924289314]),
'setosa&2&81': np.array([0.0, -0.47562425924289314]),
'setosa&2&82': np.array([0.0, -0.47562425924289314]),
'setosa&2&83': np.array([0.0, -0.47562425924289314]),
'setosa&2&84': np.array([0.0, -0.48543689565931186]),
'setosa&2&85': np.array([0.0, -0.48543689565931186]),
'setosa&2&86': np.array([0.0, -0.48543689565931186]),
'setosa&2&87': np.array([0.0, -0.7348263896003956]),
'setosa&2&88': np.array([0.0, -0.7348263896003956]),
'setosa&2&89': np.array([0.0, -0.7920887571493729]),
'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]),
'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]),
'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]),
'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]),
'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]),
'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]),
'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]),
'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]),
'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]),
'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]),
'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]),
'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]),
'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]),
'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]),
'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]),
'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]),
'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]),
'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]),
'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]),
'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]),
'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]),
'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]),
'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]),
'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]),
'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]),
'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]),
'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]),
'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]),
'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]),
'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]),
'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]),
'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]),
'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]),
'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]),
'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]),
'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]),
'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]),
'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]),
'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&0&75': np.array([0.0, -0.95124502153736]),
'versicolor&0&76': np.array([0.0, -0.9708703761803881]),
'versicolor&0&77': np.array([0.0, 0.5659706098422994]),
'versicolor&0&78': np.array([0.0, 0.3962828716108186]),
'versicolor&0&79': np.array([0.0, 0.2538069363248767]),
'versicolor&0&80': np.array([0.0, -0.9708703761803881]),
'versicolor&0&81': np.array([0.0, -0.3631376646911367]),
'versicolor&0&82': np.array([0.0, -0.5804857652839247]),
'versicolor&0&83': np.array([0.0, -0.8943993997517804]),
'versicolor&0&84': np.array([0.0, -0.4231275527222919]),
'versicolor&0&85': np.array([0.0, -0.6164235822373675]),
'versicolor&0&86': np.array([0.0, -0.9166476163222441]),
'versicolor&0&87': np.array([0.0, 0.5659706098422994]),
'versicolor&0&88': np.array([0.0, 0.5659706098422994]),
'versicolor&0&89': np.array([0.0, 0.3962828716108186]),
'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]),
'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]),
'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]),
'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]),
'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]),
'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]),
'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]),
'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]),
'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]),
'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]),
'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]),
'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]),
'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]),
'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]),
'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]),
'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]),
'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]),
'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]),
'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]),
'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]),
'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]),
'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]),
'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]),
'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]),
'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]),
'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]),
'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]),
'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]),
'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]),
'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]),
'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]),
'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]),
'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]),
'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]),
'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]),
'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]),
'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]),
'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]),
'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]),
'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]),
'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]),
'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]),
'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]),
'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]),
'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]),
'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]),
'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]),
'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]),
'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]),
'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]),
'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]),
'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]),
'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]),
'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]),
'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]),
'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]),
'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]),
'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]),
'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]),
'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]),
'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]),
'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]),
'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]),
'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]),
'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]),
'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]),
'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]),
'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]),
'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]),
'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]),
'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]),
'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]),
'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]),
'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]),
'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]),
'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]),
'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]),
'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]),
'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]),
'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]),
'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]),
'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]),
'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]),
'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]),
'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]),
'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]),
'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]),
'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]),
'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]),
'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]),
'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]),
'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]),
'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]),
'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]),
'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]),
'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]),
'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]),
'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]),
'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]),
'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]),
'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]),
'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]),
'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]),
'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]),
'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]),
'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]),
'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]),
'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]),
'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]),
'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]),
'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]),
'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]),
'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]),
'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]),
'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]),
'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]),
'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]),
'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]),
'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]),
'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]),
'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]),
'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]),
'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]),
'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]),
'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]),
'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]),
'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]),
'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]),
'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]),
'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]),
'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]),
'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]),
'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]),
'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]),
'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]),
'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]),
'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]),
'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]),
'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]),
'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]),
'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]),
'versicolor&1&75': np.array([0.0, 0.4756207622944677]),
'versicolor&1&76': np.array([0.0, 0.4854334805210761]),
'versicolor&1&77': np.array([0.0, 0.16885577975809635]),
'versicolor&1&78': np.array([0.0, 0.395805885538554]),
'versicolor&1&79': np.array([0.0, 0.2538072707138344]),
'versicolor&1&80': np.array([0.0, 0.4854334805210761]),
'versicolor&1&81': np.array([0.0, 0.7613919530844643]),
'versicolor&1&82': np.array([0.0, 0.6668230985485095]),
'versicolor&1&83': np.array([0.0, 0.4904755652105692]),
'versicolor&1&84': np.array([0.0, 0.8121046082359693]),
'versicolor&1&85': np.array([0.0, 0.6855766903749089]),
'versicolor&1&86': np.array([0.0, 0.5008471974438506]),
'versicolor&1&87': np.array([0.0, 0.16885577975809635]),
'versicolor&1&88': np.array([0.0, 0.16885577975809635]),
'versicolor&1&89': np.array([0.0, 0.395805885538554]),
'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]),
'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]),
'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]),
'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]),
'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]),
'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]),
'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]),
'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]),
'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]),
'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]),
'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]),
'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]),
'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]),
'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]),
'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]),
'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]),
'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]),
'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]),
'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]),
'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]),
'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]),
'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]),
'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]),
'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]),
'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]),
'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]),
'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]),
'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]),
'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]),
'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]),
'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]),
'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]),
'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]),
'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]),
'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]),
'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]),
'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]),
'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]),
'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]),
'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]),
'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]),
'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]),
'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]),
'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]),
'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]),
'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]),
'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]),
'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]),
'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]),
'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]),
'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]),
'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]),
'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]),
'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]),
'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]),
'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]),
'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]),
'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]),
'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]),
'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]),
'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]),
'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]),
'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]),
'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]),
'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]),
'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]),
'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]),
'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]),
'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]),
'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]),
'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]),
'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]),
'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]),
'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]),
'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]),
'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]),
'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]),
'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]),
'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]),
'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]),
'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]),
'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]),
'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]),
'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]),
'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]),
'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]),
'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]),
'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]),
'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]),
'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]),
'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]),
'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]),
'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]),
'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]),
'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]),
'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]),
'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]),
'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]),
'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]),
'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]),
'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]),
'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]),
'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]),
'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]),
'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]),
'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]),
'versicolor&1&294': | np.array([0.18216358701833335, 0.747615101407194]) | numpy.array |
#!/local/anaconda/bin/python
# IMPORTANT: leave the above line as is.
import sys
import numpy as np
import time
DIM_ORIG = 400
DIM_TRANS = 3500
np.random.seed(42)
omegas = np.random.randn(DIM_TRANS, 1196)
bs = np.random.uniform(0, 2*np.pi, DIM_TRANS)
def transform(x_orig):
x_orig = x_orig[1:]
x_orig = np.hstack((np.sqrt(x_orig),
np.diff(x_orig),
np.gradient(x_orig)))
return np.sqrt(2.0/DIM_TRANS)*np.cos(omegas.dot(x_orig) + bs)
def print_array(a):
for a_i in np.nditer(a):
print(a_i),
print('')
def sgd(x, y, l, start_time):
l_sqrt = np.sqrt(l)
w = | np.zeros(DIM_TRANS) | numpy.zeros |
#https://github.com/Newmu/Theano-Tutorials/blob/master/1_linear_regression.py
import theano
from theano import tensor as T
import numpy as np
trX = np.linspace(-1, 1, 101)
trY = 2 * trX + np.random.randn(*trX.shape) * 0.33
X = T.scalar()
Y = T.scalar()
def model(X, w):
return X * w
w = theano.shared(np.asarray(0., dtype=theano.config.floatX))
y = model(X, w)
cost = T.mean(T.sqr(y - Y))
gradient = T.grad(cost=cost, wrt=w)
updates = [[w, w - gradient * 0.01]]
train = theano.function(inputs=[X, Y], outputs=cost, updates=updates, allow_input_downcast=True)
for i in range(100):
for x, y in zip(trX, trY):
train(x, y)
print(w.get_value()) #something around 2
#https://raw.githubusercontent.com/Newmu/Theano-Tutorials/master/2_logistic_regression.py
import theano
from theano import tensor as T
import numpy as np
from fuel.datasets import MNIST
from matplotlib import pyplot, cm
dataset = MNIST(('train',), sources=('features',))
state = dataset.open()
image, = dataset.get_data(state=state, request=[1234])
pyplot.imshow(image.reshape((28, 28)), cmap=cm.Greys_r, interpolation='nearest')
pyplot.show()
dataset.close(state)
def floatX(X):
return np.asarray(X, dtype=theano.config.floatX)
def init_weights(shape):
return theano.shared(floatX( | np.random.randn(*shape) | numpy.random.randn |
# -*- coding: utf-8 -*-
"""General linear model
author: <NAME>
"""
import numpy as np
from numpy.linalg import eigvals, inv, solve, matrix_rank, pinv, svd
from scipy import stats
import pandas as pd
from patsy import DesignInfo
from statsmodels.compat.pandas import Substitution
from statsmodels.base.model import Model
from statsmodels.iolib import summary2
__docformat__ = 'restructuredtext en'
_hypotheses_doc = \
"""hypotheses : list[tuple]
Hypothesis `L*B*M = C` to be tested where B is the parameters in
regression Y = X*B. Each element is a tuple of length 2, 3, or 4:
* (name, contrast_L)
* (name, contrast_L, transform_M)
* (name, contrast_L, transform_M, constant_C)
containing a string `name`, the contrast matrix L, the transform
matrix M (for transforming dependent variables), and right-hand side
constant matrix constant_C, respectively.
contrast_L : 2D array or an array of strings
Left-hand side contrast matrix for hypotheses testing.
If 2D array, each row is an hypotheses and each column is an
independent variable. At least 1 row
(1 by k_exog, the number of independent variables) is required.
If an array of strings, it will be passed to
patsy.DesignInfo().linear_constraint.
transform_M : 2D array or an array of strings or None, optional
Left hand side transform matrix.
If `None` or left out, it is set to a k_endog by k_endog
identity matrix (i.e. do not transform y matrix).
If an array of strings, it will be passed to
patsy.DesignInfo().linear_constraint.
constant_C : 2D array or None, optional
Right-hand side constant matrix.
if `None` or left out it is set to a matrix of zeros
Must has the same number of rows as contrast_L and the same
number of columns as transform_M
If `hypotheses` is None: 1) the effect of each independent variable
on the dependent variables will be tested. Or 2) if model is created
using a formula, `hypotheses` will be created according to
`design_info`. 1) and 2) is equivalent if no additional variables
are created by the formula (e.g. dummy variables for categorical
variables and interaction terms)
"""
def _multivariate_ols_fit(endog, exog, method='svd', tolerance=1e-8):
"""
Solve multivariate linear model y = x * params
where y is dependent variables, x is independent variables
Parameters
----------
endog : array_like
each column is a dependent variable
exog : array_like
each column is a independent variable
method : str
'svd' - Singular value decomposition
'pinv' - Moore-Penrose pseudoinverse
tolerance : float, a small positive number
Tolerance for eigenvalue. Values smaller than tolerance is considered
zero.
Returns
-------
a tuple of matrices or values necessary for hypotheses testing
.. [*] https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_introreg_sect012.htm
Notes
-----
Status: experimental and incomplete
"""
y = endog
x = exog
nobs, k_endog = y.shape
nobs1, k_exog= x.shape
if nobs != nobs1:
raise ValueError('x(n=%d) and y(n=%d) should have the same number of '
'rows!' % (nobs1, nobs))
# Calculate the matrices necessary for hypotheses testing
df_resid = nobs - k_exog
if method == 'pinv':
# Regression coefficients matrix
pinv_x = | pinv(x) | numpy.linalg.pinv |
# SPDX-License-Identifier: BSD-3-Clause
# Copyright Contributors to the OpenColorIO Project.
import unittest
import logging
logger = logging.getLogger(__name__)
try:
import numpy as np
except ImportError:
logger.warning(
"NumPy could not be imported. "
"Test case will lack significant coverage!"
)
np = None
import PyOpenColorIO as OCIO
from UnitTestUtils import STRING_TYPES
class GpuShaderDescTest(unittest.TestCase):
def test_shader_creator_interface(self):
desc = OCIO.GpuShaderDesc.CreateShaderDesc()
desc.setLanguage(OCIO.GPU_LANGUAGE_GLSL_1_3)
self.assertEqual(OCIO.GPU_LANGUAGE_GLSL_1_3, desc.getLanguage())
desc.setFunctionName("foo123")
self.assertEqual("foo123", desc.getFunctionName())
desc.finalize()
self.assertEqual("glsl_1.3 foo123 ocio outColor 0 $4dd1c89df8002b409e089089ce8f24e7",
desc.getCacheID())
def test_uniform(self):
# Test dynamic exposure and gamma
config = OCIO.Config()
tr = OCIO.ExposureContrastTransform(dynamicExposure=True,
dynamicGamma=True)
proc = config.getProcessor(tr)
desc = OCIO.GpuShaderDesc.CreateShaderDesc()
gpu_proc = proc.getDefaultGPUProcessor()
gpu_proc.extractGpuShaderInfo(desc)
uniforms = desc.getUniforms()
self.assertEqual(len(uniforms), 2)
self.assertEqual(uniforms[0][0], "ocio_exposure_contrast_exposureVal")
self.assertEqual(uniforms[0][1].type, OCIO.UNIFORM_DOUBLE)
self.assertEqual(uniforms[0][1].getDouble(), 0.0)
self.assertEqual(uniforms[1][0], "ocio_exposure_contrast_gammaVal")
self.assertEqual(uniforms[1][1].type, OCIO.UNIFORM_DOUBLE)
self.assertEqual(uniforms[1][1].getDouble(), 1.0)
# Can dynamically modify uniforms
dyn_exposure = desc.getDynamicProperty(OCIO.DYNAMIC_PROPERTY_EXPOSURE)
dyn_exposure.setDouble(2.0)
self.assertEqual(uniforms[0][1].getDouble(), 2.0)
dyn_gamma = desc.getDynamicProperty(OCIO.DYNAMIC_PROPERTY_GAMMA)
dyn_gamma.setDouble(0.5)
self.assertEqual(uniforms[1][1].getDouble(), 0.5)
# Uniforms are present in shader src
text = desc.getShaderText()
self.assertEqual(text.count("uniform float"), 2)
# Iterates uniform name and data
for name, uniform_data in uniforms:
self.assertIsInstance(name, STRING_TYPES)
self.assertIsInstance(uniform_data, OCIO.GpuShaderDesc.UniformData)
def test_vector_uniform(self):
if not np:
logger.warning("NumPy not found. Skipping test!")
return
# Test dynamic GradingRGBCurve
a_curve = OCIO.GradingBSplineCurve([1.0, 2.0, 3.0, 4.0])
rgb_curve = OCIO.GradingRGBCurve(a_curve, a_curve, a_curve, a_curve)
tr = OCIO.GradingRGBCurveTransform(values=rgb_curve,
dynamic=True)
config = OCIO.Config()
proc = config.getProcessor(tr)
desc = OCIO.GpuShaderDesc.CreateShaderDesc()
gpu_proc = proc.getDefaultGPUProcessor()
gpu_proc.extractGpuShaderInfo(desc)
uniforms = desc.getUniforms()
self.assertEqual(len(uniforms), 5)
self.assertEqual(uniforms[0][0], "ocio_grading_rgbcurve_knotsOffsets")
self.assertEqual(uniforms[0][1].type, OCIO.UNIFORM_VECTOR_INT)
vector_int = uniforms[0][1].getVectorInt()
self.assertTrue(isinstance(vector_int, np.ndarray))
self.assertEqual(vector_int.dtype, np.intc)
self.assertTrue(np.array_equal(
vector_int,
np.array([0, 2, 2, 2, 4, 2, 6, 2],
dtype=np.intc))
)
self.assertEqual(uniforms[1][0], "ocio_grading_rgbcurve_knots")
self.assertEqual(uniforms[1][1].type, OCIO.UNIFORM_VECTOR_FLOAT)
vector_float = uniforms[1][1].getVectorFloat()
self.assertTrue(isinstance(vector_float, np.ndarray))
self.assertEqual(vector_float.dtype, np.float32)
self.assertTrue(np.array_equal(
vector_float,
np.array([1.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0, 3.0],
dtype=np.float32))
)
# Can dynamically modify uniforms
b_curve = OCIO.GradingBSplineCurve([5.0, 6.0, 7.0, 8.0])
dyn_rgb_curve = desc.getDynamicProperty(
OCIO.DYNAMIC_PROPERTY_GRADING_RGBCURVE
)
dyn_rgb_curve.setGradingRGBCurve(
OCIO.GradingRGBCurve(b_curve, b_curve, b_curve, b_curve)
)
self.assertTrue(np.array_equal(
uniforms[1][1].getVectorFloat(),
np.array([5.0, 7.0, 5.0, 7.0, 5.0, 7.0, 5.0, 7.0],
dtype=np.float32))
)
def test_texture(self):
# Test addTexture() & getTextures().
if not np:
logger.warning("NumPy not found. Skipping test!")
return
desc = OCIO.GpuShaderDesc.CreateShaderDesc()
buf = np.array([0,0.1,0.2,0.3,0.4,0.5]).astype(np.float32)
desc.addTexture('tex', 'sampler', 2, 3,
OCIO.GpuShaderDesc.TEXTURE_RED_CHANNEL,
OCIO.INTERP_DEFAULT, buf)
desc.addTexture(textureName='tex2', samplerName='sampler2', width=3, height=2,
channel=OCIO.GpuShaderDesc.TEXTURE_RED_CHANNEL,
interpolation=OCIO.INTERP_DEFAULT, values=buf)
textures = desc.getTextures()
self.assertEqual(len(textures), 2)
t1 = next(textures)
self.assertEqual(t1.textureName, 'tex')
self.assertEqual(t1.samplerName, 'sampler')
self.assertEqual(t1.width, 2)
self.assertEqual(t1.height, 3)
self.assertEqual(t1.channel, OCIO.GpuShaderDesc.TEXTURE_RED_CHANNEL)
self.assertEqual(t1.interpolation, OCIO.INTERP_DEFAULT)
v1 = t1.getValues()
self.assertEqual(len(v1), 6)
self.assertEqual(v1[0], np.float32(0))
self.assertEqual(v1[1], np.float32(0.1))
self.assertEqual(v1[2], np.float32(0.2))
self.assertEqual(v1[3], | np.float32(0.3) | numpy.float32 |
#!/usr/bin/env python3
from pathlib import Path
import defopt
import numpy as np
import pandas as pd
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
from gp_ppc import load_data
from gp_model import extract_filters
from plot_orsolic_paper import plot_psycho, plot_chrono
from strenum import strenum
import seaborn as sb
def get_lick_stims(row, filter_idx):
"""
Get filter activations at the time of licks
row - row of dataframe for a given trial
filter_idx - filter activations to extract
"""
if ~np.isnan(row.rt):
return row.projected_stim[int(row.rt), filter_idx]
else:
return np.nan
def make_plots(model_dir, block, axes, axes_early, folds, n_samples):
"""Plot the effects of zeroing top filters"""
pred_filename = model_dir + 'predictions.pickle'
pred_filename_0 = model_dir + 'predictions_drop_filter_0.pickle'
pred_filename_1 = model_dir + 'predictions_drop_filter_1.pickle'
dset, dset_pred_full = load_data(pred_filename, n_samples, folds)
_, dset_pred_0 = load_data(pred_filename_0, n_samples, folds)
_, dset_pred_1 = load_data(pred_filename_1, n_samples, folds)
if block == 'split':
dset = dset[dset.hazard != 'nonsplit'].copy()
dset_pred_full = dset_pred_full[dset_pred_full.hazard != 'nonsplit'].copy()
dset_pred_0 = dset_pred_0[dset_pred_0.hazard != 'nonsplit'].copy()
dset_pred_1 = dset_pred_1[dset_pred_1.hazard != 'nonsplit'].copy()
else:
dset = dset[dset.hazard == 'nonsplit'].copy()
dset_pred_full = dset_pred_full[dset_pred_full.hazard == 'nonsplit'].copy()
dset_pred_0 = dset_pred_0[dset_pred_0.hazard == 'nonsplit'].copy()
dset_pred_1 = dset_pred_1[dset_pred_1.hazard == 'nonsplit'].copy()
dsets = [ dset_pred_full, dset_pred_0, dset_pred_1 ]
(f0_color, f1_color) = (sb.xkcd_rgb['mauve'], sb.xkcd_rgb['green'])
colors = [ 'k', f0_color, f1_color ]
labels = [ 'Full', '-Filter 1', '-Filter 2']
# psychometric functions
hitlicks_test = (
dset[~dset['early']]
.groupby('sig').agg({'hit': 'mean'})
)
axes[0].plot(hitlicks_test, '--.r')
# chronometric functions
period = 0.05
hitrt_test = period * (
dset[dset['hit'] & (dset['sig'] > 0)]
.groupby('sig').agg({'rt_change': 'mean'})
)
period = 0.05
axes[1].plot(hitrt_test, '--.r')
for (d, c, l) in zip(dsets, colors, labels):
plot_psycho(d, axes[0], l, color=c)
plot_chrono(d, period, axes[1], color=c)
axes[0].set_ylim(0, 1)
axes[0].set_xlim(0, 2)
axes[1].set_xlim(0, 2)
# plot filter activations at the time of licks
model_params = dict( | np.load(model_dir + 'model/model_params_best.npz') | numpy.load |
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import collections
import numpy as np
import nngen.operator as operator
from . import util
def Upsample(visitor, node):
mode = 'nearest'
scale_value = 1.0
for attribute in node.attribute:
if attribute.name == 'mode':
mode = attribute.s.decode()
# deprecated attribute since Upsample-9
if attribute.name == 'scale':
scale_value = attribute.f
if mode != 'nearest':
raise ValueError("Upsampling mode must be 'nearest', not '%s'." % mode)
if round(scale_value) != scale_value:
raise ValueError("Upsampling factor must be a multiple of integer, not %f." %
scale_value)
scale_value = round(scale_value)
srcs = []
for src in node.input:
src_obj = visitor.visit(src)
srcs.append(src_obj)
srcs = [util.optimize_to_raw_value(src) for src in srcs]
input = srcs[0]
if len(input.shape) != 4:
raise ValueError("not supported shape: %s" % str(tuple(shape)))
# transpose data layout to nngen-compatible format
input = util.transpose_layout(input, visitor.nngen_input_layout, visitor.onnx_input_layout)
name = util.get_name(node)
if len(srcs) > 1:
factors = srcs[1]
if not isinstance(factors, (np.ndarray, np.float, np.int, float, int)):
raise TypeError("Upsampling factor must be constant, not %s." % str(type(factors)))
if not isinstance(factors, np.ndarray):
factors = | np.array(factors) | numpy.array |
"""
matrix functions
"""
import sys
import numpy as np
import scipy.stats as stats
from sklearn.metrics import mean_squared_error
from math import sqrt
import statsmodels.tools.eval_measures
def norm_matrix(m):
''' normalizes whole matrix '''
return m / np.max(m)
def norm_vector(v):
''' normalizes vector '''
return np.divide(v, np.sum(v))
def norm_cols(m):
''' normalizes columns of matrix '''
for j in range(m.shape[1]):
# compute column sum.
colsum = np.sum(m[:,j])
# make it add to 1.
np.divide(m[:,j], colsum, m[:,j])
return m
def norm_rows(m):
''' normalizes rows of matrix '''
for i in range(m.shape[0]):
# compute column sum.
rowsum = np.sum(m[i,:])
# make it add to 1.
np.divide(m[i,:], rowsum, m[i,:])
return m
temp = data1 - data2
temp = temp*temp
return math.sqrt(temp.mean())
def rsquare_vector(x, y):
""" r2 """
mask = x != 0
x = x[mask]
y = y[mask]
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
return r_value
def pearson_vector(x, y):
''' pearson for vector '''
mask = x != 0
x = x[mask]
y = y[mask]
return stats.pearsonr(x,y)[0]
def rmse_vector(x, y):
""" root mean square error """
mask = x != 0
x = x[mask]
y = y[mask]
return statsmodels.tools.eval_measures.rmse(x, y)
def nrmse_vector(x, y):
""" normalized root mean square error """
mask = x != 0
x = x[mask]
y = y[mask]
return rmse_vector(x,y) / (y.max() - y.min())
def meanabs_vector(x, y):
return statsmodels.tools.eval_measures.meanabs(x, y)
def sumabs_vector(x, y):
return np.sum(np.abs(x-y))
def meanrel_vector(x, y):
mask = x != 0
x = x[mask]
y = y[mask]
return np.mean(np.abs(x-y)/(x+0.0001))
def maxrel_vector(x, y):
mask = x != 0
x = x[mask]
y = y[mask]
return np.max(np.abs(x-y)/x)
def minrel_vector(x, y):
mask = x != 0
x = x[mask]
y = y[mask]
return np.min(np.abs(x-y)/x)
def maxabs_vector(x, y):
return statsmodels.tools.eval_measures.maxabs(x, y)
def avg_cat(targets, expr):
''' computes S based on average category '''
# create ordered list of categories.
cats = sorted(list(set(list(targets))))
# calculate dimensions.
m = expr.shape[1]
k = len(cats)
# create the array.
S = np.zeros((m,k), dtype=np.float)
# loop over each category.
for j in range(len(cats)):
# select just matches of this gene, category.
idxs = | np.where(targets==cats[j]) | numpy.where |
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""matrix_set_diag_run"""
import numpy as np
from akg.utils import kernel_exec as utils
from tests.common.test_op import matrix_set_diag
from tests.common.tensorio import compare_tensor
from tests.common.gen_random import random_gaussian
from tests.common.base import get_rtol_atol
def matrix_set_diag_run(shape_matrix, shape_diagonal, dtype, attrs=None):
"""matrix_set_diag_run"""
mod = utils.op_build_test(matrix_set_diag.matrix_set_diag, [shape_matrix, shape_diagonal, shape_matrix],
[dtype, dtype, dtype], kernel_name='matrix_set_diag', attrs=attrs)
args, exp_output, input_matrix, input_diagonal, input_help = gen_data(shape_matrix, shape_diagonal, dtype)
acu_output = utils.mod_launch(mod, args, expect=exp_output)
# compare result
rtol, atol = get_rtol_atol("matrix_set_diag", dtype)
testcase_result = compare_tensor(acu_output, exp_output, rtol=rtol, atol=atol, equal_nan=True)
return [input_matrix, input_diagonal, input_help], acu_output, exp_output, testcase_result
def gen_data(shape_matrix, shape_diagonal, dtype):
"""generate valid data to test"""
input_matrix = random_gaussian(shape_matrix, miu=10, sigma=0.3).astype(dtype)
input_diagonal = random_gaussian(shape_diagonal, miu=5, sigma=0.3).astype(dtype)
# make shape_diagonal can support broadcast
if shape_matrix[-2] <= shape_matrix[-1]:
shape_b_newshape = list(shape_diagonal) + [1]
# The penultimate dimension of the shape_diag is extended for broadcast.
else:
shape_b_newshape = list(shape_diagonal)
shape_b_newshape.insert(-1, 1)
new_input_diagonal = np.reshape(input_diagonal, shape_b_newshape)
# need to generate a multi dimensional 01 diagonal matrix by broadcasting a 2D 01 diagonal matrix
input_help = np.zeros((shape_matrix[-2], shape_matrix[-1]))
for i in range(min(shape_matrix[-2], shape_matrix[-1])):
input_help[i, i] = 1.0
input_help = np.broadcast_to(input_help, shape_matrix)
input_help = input_help.astype(dtype)
if dtype == 'uint8':
new_help = np.abs(input_help.astype('float16') - 1).astype(dtype)
else:
new_help = | np.abs(input_help - 1) | numpy.abs |
# -*- coding: utf-8 -*-
#
# This file is part of QuTiP: Quantum Toolbox in Python.
#
# Copyright (c) 2011 and later, <NAME> and <NAME>.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
# of its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Significant parts of this code were contributed by <NAME>.
#
###############################################################################
"""
This module contains functions for solving stochastic schrodinger and master
equations. The API should not be considered stable, and is subject to change
when we work more on optimizing this module for performance and features.
"""
__all__ = ['ssesolve', 'ssepdpsolve', 'smesolve', 'smepdpsolve']
import numpy as np
import scipy.sparse as sp
from scipy.linalg.blas import get_blas_funcs
try:
norm = get_blas_funcs("znrm2", dtype=np.float64)
except:
from scipy.linalg import norm
from numpy.random import RandomState
from qutip.qobj import Qobj, isket
from qutip.states import ket2dm
from qutip.solver import Result
from qutip.expect import expect, expect_rho_vec
from qutip.superoperator import (spre, spost, mat2vec, vec2mat,
liouvillian, lindblad_dissipator)
from qutip.cy.spmatfuncs import cy_expect_psi_csr, spmv, cy_expect_rho_vec
from qutip.cy.stochastic import (cy_d1_rho_photocurrent,
cy_d2_rho_photocurrent)
from qutip.parallel import serial_map
from qutip.ui.progressbar import TextProgressBar
from qutip.solver import Options, _solver_safety_check
from qutip.settings import debug
if debug:
import qutip.logging_utils
import inspect
logger = qutip.logging_utils.get_logger()
class StochasticSolverOptions:
"""Class of options for stochastic solvers such as
:func:`qutip.stochastic.ssesolve`, :func:`qutip.stochastic.smesolve`, etc.
Options can be specified either as arguments to the constructor::
sso = StochasticSolverOptions(nsubsteps=100, ...)
or by changing the class attributes after creation::
sso = StochasticSolverOptions()
sso.nsubsteps = 1000
The stochastic solvers :func:`qutip.stochastic.ssesolve`,
:func:`qutip.stochastic.smesolve`, :func:`qutip.stochastic.ssepdpsolve` and
:func:`qutip.stochastic.smepdpsolve` all take the same keyword arguments as
the constructor of these class, and internally they use these arguments to
construct an instance of this class, so it is rarely needed to explicitly
create an instance of this class.
Attributes
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
state0 : :class:`qutip.Qobj`
Initial state vector (ket) or density matrix.
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
List of deterministic collapse operators.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the equation of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj`
Single operator or list of operators for which to evaluate
expectation values.
m_ops : list of :class:`qutip.Qobj`
List of operators representing the measurement operators. The expected
format is a nested list with one measurement operator for each
stochastic increament, for each stochastic collapse operator.
args : dict / list
List of dictionary of additional problem-specific parameters.
Implicit methods can adjust tolerance via args = {'tol':value}
ntraj : int
Number of trajectors.
nsubsteps : int
Number of sub steps between each time-spep given in `times`.
d1 : function
Function for calculating the operator-valued coefficient to the
deterministic increment dt.
d2 : function
Function for calculating the operator-valued coefficient to the
stochastic increment(s) dW_n, where n is in [0, d2_len[.
d2_len : int (default 1)
The number of stochastic increments in the process.
dW_factors : array
Array of length d2_len, containing scaling factors for each
measurement operator in m_ops.
rhs : function
Function for calculating the deterministic and stochastic contributions
to the right-hand side of the stochastic differential equation. This
only needs to be specified when implementing a custom SDE solver.
generate_A_ops : function
Function that generates a list of pre-computed operators or super-
operators. These precomputed operators are used in some d1 and d2
functions.
generate_noise : function
Function for generate an array of pre-computed noise signal.
homogeneous : bool (True)
Wheter or not the stochastic process is homogenous. Inhomogenous
processes are only supported for poisson distributions.
solver : string
Name of the solver method to use for solving the stochastic
equations. Valid values are:
1/2 order algorithms: 'euler-maruyama', 'fast-euler-maruyama',
'pc-euler' is a predictor-corrector method which is more
stable than explicit methods,
1 order algorithms: 'milstein', 'fast-milstein', 'platen',
'milstein-imp' is semi-implicit Milstein method,
3/2 order algorithms: 'taylor15',
'taylor15-imp' is semi-implicit Taylor 1.5 method.
Implicit methods can adjust tolerance via args = {'tol':value},
default is {'tol':1e-6}
method : string ('homodyne', 'heterodyne', 'photocurrent')
The name of the type of measurement process that give rise to the
stochastic equation to solve. Specifying a method with this keyword
argument is a short-hand notation for using pre-defined d1 and d2
functions for the corresponding stochastic processes.
distribution : string ('normal', 'poission')
The name of the distribution used for the stochastic increments.
store_measurements : bool (default False)
Whether or not to store the measurement results in the
:class:`qutip.solver.SolverResult` instance returned by the solver.
noise : array
Vector specifying the noise.
normalize : bool (default True)
Whether or not to normalize the wave function during the evolution.
options : :class:`qutip.solver.Options`
Generic solver options.
map_func: function
A map function or managing the calls to single-trajactory solvers.
map_kwargs: dictionary
Optional keyword arguments to the map_func function function.
progress_bar : :class:`qutip.ui.BaseProgressBar`
Optional progress bar class instance.
"""
def __init__(self, H=None, state0=None, times=None, c_ops=[], sc_ops=[],
e_ops=[], m_ops=None, args=None, ntraj=1, nsubsteps=1,
d1=None, d2=None, d2_len=1, dW_factors=None, rhs=None,
generate_A_ops=None, generate_noise=None, homogeneous=True,
solver=None, method=None, distribution='normal',
store_measurement=False, noise=None, normalize=True,
options=None, progress_bar=None, map_func=None,
map_kwargs=None):
if options is None:
options = Options()
if progress_bar is None:
progress_bar = TextProgressBar()
self.H = H
self.d1 = d1
self.d2 = d2
self.d2_len = d2_len
self.dW_factors = dW_factors if dW_factors else np.ones(d2_len)
self.state0 = state0
self.times = times
self.c_ops = c_ops
self.sc_ops = sc_ops
self.e_ops = e_ops
if m_ops is None:
self.m_ops = [[c for _ in range(d2_len)] for c in sc_ops]
else:
self.m_ops = m_ops
self.ntraj = ntraj
self.nsubsteps = nsubsteps
self.solver = solver
self.method = method
self.distribution = distribution
self.homogeneous = homogeneous
self.rhs = rhs
self.options = options
self.progress_bar = progress_bar
self.store_measurement = store_measurement
self.store_states = options.store_states
self.noise = noise
self.args = args
self.normalize = normalize
self.generate_noise = generate_noise
self.generate_A_ops = generate_A_ops
if self.ntraj > 1 and map_func:
self.map_func = map_func
else:
self.map_func = serial_map
self.map_kwargs = map_kwargs if map_kwargs is not None else {}
def ssesolve(H, psi0, times, sc_ops=[], e_ops=[], _safe_mode=True, **kwargs):
"""
Solve the stochastic Schrödinger equation. Dispatch to specific solvers
depending on the value of the `solver` keyword argument.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
psi0 : :class:`qutip.Qobj`
Initial state vector (ket).
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the equation of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj`
Single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
if _safe_mode:
_solver_safety_check(H, psi0, sc_ops, e_ops)
sso = StochasticSolverOptions(H=H, state0=psi0, times=times,
sc_ops=sc_ops, e_ops=e_ops, **kwargs)
if sso.generate_A_ops is None:
sso.generate_A_ops = _generate_psi_A_ops
if (sso.d1 is None) or (sso.d2 is None):
if sso.method == 'homodyne':
sso.d1 = d1_psi_homodyne
sso.d2 = d2_psi_homodyne
sso.d2_len = 1
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([1])
if "m_ops" not in kwargs:
sso.m_ops = [[c + c.dag()] for c in sso.sc_ops]
elif sso.method == 'heterodyne':
sso.d1 = d1_psi_heterodyne
sso.d2 = d2_psi_heterodyne
sso.d2_len = 2
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([np.sqrt(2), np.sqrt(2)])
if "m_ops" not in kwargs:
sso.m_ops = [[(c + c.dag()), (-1j) * (c - c.dag())]
for idx, c in enumerate(sso.sc_ops)]
elif sso.method == 'photocurrent':
sso.d1 = d1_psi_photocurrent
sso.d2 = d2_psi_photocurrent
sso.d2_len = 1
sso.homogeneous = False
sso.distribution = 'poisson'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([1])
if "m_ops" not in kwargs:
sso.m_ops = [[None] for c in sso.sc_ops]
else:
raise Exception("Unrecognized method '%s'." % sso.method)
if sso.distribution == 'poisson':
sso.homogeneous = False
if sso.solver == 'euler-maruyama' or sso.solver is None:
sso.rhs = _rhs_psi_euler_maruyama
elif sso.solver == 'platen':
sso.rhs = _rhs_psi_platen
else:
raise Exception("Unrecognized solver '%s'." % sso.solver)
res = _ssesolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
def smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[],
_safe_mode=True ,**kwargs):
"""
Solve stochastic master equation. Dispatch to specific solvers
depending on the value of the `solver` keyword argument.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
rho0 : :class:`qutip.Qobj`
Initial density matrix or state vector (ket).
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
Deterministic collapse operator which will contribute with a standard
Lindblad type of dissipation.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the eqaution of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj` / callback function single
single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
TODO
----
Add checks for commuting jump operators in Milstein method.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isket(rho0):
rho0 = ket2dm(rho0)
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
if _safe_mode:
_solver_safety_check(H, rho0, c_ops+sc_ops, e_ops)
sso = StochasticSolverOptions(H=H, state0=rho0, times=times, c_ops=c_ops,
sc_ops=sc_ops, e_ops=e_ops, **kwargs)
if (sso.d1 is None) or (sso.d2 is None):
if sso.method == 'homodyne' or sso.method is None:
sso.d1 = d1_rho_homodyne
sso.d2 = d2_rho_homodyne
sso.d2_len = 1
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([np.sqrt(1)])
if "m_ops" not in kwargs:
sso.m_ops = [[c + c.dag()] for c in sso.sc_ops]
elif sso.method == 'heterodyne':
sso.d1 = d1_rho_heterodyne
sso.d2 = d2_rho_heterodyne
sso.d2_len = 2
sso.homogeneous = True
sso.distribution = 'normal'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([np.sqrt(2), np.sqrt(2)])
if "m_ops" not in kwargs:
sso.m_ops = [[(c + c.dag()), -1j * (c - c.dag())]
for c in sso.sc_ops]
elif sso.method == 'photocurrent':
sso.d1 = cy_d1_rho_photocurrent
sso.d2 = cy_d2_rho_photocurrent
sso.d2_len = 1
sso.homogeneous = False
sso.distribution = 'poisson'
if "dW_factors" not in kwargs:
sso.dW_factors = np.array([1])
if "m_ops" not in kwargs:
sso.m_ops = [[None] for c in sso.sc_ops]
else:
raise Exception("Unrecognized method '%s'." % sso.method)
if sso.distribution == 'poisson':
sso.homogeneous = False
if sso.generate_A_ops is None:
sso.generate_A_ops = _generate_rho_A_ops
if sso.rhs is None:
if sso.solver == 'euler-maruyama' or sso.solver is None:
sso.rhs = _rhs_rho_euler_maruyama
elif sso.solver == 'milstein':
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_homodyne_single
else:
sso.rhs = _rhs_rho_milstein_homodyne
elif sso.method == 'heterodyne':
sso.rhs = _rhs_rho_milstein_homodyne
sso.d2_len = 1
sso.sc_ops = []
for sc in iter(sc_ops):
sso.sc_ops += [sc / np.sqrt(2), -1.0j * sc / np.sqrt(2)]
elif sso.solver == 'fast-euler-maruyama' and sso.method == 'homodyne':
sso.rhs = _rhs_rho_euler_homodyne_fast
sso.generate_A_ops = _generate_A_ops_Euler
elif sso.solver == 'fast-milstein':
sso.generate_A_ops = _generate_A_ops_Milstein
sso.generate_noise = _generate_noise_Milstein
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_homodyne_single_fast
elif len(sc_ops) == 2:
sso.rhs = _rhs_rho_milstein_homodyne_two_fast
else:
sso.rhs = _rhs_rho_milstein_homodyne_fast
elif sso.method == 'heterodyne':
sso.d2_len = 1
sso.sc_ops = []
for sc in iter(sc_ops):
sso.sc_ops += [sc / np.sqrt(2), -1.0j * sc / np.sqrt(2)]
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_homodyne_two_fast
else:
sso.rhs = _rhs_rho_milstein_homodyne_fast
elif sso.solver == 'taylor15':
sso.generate_A_ops = _generate_A_ops_simple
sso.generate_noise = _generate_noise_Taylor_15
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_taylor_15_one
#elif len(sc_ops) == 2:
# sso.rhs = _rhs_rho_taylor_15_two
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
elif sso.solver == 'milstein-imp':
sso.generate_A_ops = _generate_A_ops_implicit
sso.generate_noise = _generate_noise_Milstein
if sso.args == None:
sso.args = {'tol':1e-6}
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_milstein_implicit
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
elif sso.solver == 'taylor15-imp':
sso.generate_A_ops = _generate_A_ops_implicit
sso.generate_noise = _generate_noise_Taylor_15
if sso.args == None:
sso.args = {'tol':1e-6}
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_taylor_15_implicit
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
elif sso.solver == 'pc-euler':
sso.generate_A_ops = _generate_A_ops_Milstein
sso.generate_noise = _generate_noise_Milstein # could also work without this
if sso.method == 'homodyne' or sso.method is None:
if len(sc_ops) == 1:
sso.rhs = _rhs_rho_pred_corr_homodyne_single
else:
raise Exception("Only one stochastic operator is supported")
else:
raise Exception("Only homodyne is available")
else:
raise Exception("Unrecognized solver '%s'." % sso.solver)
res = _smesolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
def ssepdpsolve(H, psi0, times, c_ops, e_ops, **kwargs):
"""
A stochastic (piecewse deterministic process) PDP solver for wavefunction
evolution. For most purposes, use :func:`qutip.mcsolve` instead for quantum
trajectory simulations.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
psi0 : :class:`qutip.Qobj`
Initial state vector (ket).
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
Deterministic collapse operator which will contribute with a standard
Lindblad type of dissipation.
e_ops : list of :class:`qutip.Qobj` / callback function single
single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
sso = StochasticSolverOptions(H=H, state0=psi0, times=times, c_ops=c_ops,
e_ops=e_ops, **kwargs)
res = _ssepdpsolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
def smepdpsolve(H, rho0, times, c_ops, e_ops, **kwargs):
"""
A stochastic (piecewse deterministic process) PDP solver for density matrix
evolution.
Parameters
----------
H : :class:`qutip.Qobj`
System Hamiltonian.
rho0 : :class:`qutip.Qobj`
Initial density matrix.
times : *list* / *array*
List of times for :math:`t`. Must be uniformly spaced.
c_ops : list of :class:`qutip.Qobj`
Deterministic collapse operator which will contribute with a standard
Lindblad type of dissipation.
sc_ops : list of :class:`qutip.Qobj`
List of stochastic collapse operators. Each stochastic collapse
operator will give a deterministic and stochastic contribution
to the eqaution of motion according to how the d1 and d2 functions
are defined.
e_ops : list of :class:`qutip.Qobj` / callback function single
single operator or list of operators for which to evaluate
expectation values.
kwargs : *dictionary*
Optional keyword arguments. See
:class:`qutip.stochastic.StochasticSolverOptions`.
Returns
-------
output: :class:`qutip.solver.SolverResult`
An instance of the class :class:`qutip.solver.SolverResult`.
"""
if debug:
logger.debug(inspect.stack()[0][3])
if isinstance(e_ops, dict):
e_ops_dict = e_ops
e_ops = [e for e in e_ops.values()]
else:
e_ops_dict = None
sso = StochasticSolverOptions(H=H, state0=rho0, times=times, c_ops=c_ops,
e_ops=e_ops, **kwargs)
res = _smepdpsolve_generic(sso, sso.options, sso.progress_bar)
if e_ops_dict:
res.expect = {e: res.expect[n]
for n, e in enumerate(e_ops_dict.keys())}
return res
# -----------------------------------------------------------------------------
# Generic parameterized stochastic Schrodinger equation solver
#
def _ssesolve_generic(sso, options, progress_bar):
"""
Internal function for carrying out a sse integration. Used by ssesolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
sso.N_store = len(sso.times)
sso.N_substeps = sso.nsubsteps
sso.dt = (sso.times[1] - sso.times[0]) / sso.N_substeps
nt = sso.ntraj
data = Result()
data.solver = "ssesolve"
data.times = sso.times
data.expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.noise = []
data.measurement = []
# pre-compute collapse operator combinations that are commonly needed
# when evaluating the RHS of stochastic Schrodinger equations
sso.A_ops = sso.generate_A_ops(sso.sc_ops, sso.H)
map_kwargs = {'progress_bar': progress_bar}
map_kwargs.update(sso.map_kwargs)
task = _ssesolve_single_trajectory
task_args = (sso,)
task_kwargs = {}
results = sso.map_func(task, list(range(sso.ntraj)),
task_args, task_kwargs, **map_kwargs)
for result in results:
states_list, dW, m, expect, ss = result
data.states.append(states_list)
data.noise.append(dW)
data.measurement.append(m)
data.expect += expect
data.ss += ss
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([ket2dm(data.states[mm][n])
for mm in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / nt
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
# convert complex data to real if hermitian
data.expect = [np.real(data.expect[n, :])
if e.isherm else data.expect[n, :]
for n, e in enumerate(sso.e_ops)]
return data
def _ssesolve_single_trajectory(n, sso):
"""
Internal function. See ssesolve.
"""
dt = sso.dt
times = sso.times
d1, d2 = sso.d1, sso.d2
d2_len = sso.d2_len
e_ops = sso.e_ops
H_data = sso.H.data
A_ops = sso.A_ops
expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
psi_t = sso.state0.full().ravel()
dims = sso.state0.dims
# reseed the random number generator so that forked
# processes do not get the same sequence of random numbers
np.random.seed((n+1) * np.random.randint(0, 4294967295 // (sso.ntraj+1)))
if sso.noise is None:
if sso.homogeneous:
if sso.distribution == 'normal':
dW = np.sqrt(dt) * \
np.random.randn(len(A_ops), sso.N_store, sso.N_substeps,
d2_len)
else:
raise TypeError('Unsupported increment distribution for ' +
'homogeneous process.')
else:
if sso.distribution != 'poisson':
raise TypeError('Unsupported increment distribution for ' +
'inhomogeneous process.')
dW = np.zeros((len(A_ops), sso.N_store, sso.N_substeps, d2_len))
else:
dW = sso.noise[n]
states_list = []
measurements = np.zeros((len(times), len(sso.m_ops), d2_len),
dtype=complex)
for t_idx, t in enumerate(times):
if e_ops:
for e_idx, e in enumerate(e_ops):
s = cy_expect_psi_csr(e.data.data,
e.data.indices,
e.data.indptr, psi_t, 0)
expect[e_idx, t_idx] += s
ss[e_idx, t_idx] += s ** 2
else:
states_list.append(Qobj(psi_t, dims=dims))
for j in range(sso.N_substeps):
if sso.noise is None and not sso.homogeneous:
for a_idx, A in enumerate(A_ops):
# dw_expect = norm(spmv(A[0], psi_t)) ** 2 * dt
dw_expect = cy_expect_psi_csr(A[3].data,
A[3].indices,
A[3].indptr, psi_t, 1) * dt
dW[a_idx, t_idx, j, :] = np.random.poisson(dw_expect,
d2_len)
psi_t = sso.rhs(H_data, psi_t, t + dt * j,
A_ops, dt, dW[:, t_idx, j, :], d1, d2, sso.args)
# optionally renormalize the wave function
if sso.normalize:
psi_t /= norm(psi_t)
if sso.store_measurement:
for m_idx, m in enumerate(sso.m_ops):
for dW_idx, dW_factor in enumerate(sso.dW_factors):
if m[dW_idx]:
m_data = m[dW_idx].data
m_expt = cy_expect_psi_csr(m_data.data,
m_data.indices,
m_data.indptr,
psi_t, 0)
else:
m_expt = 0
mm = (m_expt + dW_factor *
dW[m_idx, t_idx, :, dW_idx].sum() /
(dt * sso.N_substeps))
measurements[t_idx, m_idx, dW_idx] = mm
if d2_len == 1:
measurements = measurements.squeeze(axis=(2))
return states_list, dW, measurements, expect, ss
# -----------------------------------------------------------------------------
# Generic parameterized stochastic master equation solver
#
def _smesolve_generic(sso, options, progress_bar):
"""
Internal function. See smesolve.
"""
if debug:
logger.debug(inspect.stack()[0][3])
sso.N_store = len(sso.times)
sso.N_substeps = sso.nsubsteps
sso.dt = (sso.times[1] - sso.times[0]) / sso.N_substeps
nt = sso.ntraj
data = Result()
data.solver = "smesolve"
data.times = sso.times
data.expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
data.noise = []
data.measurement = []
# Liouvillian for the deterministic part.
# needs to be modified for TD systems
sso.L = liouvillian(sso.H, sso.c_ops)
# pre-compute suporoperator operator combinations that are commonly needed
# when evaluating the RHS of stochastic master equations
sso.A_ops = sso.generate_A_ops(sso.sc_ops, sso.L.data, sso.dt)
# use .data instead of Qobj ?
sso.s_e_ops = [spre(e) for e in sso.e_ops]
if sso.m_ops:
sso.s_m_ops = [[spre(m) if m else None for m in m_op]
for m_op in sso.m_ops]
else:
sso.s_m_ops = [[spre(c) for _ in range(sso.d2_len)]
for c in sso.sc_ops]
map_kwargs = {'progress_bar': progress_bar}
map_kwargs.update(sso.map_kwargs)
task = _smesolve_single_trajectory
task_args = (sso,)
task_kwargs = {}
results = sso.map_func(task, list(range(sso.ntraj)),
task_args, task_kwargs, **map_kwargs)
for result in results:
states_list, dW, m, expect, ss = result
data.states.append(states_list)
data.noise.append(dW)
data.measurement.append(m)
data.expect += expect
data.ss += ss
# average density matrices
if options.average_states and np.any(data.states):
data.states = [sum([data.states[mm][n] for mm in range(nt)]).unit()
for n in range(len(data.times))]
# average
data.expect = data.expect / nt
# standard error
if nt > 1:
data.se = (data.ss - nt * (data.expect ** 2)) / (nt * (nt - 1))
else:
data.se = None
# convert complex data to real if hermitian
data.expect = [np.real(data.expect[n, :])
if e.isherm else data.expect[n, :]
for n, e in enumerate(sso.e_ops)]
return data
def _smesolve_single_trajectory(n, sso):
"""
Internal function. See smesolve.
"""
dt = sso.dt
times = sso.times
d1, d2 = sso.d1, sso.d2
d2_len = sso.d2_len
L_data = sso.L.data
N_substeps = sso.N_substeps
N_store = sso.N_store
A_ops = sso.A_ops
rho_t = mat2vec(sso.state0.full()).ravel()
dims = sso.state0.dims
expect = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
ss = np.zeros((len(sso.e_ops), sso.N_store), dtype=complex)
# reseed the random number generator so that forked
# processes do not get the same sequence of random numbers
np.random.seed((n+1) * np.random.randint(0, 4294967295 // (sso.ntraj+1)))
if sso.noise is None:
if sso.generate_noise:
dW = sso.generate_noise(len(A_ops), N_store, N_substeps,
sso.d2_len, dt)
elif sso.homogeneous:
if sso.distribution == 'normal':
dW = | np.sqrt(dt) | numpy.sqrt |
# This program is public domain
# Author: <NAME>
"""
Format values and uncertainties nicely for printing.
The formatted value uses only the number of digits warranted by
the uncertainty in the measurement.
:func:`format_value` shows the value without the uncertainty.
:func:`format_uncertainty_pm` shows the expanded format v +/- err.
:func:`format_uncertainty_compact` shows the compact format v(##),
where the number in parenthesis is the uncertainty in the last two digits of v.
:func:`format_uncertainty` uses the compact format by default, but this
can be changed to use the expanded +/- format by setting
format_uncertainty.compact to False. This is a global setting which should
be considered a user preference. Any library code that depends on a specific
format style should use the corresponding formatting function.
If the uncertainty is 0 or not otherwise provided, the simple
%g floating point format option is used.
Infinite and indefinite numbers are represented as inf and NaN.
Example::
>>> v,dv = 757.2356,0.01032
>>> print(format_uncertainty_pm(v,dv))
757.236 +/- 0.010
>>> print(format_uncertainty_compact(v,dv))
757.236(10)
>>> print(format_uncertainty(v,dv))
757.236(10)
>>> format_uncertainty.compact = False
>>> print(format_uncertainty(v,dv))
757.236 +/- 0.010
"""
from __future__ import division
import math
from numpy import isinf, isnan, inf, NaN
__all__ = ['format_value', 'format_uncertainty',
'format_uncertainty_compact', 'format_uncertainty_pm',
]
# Coordinating scales across a set of numbers is not supported. For easy
# comparison a set of numbers should be shown in the same scale. One could
# force this from the outside by adding scale parameter (either 10**n, n, or
# a string representing the desired SI prefix) and having a separate routine
# which computes the scale given a set of values.
# Coordinating scales with units offers its own problems. Again, the user
# may want to force particular units. This can be done by outside of the
# formatting routines by scaling the numbers to the appropriate units then
# forcing them to print with scale 10**0. If this is a common operation,
# however, it may want to happen inside.
# The value e<n> is currently formatted into the number. Alternatively this
# scale factor could be returned so that the user can choose the appropriate
# SI prefix when printing the units. This gets tricky when talking about
# composite units such as 2.3e-3 m**2 -> 2300 mm**2, and with volumes
# such as 1 g/cm**3 -> 1 kg/L.
def format_value(value, uncertainty):
"""
Given *value* v and *uncertainty* dv, return a string v which is
the value formatted with the appropriate number of digits.
"""
return _format_uncertainty(value, uncertainty, compact=None)
def format_uncertainty_pm(value, uncertainty):
"""
Given *value* v and *uncertainty* dv, return a string v +/- dv.
"""
return _format_uncertainty(value, uncertainty, compact=False)
def format_uncertainty_compact(value, uncertainty):
"""
Given *value* v and *uncertainty* dv, return the compact
representation v(##), where ## are the first two digits of
the uncertainty.
"""
return _format_uncertainty(value, uncertainty, compact=True)
def format_uncertainty(value, uncertainty):
"""
Value and uncertainty formatter.
Either the expanded v +/- dv form or the compact v(##) form will be
used depending on whether *format_uncertainty.compact* is True or False.
The default is True.
"""
return _format_uncertainty(value, uncertainty, format_uncertainty.compact)
format_uncertainty.compact = True
def _format_uncertainty(value, uncertainty, compact):
"""
Implementation of both the compact and the +/- formats.
"""
# Handle indefinite value
if isinf(value):
return "inf" if value > 0 else "-inf"
if | isnan(value) | numpy.isnan |
from __future__ import print_function, division, absolute_import
import time
import matplotlib
matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis
import numpy as np
import six.moves as sm
import cv2
import shapely
import shapely.geometry
import imgaug as ia
from imgaug.testutils import reseed
def main():
time_start = time.time()
test_is_np_array()
test_is_single_integer()
test_is_single_float()
test_is_single_number()
test_is_iterable()
test_is_string()
test_is_single_bool()
test_is_integer_array()
test_is_float_array()
test_is_callable()
test_caller_name()
test_seed()
test_current_random_state()
test_new_random_state()
test_dummy_random_state()
test_copy_random_state()
test_derive_random_state()
test_derive_random_states()
test_forward_random_state()
# test_quokka()
# test_quokka_square()
# test_angle_between_vectors()
# test_draw_text()
test_imresize_many_images()
test_imresize_single_image()
test_pad()
test_compute_paddings_for_aspect_ratio()
test_pad_to_aspect_ratio()
test_pool()
test_avg_pool()
test_max_pool()
test_draw_grid()
# test_show_grid()
# test_do_assert()
# test_HooksImages_is_activated()
# test_HooksImages_is_propagating()
# test_HooksImages_preprocess()
# test_HooksImages_postprocess()
test_Keypoint()
test_KeypointsOnImage()
test_BoundingBox()
test_BoundingBoxesOnImage()
# test_HeatmapsOnImage_get_arr()
# test_HeatmapsOnImage_find_global_maxima()
test_HeatmapsOnImage_draw()
test_HeatmapsOnImage_draw_on_image()
test_HeatmapsOnImage_invert()
test_HeatmapsOnImage_pad()
# test_HeatmapsOnImage_pad_to_aspect_ratio()
test_HeatmapsOnImage_avg_pool()
test_HeatmapsOnImage_max_pool()
test_HeatmapsOnImage_scale()
# test_HeatmapsOnImage_to_uint8()
# test_HeatmapsOnImage_from_uint8()
# test_HeatmapsOnImage_from_0to1()
# test_HeatmapsOnImage_change_normalization()
# test_HeatmapsOnImage_copy()
# test_HeatmapsOnImage_deepcopy()
test_SegmentationMapOnImage_bool()
test_SegmentationMapOnImage_get_arr_int()
# test_SegmentationMapOnImage_get_arr_bool()
test_SegmentationMapOnImage_draw()
test_SegmentationMapOnImage_draw_on_image()
test_SegmentationMapOnImage_pad()
test_SegmentationMapOnImage_pad_to_aspect_ratio()
test_SegmentationMapOnImage_scale()
test_SegmentationMapOnImage_to_heatmaps()
test_SegmentationMapOnImage_from_heatmaps()
test_SegmentationMapOnImage_copy()
test_SegmentationMapOnImage_deepcopy()
test_Polygon___init__()
test_Polygon_xx()
test_Polygon_yy()
test_Polygon_xx_int()
test_Polygon_yy_int()
test_Polygon_is_valid()
test_Polygon_area()
test_Polygon_project()
test_Polygon__compute_inside_image_point_mask()
test_Polygon_is_fully_within_image()
test_Polygon_is_partly_within_image()
test_Polygon_is_out_of_image()
test_Polygon_cut_out_of_image()
test_Polygon_clip_out_of_image()
test_Polygon_shift()
test_Polygon_draw_on_image()
test_Polygon_extract_from_image()
test_Polygon_to_shapely_polygon()
test_Polygon_to_bounding_box()
test_Polygon_from_shapely()
test_Polygon_copy()
test_Polygon_deepcopy()
test_Polygon___repr__()
test_Polygon___str__()
# test_Batch()
test_BatchLoader()
# test_BackgroundAugmenter.get_batch()
# test_BackgroundAugmenter._augment_images_worker()
# test_BackgroundAugmenter.terminate()
time_end = time.time()
print("<%s> Finished without errors in %.4fs." % (__file__, time_end - time_start,))
def test_is_np_array():
class _Dummy(object):
pass
values_true = [
np.zeros((1, 2), dtype=np.uint8),
np.zeros((64, 64, 3), dtype=np.uint8),
np.zeros((1, 2), dtype=np.float32),
np.zeros((100,), dtype=np.float64)
]
values_false = [
"A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(),
-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4
]
for value in values_true:
assert ia.is_np_array(value) is True
for value in values_false:
assert ia.is_np_array(value) is False
def test_is_single_integer():
assert ia.is_single_integer("A") is False
assert ia.is_single_integer(None) is False
assert ia.is_single_integer(1.2) is False
assert ia.is_single_integer(1.0) is False
assert ia.is_single_integer(np.ones((1,), dtype=np.float32)[0]) is False
assert ia.is_single_integer(1) is True
assert ia.is_single_integer(1234) is True
assert ia.is_single_integer(np.ones((1,), dtype=np.uint8)[0]) is True
assert ia.is_single_integer(np.ones((1,), dtype=np.int32)[0]) is True
def test_is_single_float():
assert ia.is_single_float("A") is False
assert ia.is_single_float(None) is False
assert ia.is_single_float(1.2) is True
assert ia.is_single_float(1.0) is True
assert ia.is_single_float(np.ones((1,), dtype=np.float32)[0]) is True
assert ia.is_single_float(1) is False
assert ia.is_single_float(1234) is False
assert ia.is_single_float(np.ones((1,), dtype=np.uint8)[0]) is False
assert ia.is_single_float(np.ones((1,), dtype=np.int32)[0]) is False
def test_caller_name():
assert ia.caller_name() == 'test_caller_name'
def test_is_single_number():
class _Dummy(object):
pass
values_true = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4]
values_false = ["A", "BC", "1", True, False, (1.0, 2.0), [1.0, 2.0], _Dummy(), np.zeros((1, 2), dtype=np.uint8)]
for value in values_true:
assert ia.is_single_number(value) is True
for value in values_false:
assert ia.is_single_number(value) is False
def test_is_iterable():
class _Dummy(object):
pass
values_true = [
[0, 1, 2],
["A", "X"],
[[123], [456, 789]],
[],
(1, 2, 3),
(1,),
tuple(),
"A",
"ABC",
"",
np.zeros((100,), dtype=np.uint8)
]
values_false = [1, 100, 0, -100, -1, 1.2, -1.2, True, False, _Dummy()]
for value in values_true:
assert ia.is_iterable(value) is True, value
for value in values_false:
assert ia.is_iterable(value) is False
def test_is_string():
class _Dummy(object):
pass
values_true = ["A", "BC", "1", ""]
values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False, (1.0, 2.0), [1.0, 2.0],
_Dummy(), np.zeros((1, 2), dtype=np.uint8)]
for value in values_true:
assert ia.is_string(value) is True
for value in values_false:
assert ia.is_string(value) is False
def test_is_single_bool():
class _Dummy(object):
pass
values_true = [False, True]
values_false = [-100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, (1.0, 2.0), [1.0, 2.0], _Dummy(),
np.zeros((1, 2), dtype=np.uint8), np.zeros((1,), dtype=bool)]
for value in values_true:
assert ia.is_single_bool(value) is True
for value in values_false:
assert ia.is_single_bool(value) is False
def test_is_integer_array():
class _Dummy(object):
pass
values_true = [
np.zeros((1, 2), dtype=np.uint8),
np.zeros((100,), dtype=np.uint8),
np.zeros((1, 2), dtype=np.uint16),
np.zeros((1, 2), dtype=np.int32),
np.zeros((1, 2), dtype=np.int64)
]
values_false = [
"A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False,
(1.0, 2.0), [1.0, 2.0], _Dummy(),
np.zeros((1, 2), dtype=np.float16),
np.zeros((100,), dtype=np.float32),
np.zeros((1, 2), dtype=np.float64),
np.zeros((1, 2), dtype=np.bool)
]
for value in values_true:
assert ia.is_integer_array(value) is True
for value in values_false:
assert ia.is_integer_array(value) is False
def test_is_float_array():
class _Dummy(object):
pass
values_true = [
np.zeros((1, 2), dtype=np.float16),
np.zeros((100,), dtype=np.float32),
np.zeros((1, 2), dtype=np.float64)
]
values_false = [
"A", "BC", "1", "", -100, 1, 0, 1, 100, -1.2, -0.001, 0.0, 0.001, 1.2, 1e-4, True, False,
(1.0, 2.0), [1.0, 2.0], _Dummy(),
np.zeros((1, 2), dtype=np.uint8),
np.zeros((100,), dtype=np.uint8),
np.zeros((1, 2), dtype=np.uint16),
np.zeros((1, 2), dtype=np.int32),
np.zeros((1, 2), dtype=np.int64),
| np.zeros((1, 2), dtype=np.bool) | numpy.zeros |
import numpy as np
def nes(fobj, optim):
# hyperparameters
npop = optim.num_pop # population size
sigma = optim.sigma # noise standard deviation
alpha = 0.01 # learning rate
# start the optimization
w = np.random.randn(optim.n_feat) # our initial guess is random
r_best = fobj(w)
for i in range(optim.num_iter):
# print current fitness of the most likely parameter setting
if i % 5 == 0:
print('iter %d. w: %s, reward: %f' %
(i, str(w), fobj(w)))
# initialize memory for a population of w's, and their rewards
N = np.random.randn(npop, optim.n_feat) # samples from a normal distribution N(0,1)
R = np.zeros(npop)
w_try = w + sigma*N
for j in range(npop):
# w_try = w + sigma*N[j] # jitter w using gaussian of sigma 0.1
R[j] = fobj(w_try[j]) # evaluate the jittered version
# Get best children :
ind_best = | np.argmin(R) | numpy.argmin |
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import json
sns.set_context('paper')
sns.set(font_scale=1)
palette = sns.color_palette("mako_r", 10)
def compare_plots_best_performing(csv):
compare_plot_df = {'model': [], 'conds': [], 'rate': [], 'distortion': []}
fig, ax = plt.subplots(figsize=(8, 6))
for j in range(len(csv['csv_path'])):
# read the j'th csv that we want to compare
csv_df = pd.read_csv(csv['csv_path'][j])
# each csv has a number of conditions
# Lets loop throught those
for i in range(len(set(csv_df['num_conds']))):
tmp = csv_df.loc[csv_df['num_conds'] == i]
compare_plot_df['model'].append(j)
compare_plot_df['conds'].append(i)
# compare_plot_df['rate'].append(np.sort(tmp['test_kld'])[0])
# compare_plot_df['distortion'].append(np.sort(tmp['test_rcl'])[0])
compare_plot_df['rate'].append(np.mean(tmp['test_kld']))
compare_plot_df['distortion'].append(np.mean(tmp['test_rcl']))
dataframe_for_lineplot = pd.DataFrame(compare_plot_df)
dataframe_for_lineplot = dataframe_for_lineplot.loc[dataframe_for_lineplot['model'] == j]
sns.lineplot(ax=ax, data=dataframe_for_lineplot, x='distortion', y='rate', color='black', lw=0.5)
compare_plot_df = pd.DataFrame(compare_plot_df)
sns.scatterplot(
ax=ax, data=compare_plot_df, x='distortion', y='rate', hue='conds',
style='model', s=200
)
plt.legend(loc='upper left')
ax.set_xlabel('Distortion')
ax.set_ylabel('Rate')
fig.savefig('./multiple_models_conds.png', bbox_inches='tight')
def plot_single_model_multiple_epoch(
csv, compare_plot_df=None, count=None,
fig=None, ax=None, total=None, save=True
):
if compare_plot_df is None:
fig, ax = plt.subplots(figsize=(8, 6))
compare_plot_df = {'epoch': [], 'conds': [], 'rate': [], 'distortion': []}
csv_df = pd.read_csv(csv['csv_path'])
else:
csv_df = pd.read_csv(csv['csv_path'][0])
# each csv has a number of conditions
# Lets loop throught those
for k in range(len(set(csv_df['epoch']))):
# Plot only odd epochs
if k % 2 != 0:
for i in range(len(set(csv_df['num_conds']))):
tmp = csv_df.loc[csv_df['num_conds'] == i]
if count is not None:
compare_plot_df['model'].append(count)
compare_plot_df['epoch'].append(k)
compare_plot_df['conds'].append(i)
compare_plot_df['rate'].append(tmp.loc[tmp['epoch'] == k]['test_kld'].item())
compare_plot_df['distortion'].append(tmp.loc[tmp['epoch'] == k]['test_rcl'].item())
compare_plot_df = pd.DataFrame(compare_plot_df)
if save is True:
sns.scatterplot(ax=ax, data=compare_plot_df, x='distortion', y='rate',
hue='conds', s=200)
else:
if count != total:
sns.scatterplot(ax=ax, data=compare_plot_df, x='distortion', y='rate',
hue='conds', style='model', s=200, legend=False)
else:
sns.scatterplot(ax=ax, data=compare_plot_df, x='distortion', y='rate',
hue='conds', style='model',
s=200)
if count is not None:
compare_plot_df = compare_plot_df.loc[compare_plot_df['model'] == count]
if count == 1:
sns.lineplot(
ax=ax, data=compare_plot_df, x='distortion', y='rate', color='black',
hue='epoch', palette="ch:2.5,.25"
)
else:
sns.lineplot(
ax=ax, data=compare_plot_df, x='distortion', y='rate', color='black',
hue='epoch', palette="ch:2.5,.25", legend=False
)
else:
sns.lineplot(
ax=ax, data=compare_plot_df, x='distortion', y='rate', color='black',
hue='epoch', palette="ch:2.5,.25"
)
plt.legend(loc='upper left')
ax.set_xlabel('Distortion')
ax.set_ylabel('Rate')
if save is True:
fig.savefig('./multiple_conds_epochs.png', bbox_inches='tight')
return fig, ax
def plot_multiple_model_multiple_epoch(csv):
compare_plot_df = {'model': [], 'epoch': [], 'conds': [], 'rate': [], 'distortion': []}
fig, ax = plt.subplots(figsize=(8, 6))
count = 1
total = len(csv['csv_path'])
for i, j in zip(csv['save_dir'], csv['csv_path']):
this_csv = {'save_dir': [], 'csv_path': []}
this_csv['save_dir'].append(i)
this_csv['csv_path'].append(j)
fig, ax = plot_single_model_multiple_epoch(this_csv, compare_plot_df, count, fig, ax, total, save=False)
count += 1
fig.savefig('./multiple_models_conds_epochs.png', bbox_inches='tight')
def compare_plots_best_performing_encoding(csv):
compare_plot_df = {'model': [], 'conds': [], 'rate': [], 'distortion': []}
fig, ax = plt.subplots(figsize=(8, 6))
for j in range(len(csv['csv_path'])):
# read the j'th csv that we want to compare
csv_df = pd.read_csv(csv['csv_path'][j])
# each csv has a number of conditions
# Lets loop throught those
for i in range(len(set(csv_df['num_conds']))):
tmp = csv_df.loc[csv_df['num_conds'] == i]
compare_plot_df['model'].append(j)
compare_plot_df['conds'].append(i)
# compare_plot_df['rate'].append(np.sort(tmp['test_kld'])[0])
# compare_plot_df['distortion'].append(np.sort(tmp['test_rcl'])[0])
compare_plot_df['rate'].append( | np.mean(tmp['KLD']) | numpy.mean |
import numpy as np
import os
import re
import requests
import sys
import time
from netCDF4 import Dataset
import pandas as pd
from bs4 import BeautifulSoup
from tqdm import tqdm
# setup constants used to access the data from the different M2M interfaces
BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL
SENSOR_URL = '12576/sensor/inv/' # Sensor Information
# setup access credentials
AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>']
def M2M_Call(uframe_dataset_name, start_date, end_date):
options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf'
r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1]))
if r.status_code == requests.codes.ok:
data = r.json()
else:
return None
# wait until the request is completed
print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes')
url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0]
check_complete = url + '/status.txt'
with tqdm(total=400, desc='Waiting') as bar:
for i in range(400):
r = requests.get(check_complete)
bar.update(1)
if r.status_code == requests.codes.ok:
bar.n = 400
bar.last_print_n = 400
bar.refresh()
print('\nrequest completed in %f minutes.' % elapsed)
break
else:
time.sleep(3)
elapsed = (i * 3) / 60
return data
def M2M_Files(data, tag=''):
"""
Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog.
Collected data is gathered into an xarray dataset for further processing.
:param data: JSON object returned from M2M data request with details on where the data is to be found for download
:param tag: regex tag to use in discriminating the data files, so we only collect the correct ones
:return: the collected data as an xarray dataset
"""
# Create a list of the files from the request above using a simple regex as a tag to discriminate the files
url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0]
files = list_files(url, tag)
return files
def list_files(url, tag=''):
"""
Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system.
:param url: URL to user's THREDDS catalog specific to a data request
:param tag: regex pattern used to distinguish files of interest
:return: list of files in the catalog with the URL path set relative to the catalog
"""
page = requests.get(url).text
soup = BeautifulSoup(page, 'html.parser')
pattern = re.compile(tag)
return [node.get('href') for node in soup.find_all('a', text=pattern)]
def M2M_Data(nclist,variables):
thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/'
#nclist is going to contain more than one url eventually
for jj in range(len(nclist)):
url=nclist[jj]
url=url[25:]
dap_url = thredds + url + '#fillmismatch'
openFile = Dataset(dap_url,'r')
for ii in range(len(variables)):
dum = openFile.variables[variables[ii].name]
variables[ii].data = np.append(variables[ii].data, dum[:].data)
tmp = variables[0].data/60/60/24
time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01'))
return variables, time_converted
class var(object):
def __init__(self):
"""A Class that generically holds data with a variable name
and the units as attributes"""
self.name = ''
self.data = np.array([])
self.units = ''
def __repr__(self):
return_str = "name: " + self.name + '\n'
return_str += "units: " + self.units + '\n'
return_str += "data: size: " + str(self.data.shape)
return return_str
class structtype(object):
def __init__(self):
""" A class that imitates a Matlab structure type
"""
self._data = []
def __getitem__(self, index):
"""implement index behavior in the struct"""
if index == len(self._data):
self._data.append(var())
return self._data[index]
def __len__(self):
return len(self._data)
def M2M_URLs(platform_name,node,instrument_class,method):
var_list = structtype()
#MOPAK
if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#METBK
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#FLORT
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
#FDCHP
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#DOSTA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
#ADCP
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#ZPLSC
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#WAVSS
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
#VELPT
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
#PCO2W
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#PHSEN
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
#SPKIR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
#PRESF
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
#CTDBP
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#VEL3D
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
#VEL3DK
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#PCO2A
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#PARAD
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
#OPTAA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#NUTNR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
##
#MOPAK
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#METBK
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#FLORT
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
#FDCHP
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#DOSTA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_ln_optode_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
#ADCP
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#WAVSS
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
#VELPT
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
#uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
#PCO2W
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#PHSEN
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
#SPKIR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
#PRESF
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
#CTDBP
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
#VEL3D
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
#PCO2A
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#OPTAA
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#NUTNR
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst':
uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[3].name = 'ctdbp_seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst':
uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered'
var_list[0].name = 'time'
var_list[1].name = 'significant_wave_height'
var_list[2].name = 'peak_wave_period'
var_list[3].name = 'peak_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'seconds'
var_list[3].units = 'degrees'
elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst':
uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered'
var_list[0].name = 'time'
var_list[1].name = 'significant_wave_height'
var_list[2].name = 'peak_wave_period'
var_list[3].name = 'peak_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'seconds'
var_list[3].units = 'degrees'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_no_seawater_pressure'
var_list[5].name = 'ctdbp_no_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_no_seawater_pressure'
var_list[5].name = 'ctdbp_no_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'ctd_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_c_eastward_turbulent_velocity'
var_list[2].name = 'vel3d_c_northward_turbulent_velocity'
var_list[3].name = 'vel3d_c_upward_turbulent_velocity'
var_list[4].name = 'seawater_pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = '0.001dbar'
elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed':
uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed':
uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
#CSPP Data below
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[4].name = 'optode_temperature'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'umol/L'
var_list[4].units = 'degC'
var_list[5].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temperature'
var_list[2].name = 'salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_j_par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'salinity_corrected_nitrate'
var_list[2].name = 'nitrate_concentration'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'velpt_j_eastward_velocity'
var_list[2].name = 'velpt_j_northward_velocity'
var_list[3].name = 'velpt_j_upward_velocity'
var_list[4].name = 'heading'
var_list[5].name = 'roll'
var_list[6].name = 'pitch'
var_list[7].name = 'temperature'
var_list[8].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'degrees'
var_list[5].units = 'degrees'
var_list[6].units = 'degrees'
var_list[7].units = 'degC'
var_list[8].units = 'dbar'
elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP':
uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_water_temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'sci_seawater_density'
var_list[4].name = 'sci_water_pressure_dbar'
var_list[5].name = 'sci_water_cond'
var_list[6].name = 'lat'
var_list[7].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
var_list[6].units = 'degree_north'
var_list[7].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sci_oxy4_oxygen'
var_list[2].name = 'sci_abs_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[4].name = 'lat'
var_list[5].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/kg'
var_list[3].units = 'dbar'
var_list[4].units = 'degree_north'
var_list[5].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'sci_flbbcd_chlor_units'
var_list[3].name = 'sci_flbbcd_cdom_units'
var_list[4].name = 'sci_flbbcd_bb_units'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[7].name = 'lat'
var_list[8].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
var_list[7].units = 'degree_north'
var_list[8].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_m_par'
var_list[2].name = 'int_ctd_pressure'
var_list[3].name = 'lat'
var_list[4].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
var_list[3].units = 'degree_north'
var_list[4].units = 'degree_east'
elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost':
uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[8].name = 'int_ctd_pressure'
var_list[9].name = 'lat'
var_list[10].name = 'lon'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
var_list[8].units = 'dbar'
var_list[9].units = 'degree_north'
var_list[10].units = 'degree_east'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'seawater_pressure'
var_list[5].name = 'seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'dpc_ctd_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'dpc_ctd_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample'
var_list[0].name = 'time'
var_list[1].name = 'corrected_dissolved_oxygen'
var_list[2].name = 'seawater_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a'
var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient '
var_list[3].name = 'flntu_x_mmp_cds_bback_total'
var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'ug/L'
var_list[2].units = 'm-1 sr-1'
var_list[3].units = 'm-1'
var_list[4].units = 'ppb'
var_list[5].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a'
var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient '
var_list[3].name = 'flntu_x_mmp_cds_bback_total'
var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'ug/L'
var_list[2].units = 'm-1 sr-1'
var_list[3].units = 'm-1'
var_list[4].units = 'ppb'
var_list[5].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample'
var_list[0].name = 'time'
var_list[1].name = 'par_counts_output'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record'
var_list[0].name = 'time'
var_list[1].name = 'spkir_downwelling_vector'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample'
var_list[0].name = 'time'
var_list[1].name = 'nitrate_concentration'
var_list[2].name = 'salinity_corrected_nitrate'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/L'
var_list[2].units = 'umol/L'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
var_list[3].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data'
var_list[0].name = 'time'
var_list[1].name = 'velpt_d_eastward_velocity'
var_list[2].name = 'velpt_d_northward_velocity'
var_list[3].name = 'velpt_d_upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[9].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
var_list[9].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst':
uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_a_eastward_velocity'
var_list[2].name = 'vel3d_a_northward_velocity'
var_list[3].name = 'vel3d_a_upward_velocity_ascending'
var_list[4].name = 'vel3d_a_upward_velocity_descending'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'm/s'
var_list[5].units = 'dbar'
elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_a_eastward_velocity'
var_list[2].name = 'vel3d_a_northward_velocity'
var_list[3].name = 'vel3d_a_upward_velocity_ascending'
var_list[4].name = 'vel3d_a_upward_velocity_descending'
var_list[5].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'm/s'
var_list[5].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'seawater_pressure'
var_list[5].name = 'seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed':
#uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample'
uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'dbar'
elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed':
uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
#Coastal Pioneer CSM Data Streams
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'sea_surface_temperature'
var_list[2].name = 'sea_surface_conductivity'
var_list[3].name = 'met_salsurf'
var_list[4].name = 'met_windavg_mag_corr_east'
var_list[5].name = 'met_windavg_mag_corr_north'
var_list[6].name = 'barometric_pressure'
var_list[7].name = 'air_temperature'
var_list[8].name = 'relative_humidity'
var_list[9].name = 'longwave_irradiance'
var_list[10].name = 'shortwave_irradiance'
var_list[11].name = 'precipitation'
var_list[12].name = 'met_heatflx_minute'
var_list[13].name = 'met_latnflx_minute'
var_list[14].name = 'met_netlirr_minute'
var_list[15].name = 'met_sensflx_minute'
var_list[16].name = 'eastward_velocity'
var_list[17].name = 'northward_velocity'
var_list[18].name = 'met_spechum'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[17].data = np.array([])
var_list[18].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'S/m'
var_list[3].units = 'unitless'
var_list[4].units = 'm/s'
var_list[5].units = 'm/s'
var_list[6].units = 'mbar'
var_list[7].units = 'degC'
var_list[8].units = '#'
var_list[9].units = 'W/m'
var_list[10].units = 'W/m'
var_list[11].units = 'mm'
var_list[12].units = 'W/m'
var_list[13].units = 'W/m'
var_list[14].units = 'W/m'
var_list[15].units = 'W/m'
var_list[16].units = 'm/s'
var_list[17].units = 'm/s'
var_list[18].units = 'g/kg'
#WAVSS
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_zero_crossings'
var_list[2].name = 'average_wave_height'
var_list[3].name = 'mean_spectral_period'
var_list[4].name = 'max_wave_height'
var_list[5].name = 'significant_wave_height'
var_list[6].name = 'significant_period'
var_list[7].name = 'wave_height_10'
var_list[8].name = 'wave_period_10'
var_list[9].name = 'mean_wave_period'
var_list[10].name = 'peak_wave_period'
var_list[11].name = 'wave_period_tp5'
var_list[12].name = 'wave_height_hmo'
var_list[13].name = 'mean_direction'
var_list[14].name = 'mean_spread'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'counts'
var_list[2].units = 'm'
var_list[3].units = 'sec'
var_list[4].units = 'm'
var_list[5].units = 'm'
var_list[6].units = 'sec'
var_list[7].units = 'm'
var_list[8].units = 'sec'
var_list[9].units = 'sec'
var_list[10].units = 'sec'
var_list[11].units = 'sec'
var_list[12].units = 'm'
var_list[13].units = 'degrees'
var_list[14].units = 'degrees'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'mean_direction'
var_list[2].name = 'number_bands'
var_list[3].name = 'initial_frequency'
var_list[4].name = 'frequency_spacing'
var_list[5].name = 'psd_mean_directional'
var_list[6].name = 'mean_direction_array'
var_list[7].name = 'directional_spread_array'
var_list[8].name = 'spread_direction'
var_list[9].name = 'wavss_a_directional_frequency'
var_list[10].name = 'wavss_a_corrected_mean_wave_direction'
var_list[11].name = 'wavss_a_corrected_directional_wave_direction'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degrees'
var_list[2].units = '1'
var_list[3].units = 'Hz'
var_list[4].units = 'Hz'
var_list[5].units = 'm2 Hz-1'
var_list[6].units = 'degrees'
var_list[7].units = 'degrees'
var_list[8].units = 'degrees'
var_list[9].units = 'Hz'
var_list[10].units = 'deg'
var_list[11].units = 'deg'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'psd_non_directional'
var_list[5].name = 'wavss_a_non_directional_frequency'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = 'm2 Hz-1'
var_list[5].units = 'Hz'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_time_samples'
var_list[2].name = 'initial_time'
var_list[3].name = 'time_spacing'
var_list[4].name = 'solution_found'
var_list[5].name = 'heave_offset_array'
var_list[6].name = 'north_offset_array'
var_list[7].name = 'east_offset_array'
var_list[8].name = 'wavss_a_buoymotion_time'
var_list[9].name = 'wavss_a_magcor_buoymotion_x'
var_list[10].name = 'wavss_a_magcor_buoymotion_y'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'sec'
var_list[3].units = 'sec'
var_list[4].units = '1'
var_list[5].units = 'm'
var_list[6].units = 'm'
var_list[7].units = 'm'
var_list[8].units = 'seconds since 1900-01-01'
var_list[9].units = 'm'
var_list[10].units = 'm'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered'
var_list[0].name = 'time'
var_list[1].name = 'number_bands'
var_list[2].name = 'initial_frequency'
var_list[3].name = 'frequency_spacing'
var_list[4].name = 'number_directional_bands'
var_list[5].name = 'initial_directional_frequency'
var_list[6].name = 'directional_frequency_spacing'
var_list[7].name = 'fourier_coefficient_2d_array'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = '1'
var_list[2].units = 'Hz'
var_list[3].units = 'Hz'
var_list[4].units = '1'
var_list[5].units = 'Hz'
var_list[6].units = 'Hz'
var_list[7].units = '1'
#PCO2A
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#PCO2A
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered'
var_list[0].name = 'time'
var_list[1].name = 'partial_pressure_co2_ssw'
var_list[2].name = 'partial_pressure_co2_atm'
var_list[3].name = 'pco2_co2flux'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uatm'
var_list[2].units = 'uatm'
var_list[3].units = 'mol m-2 s-1'
#FDCHP
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly'
var_list[0].name = 'met_timeflx'
var_list[1].name = 'met_rainrte'
var_list[2].name = 'met_buoyfls'
var_list[3].name = 'met_buoyflx'
var_list[4].name = 'met_frshflx'
var_list[5].name = 'met_heatflx'
var_list[6].name = 'met_latnflx'
var_list[7].name = 'met_mommflx'
var_list[8].name = 'met_netlirr'
var_list[9].name = 'met_rainflx'
var_list[10].name = 'met_sensflx'
var_list[11].name = 'met_sphum2m'
var_list[12].name = 'met_stablty'
var_list[13].name = 'met_tempa2m'
var_list[14].name = 'met_tempskn'
var_list[15].name = 'met_wind10m'
var_list[16].name = 'met_netsirr_hourly'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[9].data = np.array([])
var_list[10].data = np.array([])
var_list[11].data = np.array([])
var_list[12].data = np.array([])
var_list[13].data = np.array([])
var_list[14].data = np.array([])
var_list[15].data = np.array([])
var_list[16].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'mm/hr'
var_list[2].units = 'W/m2'
var_list[3].units = 'W/m2'
var_list[4].units = 'mm/hr'
var_list[5].units = 'W/m2'
var_list[6].units = 'W/m2'
var_list[7].units = 'N/m2'
var_list[8].units = 'W/m2'
var_list[9].units = 'W/m2'
var_list[10].units = 'W/m2'
var_list[11].units = 'g/kg'
var_list[12].units = 'unitless'
var_list[13].units = 'degC'
var_list[14].units = 'degC'
var_list[15].units = 'm/s'
var_list[16].units = 'W/m2'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'temp'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'pressure'
var_list[5].name = 'conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdbp_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdbp_seawater_pressure'
var_list[5].name = 'ctdbp_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'spkir_abj_cspp_downwelling_vector'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'uW cm-2 nm-1'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument'
var_list[0].name = 'time'
var_list[1].name = 'phsen_thermistor_temperature'
var_list[2].name = 'phsen_abcdef_ph_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'pco2w_thermistor_temperature'
var_list[2].name = 'pco2_seawater'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'uatm'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered'
var_list[0].name = 'time'
var_list[1].name = 'presf_tide_pressure'
var_list[2].name = 'presf_tide_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement'
var_list[0].name = 'time'
var_list[1].name = 'abs_seafloor_pressure'
var_list[2].name = 'seawater_temperature'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'dbar'
var_list[2].units = 'degC'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'eastward_velocity'
var_list[2].name = 'northward_velocity'
var_list[3].name = 'upward_velocity'
var_list[4].name = 'heading_decidegree'
var_list[5].name = 'roll_decidegree'
var_list[6].name = 'pitch_decidegree'
var_list[7].name = 'temperature_centidegree'
var_list[8].name = 'pressure_mbar'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[8].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'deci-degrees'
var_list[6].units = 'deci-degrees'
var_list[7].units = '0.01degC'
var_list[8].units = '0.001dbar'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dissolved_oxygen'
var_list[2].name = 'estimated_oxygen_concentration'
var_list[3].name = 'optode_temperature'
var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'umol/L'
var_list[3].units = 'degC'
var_list[4].units = 'umol/L'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst':
uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth'
var_list[0].name = 'time'
var_list[1].name = 'bin_depths'
var_list[2].name = 'heading'
var_list[3].name = 'pitch'
var_list[4].name = 'roll'
var_list[5].name = 'eastward_seawater_velocity'
var_list[6].name = 'northward_seawater_velocity'
var_list[7].name = 'upward_seawater_velocity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'meters'
var_list[2].units = 'deci-degrees'
var_list[3].units = 'deci-degrees'
var_list[4].units = 'deci-degrees'
var_list[5].units = 'm/s'
var_list[6].units = 'm/s'
var_list[7].units = 'm/s'
#Coastal Pioneer WireFollowing Profilers (WFP
elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[7].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm/s'
var_list[2].units = 'm/s'
var_list[3].units = 'm/s'
var_list[4].units = 'ddegrees'
var_list[5].units = 'ddegrees'
var_list[6].units = 'ddegrees'
var_list[7].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'ctdpf_ckl_seawater_temperature'
var_list[2].name = 'practical_salinity'
var_list[3].name = 'density'
var_list[4].name = 'ctdpf_ckl_seawater_pressure'
var_list[5].name = 'ctdpf_ckl_seawater_conductivity'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'degC'
var_list[2].units = 'unitless'
var_list[3].units = 'kg/m3'
var_list[4].units = 'dbar'
var_list[5].units = 'S/m'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered':
uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'parad_k_par'
var_list[2].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol photons m-2 s-1'
var_list[2].units = 'dbar'
elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost':
uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered'
var_list[0].name = 'time'
var_list[0].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/telemetered/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample'
var_list[0].name = 'time'
var_list[1].name = 'seawater_scattering_coefficient'
var_list[2].name = 'fluorometric_chlorophyll_a'
var_list[3].name = 'fluorometric_cdom'
var_list[4].name = 'total_volume_scattering_coefficient'
var_list[5].name = 'optical_backscatter'
var_list[6].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[4].data = np.array([])
var_list[5].data = np.array([])
var_list[6].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'm-1'
var_list[2].units = 'ug/L'
var_list[3].units = 'ppb'
var_list[4].units = 'm-1 sr-1'
var_list[5].units = 'm-1'
var_list[6].units = 'dbar'
elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP':
uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered'
var_list[0].name = 'time'
var_list[1].name = 'dofst_k_oxygen_l2'
var_list[2].name = 'dofst_k_oxygen'
var_list[3].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = np.array([])
var_list[2].data = np.array([])
var_list[3].data = np.array([])
var_list[0].units = 'seconds since 1900-01-01'
var_list[1].units = 'umol/kg'
var_list[2].units = 'Hz'
var_list[3].units = 'dbar'
elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered':
uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument'
var_list[0].name = 'time'
var_list[1].name = 'vel3d_k_eastward_velocity'
var_list[2].name = 'vel3d_k_northward_velocity'
var_list[3].name = 'vel3d_k_upward_velocity'
var_list[4].name = 'vel3d_k_heading'
var_list[5].name = 'vel3d_k_pitch'
var_list[6].name = 'vel3d_k_roll'
var_list[7].name = 'int_ctd_pressure'
var_list[0].data = np.array([])
var_list[1].data = | np.array([]) | numpy.array |
"""
Utils for evaluation.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import cv2
import numpy as np
# Error metrics
def compute_accel(joints):
"""
Computes acceleration of 3D joints.
Args:
joints (Nx25x3).
Returns:
Accelerations (N-2).
"""
velocities = joints[1:] - joints[:-1]
acceleration = velocities[1:] - velocities[:-1]
acceleration_normed = np.linalg.norm(acceleration, axis=2)
return np.mean(acceleration_normed, axis=1)
def compute_error_3d(gt3ds, preds, vis=None):
"""
Returns MPJPE after pelvis alignment and MPJPE after Procrustes. Should
evaluate only on the 14 common joints.
Args:
gt3ds (Nx14x3).
preds (Nx14x3).
vis (N).
Returns:
MPJPE, PA-MPJPE
"""
assert len(gt3ds) == len(preds)
errors, errors_pa = [], []
for i, (gt3d, pred) in enumerate(zip(gt3ds, preds)):
if vis is None or vis[i]:
gt3d = gt3d.reshape(-1, 3)
# Root align.
gt3d = align_by_pelvis(gt3d)
pred3d = align_by_pelvis(pred)
joint_error = np.sqrt(np.sum((gt3d - pred3d)**2, axis=1))
errors.append(np.mean(joint_error))
# Get PA error.
pred3d_sym = compute_similarity_transform(pred3d, gt3d)
pa_error = np.sqrt(np.sum((gt3d - pred3d_sym) ** 2, axis=1))
errors_pa.append(np.mean(pa_error))
return errors, errors_pa
def compute_error_accel(joints_gt, joints_pred, vis=None):
"""
Computes acceleration error:
1/(n-2) \sum_{i=1}^{n-1} X_{i-1} - 2X_i + X_{i+1}
Note that for each frame that is not visible, three entries in the
acceleration error should be zero'd out.
Args:
joints_gt (Nx14x3).
joints_pred (Nx14x3).
vis (N).
Returns:
error_accel (N-2).
"""
# (N-2)x14x3
accel_gt = joints_gt[:-2] - 2 * joints_gt[1:-1] + joints_gt[2:]
accel_pred = joints_pred[:-2] - 2 * joints_pred[1:-1] + joints_pred[2:]
normed = np.linalg.norm(accel_pred - accel_gt, axis=2)
if vis is None:
new_vis = np.ones(len(normed), dtype=bool)
else:
invis = np.logical_not(vis)
invis1 = np.roll(invis, -1)
invis2 = np.roll(invis, -2)
new_invis = np.logical_or(invis, np.logical_or(invis1, invis2))[:-2]
new_vis = np.logical_not(new_invis)
return np.mean(normed[new_vis], axis=1)
def compute_error_kp(kps_gt, kps_pred, alpha=0.05, min_visible=6):
"""
Compute the keypoint error (mean difference in pixels), keypoint error after
Procrustes Analysis, and percent correct keypoints.
Args:
kps_gt (Nx25x3).
kps_pred (Nx25x2).
alpha (float).
min_visible (int): Min threshold for deciding visibility.
Returns:
errors_kp, errors_kp_pa, errors_kp_pck
"""
assert len(kps_gt) == len(kps_pred)
errors_kp, errors_kp_pa, errors_kp_pck = [], [], []
for kp_gt, kp_pred in zip(kps_gt, kps_pred):
vis = kp_gt[:, 2].astype(bool)
kp_gt = kp_gt[:, :2]
if np.all(vis == 0) or np.sum(vis == 1) < min_visible:
# Use nan to signify not visible.
error_kp = np.nan
error_pa_pck = np.nan
error_kp_pa = np.nan
else:
kp_diffs = np.linalg.norm(kp_gt[vis] - kp_pred[vis], axis=1)
kp_pred_pa, _ = compute_opt_cam_with_vis(
got=kp_pred,
want=kp_gt,
vis=vis,
)
kp_diffs_pa = np.linalg.norm(kp_gt[vis] - kp_pred_pa[vis], axis=1)
error_kp = np.mean(kp_diffs)
error_pa_pck = np.mean(kp_diffs_pa < alpha)
error_kp_pa = np.mean(kp_diffs_pa)
errors_kp.append(error_kp)
errors_kp_pa.append(error_kp_pa)
errors_kp_pck.append(error_pa_pck)
return errors_kp, errors_kp_pa, errors_kp_pck
def compute_error_verts(verts_gt, verts_pred):
"""
Computes MPJPE over 6890 surface vertices.
Args:
verts_gt (Nx6989x3).
verts_pred (Nx6989x3).
Returns:
error_verts (N).
"""
assert len(verts_gt) == len(verts_pred)
error_per_vert = np.sqrt(np.sum((verts_gt - verts_pred) ** 2, axis=2))
return np.mean(error_per_vert, axis=1)
# Utilities for computing error metrics.
def align_by_pelvis(joints, get_pelvis=False):
"""
Aligns joints by pelvis to be at origin. Assumes hips are index 3 and 2 of
joints (14x3) in LSP order. Pelvis is midpoint of hips.
Args:
joints (14x3).
get_pelvis (bool).
"""
left_id = 3
right_id = 2
pelvis = (joints[left_id, :] + joints[right_id, :]) / 2.
if get_pelvis:
return joints - np.expand_dims(pelvis, axis=0), pelvis
else:
return joints - np.expand_dims(pelvis, axis=0)
def compute_similarity_transform(S1, S2):
"""
Computes a similarity transform (sR, t) that takes a set of 3D points
S1 (3 x N) closest to a set of 3D points S2, where R is an 3x3 rotation
matrix, t 3x1 translation, s scale.
i.e. solves the orthogonal Procrustes problem.
Args:
S1 (3xN): Original 3D points.
S2 (3xN'): Target 3D points.
Returns:
S1_hat: S1 after applying optimal alignment.
"""
transposed = False
if S1.shape[0] != 3 and S1.shape[0] != 2:
S1 = S1.T
S2 = S2.T
transposed = True
assert(S2.shape[1] == S1.shape[1])
# 1. Remove mean.
mu1 = S1.mean(axis=1, keepdims=True)
mu2 = S2.mean(axis=1, keepdims=True)
X1 = S1 - mu1
X2 = S2 - mu2
# 2. Compute variance of X1 used for scale.
var1 = np.sum(X1 ** 2)
# 3. The outer product of X1 and X2.
K = X1.dot(X2.T)
# 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are
# singular vectors of K.
U, s, Vh = np.linalg.svd(K)
V = Vh.T
# Construct Z that fixes the orientation of R to get det(R)=1.
Z = np.eye(U.shape[0])
Z[-1, -1] *= np.sign(np.linalg.det(U.dot(V.T)))
# Construct R.
R = V.dot(Z.dot(U.T))
# 5. Recover scale.
scale = np.trace(R.dot(K)) / var1
# 6. Recover translation.
t = mu2 - scale * (R.dot(mu1))
# 7. Error:
S1_hat = scale * R.dot(S1) + t
if transposed:
S1_hat = S1_hat.T
return S1_hat
def compute_opt_cam_with_vis(got, want, vis):
"""
Computes the optimal camera [scale, tx, ty] to map 2D keypoints got to 2D
keypoints want with boolean visibility indicator vis.
"""
# Zero out
vis_float = np.expand_dims(vis, 1).astype(np.float)
got_zeroed = got.copy()
got_zeroed[np.logical_not(vis)] = 0.
want_zeroed = want.copy()
want_zeroed[np.logical_not(vis)] = 0.
mu1 = np.sum(got_zeroed, axis=0) / np.sum(vis)
mu2 = np.sum(want_zeroed, axis=0) / | np.sum(vis) | numpy.sum |
import pandas as pd
import numpy as np
import os
# Generate the risk distribution parameters from the risk_distribution.py script
from risk_distribution import *
# Import parameters from parameters.py script
from parameters import *
# Set path for saving dataframes
base_path = '...'
sims = 10000
# Functions to return probabilistic variables in suitable format
def gamma(alpha, beta):
alpha = np.array([alpha] * sims)
beta = np.array([beta] * sims)
samples = np.random.gamma(alpha, beta)
return samples
def gamma_specified(min, multiplier, alpha, beta):
min = np.array([min] * sims).T
alpha = np.array([alpha] * sims)
beta = np.array([beta] * sims)
samples = min + np.random.gamma(alpha, beta) * multiplier
samples = samples.T
return samples
def normal(parameter, sd):
samples = np.random.normal(parameter, sd, sims)
samples = np.array([samples] * 45).T
return samples
def lognormal(parameter, sd):
samples = | np.random.lognormal(parameter, sd, sims) | numpy.random.lognormal |
# 1. 배열 만들기
import numpy as np
a = np.array([[1, 2], [3, 4]])
print(a)
# 2. 사칙 연산
print('====================================================================================================')
print('== 문제 1. 아래의 a 배열에 모든 원소에 5를 더한 결과를 출력하시오!')
print('====================================================================================================\n')
a = np.array([[1, 2], [3, 4]])
print(a + 5)
print('====================================================================================================')
print('== 문제 2. 아래의 배열의 원소들의 평균값을 출력하시오!')
print('====================================================================================================\n')
a = np.array([1,2,4,5,5,7,10,13,18,21])
print(np.mean(a))
print('====================================================================================================')
print('== 문제 3. a 배열의 중앙값을 출력하시오!')
print('====================================================================================================\n')
print(np.median(a))
print('====================================================================================================')
print('== 문제 4. a 배열의 최대값과 최소값을 출력하시오!')
print('====================================================================================================\n')
print(np.max(a), np.min(a))
print('====================================================================================================')
print('== 문제 5. a 배열의 표준편차와 분산을 출력하시오!')
print('====================================================================================================\n')
print(np.std(a), np.var(a))
print('====================================================================================================')
print('== 문제 6. 아래의 행렬식을 numpy 로 구현하시오!')
print('====================================================================================================\n')
a = np.array([[1, 3, 7], [1, 0, 0]])
b = np.array([[0, 0, 5], [7, 5, 0]])
print(a + b)
print('====================================================================================================')
print('== 문제 7. 아래의 numpy 배열을 생성하고 원소중에 10 만 출력해보시오!')
print('====================================================================================================\n')
a = np.array([[1, 2, 3], [4, 10, 6], [8, 9, 20]])
print(a[1][1])
print('====================================================================================================')
print('== 문제 8. (점심시간 문제) 아래의 행렬 연산을 파이썬으로 구현하시오!')
print('====================================================================================================\n')
a = np.array([[1, 2], [3, 4]])
b = np.array([10, 20])
print(a * b)
print('====================================================================================================')
print('== 문제 9. 아래의 그림의 행렬 연산을 numpy 로 구현하시오!')
print('====================================================================================================\n')
a = np.array([[0], [10], [20], [30]])
b = np.array([0, 1, 2])
print(a + b)
print('====================================================================================================')
print('== 문제 10. 아래의 행렬식을 numpy 로 구현하고 아래의 요소에서 15 이상인것만 출력하시오!')
print('====================================================================================================\n')
a = np.array([[51, 55], [14, 19], [0, 4]])
a[a>=15]
print('====================================================================================================')
print('== 문제 11. 아래의 행렬식을 numpy 를 이용하지 않고 list 변수로 구현하고 아래의 행렬식에서 행의 개수가 몇 개 인지 출력하시오!')
print('====================================================================================================\n')
a = [[1, 3, 7], [1, 0, 0]]
print(len(a))
print('====================================================================================================')
print('== 문제 12. 아래의 행렬식을 numpy 를 이용하지 않고 list 변수로 구현하고 열의 개수가 몇개인지 출력하시오!')
print('====================================================================================================\n')
a = [[1, 3, 7], [1, 0, 0]]
print(len(a[0]))
print('====================================================================================================')
print('== 문제 13. 아래의 행렬식의 덧셈 연산을 numpy 를 이용하지 않고 수행하시오!')
print('====================================================================================================\n')
a = [[1, 3, 7], [1, 0, 0]]
b = [[0, 0, 5], [7, 5, 0]]
result = []
for row_idx in range(len(a)):
temp = []
for col_idx in range(len(a[row_idx])):
temp.append(a[row_idx][col_idx] + b[row_idx][col_idx])
result.append(temp)
print(result)
print('====================================================================================================')
print('== 문제 14. 아래의 행렬식을 numpy 이용하지 않고 구현하시오!')
print('====================================================================================================\n')
a = [[1, 2], [3, 4]]
b = [[5, 6], [7, 8]]
result = []
for row_idx in range(len(a)):
temp = []
for col_idx in range(len(a[row_idx])):
temp.append(a[row_idx][col_idx] * b[row_idx][col_idx])
result.append(temp)
print(result)
print('====================================================================================================')
print('== 문제 15. 아래의 행렬 연산을 numpy 와 numpy 를 이용하지 않았을 때 2가지 방법으로 구현하시오!')
print('====================================================================================================\n')
a = [[10, 20], [30, 40]]
b = [[5, 6], [7, 8]]
result = []
for row_idx in range(len(a)):
temp = []
for col_idx in range(len(a[row_idx])):
temp.append(a[row_idx][col_idx] - b[row_idx][col_idx])
result.append(temp)
print(result)
print('====================================================================================================')
print('== 문제 16. numpy 의 broadcast 를 사용한 연산을 numpy 를 이용하지 않는 방법으로 구현하시오!')
print('====================================================================================================\n')
a = np.array([[1, 2], [3, 4]])
b = np.array([10, 20])
c = [[v[col_idx]*b[col_idx] for col_idx in range(len(v))] for v in a]
print(c)
# ■ matplotlib 사용법
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(0, 12, 0.01)
print(t)
plt.figure()
plt.plot(t)
plt.show()
print('====================================================================================================')
print('== 문제 18. 위의 그래프에 x 축의 이름을 size 라고 하고 y 축의 이름을 cost 라고 하시오!')
print('====================================================================================================\n')
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(0, 12, 0.01)
print(t)
plt.figure()
plt.plot(t)
plt.grid()
plt.xlabel('size')
plt.ylabel('cost')
plt.show()
print('====================================================================================================')
print('== 문제 19. 위의 그래프에 전체 제목을 size & cost 라고 하시오!')
print('====================================================================================================\n')
import matplotlib.pyplot as plt
import numpy as np
t = np.arange(0, 12, 0.01)
print(t)
plt.figure()
plt.plot(t)
plt.grid()
plt.xlabel('size')
plt.ylabel('cost')
plt.title('size & cost')
plt.show()
print('====================================================================================================')
print('== 문제 20. 아래의 numpy 배열로 산포도 그래프를 그리시오!')
print('====================================================================================================\n')
x = | np.array([0,1,2,3,4,5,6,7,8,9]) | numpy.array |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Author : <NAME>
# @Contact : <EMAIL>
from copy import deepcopy
from fractions import Fraction
from typing import Dict, Optional, Union, List
import numpy as np
from ConfigSpace import ConfigurationSpace, Constant, CategoricalHyperparameter, Configuration
from ConfigSpace.util import deactivate_inactive_hyperparameters
from scipy.spatial.distance import euclidean
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder, StandardScaler
from autoflow.constants import ERR_LOSS
from autoflow.utils.logging_ import get_logger
inc_logger = get_logger("incumbent trajectory")
logger = get_logger(__name__)
def is_top_level_activated(config_space, config, hp_name, hp_value=None):
parent_conditions = config_space.get_parent_conditions_of(hp_name)
if len(parent_conditions):
parent_condition = parent_conditions[0]
parent_value = parent_condition.value
parent_name = parent_condition.parent.name
return is_top_level_activated(config_space, config, parent_name, parent_value)
# 没有条件依赖,就是parent
if hp_value is None:
return True
return config[hp_name] == hp_value
def deactivate(config_space, vector):
result = deepcopy(vector)
config = Configuration(config_space, vector=vector)
for i, hp in enumerate(config_space.get_hyperparameters()):
name = hp.name
if not is_top_level_activated(config_space, config, name, None):
result[i] = np.nan
result_config = Configuration(configuration_space=config_space, vector=result)
return result_config
def get_max_SH_iter(min_budget, max_budget, eta):
return -int(np.log(min_budget / max_budget) / np.log(eta)) + 1
def get_budgets(min_budget, max_budget, eta):
if min_budget == max_budget:
return [min_budget]
budget = min_budget
budgets = []
budgets.append(budget)
# todo: 避免精度造成的影响
while True:
budget *= eta
if budget <= max_budget:
budgets.append(budget)
if budget == max_budget:
break
else:
logger.warning(
f"Invalid budget configuration (min_budget={min_budget},max_budget={max_budget},eta={eta}) , "
f"final max_budget={budget}, greater than max_budget")
break
return budgets
def modify_timestamps(timestamps: Dict[str, float], delta: float) -> Dict[str, float]:
result = {}
for k, v in timestamps.items():
v += delta
result[k] = v
return result
def print_incumbent_trajectory(chal_perf: float, inc_perf: float, challenger: dict, incumbent: dict, budget: float):
inc_logger.info("Challenger (%.4f) is better than incumbent (%.4f) when budget is (%s)."
% (chal_perf, inc_perf, pprint_budget(budget)))
# Show changes in the configuration
params = sorted([(param, incumbent.get(param), challenger.get(param))
for param in challenger.keys()])
inc_logger.info("Changes in incumbent:")
for param in params:
if param[1] != param[2]:
inc_logger.info(" %s : %r -> %r" % (param))
else:
inc_logger.debug(" %s remains unchanged: %r" %
(param[0], param[1]))
def pprint_budget(budget: float):
if budget - float(int(budget)) == 0:
return str(int(budget))
fraction = Fraction.from_float(budget)
return f"{fraction.numerator}/{fraction.denominator}"
class OneHotEncoder(BaseEstimator, TransformerMixin):
def __init__(self, n_choices_list):
self.n_choices_list = n_choices_list
def fit(self, X=None, y=None):
assert len(self.n_choices_list) == X.shape[1]
return self
def transform(self, X):
assert len(self.n_choices_list) == X.shape[1]
N = X.shape[0]
result = np.ones(shape=(N, 0), dtype="float64")
for i, n_choices in enumerate(self.n_choices_list):
if n_choices == 0:
col_vector = X[:, i][:, None]
elif n_choices > 0:
col_vector = np.zeros(shape=(N, n_choices), dtype="float32")
mask = (~np.isnan(X[:, i]))
mask_vector = X[:, i][mask]
col_vector[mask] = np.eye(mask_vector)[mask_vector]
else:
raise ValueError
result = np.hstack((result, col_vector))
return result
class LabelTsneEncoder(TransformerMixin, BaseEstimator):
def __init__(self, n_choice: int, n_components="auto", random_state=42):
self.random_state = random_state
self.n_choice = n_choice
assert n_choice > 2, ValueError("'n_choice' must greater than 2.")
if isinstance(n_components, int):
assert n_components > 2
self.n_components = n_components
elif isinstance(n_components, str):
self.n_components = max(2, int(round(np.sqrt(n_choice))))
else:
raise NotImplementedError
tsne_matrix = TSNE(random_state=self.random_state, n_components=self.n_components). \
fit_transform(np.eye(n_choice))
self.scaler = StandardScaler()
self.tsne_matrix = self.scaler.fit_transform(tsne_matrix)
def fit(self, y):
return self
def transform(self, y):
return self.tsne_matrix[y.astype("int32")]
def inverse_transform(self, X):
A, M = X.shape
B, _ = self.tsne_matrix.shape
assert M == self.n_components
distance_matrix = np.zeros([A, B])
Y = self.tsne_matrix
for i in range(A):
for j in range(B):
distance_matrix[i, j] = euclidean(X[i, :], Y[j, :])
return np.argmin(distance_matrix, axis=1)
class MixedTsneEncoder(TransformerMixin, BaseEstimator):
def __init__(self, label_tsne_encoders, n_choices_list):
self.n_choices_list = n_choices_list
self.label_tsne_encoders = label_tsne_encoders
def fit(self, X):
return self
def transform(self, X):
N, M = X.shape
assert M == self.label_tsne_encoders.size
result = np.ones(shape=(N, 0), dtype="float64")
for i, label_tsne_encoder in enumerate(self.label_tsne_encoders):
if label_tsne_encoder:
col_vector = label_tsne_encoder.transform(X[:, i])
else:
col_vector = X[:, i][:, None]
result = np.hstack((result, col_vector))
return result
def inverse_transform(self, X):
N, M = X.shape
result = np.ones(shape=(N, 0), dtype="float64")
start = 0
for i, (label_tsne_encoder, n_choices) in enumerate(zip(self.label_tsne_encoders, self.n_choices_list)):
if label_tsne_encoder:
L = label_tsne_encoder.n_components
col_vector = label_tsne_encoder.inverse_transform(X[:, start:(start + L)])
start += L
elif n_choices == 2:
col_vector = (X[:, i] > 0.5).astype("float64")
else:
col_vector = X[:, i]
result = np.hstack((result, col_vector[:, None]))
return result
class ConfigurationTransformer():
def __init__(self, impute: Optional[float] = -1, ohe: bool = False):
self.impute = impute
self.ohe = ohe
def fit(self, config_space: ConfigurationSpace):
mask = []
n_choices_list = []
n_constants = 0
n_variables = 0
n_top_levels = 0
parents = []
parent_values = []
# todo: 划分parents与groups
for hp in config_space.get_hyperparameters():
if isinstance(hp, Constant) or (isinstance(hp, CategoricalHyperparameter) and len(hp.choices) == 1):
# ignore
mask.append(False)
n_constants += 1
else:
mask.append(True)
n_variables += 1
if isinstance(hp, CategoricalHyperparameter):
n_choices_list.append(len(hp.choices))
else:
n_choices_list.append(0)
cur_parents = config_space.get_parents_of(hp.name)
if len(cur_parents) == 0:
n_top_levels += 1
parents.append(None)
parent_values.append(None)
else:
parents.append(cur_parents[0])
parent_conditions = config_space.get_parent_conditions_of(hp.name)
parent_condition = parent_conditions[0]
parent_values.append(parent_condition.value)
groups_str = [f"{parent}-{parent_value}" for parent, parent_value in zip(parents, parent_values)]
group_encoder = LabelEncoder()
groups = group_encoder.fit_transform(groups_str)
self.config_space = config_space
self.groups_str = groups_str
self.group_encoder = group_encoder
self.groups = groups
self.n_groups = np.max(groups) + 1
self.mask = np.array(mask, dtype="bool")
self.n_choices_list = n_choices_list
self.n_constants = n_constants
self.n_variables = n_variables
self.n_top_levels = n_top_levels
return self
def transform(self, vectors: np.ndarray) -> np.ndarray:
vectors = vectors[:, self.mask]
if self.ohe:
self.encoder = OneHotEncoder(self.n_choices_list)
vectors = self.encoder.fit_transform(vectors)
if self.impute is not None:
if self.impute == "random_choice":
vectors = self.impute_conditional_data(vectors)
else:
vectors[np.isnan(vectors)] = float(self.impute)
return vectors
def inverse_transform(self, array: np.ndarray, return_vector=False) -> Union[np.ndarray, None, Configuration]:
# todo: 没有考虑涉及OHE的部分
# fixme: 一般用在对KDE或TPE的l(x)采样后,用vector构建一个Configuration
assert self.ohe == False
result = np.zeros([len(self.mask)])
result[self.mask] = array
if return_vector:
return result
try:
config = deactivate(self.config_space, result)
config = deactivate_inactive_hyperparameters(
configuration_space=self.config_space,
configuration=config
)
return config
except Exception as e:
# print(e)
# print(config)
return None
def impute_conditional_data(self, array):
# copy from HpBandSter
return_array = np.empty_like(array)
for i in range(array.shape[0]):
datum = | np.copy(array[i]) | numpy.copy |
#Author: <NAME>
#Email: <EMAIL>
#I am a researcher and a programmer. Keep supporting my work. Thank you.
import numpy as np
class matrix_factorization():
def __init__(self,data,features,userFeatures= None, itemFeatures= None):
self.data = data
self.features = features
self.user_count = data.shape[0]
self.item_count = data.shape[1]
if userFeatures is None:
#randomly initializing user features
self.user_features = np.random.uniform(low=0.1,high=0.9,size=(self.user_count,self.features))
else:
self.user_features = userFeatures
if itemFeatures is None:
#randomly initializing item features
self.item_features = | np.random.uniform(low=0.1,high=0.9,size=(self.features,self.item_count)) | numpy.random.uniform |
# -*- coding: utf-8 -*-
"""
Created on Mon May 30 15:37:03 2016
@author: hoseung
MODIFICATIONS
2015.12.03
final_gal is removed as non-main-progenitors are also analized,
there is no 1:1 correlation between final galaxies and earlier galaxies.
2015.12.21
Galaxies are saved in HDF format at selected nouts.
(for example,
nouts_dump_gal = [187, 154, 130, 112, 98, 87, 67, 54, 37, 20]
nouts close to zred = [0,0.2,0.4,0.6,0.8,1.0, 1.5, 2.0, 3.0, 5.0].)
2016.01.01
idx is stored in catalog along with id.
2016.01.02
lambdar measured after re-oriented.
2016.03.10
galaxy dump and catalog in the same directory.
optional suffix to the catalog file.
2016.03.26
Only close galaxies were accounted before (i_gal_near), - why...??
and that restriction is now gone.
"""
#import matplotlib
#matplotlib.use("Agg")
import matplotlib.pyplot as plt
import numpy as np
from ..utils import sampling as smp
from . import galaxy
from ..utils import match as mtc
from ..tree import ctutils as ctu
from ..tree import halomodule as hmo
#%%
def extract_halos_within(halos, i_center, info, dist_in_mpc=1.0):
xc = halos['x'][i_center]
yc = halos['y'][i_center]
zc = halos['z'][i_center]
xx = halos['x']
yy = halos['y']
zz = halos['z']
dd = np.multiply(distance_to([xc,yc,zc], [xx,yy,zz]), info.pboxsize)
return (dd < (dist_in_mpc))
def distance_to(xc, xx):
return np.sqrt([(xc[0] - xx[0])**2 + (xc[1] - xx[1])**2 + (xc[2] - xx[2])**2])[0]
def all_gals_org(treedata, final_gals, nout_ini=None, nout_fi=None):
"""
build a list of all progenitors of the final_gals from nout_fi up to nout_ini
[ [final_gals (at nout = nout_fi) ],
[all progenitors of final gals at nout = nout_fi -1],
[ '' at the at nout = nout_fi -2 ], ...]
"""
if nout_ini == None:
nout_ini = min(treedata['nout'])
if nout_fi == None:
nout_fi = max(treedata['nout'])
all_gals_at_nouts = []
for inout, nout in enumerate(range(nout_ini, nout_fi+1)):
all_gals_this_nout = []
tree_now = treedata[np.where(treedata['nout'] == nout)]
for finalgal in final_gals:
i_gals_include = np.where(tree_now['tree_root_id'] == finalgal)[0]
[all_gals_this_nout.append(gal) for gal in tree_now['id'][i_gals_include]]
all_gals_at_nouts.append(all_gals_this_nout)
return all_gals_at_nouts
def all_gals(treedata, final_gals, nout_ini=None, nout_fi=None):
"""
build a list of all progenitors of the final_gals from nout_fi up to nout_ini
[ [final_gals (at nout = nout_fi) ],
[all progenitors of final gals at nout = nout_fi -1],
[ '' at the at nout = nout_fi -2 ], ...]
"""
if nout_ini == None:
nout_ini = min(treedata['nout'])
if nout_fi == None:
nout_fi = max(treedata['nout'])
inds=[]
for finalgal in final_gals:
inds.extend(np.where(treedata['tree_root_id'] == finalgal)[0])
# Add main progenitor tag
return treedata[inds]
def halo_from_tree(tree_element, info):
import tree.halomodule as hmo
dtype_halo = [('id', '<i4'), ('idx', '<i4'), ('m', '<f4'), ('mvir', '<f4'),
('r', '<f4'), ('rvir', '<f4'),
('x', '<f4'), ('y', '<f4'), ('z', '<f4'),
('vx', '<f4'), ('vy', '<f4'), ('vz', '<f4')]
cboxsize = 200.
nout = tree_element['nout']
h = hmo.Halo(nout=nout, halofinder='HM', info=info, is_gal=True)
h.data = np.recarray(len(tree_element), dtype=dtype_halo)
h.nout = nout
h.data['m'] = tree_element['m']
h.data['mvir'] = tree_element['mvir']
h.data['x'] = tree_element['x'] / cboxsize
h.data['y'] = tree_element['y'] / cboxsize
h.data['z'] = tree_element['z'] / cboxsize # Mpc/h -> code unit
h.data['vx'] = tree_element['vx']
h.data['vy'] = tree_element['vy']
h.data['vz'] = tree_element['vz']
h.data['r'] = tree_element['r'] # already in code unit
h.data['rvir'] = tree_element['rvir'] / (cboxsize * 1000) # kpc/h -> code unit
h.data['id'] = tree_element['Orig_halo_id']
h.data['idx'] = tree_element['id']
h.aexp = tree_element['aexp']
return h
def dist(data, center):
return np.sqrt(np.square(center['x'] - data['x']) +
np.square(center['y'] - data['y']) +
np.square(center['z'] - data['z']))
def dist2(data, center):
return (np.square(center['x'] - data['x']) +
np.square(center['y'] - data['y']) +
np.square(center['z'] - data['z']))
def find_halo_near(data, center, rscale=1.0):
import numpy as np
i_gal_ok = dist2(data, center) < np.square(rscale * center['rvir'])
return i_gal_ok
def unique(a,b):
a = np.concatenate((a,b))
a = np.sort(a)
b = np.diff(a)
b = np.r_[1, b]
return a[b != 0]
def get_mstar_min(aexp):
masscut_a = 1256366362.16
masscut_b = -20583566.5218
return masscut_a * aexp + masscut_b
def associate_gal_hal(allgal, allhal, plot_check=False, dir_out=""):
"""
associate halos with galaxies.
Arbitrary maching parameters are used.
"""
import numpy as np
def dist(data, center):
return np.sqrt(np.square(center['x'] - data['x']) +
| np.square(center['y'] - data['y']) | numpy.square |
from __future__ import print_function, division
import numpy as np
from .moonpos import moonpos
from .sunpos import sunpos
def moonphase(jd):
"""
Computes the illuminated fraction of the Moon at given Julian date(s).
Parameters
----------
jd : float or array
The Julian date.
Returns
-------
Fraction : float or array
The illuminated fraction [0 - 1] of the Moon.
Has the same size as `jd`.
Notes
-----
.. note:: This function was ported from the IDL Astronomy User's Library.
:IDL - Documentation:
NAME:
MPHASE
PURPOSE:
Return the illuminated fraction of the Moon at given Julian date(s)
CALLING SEQUENCE:
MPHASE, jd, k
INPUT:
JD - Julian date, scalar or vector, double precision recommended
OUTPUT:
k - illuminated fraction of Moon's disk (0.0 < k < 1.0), same number
of elements as jd. k = 0 indicates a new moon, while k = 1 for
a full moon.
EXAMPLE:
Plot the illuminated fraction of the moon for every day in July
1996 at 0 TD (~Greenwich noon).
IDL> jdcnv, 1996, 7, 1, 0, jd ;Get Julian date of July 1
IDL> mphase, jd+dindgen(31), k ;Moon phase for all 31 days
IDL> plot, indgen(31),k ;Plot phase vs. July day number
"""
jd = np.array(jd, ndmin=1)
# Earth-Sun distance (1 AU)
edist = 1.49598e8
mpos = moonpos(jd)
ram = mpos[0]*np.pi/180.
decm = mpos[1]*np.pi/180.
dism = mpos[2]
spos = sunpos(jd)
ras = spos[1]*np.pi/180.
decs = spos[2]*np.pi/180.
phi = np.arccos( np.sin(decs)*np.sin(decm) + np.cos(decs)* | np.cos(decm) | numpy.cos |
"""Plot functions """
import numpy as np
import plotly.graph_objs as gobj
from giotto.diagrams._utils import _subdiagrams
def plot_point_cloud(point_cloud, dimension = None):
"""This functions plot the first 2 or 3 coordinates of the point cloud.
This function will not work for 1-dimensional arrays
Parameters
----------
dimension : int , default : ``None``
This parameter sets the dimension of the resulting plot. If ``None``, the
dimension will be chosen between 2 and 3 depending on `n_features` (see
Input).
Input
-----
point_cloud : ndarray of shape (n_samples, n_features)
the point cloud is the set of data points to be rapresented in a 2D or 3D
scatter plot. Only the first 2 or 3 dimensions will be consdered for plotting.
"""
if dimension is None:
dimension = np.min((3, point_cloud.shape[1]))
# Check consistency between point_cloud and dimension
if point_cloud.shape[1] < dimension :
raise ValueError("The `n_features` of the point cloud ìs less than the `dimension`")
if dimension == 2:
layout = {
"title": "Point Cloud",
"width": 800,
"height": 800,
"xaxis1": {
"title": "First coordinate",
"side": "bottom",
"type": "linear",
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"yaxis1": {
"title": "Second coordinate",
"side": "left",
"type": "linear",
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"plot_bgcolor": "white"
}
fig = gobj.Figure(layout=layout)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
fig.add_trace(gobj.Scatter(x=point_cloud[:,0],
y=point_cloud[:,1],
mode='markers',
marker=dict(size=4,
color=list(range(point_cloud.shape[0])),
colorscale='Viridis', opacity=0.8)))
fig.show()
elif dimension == 3:
scene = {
"xaxis": {
"title": "First coordinate",
"type": "linear",
"showexponent": "all",
"exponentformat" : "e"
},
"yaxis": {
"title": "Second coordinate",
"type": "linear",
"showexponent": "all",
"exponentformat" : "e"
},
"zaxis": {
"title": "Third coordinate",
"type": "linear",
"showexponent": "all",
"exponentformat" : "e"
}
}
fig = gobj.Figure()
fig.update_layout(scene=scene, title="Point Cloud")
fig.add_trace(gobj.Scatter3d(x=point_cloud[:,0],
y=point_cloud[:,1],
z=point_cloud[:,2],
mode='markers',
marker=dict(size=4,
color=list(range(point_cloud.shape[0])),
colorscale='Viridis', opacity=0.8)))
fig.show()
else:
raise ValueError("The value of the parameter ´dimension´ is different from 2 or 3")
def plot_diagram(diagram, homology_dimensions=None):
"""Plots one persistence diagram.
Parameters
----------
homology_dimensions : list of int, default: ``None``
The list of homology dimensions that will appear on the plot. None means that all the homology dimensions
contained in diagram will be plotted.
Input
-----
diagram : ndarray of shape (n_points, 3)
The persistence diagram to plot, where the keys of the dict correspond to homology dimensions and each
entry is the collection of (birth,death) points in R^2 of the corresponding homology dimension.
"""
if homology_dimensions is None:
homology_dimensions = np.unique(diagram[:,2])
maximum_persistence = np.where(np.isinf(diagram),-np.inf,diagram).max()
layout = {
"title": "Persistence diagram",
"width": 500,
"height": 500,
"xaxis1": {
"title": "Birth",
"side": "bottom",
"type": "linear",
"range": [0, 1.1*maximum_persistence],
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"yaxis1": {
"title": "Death",
"side": "left",
"type": "linear",
"range": [0, 1.1*maximum_persistence],
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"plot_bgcolor": "white"
}
fig = gobj.Figure(layout=layout)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
fig.add_trace(gobj.Scatter(x=np.array([-100*maximum_persistence,100*maximum_persistence]),
y=np.array([-100*maximum_persistence,100*maximum_persistence]), mode='lines',
line=dict(dash='dash',width=1,color='black'), showlegend=False, hoverinfo='none'))
for i, dimension in enumerate(homology_dimensions):
name = 'H'+str(int(dimension))
subdiagram = _subdiagrams(np.asarray([diagram]),[dimension],remove_dim=True)[0]
diff = (subdiagram[:, 1] != subdiagram[:, 0])
subdiagram = subdiagram[diff]
fig.add_trace(gobj.Scatter(x=subdiagram[:,0], y=subdiagram[:,1], mode='markers', name=name))
fig.show()
def plot_landscapes(landscape, samplings=None, homology_dimensions=None):
"""Plots the landscapes by homology dimension.
Parameters
----------
homology_dimensions : list of int, default: ``None``
The list of the homology group's ranks of which one wants to plot the landscape.
If no list of dimensions is passed, we assume that they start from H0 with step 1.
Input
-----
landscape : ndarray of shape (n_homology_dimension, n_layers, n_values)
The values of the persistence landsacpe. ``n_homology_dimension`` is the length
of the ``homology_dimensions`` array; ``n_layers`` is the number of landscape
profiles and ``n_values``is the number of samples.
samplings : ndarray of shape (n_homology_dimension, n_layers, n_values), default: ```None``
The x axis of the persistence landscape. ``n_homology_dimension`` is the length
of the ``homology_dimensions`` array; ``n_layers`` is the number of landscape
profiles and ``n_values``is the number of samples.`If no value is input, the
samplings will start at 0 with step 1.
"""
if homology_dimensions is None:
homology_dimensions = np.arange(0,landscape.shape[0])
if samplings is None:
samplings = np.arange(0,landscape.shape[2])
layout = {
"xaxis1": {
"side": "bottom",
"type": "linear",
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"yaxis1": {
"side": "left",
"type": "linear",
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"plot_bgcolor": "white"
}
for i, dimension in enumerate(homology_dimensions):
layout_dim = layout.copy()
layout_dim['title'] = "Persistence landscape for homology dimension "+str(int(dimension))
fig = gobj.Figure(layout=layout_dim)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
n_layers = landscape.shape[1]
for layer in range(n_layers):
fig.add_trace(gobj.Scatter(x=samplings,
y=landscape[i,layer,:],
mode='lines', showlegend=False, hoverinfo='none', name='layer '+str(layer+1)))
fig.show()
def plot_betti_curves(betti_curves, samplings=None, homology_dimensions=None):
"""Plots the landscapes by homology dimension.
Parameters
----------
homology_dimensions : list of int, default: ``None``
The list of the homology group's ranks of which one wants to plot the landscape.
If no list of dimensions is passed, we assume that they start from H0 with step 1.
Input
-----
betti_curves : ndarray of shape (n_homology_dimension, n_values)
The values of the Betti curves. ``n_homology_dimension`` is the length
of the ``homology_dimensions`` array and ``n_values``is the number of samples.
samplings : ndarray of shape (n_homology_dimension, n_values), default: ```None``
The x axis of the Betti curves. ``n_homology_dimension`` is the length
of the ``homology_dimensions`` array and ``n_values``is the number of samples.`If no value
is input, the samplings will start at 0 with step 1.
"""
if homology_dimensions is None:
homology_dimensions = np.arange(0, betti_curves.shape[0])
if samplings is None:
samplings = np.arange(0, betti_curves.shape[1])
layout = {
"title": "Betti curves",
"xaxis1": {
"title": "Epsilon",
"side": "bottom",
"type": "linear",
"ticks": "outside",
"anchor": "x1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"yaxis1": {
"title": "Betti number",
"side": "left",
"type": "linear",
"ticks": "outside",
"anchor": "y1",
"showline": True,
"zeroline": True,
"showexponent": "all",
"exponentformat" : "e"
},
"plot_bgcolor": "white"
}
fig = gobj.Figure(layout=layout)
fig.update_xaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
fig.update_yaxes(zeroline=True, linewidth=1, linecolor='black', mirror=False)
for i, dimension in enumerate(homology_dimensions):
fig.add_trace(gobj.Scatter(x=samplings,
y=betti_curves[i,:],
mode='lines', showlegend=False,
hoverinfo='none'))
fig.show()
def plot_betti_surfaces(betti_curves, samplings=None, homology_dimensions=None):
"""
Plots the Betti surfaces (Betti number against time and epsilon) by homology dimension.
Parameters
----------
betti_curves : ndarray of shape (n_samples, n_homology_dimensions, n_values)
The Betti curves across time, sampled in ``n_samples`` samples.
``n_homology_dimension`` is the length
of the ``homology_dimensions`` array and ``n_values``is the number of samples.
homology_dimensions : list of ints, default ``None``
The list of homology dimensions for which the Betti surface is plotted.
None means that the Betti surface of
every homology dimension is plotted.
"""
if homology_dimensions is None:
homology_dimensions = np.arange(0,betti_curves.shape[1])
if samplings is None:
samplings = np.arange(0,betti_curves.shape[2])
scene = {
"xaxis": {
"title": "Epsilon",
"type": "linear",
"showexponent": "all",
"exponentformat" : "e"
},
"yaxis": {
"title": "Time",
"type": "linear",
"showexponent": "all",
"exponentformat" : "e"
},
"zaxis": {
"title": "Betti number",
"type": "linear",
"showexponent": "all",
"exponentformat" : "e"
}
}
if betti_curves.shape[0]==1:
plot_betti_curves(betti_curves[0],samplings,homology_dimensions)
else:
for i, dimension in enumerate(homology_dimensions):
fig = gobj.Figure()
fig.update_layout(scene=scene, title="Betti surface for homology dimension "+str(dimension))
fig.add_trace(gobj.Surface(x=samplings, y= | np.arange(betti_curves.shape[0]) | numpy.arange |
# Copyright 2020 AstroLab Software
# Author: <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from apps.utils import convert_jd, extract_properties
from apps.utils import extract_fink_classification_single
from apps.plotting import draw_cutout, draw_scores, all_radio_options
import numpy as np
import urllib
def card_sn_scores(data) -> dbc.Card:
""" Card containing the score evolution
Parameters
----------
data: java.util.TreeMap
Results from a HBase client query
Returns
----------
card: dbc.Card
Card with the scores drawn inside
"""
graph_lc = dcc.Graph(
id='lightcurve_scores',
style={
'width': '100%',
'height': '15pc'
},
config={'displayModeBar': False}
)
graph_scores = dcc.Graph(
id='scores',
figure=draw_scores(data),
style={
'width': '100%',
'height': '15pc'
},
config={'displayModeBar': False}
)
card = dbc.Card(
dbc.CardBody(
[
graph_lc,
dbc.Row(
dbc.RadioItems(id='switch-mag-flux-score', inline=True),
),
html.Br(),
graph_scores
]
),
className="mt-3"
)
return card
def card_cutouts(data):
""" Add a card containing cutouts
Parameters
----------
data: java.util.TreeMap
Results from a HBase client query
Returns
----------
card: dbc.Card
Card with the cutouts drawn inside
"""
card = dbc.Card(
dbc.CardBody(
[
dbc.Row([
dbc.Col(html.H5(children="Science", className="text-center")),
dbc.Col(html.H5(children="Template", className="text-center")),
dbc.Col(html.H5(children="Difference", className="text-center"))
]),
dbc.Row([
dcc.Graph(
id='science-stamps',
style={
'display': 'inline-block',
},
config={'displayModeBar': False}
),
dcc.Graph(
id='template-stamps',
style={
'display': 'inline-block',
},
config={'displayModeBar': False}
),
dcc.Graph(
id='difference-stamps',
style={
'display': 'inline-block',
},
config={'displayModeBar': False}
),
], justify='around', no_gutters=True),
html.Br(),
html.Br(),
dcc.Graph(
id='lightcurve_cutouts',
style={
'width': '100%',
'height': '15pc'
},
config={'displayModeBar': False}
),
dbc.Row(
dbc.RadioItems(
options=[{'label': k, 'value': k} for k in all_radio_options.keys()],
value="Difference magnitude",
id="switch-mag-flux",
inline=True
)
)
]
),
className="mt-3"
)
return card
def card_variable_plot(data):
""" Add a card to fit for variable stars
Parameters
----------
data: java.util.TreeMap
Results from a HBase client query
Returns
----------
card: dbc.Card
Card with the variable drawn inside
"""
card = dbc.Card(
dbc.CardBody(
[
dcc.Graph(
id='variable_plot',
style={
'width': '100%',
'height': '25pc'
},
config={'displayModeBar': False}
)
]
),
className="mt-3"
)
return card
nterms_base = dbc.FormGroup(
[
dbc.Label("Number of base terms"),
dbc.Input(
placeholder="1",
value=1,
type="number",
id='nterms_base',
debounce=True,
min=0, max=4
),
dbc.Label("Number of band terms"),
dbc.Input(
placeholder="1",
value=1,
type="number",
id='nterms_band',
debounce=True,
min=0, max=4
),
dbc.Label("Set manually the period (days)"),
dbc.Input(
placeholder="Optional",
value=None,
type="number",
id='manual_period',
debounce=True
)
], style={'width': '100%', 'display': 'inline-block'}
)
submit_varstar_button = dbc.Button(
'Fit data',
id='submit_variable',
style={'width': '100%', 'display': 'inline-block'},
block=True
)
def card_variable_button(data):
""" Add a card containing button to fit for variable stars
"""
pdf = extract_properties(
data, [
'i:objectId',
'i:jd',
'd:cdsxmatch',
'i:objectidps1',
'i:distpsnr1',
'i:neargaia',
'i:distnr',
]
)
pdf = pdf.sort_values('i:jd', ascending=False)
id0 = pdf['i:objectId'].values[0]
cdsxmatch = pdf['d:cdsxmatch'].values[0]
distnr = pdf['i:distnr'].values[0]
objectidps1 = pdf['i:objectidps1'].values[0]
distpsnr1 = pdf['i:distpsnr1'].values[0]
neargaia = pdf['i:neargaia'].values[0]
classification = extract_fink_classification_single(data)
card = dbc.Card(
[
html.H5("ObjectID: {}".format(id0), className="card-title"),
html.H6(
"Fink class: {}".format(classification),
className="card-subtitle"
),
dcc.Markdown(
"""
---
```python
# Neighbourhood
SIMBAD: {}
PS1: {}
Distance (PS1): {:.2f} arcsec
Distance (Gaia): {:.2f} arcsec
Distance (ZTF): {:.2f} arcsec
```
""".format(
cdsxmatch, objectidps1, float(distpsnr1),
float(neargaia), float(distnr))
),
dbc.Row(nterms_base),
dbc.Row(submit_varstar_button)
],
className="mt-3", body=True
)
return card
submit_mulens_button = dbc.Button(
'Fit data',
id='submit_mulens',
style={'width': '100%', 'display': 'inline-block'},
block=True
)
def card_mulens_button(data):
""" Add a card containing button to fit for microlensing events
"""
pdf = extract_properties(
data, [
'i:objectId',
'i:jd',
'd:cdsxmatch',
'i:objectidps1',
'i:distpsnr1',
'i:neargaia',
'i:distnr',
]
)
pdf = pdf.sort_values('i:jd', ascending=False)
id0 = pdf['i:objectId'].values[0]
cdsxmatch = pdf['d:cdsxmatch'].values[0]
distnr = pdf['i:distnr'].values[0]
objectidps1 = pdf['i:objectidps1'].values[0]
distpsnr1 = pdf['i:distpsnr1'].values[0]
neargaia = pdf['i:neargaia'].values[0]
classification = extract_fink_classification_single(data)
card = dbc.Card(
[
html.H5("ObjectID: {}".format(id0), className="card-title"),
html.H6(
"Fink class: {}".format(classification),
className="card-subtitle"
),
dcc.Markdown(
"""
---
```python
# Neighbourhood
SIMBAD: {}
PS1: {}
Distance (PS1): {:.2f} arcsec
Distance (Gaia): {:.2f} arcsec
Distance (ZTF): {:.2f} arcsec
```
""".format(
cdsxmatch, objectidps1, float(distpsnr1),
float(neargaia), float(distnr))
),
dbc.Row(submit_mulens_button)
],
className="mt-3", body=True
)
return card
def card_mulens_plot(data):
""" Add a card to fit for microlensing events
Parameters
----------
data: java.util.TreeMap
Results from a HBase client query
Returns
----------
card: dbc.Card
Card with the microlensing fit drawn inside
"""
card = dbc.Card(
dbc.CardBody(
[
dcc.Graph(
id='mulens_plot',
style={
'width': '100%',
'height': '25pc'
},
config={'displayModeBar': False}
)
]
),
className="mt-3"
)
return card
def card_explanation_variable():
""" Explain what is used to fit for variable stars
"""
msg = """
_Fill the fields on the right, and press `Fit data` to
perform a time series analysis of the data:_
- _Number of base terms: number of frequency terms to use for the base model common to all bands (default=1)_
- _Number of band terms: number of frequency terms to use for the residuals between the base model and each individual band (default=1)_
_The fit is done using [gatspy](https://zenodo.org/record/47887)
described in [VanderPlas & Ivezic (2015)](https://ui.adsabs.harvard.edu/abs/2015ApJ...812...18V/abstract).
We use a multiband periodogram (LombScargleMultiband) to find the best period.
Alternatively, you can manually set the period in days._
"""
card = dbc.Card(
dbc.CardBody(
dcc.Markdown(msg)
), style={
'backgroundColor': 'rgb(248, 248, 248, .7)'
}
)
return card
def card_explanation_mulens():
""" Explain what is used to fit for microlensing events
"""
msg = """
_Press `Fit data` to perform a time series analysis of the data. Fitted parameters will be displayed on the right panel._
_The fit is done using [pyLIMA](https://github.com/ebachelet/pyLIMA)
described in [Bachelet et al (2017)](https://ui.adsabs.harvard.edu/abs/2017AJ....154..203B/abstract).
We use a simple PSPL model to fit the data._
"""
card = dbc.Card(
dbc.CardBody(
dcc.Markdown(msg)
), style={
'backgroundColor': 'rgb(248, 248, 248, .7)'
}
)
return card
def card_id(data):
""" Add a card containing basic alert data
"""
pdf = extract_properties(
data, [
'i:objectId',
'i:candid',
'i:jd',
'i:ra',
'i:dec',
'd:cdsxmatch',
'i:objectidps1',
'i:distpsnr1',
'i:neargaia',
'i:distnr',
'i:magpsf',
'i:magnr',
'i:fid'
]
)
pdf = pdf.sort_values('i:jd', ascending=False)
id0 = pdf['i:objectId'].values[0]
candid0 = pdf['i:candid'].values[0]
ra0 = pdf['i:ra'].values[0]
dec0 = pdf['i:dec'].values[0]
date0 = convert_jd(float(pdf['i:jd'].values[0]))
cdsxmatch = pdf['d:cdsxmatch'].values[0]
distnr = pdf['i:distnr'].values[0]
objectidps1 = pdf['i:objectidps1'].values[0]
distpsnr1 = pdf['i:distpsnr1'].values[0]
neargaia = pdf['i:neargaia'].values[0]
magpsfs = pdf['i:magpsf'].astype(float).values
magnrs = pdf['i:magnr'].astype(float).values
fids = pdf['i:fid'].values
if float(distnr) < 2:
deltamagref = | np.round(magnrs[0] - magpsfs[0], 3) | numpy.round |
import numpy as np
import torch
from scipy.stats import truncnorm, truncexpon
from torch import nn
from torch.nn.functional import interpolate
from paderbox.transform.module_fbank import hz2mel, mel2hz
from einops import rearrange
from padertorch.utils import to_list
from typing import Tuple, List
import torch.nn.functional as F
from padertorch.contrib.je.modules.conv import Pad
from einops import rearrange
def hz_warping(f, n, alpha_sampling_fn, fhi_sampling_fn):
"""
>>> from functools import partial
>>> np.random.seed(0)
>>> sample_rate = 16000
>>> fmin = 0
>>> fmax = sample_rate/2
>>> n_mels = 10
>>> alpha_max = 1.2
>>> kwargs = dict(
... alpha_sampling_fn=partial(
... log_uniform_sampling_fn, scale=2*np.log(alpha_max)
... ),
... fhi_sampling_fn=partial(
... uniform_sampling_fn, center=.7, scale=.2
... ),
... )
>>> f = mel2hz(np.linspace(hz2mel(fmin), hz2mel(fmax), n_mels+2))
>>> f
array([ 0. , 180.21928115, 406.83711843, 691.7991039 ,
1050.12629534, 1500.70701371, 2067.29249375, 2779.74887082,
3675.63149949, 4802.16459006, 6218.73051459, 8000. ])
>>> hz_warping(f, (), **kwargs)
array([ 0. , 183.45581459, 414.14345066, 704.2230295 ,
1068.98537001, 1527.65800595, 2104.41871721, 2829.67000102,
3741.64166342, 4888.40600786, 6305.18977698, 8000. ])
>>> hz_warping(f, 2, **kwargs)
array([[ 0. , 187.10057293, 422.37133266, 718.21398838,
1090.22314517, 1558.00833455, 2146.22768187, 2885.88769767,
3815.97770824, 4985.52508038, 6350.49184281, 8000. ],
[ 0. , 183.19308056, 413.5503401 , 703.21448495,
1067.45443547, 1525.47018891, 2101.40489926, 2825.61752316,
3736.28311632, 4881.40513599, 6293.32469307, 8000. ]])
>>> hz_warping(f, [2, 3], **kwargs).shape
(2, 3, 12)
"""
fmin = f[0]
f = f - fmin
fmax = f[-1]
alphas = np.array(alpha_sampling_fn(n))
fhi = np.array(fhi_sampling_fn(n) * fmax)
breakpoints = fhi * np.minimum(alphas, 1) / alphas
if breakpoints.ndim == 0:
breakpoints = np.array(breakpoints)
breakpoints[(breakpoints > fmax) + ((alphas * breakpoints) > fmax)] = fmax
bp_value = alphas * breakpoints
f, breakpoints, bp_value = np.broadcast_arrays(
f, breakpoints[..., None], bp_value[..., None]
)
f_warped = alphas[..., None] * f
idx = f > breakpoints
f_warped[idx] = (
fmax
+ (
(f[idx] - fmax)
* (fmax - bp_value[idx]) / (fmax - breakpoints[idx])
)
)
return fmin + f_warped
def mel_warping(f, n, alpha_sampling_fn, fhi_sampling_fn):
f = hz2mel(f)
f = hz_warping(f, n, alpha_sampling_fn, fhi_sampling_fn)
return mel2hz(f)
class HzWarping:
def __init__(self, alpha_sampling_fn, fhi_sampling_fn):
self.alpha_sampling_fn = alpha_sampling_fn
self.fhi_sampling_fn = fhi_sampling_fn
def __call__(self, f, n):
return hz_warping(f, n, self.alpha_sampling_fn, self.fhi_sampling_fn)
class MelWarping(HzWarping):
def __call__(self, f, n):
return mel_warping(f, n, self.alpha_sampling_fn, self.fhi_sampling_fn)
def truncexponential_sampling_fn(n, shift=0., scale=1., truncation=3.):
return truncexpon(truncation/scale, shift, scale).rvs(n)
def uniform_sampling_fn(n, center=0., scale=1.):
"""
Same as:
np.random.uniform(
low=center - scale / 2,
high=center + scale / 2,
size=n
)
"""
if np.isscalar(n):
return center - scale / 2 + scale * np.random.rand(n)
else:
return center - scale / 2 + scale * np.random.rand(*n)
def log_uniform_sampling_fn(n, center=0., scale=1.):
return np.exp(uniform_sampling_fn(n, center, scale))
def truncnormal_sampling_fn(n, center=0., scale=.5, truncation=3.):
return (
truncnorm(-truncation / scale, truncation / scale, center, scale).rvs(n)
)
def log_truncnormal_sampling_fn(n, center=0., scale=.5, truncation=3.):
return np.exp(truncnormal_sampling_fn(n, center, scale, truncation))
class TruncExponentialSampler:
def __init__(self, shift=0., scale=1., truncation=3.):
self.shift = shift
self.scale = scale
self.truncation = truncation
def __call__(self, n):
return truncexponential_sampling_fn(
n, shift=self.shift, scale=self.scale, truncation=self.truncation
)
class UniformSampler:
def __init__(self, center=0., scale=1.):
self.center = center
self.scale = scale
def __call__(self, n):
return uniform_sampling_fn(n, center=self.center, scale=self.scale)
class LogUniformSampler(UniformSampler):
def __call__(self, n):
return log_uniform_sampling_fn(n, center=self.center, scale=self.scale)
class TruncNormalSampler:
def __init__(self, center=0., scale=1., truncation=3.):
self.center = center
self.scale = scale
self.truncation = truncation
def __call__(self, n):
return truncnormal_sampling_fn(
n, center=self.center, scale=self.scale, truncation=self.truncation
)
class LogTruncNormalSampler(TruncNormalSampler):
def __call__(self, n):
return log_truncnormal_sampling_fn(
n, center=self.center, scale=self.scale, truncation=self.truncation
)
class Scale(nn.Module):
"""
>>> x = torch.ones((3, 4, 5))
>>> x = Scale(log_truncnormal_sampling_fn)(x)
"""
def __init__(self, scale_sampling_fn, **kwargs):
super().__init__()
self.scale_sampling_fn = scale_sampling_fn
self.kwargs = kwargs
def forward(self, x):
if not self.training:
return x
scales = self.scale_sampling_fn(x.shape[0], **self.kwargs)
scales = torch.from_numpy(scales[(...,) + (x.dim()-1)*(None,)]).float()
return x * scales.to(x.device)
class Shift(nn.Module):
"""
>>> x = torch.ones((3, 4, 5))
>>> Shift(truncnormal_sampling_fn, scale=0.5)(x)
"""
def __init__(self, shift_sampling_fn, **kwargs):
super().__init__()
self.shift_sampling_fn = shift_sampling_fn
self.kwargs = kwargs
def forward(self, x):
if not self.training:
return x
shifts = self.shift_sampling_fn(x.shape[0], **self.kwargs)
shifts = torch.from_numpy(shifts[(...,) + (x.dim()-1)*(None,)]).float()
return x + shifts.to(x.device)
class Mixup(nn.Module):
"""
>>> x = torch.cumsum(torch.ones((3, 4, 5)), 0)
>>> y = torch.arange(3).float()
>>> mixup = Mixup(p=1., interpolate=True)
>>> mixup(x, seq_len=[3,4,5])
"""
def __init__(self, p, weight_sampling_fn=lambda n: | np.random.beta(1., 1., n) | numpy.random.beta |
#Imports
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import os
import glob
import random
# import imgaug
# from imgaug import augmenters as iaa
from PIL import Image
from tqdm import tqdm
import matplotlib.pyplot as plt
import openslide
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
# from tensorflow.keras.models import Model
# from tensorflow.keras.layers import Input, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, concatenate, Concatenate, UpSampling2D, Activation
# from tensorflow.keras.losses import categorical_crossentropy
# from tensorflow.keras.applications.densenet import DenseNet121
# from tensorflow.keras.optimizers import Adam
# from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard
# from tensorflow.keras import metrics
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms # noqa
import sklearn.metrics
import io
import itertools
from six.moves import range
import time
import cv2
from skimage.color import rgb2hsv
from skimage.filters import threshold_otsu
import sys
sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))
from models.seg_models import unet_densenet121, get_inception_resnet_v2_unet_softmax
# Random Seeds
np.random.seed(0)
random.seed(0)
tf.set_random_seed(0)
# import tifffile
# import skimage.io as io
import pandas as pd
import json
# Image Helper Functions
def imsave(*args, **kwargs):
"""
Concatenate the images given in args and saves them as a single image in the specified output destination.
Images should be numpy arrays and have same dimensions along the 0 axis.
imsave(im1,im2,out="sample.png")
"""
args_list = list(args)
for i in range(len(args_list)):
if type(args_list[i]) != np.ndarray:
print("Not a numpy array")
return 0
if len(args_list[i].shape) == 2:
args_list[i] = np.dstack([args_list[i]]*3)
if args_list[i].max() == 1:
args_list[i] = args_list[i]*255
out_destination = kwargs.get("out",'')
try:
concatenated_arr = np.concatenate(args_list,axis=1)
im = Image.fromarray(np.uint8(concatenated_arr))
except Exception as e:
print(e)
import ipdb; ipdb.set_trace()
return 0
if out_destination:
print("Saving to %s" % out_destination)
im.save(out_destination)
else:
return im
def imshow(*args,**kwargs):
""" Handy function to show multiple plots in on row, possibly with different cmaps and titles
Usage:
imshow(img1, title="myPlot")
imshow(img1,img2, title=['title1','title2'])
imshow(img1,img2, cmap='hot')
imshow(img1,img2,cmap=['gray','Blues']) """
cmap = kwargs.get('cmap', 'gray')
title= kwargs.get('title','')
axis_off = kwargs.get('axis_off','')
if len(args)==0:
raise ValueError("No images given to imshow")
elif len(args)==1:
plt.title(title)
plt.imshow(args[0], interpolation='none')
else:
n=len(args)
if type(cmap)==str:
cmap = [cmap]*n
if type(title)==str:
title= [title]*n
plt.figure(figsize=(n*5,10))
for i in range(n):
plt.subplot(1,n,i+1)
plt.title(title[i])
plt.imshow(args[i], cmap[i])
if axis_off:
plt.axis('off')
plt.show()
def normalize_minmax(data):
"""
Normalize contrast across volume
"""
_min = np.float(np.min(data))
_max = np.float(np.max(data))
if (_max-_min)!=0:
img = (data - _min) / (_max-_min)
else:
img = np.zeros_like(data)
return img
# Functions
def BinMorphoProcessMask(mask):
"""
Binary operation performed on tissue mask
"""
close_kernel = np.ones((20, 20), dtype=np.uint8)
image_close = cv2.morphologyEx(np.array(mask), cv2.MORPH_CLOSE, close_kernel)
open_kernel = np.ones((5, 5), dtype=np.uint8)
image_open = cv2.morphologyEx(np.array(image_close), cv2.MORPH_OPEN, open_kernel)
kernel = np.ones((20, 20), dtype=np.uint8)
image = cv2.dilate(image_open,kernel,iterations = 1)
return image
def get_bbox(cont_img, rgb_image=None):
contours, _ = cv2.findContours(cont_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
rgb_contour = None
if rgb_image is not None:
rgb_contour = rgb_image.copy()
line_color = (0, 0, 255) # blue color code
cv2.drawContours(rgb_contour, contours, -1, line_color, 2)
bounding_boxes = [cv2.boundingRect(c) for c in contours]
for x, y, h, w in bounding_boxes:
rgb_contour = cv2.rectangle(rgb_contour,(x,y),(x+h,y+w),(0,255,0),2)
return bounding_boxes, rgb_contour
def get_all_bbox_masks(mask, stride_factor):
"""
Find the bbox and corresponding masks
"""
bbox_mask = np.zeros_like(mask)
bounding_boxes, _ = get_bbox(mask)
y_size, x_size = bbox_mask.shape
for x, y, h, w in bounding_boxes:
x_min = x - stride_factor
x_max = x + h + stride_factor
y_min = y - stride_factor
y_max = y + w + stride_factor
if x_min < 0:
x_min = 0
if y_min < 0:
y_min = 0
if x_max > x_size:
x_max = x_size - 1
if y_max > y_size:
y_max = y_size - 1
bbox_mask[y_min:y_max, x_min:x_max]=1
return bbox_mask
def get_all_bbox_masks_with_stride(mask, stride_factor):
"""
Find the bbox and corresponding masks
"""
bbox_mask = np.zeros_like(mask)
bounding_boxes, _ = get_bbox(mask)
y_size, x_size = bbox_mask.shape
for x, y, h, w in bounding_boxes:
x_min = x - stride_factor
x_max = x + h + stride_factor
y_min = y - stride_factor
y_max = y + w + stride_factor
if x_min < 0:
x_min = 0
if y_min < 0:
y_min = 0
if x_max > x_size:
x_max = x_size - 1
if y_max > y_size:
y_max = y_size - 1
bbox_mask[y_min:y_max:stride_factor, x_min:x_max:stride_factor]=1
return bbox_mask
def find_largest_bbox(mask, stride_factor):
"""
Find the largest bounding box encompassing all the blobs
"""
y_size, x_size = mask.shape
x, y = np.where(mask==1)
bbox_mask = np.zeros_like(mask)
x_min = np.min(x) - stride_factor
x_max = np.max(x) + stride_factor
y_min = np.min(y) - stride_factor
y_max = | np.max(y) | numpy.max |
"""
==================================================
Probability Calibration for 3-class classification
==================================================
This example illustrates how sigmoid :ref:`calibration <calibration>` changes
predicted probabilities for a 3-class classification problem. Illustrated is
the standard 2-simplex, where the three corners correspond to the three
classes. Arrows point from the probability vectors predicted by an uncalibrated
classifier to the probability vectors predicted by the same classifier after
sigmoid calibration on a hold-out validation set. Colors indicate the true
class of an instance (red: class 1, green: class 2, blue: class 3).
"""
# %%
# Data
# ----
# Below, we generate a classification dataset with 2000 samples, 2 features
# and 3 target classes. We then split the data as follows:
#
# * train: 600 samples (for training the classifier)
# * valid: 400 samples (for calibrating predicted probabilities)
# * test: 1000 samples
#
# Note that we also create `X_train_valid` and `y_train_valid`, which consists
# of both the train and valid subsets. This is used when we only want to train
# the classifier but not calibrate the predicted probabilities.
# Author: <NAME> <<EMAIL>>
# License: BSD Style.
import numpy as np
from sklearn.datasets import make_blobs
np.random.seed(0)
X, y = make_blobs(
n_samples=2000, n_features=2, centers=3, random_state=42, cluster_std=5.0
)
X_train, y_train = X[:600], y[:600]
X_valid, y_valid = X[600:1000], y[600:1000]
X_train_valid, y_train_valid = X[:1000], y[:1000]
X_test, y_test = X[1000:], y[1000:]
# %%
# Fitting and calibration
# -----------------------
#
# First, we will train a :class:`~sklearn.ensemble.RandomForestClassifier`
# with 25 base estimators (trees) on the concatenated train and validation
# data (1000 samples). This is the uncalibrated classifier.
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train_valid, y_train_valid)
# %%
# To train the calibrated classifier, we start with the same
# :class:`~sklearn.ensemble.RandomForestClassifier` but train it using only
# the train data subset (600 samples) then calibrate, with `method='sigmoid'`,
# using the valid data subset (400 samples) in a 2-stage process.
from sklearn.calibration import CalibratedClassifierCV
clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train, y_train)
cal_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit")
cal_clf.fit(X_valid, y_valid)
# %%
# Compare probabilities
# ---------------------
# Below we plot a 2-simplex with arrows showing the change in predicted
# probabilities of the test samples.
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 10))
colors = ["r", "g", "b"]
clf_probs = clf.predict_proba(X_test)
cal_clf_probs = cal_clf.predict_proba(X_test)
# Plot arrows
for i in range(clf_probs.shape[0]):
plt.arrow(
clf_probs[i, 0],
clf_probs[i, 1],
cal_clf_probs[i, 0] - clf_probs[i, 0],
cal_clf_probs[i, 1] - clf_probs[i, 1],
color=colors[y_test[i]],
head_width=1e-2,
)
# Plot perfect predictions, at each vertex
plt.plot([1.0], [0.0], "ro", ms=20, label="Class 1")
plt.plot([0.0], [1.0], "go", ms=20, label="Class 2")
plt.plot([0.0], [0.0], "bo", ms=20, label="Class 3")
# Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], "k", label="Simplex")
# Annotate points 6 points around the simplex, and mid point inside simplex
plt.annotate(
r"($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)",
xy=(1.0 / 3, 1.0 / 3),
xytext=(1.0 / 3, 0.23),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
plt.plot([1.0 / 3], [1.0 / 3], "ko", ms=5)
plt.annotate(
r"($\frac{1}{2}$, $0$, $\frac{1}{2}$)",
xy=(0.5, 0.0),
xytext=(0.5, 0.1),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
plt.annotate(
r"($0$, $\frac{1}{2}$, $\frac{1}{2}$)",
xy=(0.0, 0.5),
xytext=(0.1, 0.5),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
plt.annotate(
r"($\frac{1}{2}$, $\frac{1}{2}$, $0$)",
xy=(0.5, 0.5),
xytext=(0.6, 0.6),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
plt.annotate(
r"($0$, $0$, $1$)",
xy=(0, 0),
xytext=(0.1, 0.1),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
plt.annotate(
r"($1$, $0$, $0$)",
xy=(1, 0),
xytext=(1, 0.1),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
plt.annotate(
r"($0$, $1$, $0$)",
xy=(0, 1),
xytext=(0.1, 1),
xycoords="data",
arrowprops=dict(facecolor="black", shrink=0.05),
horizontalalignment="center",
verticalalignment="center",
)
# Add grid
plt.grid(False)
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
plt.plot([0, x], [x, 0], "k", alpha=0.2)
plt.plot([0, 0 + (1 - x) / 2], [x, x + (1 - x) / 2], "k", alpha=0.2)
plt.plot([x, x + (1 - x) / 2], [0, 0 + (1 - x) / 2], "k", alpha=0.2)
plt.title("Change of predicted probabilities on test samples after sigmoid calibration")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
_ = plt.legend(loc="best")
# %%
# In the figure above, each vertex of the simplex represents
# a perfectly predicted class (e.g., 1, 0, 0). The mid point
# inside the simplex represents predicting the three classes with equal
# probability (i.e., 1/3, 1/3, 1/3). Each arrow starts at the
# uncalibrated probabilities and end with the arrow head at the calibrated
# probability. The color of the arrow represents the true class of that test
# sample.
#
# The uncalibrated classifier is overly confident in its predictions and
# incurs a large :ref:`log loss <log_loss>`. The calibrated classifier incurs
# a lower :ref:`log loss <log_loss>` due to two factors. First, notice in the
# figure above that the arrows generally point away from the edges of the
# simplex, where the probability of one class is 0. Second, a large proportion
# of the arrows point towards the true class, e.g., green arrows (samples where
# the true class is 'green') generally point towards the green vertex. This
# results in fewer over-confident, 0 predicted probabilities and at the same
# time an increase in the predicted probabilities of the correct class.
# Thus, the calibrated classifier produces more accurate predicted probablities
# that incur a lower :ref:`log loss <log_loss>`
#
# We can show this objectively by comparing the :ref:`log loss <log_loss>` of
# the uncalibrated and calibrated classifiers on the predictions of the 1000
# test samples. Note that an alternative would have been to increase the number
# of base estimators (trees) of the
# :class:`~sklearn.ensemble.RandomForestClassifier` which would have resulted
# in a similar decrease in :ref:`log loss <log_loss>`.
from sklearn.metrics import log_loss
score = log_loss(y_test, clf_probs)
cal_score = log_loss(y_test, cal_clf_probs)
print("Log-loss of")
print(f" * uncalibrated classifier: {score:.3f}")
print(f" * calibrated classifier: {cal_score:.3f}")
# %%
# Finally we generate a grid of possible uncalibrated probabilities over
# the 2-simplex, compute the corresponding calibrated probabilities and
# plot arrows for each. The arrows are colored according the highest
# uncalibrated probability. This illustrates the learned calibration map:
plt.figure(figsize=(10, 10))
# Generate grid of probability values
p1d = np.linspace(0, 1, 20)
p0, p1 = | np.meshgrid(p1d, p1d) | numpy.meshgrid |
"""Beam models and chromaticity corrections."""
from __future__ import annotations
from pathlib import Path
import logging
import hashlib
from methodtools import lru_cache
import astropy.coordinates as apc
import astropy.time as apt
import h5py
import numpy as np
import scipy.interpolate as spi
from tqdm import tqdm
import attr
from . import coordinates as coords
from .loss import ground_loss
from . import sky_models
from edges_io.h5 import HDF5Object
from ..config import config
from .. import const
from edges_cal import (
FrequencyRange,
modelling as mdl,
)
from .data import BEAM_PATH
from . import types as tp
logger = logging.getLogger(__name__)
# Reference UTC observation time. At this time, the LST is 0.1666 (00:10 Hrs LST) at the
# EDGES location. NOTE: this is used by default, but can be changed by the user anywhere
# it is used.
REFERENCE_TIME = apt.Time("2014-01-01T09:39:42", location=const.edges_location)
@attr.s
class Beam:
beam = attr.ib()
frequency = attr.ib()
elevation = attr.ib()
azimuth = attr.ib()
simulator = attr.ib(default=None, converter=str)
instrument = attr.ib(default=None, converter=str)
raw_file = attr.ib(default=None, converter=str)
@classmethod
def from_hfss(
cls,
path: [str, Path],
frequency: float,
linear: bool = True,
theta_min: float = 0,
theta_max: float = 180,
theta_resolution: float = 1,
phi_min: float = 0,
phi_max: float = 359,
phi_resolution: float = 1,
) -> Beam:
"""
Create a Beam object from a HFSS file.
Parameters
----------
path
Path to the file. Use :meth:`resolve_file` to get the absolute path
from a a relative path (starting with ':').
linear
Whether the beam values are in linear units (or decibels)
theta_min, theta_max
Min/Max of the zenith angle (degrees)
theta_resolution
Resolution of the zenith angle.
phi_min, phi_max
Min/Max of the azimuth angles (degrees)
phi_resolution
The resolution of the azimuth angle.
Returns
-------
beam
The beam object.
"""
d = np.genfromtxt(path, skip_header=1, delimiter=",")
theta = np.arange(theta_min, theta_max + theta_resolution, theta_resolution)
phi = np.arange(phi_min, phi_max + phi_resolution, phi_resolution)
beam_map = np.zeros((len(theta), len(phi)))
for i in range(len(theta)):
mask = d[:, 1] == theta[i]
this_phi = d[mask, 0]
this_power = d[mask, 2]
this_phi[this_phi < 0] += 360
this_phi, unique_inds = np.unique(this_phi, axis=0, return_index=True)
this_power = this_power[unique_inds]
this_power = this_power[np.argsort(this_phi)]
if not linear:
this_power = 10 ** (this_power / 10)
this_power[np.isnan(this_power)] = 0
beam_map[i, :] = this_power
return Beam(
frequency=np.array([frequency]),
elevation=theta,
azimuth=phi,
beam=beam_map,
simulator="hfss",
raw_file=path,
)
@classmethod
def from_wipld(cls, path: tp.PathLike, az_antenna_axis: float = 0) -> Beam:
"""Read a WIPL-D beam."""
with open(path) as fn:
file_length = 0
number_of_frequencies = 0
flag_columns = False
frequencies_list = []
for line in fn:
file_length += 1
if line[2] == ">":
number_of_frequencies += 1
frequencies_list.append(float(line[19:32]))
elif not flag_columns:
line_splitted = line.split()
number_of_columns = len(line_splitted)
flag_columns = True
rows_per_frequency = (
file_length - number_of_frequencies
) / number_of_frequencies
output = np.zeros(
(
int(number_of_frequencies),
int(rows_per_frequency),
int(number_of_columns),
)
)
frequencies = np.array(frequencies_list)
with open(path) as fn:
i = -1
for line in fn:
if line[2] == ">":
i += 1
j = -1
else:
j += 1
line_splitted = line.split()
line_array = np.array(line_splitted, dtype=float)
output[i, j, :] = line_array
# Re-arrange data
phi_u = np.unique(output[0, :, 0])
theta_u = np.unique(output[0, :, 1])
beam = np.zeros((len(frequencies), len(theta_u), len(phi_u)))
for i in range(len(frequencies)):
out_2D = output[i, :, :]
phi = out_2D[:, 0]
theta = (
90 - out_2D[:, 1]
) # theta is zero at the zenith, and goes to 180 deg
gain = out_2D[:, 6]
theta_u = np.unique(theta)
it = np.argsort(theta_u)
theta_a = theta_u[it]
for j in range(len(theta_a)):
phi_j = phi[theta == theta_a[j]]
gain_j = gain[theta == theta_a[j]]
ip = np.argsort(phi_j)
gp = gain_j[ip]
beam[i, j, :] = gp
# Flip beam from theta to elevation
beam_maps = beam[:, ::-1, :]
# Change coordinates from theta/phi, to AZ/EL
el = np.arange(0, 91)
az = np.arange(0, 360)
# Shifting beam relative to true AZ (referenced at due North)
beam_maps_shifted = cls.shift_beam_maps(az_antenna_axis, beam_maps)
return Beam(
frequency=frequencies,
azimuth=az,
elevation=el,
beam=beam_maps_shifted,
simulator="wipl-d",
raw_file=path,
)
@classmethod
def from_ideal(cls, delta_f=2, f_low=40, f_high=200, delta_az=1, delta_el=1):
"""Create an ideal beam that is completely unity."""
freq = np.arange(f_low, f_high, delta_f)
az = np.arange(0, 360, delta_az)
el = np.arange(0, 90 + 0.1 * delta_el, delta_el)
return Beam(
frequency=freq,
azimuth=az,
elevation=el,
beam=np.ones((len(freq), len(el), len(az))),
simulator="ideal",
)
@classmethod
def from_feko(cls, path: [str, Path], az_antenna_axis: float = 0) -> Beam:
"""
Read a FEKO beam file.
Parameters
----------
filename
The path to the file.
az_antenna_axis
The azimuth of the primary antenna axis, in degrees.
Returns
-------
beam_maps
A ``(Nfreq, Nel, Naz)`` array giving values of the beam. Note that elevation
and azimuth are always in 1-degree increments.
freq
The frequencies at which the beam is defined.
"""
filename = Path(path)
data = np.genfromtxt(str(filename))
frequency = []
with open(filename) as fl:
for line in fl.readlines():
if line.startswith("#FREQUENCY"):
line = line.split(" ")
indx = line.index("MHz")
frequency.append(float(line[indx - 1]))
freq = FrequencyRange(np.array(frequency))
# Loading data and convert to linear representation
beam_maps = np.zeros((len(frequency), 91, 360))
for i in range(len(frequency)):
beam_maps[i] = (10 ** (data[(i * 360) : ((i + 1) * 360), 2::] / 10)).T
# Shifting beam relative to true AZ (referenced at due North)
# Due to angle of orientation of excited antenna panels relative to due North
beam_maps = cls.shift_beam_maps(az_antenna_axis, beam_maps)
return Beam(
frequency=freq.freq,
beam=beam_maps,
azimuth=np.arange(0, 360),
elevation=np.arange(0, 91),
simulator="feko",
raw_file=path,
)
@classmethod
def from_cst(
cls,
file_name_prefix: tp.PathLike,
f_low: int = 40,
f_high: int = 100,
freq_p: int = 61,
theta_p: float = 181,
phi_p: float = 361,
az_antenna_axis: float = 0,
) -> Beam:
"""
Read a CST beam file.
Parameters
----------
filename
The path to the file.
az_antenna_axis
The azimuth of the primary antenna axis, in degrees.
f_low, f_high
lower and higher frequency bounds
freq_p
Number of frequency points in the simulation file.
theta_p
Number of zenith angle points in the simulation file.
phi_p
Number of azimuth points in the simulation file.
Returns
-------
beam
The beam object.
"""
phi_t = np.zeros((freq_p, theta_p * phi_p))
frequency = np.linspace(f_low, f_high, freq_p)
beam_square = np.zeros((freq_p, theta_p, phi_p))
res = (f_high - f_low) / (freq_p - 1)
for i in range(freq_p):
n = int(i * res + f_low)
fc_file = open(
file_name_prefix + "farfield (f=" + str(n) + ") [1].txt", "rb"
) #
for x, line in enumerate(fc_file):
if x > 1:
check = 0
for o in range(len(line)):
if line[o] != "":
check = check + 1
if check == 3:
phi_t[i][x - 2] = float(line.split()[2])
fc_file.close()
for i in range(freq_p):
for x in range(phi_p):
beam_square[i, :, x] = phi_t[i, x * theta_p : (x + 1) * theta_p]
beam_square[i, :, 0 : int(phi_p / 2)] = beam_square[
i, :, int(phi_p / 2) : phi_p - 1
]
freq = FrequencyRange(np.array(frequency))
beam_square[:, 91:, :] = 0
beam_maps = np.flip(beam_square[:, :91, :360], axis=1)
# Shifting beam relative to true AZ (referenced at due North)
# Due to angle of orientation of excited antenna panels relative to due North
beam_maps = cls.shift_beam_maps(az_antenna_axis, beam_maps)
return Beam(
frequency=freq.freq,
beam=beam_maps,
azimuth=np.arange(0, 360),
elevation=np.arange(0, 91),
simulator="cst",
raw_file=file_name_prefix,
)
@classmethod
def from_feko_raw(
cls,
file_name_prefix: tp.PathLike,
ext: str = "txt",
f_low: int = 40,
f_high: int = 100,
freq_p: int = 61,
theta_p: float = 181,
phi_p: float = 361,
az_antenna_axis: float = 0,
) -> Beam:
"""
Read a FEKO beam file.
Parameters
----------
filename
The path to the file.
az_antenna_axis
The azimuth of the primary antenna axis, in degrees.
f_low, f_high
lower and higher frequency bounds
freq_p
Number of frequency points in the simulation file.
theta_p
Number of zenith angle points in the simulation file.
phi_p
Number of azimuth points in the simulation file.
Returns
-------
beam
The beam object.
"""
beam_square = np.zeros((freq_p, theta_p, phi_p))
frequency = np.linspace(f_low, f_high, freq_p)
f1 = open(str(file_name_prefix) + "_0-90." + ext)
f2 = open(str(file_name_prefix) + "_91-180." + ext)
f3 = open(str(file_name_prefix) + "_181-270." + ext)
f4 = open(str(file_name_prefix) + "_271-360." + ext)
z = (
theta_p * 91 + 10
) # ---> change this to no.of theta * no.of phi + No.of header lines
for index, line in enumerate(f1):
if index % z == 0:
co = 0
if index % z >= 10:
x = list(map(float, line.split()))
beam_square[int(index / z), co % theta_p, int(co / theta_p)] = 10 ** (
x[8] / 10
)
co += 1
z = theta_p * 90 + 10 #
for index, line in enumerate(f2):
if index % z == 0:
co = 0
if index % z >= 10:
x = list(map(float, line.split()))
beam_square[
int(index / z), co % theta_p, int(co / theta_p) + 91
] = 10 ** (x[8] / 10)
co += 1
for index, line in enumerate(f3):
if index % z == 0:
co = 0
if index % z >= 10:
x = list(map(float, line.split()))
beam_square[
int(index / z), co % theta_p, int(co / theta_p) + 181
] = 10 ** (x[8] / 10)
co += 1
for index, line in enumerate(f4):
if index % z == 0:
co = 0
if index % z >= 10:
x = list(map(float, line.split()))
beam_square[
int(index / z), co % theta_p, int(co / theta_p) + 271
] = 10 ** (x[8] / 10)
co += 1
freq = FrequencyRange(np.array(frequency))
beam_square[:, 90:, :] = 0
beam_maps = np.flip(beam_square[:, :91, :360], axis=1)
# Shifting beam relative to true AZ (referenced at due North)
# Due to angle of orientation of excited antenna panels relative to due North
beam_maps = cls.shift_beam_maps(az_antenna_axis, beam_maps)
return Beam(
frequency=freq.freq,
beam=beam_maps,
azimuth=np.arange(0, 360),
elevation=np.arange(0, 91),
simulator="feko",
raw_file=file_name_prefix,
)
@classmethod
def get_beam_path(cls, band: str, kind: str | None = None) -> Path:
"""Get a standard path to a beam file."""
pth = BEAM_PATH / band / "default.txt" if not kind else kind + ".txt"
if not pth.exists():
raise FileNotFoundError(f"No beam exists for band={band}.")
return pth
def at_freq(
self,
freq: np.ndarray,
model: mdl.Model = mdl.Polynomial(
n_terms=13, transform=mdl.ScaleTransform(scale=75.0)
),
) -> Beam:
"""
Interpolate the beam to a new set of frequencies.
Parameters
----------
freq
Frequencies to interpolate to.
Returns
-------
beam
The Beam object at the new frequencies.
"""
if len(self.frequency) < 3:
raise ValueError(
"Can't freq-interpolate beam that has fewer than three frequencies."
)
# Frequency interpolation
interp_beam = np.zeros((len(freq), len(self.elevation), len(self.azimuth)))
cached_model = model.at(x=self.frequency)
for i, bm in enumerate(self.beam.T):
for j, b in enumerate(bm):
model_fit = cached_model.fit(ydata=b)
interp_beam[:, j, i] = model_fit.evaluate(freq)
return Beam(
frequency=freq,
azimuth=self.azimuth,
elevation=self.elevation,
beam=interp_beam,
)
def smoothed(
self,
model: mdl.Model = mdl.Polynomial(n_terms=12),
) -> Beam:
"""
Smoothes the beam within its same set of frequencies.
----------
Returns
-------
beam
The Beam object smoothed over its same frequencies.
"""
if len(self.frequency) < 3:
raise ValueError(
"Can't freq-interpolate beam that has fewer than three frequencies."
)
# Frequency smoothing
smooth_beam = np.zeros_like(self.beam)
cached_model = model.at(x=self.frequency)
for i, bm in enumerate(self.beam.T):
for j, b in enumerate(bm):
model_fit = cached_model.fit(ydata=b)
smooth_beam[:, j, i] = model_fit.evaluate()
return Beam(
frequency=self.frequency,
azimuth=self.azimuth,
elevation=self.elevation,
beam=smooth_beam,
)
@staticmethod
def shift_beam_maps(az_antenna_axis: float, beam_maps: np.ndarray):
"""Rotate beam maps around an axis.
Parameters
----------
az_antenna_axis
The aximuth angle of the antenna axis.
beam_maps
Beam maps as a function of frequency, za and az.
Returns
-------
beam maps
Array of the same shape as the input, but rotated.
"""
if az_antenna_axis < 0:
index = -az_antenna_axis
bm1 = beam_maps[:, :, index::]
bm2 = beam_maps[:, :, 0:index]
return np.append(bm1, bm2, axis=2)
elif az_antenna_axis > 0:
index = az_antenna_axis
bm1 = beam_maps[:, :, 0:(-index)]
bm2 = beam_maps[:, :, (360 - index) : :]
return np.append(bm2, bm1, axis=2)
else:
return beam_maps
@classmethod
def resolve_file(
cls,
path: tp.PathLike,
band: str | None = None,
configuration: str = "default",
simulator: str = "feko",
) -> Path:
"""Resolve a file path to a standard location."""
if str(path) == ":":
if band is None:
raise ValueError("band must be given if path starts with a colon (:)")
# Get the default beam file.
return BEAM_PATH / band / f"{configuration}.txt"
elif str(path).startswith(":"):
if band is None:
raise ValueError("band must be given if path starts with a colon (:)")
# Use a beam file in the standard directory.
return (
Path(config["paths"]["beams"]).expanduser()
/ f"{band}/simulations/{simulator}/{str(path)[1:]}"
).absolute()
else:
return Path(path).absolute()
@classmethod
def from_file(
cls,
band: str | None,
simulator: str = "feko",
beam_file: tp.PathLike = ":",
configuration: str = "default",
rotation_from_north: float = 90,
) -> Beam:
"""Read a beam from file."""
beam_file = cls.resolve_file(beam_file, band, configuration, simulator)
if simulator == "feko":
rotation_from_north -= 90
out = cls.from_feko(beam_file, az_antenna_axis=rotation_from_north)
elif simulator == "wipl-d": # Beams from WIPL-D
out = cls.from_wipld(beam_file, rotation_from_north)
elif simulator == "hfss":
out = cls.from_hfss(beam_file)
else:
raise ValueError(f"Unknown value for simulator: '{simulator}'")
out.instrument = band
return out
@lru_cache(maxsize=1000)
def angular_interpolator(self, freq_indx: int):
"""Return a callable function that interpolates the beam.
The returned function has the signature ``interp(az, el)``, where ``az`` is
azimuth in degrees, and ``el`` is elevation in degrees. They may be arrays,
in which case they should be the same length.
"""
el = self.elevation * np.pi / 180 + np.pi / 2
beam = self.beam[freq_indx]
if el[-1] > 0.999 * np.pi:
el = el[:-1]
beam = beam[:-1]
spl = spi.RectSphereBivariateSpline(
el,
self.azimuth * np.pi / 180,
beam,
pole_values=(None, beam[-1]),
pole_exact=True,
)
return lambda az, el: spl(
el * np.pi / 180 + np.pi / 2, az * np.pi / 180, grid=False
)
def between_freqs(self, low=0, high=np.inf) -> Beam:
"""Return a new :class:`Beam` object restricted a given frequency range."""
mask = (self.frequency >= low) & (self.frequency <= high)
return attr.evolve(self, frequency=self.frequency[mask], beam=self.beam[mask])
def get_beam_solid_angle(self) -> float:
"""Calculate the integrated beam solid angle."""
# Theta vector valid for the FEKO beams. In the beam, dimension 1 increases
# from index 0 to 90 corresponding to elevation, which is 90-theta
theta = self.elevation[::-1]
sin_theta = np.sin(theta * (np.pi / 180))
sin_theta_2D = np.tile(sin_theta, (360, 1)).T
beam_integration = | np.sum(self.beam * sin_theta_2D) | numpy.sum |
from PyQt5.QtWidgets import QFileDialog
from scipy import signal
import numpy as np
from scipy.io import loadmat
from matplotlib.pyplot import get_cmap
from sklearn.metrics import confusion_matrix
import seaborn as sns
import os
from torch import nn
import torch
import matplotlib.pyplot as plt
from torchvision import transforms
from PIL import Image
from Models.models import NeuralNetworkClassifier
from Models.utils import train_dataloader
import pickle
device = torch.device("cuda" if torch.cuda.is_available() else "cpu" ).type
# HOw to open(Brows) data frmo PyQt
def LoadECGData(self):
'''
Function: Open QFileDialog to address and open the ECG signals
base on the User decisions
Connection: It is called from slot @XXX From Main Gui
'''
(self.FilePath, _ )= QFileDialog.getOpenFileNames(self, "Choose File as .MAT", "", "ECG data set (*.mat *.MAT)")
ECGData = loadmat(self.FilePath[0]) # Need To be modified
# ECGData.keys(), type(ECGData)
ECGData = ECGData["ECGData"] # Need To be modified
ecgSignal = ECGData["Data"][0][0]
lbls = ECGData["Labels"][0][0]
lbls = [lbls[i][0][0] for i in range(lbls.size)]
self.sig_ARR, _ = ecgSignal[0:95], lbls[0:95]
self.sig_CHF, _ = ecgSignal[96:125], lbls[96:125]
self.sig_NSR, _ = ecgSignal[125:161], lbls[126:161]
print("\n--> Data successfully loaded!")
print("Number of ARR samples: ", self.sig_ARR.shape[0])
print("Number of NSR samples: ", self.sig_NSR.shape[0])
print("Number of CHF samples: ", self.sig_CHF.shape[0])
def plot_signal_rnd(self):
'''
Function : Plot all signals in randomly in given time steps
Connection: It is called from slot @Plot From Main Gui
and it is a in connect with @pyqtgraph
For display puposes
'''
if int(self.txtSigStart.toPlainText()) >= 0 and int(self.txtSigStart.toPlainText()) <= 60000:
if ((int(self.txtSigEnd.toPlainText()) > int(self.txtSigStart.toPlainText()))
and int(self.txtSigEnd.toPlainText()) <= 60000):
lengthStart = int(self.txtSigStart.toPlainText())
lengthEnd = int(self.txtSigEnd.toPlainText())
Signals = creatRndPlotSignal(self.selectSig.currentIndex(), self.sig_ARR, self.sig_CHF, self.sig_NSR,
lengthStart, lengthEnd)
sig_plot = Signals[0] # sig_plot
sig_filter_plot = Signals[1] # sig_filter_plot
wavelet_plot = Signals[2] # wavelet_plot
wavelet_filter_plot = Signals[3] # wavelet_filter_plot
self.time = range(0, len(sig_plot), 1)
self.time = list(self.time)
self.time = range(0, len(sig_filter_plot), 1)
self.time = list(self.time)
self.time = range(0, len(wavelet_plot), 1)
self.time = list(self.time)
self.time = range(0, len(wavelet_filter_plot), 1)
self.time = list(self.time)
self.firstSignal.setData(sig_plot)
self.firstSignalTwo.setData(sig_filter_plot)
self.imgOne.setImage(wavelet_plot)
self.imgTwo.setImage(wavelet_filter_plot)
else:
print("Please Enter Correct Value")
else:
print("Please Enter Correct Value")
def butter_highpass_filter(data, cutoff=1, fs=128, order=5):
'''Function : High Pass FAlter signal
Description : Design an Nth-order digital or analog Butterworth filter and return the filter
coefficients (MATLAB IIR Filter format)
returned : filter forward and backward signal
'''
normal_cutoff = cutoff / (fs / 2)
b, a = signal.butter(order, normal_cutoff, btype="high", analog=False) # b = ndarray, a = ndarray
filteredSignal = signal.filtfilt(b, a, data)
return filteredSignal
def notch_filter(data, cutoff=60, fs=128, q=30):
normal_cutoff = cutoff / (fs / 2)
b, a = signal.iirnotch(normal_cutoff, Q=q, fs=fs)
filteredSignal = signal.filtfilt(b, a, data)
return filteredSignal
# Creat Random Variable for Plotting
def creatRndPlotSignal(num, ARR, CHF, NSR, lengthStart, lengthEnd):
ind_ARR = | np.random.randint(low=0, high=ARR.shape[0]) | numpy.random.randint |
import json
import argparse
import copy
import datetime
import logging
import os
import numpy as np
import torch
import wandb
from torch.utils.data import ConcatDataset, DataLoader
from algs.fedavg import train_nets
from algs.fednova import local_train_net_fednova
from algs.fedprox import local_train_net_fedprox
from algs.scaffold import local_train_net_scaffold
from data.dataloader import get_loaderargs
from data.partition import partition_data
from metrics.basic import compute_accuracy
from models.nets import init_nets
from utils import mkdirs, init_logger, check_disk_space, save_model
DATASETS = ['mnist', 'fmnist', 'cifar10', 'svhn', 'celeba', 'femnist', 'generated', 'rcv1', 'SUSY', 'covtype', 'a9a']
def get_args():
parser = argparse.ArgumentParser()
# Experiment setting
parser.add_argument('--name', type=str, required=True, help='Name of each experiment')
# Model & Dataset
parser.add_argument('--arch', type=str, default='MLP', help='Neural network architecture used in training')
parser.add_argument('--modeldir', type=str, required=False, default='./ckpt/', help='Model directory path')
parser.add_argument('--dataset', type=str, choices=DATASETS, help='dataset used for training')
parser.add_argument('--datadir', type=str, required=False, default='./data/', help='Data directory')
parser.add_argument('--save_round', type=int, default=10, help='Save model once in n comm rounds')
parser.add_argument('--save_local', action='store_true', help='Save local model for analysis')
parser.add_argument('--save_epoch', type=int, default=5, help='Save local model once in n epochs')
# Train, Hyperparams, Optimizer
parser.add_argument('--batch-size', type=int, default=64, help='input batch size for training (default: 64)')
parser.add_argument('--lr', type=float, default=0.01, help='learning rate (default: 0.01)')
parser.add_argument('--epochs', type=int, default=5, help='number of local epochs')
parser.add_argument('--dropout', type=float, required=False, default=0.0, help='Dropout probability. Default=0.0')
parser.add_argument('--loss', type=str, choices=['ce', 'srip', 'ocnn'], default='ce', help='Loss function')
parser.add_argument('--optimizer', type=str, choices=['adam', 'amsgrad', 'sgd'], default='sgd', help='Optimizer')
parser.add_argument('--momentum', type=float, default=0, help='Parameter controlling the momentum SGD')
parser.add_argument('--nesterov', type=bool, default=True, help='nesterov momentum')
parser.add_argument('--mu', type=float, default=1, help='the mu parameter for fedprox')
parser.add_argument('--reg', type=float, default=1e-5, help='L2 losses strength')
parser.add_argument('--odecay', type=float, default=1e-2, help='Orth loss strength')
# Averaging algorithms
parser.add_argument('--alg', type=str, choices=['fedavg', 'fedprox', 'scaffold', 'fednova'],
help='communication strategy')
parser.add_argument('--comm_round', type=int, default=50, help='number of maximum communication roun')
parser.add_argument('--is_same_initial', type=int, default=1, help='All models with same parameters in fedavg')
# Data partitioning
parser.add_argument('--n_clients', type=int, default=2, help='number of workers in a distributed cluster')
parser.add_argument('--partition', type=str,
choices=['homo', 'noniid-labeldir', 'iid-diff-quantity', 'mixed', 'real', 'femnist'] \
+ ['noniid-#label' + str(i) for i in range(10)],
default='homo', help='the data partitioning strategy')
parser.add_argument('--beta', type=float, default=0.5,
help='The parameter for the dirichlet distribution for data partitioning')
parser.add_argument('--noise', type=float, default=0, help='how much noise we add to some party')
parser.add_argument('--noise_type', type=str, choices=['space', 'level'], default='level',
help='Different level of noise or different space of noise')
parser.add_argument('--sample', type=float, default=1, help='Sample ratio for each communication round')
# Misc.
parser.add_argument('--num_workers', default=8, type=int, help='core usage (default: 1)')
parser.add_argument('--ngpu', default=1, type=int, help='total number of gpus (default: 1)')
parser.add_argument('--device', type=str, default='cuda:0', help='The device to run the program')
parser.add_argument('--amp', action='store_true', help='Turn Automatic Mixed Precision on')
parser.add_argument('--init_seed', type=int, default=0, help='Random seed')
parser.add_argument('--logdir', type=str, required=False, default='./logs/', help='Log directory path')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = get_args()
# Logging
mkdirs(args.logdir)
mkdirs(args.modeldir)
args_path = f'{args.name}_arguments-{datetime.datetime.now().strftime("%Y-%m-%d-%H:%M-%S")}.json'
with open(os.path.join(args.logdir, args_path), 'w') as f:
json.dump(str(args), f)
init_logger(args.name, args.logdir)
logger = logging.getLogger()
# Wandb
wandb.init(
name=args.name,
config=args.__dict__,
project='federated-learning',
tags=['train', args.arch, args.dataset, args.loss],
)
# Device
device = torch.device(args.device)
logger.info(f'Device: {device}')
# Set random seeds
logger.info(f'Seed: {args.init_seed}')
seed = args.init_seed
np.random.seed(seed)
torch.manual_seed(seed)
# Data partitioning
logger.info('Partitioning data...')
X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data(
args.dataset, args.datadir, args.logdir, args.partition, args.n_clients, beta=args.beta)
# Prepare dataloader
logger.info('Creating dataloaders...')
if args.noise_type == 'space':
noise_level = lambda net_idx: 0 if net_idx == args.n_clients - 1 else args.noise
dl_args = lambda net_idx: {'net_id': net_idx, 'total': args.n_clients - 1}
else:
noise_level = lambda net_idx: args.noise / (args.n_clients - 1) * net_idx
dl_args = lambda net_idx: {}
trainargs, _, trainsets, testsets = [
{idx: obj for idx, obj in enumerate(tup)} for tup in list(zip(
*[get_loaderargs(
args.dataset, args.datadir, args.batch_size, 32,
net_dataidx_map[i], noise_level(i), **dl_args(i),
num_workers=(args.num_workers, args.num_workers)
) for i in range(args.n_clients)]
))
]
# if noise
if args.noise > 0:
trainset_global = ConcatDataset(trainsets)
testset_global = ConcatDataset(testsets)
trainargs_global = DataLoader(
dataset=trainset_global, batch_size=args.batch_size, shuffle=True,
pin_memory=True, num_workers=args.num_workers, persistent_workers=True
)
testargs_global = DataLoader(
dataset=testset_global, batch_size=args.batch_size, shuffle=False,
pin_memory=True, num_workers=args.num_workers, persistent_workers=True
)
else:
trainargs_global, testargs_global, trainset_global, testset_global = get_loaderargs(
args.dataset, args.datadir, args.batch_size, 32,
num_workers=(args.num_workers, args.num_workers)
)
logger.info(f'Global train size: {len(trainset_global)}')
logger.info(f'Global test size: {len(testset_global)}')
if args.alg == 'fedavg':
logger.info('Initializing nets...')
nets, local_model_meta_data, layer_type = init_nets(args.dropout, args.n_clients, args)
logger.info('Complete.')
global_models, global_model_meta_data, global_layer_type = init_nets(0, 1, args)
global_model = global_models[0]
# TODO
# commented out for consecutive run
# check_disk_space(
# global_model, args.n_clients, args.comm_round, args.save_round,
# args.save_local, args.epochs, args.save_epoch
# )
global_para = global_model.state_dict()
if args.is_same_initial:
for net_id, net in nets.items():
net.load_state_dict(global_para)
for round_ in range(1, args.comm_round + 1):
logger.info('=' * 58)
logger.info('Communication round: ' + str(round_))
arr = np.arange(args.n_clients)
np.random.shuffle(arr)
selected = arr[:int(args.n_clients * args.sample)]
global_para = global_model.state_dict()
if round_ == 1:
if args.is_same_initial:
for idx in selected:
nets[idx].load_state_dict(global_para)
else:
for idx in selected:
nets[idx].load_state_dict(global_para)
train_nets(nets, selected, args, net_dataidx_map, trainargs, round_, testargs=testargs_global,
device=device)
# update global model
total_data_points = sum([len(net_dataidx_map[r]) for r in selected])
fed_avg_freqs = [len(net_dataidx_map[r]) / total_data_points for r in selected]
for idx in range(len(selected)):
net_para = nets[selected[idx]].state_dict()
if idx == 0:
for key in net_para:
global_para[key] = net_para[key] * fed_avg_freqs[idx]
else:
for key in net_para:
global_para[key] += net_para[key] * fed_avg_freqs[idx]
global_model.load_state_dict(global_para)
global_model.to(device)
trainloader_global = DataLoader(**trainargs_global)
train_acc = compute_accuracy(global_model, trainloader_global, device=device)
del trainloader_global
testloader_global = DataLoader(**testargs_global)
test_acc, conf_matrix = compute_accuracy(
global_model, testloader_global, get_confusion_matrix=True, device=device
)
del testloader_global
global_model.cpu()
logger.info(f'>> Global Train accuracy: {train_acc * 100:5.2f} %')
logger.info(f'>> Global Test accuracy: {test_acc * 100:5.2f} %')
wandb.log(
data={
f'Global': {
'train': {'Accuracy': train_acc},
'test': {'Accuracy': test_acc},
},
'round': round_
},
)
# Save global model
if (round_ % args.save_round == 0) or round_ == args.comm_round:
save_model(global_model, args.name, args.modeldir, f'comm{round_:03}-GLOBAL')
logger.info('=' * 58)
elif args.alg == 'fedprox':
logger.info('Initializing nets')
nets, local_model_meta_data, layer_type = init_nets(args.dropout, args.n_clients, args)
global_models, global_model_meta_data, global_layer_type = init_nets(0, 1, args)
global_model = global_models[0]
global_para = global_model.state_dict()
if args.is_same_initial:
for net_id, net in nets.items():
net.load_state_dict(global_para)
for round_ in range(args.comm_round):
logger.info('Communication round: ' + str(round_))
arr = np.arange(args.n_clients)
np.random.shuffle(arr)
selected = arr[:int(args.n_clients * args.sample)]
global_para = global_model.state_dict()
if round_ == 0:
if args.is_same_initial:
for idx in selected:
nets[idx].load_state_dict(global_para)
else:
for idx in selected:
nets[idx].load_state_dict(global_para)
local_train_net_fedprox(nets, selected, global_model, args, net_dataidx_map, testargs=testargs_global,
device=device)
global_model.to('cpu')
# update global model
total_data_points = sum([len(net_dataidx_map[r]) for r in selected])
fed_avg_freqs = [len(net_dataidx_map[r]) / total_data_points for r in selected]
for idx in range(len(selected)):
net_para = nets[selected[idx]].state_dict()
if idx == 0:
for key in net_para:
global_para[key] = net_para[key] * fed_avg_freqs[idx]
else:
for key in net_para:
global_para[key] += net_para[key] * fed_avg_freqs[idx]
global_model.load_state_dict(global_para)
trainloader_global = DataLoader(**trainargs_global)
logger.info('global n_training: %d' % len(trainloader_global))
train_acc = compute_accuracy(global_model, trainloader_global, device=device)
del trainloader_global
testloader_global = DataLoader(**testargs_global)
logger.info('global n_test: %d' % len(testloader_global))
test_acc, conf_matrix = compute_accuracy(
global_model, testloader_global, get_confusion_matrix=True, device=device
)
del testloader_global
logger.info('>> Global Model Train accuracy: %f' % train_acc)
logger.info('>> Global Model Test accuracy: %f' % test_acc)
elif args.alg == 'scaffold':
logger.info('Initializing nets')
nets, local_model_meta_data, layer_type = init_nets(args.dropout, args.n_clients, args)
global_models, global_model_meta_data, global_layer_type = init_nets(0, 1, args)
global_model = global_models[0]
c_nets, _, _ = init_nets(args.dropout, args.n_clients, args)
c_globals, _, _ = init_nets(0, 1, args)
c_global = c_globals[0]
c_global_para = c_global.state_dict()
for net_id, net in c_nets.items():
net.load_state_dict(c_global_para)
global_para = global_model.state_dict()
if args.is_same_initial:
for net_id, net in nets.items():
net.load_state_dict(global_para)
for round_ in range(args.comm_round):
logger.info('Communication round: ' + str(round_))
arr = np.arange(args.n_clients)
| np.random.shuffle(arr) | numpy.random.shuffle |
from __future__ import print_function
import itertools
import math
import os
import random
import shutil
import tempfile
import unittest
import uuid
import numpy as np
import tensorflow as tf
import coremltools
import coremltools.models.datatypes as datatypes
from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION
from coremltools.models import neural_network as neural_network
from coremltools.models.utils import macos_version
from coremltools.models.neural_network import flexible_shape_utils
np.random.seed(10)
MIN_MACOS_VERSION_REQUIRED = (10, 13)
LAYERS_10_15_MACOS_VERSION = (10, 15)
def _get_unary_model_spec(x, mode, alpha=1.0):
input_dim = x.shape
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', datatypes.Array(*input_dim))]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_unary(name='unary', input_name='data',
output_name='output', mode=mode, alpha=alpha)
return builder.spec
class CorrectnessTest(unittest.TestCase):
def runTest(self):
pass
def _compare_shapes(self, np_preds, coreml_preds):
return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape
def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()):
if shape:
return coreml_preds.shape == shape
else:
return coreml_preds.shape == np_preds.shape
def _compare_predictions(self, np_preds, coreml_preds, delta=.01):
np_preds = np_preds.flatten()
coreml_preds = coreml_preds.flatten()
for i in range(len(np_preds)):
max_den = max(1.0, np_preds[i], coreml_preds[i])
if np.abs(
np_preds[i] / max_den - coreml_preds[i] / max_den) > delta:
return False
return True
@staticmethod
def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10):
"""
This utility function is used for validate random distributions layers.
It validates the first 10 moments of prediction and expected values.
"""
def get_moment(data, k):
return np.mean(np.power(data - np.mean(data), k))
if isinstance(model, str):
model = coremltools.models.MLModel(model)
model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only)
prediction = model.predict(inputs, useCPUOnly=use_cpu_only)
for output_name in expected:
np_preds = expected[output_name]
coreml_preds = prediction[output_name]
np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)]
coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)]
np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2)
# override expected values to allow element-wise compares
for output_name in expected:
expected[output_name] = prediction[output_name]
def _test_model(self,
model,
input,
expected,
model_precision=_MLMODEL_FULL_PRECISION,
useCPUOnly=False,
output_name_shape_dict={},
validate_shapes_only=False):
model_dir = None
# if we're given a path to a model
if isinstance(model, str):
model = coremltools.models.MLModel(model)
# If we're passed in a specification, save out the model
# and then load it back up
elif isinstance(model, coremltools.proto.Model_pb2.Model):
model_dir = tempfile.mkdtemp()
model_name = str(uuid.uuid4()) + '.mlmodel'
model_path = os.path.join(model_dir, model_name)
coremltools.utils.save_spec(model, model_path)
model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly)
# If we want to test the half precision case
if model_precision == _MLMODEL_HALF_PRECISION:
model = coremltools.utils.convert_neural_network_weights_to_fp16(
model)
prediction = model.predict(input, useCPUOnly=useCPUOnly)
for output_name in expected:
if self.__class__.__name__ == "SimpleTest":
assert (self._compare_shapes(expected[output_name],
prediction[output_name]))
else:
if output_name in output_name_shape_dict:
output_shape = output_name_shape_dict[output_name]
else:
output_shape = []
if len(output_shape) == 0 and len(expected[output_name].shape) == 0:
output_shape = (1,)
assert (self._compare_nd_shapes(expected[output_name],
prediction[output_name],
output_shape))
if not validate_shapes_only:
assert (self._compare_predictions(expected[output_name],
prediction[output_name]))
# Remove the temporary directory if we created one
if model_dir and os.path.exists(model_dir):
shutil.rmtree(model_dir)
@unittest.skipIf(macos_version() < MIN_MACOS_VERSION_REQUIRED,
'macOS 10.13+ is required. Skipping tests.')
class SimpleTest(CorrectnessTest):
def test_tiny_upsample_linear_mode(self):
input_dim = (1, 1, 3) # (C,H,W)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_upsample(name='upsample',
scaling_factor_h=2, scaling_factor_w=3,
input_name='data', output_name='output',
mode='BILINEAR')
input = {
'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3))
}
expected = {
'output': np.array(
[[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3],
[1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3]
])
}
self._test_model(builder.spec, input, expected)
def test_LRN(self):
input_dim = (1, 3, 3)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', datatypes.Array(*input_dim))]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_lrn(name='lrn', input_name='data', output_name='output',
alpha=2, beta=3, local_size=1, k=8)
input = {
'data': np.ones((1, 3, 3))
}
expected = {
'output': 1e-3 * np.ones((1, 3, 3))
}
self._test_model(builder.spec, input, expected)
def test_MVN(self):
input_dim = (2, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', datatypes.Array(*input_dim))]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_mvn(name='mvn', input_name='data', output_name='output',
across_channels=False, normalize_variance=False)
input = {
'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2))
}
expected = {
'output': np.reshape(np.arange(8) - np.array(
[1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2))
}
self._test_model(builder.spec, input, expected)
def test_L2_normalize(self):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', datatypes.Array(*input_dim))]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_l2_normalize(name='mvn', input_name='data',
output_name='output')
input = {
'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
}
expected = {
'output': np.reshape(np.arange(4, dtype=np.float32),
(1, 2, 2)) / np.sqrt(14)
}
self._test_model(builder.spec, input, expected)
def test_unary_sqrt(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': np.sqrt(x)}
spec = _get_unary_model_spec(x, 'sqrt')
self._test_model(spec, input, expected)
def test_unary_rsqrt(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': 1 / np.sqrt(x)}
spec = _get_unary_model_spec(x, 'rsqrt')
self._test_model(spec, input, expected)
def test_unary_inverse(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': 1 / x}
spec = _get_unary_model_spec(x, 'inverse')
self._test_model(spec, input, expected)
def test_unary_power(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': x ** 3}
spec = _get_unary_model_spec(x, 'power', 3)
self._test_model(spec, input, expected)
def test_unary_exp(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': np.exp(x)}
spec = _get_unary_model_spec(x, 'exp')
self._test_model(spec, input, expected)
def test_unary_log(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': np.log(x)}
spec = _get_unary_model_spec(x, 'log')
self._test_model(spec, input, expected)
def test_unary_abs(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': np.abs(x)}
spec = _get_unary_model_spec(x, 'abs')
self._test_model(spec, input, expected)
def test_unary_threshold(self):
x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': np.maximum(x, 2)}
spec = _get_unary_model_spec(x, 'threshold', 2)
self._test_model(spec, input, expected)
def test_split(self):
input_dim = (9, 2, 2)
x = np.random.rand(*input_dim)
input_features = [('data', datatypes.Array(*input_dim))]
output_names = []
output_features = []
for i in range(3):
out = 'out_' + str(i)
output_names.append(out)
output_features.append((out, None))
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_split(name='split', input_name='data',
output_names=output_names)
input = {'data': x}
expected = {
'out_0': x[0: 3, :, :],
'out_1': x[3: 6, :, :],
'out_2': x[6: 9, :, :]
}
self._test_model(builder.spec, input, expected)
def test_scale_constant(self):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_scale(name='scale', W=5, b=45, has_bias=True,
input_name='data', output_name='output')
x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': 5 * x + 45}
self._test_model(builder.spec, input, expected)
def test_scale_matrix(self):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
W = np.reshape(np.arange(5, 9), (1, 2, 2))
builder.add_scale(name='scale', W=W, b=None, has_bias=False,
input_name='data', output_name='output',
shape_scale=[1, 2, 2])
x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': W * x}
self._test_model(builder.spec, input, expected)
def test_bias_constant(self):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_bias(name='bias', b=45, input_name='data',
output_name='output')
x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': x + 45}
self._test_model(builder.spec, input, expected)
def test_bias_matrix(self):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
b = np.reshape(np.arange(5, 9), (1, 2, 2))
builder.add_bias(name='bias', b=b, input_name='data',
output_name='output',
shape_bias=[1, 2, 2])
x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': x + b}
self._test_model(builder.spec, input, expected)
def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
b = np.reshape(np.arange(5, 9), (1, 2, 2))
builder.add_load_constant(name='load_constant', output_name='bias',
constant_value=b, shape=[1, 2, 2])
builder.add_elementwise(name='add', input_names=['data', 'bias'],
output_name='output', mode='ADD')
x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': x + b}
self._test_model(builder.spec, input, expected, model_precision)
def test_load_constant_half_precision(self):
self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION)
def test_min(self):
input_dim = (1, 2, 2)
input_features = [('data_0', datatypes.Array(*input_dim)),
('data_1', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_elementwise(name='min', input_names=['data_0', 'data_1'],
output_name='output', mode='MIN')
x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2))
input = {'data_0': x1, 'data_1': x2}
expected = {'output': np.minimum(x1, x2)}
self._test_model(builder.spec, input, expected)
def test_conv_same_padding(self):
input_dim = (10, 15, 15)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
W = np.random.rand(3, 3, 10, 20)
builder.add_convolution(name='conv', kernel_channels=10,
output_channels=20,
height=3, width=3, stride_height=2,
stride_width=2,
border_mode='same', groups=1,
W=W, b=None, has_bias=False,
input_name='data', output_name='output',
same_padding_asymmetry_mode='TOP_LEFT_HEAVY')
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': np.random.rand(20, 8, 8)}
self._test_model(
builder.spec, input, expected, validate_shapes_only=True)
def test_deconv_valid_padding(self):
input_dim = (10, 15, 15)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
W = np.random.rand(3, 3, 10, 20)
builder.add_convolution(name='deconv', kernel_channels=10,
output_channels=20,
height=3, width=3, stride_height=2,
stride_width=2,
border_mode='valid', groups=1,
W=W, b=None, has_bias=False,
is_deconv=True,
input_name='data', output_name='output',
padding_top=2, padding_bottom=3,
padding_left=2, padding_right=3)
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': np.random.rand(20, 26, 26)}
self._test_model(
builder.spec, input, expected, validate_shapes_only=True)
def test_deconv_non_unit_groups(self):
input_dim = (16, 15, 15)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features)
W = np.random.rand(3, 3, 16, 5)
builder.add_convolution(name='deconv', kernel_channels=16,
output_channels=20,
height=3, width=3, stride_height=2,
stride_width=2,
border_mode='valid', groups=4,
W=W, b=None, has_bias=False,
is_deconv=True,
input_name='data', output_name='output',
padding_top=2, padding_bottom=3,
padding_left=2, padding_right=3)
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': np.random.rand(20, 26, 26)}
self._test_model(
builder.spec, input, expected, validate_shapes_only=True)
def test_linear_activation(self):
input_dim = (10, 15, 15)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_activation(name='activation',
non_linearity='LINEAR',
input_name='data',
output_name='output', params=[34.0, 67.0])
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': 34.0 * x + 67.0}
self._test_model(builder.spec, input, expected)
def test_padding_constant(self):
input_dim = (1, 2, 3)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features)
builder.add_padding(name='pad',
left=1, right=0, top=2, bottom=0,
value=-1,
input_name='data',
output_name='output')
x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype(
np.float32)
input = {'data': x}
y = np.reshape(
np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3],
[-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32)
expected = {'output': y}
self._test_model(builder.spec, input, expected)
def test_padding_replication(self):
input_dim = (1, 2, 3)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_padding(name='pad',
left=1, top=2,
input_name='data',
output_name='output', padding_type='replication')
x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype(
np.float32)
input = {'data': x}
y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3],
[4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32)
expected = {'output': y}
self._test_model(builder.spec, input, expected)
def test_reshape_target_shape_3(self):
input_dim = (1, 2, 5) # (C,H,W)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_reshape(name='reshape', input_name='data',
output_name='output', target_shape=(10, 1, 1),
mode=0)
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': np.reshape(x, (10, 1, 1))}
self._test_model(builder.spec, input, expected)
def test_reshape_target_shape_4(self):
input_dim = (1, 2, 5) # (C,H,W)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_reshape(name='reshape', input_name='data',
output_name='output', target_shape=(1, 10, 1, 1),
mode=0)
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': np.reshape(x, (1, 10, 1, 1))}
self._test_model(builder.spec, input, expected)
def test_bias_matrix_cpu(self):
input_dim = (1, 2, 2)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
b = np.reshape(np.arange(5, 9), (1, 2, 2))
builder.add_bias(name='bias', b=b, input_name='data',
output_name='output',
shape_bias=[1, 2, 2])
x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2))
input = {'data': x}
expected = {'output': x + b}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_linear_activation_cpu(self):
input_dim = (10, 15, 15)
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features,
output_features)
builder.add_activation(name='activation',
non_linearity='LINEAR',
input_name='data',
output_name='output', params=[34.0, 67.0])
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': 34.0 * x + 67.0}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
@unittest.skipIf(macos_version() < LAYERS_10_15_MACOS_VERSION,
'macOS 10.15+ required. Skipping tests.')
class NewLayersSimpleTest(CorrectnessTest):
def test_shape_flexibility_range(self):
input_features = [('data', datatypes.Array(*(3,4)))]
builder = neural_network.NeuralNetworkBuilder(input_features,
[('output', None)], disable_rank5_shape_mapping=True)
builder.add_sin(name='sin', input_name='data', output_name='output')
spec = builder.spec
flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data',
lower_bounds=[1,1], upper_bounds=[-1,5])
shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)]
for s in shapes:
x = np.random.rand(*s)
expected = {'output': np.sin(x)}
self._test_model(spec, {'data': x}, expected, useCPUOnly=True)
@unittest.skip('TO FIX')
def test_shape_flexibility_enumeration(self):
input_features = [('data', datatypes.Array(*(3,4,6)))]
builder = neural_network.NeuralNetworkBuilder(input_features,
[('output', None)], disable_rank5_shape_mapping=True)
builder.add_sin(name='sin', input_name='data', output_name='output')
spec = builder.spec
shapes = [(1, 5, 7), (60, 5, 2), (22, 4, 9), (5, 3, 56)]
flexible_shape_utils.add_multiarray_ndshape_enumeration(spec, feature_name='data', enumerated_shapes=shapes)
shapes.append((3,4,6))
for s in shapes:
x = np.random.rand(*s)
expected = {'output': np.sin(x)}
self._test_model(spec, {'data': x}, expected, useCPUOnly=True)
def test_transpose_cpu(self):
for rank in range(1, 6):
axes = np.random.permutation(rank)
axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes]
input_shape = np.random.randint(low=2, high=6, size=rank)
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_transpose(name='TransposeND',
axes=axes,
input_name='data',
output_name='output')
x = np.random.rand(*input_shape)
input = {'data': x}
expected = {'output': np.transpose(x, axes)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_batched_mat_mul_cpu(self):
a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4),
(1, 3, 1, 2, 3), (2, 3, 1, 3, 4)]
b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5),
(1, 4, 3, 2), (2, 1, 2, 4, 5)]
out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5),
(1, 3, 4, 2, 2), (2, 3, 2, 3, 5)]
for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes):
input_shapes = [a_shape, b_shape]
input_features = [
('A', datatypes.Array(*input_shapes[0])),
('B', datatypes.Array(*input_shapes[1]))
]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_batched_mat_mul(name='batched_mat_mul',
input_names=['A', 'B'],
output_name='output',
transpose_a=False,
transpose_b=False)
a = np.random.rand(*input_shapes[0])
b = np.random.rand(*input_shapes[1])
input = {'A': a, 'B': b}
expected = {'output': np.array(np.matmul(a, b))}
shape_dict = {'output': outShape}
self._test_model(builder.spec, input, expected, useCPUOnly=True,
output_name_shape_dict=shape_dict)
def test_batched_mat_mul_with_transposes_cpu(self):
for transpose_a, transpose_b in itertools.product([True, False],
[True, False]):
a_shape = (3, 4)
b_shape = (4, 5)
a_shape = a_shape[::-1] if transpose_a else a_shape
b_shape = b_shape[::-1] if transpose_b else b_shape
input_shapes = [a_shape, b_shape]
input_features = [
('A', datatypes.Array(*input_shapes[0])),
('B', datatypes.Array(*input_shapes[1]))
]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True
)
builder.add_batched_mat_mul(
name='BatchedMatMul', input_names=['A', 'B'],
output_name='output', transpose_a=transpose_a,
transpose_b=transpose_b
)
a = np.random.rand(*input_shapes[0])
b = np.random.rand(*input_shapes[1])
inputs = {'A': a, 'B': b}
a = a.T if transpose_a else a
b = b.T if transpose_b else b
expected = {'output': np.matmul(a, b)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_batched_mat_mul_single_input_cpu(
self, model_precision=_MLMODEL_FULL_PRECISION):
X1 = 11
X2 = 23
W = np.random.rand(X1, X2)
bias = np.random.rand(X2)
input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1),
(2, 3, 1, 5, X1)]
for input_shape in input_shapes:
x = np.random.rand(*input_shape)
np_out = np.matmul(x, W) + bias
expected = {'output': np_out}
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_batched_mat_mul(name='batched_mat_mul',
input_names=['data'],
output_name='output',
weight_matrix_rows=X1,
weight_matrix_columns=X2,
W=W, bias=bias)
inputs = {'data': x}
self._test_model(
builder.spec, inputs, expected,
model_precision=model_precision, useCPUOnly=True)
def test_batched_mat_mul_single_input_half_precision_cpu(self):
self.test_batched_mat_mul_single_input_cpu(
model_precision=_MLMODEL_HALF_PRECISION)
def test_embedding_nd_cpu(
self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True):
vocab_size = 10
embedding_size = 19
W = np.random.rand(embedding_size, vocab_size)
input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1),
(2, 3, 1, 5, 1)]
for input_shape in input_shapes:
x = np.random.randint(vocab_size, size=input_shape)
np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0)
expected = {'output': np_out}
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_embedding_nd(name='embedding_nd',
input_name='data',
output_name='output',
vocab_size=vocab_size,
embedding_size=embedding_size,
W=W)
input = {'data': x.astype(np.float32)}
self._test_model(
builder.spec, input, expected,
model_precision=model_precision, useCPUOnly=use_cpu_only)
def test_embedding_nd_half_precision_cpu(self):
self.test_embedding_nd_cpu(
model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True)
def test_embedding_nd_GPU(self):
self.test_embedding_nd_cpu(
model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False)
def test_embedding_nd_half_precision_GPU(self):
self.test_embedding_nd_cpu(
model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False)
def test_softmax_nd_cpu(self):
for rank in range(1, 6):
for axis in range(-rank, rank):
input_shape = np.random.randint(low=2, high=5, size=rank)
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_softmax_nd(name='softmax_nd', input_name='data',
output_name='output', axis=axis)
x = np.random.rand(*input_shape)
input = {'data': x}
y = np.exp(x - np.max(x, axis=axis, keepdims=True))
y = y / np.sum(y, axis=axis, keepdims=True)
expected = {'output': y}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_concat_nd_cpu(self):
for rank in range(1, 6):
for axis in range(-rank, rank):
n_inputs = np.random.choice(range(2, 5))
output_shape = np.random.randint(low=2, high=5, size=rank)
output_shape[axis] = 0
input_shapes = []
input_features = []
input_names = []
for _ in range(n_inputs):
input_shapes.append(np.copy(output_shape))
input_shapes[-1][axis] = np.random.choice(range(2, 8))
output_shape[axis] += input_shapes[-1][axis]
for i, input_dim in enumerate(input_shapes):
input_name = 'input_%s' % str(i)
input_names.append(input_name)
input_features.append((input_name, datatypes.Array(*input_dim)))
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_concat_nd(name='concat_nd', input_names=input_names,
output_name='output', axis=axis)
input_tensors = []
for input_dim in input_shapes:
input_tensors.append(np.random.rand(*input_dim))
input = dict(zip(input_names, input_tensors))
expected = {'output': np.concatenate(input_tensors, axis)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_fill_like_cpu(self):
for rank in range(1, 6):
target_shape = np.random.randint(low=2, high=6, size=rank)
value = float(np.random.rand())
input_features = [('tensor', datatypes.Array(*target_shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_fill_like(name='fill_like', input_name='tensor',
output_name='output', value=value)
tensor = np.random.rand(*target_shape)
input = {'tensor': tensor}
expected = {'output': np.zeros(target_shape) + value}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_fill_static_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
value = float(np.random.rand())
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_fill_static(name='fill_static', output_name='tmp',
output_shape=list(shape), value=value)
builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD')
data = np.random.rand(*shape)
input = {'data': data}
expected = {'output': data + value}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_fill_dynamic_cpu(self):
for rank in range(1, 6):
input_shape = np.random.randint(low=2, high=8, size=rank)
value = float(np.random.rand())
input_features = [('shape', datatypes.Array(len(input_shape)))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_fill_dynamic(name='fill_dynamic', input_name='shape',
output_name='output', value=value)
input = {'shape': np.array(input_shape, dtype='float')}
expected = {'output': np.zeros(input_shape) + value}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_broadcast_to_like_cpu(self):
for rank in range(1, 6):
input_shape = np.random.randint(low=2, high=8, size=rank)
mask = [np.random.choice([True, False, False]) for _ in range(rank)]
input_shape = np.where(mask, 1, input_shape)
target_rank = np.random.randint(low=rank, high=6)
target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1)
else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1]
input_features = [('data', datatypes.Array(*input_shape)),
('tensor', datatypes.Array(*target_shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_broadcast_to_like(name='broadcast_to_like',
input_names=['data', 'tensor'],
output_name='output')
data = np.random.rand(*input_shape)
tensor = np.random.rand(*target_shape)
inputs = {'data': data, 'tensor': tensor}
expected = {'output': np.broadcast_to(data, target_shape)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_broadcast_to_static_cpu(self):
for rank in range(1, 6):
input_shape = np.random.randint(low=2, high=8, size=rank)
mask = [np.random.choice([True, False, False]) for _ in range(rank)]
input_shape = np.where(mask, 1, input_shape)
target_rank = np.random.randint(low=rank, high=6)
target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1)
else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1]
input_features = [('data', datatypes.Array(*input_shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_broadcast_to_static(name='broadcast_to_static',
input_name='data',
output_name='output',
output_shape=list(target_shape))
data = np.random.rand(*input_shape)
input = {'data': data}
expected = {'output': np.broadcast_to(data, target_shape)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_broadcast_to_dynamic_cpu(self):
for rank in range(1, 6):
input_shape = np.random.randint(low=2, high=8, size=rank)
mask = [np.random.choice([True, False, False]) for _ in range(rank)]
input_shape = np.where(mask, 1, input_shape)
target_rank = np.random.randint(low=rank, high=6)
target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1)
else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1]
input_features = [('data', datatypes.Array(*input_shape)),
('shape', datatypes.Array(len(target_shape)))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic',
input_names=['data', 'shape'],
output_name='output')
data = np.random.rand(*input_shape)
inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')}
expected = {'output': np.broadcast_to(data, target_shape)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_trigonometry_cpu(self):
ops = ['sin', 'cos', 'tan',
'asin', 'acos', 'atan',
'sinh', 'cosh', 'tanh',
'asinh', 'acosh', 'atanh']
for op in ops:
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)], disable_rank5_shape_mapping=True)
x = np.random.rand(*shape)
if op == 'sin':
builder.add_sin(name=op, input_name='data', output_name='output')
expected = {'output': np.sin(x)}
elif op == 'cos':
builder.add_cos(name=op, input_name='data', output_name='output')
expected = {'output': np.cos(x)}
elif op == 'tan':
builder.add_tan(name=op, input_name='data', output_name='output')
expected = {'output': np.tan(x)}
elif op == 'asin':
builder.add_asin(name=op, input_name='data', output_name='output')
expected = {'output': np.arcsin(x)}
elif op == 'acos':
builder.add_acos(name=op, input_name='data', output_name='output')
expected = {'output': np.arccos(x)}
elif op == 'atan':
builder.add_atan(name=op, input_name='data', output_name='output')
expected = {'output': np.arctan(x)}
elif op == 'sinh':
builder.add_sinh(name=op, input_name='data', output_name='output')
expected = {'output': np.sinh(x)}
elif op == 'cosh':
builder.add_cosh(name=op, input_name='data', output_name='output')
expected = {'output': np.cosh(x)}
elif op == 'tanh':
builder.add_tanh(name=op, input_name='data', output_name='output')
expected = {'output': np.tanh(x)}
elif op == 'asinh':
builder.add_asinh(name=op, input_name='data', output_name='output')
expected = {'output': np.arcsinh(x)}
elif op == 'acosh':
x = np.random.choice([10, np.e, 1], tuple(shape)).astype(np.float32)
builder.add_acosh(name=op, input_name='data', output_name='output')
expected = {'output': np.arccosh(x)}
elif op == 'atanh':
builder.add_atanh(name=op, input_name='data', output_name='output')
expected = {'output': np.arctanh(x)}
self._test_model(builder.spec, {'data': x}, expected, useCPUOnly=True)
def test_exp2_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_exp2(name='exp2', input_name='data', output_name='output')
x = np.random.rand(*shape)
input = {'data': x}
expected = {'output': np.exp2(x)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_elementwise_binary_cpu(self):
input_names = ['A', 'B']
test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal',
'less_equal', 'logical_and', 'logical_or', 'logical_xor',
'add', 'subtract', 'multiply', 'divide', 'power',
'maximum', 'minimum', 'floor_divide', 'mod']
for test_case in test_cases:
for _ in range(10):
rank_a = np.random.randint(low=1, high=6)
rank_b = np.random.randint(low=1, high=6)
rank_out = max(rank_a, rank_b)
shape_a = np.random.randint(low=2, high=8, size=rank_a)
shape_b = np.random.randint(low=2, high=8, size=rank_b)
for i in range(-1, -rank_out - 1, -1):
dims = []
if -i <= rank_a: dims.append(shape_a[i])
if -i <= rank_b: dims.append(shape_b[i])
dim = np.random.choice(dims)
if -i <= rank_a: shape_a[i] = np.random.choice([1, dim])
if -i <= rank_b: shape_b[i] = np.random.choice([1, dim])
input_shapes = [shape_a, shape_b]
input_features = [('A', datatypes.Array(*input_shapes[0])),
('B', datatypes.Array(*input_shapes[1]))]
builder = neural_network.NeuralNetworkBuilder(input_features, [
('output', None)], disable_rank5_shape_mapping=True)
func = getattr(np, test_case)
if test_case == 'greater':
builder.add_greater_than(test_case, input_names=input_names,
output_name='output')
elif test_case == 'less':
builder.add_less_than(test_case, input_names=input_names,
output_name='output')
elif test_case == 'equal':
builder.add_equal(test_case, input_names=input_names,
output_name='output')
elif test_case == 'not_equal':
builder.add_not_equal(test_case, input_names=input_names,
output_name='output')
elif test_case == 'greater_equal':
builder.add_greater_than(test_case, input_names=input_names,
output_name='output',
use_greater_than_equal=True)
elif test_case == 'less_equal':
builder.add_less_than(test_case, input_names=input_names,
output_name='output',
use_less_than_equal=True)
elif test_case == 'logical_and':
builder.add_logical(test_case, input_names=input_names,
output_name='output', mode='AND')
elif test_case == 'logical_or':
builder.add_logical(test_case, input_names=input_names,
output_name='output', mode='OR')
elif test_case == 'logical_xor':
builder.add_logical(test_case, input_names=input_names,
output_name='output', mode='XOR')
elif test_case == 'add':
builder.add_add_broadcastable(test_case, input_names=input_names,
output_name='output')
elif test_case == 'subtract':
builder.add_subtract_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'multiply':
builder.add_multiply_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'divide':
builder.add_divide_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'power':
builder.add_pow_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'maximum':
builder.add_max_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'minimum':
builder.add_min_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'floor_divide':
builder.add_floor_div_broadcastable(test_case,
input_names=input_names,
output_name='output')
elif test_case == 'mod':
builder.add_mod_broadcastable(test_case,
input_names=input_names,
output_name='output')
a = np.random.rand(*input_shapes[0])
b = np.random.rand(*input_shapes[1])
input = {'A': a, 'B': b}
expected = {'output': func(a, b, dtype=np.float32)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_elementwise_boolean_unary_cpu(self):
input_names = ['input']
shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3),
(2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)]
test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal',
'less_equal']
for test_case in test_cases:
for shape in shapes:
input_features = [('input', datatypes.Array(*shape))]
b = np.random.rand()
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
func = getattr(np, test_case)
if test_case == 'greater':
builder.add_greater_than(test_case, input_names=input_names,
output_name='output', alpha=b)
elif test_case == 'less':
builder.add_less_than(test_case, input_names=input_names,
output_name='output', alpha=b)
elif test_case == 'equal':
builder.add_equal(test_case, input_names=input_names,
output_name='output', alpha=b)
elif test_case == 'not_equal':
builder.add_not_equal(test_case, input_names=input_names,
output_name='output', alpha=b)
elif test_case == 'greater_equal':
builder.add_greater_than(test_case, input_names=input_names,
output_name='output',
use_greater_than_equal=True,
alpha=b)
elif test_case == 'less_equal':
builder.add_less_than(test_case, input_names=input_names,
output_name='output',
use_less_than_equal=True, alpha=b)
a = np.random.rand(*shape)
input = {'input': a}
expected = {'output': func(a, b, dtype=np.float32)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_logical_not_cpu(self):
input_names = ['input']
shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3),
(2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)]
for shape in shapes:
input_features = [('input', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_logical('logical_not', input_names=input_names,
output_name='output', mode='NOT')
a = np.random.rand(*shape)
input = {'input': a}
expected = {'output': np.logical_not(a)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_stack_cpu(self):
for input_rank in range(1, 5):
for axis in range(-input_rank - 1, input_rank + 1):
n_inputs = np.random.choice(range(2, 5))
input_shape = np.random.randint(low=2, high=5, size=input_rank)
input_features = []
input_names = []
for i in range(n_inputs):
input_name = 'input_%s' % str(i)
input_names.append(input_name)
input_features.append(
(input_name, datatypes.Array(*input_shape)))
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_stack(name='stack', input_names=input_names,
output_name='output', axis=axis)
input_tensors = []
for _ in range(n_inputs):
input_tensors.append(np.random.rand(*input_shape))
input = dict(zip(input_names, input_tensors))
expected = {'output': np.stack(input_tensors, axis)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_ceil_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
output_features = [('output', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_ceil(name='ceil', input_name='data', output_name='output')
x = np.random.rand(*shape)
inputs = {'data': x}
expected = {'output': np.ceil(x)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_floor_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
output_features = [('output', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_floor(name='floor', input_name='data', output_name='output')
x = np.random.rand(*shape)
inputs = {'data': x}
expected = {'output': np.floor(x)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_round_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
output_features = [('output', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_round(name='round', input_name='data', output_name='output')
x = np.float32(np.random.rand(*shape) * np.random.randint(low=-100, high=101))
inputs = {'data': x}
expected = {'output': np.around(x)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_sign_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=8, size=rank)
input_features = [('data', datatypes.Array(*shape))]
output_features = [('output', datatypes.Array(*shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_sign(name='sign', input_name='data', output_name='output')
x = np.random.choice([-np.random.rand(1), 0.0, np.random.rand(1)],
tuple(shape)).astype(np.float32)
inputs = {'data': x}
expected = {'output': np.sign(x)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_clip_cpu(self):
for rank in range(1, 6):
shape = np.random.randint(low=2, high=6, size=rank)
input_features = [('data', datatypes.Array(*shape))]
output_features = [('output', datatypes.Array(*shape))]
x = np.random.rand(*shape)
min_value = np.percentile(x, 25)
max_value = np.percentile(x, 75)
input = {'data': x}
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_clip(name='clip', input_name='data', output_name='output',
min_value=min_value, max_value=max_value)
expected = {'output': np.clip(x, min_value, max_value)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_split_nd_cpu(self):
for rank in range(1, 6):
for axis in range(-rank, rank):
n_outputs = np.random.choice(range(2, 4))
input_shape = np.random.randint(low=2, high=5, size=rank)
input_shape[axis] = 0
output_shapes = []
output_features = []
output_names = []
almost_equal = random.choice([True, False])
remainder = np.random.choice(
range(1, n_outputs)) if almost_equal else 0
value = np.random.choice(range(2, 5))
for k in range(n_outputs):
output_shapes.append(np.copy(input_shape))
output_shapes[-1][
axis] = value + 1 if k < remainder else value
input_shape[axis] += output_shapes[-1][axis]
for i in range(n_outputs):
output_name = 'output_%s' % str(i)
output_names.append(output_name)
output_features.append(
(output_name, None))
input_features = [('data', datatypes.Array(*input_shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_split_nd(name='split_nd', input_name='data',
output_names=output_names, axis=axis,
num_splits=n_outputs)
x = np.random.rand(*input_shape)
input = {'data': x}
expected = dict(
zip(
output_names, np.array_split(x, n_outputs, axis=axis)
if almost_equal else np.split(x, n_outputs, axis=axis)
)
) # Explicitly trying to compare against both versions of numpy split
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_split_nd_with_split_sizes_cpu(self):
for rank in range(1, 6):
for axis in range(-rank, rank):
n_outputs = np.random.choice(range(2, 4))
input_shape = np.random.randint(low=2, high=5, size=rank)
input_shape[axis] = 0
output_shapes, output_features, output_names = [], [], []
sections, split_sizes = [], []
for _ in range(n_outputs):
output_shapes.append(np.copy(input_shape))
output_shapes[-1][axis] = np.random.choice(range(2, 5))
input_shape[axis] += output_shapes[-1][axis]
sections.append(input_shape[axis])
split_sizes.append(output_shapes[-1][axis])
sections.pop()
for i in range(n_outputs):
output_name = 'output_%s' % str(i)
output_names.append(output_name)
output_features.append(
(output_name, None))
input_features = [('data', datatypes.Array(*input_shape))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_split_nd(name='split_nd', input_name='data',
output_names=output_names, axis=axis,
split_sizes=split_sizes)
x = np.random.rand(*input_shape)
input = {'data': x}
expected = dict(
zip(output_names, np.split(x, sections, axis=axis)))
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_slice_static_cpu(self):
for rank in range(1, 6):
for _ in range(200):
input_shape = np.array([5 for _ in range(rank)])
objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], []
for dim in range(rank):
stride = random.choice([-3, -1, 1, 2])
begin_mask = random.choice([True, False])
end_mask = random.choice([True, False])
length = 0
while length <= 0:
begin_id = np.random.randint(low=-input_shape[dim],
high=input_shape[dim])
end_id = np.random.randint(low=-input_shape[dim],
high=input_shape[dim])
obj = slice(None if begin_mask else begin_id,
None if end_mask else end_id, stride)
length = np.arange(input_shape[dim])[(obj,)].shape[0]
objs.append(obj), strides.append(stride), begin_masks.append(
begin_mask)
end_masks.append(end_mask), begin_ids.append(
begin_id), end_ids.append(end_id)
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_slice_static('slice_static', 'data', 'output',
begin_ids=begin_ids, end_ids=end_ids, strides=strides,
begin_masks=begin_masks, end_masks=end_masks)
x = np.random.rand(*input_shape)
inputs = {'data': x}
expected = {'output': x[tuple(objs)]}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_slice_dynamic_cpu(self):
for rank in range(1, 6):
input_shape = np.array([5 for _ in range(rank)])
objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], []
for dim in range(rank):
stride = random.choice([-3, -1, 1, 2])
begin_mask = random.choice([True, False])
end_mask = random.choice([True, False])
length = 0
while length <= 0:
begin_id = np.random.randint(low=-input_shape[dim],
high=input_shape[dim])
end_id = np.random.randint(low=-input_shape[dim],
high=input_shape[dim])
obj = slice(None if begin_mask else begin_id,
None if end_mask else end_id, stride)
length = np.arange(input_shape[dim])[(obj,)].shape[0]
objs.append(obj), strides.append(stride), begin_masks.append(
begin_mask)
end_masks.append(end_mask), begin_ids.append(
begin_id), end_ids.append(end_id)
# test different number of inputs, from 2 inputs up to 6 inputs
# when num_inputs == 2, begin_ids are inputs, rest are read from parameters
# when num_inputs == 6, all read from inputs, none are read from parameters
for num_inputs in [2, 3, 4, 5, 6]:
x = np.random.rand(*input_shape)
input_features = [('data', datatypes.Array(*input_shape))]
input_names = ['data']
inputs = dict()
inputs['data'] = x
if num_inputs == 2:
input_features = [('data', datatypes.Array(*input_shape)),
('begin_ids', datatypes.Array(len(begin_ids)))]
input_names = ['data', 'begin_ids']
inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32)
elif num_inputs == 3:
input_features = [('data', datatypes.Array(*input_shape)),
('begin_ids', datatypes.Array(len(begin_ids))),
('end_ids', datatypes.Array(len(end_ids)))]
input_names = ['data', 'begin_ids', 'end_ids']
inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32)
inputs['end_ids'] = np.array(end_ids, dtype=np.int32)
elif num_inputs == 4:
input_features = [('data', datatypes.Array(*input_shape)),
('begin_ids', datatypes.Array(len(begin_ids))),
('end_ids', datatypes.Array(len(end_ids))),
('strides', datatypes.Array(len(strides)))]
input_names = ['data', 'begin_ids', 'end_ids', 'strides']
inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32)
inputs['end_ids'] = np.array(end_ids, dtype=np.int32)
inputs['strides'] = np.array(strides, dtype=np.int32)
elif num_inputs == 5:
input_features = [('data', datatypes.Array(*input_shape)),
('begin_ids', datatypes.Array(len(begin_ids))),
('end_ids', datatypes.Array(len(end_ids))),
('strides', datatypes.Array(len(strides))),
('begin_masks', datatypes.Array(len(begin_masks)))]
input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks']
inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32)
inputs['end_ids'] = np.array(end_ids, dtype=np.int32)
inputs['strides'] = np.array(strides, dtype=np.int32)
inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32)
elif num_inputs == 6:
input_features = [('data', datatypes.Array(*input_shape)),
('begin_ids', datatypes.Array(len(begin_ids))),
('end_ids', datatypes.Array(len(end_ids))),
('strides', datatypes.Array(len(strides))),
('begin_masks', datatypes.Array(len(begin_masks))),
('end_masks', datatypes.Array(len(end_masks)))]
input_names = ['data', 'begin_ids', 'end_ids',
'strides', 'begin_masks', 'end_masks']
inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32)
inputs['end_ids'] = np.array(end_ids, dtype=np.int32)
inputs['strides'] = np.array(strides, dtype=np.int32)
inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32)
inputs['end_masks'] = np.array(end_masks, dtype=np.int32)
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
if num_inputs == 2:
builder.add_slice_dynamic('slice_dynamic', input_names, 'output',
end_ids=end_ids, strides=strides,
begin_masks=begin_masks, end_masks=end_masks)
elif num_inputs == 3:
builder.add_slice_dynamic('slice_dynamic', input_names, 'output',
strides=strides, begin_masks=begin_masks,
end_masks=end_masks)
elif num_inputs == 4:
builder.add_slice_dynamic('slice_dynamic', input_names, 'output',
begin_masks=begin_masks, end_masks=end_masks)
elif num_inputs == 5:
builder.add_slice_dynamic('slice_dynamic', input_names, 'output',
end_masks=end_masks)
elif num_inputs == 6:
builder.add_slice_dynamic('slice_dynamic', input_names, 'output')
expected = {'output': x[tuple(objs)]}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
@unittest.skip('fix')
def test_tile_cpu(self):
for rank in range(1, 6):
input_shape = np.random.randint(low=2, high=5, size=rank)
reps = list(np.random.randint(low=1, high=4, size=rank))
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True
)
builder.add_tile('Tile', 'data', 'output', reps)
x = np.random.rand(*input_shape)
input = {'data': x}
expected = {'output': np.tile(x, reps)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_sliding_windows_cpu(self):
def numpy_sliding_windows(a, np_axis, np_size, np_step):
n = (a.shape[np_axis] - np_size) // np_step + 1
shape = list(a.shape)
shape[np_axis] = n
if np_axis < 0:
np_axis += len(shape)
shape.insert(np_axis + 1, np_size)
strides = list(a.strides)
effstride = strides[np_axis] * np_step
strides.insert(np_axis, effstride)
return np.lib.stride_tricks.as_strided(a, shape, strides)
for rank in range(1, 5):
for axis in range(-rank, rank):
input_shape = np.random.randint(low=2, high=5, size=rank)
output_shape = list(input_shape)
window_size = np.random.randint(low=1, high=input_shape[axis])
length = 0
while length <= 0:
step = np.random.randint(low=1, high=input_shape[axis])
length = (input_shape[axis] - window_size) // step + 1
output_shape[axis] = length
pos_axis = axis if axis >= 0 else axis + rank
output_shape.insert(pos_axis + 1, window_size)
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_sliding_windows('sliding_windows',
input_name='data',
output_name='output',
axis=axis,
window_size=window_size,
step=step)
x = np.random.rand(*input_shape)
input = {'data': x}
expected = {'output': numpy_sliding_windows(x, axis, window_size, step)}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_range_static_cpu(self):
params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2),
(5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)]
for param in params:
start, end, step = param
input_features = [('multiplicative_input', datatypes.Array(1))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
builder.add_range_static('range_static', 'output_range',
end=end, start=start, step=step)
builder.add_multiply_broadcastable(
name='multiply_broadcastable',
input_names=['multiplicative_input', 'output_range'],
output_name='output')
# save the model
model_dir = tempfile.mkdtemp()
model_path = os.path.join(model_dir, 'test_layer.mlmodel')
coremltools.utils.save_spec(builder.spec, model_path)
inputs = dict()
inputs['multiplicative_input'] = np.ones((1,), dtype=np.float64)
expected = {'output': np.arange(start, end, step)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_range_dynamic_cpu(self):
params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2),
(5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)]
# input size == 1: end is input, start and step are read from parameters
# input size == 2: end, start are inputs, step is read from parameters
# input size == 3: start, end, step are all inputs, none of the parameters are used.
for num_inputs in [1, 2, 3]:
for param in params:
inputs = dict()
start, end, step = param
if num_inputs == 1:
input_features = [('end', datatypes.Array(1))]
elif num_inputs == 2:
input_features = [('end', datatypes.Array(1)),
('start', datatypes.Array(1))]
elif num_inputs == 3:
input_features = [('end', datatypes.Array(1)),
('start', datatypes.Array(1)),
('step', datatypes.Array(1))]
builder = neural_network.NeuralNetworkBuilder(
input_features, [('output', None)],
disable_rank5_shape_mapping=True)
if num_inputs == 1:
inputs['end'] = end * np.ones((1,), dtype=np.float64)
builder.add_range_dynamic('range_dynamic',
output_name='output',
input_names=['end'],
start=start, step=step)
elif num_inputs == 2:
inputs['end'] = end * np.ones((1,), dtype=np.float64)
inputs['start'] = start * np.ones((1,), dtype=np.float64)
builder.add_range_dynamic('range_dynamic',
output_name='output',
input_names=['end', 'start'],
step=step)
elif num_inputs == 3:
inputs['end'] = end * np.ones((1,), dtype=np.float64)
inputs['start'] = start * np.ones((1,), dtype=np.float64)
inputs['step'] = step * np.ones((1,), dtype=np.float64)
builder.add_range_dynamic('range_dynamic',
output_name='output',
input_names=['end', 'start', 'step'])
expected = {'output': np.arange(start, end, step)}
self._test_model(builder.spec, inputs, expected, useCPUOnly=True)
def test_linear_activation_different_ranks_cpu(self):
for input_dim in [(10, 15), (10, 15, 2, 3),
(10, 2, 4, 15, 1, 4), (6,)]:
input_features = [('data', datatypes.Array(*input_dim))]
output_features = [('output', datatypes.Array(*input_dim))]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_activation(name='activation',
non_linearity='LINEAR',
input_name='data',
output_name='output', params=[34.0, 67.0])
x = np.random.rand(*input_dim)
input = {'data': x}
expected = {'output': 34.0 * x + 67.0}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_topk(self):
test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)]
K = [3, 5]
axes = [[0], [0, 1], [1, 2], [0, 3, 1], [1, 3, 4]]
for ii, input_shape in enumerate(test_input_shapes):
for k in K:
for n_inputs in [1, 2]:
for bottom_k_flag in [False, True]:
for axis in axes[ii]:
for negative_axis in [False, True]:
if negative_axis:
axis = axis - len(input_shape)
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('values', None), ('indices', None)]
input_names = ['data']
output_names = ['values', 'indices']
if n_inputs == 2:
input_names.append('k_in')
input_features.append(('k_in', datatypes.Array(1)))
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_topk('topk', input_names, output_names,
k=k, axis=axis, use_bottom_k=bottom_k_flag)
data = np.random.randint(low=0, high=int(np.prod(input_shape)), size=input_shape)
data = data.astype(np.float32)
input = {'data': data}
if n_inputs == 2:
input['k_in'] = k * np.ones([1], dtype=np.float32)
# numpy reference values
if bottom_k_flag:
ref_indices = np.argsort(data, axis=axis)
else:
ref_indices = np.argsort(-data, axis=axis)
slc = [slice(None)] * len(input_shape)
slc[axis] = slice(0, k)
ref_indices = ref_indices[tuple(slc)]
ref_values = np.take_along_axis(data, ref_indices, axis=axis)
expected = {'values': ref_values, 'indices': ref_indices}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_rank_preserving_reshape(self):
input_shapes = [(20, 10), (20, 10, 5), (10, 3, 5)]
target_shapes = [(5, -1), (0, 2, 25), (25, 0, -1)]
output_shapes = [(5, 40), (20, 2, 25), (25, 3, 2)]
for i in range(len(input_shapes)):
input_features = [('data', datatypes.Array(*input_shapes[i]))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_rank_preserving_reshape(
name='rank_preserving_reshape', input_name='data',
output_name='output', output_shape=target_shapes[i])
x = np.random.rand(*input_shapes[i])
input = {'data': x}
expected = {'output': np.reshape(x, output_shapes[i])}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_expand_dims(self):
input_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (10,)]
axes = [(0, 1), (0, 2), (2, 0), (-2, -1), (1, 0, -2)]
output_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (1, 10, 1, 5), (10, 5, 1, 1), (1, 1, 1, 10)]
for i in range(len(input_shapes)):
input_features = [('data', datatypes.Array(*input_shapes[i]))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True)
builder.add_expand_dims(
name='expand_dims', input_name='data', output_name='output',
axes=axes[i]
)
x = np.random.rand(*input_shapes[i])
input = {'data': x}
expected = {'output': np.reshape(x, output_shapes[i])}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_squeeze(self):
input_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1),
(10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7)]
axes = [(0, 1), (0, 2), (-2, -1), (-1, -2), (0,), (3, -2), (1,)]
output_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (1,), (10, 5), (3, 7)]
for i in range(len(input_shapes)):
input_features = [('data', datatypes.Array(*input_shapes[i]))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True
)
builder.add_squeeze(name='squeeze_layer', input_name='data',
output_name='output', axes=list(axes[i]))
x = np.random.rand(*input_shapes[i])
input = {'data': x}
expected = {'output': np.reshape(x, output_shapes[i])}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_squeeze_all(self):
input_shapes = [
(1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,),
(10, 5, 1, 1), (3, 1, 7), (3,), (5, 6)
]
for input_shape in input_shapes:
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True
)
builder.add_squeeze(name='squeeze_layer', input_name='data',
output_name='output', squeeze_all=True)
x = np.random.rand(*input_shape)
input = {'data': x}
reference = np.squeeze(x)
if not reference.shape:
reference = np.reshape(reference, (1,))
expected = {'output': reference}
self._test_model(builder.spec, input, expected, useCPUOnly=True)
def test_argmax_argmin(self):
test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)]
# (1+2+3+4+5) * 2^3 = 120 test cases
for input_shape in test_input_shapes:
for negative_axis in [False, True]:
for mode in ['argmax', 'argmin']:
for keep_dims in [True, False]:
for axis in np.arange(len(input_shape)):
if negative_axis:
axis_val = axis - len(input_shape)
else:
axis_val = axis
input_features = [('data', datatypes.Array(*input_shape))]
output_features = [('output', None)]
builder = neural_network.NeuralNetworkBuilder(
input_features, output_features,
disable_rank5_shape_mapping=True
)
x = np.random.rand(*input_shape)
if mode == 'argmax':
builder.add_argmax('argmax', 'data', 'output', axis=axis_val, keepdims=keep_dims)
np_out = np.argmax(x, axis=axis_val)
else:
builder.add_argmin('argmin', 'data', 'output', axis=axis_val, keepdims=keep_dims)
np_out = np.argmin(x, axis=axis_val)
if keep_dims:
np_out = | np.expand_dims(np_out, axis=axis_val) | numpy.expand_dims |
#!/usr/bin/env python3
# coding: utf-8
"""Load dataset from SHREC17 and project it to a HEALpix sphere
Code from: https://github.com/jonas-koehler/s2cnn/blob/master/examples/shrec17/dataset.py
and https://github.com/AMLab-Amsterdam/lie_learn/blob/master/lie_learn/spaces/S2.py
Use of Cohen equiangular files, and not created by us.
"""
import csv
import glob
import os
import re
import numpy as np
import trimesh
import healpy as hp
from tqdm import tqdm
import time
import pickle as pkl
import tensorflow as tf
#import tensorflow as tf
from itertools import cycle
# To handle python 2
try:
from itertools import zip_longest as zip_longest
except:
from itertools import izip_longest as zip_longest
from scipy.spatial.distance import pdist, squareform
def shrec_output(descriptors, ids, probabilities, datapath, savedir='results_deep/test_perturbed'):
os.makedirs(os.path.join(datapath, savedir), exist_ok=True)
dist_mat = squareform(pdist(descriptors, 'cosine'))
predictions = np.argmax(probabilities, axis=1)
for dist, name, score in zip(dist_mat, ids, probabilities):
most_feat = np.argsort(score)[::-1][0]
retrieved = [(dist[j], ids[j]) for j in range(len(ids)) if predictions[j] == most_feat]
thresh = np.median([ret[0] for ret in retrieved]) # need to change dynamically?
retrieved += [(d, _id) for d, _id in zip(dist, ids) if d < thresh]
retrieved = sorted(retrieved, reverse=True)
retrieved = [i for _, i in retrieved]
retrieved = np.array(retrieved)[sorted(np.unique(retrieved, return_index=True)[1])]
idfile = os.path.join(datapath,savedir,name)
with open(idfile, "w") as f:
f.write("\n".join(retrieved))
def rotmat(a, b, c, hom_coord=False): # apply to mesh using mesh.apply_transform(rotmat(a,b,c, True))
"""
Create a rotation matrix with an optional fourth homogeneous coordinate
:param a, b, c: ZYZ-Euler angles
"""
def z(a):
return np.array([[np.cos(a), np.sin(a), 0, 0],
[-np.sin(a), np.cos(a), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def y(a):
return np.array([[np.cos(a), 0, np.sin(a), 0],
[0, 1, 0, 0],
[-np.sin(a), 0, np.cos(a), 0],
[0, 0, 0, 1]])
r = z(a).dot(y(b)).dot(z(c)) # pylint: disable=E1101
if hom_coord:
return r
else:
return r[:3, :3]
def make_sgrid(nside, alpha, beta, gamma):
npix = hp.nside2npix(nside)
x, y, z = hp.pix2vec(nside, np.arange(npix), nest=True)
# _beta = np.pi * (2 * np.arange(2 * nside) + 1) / (4. * nside)
# _alpha = np.arange(2 * nside) * np.pi / nside
# theta, phi = np.meshgrid(*(_beta, _alpha),indexing='ij')
# ct = np.cos(theta).flatten()
# st = np.sin(theta).flatten()
# cp = np.cos(phi).flatten()
# sp = np.sin(phi).flatten()
# x = st * cp
# y = st * sp
# z = ct
coords = np.vstack([x, y, z]).transpose()
coords = np.asarray(coords, dtype=np.float32) # shape 3 x npix
R = rotmat(alpha, beta, gamma, hom_coord=False)
sgrid = np.einsum('ij,nj->ni', R, coords) # inner(A,B).T
return sgrid
def render_model(mesh, sgrid, outside=False, multiple=False):
# Cast rays
# triangle_indices = mesh.ray.intersects_first(ray_origins=sgrid, ray_directions=-sgrid)
if outside:
index_tri, index_ray, loc = mesh.ray.intersects_id(
ray_origins=(sgrid-sgrid), ray_directions=sgrid, multiple_hits=multiple, return_locations=True)
else:
index_tri, index_ray, loc = mesh.ray.intersects_id(
ray_origins=sgrid, ray_directions=-sgrid, multiple_hits=multiple, return_locations=True)
loc = loc.reshape((-1, 3)) # fix bug if loc is empty
if multiple:
grid_hits = sgrid[index_ray]
if outside:
dist = np.linalg.norm(loc, axis=-1)
else:
dist = | np.linalg.norm(grid_hits - loc, axis=-1) | numpy.linalg.norm |
from __future__ import print_function
import copy
import os
import sys
import time
import unittest
from nose.plugins.skip import SkipTest
from nose.tools import assert_raises
import numpy
from six.moves import xrange
import theano
from theano import tensor, config
from theano.sandbox import rng_mrg
from theano.sandbox.rng_mrg import MRG_RandomStreams
from theano.sandbox.cuda import cuda_available
from theano.tests import unittest_tools as utt
from theano.tests.unittest_tools import attr
if cuda_available:
from theano.sandbox.cuda import float32_shared_constructor
# TODO: test gpu
# Done in test_consistency_GPU_{serial,parallel}
# TODO: test MRG_RandomStreams
# Partly done in test_consistency_randomstreams
# TODO: test optimizer mrg_random_make_inplace
# TODO: make tests work when no flags gived. Now need:
# THEANO_FLAGS=device=gpu0,floatX=float32
# Partly done, in test_consistency_GPU_{serial,parallel}
mode = config.mode
mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu')
utt.seed_rng()
# Results generated by Java code using L'Ecuyer et al.'s code, with:
# main seed: [12345]*6 (default)
# 12 streams
# 7 substreams for each stream
# 5 samples drawn from each substream
java_samples = numpy.loadtxt(os.path.join(os.path.split(theano.__file__)[0],
'sandbox',
'samples_MRG31k3p_12_7_5.txt'))
def test_deterministic():
seed = utt.fetch_seed()
sample_size = (10, 20)
test_use_cuda = [False]
if cuda_available:
test_use_cuda.append(True)
for use_cuda in test_use_cuda:
# print 'use_cuda =', use_cuda
R = MRG_RandomStreams(seed=seed, use_cuda=use_cuda)
u = R.uniform(size=sample_size)
f = theano.function([], u)
fsample1 = f()
fsample2 = f()
assert not numpy.allclose(fsample1, fsample2)
R2 = MRG_RandomStreams(seed=seed, use_cuda=use_cuda)
u2 = R2.uniform(size=sample_size)
g = theano.function([], u2)
gsample1 = g()
gsample2 = g()
assert numpy.allclose(fsample1, gsample1)
assert numpy.allclose(fsample2, gsample2)
def test_consistency_randomstreams():
"""
Verify that the random numbers generated by MRG_RandomStreams
are the same as the reference (Java) implementation by L'Ecuyer et al.
"""
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7
test_use_cuda = [False]
if cuda_available:
test_use_cuda.append(True)
for use_cuda in test_use_cuda:
# print 'use_cuda =', use_cuda
samples = []
rng = MRG_RandomStreams(seed=seed, use_cuda=use_cuda)
for i in range(n_streams):
stream_samples = []
u = rng.uniform(size=(n_substreams,), nstreams=n_substreams)
f = theano.function([], u)
for j in range(n_samples):
s = f()
stream_samples.append(s)
stream_samples = numpy.array(stream_samples)
stream_samples = stream_samples.T.flatten()
samples.append(stream_samples)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def test_consistency_cpu_serial():
"""
Verify that the random numbers generated by mrg_uniform, serially,
are the same as the reference (Java) implementation by L'Ecuyer et al.
"""
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7
samples = []
curr_rstate = numpy.array([seed] * 6, dtype='int32')
for i in range(n_streams):
stream_rstate = curr_rstate.copy()
for j in range(n_substreams):
rstate = theano.shared(numpy.array([stream_rstate.copy()],
dtype='int32'))
new_rstate, sample = rng_mrg.mrg_uniform.new(rstate, ndim=None,
dtype=config.floatX,
size=(1,))
# Not really necessary, just mimicking
# rng_mrg.MRG_RandomStreams' behavior
sample.rstate = rstate
sample.update = (rstate, new_rstate)
rstate.default_update = new_rstate
f = theano.function([], sample)
for k in range(n_samples):
s = f()
samples.append(s)
# next substream
stream_rstate = rng_mrg.ff_2p72(stream_rstate)
# next stream
curr_rstate = rng_mrg.ff_2p134(curr_rstate)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def test_consistency_cpu_parallel():
"""
Verify that the random numbers generated by mrg_uniform, in parallel,
are the same as the reference (Java) implementation by L'Ecuyer et al.
"""
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7 # 7 samples will be drawn in parallel
samples = []
curr_rstate = numpy.array([seed] * 6, dtype='int32')
for i in range(n_streams):
stream_samples = []
rstate = [curr_rstate.copy()]
for j in range(1, n_substreams):
rstate.append(rng_mrg.ff_2p72(rstate[-1]))
rstate = numpy.asarray(rstate)
rstate = theano.shared(rstate)
new_rstate, sample = rng_mrg.mrg_uniform.new(rstate, ndim=None,
dtype=config.floatX,
size=(n_substreams,))
# Not really necessary, just mimicking
# rng_mrg.MRG_RandomStreams' behavior
sample.rstate = rstate
sample.update = (rstate, new_rstate)
rstate.default_update = new_rstate
f = theano.function([], sample)
for k in range(n_samples):
s = f()
stream_samples.append(s)
samples.append(numpy.array(stream_samples).T.flatten())
# next stream
curr_rstate = rng_mrg.ff_2p134(curr_rstate)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def test_consistency_GPU_serial():
"""
Verify that the random numbers generated by GPU_mrg_uniform, serially,
are the same as the reference (Java) implementation by L'Ecuyer et al.
"""
if not cuda_available:
raise SkipTest('Optional package cuda not available')
if config.mode == 'FAST_COMPILE':
mode = 'FAST_RUN'
else:
mode = config.mode
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7
samples = []
curr_rstate = numpy.array([seed] * 6, dtype='int32')
for i in range(n_streams):
stream_rstate = curr_rstate.copy()
for j in range(n_substreams):
substream_rstate = numpy.array(stream_rstate.copy(), dtype='int32')
# HACK - we transfer these int32 to the GPU memory as float32
# (reinterpret_cast)
tmp_float_buf = numpy.frombuffer(substream_rstate.data,
dtype='float32')
# Transfer to device
rstate = float32_shared_constructor(tmp_float_buf)
new_rstate, sample = rng_mrg.GPU_mrg_uniform.new(rstate, ndim=None,
dtype='float32',
size=(1,))
rstate.default_update = new_rstate
# Not really necessary, just mimicking
# rng_mrg.MRG_RandomStreams' behavior
sample.rstate = rstate
sample.update = (rstate, new_rstate)
# We need the sample back in the main memory
cpu_sample = tensor.as_tensor_variable(sample)
f = theano.function([], cpu_sample, mode=mode)
for k in range(n_samples):
s = f()
samples.append(s)
# next substream
stream_rstate = rng_mrg.ff_2p72(stream_rstate)
# next stream
curr_rstate = rng_mrg.ff_2p134(curr_rstate)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def test_consistency_GPU_parallel():
"""
Verify that the random numbers generated by GPU_mrg_uniform, in
parallel, are the same as the reference (Java) implementation by
<NAME> al.
"""
if not cuda_available:
raise SkipTest('Optional package cuda not available')
if config.mode == 'FAST_COMPILE':
mode = 'FAST_RUN'
else:
mode = config.mode
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7 # 7 samples will be drawn in parallel
samples = []
curr_rstate = numpy.array([seed] * 6, dtype='int32')
for i in range(n_streams):
stream_samples = []
rstate = [curr_rstate.copy()]
for j in range(1, n_substreams):
rstate.append(rng_mrg.ff_2p72(rstate[-1]))
rstate = numpy.asarray(rstate).flatten()
# HACK - transfer these int32 to the GPU memory as float32
# (reinterpret_cast)
tmp_float_buf = numpy.frombuffer(rstate.data, dtype='float32')
# Transfer to device
rstate = float32_shared_constructor(tmp_float_buf)
new_rstate, sample = rng_mrg.GPU_mrg_uniform.new(rstate, ndim=None,
dtype='float32',
size=(n_substreams,))
rstate.default_update = new_rstate
# Not really necessary, just mimicking
# rng_mrg.MRG_RandomStreams' behavior
sample.rstate = rstate
sample.update = (rstate, new_rstate)
# We need the sample back in the main memory
cpu_sample = tensor.as_tensor_variable(sample)
f = theano.function([], cpu_sample, mode=mode)
for k in range(n_samples):
s = f()
stream_samples.append(s)
samples.append(numpy.array(stream_samples).T.flatten())
# next stream
curr_rstate = rng_mrg.ff_2p134(curr_rstate)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def test_GPU_nstreams_limit():
"""
Verify that a ValueError is raised when n_streams
is greater than 2**20 on GPU. This is the value of
(NUM_VECTOR_OP_THREADS_PER_BLOCK * NUM_VECTOR_OP_BLOCKS).
"""
if not cuda_available:
raise SkipTest('Optional package cuda not available')
seed = 12345
R = MRG_RandomStreams(seed=seed, use_cuda=True)
def eval_uniform(size, nstreams):
if theano.config.mode == "FAST_COMPILE":
mode = "FAST_RUN"
else:
mode = copy.copy(theano.compile.get_default_mode())
mode.check_py_code = False
out = R.uniform(size=size, nstreams=nstreams, dtype='float32')
f = theano.function([], out, mode=mode)
return f()
eval_uniform((10,), 2**20)
assert_raises(ValueError, eval_uniform, (10,), 2**20 + 1)
def test_consistency_GPUA_serial():
"""
Verify that the random numbers generated by GPUA_mrg_uniform, serially,
are the same as the reference (Java) implementation by <NAME> al.
"""
from theano.sandbox.gpuarray.tests.test_basic_ops import \
mode_with_gpu as mode
from theano.sandbox.gpuarray.type import gpuarray_shared_constructor
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7
samples = []
curr_rstate = numpy.array([seed] * 6, dtype='int32')
for i in range(n_streams):
stream_rstate = curr_rstate.copy()
for j in range(n_substreams):
substream_rstate = numpy.array([stream_rstate.copy()],
dtype='int32')
# Transfer to device
rstate = gpuarray_shared_constructor(substream_rstate)
new_rstate, sample = rng_mrg.GPUA_mrg_uniform.new(rstate,
ndim=None,
dtype='float32',
size=(1,))
rstate.default_update = new_rstate
# Not really necessary, just mimicking
# rng_mrg.MRG_RandomStreams' behavior
sample.rstate = rstate
sample.update = (rstate, new_rstate)
# We need the sample back in the main memory
cpu_sample = tensor.as_tensor_variable(sample)
f = theano.function([], cpu_sample, mode=mode)
for k in range(n_samples):
s = f()
samples.append(s)
# next substream
stream_rstate = rng_mrg.ff_2p72(stream_rstate)
# next stream
curr_rstate = rng_mrg.ff_2p134(curr_rstate)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def test_consistency_GPUA_parallel():
"""
Verify that the random numbers generated by GPUA_mrg_uniform, in
parallel, are the same as the reference (Java) implementation by
<NAME> al.
"""
from theano.sandbox.gpuarray.tests.test_basic_ops import \
mode_with_gpu as mode
from theano.sandbox.gpuarray.type import gpuarray_shared_constructor
seed = 12345
n_samples = 5
n_streams = 12
n_substreams = 7 # 7 samples will be drawn in parallel
samples = []
curr_rstate = numpy.array([seed] * 6, dtype='int32')
for i in range(n_streams):
stream_samples = []
rstate = [curr_rstate.copy()]
for j in range(1, n_substreams):
rstate.append(rng_mrg.ff_2p72(rstate[-1]))
rstate = numpy.asarray(rstate)
rstate = gpuarray_shared_constructor(rstate)
new_rstate, sample = rng_mrg.GPUA_mrg_uniform.new(rstate, ndim=None,
dtype='float32',
size=(n_substreams,))
rstate.default_update = new_rstate
# Not really necessary, just mimicking
# rng_mrg.MRG_RandomStreams' behavior
sample.rstate = rstate
sample.update = (rstate, new_rstate)
# We need the sample back in the main memory
cpu_sample = tensor.as_tensor_variable(sample)
f = theano.function([], cpu_sample, mode=mode)
for k in range(n_samples):
s = f()
stream_samples.append(s)
samples.append(numpy.array(stream_samples).T.flatten())
# next stream
curr_rstate = rng_mrg.ff_2p134(curr_rstate)
samples = numpy.array(samples).flatten()
assert(numpy.allclose(samples, java_samples))
def basictest(f, steps, sample_size, prefix="", allow_01=False, inputs=None,
target_avg=0.5, target_std=None, mean_rtol=0.01, std_tol=0.01):
if inputs is None:
inputs = []
dt = 0.0
avg_var = 0.0
for i in xrange(steps):
t0 = time.time()
ival = f(*inputs)
assert ival.shape == sample_size
dt += time.time() - t0
ival = numpy.asarray(ival)
if i == 0:
mean = numpy.array(ival, copy=True)
avg_var = numpy.mean((ival - target_avg) ** 2)
min_ = ival.min()
max_ = ival.max()
else:
alpha = 1.0 / (1 + i)
mean = alpha * ival + (1 - alpha) * mean
avg_var = (alpha * numpy.mean((ival - target_avg) ** 2) +
(1 - alpha) * avg_var)
min_ = min(min_, ival.min())
max_ = max(max_, ival.max())
if not allow_01:
assert min_ > 0
assert max_ < 1
if hasattr(target_avg, 'shape'): # looks if target_avg is an array
diff = numpy.mean(abs(mean - target_avg))
# print prefix, 'mean diff with mean', diff
assert numpy.all(diff < mean_rtol * (1 + abs(target_avg))), (
'bad mean? %s %s' % (mean, target_avg))
else:
# if target_avg is a scalar, then we can do the mean of
# `mean` to get something more precise
mean = numpy.mean(mean)
# print prefix, 'mean', mean
assert abs(mean - target_avg) < mean_rtol * (1 + abs(target_avg)), (
'bad mean? %f %f' % (mean, target_avg))
std = numpy.sqrt(avg_var)
# print prefix, 'var', avg_var
# print prefix, 'std', std
if target_std is not None:
assert abs(std - target_std) < std_tol * (1 + abs(target_std)), (
'bad std? %f %f %f' % (std, target_std, std_tol))
# print prefix, 'time', dt
# print prefix, 'elements', steps * sample_size[0] * sample_size[1]
# print prefix, 'samples/sec', steps * sample_size[0] * sample_size[1] / dt
# print prefix, 'min', min_, 'max', max_
def test_uniform():
# TODO: test param low, high
# TODO: test size=None
# TODO: test ndim!=size.ndim
# TODO: test bad seed
# TODO: test size=Var, with shape that change from call to call
if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or
mode == 'Mode' and config.linker in ['py']):
sample_size = (10, 100)
steps = 50
else:
sample_size = (500, 50)
steps = int(1e3)
x = tensor.matrix()
for size, const_size, var_input, input in [
(sample_size, sample_size, [], []),
(x.shape, sample_size, [x],
[numpy.zeros(sample_size, dtype=config.floatX)]),
((x.shape[0], sample_size[1]), sample_size, [x],
[numpy.zeros(sample_size, dtype=config.floatX)]),
# test empty size (scalar)
((), (), [], []),
]:
# TEST CPU IMPLEMENTATION
# The python and C implementation are tested with DebugMode
# print ''
# print 'ON CPU with size=(%s):' % str(size)
x = tensor.matrix()
R = MRG_RandomStreams(234, use_cuda=False)
# Note: we specify `nstreams` to avoid a warning.
# TODO Look for all occurrences of `guess_n_streams` and `30 * 256`
# for such situations: it would be better to instead filter the
# warning using the warning module.
u = R.uniform(size=size,
nstreams=rng_mrg.guess_n_streams(size, warn=False))
f = theano.function(var_input, u, mode=mode)
assert any([isinstance(node.op, theano.sandbox.rng_mrg.mrg_uniform)
for node in f.maker.fgraph.toposort()])
# theano.printing.debugprint(f)
cpu_out = f(*input)
# print 'CPU: random?[:10], random?[-10:]'
# print cpu_out[0, 0:10]
# print cpu_out[-1, -10:]
# Increase the number of steps if sizes implies only a few samples
if numpy.prod(const_size) < 10:
steps_ = steps * 100
else:
steps_ = steps
basictest(f, steps_, const_size, prefix='mrg cpu', inputs=input)
if mode != 'FAST_COMPILE' and cuda_available:
# print ''
# print 'ON GPU with size=(%s):' % str(size)
R = MRG_RandomStreams(234, use_cuda=True)
u = R.uniform(size=size, dtype='float32',
nstreams=rng_mrg.guess_n_streams(size, warn=False))
# well, it's really that this test w GPU doesn't make sense otw
assert u.dtype == 'float32'
f = theano.function(var_input, theano.Out(
theano.sandbox.cuda.basic_ops.gpu_from_host(u),
borrow=True), mode=mode_with_gpu)
assert any([isinstance(node.op,
theano.sandbox.rng_mrg.GPU_mrg_uniform)
for node in f.maker.fgraph.toposort()])
# theano.printing.debugprint(f)
gpu_out = numpy.asarray(f(*input))
# print 'GPU: random?[:10], random?[-10:]'
# print gpu_out[0, 0:10]
# print gpu_out[-1, -10:]
basictest(f, steps_, const_size, prefix='mrg gpu', inputs=input)
numpy.testing.assert_array_almost_equal(cpu_out, gpu_out,
decimal=6)
# print ''
# print 'ON CPU w Numpy with size=(%s):' % str(size)
RR = theano.tensor.shared_randomstreams.RandomStreams(234)
uu = RR.uniform(size=size)
ff = theano.function(var_input, uu, mode=mode)
# It's not our problem if numpy generates 0 or 1
basictest(ff, steps_, const_size, prefix='numpy',
allow_01=True, inputs=input)
@attr('slow')
def test_binomial():
# TODO: test size=None, ndim=X
# TODO: test size=X, ndim!=X.ndim
# TODO: test random seed in legal value(!=0 and other)
# TODO: test sample_size not a multiple of guessed #streams
# TODO: test size=Var, with shape that change from call to call
# we test size in a tuple of int and a tensor.shape.
# we test the param p with int.
if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or
mode == 'Mode' and config.linker in ['py']):
sample_size = (10, 50)
steps = 50
rtol = 0.02
else:
sample_size = (500, 50)
steps = int(1e3)
rtol = 0.01
x = tensor.matrix()
for mean in [0.1, 0.5]:
for size, const_size, var_input, input in [
(sample_size, sample_size, [], []),
(x.shape, sample_size, [x],
[numpy.zeros(sample_size, dtype=config.floatX)]),
((x.shape[0], sample_size[1]), sample_size, [x],
[numpy.zeros(sample_size, dtype=config.floatX)]),
# test empty size (scalar)
((), (), [], []),
]:
yield (t_binomial, mean, size, const_size, var_input, input,
steps, rtol)
def t_binomial(mean, size, const_size, var_input, input, steps, rtol):
R = MRG_RandomStreams(234, use_cuda=False)
u = R.binomial(size=size, p=mean)
f = theano.function(var_input, u, mode=mode)
out = f(*input)
# Increase the number of steps if sizes implies only a few samples
if numpy.prod(const_size) < 10:
steps_ = steps * 100
else:
steps_ = steps
basictest(f, steps_, const_size, prefix='mrg cpu',
inputs=input, allow_01=True,
target_avg=mean, mean_rtol=rtol)
if mode != 'FAST_COMPILE' and cuda_available:
R = MRG_RandomStreams(234, use_cuda=True)
u = R.binomial(size=size, p=mean, dtype='float32')
# well, it's really that this test w GPU doesn't make sense otw
assert u.dtype == 'float32'
f = theano.function(var_input, theano.Out(
theano.sandbox.cuda.basic_ops.gpu_from_host(u),
borrow=True), mode=mode_with_gpu)
gpu_out = numpy.asarray(f(*input))
basictest(f, steps_, const_size, prefix='mrg gpu',
inputs=input, allow_01=True,
target_avg=mean, mean_rtol=rtol)
numpy.testing.assert_array_almost_equal(out, gpu_out,
decimal=6)
RR = theano.tensor.shared_randomstreams.RandomStreams(234)
uu = RR.binomial(size=size, p=mean)
ff = theano.function(var_input, uu, mode=mode)
# It's not our problem if numpy generates 0 or 1
basictest(ff, steps_, const_size, prefix='numpy', allow_01=True,
inputs=input, target_avg=mean, mean_rtol=rtol)
@attr('slow')
def test_normal0():
steps = 50
std = 2.
if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or
mode == 'Mode' and config.linker in ['py']):
sample_size = (25, 30)
default_rtol = .02
else:
sample_size = (999, 50)
default_rtol = .01
sample_size_odd = (sample_size[0], sample_size[1] - 1)
x = tensor.matrix()
for size, const_size, var_input, input, avg, rtol, std_tol in [
(sample_size, sample_size, [], [], -5., default_rtol, default_rtol),
(x.shape, sample_size, [x],
[numpy.zeros(sample_size, dtype=config.floatX)],
-5., default_rtol, default_rtol),
((x.shape[0], sample_size[1]), sample_size, [x],
[numpy.zeros(sample_size, dtype=config.floatX)],
-5., default_rtol, default_rtol),
# test odd value
(sample_size_odd, sample_size_odd, [], [], -5.,
default_rtol, default_rtol),
# test odd value
(x.shape, sample_size_odd, [x],
[numpy.zeros(sample_size_odd, dtype=config.floatX)],
-5., default_rtol, default_rtol),
(sample_size, sample_size, [], [],
numpy.arange(numpy.prod(sample_size),
dtype='float32').reshape(sample_size),
10. * std / numpy.sqrt(steps), default_rtol),
# test empty size (scalar)
((), (), [], [], -5., default_rtol, 0.02),
# test with few samples at the same time
((1,), (1,), [], [], -5., default_rtol, 0.02),
((2,), (2,), [], [], -5., default_rtol, 0.02),
((3,), (3,), [], [], -5., default_rtol, 0.02),
]:
# print ''
# print 'ON CPU:'
R = MRG_RandomStreams(234, use_cuda=False)
# Note: we specify `nstreams` to avoid a warning.
n = R.normal(size=size, avg=avg, std=std,
nstreams=rng_mrg.guess_n_streams(size, warn=False))
f = theano.function(var_input, n, mode=mode)
# theano.printing.debugprint(f)
out = f(*input)
# print 'random?[:10]\n', out[0, 0:10]
# Increase the number of steps if size implies only a few samples
if numpy.prod(const_size) < 10:
steps_ = steps * 50
else:
steps_ = steps
basictest(f, steps_, const_size, target_avg=avg, target_std=std,
prefix='mrg ', allow_01=True, inputs=input,
mean_rtol=rtol, std_tol=std_tol)
sys.stdout.flush()
if mode != 'FAST_COMPILE' and cuda_available:
# print ''
# print 'ON GPU:'
R = MRG_RandomStreams(234, use_cuda=True)
n = R.normal(size=size, avg=avg, std=std, dtype='float32',
nstreams=rng_mrg.guess_n_streams(size, warn=False))
# well, it's really that this test w GPU doesn't make sense otw
assert n.dtype == 'float32'
f = theano.function(var_input, theano.Out(
theano.sandbox.cuda.basic_ops.gpu_from_host(n),
borrow=True), mode=mode_with_gpu)
# theano.printing.debugprint(f)
sys.stdout.flush()
gpu_out = numpy.asarray(f(*input))
# print 'random?[:10]\n', gpu_out[0, 0:10]
# print '----'
sys.stdout.flush()
basictest(f, steps_, const_size, target_avg=avg, target_std=std,
prefix='gpu mrg ', allow_01=True, inputs=input,
mean_rtol=rtol, std_tol=std_tol)
# Need to allow some rounding error as their is float
# computation that are done on the gpu vs cpu
assert numpy.allclose(out, gpu_out, rtol=5e-6, atol=5e-6)
# print ''
# print 'ON CPU w NUMPY:'
RR = theano.tensor.shared_randomstreams.RandomStreams(234)
nn = RR.normal(size=size, avg=avg, std=std)
ff = theano.function(var_input, nn)
basictest(ff, steps_, const_size, target_avg=avg, target_std=std,
prefix='numpy ', allow_01=True, inputs=input, mean_rtol=rtol)
def basic_multinomialtest(f, steps, sample_size, target_pvals, n_samples,
prefix="", mean_rtol=0.04):
dt = 0.0
avg_pvals = numpy.zeros(target_pvals.shape, dtype=config.floatX)
for i in xrange(steps):
t0 = time.time()
ival = f()
assert ival.shape == sample_size
assert numpy.all(numpy.sum(ival, axis=1) == n_samples)
dt += time.time() - t0
avg_pvals += ival
avg_pvals /= (steps * n_samples)
assert numpy.mean(abs(avg_pvals - target_pvals)) < mean_rtol
print('random?[:10]\n', numpy.asarray(f()[:10]))
print(prefix, 'mean', avg_pvals)
# < mean_rtol, 'bad mean? %s %s' % (str(avg_pvals), str(target_pvals))
print(numpy.mean(abs(avg_pvals - target_pvals)))
print(prefix, 'time', dt)
print(prefix, 'elements', steps * numpy.prod(target_pvals.shape))
print(prefix, 'samples/sec', steps * numpy.prod(target_pvals.shape) / dt)
def test_multinomial():
steps = 100
mode_ = mode
if mode == 'FAST_COMPILE':
mode_ = 'FAST_RUN'
if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or
mode == 'Mode' and config.linker in ['py']):
sample_size = (49, 5)
else:
sample_size = (450, 6)
mode_ = theano.compile.mode.get_mode(mode_)
# print ''
# print 'ON CPU:'
pvals = numpy.asarray(numpy.random.uniform(size=sample_size))
pvals = numpy.apply_along_axis(lambda row: row / numpy.sum(row), 1, pvals)
R = MRG_RandomStreams(234, use_cuda=False)
# Note: we specify `nstreams` to avoid a warning.
m = R.multinomial(pvals=pvals, dtype=config.floatX, nstreams=30 * 256)
f = theano.function([], m, mode=mode_)
# theano.printing.debugprint(f)
out = f()
basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1,
prefix='mrg ')
sys.stdout.flush()
if mode != 'FAST_COMPILE' and cuda_available:
# print ''
# print 'ON GPU:'
R = MRG_RandomStreams(234, use_cuda=True)
pvals = numpy.asarray(pvals, dtype='float32')
# We give the number of streams to avoid a warning.
n = R.multinomial(pvals=pvals, dtype='float32', nstreams=30 * 256)
# well, it's really that this test w GPU doesn't make sense otw
assert n.dtype == 'float32'
f = theano.function(
[],
theano.sandbox.cuda.basic_ops.gpu_from_host(n),
mode=mode_.including('gpu'))
# theano.printing.debugprint(f)
gpu_out = f()
sys.stdout.flush()
basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1,
prefix='gpu mrg ')
numpy.testing.assert_array_almost_equal(out, gpu_out, decimal=6)
def test_multinomial_n_samples():
mode_ = mode
if mode == 'FAST_COMPILE':
mode_ = 'FAST_RUN'
if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or
mode == 'Mode' and config.linker in ['py']):
sample_size = (49, 5)
else:
sample_size = (450, 6)
mode_ = theano.compile.mode.get_mode(mode_)
pvals = numpy.asarray(numpy.random.uniform(size=sample_size))
pvals = numpy.apply_along_axis(lambda row: row / numpy.sum(row), 1, pvals)
R = MRG_RandomStreams(234, use_cuda=False)
for n_samples, steps in zip([5, 10, 100, 1000], [20, 10, 1, 1]):
m = R.multinomial(pvals=pvals, n=n_samples,
dtype=config.floatX, nstreams=30 * 256)
f = theano.function([], m, mode=mode_)
basic_multinomialtest(f, steps, sample_size, pvals,
n_samples, prefix='mrg ')
sys.stdout.flush()
if mode != 'FAST_COMPILE' and cuda_available:
R = MRG_RandomStreams(234, use_cuda=True)
pvals = numpy.asarray(pvals, dtype='float32')
n = R.multinomial(pvals=pvals, n=n_samples,
dtype='float32', nstreams=30 * 256)
assert n.dtype == 'float32'
f = theano.function(
[],
theano.sandbox.cuda.basic_ops.gpu_from_host(n),
mode=mode_.including('gpu'))
sys.stdout.flush()
basic_multinomialtest(f, steps, sample_size, pvals,
n_samples, prefix='gpu mrg ')
class T_MRG(unittest.TestCase):
def test_bad_size(self):
R = MRG_RandomStreams(234, use_cuda=False)
for size in [
(0, 100),
(-1, 100),
(1, 0),
]:
self.assertRaises(ValueError, R.uniform, size)
self.assertRaises(ValueError, R.binomial, size)
self.assertRaises(ValueError, R.multinomial, size, 1, [])
self.assertRaises(ValueError, R.normal, size)
def test_multiple_rng_aliasing():
"""
Test that when we have multiple random number generators, we do not alias
the state_updates member. `state_updates` can be useful when attempting to
copy the (random) state between two similar theano graphs. The test is
meant to detect a previous bug where state_updates was initialized as a
class-attribute, instead of the __init__ function.
"""
rng1 = MRG_RandomStreams(1234)
rng2 = MRG_RandomStreams(2392)
assert rng1.state_updates is not rng2.state_updates
def test_random_state_transfer():
"""
Test that random state can be transferred from one theano graph to another.
"""
class Graph:
def __init__(self, seed=123):
self.rng = MRG_RandomStreams(seed)
self.y = self.rng.uniform(size=(1,))
g1 = Graph(seed=123)
f1 = theano.function([], g1.y)
g2 = Graph(seed=987)
f2 = theano.function([], g2.y)
g2.rng.rstate = g1.rng.rstate
for (su1, su2) in zip(g1.rng.state_updates, g2.rng.state_updates):
su2[0].set_value(su1[0].get_value())
numpy.testing.assert_array_almost_equal(f1(), f2(), decimal=6)
def test_gradient_scan():
# Test for a crash when using MRG inside scan and taking the gradient
# See https://groups.google.com/d/msg/theano-dev/UbcYyU5m-M8/UO9UgXqnQP0J
theano_rng = MRG_RandomStreams(10)
w = theano.shared(numpy.ones(1, dtype='float32'))
def one_step(x):
return x + theano_rng.uniform((1,), dtype='float32') * w
x = tensor.vector(dtype='float32')
values, updates = theano.scan(one_step, outputs_info=x, n_steps=10)
gw = theano.grad(tensor.sum(values[-1]), w)
f = theano.function([x], gw)
f(numpy.arange(1, dtype='float32'))
def test_multMatVect():
A1 = tensor.lmatrix('A1')
s1 = tensor.ivector('s1')
m1 = tensor.iscalar('m1')
A2 = tensor.lmatrix('A2')
s2 = tensor.ivector('s2')
m2 = tensor.iscalar('m2')
g0 = rng_mrg.DotModulo()(A1, s1, m1, A2, s2, m2)
f0 = theano.function([A1, s1, m1, A2, s2, m2], g0)
i32max = numpy.iinfo(numpy.int32).max
A1 = numpy.random.randint(0, i32max, (3, 3)).astype('int64')
s1 = numpy.random.randint(0, i32max, 3).astype('int32')
m1 = numpy.asarray(numpy.random.randint(i32max), dtype="int32")
A2 = numpy.random.randint(0, i32max, (3, 3)).astype('int64')
s2 = numpy.random.randint(0, i32max, 3).astype('int32')
m2 = numpy.asarray(numpy.random.randint(i32max), dtype="int32")
f0.input_storage[0].storage[0] = A1
f0.input_storage[1].storage[0] = s1
f0.input_storage[2].storage[0] = m1
f0.input_storage[3].storage[0] = A2
f0.input_storage[4].storage[0] = s2
f0.input_storage[5].storage[0] = m2
r_a1 = rng_mrg.matVecModM(A1, s1, m1)
r_a2 = rng_mrg.matVecModM(A2, s2, m2)
f0.fn()
r_b = f0.output_storage[0].value
assert numpy.allclose(r_a1, r_b[:3])
assert numpy.allclose(r_a2, r_b[3:])
def test_seed_fn():
test_use_cuda = [False]
if cuda_available:
test_use_cuda.append(True)
idx = tensor.ivector()
for use_cuda in test_use_cuda:
if config.mode == 'FAST_COMPILE' and use_cuda:
mode = 'FAST_RUN'
else:
mode = config.mode
for new_seed, same in [(234, True), (None, True), (23, False)]:
random = MRG_RandomStreams(234, use_cuda=use_cuda)
fn1 = theano.function([], random.uniform((2, 2), dtype='float32'),
mode=mode)
fn2 = theano.function([], random.uniform((3, 3), nstreams=2,
dtype='float32'),
mode=mode)
fn3 = theano.function([idx],
random.uniform(idx, nstreams=3, ndim=1,
dtype='float32'),
mode=mode)
fn1_val0 = fn1()
fn1_val1 = fn1()
assert not numpy.allclose(fn1_val0, fn1_val1)
fn2_val0 = fn2()
fn2_val1 = fn2()
assert not | numpy.allclose(fn2_val0, fn2_val1) | numpy.allclose |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from torch.nn.utils.rnn import pad_packed_sequence
def l2norm(inputs, dim=-1):
# inputs: (batch, dim_ft)
norm = torch.norm(inputs, p=2, dim=dim, keepdim=True)
inputs = inputs / norm.clamp(min=1e-10)
return inputs
def sequence_mask(lengths, max_len=None, inverse=False):
''' Creates a boolean mask from sequence lengths.
'''
# lengths: LongTensor, (batch, )
batch_size = lengths.size(0)
max_len = max_len or lengths.max()
mask = torch.arange(0, max_len).type_as(lengths).repeat(batch_size, 1)
if inverse:
mask = mask.ge(lengths.unsqueeze(1))
else:
mask = mask.lt(lengths.unsqueeze(1))
return mask
def subsequent_mask(size):
'''Mask out subsequent position.
Args
size: the length of tgt words'''
attn_shape = (1, size, size)
# set the values below the 1th diagnose as 0
mask = np.triu( | np.ones(attn_shape) | numpy.ones |
import numpy as np
import pandas as pd
import pytest
from sklearn.feature_selection import SelectKBest, chi2 as sk_chi2
from inz.utils import chi2, select_k_best, split, train_test_split
def test_split_list_int():
ints = list(range(7))
want = [[0, 1, 2], [3, 4, 5], [6]]
get = list(split(ints, 3))
assert len(get) == len(want)
assert get == want
def test_split_int():
ints = range(7)
want = [[0, 1, 2], [3, 4, 5], [6]]
get = list(split(ints, 3))
assert len(get) == len(want)
assert get == want
def test_split_list_int_greater_width():
ints = list(range(3))
want = [[0, 1, 2]]
get = list(split(ints, 4))
assert len(get) == len(want)
assert get == want
def test_split_list_str():
strings = list(map(str, range(6)))
want = [['0', '1'], ['2', '3'], ['4', '5']]
get = list(split(strings, 2))
assert len(get) == len(want)
assert get == want
def test_str():
string = ''.join(map(str, range(6)))
want = [['0', '1'], ['2', '3'], ['4', '5']]
get = list(split(string, 2))
assert len(get) == len(want)
assert get == want
def test_split_ndarray_int():
array = np.arange(10, dtype=int).reshape(-1, 2)
want = [np.array([[0, 1], [2, 3]]),
| np.array([[4, 5], [6, 7]]) | numpy.array |
import argparse
import csv
import itertools
import os
import mir_eval
import numpy as np
import matplotlib.pyplot as plt
from chord_recognition.cache import HDF5Cache
from chord_recognition.dataset import prepare_datasource, ChromaDataset, collect_files
from chord_recognition.predict import ChordRecognition
def plot_confusion_matrix(
cm, classes, normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues,
fontsize=10):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(
j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black",
fontsize=fontsize)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def compute_eval_measures(I_ref, I_est):
"""Compute evaluation measures including precision, recall, and F-measure
Args:
I_ref, I_est: Sets of positive items for reference and estimation
Returns:
P, R, F: Precsion, recall, and F-measure
TP, FP, FN: Number of true positives, false positives, and false negatives
"""
assert I_ref.shape == I_est.shape, "Dimension of input matrices must agree"
TP = np.sum(np.logical_and(I_ref, I_est))
FP = np.sum(I_est > 0, axis=None) - TP
FN = | np.sum(I_ref > 0, axis=None) | numpy.sum |
import numpy as np
import tritonclient.http
from sklearn.datasets import load_iris
import random
# load the dataset
iris = load_iris()
X, y = iris.data, iris.target
# pick a random example
example_idx = random.randint(0, len(X))
example_X = X[example_idx]
example_y = y[example_idx]
# setup the server endpoint and models
model_name = "iris_cls"
url = "127.0.0.1:8000"
model_version = "1"
batch_size = 1
# verify if the model is ready to consume
triton_client = tritonclient.http.InferenceServerClient(url=url, verbose=False)
assert triton_client.is_model_ready(
model_name=model_name, model_version=model_version
), f"model {model_name} not yet ready"
# Define the input/output
model_input = tritonclient.http.InferInput(name="input", shape=(batch_size, 4), datatype="FP32")
model_label = tritonclient.http.InferRequestedOutput(name="label", binary_data=False)
model_proba = tritonclient.http.InferRequestedOutput(name="probabilities", binary_data=False)
# set the data and call the model
model_input.set_data_from_numpy( | np.array([example_X]) | numpy.array |
import copy
import pdb
import numpy as np
import matplotlib.pyplot as plt
import astropy.stats
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import radvel
import radvel.fitting
from radvel.plot import orbit_plots
from tqdm import tqdm
import pathos.multiprocessing as mp
from multiprocessing import Value
from itertools import repeat
from functools import partial
import rvsearch.utils as utils
class TqdmUpTo(tqdm):
"""Provides `update_to(n)` which uses `tqdm.update(delta_n)`."""
def update_to(self, b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks transferred so far [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n) # will also set self.n = b * bsize
class Periodogram(object):
"""Class to calculate and store periodograms.
Args:
post (radvel.Posterior): radvel.Posterior object
minsearchp (float): minimum search period
maxsearchp (float): maximum search period
baseline (bool): Whether to calculate maxsearchp from obs. baseline
basefactor (float): How far past the obs. baseline to search
oversampling (float): By how much to oversample the period grid
manual_grid (array): Option to feed in a user-chosen period grid
fap (float): False-alarm-probability threshold for detection
num_pers (int): (optional) number of frequencies to test, default
eccentric (bool): Whether to fit with free or fixed eccentricity
workers (int): Number of cpus over which to parallelize
verbose (bool): Whether to print progress during calculation
"""
def __init__(self, post, basebic=None, minsearchp=3, maxsearchp=10000,
baseline=True, basefactor=5., oversampling=1., manual_grid=None,
fap=0.001, num_pers=None, eccentric=False, workers=1,
verbose=True):
self.post = copy.deepcopy(post)
self.default_pdict = {}
for k in post.params.keys():
self.default_pdict[k] = self.post.params[k].value
self.basebic = basebic
self.num_known_planets = self.post.params.num_planets - 1
self.times = self.post.likelihood.x
self.vel = self.post.likelihood.y
self.errvel = self.post.likelihood.yerr
self.timelen = np.amax(self.times) - np.amin(self.times)
self.tels = np.unique(self.post.likelihood.telvec)
'''
for val in self.post.params.keys():
if 'gamma_' in val:
self.tels.append(val.split('_')[1])
'''
self.minsearchP = minsearchp
self.maxsearchP = maxsearchp
self.baseline = baseline
self.basefactor = basefactor
self.oversampling = oversampling
self.manual_grid = manual_grid
self.fap = fap
self.num_pers = num_pers
if self.manual_grid is not None:
self.num_pers = len(manual_grid)
self.eccentric = eccentric
if self.baseline == True:
self.maxsearchP = self.basefactor * self.timelen
self.valid_types = ['bic', 'aic', 'ls']
self.power = {key: None for key in self.valid_types}
self.workers = workers
self.verbose = verbose
self.best_per = None
self.best_bic = None
self.bic_thresh = None
# Pre-compute good-fit floor of the BIC periodogram.
if self.eccentric:
self.floor = -4*np.log(len(self.times))
else:
self.floor = -2*np.log(len(self.times))
# Automatically generate a period grid upon initialization.
self.make_per_grid()
def per_spacing(self):
"""Get the number of sampled frequencies and return a period grid.
Condition for spacing: delta nu such that during the
entire duration of observations, phase slip is no more than P/4
Returns:
array: Array of test periods
"""
fmin = 1./self.maxsearchP
fmax = 1./self.minsearchP
# Should be 1/(2*pi*baseline), was previously 1/4.
dnu = 1./(2*np.pi*self.timelen)
num_freq = (fmax - fmin)/dnu + 1
num_freq *= self.oversampling
num_freq = int(num_freq)
if self.verbose:
print("Number of test periods:", num_freq)
freqs = np.linspace(fmax, fmin, num_freq)
pers = 1. / freqs
self.num_pers = num_freq
return pers
def make_per_grid(self):
"""Generate a grid of periods for which to compute likelihoods.
"""
if self.manual_grid is not None:
self.pers = np.array(self.manual_grid)
else:
if self.num_pers is None:
self.pers = self.per_spacing()
else:
self.pers = 1/np.linspace(1/self.maxsearchP, 1/self.minsearchP,
self.num_pers)
self.freqs = 1/self.pers
def per_bic(self):
"""Compute delta-BIC periodogram. ADD: crit is BIC or AIC.
"""
prvstr = str(self.post.params.num_planets-1)
plstr = str(self.post.params.num_planets)
if self.verbose:
print("Calculating BIC periodogram for {} planets vs. {} planets".format(plstr, prvstr))
# This assumes nth planet parameters, and all periods, are fixed.
if self.basebic is None:
# Handle the case where there are no known planets.
if self.post.params.num_planets == 1 and self.post.params['k1'].value == 0.:
self.post.params['per'+plstr].vary = False
self.post.params['tc'+plstr].vary = False
self.post.params['k'+plstr].vary = False
self.post.params['secosw'+plstr].vary = False
self.post.params['sesinw'+plstr].vary = False
# Vary ONLY gamma, jitter, dvdt, curv. All else fixed, and k=0
baseline_fit = radvel.fitting.maxlike_fitting(self.post, verbose=False)
baseline_bic = baseline_fit.likelihood.bic()
# Handle the case where there is at least one known planet.
else:
self.post.params['per{}'.format(self.num_known_planets+1)].vary = False
self.post.params['tc{}'.format(self.num_known_planets+1)].vary = False
self.post.params['k{}'.format(self.num_known_planets+1)].vary = False
self.post.params['secosw{}'.format(self.num_known_planets+1)].vary = False
self.post.params['sesinw{}'.format(self.num_known_planets+1)].vary = False
baseline_bic = self.post.likelihood.bic()
else:
baseline_bic = self.basebic
rms = np.std(self.post.likelihood.residuals())
self.default_pdict['k{}'.format(self.post.params.num_planets)] = rms
# Allow amplitude and time offset to vary, fix period (and ecc. if asked.)
self.post.params['per{}'.format(self.num_known_planets+1)].vary = False
if self.eccentric == True:
# If eccentric set to True, Free eccentricity.
self.post.params['secosw{}'.format(self.num_known_planets+1)].vary = True
self.post.params['sesinw{}'.format(self.num_known_planets+1)].vary = True
else:
# If eccentric set to False, fix eccentricity to zero.
self.post.params['secosw{}'.format(self.num_known_planets+1)].vary = False
self.post.params['sesinw{}'.format(self.num_known_planets+1)].vary = False
self.post.params['k{}'.format(self.num_known_planets+1)].vary = True
self.post.params['tc{}'.format(self.num_known_planets+1)].vary = True
# Divide period grid into as many subgrids as there are parallel workers.
self.sub_pers = np.array_split(self.pers, self.workers)
# Define a function to compute periodogram for a given grid section.
def _fit_period(n):
post = copy.deepcopy(self.post)
per_array = self.sub_pers[n]
fit_params = [{} for x in range(len(per_array))]
bic = np.zeros_like(per_array)
for i, per in enumerate(per_array):
# Reset posterior parameters to default values.
for k in self.default_pdict.keys():
post.params[k].value = self.default_pdict[k]
perkey = 'per{}'.format(self.num_known_planets+1)
post.params[perkey].value = per
post = radvel.fitting.maxlike_fitting(post, verbose=False)
bic[i] = baseline_bic - post.likelihood.bic()
if bic[i] < self.floor - 1:
# If the fit is bad, reset k_n+1 = 0 and try again.
for k in self.default_pdict.keys():
post.params[k].value = self.default_pdict[k]
post.params[perkey].value = per
post.params['k{}'.format(post.params.num_planets)].value = 0
post = radvel.fitting.maxlike_fitting(post, verbose=False)
bic[i] = baseline_bic - post.likelihood.bic()
if bic[i] < self.floor - 1:
# If the fit is still bad, reset tc to better value and try again.
for k in self.default_pdict.keys():
post.params[k].value = self.default_pdict[k]
veldiff = np.absolute(post.likelihood.y - np.median(post.likelihood.y))
tc_new = self.times[np.argmin(veldiff)]
post.params['tc{}'.format(post.params.num_planets)].value = tc_new
post = radvel.fitting.maxlike_fitting(post, verbose=False)
bic[i] = baseline_bic - post.likelihood.bic()
# Append the best-fit parameters to the period-iterated list.
best_params = {}
for k in post.params.keys():
best_params[k] = post.params[k].value
fit_params[i] = best_params
if self.verbose:
counter.value += 1
pbar.update_to(counter.value)
return (bic, fit_params)
if self.verbose:
global pbar
global counter
counter = Value('i', 0, lock=True)
pbar = TqdmUpTo(total=len(self.pers), position=0)
if self.workers == 1:
# Call the periodogram loop on one core.
self.bic, self.fit_params = _fit_period(0)
else:
# Parallelize the loop over sections of the period grid.
p = mp.Pool(processes=self.workers)
output = p.map(_fit_period, (np.arange(self.workers)))
# Sort output.
all_bics = []
all_params = []
for chunk in output:
all_bics.append(chunk[0])
all_params.append(chunk[1])
self.bic = [y for x in all_bics for y in x]
self.fit_params = [y for x in all_params for y in x]
# Close the pool object.
p.close()
fit_index = np.argmax(self.bic)
self.bestfit_params = self.fit_params[fit_index]
self.best_bic = self.bic[fit_index]
self.power['bic'] = self.bic
if self.verbose:
pbar.close()
def ls(self):
"""Compute Lomb-Scargle periodogram with astropy.
"""
# FOR TESTING
print("Calculating Lomb-Scargle periodogram")
periodogram = astropy.stats.LombScargle(self.times, self.vel,
self.errvel)
power = periodogram.power(np.flip(self.freqs))
self.power['ls'] = power
def eFAP(self):
"""Calculate the threshold for significance based on BJ's empirical
false-alarm-probability algorithm, and estimate the
false-alarm-probability of the DBIC global maximum.
"""
# select out intermediate values of BIC, median - 95%
sBIC = np.sort(self.power['bic'])
crop_BIC = sBIC[int(0.5*len(sBIC)):int(0.95*len(sBIC))]
hist, edge = np.histogram(crop_BIC, bins=10)
cent = (edge[1:]+edge[:-1])/2.
norm = float(np.sum(hist))
nhist = hist/norm
loghist = np.log10(nhist)
func = np.poly1d(np.polyfit(cent[np.isfinite(loghist)], \
loghist[np.isfinite(loghist)], 1))
xmod = np.linspace(np.min(sBIC[np.isfinite(sBIC)]), \
10.*np.max(sBIC), 10000)
lfit = 10.**func(xmod)
fap_min = 10.**func(sBIC[-1])*self.num_pers
thresh = xmod[np.where(np.abs(lfit-self.fap/self.num_pers) ==
np.min(np.abs(lfit-self.fap/self.num_pers)))]
self.bic_thresh = thresh[0]
# Save the empirical-FAP of the DBIC global maximum.
self.fap_min = fap_min
def save_per(self, filename, ls=False):
df = pd.DataFrame([])
df['period'] = self.pers
if not ls:
try:
np.savetxt((self.pers, self.power['bic']), filename=\
'BIC_periodogram.csv')
except:
print('Have not generated a delta-BIC periodogram.')
else:
try:
df['power'] = self.power['ls']
except KeyError:
print('Have not generated a Lomb-Scargle periodogram.')
def plot_per(self, alias=True, floor=True, save=False):
"""Plot periodogram.
Args:
alias (bool): Plot year, month, day aliases?
floor (bool): Set y-axis minimum according to likelihood limit?
save (bool): Save plot to current directory?
"""
# TO-DO: WORK IN AIC/BIC OPTION, INCLUDE IN PLOT TITLE
peak = np.argmax(self.power['bic'])
f_real = self.freqs[peak]
fig, ax = plt.subplots()
ax.plot(self.pers, self.power['bic'])
ax.scatter(self.pers[peak], self.power['bic'][peak], label='{} days'\
.format(np.round(self.pers[peak], decimals=1)))
# If DBIC threshold has been calculated, plot.
if self.bic_thresh is not None:
ax.axhline(self.bic_thresh, ls=':', c='y', label='{} FAP'\
.format(self.fap))
upper = 1.1*max(np.amax(self.power['bic']), self.bic_thresh)
else:
upper = 1.1*np.amax(self.power['bic'])
if floor:
# Set periodogram plot floor according to circular-fit BIC min.
# Set this until we figure out how to fix known planet offset. 5/8
lower = max(self.floor, np.amin(self.power['bic']))
else:
lower = np.amin(self.power['bic'])
ax.set_ylim([lower, upper])
ax.set_xlim([self.pers[0], self.pers[-1]])
if alias:
# Plot sidereal day, lunation period, and sidereal year aliases.
colors = ['r', 'b', 'g']
alias = [0.997, 29.531, 365.256]
if np.amin(self.pers) <= 1.:
alii = | np.arange(1, 3) | numpy.arange |
import numpy as np
import sys
#read the data from the file
data = open(sys.argv[1],'r').read()
characters = list(set(data))
data_size, vocab_size = len(data),len(characters)
print("Data has %d characters, %d unique characters."%(data_size,vocab_size))
#char to idx mapping
char_to_idx = {ch:i for i,ch in enumerate(characters)}
idx_to_char = {i:ch for i,ch in enumerate(characters)}
#define some hyperparameters
hidden_size = 100
seq_length = 25
learning_rate = 1e-2
#model parameters
Wxi = np.random.randn(hidden_size,vocab_size)*0.01
Whi = np.random.randn(hidden_size,hidden_size)*0.01
bi = np.zeros((hidden_size,1))
Wxr = np.random.randn(hidden_size,vocab_size)*0.01
Whr = np.random.randn(hidden_size,hidden_size)*0.01
br = np.zeros((hidden_size,1))
Wxh = np.random.randn(hidden_size,vocab_size)*0.01
Whh = np.random.randn(hidden_size,hidden_size)*0.01
bh = np.zeros((hidden_size,1))
Why = np.random.randn(vocab_size,hidden_size)*0.01
by = np.zeros((vocab_size,1))
def sigmoid(x):
return 1/(1+np.exp(-x))
def softmax(input):
# Subtraction of max value improves numerical stability.
e_input = np.exp(input - np.max(input))
return e_input / e_input.sum()
def gru(inputs,targets,hprev):
"""
inputs and targets are both lists of integers.
hprev is Hx1 array of initial hidden state
returns the loss, gradients on model params and last hidden state
"""
x,r,i,h,h_hat,y,p = {},{},{},{},{},{},{}
#copy the hprev to last element of hs dict
h[-1] = np.copy(hprev)
loss = 0
#forward pass
for t in range(len(inputs)):
x[t] = np.zeros((vocab_size,1)) #encode in 1-of-k representation
x[t][inputs[t]]=1
r[t] = sigmoid(np.dot(Whr,h[t-1]) + np.dot(Wxr,x[t]) + br)
i[t] = sigmoid(np.dot(Whi,h[t-1]) + np.dot(Wxi,x[t]) + bi)
h_hat[t] = np.tanh(np.dot(Whh,np.multiply(r[t],h[t-1])) + np.dot(Wxh,x[t]) + bh)
h[t] = np.multiply(i[t],h[t-1]) + np.multiply((1-i[t]), h_hat[t])
y[t] = np.dot(Why,h[t]) + by
p[t] = softmax(y[t])
loss += -np.log(p[t][targets[t],0])
#backward pass
dWhy,dWhi,dWhr,dWhh,dWxi,dWxr,dWxh = np.zeros_like(Why),np.zeros_like(Whi),np.zeros_like(Whr),np.zeros_like(Whh),np.zeros_like(Wxi),np.zeros_like(Wxr),np.zeros_like(Wxh)
dby,dbi,dbr,dbh = np.zeros_like(by),np.zeros_like(bi),np.zeros_like(br),np.zeros_like(bh)
dhnext = np.zeros_like(h[0])
for t in reversed(range(len(inputs))):
dy = np.copy(p[t])
dy[targets[t]] -= 1
dWhy += np.dot(dy,h[t].T)
dby += dy
dh = np.dot(Why.T,dy) + dhnext
di = np.multiply(dh,(h[t]-h_hat[t]))
dh_hat = np.multiply(dh,(1-i[t]))
dh_raw = dh_hat * (1-h_hat[t]*h_hat[t])
dWhh += np.dot(dh_raw, np.multiply(r[t], h[t-1]).T)
dWxh += np.dot(dh_raw, x[t].T)
dbh += dh_raw
dr = np.multiply(np.dot(Whh.T, dh_raw),h[t-1])
dr_raw = dr * (r[t]*(1-r[t]))
dWhr += np.dot(dr_raw,h[t-1].T)
dWxr += np.dot(dr_raw,x[t].T)
dbr += dr_raw
di_raw = di * (i[t] * (1-i[t]))
dWhi += np.dot(di_raw,h[t-1].T)
dWxi += np.dot(di_raw,x[t].T)
dbi += di_raw
dhnext = np.multiply(dh,i[t]) + np.multiply(np.dot(Whh.T, dh_raw),r[t]) + np.dot(Whr.T,dr_raw) + np.dot(Whi.T,di_raw)
for grads in [dWhy,dWhi,dWhr,dWhh,dWxi,dWxr,dWxh,dby,dbi,dbr,dbh]:
np.clip(grads,-5,5,out=grads)
return loss, dWhy,dWhi,dWhr,dWhh,dWxi,dWxr,dWxh,dby,dbi,dbr,dbh, h[len(inputs)-1]
def sample(h,seed_ix, n):
"""
sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for the first time step
"""
x = np.zeros((vocab_size,1))
x[seed_ix] = 1
ixes = []
#forward pass
for t in range(n):
i = sigmoid(np.dot(Whi,h) + np.dot(Wxi,x) + bi)
r = sigmoid(np.dot(Whr,h) + np.dot(Wxr,x) + br)
h_hat = np.tanh(np.dot(Whh,np.multiply(r,h)) + np.dot(Wxh,x) + bh)
h = np.multiply(i,h) + np.multiply((1-i), h_hat)
y = np.dot(Why,h) + by
p = softmax(y)
ix = np.random.choice(range(vocab_size),p=p.ravel())
x = np.zeros((vocab_size,1))
x[ix] = 1
ixes.append(ix)
return ixes
n, p = 0,0
mWhy,mWhi,mWhr,mWhh,mWxi,mWxr,mWxh = np.zeros_like(Why),np.zeros_like(Whi),np.zeros_like(Whr),np.zeros_like(Whh),np.zeros_like(Wxi),np.zeros_like(Wxr),np.zeros_like(Wxh)
mby,mbi,mbr,mbh = np.zeros_like(by),np.zeros_like(bi),np.zeros_like(br),np.zeros_like(bh)
smooth_loss = -np.log(1.0/vocab_size)*seq_length
while True:
if p+seq_length+1 >= len(data) or n==0:
hprev = np.zeros((hidden_size,1))
p = 0
inputs = [char_to_idx[ch] for ch in data[p:p+seq_length]]
targets = [char_to_idx[ch] for ch in data[p+1:p+seq_length+1]]
if n%1000 == 0:
sample_idx = sample(hprev,inputs[0],1000)
txt = ''.join(idx_to_char[idx] for idx in sample_idx)
print('----\n %s \n----'%(txt,))
loss, dWhy,dWhi,dWhr,dWhh,dWxi,dWxr,dWxh,dby,dbi,dbr,dbh, hrev = gru(inputs,targets,hprev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
if n%1000==0 :
print("iter %d, loss: %f"%(n,smooth_loss))
for param, grads, cache in zip([Why,Whi,Whr,Whh,Wxi,Wxr,Wxh,by,bi,br,bh],
[dWhy,dWhi,dWhr,dWhh,dWxi,dWxr,dWxh,dby,dbi,dbr,dbh],
[mWhy,mWhi,mWhr,mWhh,mWxi,mWxr,mWxh,mby,mbi,mbr,mbh]):
cache += grads * grads
param += -learning_rate * grads/ | np.sqrt(cache+1e-8) | numpy.sqrt |
"""Auditory Filterbanks and scales for Speech and Audio Analysis.
The Gammatone filterbank is a direct translation of <NAME>' Gammatone-like
spectrograms package [1], which is partly and a direct translation of Malcolm
Slaney's Auditory toolbox [2].
References:
[1]: https://labrosa.ee.columbia.edu/matlab/gammatonegram/
[2]: https://engineering.purdue.edu/~malcolm/interval/1998-010/
"""
import numpy as np
from scipy import signal
from .util import fftfreqz, freqz
def dft2mel(nfft, sr=8000., nfilts=0, width=1., minfrq=0., maxfrq=4000.,
sphinx=False, constamp=True):
"""Map linear discrete frequencies to Mel scale."""
if nfilts == 0:
nfilts = np.int(np.ceil(hz2mel(np.array([maxfrq]), sphinx)[0]/2))
weights = np.zeros((nfilts, nfft))
# dft index -> linear frequency in hz
dftfrqs = np.arange(nfft/2+1, dtype=np.float)/nfft * sr
maxmel, minmel = hz2mel(np.array([maxfrq, minfrq]), sphinx)
binfrqs = mel2hz(minmel+ | np.linspace(0., 1., nfilts+2) | numpy.linspace |
"""
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import numpy as np
from numpy import array, random, pi
from scipy.integrate import cumtrapz
from scipy.interpolate import splrep, splev
class Rotator(object):
"""Rotator object.
A Rotator instance is used to rotate a set of 3D coordinates around
the [0,0,0] point. All Rotator subclasses must implement the "rotate"
member function.
"""
@staticmethod
def rotation_matrix(alpha, beta, psi):
ca = np.cos(alpha)
sa = np.sin(alpha)
cb = np.cos(beta)
sb = np.sin(beta)
cp = np.cos(psi)
sp = np.sin(psi)
Rb = array([[1.0, 0.0, 0.0],
[0.0, cb, -sb],
[0.0, sb, cb ]])
Ra = array([[ca , -sa, 0.0],
[sa , ca , 0.0],
[0.0, 0.0, 1.0]])
Rp = array([[cp , -sp, 0.0],
[sp , cp , 0.0],
[0.0, 0.0, 1.0]])
return np.dot(np.dot(Ra,Rb),Rp)
def __init__(self):
pass
def rotate(X):
"""Rotate the coordinates around the [0,0,0] point.
Args:
The (N,3) array of coordinates.
"""
return X
class UniformRotator(Rotator):
"""Uniformly random rotation.
"""
def rotate(self,X):
"""Rotate the coordinates around the [0,0,0] point.
Args:
The (N,3) array of coordinates.
"""
alpha = random.rand() * 2*pi
beta = np.arccos(1.0-2*random.rand())
psi = random.rand() * 2*pi
R = Rotator.rotation_matrix(alpha,beta,psi)
return np.dot(R,X)
class HorizontalRotator(Rotator):
"""Uniformly random rotation around the z axis only.
"""
def rotate(self,X):
"""Rotate the coordinates around the [0,0,0] point.
Args:
The (N,3) array of coordinates.
"""
alpha = random.rand() * 2*pi
R = Rotator.rotation_matrix(alpha,0.0,0.0)
return | np.dot(R,X) | numpy.dot |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = | N.array([1,1,0]) | numpy.array |
import numpy as np
from LevyVector import levy
import AdaptiveStrategy as Adaption
def evolve(problem, n_eval=300000, n_pop=100,
diff_mode="de/curr-to-pbest/1",
F=0.5, CR=0.9, p=0.05,
adapt_params=[], adapt_strategy="none", params_of_adapt_strategy={},
indicator="none", n_step=1,
epsilon=1e-14, seed=1000, is_print=True, file="none"):
'''
Differential Evolution (DE) with Self-adaptive strategy
Problem Parameters
----------
problem: object
- optimization problem to be solved
Running Parameters
----------
n_eval: int
- maximum number of evaluations
n_pop: int
- population size
epsilon: float
- tolerance of algorithm running
seed: int
- seed of random number
is_print: bool
- whether print results on screen or not
file: string
- file to record history
- valid input:
+ "none": do not record
+ otherwise, write to the file name
Algorithm Parameters
----------
diff_mode: string
- mode of differential mutation
- valid input: { "de", "de/curr-to-pbest", "de/curr-to-pbest/1" }
Variation Parameters
----------
F, CR, p: float OR tuple
- scaling factor, crossover rate, elite rate
- valid input:
+ for strategy type 1, input (lower, upper)
+ for strategy type 2, input (lower, mean, upper)
+ for non-adaptive, input fixed float
* change { adapt_params, adapt_strategy } correspondingly
Strategy Parameters
----------
adapt_params: list of string
- parameters which are set to be adaptive
- valid input: { ["F"], ["CR"], ["F, CR"] }
* change { F, CR, adapt_strategy } correspondingly
adapt_strategy: string
- parameter variation method in adaptive strategy
- valid input: { "none", "random", "best_levy", "ga", "cauchy", "jade" }
* change { F, CR, adapt_params } correspondingly
indicator: string
- indicator used to assess quality of parameters
automatically set to "none" if adapt_strategy == "none" or "random"
- valid input: { "dfii/dfi" } !TODO - increase more indicators
n_step: int
- frequency to update parameters
e.g. n_step=20 means to parameters every 20 generations
Return
----------
X: 2D-Array
- decision variables of individuals (final evaluation)
F: 1D-Array
- fitness variables of individuals (final evaluation)
c_eval: int
- number of evaluations
'''
if type(seed) == int: np.random.seed(seed) # Set seed for random number generator
evaluate_fitness = problem.f # Get problem information
xl, xu = problem.boundaries
n_var = problem.n_var
#####################
# PARAMETER SETTING #
#####################
strategy_type1 = ["best_levy", "ga", "random"] # Strategy with random parameter initialization
strategy_type2 = ["cauchy"] # Strategy with cauchy inintialization
strategy_type3 = ["jade"] # Strategy with initialization in JADE
if adapt_strategy == "none":
Fs = np.ones(n_pop) * F
CRs = np.ones(n_pop) * CR
if adapt_strategy in strategy_type1: # Initialize parameters with uniform distribution
if "F" in adapt_params:
Fs = np.random.uniform(F[0], F[1], n_pop)
if type(CR) == float: CRs = np.ones(n_pop) * CR
if "CR" in adapt_params:
if type(F) == float: Fs = np.ones(n_pop) * F
CRs = np.random.uniform(CR[0], CR[1], n_pop)
if adapt_strategy in strategy_type2: # Initialize parameters with Cauchy distribution
if "F" in adapt_params:
F_mu = F[1]
Fs = np.random.standard_cauchy(n_pop) * 0.1 + F_mu
Fs = np.clip(Fs, F[0], F[2])
if type(CR) == float: CRs = np.ones(n_pop) * CR
if "CR" in adapt_params:
CR_mu = CR[1]
if type(F) == float: Fs = np.ones(n_pop) * F
CRs = np.random.standard_cauchy(n_pop) * 0.1 + CR_mu
CRs = np.clip(CRs, CR[0], CR[2])
if adapt_strategy in strategy_type3: # Initialize F with Cauchy distribution, CR with Gaussian distribution
if "F" in adapt_params:
F_mu = F[1]
Fs = np.random.standard_cauchy(n_pop) * 0.1 + F_mu
Fs = np.clip(Fs, F[0], F[2])
if type(CR) == float: CRs = np.ones(n_pop) * CR
if "CR" in adapt_params:
CR_mu = CR[1]
if type(F) == float: Fs = np.ones(n_pop) * F
CRs = np.random.normal(CR_mu, 0.1, n_pop)
CRs = np.clip(CRs, CR[0], CR[2])
#################
# START PROGRAM #
#################
X = np.random.uniform(xl, xu, (n_pop, n_var)) # Initialize population
Y = np.array([evaluate_fitness(x) for x in X]) # Evaluate fitness
c_eval, c_gen = n_pop, 0
if adapt_strategy in ["none", "random"]:
indicator = "none"
else:
I = np.zeros(n_pop)
#############
# MAIN LOOP #
#############
while True: # Enter generation loop
c_gen += 1
for i in np.random.permutation(n_pop): # Traverse population
xi, yi = X[i,:], Y[i] # Get current individual
Fi, CRi = Fs[i], CRs[i] # Get current parameters
maskbit = np.random.choice([0, 1], n_var, p=[1 - CRi, CRi]) # Get maskbit for crossover
if diff_mode == "de": # Reproduce by DE
xr1 = X[np.random.choice(n_pop),:]
xr2 = X[np.random.choice(n_pop),:]
xi_ = xi + Fi * (xr1 - xr2) * maskbit
if diff_mode == "de/curr-to-pbest": # Reproduce by DE/current to pbest
pbest = sorted(np.arange(n_pop), key=lambda k: Y[k])[:int(p * n_pop)]
xpbest = X[np.random.choice(pbest),:]
xi_ = xi + Fi * (xpbest - xi) * maskbit
if diff_mode == "de/curr-to-pbest/1": # Reproduce by DE/current to pbest/1
pbest = sorted(np.arange(n_pop), key=lambda k: Y[k])[:int(p * n_pop)]
xpbest = X[np.random.choice(pbest),:]
xr1 = X[np.random.choice(n_pop),:]
xr2 = X[np.random.choice(n_pop),:]
xi_ = xi + Fi * (xpbest - xi + xr1 - xr2) * maskbit
xi_ = | np.clip(xi_, xl, xu) | numpy.clip |
import numpy as np
import pandas as pd
import statsmodels.api as sm
import warnings
warnings.filterwarnings("ignore")
class ARIMA(object):
"""ARIMA is a generalization of an ARMA (Autoregressive Moving Average) model, used in predicting
future points in time series analysis.
Since there may be three kinds of series data as closeness, period and trend history, this class
trains three different ARIMA models for each node according to the three kinds of history data,
and returns average of the predicted values by the models in prediction.
Args:
time_sequence(array_like): The observation value of time_series.
order(iterable): It stores the (p, d, q) orders of the model for the number of AR parameters
, differences, MA parameters. If set to None, ARIMA class will calculate the orders for
each series based on max_ar, max_ma and max_d. Default: None
seasonal_order(iterable): It stores the (P,D,Q,s) order of the seasonal ARIMA model for the
AR parameters, differences, MA parameters, and periodicity. `s` is an integer giving the
periodicity (number of periods in season).
max_ar(int): Maximum number of AR lags to use. Default: 6
max_ma(int): Maximum number of MA lags to use. Default: 4
max_d(int): Maximum number of degrees of differencing. Default: 2
Attribute:
order(iterable): (p, d, q) orders for ARIMA model.
seasonal_order(iterable): (P,D,Q,s) order for seasonal ARIMA model.
model_res(): Fit method for likelihood based models.
"""
def __init__(self, time_sequence, order=None, seasonal_order=(0, 0, 0, 0), max_ar=6, max_ma=4, max_d=2):
self.seasonal_order = seasonal_order
auto_order = self.get_order(time_sequence, order, max_ar=max_ar, max_ma=max_ma, max_d=max_d)
model = sm.tsa.SARIMAX(time_sequence, order=auto_order, seasonal_order=self.seasonal_order)
model_res = model.fit(disp=False)
self.order = auto_order
self.model_res = model_res
def get_order(self, series, order=None, max_ar=6, max_ma=2, max_d=2):
'''
If order is None, it simply returns order, otherwise, it calculates the (p, d, q) orders
for the series data based on max_ar, max_ma and max_d.
'''
def stationary(series):
t = ARIMA.adf_test(series, verbose=False)
if t[0] < t[4]['1%']:
return True
else:
return False
if order is None:
order_i = 0
while not stationary( | np.diff(series, order_i) | numpy.diff |
#! /usr/bin/env python3
import sys
sys.path.append('code')
import numpy as np
from scipy.io import savemat
from skimage import filters
import pylab
from performMeasurements import perfromMeasurements
from performMeasurements import perfromInitialMeasurements
from updateERDandFindNewLocation import updateERDandFindNewLocationFirst
from updateERDandFindNewLocation import updateERDandFindNewLocationAfter
from computeStopCondRelated import computeStopCondFuncVal
from computeStopCondRelated import checkStopCondFuncThreshold
from performMeasurements import updateMeasurementArrays
from performReconOnce import performReconOnce
from loader import loadTestImage
from pathOrder_greedy import pathOrder
def runSLADSSimulationOnce(Mask,CodePath,ImageSet,SizeImage,StopCondParams,Theta,TrainingInfo,Resolution,ImageType,UpdateERDParams,BatchSamplingParams,SavePath,SimulationRun,ImNum,ImageExtension,PlotResult,Classify):
MeasuredIdxs = np.transpose(np.where(Mask==1))
UnMeasuredIdxs = np.transpose(np.where(Mask==0))
ContinuousMeasuredValues = perfromInitialMeasurements(CodePath,ImageSet,ImNum,ImageExtension,Mask,SimulationRun)
####
# MeasuredIdxs, ContinuousMeasuredValues, travdist = pathOrder(MeasuredIdxs, ContinuousMeasuredValues, np.array([0,0]))
####
if Classify=='2C':
Threshold = filters.threshold_otsu(ContinuousMeasuredValues)
print('Threhold found using the Otsu method for 2 Class classification = ' + str(Threshold))
MeasuredValues = ContinuousMeasuredValues < Threshold
MeasuredValues = MeasuredValues+0
# elif Classify=='MC':
#### Classification function to output NewValues ##################
# NewValues is the vector of measured values post classification
elif Classify=='N':
MeasuredValues=ContinuousMeasuredValues
# Perform SLADS
IterNum=0
Stop=0
NumSamples = np.shape(MeasuredValues)[0]
StopCondFuncVal=np.zeros(( int((SizeImage[0]*SizeImage[1])*(StopCondParams.MaxPercentage)/100)+10,2 ))
while Stop !=1:
if IterNum==0:
Mask,MeasuredValues,ERDValues,ReconValues,ReconImage,NewIdxs,MaxIdxsVect=updateERDandFindNewLocationFirst(Mask,MeasuredValues,MeasuredIdxs,UnMeasuredIdxs,Theta,SizeImage,TrainingInfo,Resolution,ImageType,NumSamples,UpdateERDParams,BatchSamplingParams)
else:
Mask,MeasuredValues,ERDValues,ReconValues,ReconImage,NewIdxs,MaxIdxsVect=updateERDandFindNewLocationAfter(Mask,MeasuredValues,MeasuredIdxs,UnMeasuredIdxs,Theta,SizeImage,TrainingInfo,Resolution,ImageType,UpdateERDParams,BatchSamplingParams,StopCondFuncVal,IterNum,NumSamples,NewIdxs,ReconValues,ReconImage,ERDValues,MaxIdxsVect)
NewContinuousValues = perfromMeasurements(NewIdxs,CodePath,ImageSet,ImNum,ImageExtension,MeasuredIdxs,BatchSamplingParams,SimulationRun)
####
# NewIdxs, NewContinuousValues, travdist = pathOrder(NewIdxs, NewContinuousValues, MeasuredIdxs[-1])
####
ContinuousMeasuredValues = np.hstack((ContinuousMeasuredValues,NewContinuousValues))
if Classify=='2C':
NewValues = NewContinuousValues > Threshold
NewValues = NewValues+0
# elif Classify=='MC':
#### Classification function to output NewValues ##################
# NewValues is the vector of measured values post classification
elif Classify=='N':
NewValues=NewContinuousValues
Mask,MeasuredValues,MeasuredIdxs,UnMeasuredIdxs = updateMeasurementArrays(NewIdxs,MaxIdxsVect,Mask,MeasuredValues,MeasuredIdxs,UnMeasuredIdxs,NewValues,BatchSamplingParams)
NumSamples = | np.shape(MeasuredValues) | numpy.shape |
# -*- coding: utf-8 -*
"""
---------------------
SOFTWARE DESCRIPTION:
---------------------
Written October 2018 -- <NAME>
Typeset in Python 3
This python class is specifically made for the spectroscopic data reduction of the Shelyak eShel spectrograph
which is installed at the Hertzsprung SONG node telescope at Tenrife, Spain. The software is originally built
from structures of the 'SONGWriter' which is SONG's spectroscopic data reduction pipeline, and by others is
inspired by the data reduction pipeline 'FIESTools' of the FIES spectrograph at the NOT on La Palma.
"""
# Numpy:
import numpy as np
# Astropy:
from astropy.io import fits
from astropy.time import Time
from astropy.coordinates import SkyCoord, EarthLocation
# PyAstronomy:
import PyAstronomy as pyas
# SciPy:
import scipy
import scipy.constants
import scipy.io
import scipy.ndimage
from scipy.ndimage import median_filter
# Matplotlib:
import matplotlib.pyplot as plt
from matplotlib import gridspec
from tikzplotlib import save as tikz_save
# Others:
import math, sys, time, glob, pylab, heapq
import bottleneck
from skimage import feature as skfeature
# Error of propagation (nominal_value, std_dev):
import uncertainties.unumpy as up
from uncertainties import ufloat
def val(x): return up.nominal_values(x)
def err(x): return up.std_devs(x)
# Own functions:
import Plot_Tools as pt
# Global settings for out-print to terminal (allow more digits and nice coloum ordering):
np.set_printoptions(suppress=True, formatter={'float_kind':'{:7.5f}'.format}, linewidth=100)
############################################################################################################
# DEFINE CLASS #
############################################################################################################
class BlueSONG(object):
# INITILIZE THE CLASS:
def __init__(self, path, img_name):
#-------------------------------
# DEFINE GLOBAL VARIABLES (DGV):
#-------------------------------
# USER DEFINED VARIABLES:
self.img_name = img_name # Name of image files
self.path = path # Directory path to data
self.path_img = '/home/nicholas/Dropbox/thesis/latex/pictures/'
self.path_blues = '/home/nicholas/Dropbox/Software/Python/blues/'
self.cross_cut = [50, 500] # Cut of spectral region in cross dispersion
self.orders = [1, 2]
self.n_orders = len(self.orders)
# File handling:
self.img_files = np.sort(glob.glob('{}{}*'.format(self.path, self.img_name)))
self.hdul = np.array([fits.open(str(files)) for files in self.img_files])
# Extract headers and sepearte files:
self.img_type = [self.hdul[i][0].header['IMAGETYP'] for i in range(len(self.img_files))]
self.BF_dex = np.where(np.array(self.img_type)=='bias')[0]
self.DF_dex = np.where(np.array(self.img_type)=='dark')[0]
self.FF_dex = np.where(np.array(self.img_type)=='flat')[0]
self.TA_dex = np.where(np.array(self.img_type)=='thar')[0]
self.SF_dex = np.where(np.array(self.img_type)=='star')[0]
# Open header of object:
header = self.hdul[self.SF_dex[0]][0].header
# Observation information:
self.datetime = header['DATE-OBS'] # Date and time of observation (string)
self.date = self.datetime[:10] # Date of observation (string)
self.jdate = header['JD-DATE'] # Julian date (float)
self.altitude = header['OBJ-ALT'] # [deg] Initial altitude of target during obs (float)
self.seeing = header['SEEING2'] # [arcsec] Running mean seeing on slit guiders (float)
# Target information:
self.target = header['OBJECT'] # Name of target (string)
self.ra = header['OBJ-RA'] # Object Right Accension (string)
self.dec = header['OBJ-DEC'] # Object Declination (string)
self.magnitude = header['OBJ-MAG'] # Magnitude of object (float)
# Dimension constants and arrays:
self.len_disp = header['NAXIS1'] # [pixel] Height of image (int)
self.len_cross = header['NAXIS2'] # [pixel] Width of image (int)
self.cen_disp = int(self.len_disp/2) # [pixel] Center position of disp (int)
self.cen_cross = int(self.len_cross/2) # [pixel] Center position of cross (int)
self.disp = np.arange(self.len_disp) # [pixel] Integers spanning disp (array)
# eShel and CCD setup constants:
self.res_power = 10000 # Resolving power
self.gain = 0.27 # [e-/ADU] Gain at -10 degC
self.ron = 20 # [e-] Read-out-noise
self.pixel_size= header['PIXSIZE1'] # [micro m]
# HK survey constants:
self.V = 3901.000 # [Å] V quasi-continuum center
self.K = 3933.664 # [Å] Ca II K line
self.H = 3968.470 # [Å] Ca II H line
self.R = 4001.000 # [Å] R quasi-continuum center
self.bands = [self.V, self.K, self.H, self.R]
self.VR_bandpass = 20.0 # [Å] Bandpass of V and R continuums
self.HK_bandpass = 1.09 # [Å] Bandpass of K and H lines
######################################################################################################
# CALIBRATION #
######################################################################################################
def image_reduction(self, redo=0, plot=0):
"""
This routine takes data path and loads all image files given in the directory.
It combines the bias, dark, flat, and ThAr frames and make master frames used
for the image reduction of the science frames. The routine checks if master
calibrations frames already exists: (1) if they do it terminates, (2) if not it
continues the image reduction. All calibration frames are saved with an extensions
of the date, and science frames with the extension of the date and time of observation.
----------------------------
INPUT :
----------------------------
path (string): Path to data
plot (integer): Plot flag activated by 1
----------------------------
OUTPUT :
----------------------------
BF_XX-XX-XX (fits): Master bias
DF_XX-XX-XX (fits): Master dark
FF_XX-XX-XX (fits): Master flat
TA_XX-XX-XX (fits): Master flat
SF_XX-XX-XXTXX:XX:XX (fits): Science frame(s): Bias and dark frame calibrated light frames.
"""
#------------------------------------------
# TEST IF CALIBRATION IMAGES ALREADY EXIST:
#------------------------------------------
try:
BF = fits.open('{}BF_{}.fits'.format(self.path, self.date))[0].data
DF = fits.open('{}DF_{}.fits'.format(self.path, self.date))[0].data
FF = fits.open('{}FF_{}.fits'.format(self.path, self.date))[0].data
TA = fits.open('{}TA_{}.fits'.format(self.path, self.date))[0].data
SF = fits.open('{}SF_{}.fits'.format(self.path, self.datetime))[0].data
except IOError:
BF = []
#-------------------------
# ELSE USE AVAILABLE DATA:
#-------------------------
if BF==[] or redo==1:
# Find all calibration images:
BF_i = np.array([fits.getdata(str(self.img_files[i])) for i in self.BF_dex])
DF_i = np.array([fits.getdata(str(self.img_files[i])) for i in self.DF_dex])
FF_i = np.array([fits.getdata(str(self.img_files[i])) for i in self.FF_dex])
TA_i = np.array([fits.getdata(str(self.img_files[i])) for i in self.TA_dex])
SF_i = np.array([fits.getdata(str(self.img_files[i])) for i in self.SF_dex])
# Exposure times:
DF_exptimes = [self.hdul[self.DF_dex[i]][0].header['EXPTIME'] for i in range(len(self.DF_dex))]
FF_exptimes = [self.hdul[self.FF_dex[i]][0].header['EXPTIME'] for i in range(len(self.FF_dex))]
TA_exptimes = [self.hdul[self.TA_dex[i]][0].header['EXPTIME'] for i in range(len(self.TA_dex))]
SF_exptimes = [self.hdul[self.SF_dex[i]][0].header['EXPTIME'] for i in range(len(self.SF_dex))]
# Test if exposure times are the same:
if int(np.sum(np.diff(DF_exptimes))) is not 0:
print('ERROR: Dark exposure times are different!'); sys.exit()
if int(np.sum(np.diff(FF_exptimes))) is not 0:
print('ERROR: Flat exposure times are different!'); sys.exit()
if int(np.sum(np.diff(TA_exptimes))) is not 0:
print('ERROR: ThAr exposure times are different!'); sys.exit()
#---------------------
# PERFORM CALIBRATION:
#---------------------
# Make master bias:
BF = np.median(BF_i, axis=0)
# Make scaled master dark:
DF_current = np.median(DF_i - BF, axis=0)
DF_FF = (FF_exptimes[0]/DF_exptimes[0]) * DF_current
DF_TA = (TA_exptimes[0]/DF_exptimes[0]) * DF_current
DF = (SF_exptimes[0]/DF_exptimes[0]) * DF_current
# Make master flat:
FF = np.median(FF_i - BF - DF_FF, axis=0)
# Make master ThAr:
TA = np.median(TA_i - BF - DF_TA, axis=0)
# Calibrate science frames:
SF = (SF_i - BF - DF)#/(FF/np.max(FF))
#--------------------
# SAVE MASTER FRAMES:
#--------------------
# Find hdulists:
BF_hdul = self.hdul[self.BF_dex[0]][0].header
DF_hdul = self.hdul[self.DF_dex[0]][0].header
FF_hdul = self.hdul[self.FF_dex[0]][0].header
TA_hdul = self.hdul[self.TA_dex[0]][0].header
# Save master calibration images:
fits.writeto('{}BF_{}.fits'.format(self.path, self.date), BF, BF_hdul, overwrite=True)
fits.writeto('{}DF_{}.fits'.format(self.path, self.date), DF, DF_hdul, overwrite=True)
fits.writeto('{}FF_{}.fits'.format(self.path, self.date), FF, FF_hdul, overwrite=True)
fits.writeto('{}TA_{}.fits'.format(self.path, self.date), TA, TA_hdul, overwrite=True)
# Save calibrated science frames one by one:
for i in range(len(self.SF_dex)):
SF_hdul = self.hdul[self.SF_dex[i]][0].header
header = self.hdul[self.SF_dex[i]][0].header['DATE-OBS']
fits.writeto('{}SF_{}.fits'.format(self.path, header), SF[0], SF_hdul, overwrite=True)
# Only use first image if routine is running furter:
SF = SF[0]
#-----------------------------
# LOAD RV AMPLITUDE OF OBJECT:
#-----------------------------
file_object = glob.glob('{}SF*'.format(self.path))
hdul_object = fits.open(str(file_object[0]))
self.rv_amp = hdul_object[0].header['OBJ-RV'] # [km/s] CDS RV amplitude (float)
#-----------------------------------------------------------
if plot==1: pt.plot_image_reduction(BF, DF, FF, TA, SF)
#-----------------------------------------------------------
# Select spectral region of interest:
self.BF = BF; self.DF = DF; self.FF = FF; self.TA = TA
self.F_calib = FF[self.cross_cut[0]:self.cross_cut[1], :].T
self.T_calib = TA[self.cross_cut[0]:self.cross_cut[1], :].T
self.S_calib = SF[self.cross_cut[0]:self.cross_cut[1], :].T
self.noise = np.sqrt(np.mean(BF**2))
#-----------------------------------------------------------
return self.S_calib, self.F_calib, self.T_calib
########################################################################################################
# FIND ORDERS #
########################################################################################################
def trace_orders(self, data=None, smooth_win=10, exclude_border=10, min_order_width=40, \
threshold_abs=0, disp_gap_tol=5, num_orders=5, num_peaks=10, plot=0):
"""
This function find the orders in an eshel spectrum by tracing the maximum light distribution along
each order. First the function finds a center order position and use this as a reference. Next the
function finds the ridges of the specified number of order 'num_orders' using the skfeature package.
Lastely, each order is the discribed by a 5 order polynomial and returned as output.
----------------------------
INPUT :
----------------------------
data (array): A single image
smooth_win (float): Smooth value to enhance orders
exclude_border (float): Border edges that should be exluded
order_min_width (float): Minimum distance to locate where the orders are
threshold_abs (float): Threshold used to locate peaks with skfeature
disp_gap_tol (float): Tolerance for how big a gap there may be
num_orders (float): User specified number of orders the program should find
num_peaks (float): Number of peaks found for each bin
----------------------------
OUTPUT :
----------------------------
order_traces (dict): Orders within 'order x' and corresponding array with polynomials
"""
#------------------------------
# CHECK FOR PROGRAM PARAMETERS:
#------------------------------
if data==None: data = self.F_calib
#----------------------------------
# FIND CENTRAL REFERENCE POSITIONS:
#----------------------------------
# Central position interval
ref_int = [self.cen_disp-5, self.cen_disp+6]
ref_cen_pos = self.find_ref_cen_pos(data, ref_int, smooth_win, exclude_border, min_order_width,\
threshold_abs, num_orders, plot)
#------------------------
# TRACE THE ORDER RIDGES:
#------------------------
ridge_pos_cross, ridge_pos_disp = self.find_order_ridges(data, smooth_win, exclude_border,\
min_order_width, threshold_abs, num_peaks)
#------------------------------------
# FILL IN DATA INTO THE FOUND RIDGES:
#------------------------------------
# Make dict placeholders:
order_traced = {}
order_trace = {}
for i, order_pos in enumerate(np.sort(ref_cen_pos)[::-1]):
# Here "order_pos" is the cross dispersion center value. order_pos[0] simply chooses one
# value and not the increasing list within the loop.
# Using ridges trace each order in each direction:
min_order_width = 10
order_trace_cross, order_trace_disp = self.find_order_outliers(self.cen_disp, order_pos[0],\
ridge_pos_disp, ridge_pos_cross,\
min_order_width, disp_gap_tol)
# Fit ridges with polynomial:
poly_coefs = np.polyfit(order_trace_disp, order_trace_cross, 5)
order_traced['order_{}'.format(i)] = poly_coefs
order_trace['order_{}'.format(i)] = [order_trace_disp, order_trace_cross]
#-----------------------------------------------------------------------------
if plot==1:
pt.plot_trace_order(ridge_pos_disp, ridge_pos_cross, order_trace, order_traced, \
order_trace_disp, self.cen_disp, ref_cen_pos)
#-----------------------------------------------------------------------------
self.ref_cen_pos = ref_cen_pos
self.trace = order_traced
#-----------------------------------------------------------------------------
return order_traced
def find_ref_cen_pos(self, data, ref_int, smooth_win, exclude_border, min_distance, threshold_abs, \
num_peaks, plot):
"""
This function finds the center order position used as a reference.
"""
# Collapse in disp direction to reduce cosmic ray contamination:
# (FIXME done to make this robust against cosmics - maybe it is not needed)
center_rows_median = np.median(data[ref_int[0]:ref_int[1], :], axis=0)
# Smooth cross_dispersion direction to prepare for the peak-detection algorithm:
center_row_median_convolved = bottleneck.move_sum(center_rows_median.astype(np.float), \
smooth_win, min_count=1)
# Find orders using a peak detection function from scikit-image:
order_centres = skfeature.peak_local_max(center_row_median_convolved, \
exclude_border=exclude_border,\
min_distance=min_distance, threshold_rel=0,\
threshold_abs=threshold_abs, num_peaks=num_peaks)
# Peaks detected minus the smooth window applied (simply due to the moving sum of bottleneck):
ref_cen_pos = order_centres - int(smooth_win/2)
#------------------------------------------------------------------------------
if plot==1:
pt.plot_find_ref_cen_pos(center_rows_median, center_row_median_convolved, \
self.len_cross, smooth_win, ref_cen_pos)
#------------------------------------------------------------------------------
return ref_cen_pos
def find_order_ridges(self, data, smooth_win, exclude_border, min_distance, threshold_abs, num_peaks):
"""
This function finds the ridge of each order. It does so by making a slice in cross dispersion and
colvolve that with a smooth filter such as the "bottleneck.move_sum". It then finds the local max
for each slice and saves the position
"""
# Placeholders:
ridge_indices_disp = []
ridge_indices_cross = []
# Loop over the dispersion length (i) and the cross order row:
for i, crossorder in enumerate(data):
# Collapse in dispersion axis:
# TODO should smoothing be handled separately?
top_hat_conv = bottleneck.move_sum(crossorder.astype(np.float), smooth_win, min_count=1)
# Again find the peaks as done in "find_ref_cen_pos":
peaks = skfeature.peak_local_max(top_hat_conv, exclude_border=exclude_border,\
min_distance=min_distance, threshold_rel=0,\
threshold_abs=threshold_abs, indices=True, num_peaks=num_peaks)
# Convert peaks to a list covering the ridges:
peaks -= int(smooth_win/2)
ridge_indices_cross = np.append(ridge_indices_cross, peaks)
ridge_indices_disp = np.append(ridge_indices_disp, np.ones(peaks.shape[0]) * i)
#-----------------------------------------------------
return ridge_indices_cross, ridge_indices_disp
def find_order_outliers(self, cen_disp, ref_cen_cross, all_orders_x, all_orders_y, order_width,\
disp_gap_tol):
"""
This utility takes the found reference positions in cross dispersion and the traced ridges and
locate all the outliers defined by 'order_width' threshold. If center_row is not an integer this
will fail!
"""
# To simplify the code we make some abbreviations:
x = np.unique(all_orders_x)
y_last = ref_cen_cross
x_last = x[cen_disp]
cross_gap_tol = int(order_width/2.)
# Placeholders for outliers:
cross = []
disp = []
# Outliers on the left side of cen_disp:
for xi in x[cen_disp:]:
index_xi = all_orders_x == xi
orders_y = all_orders_y[index_xi]
min_dist_index = np.argmin(np.abs(orders_y - y_last))
new_y_pos = orders_y[min_dist_index]
if (np.abs(new_y_pos - y_last) < cross_gap_tol) & (np.abs(xi - x_last) < disp_gap_tol):
cross.append(new_y_pos)
y_last = cross[-1]
disp.append(xi)
x_last = disp[-1]
y_last = ref_cen_cross
x_last = x[cen_disp]
# Outliers on the right side of cen_disp:
for xi in x[cen_disp-1::-1]:
index_xi = all_orders_x == xi
orders_y = all_orders_y[index_xi]
min_dist_index = np.argmin(np.abs(orders_y - y_last))
new_y_pos = orders_y[min_dist_index]
if (np.abs(new_y_pos - y_last) < cross_gap_tol) & (np.abs(xi - x_last) < disp_gap_tol):
cross.append(new_y_pos)
y_last = cross[-1]
disp.append(xi)
x_last = disp[-1]
index = | np.argsort(disp) | numpy.argsort |
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 10 17:30:57 2019
@author: dennybritz, FritzD
"""
import time
import numpy as np
import CarRentalEnvironment as jack
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 22})
start_time = time.time()
print("start!")
#env = GridworldEnv()
env = jack.env()
env_time = time.time()
iterationCount = 1
print("Run time of transition list generation = {}s".format(env_time-start_time))
# Taken from Policy Evaluation Exercise!
def policy_eval(policy, env, discount_factor, theta=0.00001): #original theta value theta=0.00001
"""
Evaluate a policy given an environment and a full description of the environment's dynamics.
Args:
policy: [S, A] shaped matrix representing the policy.
env: OpenAI env. env.P represents the transition probabilities of the environment.
env.P[s][a] is a list of transition tuples (prob, next_state, reward, done).
env.nS is a number of states in the environment.
env.nA is a number of actions in the environment.
theta: We stop evaluation once our value function change is less than theta for all states.
discount_factor: Gamma discount factor.
Returns:
Vector of length env.nS representing the value function.
"""
# Some visualization of the policy iteration steps
global iterationCount
print("evaluating policy iteration " + str(iterationCount) + ", discount factor = " + str(discount_factor) + ", theta = " + str(theta))
print("Policy:")
visualizePretty(np.reshape(np.argmax(policy, axis=1)-5, env.shape), "policy")
print("")
iterationCount += 1
##
# Start with a random (all 0) value function
V = np.full(env.nS, 0, float) # was originally: V = np.zeros(env.nS)
while True:
delta = 0
for s in range(env.nS):
v = 0
# Look at the possible next actions
for a, action_prob in enumerate(policy[s]):
# For each action, look at the possible next states...
#for tupel in env.P[s][a]:
for prob, next_state, reward, done in env.P[s][a]:
#for prob, next_state, reward, done in tupel:
# Calculate the expected value
v += action_prob * prob * (reward + discount_factor * V[next_state])
# How much our value function changed (across any states)
delta = max(delta, np.abs(v - V[s]))
V[s] = v
# Stop evaluating once our value function change is below a threshold
if delta < theta:
break
return np.array(V)
def policy_improvement(env, discount_factor, theta=0.00001, policy_eval_fn=policy_eval):
"""
Policy Improvement Algorithm. Iteratively evaluates and improves a policy
until an optimal policy is found.
Args:
env: The OpenAI environment.
policy_eval_fn: Policy Evaluation function that takes 3 arguments:
policy, env, discount_factor.
discount_factor: gamma discount factor.
Returns:
A tuple (policy, V).
policy is the optimal policy, a matrix of shape [S, A] where each state s
contains a valid probability distribution over actions.
V is the value function for the optimal policy.
"""
def one_step_lookahead(state, V):
"""
Helper function to calculate the value for all action in a given state.
Args:
state: The state to consider (int)
V: The value to use as an estimator, Vector of length env.nS
Returns:
A vector of length env.nA containing the expected value of each action.
"""
A = np.zeros(env.nA)
for a in range(env.nA):
for prob, next_state, reward, done in env.P[state][a]:
A[a] += prob * (reward + discount_factor * V[next_state])
return A
# Start with a random policy
policy = np.ones([env.nS, env.nA]) / env.nA
while True:
# Evaluate the current policy
V = policy_eval_fn(policy, env, discount_factor, theta)
# Will be set to false if we make any changes to the policy
policy_stable = True
# For each state...
for s in range(env.nS):
# The best action we would take under the currect policy
chosen_a = np.argmax(policy[s])
# Find the best action by one-step lookahead
# Ties are resolved arbitarily
action_values = one_step_lookahead(s, V)
best_a = np.argmax(action_values)
# Greedily update the policy
if chosen_a != best_a:
policy_stable = False
policy[s] = np.eye(env.nA)[best_a]
# If the policy is stable we've found an optimal policy. Return it
if policy_stable:
return policy, V
def visualize(number):
"""
A function that visualizes the value of a number with a character, ASCII style
"""
number = abs(number)
if number < 1:
return " "
if number < 2:
return "-"
if number < 3:
return "="
if number < 4:
return "≡"
if number < 5:
return "▒"
if number < 6:
return "▓"
if number < 7:
return "█"
if number < 8:
return "█"
return "█"
def visualizePretty(array, title="title goes here"):
##
dim_1, dim_2 = array.shape
fig, ax = plt.subplots(figsize=(7,7))
im = ax.imshow(array)
# Loop over data dimensions and create text annotations.
for i in range(dim_1):
for j in range(dim_2):
text = ax.text(j, i, array[i, j],
ha="center", va="center", color="w")
ax.set_title(title)
fig.tight_layout()
plt.show()
##
#policy, v = policy_improvement(env, 0, 1)
policy, v = policy_improvement(env, 0.9, 0.00001)
iteration_time = time.time()
print("Run time of policy iteration = {} sec".format(iteration_time-env_time))
print("Policy Probability Distribution:")
print(policy)
print("")
print("Reshaped Policy (-5 = move 5 cars from B to A, 0 = move no cars, 5 = move 5 cars from A to B):")
#print("(not implemented)")
print(np.reshape(np.argmax(policy, axis=1)-5, env.shape))
print("")
print("visualizePretty:")
visualizePretty(np.reshape(np.argmax(policy, axis=1)-5, env.shape), "policy")
print("Value Function:")
print(v)
print("")
print("Reshaped Grid Value Function:")
#print("(not implemented)")
list3 = []
for number in v:
list3.append(round(number, 3))
#print("(not implemented)")
print(str( | np.reshape(list3, env.shape) | numpy.reshape |
import collections
import time
import numpy as np
import math
import statistics
from datetime import tzinfo, timedelta, datetime
# Perform linear regression on the values in the x and y lists
def linReg(x, y):
numpoints = | np.size(x) | numpy.size |
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 11 16:04:36 2020
Module containing functionality to perform bootstrapping of a 1D data-set.
@author: Dr. Dr. <NAME>
@web : https://dannyvanpoucke.be
"""
import numpy as np
from scipy.special import erf, erfinv
divSqrt2=1.0/np.sqrt(2.0,dtype=np.float64)
Sqrt2=np.sqrt(2.0,dtype=np.float64)
def _sncdf(x: np.float64)->np.float64:
"""
Calculate the standard normal cumulative distribution function for x.
CDF=0.5*[1+erf({x-mu}/{sig*sqrt(2)})], for the standard case mu=0, and sig=1.0
Parameter:
- x: float
"""
return 0.5*(1.0+erf(x*divSqrt2))
def _sndq(x: np.float64)->np.float64:
"""
Calculate x'th quantile of the standard normal distribution function.
Quant=mu+sig*sqrt(2)*erf^(-1)[2x-1], for the standard case mu=0, and sig=1.0
NOTE:
This function is the inverse of _sncdf :-)
Parameter:
- x: float in range 0..1
"""
return Sqrt2*erfinv(2*x-1.0)
#make it a vector-function
sncdf=np.vectorize(_sncdf, [np.float64])
sndq=np.vectorize(_sndq, [np.float64])
def Bootstrap_1Col(col:int, coeflst:list, alpha:float)->tuple:
"""
Single line parallellizable bootstrap for a single column of coefficients/data.
Note that imbedding such a function into a class results in the entire class
being pickled for multiprocessing, which is in no way efficient as the other data
of the class is not touched by this function.
parameters:
- col: the index of the column (for administrative purposes upon return)
- coeflst: the list of coefficients
- alpha: the BCa alpha value for the CI, default=0.05
return:
tuple(col-index, CIlow, CIhigh)
"""
boot=TBootstrap(data=coeflst,Func=np.mean)
boot.NPbootstrap(n_iter=2000, Jackknife=True)
avgm, avgp = boot.ConfidenceInterval(CItype="BCa",alpha=alpha)#95%confidence interval
return tuple([col,avgm,avgp])
class TBootstrap(object):
"""
Class encapsulating some bootstrap functionalities.
properties:
- data: the dataset provide by the user, to apply bootstrapping on. Should be a 1D (numpy) array
- datasize: integer presenting the size of the data-set
- n_bootstrap: number of bootstrap iterations/samples
- statistics: list containing the statistics of n_bootstrap samples
- mean: the mean of the statistics distribution.
- _se_b: the standard error following the bootstrap way of the statistics distribution
- _se_JafterB : the standard-error on the bootstrap-standard-errorthe using jackknife-after-bootstrap
- _JaB_theta_i: A list of Theta_i (the jackknife value for the statistics on the x_i sample) constructed during the Jackknife-after-Bootstrap
- _JaB_theta_mean: the mean value of the above
"""
def __init__(self, data: np.array, Func: None):
"""
Simple initialisation of the Class, by loading the data of the user.
parameters:
- self: the class
- data: the dataset provide by the user, to apply bootstrapping on. Should be a 1D (numpy) array
- RNG : the seed for the
- Func: Function used to calculate the statistics of interest. It should have a shape: Func(data-array)->float
If no function is provided, the numpy.average function is assumed.
"""
self.data=np.array(data) #make sure it is an np-array
self.datasize=self.data.shape[0]
#initialise the other properties on their zero's
self.n_bootstraps=0
self.statistics=list()
self.mean=None
self._se_b=None
self._se_JafterB=None
self._JaB_theta_i=list()
self._JaB_theta_mean=None
self._JaBset=False
if Func is None:
self.StatisticsFunction=np.average
else:
self.StatisticsFunction=Func
@property
def se_b(self):
"""Getter for _se_b."""
if (self._se_b == None):
self.NPbootstrap(Jackknife=False)
return self._se_b
@property
def se_JafterB(self):
"""Getter for _se_JafterB."""
if (self._se_JafterB == None):
self.NPbootstrap(Jackknife=True)
return self._se_JafterB
def NPbootstrap(self, n_iter: int=1000, Jackknife: bool=False):
"""
Performs a nonparametric bootstrap running n_iter bootstrap samples.
Jackknife-after-bootstrap estimate of the accuracy is available.
parameters:
n_iter: integer number of bootstrap samples to be drawn. DEFAULT=1000
Jackknife: boolean indicating if a Jackknife-after-bottstrap accuracy estimate is needed[OPTIONAL, DEFAULT= False]
"""
#from sklearn.utils import resample
#clear the statistics list, if that is not empty
self.statistics.clear()
if (n_iter<2):#make sure no illegal values are provided, if so, switch to default.
n_iter=1000
self.n_bootstraps=n_iter
#np.random.seed() #initialise the random number generator
#seeds=np.random.randint(low=0,high=2**31,size=n_iter) #create a "different" seed for each sample
#If we want to use jackknife-after-bootstrap we need to keep track of all sample-sets.
#So resampling should be done on integer indices which remain stored
#print("n_iter=",n_iter)
s_idx=self.GenBootstrap_idx(self.datasize,n_samples=n_iter)
for ns in range(n_iter):
sample=np.array([ self.data[idx] for idx in s_idx[ns] ])
#sample=resample(self.data,replace=True,random_state=seeds[nr],stratify=None)# will not keep track of the indices
stat=self.StatisticsFunction(sample)
self.statistics.append(stat)
#calculate the mean of the bootstrapped samples
self.mean=np.mean(self.statistics,axis=0)
#The bootstrap standard error is estimated as the "empirical statndard deviation", p159
self._se_b=np.std(self.statistics,axis=0,ddof=1)#ddof=1 to get unbiased estimator of the variance: divsion by N-1 instead of N
if (Jackknife):
self.JackAfterBoot(s_idx)
def JackAfterBoot(self,sample_idx: np.array):
"""
Perform a Jackkife-after-bootstrap run using the integer index-lists
generated for the bootstrap run.
(cf chapt 19.4 of Efron and Tibshirani 1993)
parameters:
- sample_idx : 2D numpy-array, every row contains the selected indexes of 1 sample
"""
import copy
#import time
#start = time.perf_counter_ns()
si_avg=np.zeros(sample_idx.shape[1]) #to track the average of each set
cnt_Bi=np.zeros(sample_idx.shape[1]) #count the number of sets
se_Bi=np.zeros(sample_idx.shape[1])
#run over all samples, and check whether point i is missing
#and calculate the averages and counters
#to speed things up, only transform to sets once:
sample_ids=list()
for nr in range(sample_idx.shape[0]): #row-indices
sample_ids.append(set(sample_idx[nr]))
#end = time.perf_counter_ns()
#print("---- Pre :",(end-start)/1E6," ms")
for nr in range(sample_idx.shape[0]): #row-indices
#sample_ids=set(sample_idx[nr])
for dpi in range(sample_idx.shape[1]): #the index of the missing datapoint
if (dpi not in sample_ids[nr]):
cnt_Bi[dpi]+=1
si_avg[dpi]+=self.statistics[nr]
#end = time.perf_counter_ns()
#print("---- Loop_1:",(end-start)/1E6," ms --> ",sample_idx.shape)
for dpi in range(sample_idx.shape[1]): #now divide to get an average
if (int(cnt_Bi[dpi])>0):#if we have no hits, si_avg should be zero anyhow
si_avg[dpi]=si_avg[dpi]/cnt_Bi[dpi]
#end = time.perf_counter_ns()
#print("---- Loop_2:",(end-start)/1E6," ms --> ")
#keep track of these if we want to have confidence intervals lateron
self._JaB_theta_i=copy.deepcopy(si_avg)
self._JaB_theta_mean=np.mean(self._JaB_theta_i)
#end = time.perf_counter_ns()
#print("---- Inter :",(end-start)/1E6," ms ")
#next calculate the SE_B(i), eq 19.8 p277
for nr in range(sample_idx.shape[0]): #row-indices
#sample_ids=set(sample_idx[nr])
for dpi in range(sample_idx.shape[1]): #the index of the missing datapoint
if (dpi not in sample_ids[nr]):
se_Bi[dpi]+=(self.statistics[nr]-si_avg[dpi])**2
#end = time.perf_counter_ns()
#print("---- Loop_3:",(end-start)/1E6," ms --> ",sample_idx.shape)
for dpi in range(sample_idx.shape[1]): #finish up the se calculation
if (int(cnt_Bi[dpi])>0):#if we have no hits, si_avg should be zero anyhow
se_Bi[dpi]=np.sqrt(se_Bi[dpi]/cnt_Bi[dpi])
#end = time.perf_counter_ns()
#print("---- Loop_4:",(end-start)/1E6," ms --> ")
#finally the Jackknife
avg_se_Bi=0.0
for dpi in range(sample_idx.shape[1]):
avg_se_Bi+=se_Bi[dpi]
avg_se_Bi=avg_se_Bi/sample_idx.shape[1]
var_jack=0
for dpi in range(sample_idx.shape[1]):
var_jack+=(se_Bi[dpi]-avg_se_Bi)**2
var_jack=var_jack*((sample_idx.shape[1]-1)/sample_idx.shape[1])
self._se_JafterB=np.sqrt(var_jack)
self._JaBset=True
#end = time.perf_counter_ns()
#print("---- END :",(end-start)/1E6," ms ")
def GenBootstrap_idx(self, datasize: int, n_samples: int=1000)->np.array:
"""
Returns a 2D numpy array of bootstrap ready indices. The indices for each sample are stored
as the rows.
NOTE:
The storage for this 2D array may be rather large, however, it allows one to use this
index list more than once, which would be the case when using a generator.
(Think: Jackkife-after-bootstrap)
Parameters:
- datasize: the size each sample should be (we don't need the actual data, only the size of the dataset)
- n_samples: the number of samples to create [OPTIONAL, DEFAULT = 1000]
"""
idx=list()
sizetype=np.int16
if (datasize>32000):
sizetype=np.int32
for nr in range(n_samples):
idx.append(np.random.randint(low=0,high=datasize,size=datasize, dtype=sizetype))
#yield np.random.randint(data.shape[0], size=(data.shape[0],))
return np.array(idx)
def ConfidenceInterval(self, CItype: str=None, alpha: float=0.05,n_samples: int=1000) -> tuple:
"""
Returns the confidence interval as a tuple: (low,high), with low and high the absolute
positions of the edges of the confidence interval of the estimated statistic.
Parameters:
- CItype : Which type of confidence interval to use: [DEFAULT=stdint]
- stdint: use the standard interval of 1.96se_boot, only a 95% interval is possible here
- pc : use the percentile method
- BCa : use the bias corrected and accelarated confidence interval
- alpha : the percentile to use for the confidence interval. [DEFAULT=0.05, i.e. the 95% interval]
- n_samples : number of jackknife-bootstrap samples to be used in the BCa method. If none set
the default(=1000) is used. Note that if a Jackknife-after-bootstrap was performed
in NPbootstrap (i.e. Jack=True), then this parameter is ignored, and the earlier
generated statistics are used to calculate the terms of BCa.
"""
from ListTools import checkEqualNDarray, checkEqual
import warnings
warnings.filterwarnings('error')# otherwise dumb python can not catch a division by zero "RuntimeWarning
if (CItype == None):
CItype="stdint"
if (CItype=="pc"):
alow=alpha*0.5
ahigh=1.0-alow
#the numpy quantile function does the trick for us. (percentile just calls quantile=extra overhead)
CIlow=np.quantile(self.statistics,alow,interpolation='linear') #no need to sort the array :-)
CIhigh= | np.quantile(self.statistics,ahigh,interpolation='linear') | numpy.quantile |
import pandas as pd
import numpy as np
from corsempy.model import Model
from scipy.optimize import minimize
class Optimizer:
"""
The optimizer class gets object of class Model and an arbitrary starting point
"""
def __init__(self, md: Model, start_pt: float):
self.md = md
self.start_pt = start_pt
def get_params(self):
"""
gets output of several methods of Model class
:return:
a list of model parameters initialized by start_pt
"""
params = []
gamma = self.md.get_gamma().copy()
beta = self.md.get_beta().copy()
phi = self.md.get_phi().copy()
psi = self.md.get_psi().copy()
psi_xi = self.md.get_psi_xi().copy()
lambdal = self.md.get_lambda().copy()
thetal = self.md.get_theta().copy()
p, q = gamma.shape
m = lambdal.shape[0]
phi_non_redo = list(phi[np.tril_indices(q)]).copy()
psi_non_redo = list(psi[np.tril_indices(p)]).copy()
thetal_non_redo = thetal[np.diag_indices(m)].copy()
for index in range(gamma.reshape(p*q).size):
if gamma.reshape(p*q)[index] == 1:
params.append(self.start_pt)
for index in range(beta.reshape(p**2).size):
if beta.reshape(p**2)[index] == 1:
params.append(self.start_pt)
for index in range(len(phi_non_redo)):
if phi_non_redo[index] == 1:
params.append(self.start_pt)
for index in range(len(psi_non_redo)):
if psi_non_redo[index] == 1:
params.append(self.start_pt)
for index in range(psi_xi.reshape(q*p).size):
if psi_xi.reshape(q*p)[index] == 1:
params.append(self.start_pt)
for index in range(lambdal.reshape((m*(q+p))).size):
if lambdal.reshape(m*(q+p))[index] == 1:
params.append(self.start_pt)
for index in range(len(thetal_non_redo)):
if thetal_non_redo[index] == 1:
params.append(self.start_pt)
return params
def get_matrices(self, params):
"""
gets a lest of parameters and output of several methods of Model class
:return:
the matrices with updated parameters
"""
# params = self.get_params()
par_get = list(params.copy())
p = self.md.get_gamma().shape[0]
q = self.md.get_gamma().shape[1]
m = self.md.get_lambda().shape[0]
beta_new = np.zeros((p, p))
gamma_new = np.zeros((p, q))
phi_new = np.zeros((q, q))
psi_new = np.zeros((p, p))
psi_xi_new = np.zeros((p, q))
lambdal_new = np.zeros((m, q+p))
thetal_new = np.zeros((m, m))
for index1 in range(p):
for index2 in range(q):
if self.md.get_gamma()[index1, index2] == 1:
gamma_new[index1, index2] = par_get[0]
par_get.pop(0)
for index1 in range(p):
for index2 in range(p):
if self.md.get_beta()[index1, index2] == 1:
beta_new[index1, index2] = par_get[0]
par_get.pop(0)
for index1 in range(q):
for index2 in range(q):
if self.md.get_phi()[index1, index2] == 1:
phi_new[index1, index2] = phi_new[index2, index1] = par_get[0]
par_get.pop(0)
for index1 in range(p):
for index2 in range(p):
if self.md.get_psi()[index1, index2] == 1:
psi_new[index1, index2] = psi_new[index2, index1] = par_get[0]
par_get.pop(0)
for index1 in range(p):
for index2 in range(q):
if self.md.get_psi_xi()[index1, index2] == 1:
psi_xi_new[index1, index2] = par_get[0]
par_get.pop(0)
for index1 in range(m):
for index2 in range(q+p):
if self.md.get_lambda()[index1, index2] == 1:
lambdal_new[index1, index2] = par_get[0]
par_get.pop(0)
for index1 in range(m):
for index2 in range(m):
if self.md.get_theta()[index1, index2] == 1:
thetal_new[index1, index2] = par_get[0]
par_get.pop(0)
return gamma_new, beta_new, phi_new, psi_new, psi_xi_new, lambdal_new, thetal_new
def compute_sigma_jor(self, params):
"""
gets a lest of parameters and output of several methods of Model class
:return:
the covariance matrix implied by the model using Joreskog's formula
"""
p, q = self.get_matrices(params)[0].shape
gamma_j, beta_j, phi_j, psi_j, psi_xi_j, lambdal_j, thetal_j = list(self.get_matrices(params)).copy()
inv_mat = np.linalg.inv( | np.eye(p) | numpy.eye |
'''
Author : Scallions
Date : 2020-10-13 09:56:23
LastEditors : Scallions
LastEditTime : 2020-10-27 19:41:14
FilePath : /BRITS/brits.py
Description : Remove prediction only for imputation
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.nn.parameter import Parameter
from tqdm import tqdm
import numpy as np
import math
from sklearn import metrics
SEQ_LEN = 36
RNN_HID_SIZE = 64
def binary_cross_entropy_with_logits(input, target, weight=None, size_average=True, reduce=True):
if not (target.size() == input.size()):
raise ValueError("Target size ({}) must be the same as input size ({})".format(target.size(), input.size()))
max_val = (-input).clamp(min=0)
loss = input - input * target + max_val + ((-max_val).exp() + (-input - max_val).exp()).log()
if weight is not None:
loss = loss * weight
if not reduce:
return loss
elif size_average:
return loss.mean()
else:
return loss.sum()
class FeatureRegression(nn.Module):
def __init__(self, input_size):
super(FeatureRegression, self).__init__()
self.build(input_size)
def build(self, input_size):
self.W = Parameter(torch.Tensor(input_size, input_size))
self.b = Parameter(torch.Tensor(input_size))
m = torch.ones(input_size, input_size) - torch.eye(input_size, input_size)
self.register_buffer('m', m)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(0))
self.W.data.uniform_(-stdv, stdv)
if self.b is not None:
self.b.data.uniform_(-stdv, stdv)
def forward(self, x):
z_h = F.linear(x, self.W * Variable(self.m), self.b)
return z_h
class TemporalDecay(nn.Module):
def __init__(self, input_size, output_size, diag = False):
super(TemporalDecay, self).__init__()
self.diag = diag
self.build(input_size, output_size)
def build(self, input_size, output_size):
self.W = Parameter(torch.Tensor(output_size, input_size))
self.b = Parameter(torch.Tensor(output_size))
if self.diag == True:
assert(input_size == output_size)
m = torch.eye(input_size, input_size)
self.register_buffer('m', m)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.W.size(0))
self.W.data.uniform_(-stdv, stdv)
if self.b is not None:
self.b.data.uniform_(-stdv, stdv)
def forward(self, d):
if self.diag == True:
gamma = F.relu(F.linear(d, self.W * Variable(self.m), self.b))
else:
gamma = F.relu(F.linear(d, self.W, self.b))
gamma = torch.exp(-gamma)
return gamma
class Rits(nn.Module):
def __init__(self):
super().__init__()
self.build()
def build(self):
self.rnn_cell = nn.LSTMCell(9 * 2, RNN_HID_SIZE)
self.temp_decay_h = TemporalDecay(input_size = 9, output_size = RNN_HID_SIZE, diag = False)
self.temp_decay_x = TemporalDecay(input_size = 9, output_size = 9, diag = True)
self.hist_reg = nn.Linear(RNN_HID_SIZE, 9)
self.feat_reg = FeatureRegression(9)
self.weight_combine = nn.Linear(9 * 2, 9)
self.dropout = nn.Dropout(p = 0.25)
self.out = nn.Linear(RNN_HID_SIZE, 1)
def forward(self, data, direct):
# Original sequence with 24 time steps
# values = data[direct]['values']
# masks = data[direct]['masks']
# deltas = data[direct]['deltas']
if direct == 'forward':
values = data[0].float()
masks = data[1].float()
deltas = data[2].float()
else:
values = data[3].float()
masks = data[4].float()
deltas = data[5].float()
# evals = data[direct]['evals']
# eval_masks = data[direct]['eval_masks']
# labels = data['labels'].view(-1, 1)
# is_train = data['is_train'].view(-1, 1)
h = Variable(torch.zeros((values.size()[0], RNN_HID_SIZE)))
c = Variable(torch.zeros((values.size()[0], RNN_HID_SIZE)))
if torch.cuda.is_available():
h, c = h.cuda(), c.cuda()
x_loss = 0.0
# y_loss = 0.0
imputations = []
length = values.shape[1]
for t in range(length):
x = values[:, t, :]
if torch.isnan(x).any():
print("hhh")
m = masks[:, t, :]
d = deltas[:, t, :]
gamma_h = self.temp_decay_h(d)
gamma_x = self.temp_decay_x(d)
h = h * gamma_h
x_h = self.hist_reg(h)
x_loss += torch.sum(torch.abs(x - x_h) * m) / (torch.sum(m) + 1e-5)
x_c = m * x + (1 - m) * x_h
z_h = self.feat_reg(x_c)
x_loss += torch.sum(torch.abs(x - z_h) * m) / (torch.sum(m) + 1e-5)
alpha = self.weight_combine(torch.cat([gamma_x, m], dim = 1))
c_h = alpha * z_h + (1 - alpha) * x_h
x_loss += torch.sum(torch.abs(x - c_h) * m) / (torch.sum(m) + 1e-5)
c_c = m * x + (1 - m) * c_h
inputs = torch.cat([c_c, m], dim = 1)
h, c = self.rnn_cell(inputs, (h, c))
imputations.append(c_c.unsqueeze(dim = 1))
imputations = torch.cat(imputations, dim = 1)
# y_h = self.out(h)
# y_loss = binary_cross_entropy_with_logits(y_h, labels, reduce = False)
# y_loss = torch.sum(y_loss * is_train) / (torch.sum(is_train) + 1e-5)
# y_h = F.sigmoid(y_h)
return {'loss': x_loss / SEQ_LEN ,\
'imputations': imputations, }
def run_on_batch(self, data, optimizer):
ret = self(data, direct = 'forward')
if optimizer is not None:
optimizer.zero_grad()
ret['loss'].backward()
optimizer.step()
return ret
class Brits(nn.Module):
def __init__(self):
super().__init__()
self.build()
def build(self):
self.rits_f = Rits()
self.rits_b = Rits()
def forward(self, data):
ret_f = self.rits_f(data, 'forward')
ret_b = self.reverse(self.rits_b(data, 'backward'))
ret = self.merge_ret(ret_f, ret_b)
return ret
def merge_ret(self, ret_f, ret_b):
loss_f = ret_f['loss']
loss_b = ret_b['loss']
loss_c = self.get_consistency_loss(ret_f['imputations'], ret_b['imputations'])
loss = loss_f + loss_b + loss_c
# predictions = (ret_f['predictions'] + ret_b['predictions']) / 2
imputations = (ret_f['imputations'] + ret_b['imputations']) / 2
ret_f['loss'] = loss
# ret_f['predictions'] = predictions
ret_f['imputations'] = imputations
return ret_f
def get_consistency_loss(self, pred_f, pred_b):
loss = torch.pow(pred_f - pred_b, 2.0).mean()
return loss
def reverse(self, ret):
def reverse_tensor(tensor_):
if tensor_.dim() <= 1:
return tensor_
indices = range(tensor_.size()[1])[::-1]
indices = Variable(torch.LongTensor(indices), requires_grad = False)
if torch.cuda.is_available():
indices = indices.cuda()
return tensor_.index_select(1, indices)
for key in ret:
ret[key] = reverse_tensor(ret[key])
return ret
def run_on_batch(self, data, optimizer):
ret = self(data)
if optimizer is not None:
optimizer.zero_grad()
ret['loss'].backward()
optimizer.step()
return ret
def to_var(var):
if torch.is_tensor(var):
var = Variable(var)
if torch.cuda.is_available():
var = var.cuda()
return var
if isinstance(var, int) or isinstance(var, float) or isinstance(var, str):
return var
if isinstance(var, dict):
for key in var:
var[key] = to_var(var[key])
return var
if isinstance(var, list):
var = list(map(lambda x: to_var(x), var))
return var
def stop_gradient(x):
if isinstance(x, float):
return x
if isinstance(x, tuple):
return tuple(map(lambda y: Variable(y.data), x))
return Variable(x.data)
def zero_var(sz):
x = Variable(torch.zeros(sz))
if torch.cuda.is_available():
x = x.cuda()
return x
def fill(ts):
tsc = ts.copy()
global SEQ_LEN
SEQ_LEN = 30
# x_min = ts.min()
# x_max = ts.max()
# tsc = (tsc - x_min) / (x_max - x_min)
xm = ts.mean()
xs = ts.std()
tsc = (tsc - xm) / xs
ds = MyDataset(tsc)
dataloader = torch.utils.data.DataLoader(dataset=ds,batch_size = 256, drop_last=False)
model = train(tsc, dataloader)
complete(tsc, model)
# tsc = tsc * (x_max - x_min) + x_min
tsc = tsc * xs + xm
return tsc
class MyDataset(torch.utils.data.Dataset):
def __init__(self, data):
self.data = data
# self.gap_idx = self.data.isna().any()
# self.idxs = data.index[data.isna().T.any()==False]
# self.tsg = self.data.loc[:, self.gap_idx == True] # na ts
# self.tsd = self.data.loc[:, self.gap_idx == False] # no na ts
def __len__(self):
return self.data.shape[0] - 370
def __getitem__(self, index):
data = self.data.iloc[index:index+366,:]
masks = 1 - ((np.random.rand(*data.shape) < 0.20).astype(np.int) | data.isna().to_numpy().astype(np.int))
values = data.to_numpy().copy()
values[np.isnan(values)] = 0
masks[:5,:] = 1
masks[-5:,:] = 1
for i in range(data.shape[0]):
if np.isnan(values[i,:]).any():
print("hh")
deltas = np.zeros_like(data)
lastobs = np.zeros(9)
for i in range(data.shape[0]):
deltas[i,:] = i - lastobs
lastobs = lastobs * (1 - masks[i]) + i * masks[i]
bvalues = values[::-1,:].copy()
bmasks = masks[::-1,:].copy()
bdeltas = np.zeros_like(data)
lastobs = np.zeros(9)
for i in range(data.shape[0]):
bdeltas[i,:] = i - lastobs
lastobs = lastobs * (1 - bmasks[i]) + i * bmasks[i]
return values, masks, deltas, bvalues, bmasks, bdeltas
# return self.tsd.loc[idx-pd.Timedelta(days=self.range_):idx+pd.Timedelta(days=self.range_),:].to_numpy().flatten(), self.tsg.loc[idx, :].to_numpy()
def train(tsc, dataloader):
# make generator discriminator
# train all
### make model
model = Brits()
### train
epochs = 1000
opt = torch.optim.Adam(model.parameters(), lr=0.0001)
model.train()
for epoch in tqdm(range(epochs)):
run_loss = 0.0
for i, x in enumerate(dataloader):
# x = x.float()
x = to_var(x)
ret = model.run_on_batch(x, opt)
run_loss += ret['loss'].item()
imputations = ret['imputations']
return model
def complete(tsc, model):
global SEQ_LEN
SEQ_LEN = tsc.shape[0]
data = tsc
masks = 1 - ((np.random.rand(*data.shape) < 0.20).astype(np.int) | data.isna().to_numpy().astype(np.int))
values = data.to_numpy().copy()
values[np.isnan(values)] = 0
masks[:5,:] = 1
masks[-5:,:] = 1
for i in range(data.shape[0]):
if np.isnan(values[i,:]).any():
print("hh")
deltas = np.zeros_like(data)
lastobs = | np.zeros(9) | numpy.zeros |
# -*- coding: utf-8 -*-
"""
@author: jzh
"""
import numpy as np, keras.backend as K
import tensorflow as tf
from keras.optimizers import Adam
from keras.layers import Input
from keras.models import Model
from src.VAE import get_gcn, get_gcn_vae_id, get_gcn_vae_exp
from src.data_utils import normalize_fromfile, denormalize_fromfile, data_recover, batch_change
from src.get_mesh import get_mesh
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh, ArpackNoConvergence
from src.mesh import V2M2
ref_name = 'data/disentangle/Mean_Face.obj'
'''
GCN code was inspired by https://github.com/tkipf/keras-gcn
'''
def get_general_laplacian(adj):
return (sp.diags(np.power(np.array(adj.sum(1)), 1).flatten(), 0) - adj) * sp.diags(np.power(np.array(adj.sum(1)), -1).flatten(), 0)
def normalize_adj(adj, symmetric=True):
if symmetric:
d = sp.diags(np.power(np.array(adj.sum(1)), -0.5).flatten(), 0)
a_norm = adj.dot(d).transpose().dot(d).tocsr()
else:
d = sp.diags(np.power(np.array(adj.sum(1)), -1).flatten(), 0)
a_norm = d.dot(adj).tocsr()
return a_norm
def normalized_laplacian(adj, symmetric=True):
adj_normalized = normalize_adj(adj, symmetric)
laplacian = (sp.eye(adj.shape[0], dtype=np.float32)) - adj_normalized
return laplacian
def preprocess_adj(adj, symmetric=True):
adj = adj + sp.eye(adj.shape[0])
adj = normalize_adj(adj, symmetric)
return adj
def rescale_laplacian(laplacian):
try:
print('Calculating largest eigenvalue of normalized graph Laplacian...')
largest_eigval = (eigsh(laplacian, 1, which='LM', return_eigenvectors=False))[0]
except ArpackNoConvergence:
print('Eigenvalue calculation did not converge! Using largest_eigval=2 instead.')
largest_eigval = 2
scaled_laplacian = 2.0 / largest_eigval * laplacian - sp.eye(laplacian.shape[0])
return scaled_laplacian
def chebyshev_polynomial(X, k):
"""Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices."""
print(('Calculating Chebyshev polynomials up to order {}...').format(k))
T_k = list()
T_k.append(sp.eye(X.shape[0]).tocsr())
T_k.append(X)
def chebyshev_recurrence(T_k_minus_one, T_k_minus_two, X):
X_ = sp.csr_matrix(X, copy=True)
return 2 * X_.dot(T_k_minus_one) - T_k_minus_two
for i in range(2, k + 1):
T_k.append(chebyshev_recurrence(T_k[-1], T_k[-2], X))
T_k = [i.astype(np.float32) for i in T_k]
return T_k
class gcn_dis_model(object):
def __init__(self, input_dim, prefix, suffix, lr, load, feature_dim=9, latent_dim_id=50, latent_dim_exp=25, kl_weight=0.000005,weight_decay = 0.00001, batch_size=1, MAX_DEGREE=2):
self.input_dim = input_dim
self.prefix = prefix
self.suffix = suffix
self.load = load
self.latent_dim_id = latent_dim_id
self.latent_dim_exp = latent_dim_exp
self.feature_dim = feature_dim
self.v = int(input_dim / feature_dim)
self.hidden_dim = 300
self.lr = lr
self.kl_weight = K.variable(kl_weight)
self.M_list = np.load(('data/{}/max_data.npy').format(self.prefix))
self.m_list = np.load(('data/{}/min_data.npy').format(self.prefix))
self.batch_size = batch_size
self.weight_decay = K.variable(weight_decay)
self.build_model(MAX_DEGREE)
class disentangle_model_vae_id(gcn_dis_model):
def build_model(self, MAX_DEGREE):
SYM_NORM = True
A = sp.load_npz(('data/{}/FWH_adj_matrix.npz').format(self.prefix))
L = normalized_laplacian(A, SYM_NORM)
T_k = chebyshev_polynomial(rescale_laplacian(L), MAX_DEGREE)
support = MAX_DEGREE + 1
self.kl_loss, self.encoder, self.decoder, self.gcn_vae_id = get_gcn_vae_id(T_k, support, batch_size=self.batch_size, feature_dim=self.feature_dim, v=self.v, input_dim=self.input_dim, latent_dim = self.latent_dim_id)
self.neutral_face = Input(shape=(self.input_dim,))
real = self.gcn_vae_id.get_input_at(0)
ratio = K.variable(self.M_list - self.m_list)
if self.feature_dim == 9:
self.id_loss = K.mean(K.abs((self.neutral_face - self.gcn_vae_id(real)) * ratio))/1.8
else:
ori_mesh = K.reshape(((self.neutral_face - self.gcn_vae_id(real)) * ratio), (self.batch_size, -1, 3))
self.id_loss = K.mean(K.sqrt(K.sum(K.square(ori_mesh) ,axis=-1)))/1.8
weights = self.gcn_vae_id.trainable_weights#+[self.scalar]
self.regularization_loss = 0
for w in weights:
#print(w)
if self.feature_dim == 9:
self.regularization_loss += self.weight_decay* K.sum(K.square(w))
else:
self.regularization_loss += 0.00002* K.sum(K.square(w))
self.loss = self.id_loss + self.kl_weight * self.kl_loss + self.regularization_loss
self.opt = Adam(lr=self.lr)
training_updates = (self.opt).get_updates(weights, [], self.loss)
self.train_func = K.function([real, self.neutral_face], [self.id_loss, self.loss, self.kl_loss, self.regularization_loss], training_updates)
self.test_func = K.function([real, self.neutral_face], [self.id_loss, self.loss, self.kl_loss, self.regularization_loss])
if self.load:
self.load_models()
def save_models(self):
self.gcn_vae_id.save_weights(('model/gcn_vae_id_model/gcn_vae_id{}{}.h5').format(self.prefix, self.suffix))
self.encoder.save_weights(('model/gcn_vae_id_model/encoder_id_{}{}.h5').format(self.prefix, self.suffix))
self.decoder.save_weights(('model/gcn_vae_id_model/decoder_id_{}{}.h5').format(self.prefix, self.suffix))
def load_models(self):
self.gcn_vae_id.load_weights(('model/gcn_vae_id_model/gcn_vae_id{}{}.h5').format(self.prefix, self.suffix))
def code_bp(self, epoch):
#test_array = np.vstack(batch_change(np.fromfile('data/disentangle/real_data/{}.dat'.format(i))) for i in range(287))
test_array = np.load('data/{}/test_data.npy'.format(self.prefix))[47*np.arange(10)]
frt = np.loadtxt('src/front_part_v.txt', dtype = int)
mask = np.zeros(11510)
mask[frt] = 1
normalize_fromfile(test_array, self.M_list, self.m_list)
num = 0
target_feature = test_array[num:num+1]
#x = [0,2,6,7,8]
K.set_learning_phase(0)
start = self.encoder.predict(target_feature, batch_size = self.batch_size)
code = K.variable(start[0])
target_feature_holder = Input(shape=(self.input_dim, ))
mask = K.variable(np.repeat(mask, 9))
ratio = K.variable(self.M_list - self.m_list)
cross_id = K.variable(np.tile(np.array([1,0,0,1,0,1,0,0,0]), 11510))
target = self.decoder(code)
loss = K.mean(K.abs(ratio*(target - target_feature_holder)))/1.8
lr = self.lr
for circle in range(10):
training_updates = (Adam(lr=lr)).get_updates([code], [], loss)
bp_func = K.function([target_feature_holder], [loss, target], training_updates)
for i in range(epoch):
err, result_mesh = bp_func([target_feature])
print('Epoch: {}, loss: {}'.format(i,err))
lr = input('learning rate change? ')
lr = float(lr)
if lr == 0:
break
start_norm = self.decoder.predict(start[0],batch_size = self.batch_size)
start_id = denormalize_fromfile(start_norm, self.M_list, self.m_list)
result_id = denormalize_fromfile(result_mesh, self.M_list, self.m_list)
denormalize_fromfile(target_feature, self.M_list, self.m_list)
import shutil, os
shutil.rmtree('data/mesh')
os.mkdir('data/mesh')
V2M2(get_mesh(ref_name, data_recover(start_id)), 'data/mesh/start_id.obj')
V2M2(get_mesh(ref_name, data_recover(result_id)), 'data/mesh/result_id.obj')
V2M2(get_mesh(ref_name, data_recover(target_feature)), 'data/mesh/target_id.obj')
def train(self, epoch):
def get_interpolate_data(prefix, num = 2000):
if prefix == 'disentangle':
#interpolate_data = np.vstack(batch_change(np.fromfile('data/{}/real_data/{}.dat'.format(prefix, i))) for i in range(num))
interpolate_data = np.vstack(batch_change(np.fromfile('data/{}/Interpolated_results/interpolated_{}.dat'.format(prefix, i))) for i in range(num))
else:
interpolate_data = np.vstack(np.fromfile('data/{}/Interpolated_results/interpolated_{}.dat'.format(prefix, i)) for i in range(num))
mean_inter = np.mean(interpolate_data, axis = 0)
interpolate_data = interpolate_data - mean_inter
return interpolate_data
inter_array = get_interpolate_data(self.prefix, 4000)
data_array = np.load(('data/{}/train_data.npy').format(self.prefix))
test_array = np.load(('data/{}/test_data.npy').format(self.prefix))
mean_exp = np.load(('data/{}/MeanFace_data.npy').format(self.prefix))
normalize_fromfile(test_array, self.M_list, self.m_list)
normalize_fromfile(mean_exp, self.M_list, self.m_list)
normalize_fromfile(data_array, self.M_list, self.m_list)
normalize_fromfile(inter_array, self.M_list, self.m_list)
ITS = data_array.shape[0]//self.batch_size
log = np.zeros((epoch*ITS,))
test_log = np.zeros((epoch*ITS,))
constant_list = np.arange(data_array.shape[0])
inter_list = np.arange(inter_array.shape[0])
display_step = 50
for i in range(epoch):
np.random.shuffle(constant_list)
np.random.shuffle(inter_list)
# for index, j in enumerate(constant_list):
for index, j in enumerate(zip(*[iter(constant_list)]*self.batch_size)):
# l = np.random.randint(0, 47)
l = | np.random.randint(0,47,self.batch_size) | numpy.random.randint |
import numpy as np
import warnings
def evaluate(env, agent, writer, all_rewards, all_deviations_mean, all_deviations_std, over_episodes=100):
done, ep_reward, values, values_std, action_values, entropies, qval_delta = False, [], [], [], [], [], []
state = env.reset()
while not done:
action, value, entropy = agent.policy(state, eval=True)
state, reward, done, _ = env.step(action)
ep_reward.append(reward)
values.append(value.numpy().mean())
values_std.append(value.numpy().std())
if len(value.view(-1)) > action:
action_values.append(value.view(-1)[action].item())
else:
action_values.append(np.nan)
entropies.append(entropy)
# calculate target discounted reward
cum_reward, cr = np.zeros_like(ep_reward), 0
for i in reversed(range(len(ep_reward))):
cr = cr + ep_reward[i]
cum_reward[i] = cr
cr *= agent.discount
for i, qval in enumerate(action_values):
# compare action value with real outcome
qval_delta.append(qval - cum_reward[i])
all_rewards.append(sum(ep_reward))
all_deviations_mean.append(np.mean(qval_delta))
all_deviations_std.append(np.std(qval_delta))
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
writer.add_scalar("eval/Reward", sum(ep_reward), len(all_rewards))
writer.add_scalar("eval/Reward (SMA)", np.nanmean(all_rewards[-over_episodes:]), len(all_rewards))
writer.add_scalar("eval/Action-Value deviation (mean)", np.nanmean(qval_delta), len(all_rewards))
writer.add_scalar("eval/Action-Value deviation (mean) (SMA)", np.nanmean(all_deviations_mean[-over_episodes:]),
len(all_rewards))
writer.add_scalar("eval/Action-Value deviation (std)", np.nanstd(qval_delta), len(all_rewards))
writer.add_scalar("eval/Action-Value deviation (std) (SMA)", np.nanmean(all_deviations_std[-over_episodes:]),
len(all_rewards))
writer.add_scalar("eval/Max-Action-Value (mean)", np.nanmean(action_values), len(all_rewards))
writer.add_scalar("eval/Max-Action-Value (std)", np.nanstd(action_values), len(all_rewards))
writer.add_scalar("eval/Values", np.nanmean(values), len(all_rewards))
writer.add_scalar("eval/Action-Values std", | np.nanmean(values_std) | numpy.nanmean |
# Authors: <NAME> <<EMAIL>>
# License: BSD 3 clause
import numpy as np
from numpy import sin, sign, pi, abs, sqrt
import matplotlib.pyplot as plt
from numba import vectorize
from numba.types import float32, float64
# Examples of signals originally made by <NAME>.
@vectorize([float32(float32), float64(float64)], nopython=True)
def heavisine(x):
"""Computes the "heavisine" signal.
Parameters
----------
x : `numpy.array`, shape=(n_samples,)
Inputs values
Returns
-------
output : `numpy.array`, shape=(n_samples,)
The value of the signal at given inputs
Notes
-----
Inputs are supposed to belong to [0, 1] and must have dtype `float32` or `float64`
"""
return 4 * sin(4 * pi * x) - sign(x - 0.3) - sign(0.72 - x)
@vectorize([float32(float32), float64(float64)], nopython=True)
def bumps(x):
"""Computes the "bumps" signal.
Parameters
----------
x : `numpy.array`, shape=(n_samples,)
Inputs values
Returns
-------
output : `numpy.array`, shape=(n_samples,)
The value of the signal at given inputs
Notes
-----
Inputs are supposed to belong to [0, 1] and must have dtype `float32` or `float64`
"""
pos = | np.array([0.1, 0.13, 0.15, 0.23, 0.25, 0.4, 0.44, 0.65, 0.76, 0.78, 0.81]) | numpy.array |
import deepchem
import numpy as np
import tensorflow as tf
import unittest
from nose.plugins.attrib import attr
from deepchem.models.tensorgraph.models import resnet50
from deepchem.models.tensorgraph import layers
class TestResNet50(unittest.TestCase):
@attr('slow')
def test_resnet50(self):
resnet = deepchem.models.tensorgraph.models.resnet50.ResNet50(
learning_rate=0.003,
img_rows=128,
img_cols=128,
model_dir='./resnet50/')
# Prepare Training Data
data = np.ones((1, 128, 128, 3))
position = np.array([1])
labels = np.zeros((1, resnet.classes))
labels[ | np.arange(1) | numpy.arange |
import numpy as np
import torch
from torchvision import models
import torch.nn as nn
import torch.nn.functional as F
import math
__all__=['Rmac_Pooling','Mac_Pooling','SPoC_pooling','Ramac_Pooling','Grmac_Pooling']
class Rmac_Pooling(nn.Module):
def __init__(self):
super(Rmac_Pooling,self).__init__()
def get_regions(self,L=[1,2,4]):
ovr = 0.4 # desired overlap of neighboring regions
steps = np.array([1,2, 3, 4, 5, 6], dtype=np.float) # possible regions for the long dimension
w = min(self.W,self.H)
b = (max(self.H,self.W) - w)/steps
idx = np.argmin(abs(((w ** 2 - w*b)/w ** 2)-ovr)) # steps(idx) regions for long dimension
# region overplus per dimension
Wd, Hd = 0, 0
if self.H < self.W:
Wd = idx + 1
elif self.H > self.W:
Hd = idx + 1
regions = []
for l in L:
wl = | np.floor(2*w/(l+1)) | numpy.floor |
import unittest
import numpy as np
import tensorflow as tf
from flowdec import fft_utils_np, fft_utils_tf, test_utils
from numpy.testing import assert_array_equal, assert_almost_equal
class TestFFTUtils(unittest.TestCase):
def _test_padding(self, d, k, actual):
def tf_fn():
dt = tf.constant(d, dtype=tf.float32)
kt = tf.constant(k, dtype=tf.float32)
return fft_utils_tf.get_fft_pad_dims(dt, kt)
tf_res = test_utils.exec_tf(tf_fn)
np_res = fft_utils_np.get_fft_pad_dims(d, k)
self.assertTrue(type(tf_res) is np.ndarray)
self.assertTrue(type(np_res) is np.ndarray)
self.assertTrue(np.array_equal(tf_res, np_res))
self.assertTrue( | np.array_equal(tf_res, actual) | numpy.array_equal |
# -*- coding: utf-8 -*-
from __future__ import print_function
from datetime import datetime
from numpy import random
import numpy as np
from pandas.compat import lrange, lzip, u
from pandas import (compat, DataFrame, Series, Index, MultiIndex,
date_range, isnull)
import pandas as pd
from pandas.util.testing import (assert_series_equal,
assert_frame_equal,
assertRaisesRegexp)
from pandas.core.common import PerformanceWarning
import pandas.util.testing as tm
from pandas.tests.frame.common import TestData
class TestDataFrameSelectReindex(tm.TestCase, TestData):
# These are specific reindex-based tests; other indexing tests should go in
# test_indexing
_multiprocess_can_split_ = True
def test_drop_names(self):
df = DataFrame([[1, 2, 3], [3, 4, 5], [5, 6, 7]],
index=['a', 'b', 'c'],
columns=['d', 'e', 'f'])
df.index.name, df.columns.name = 'first', 'second'
df_dropped_b = df.drop('b')
df_dropped_e = df.drop('e', axis=1)
df_inplace_b, df_inplace_e = df.copy(), df.copy()
df_inplace_b.drop('b', inplace=True)
df_inplace_e.drop('e', axis=1, inplace=True)
for obj in (df_dropped_b, df_dropped_e, df_inplace_b, df_inplace_e):
self.assertEqual(obj.index.name, 'first')
self.assertEqual(obj.columns.name, 'second')
self.assertEqual(list(df.columns), ['d', 'e', 'f'])
self.assertRaises(ValueError, df.drop, ['g'])
self.assertRaises(ValueError, df.drop, ['g'], 1)
# errors = 'ignore'
dropped = df.drop(['g'], errors='ignore')
expected = Index(['a', 'b', 'c'], name='first')
self.assert_index_equal(dropped.index, expected)
dropped = df.drop(['b', 'g'], errors='ignore')
expected = Index(['a', 'c'], name='first')
self.assert_index_equal(dropped.index, expected)
dropped = df.drop(['g'], axis=1, errors='ignore')
expected = Index(['d', 'e', 'f'], name='second')
self.assert_index_equal(dropped.columns, expected)
dropped = df.drop(['d', 'g'], axis=1, errors='ignore')
expected = Index(['e', 'f'], name='second')
self.assert_index_equal(dropped.columns, expected)
def test_drop_col_still_multiindex(self):
arrays = [['a', 'b', 'c', 'top'],
['', '', '', 'OD'],
['', '', '', 'wx']]
tuples = sorted(zip(*arrays))
index = MultiIndex.from_tuples(tuples)
df = DataFrame(np.random.randn(3, 4), columns=index)
del df[('a', '', '')]
assert(isinstance(df.columns, MultiIndex))
def test_drop(self):
simple = DataFrame({"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]})
assert_frame_equal(simple.drop("A", axis=1), simple[['B']])
assert_frame_equal(simple.drop(["A", "B"], axis='columns'),
simple[[]])
assert_frame_equal(simple.drop([0, 1, 3], axis=0), simple.ix[[2], :])
assert_frame_equal(simple.drop(
[0, 3], axis='index'), simple.ix[[1, 2], :])
self.assertRaises(ValueError, simple.drop, 5)
self.assertRaises(ValueError, simple.drop, 'C', 1)
self.assertRaises(ValueError, simple.drop, [1, 5])
self.assertRaises(ValueError, simple.drop, ['A', 'C'], 1)
# errors = 'ignore'
assert_frame_equal(simple.drop(5, errors='ignore'), simple)
assert_frame_equal(simple.drop([0, 5], errors='ignore'),
simple.ix[[1, 2, 3], :])
assert_frame_equal(simple.drop('C', axis=1, errors='ignore'), simple)
assert_frame_equal(simple.drop(['A', 'C'], axis=1, errors='ignore'),
simple[['B']])
# non-unique - wheee!
nu_df = DataFrame(lzip(range(3), range(-3, 1), list('abc')),
columns=['a', 'a', 'b'])
assert_frame_equal(nu_df.drop('a', axis=1), nu_df[['b']])
assert_frame_equal(nu_df.drop('b', axis='columns'), nu_df['a'])
nu_df = nu_df.set_index(pd.Index(['X', 'Y', 'X']))
nu_df.columns = list('abc')
assert_frame_equal(nu_df.drop('X', axis='rows'), nu_df.ix[["Y"], :])
assert_frame_equal(nu_df.drop(['X', 'Y'], axis=0), nu_df.ix[[], :])
# inplace cache issue
# GH 5628
df = pd.DataFrame(np.random.randn(10, 3), columns=list('abc'))
expected = df[~(df.b > 0)]
df.drop(labels=df[df.b > 0].index, inplace=True)
assert_frame_equal(df, expected)
def test_drop_multiindex_not_lexsorted(self):
# GH 11640
# define the lexsorted version
lexsorted_mi = MultiIndex.from_tuples(
[('a', ''), ('b1', 'c1'), ('b2', 'c2')], names=['b', 'c'])
lexsorted_df = DataFrame([[1, 3, 4]], columns=lexsorted_mi)
self.assertTrue(lexsorted_df.columns.is_lexsorted())
# define the non-lexsorted version
not_lexsorted_df = DataFrame(columns=['a', 'b', 'c', 'd'],
data=[[1, 'b1', 'c1', 3],
[1, 'b2', 'c2', 4]])
not_lexsorted_df = not_lexsorted_df.pivot_table(
index='a', columns=['b', 'c'], values='d')
not_lexsorted_df = not_lexsorted_df.reset_index()
self.assertFalse(not_lexsorted_df.columns.is_lexsorted())
# compare the results
tm.assert_frame_equal(lexsorted_df, not_lexsorted_df)
expected = lexsorted_df.drop('a', axis=1)
with tm.assert_produces_warning(PerformanceWarning):
result = not_lexsorted_df.drop('a', axis=1)
tm.assert_frame_equal(result, expected)
def test_merge_join_different_levels(self):
# GH 9455
# first dataframe
df1 = DataFrame(columns=['a', 'b'], data=[[1, 11], [0, 22]])
# second dataframe
columns = MultiIndex.from_tuples([('a', ''), ('c', 'c1')])
df2 = DataFrame(columns=columns, data=[[1, 33], [0, 44]])
# merge
columns = ['a', 'b', ('c', 'c1')]
expected = DataFrame(columns=columns, data=[[1, 11, 33], [0, 22, 44]])
with tm.assert_produces_warning(UserWarning):
result = pd.merge(df1, df2, on='a')
tm.assert_frame_equal(result, expected)
# join, see discussion in GH 12219
columns = ['a', 'b', ('a', ''), ('c', 'c1')]
expected = DataFrame(columns=columns,
data=[[1, 11, 0, 44], [0, 22, 1, 33]])
with tm.assert_produces_warning(UserWarning):
result = df1.join(df2, on='a')
tm.assert_frame_equal(result, expected)
def test_reindex(self):
newFrame = self.frame.reindex(self.ts1.index)
for col in newFrame.columns:
for idx, val in compat.iteritems(newFrame[col]):
if idx in self.frame.index:
if np.isnan(val):
self.assertTrue(np.isnan(self.frame[col][idx]))
else:
self.assertEqual(val, self.frame[col][idx])
else:
self.assertTrue(np.isnan(val))
for col, series in compat.iteritems(newFrame):
self.assertTrue(tm.equalContents(series.index, newFrame.index))
emptyFrame = self.frame.reindex(Index([]))
self.assertEqual(len(emptyFrame.index), 0)
# Cython code should be unit-tested directly
nonContigFrame = self.frame.reindex(self.ts1.index[::2])
for col in nonContigFrame.columns:
for idx, val in compat.iteritems(nonContigFrame[col]):
if idx in self.frame.index:
if np.isnan(val):
self.assertTrue(np.isnan(self.frame[col][idx]))
else:
self.assertEqual(val, self.frame[col][idx])
else:
self.assertTrue(np.isnan(val))
for col, series in compat.iteritems(nonContigFrame):
self.assertTrue(tm.equalContents(series.index,
nonContigFrame.index))
# corner cases
# Same index, copies values but not index if copy=False
newFrame = self.frame.reindex(self.frame.index, copy=False)
self.assertIs(newFrame.index, self.frame.index)
# length zero
newFrame = self.frame.reindex([])
self.assertTrue(newFrame.empty)
self.assertEqual(len(newFrame.columns), len(self.frame.columns))
# length zero with columns reindexed with non-empty index
newFrame = self.frame.reindex([])
newFrame = newFrame.reindex(self.frame.index)
self.assertEqual(len(newFrame.index), len(self.frame.index))
self.assertEqual(len(newFrame.columns), len(self.frame.columns))
# pass non-Index
newFrame = self.frame.reindex(list(self.ts1.index))
self.assert_index_equal(newFrame.index, self.ts1.index)
# copy with no axes
result = self.frame.reindex()
assert_frame_equal(result, self.frame)
self.assertFalse(result is self.frame)
def test_reindex_nan(self):
df = pd.DataFrame([[1, 2], [3, 5], [7, 11], [9, 23]],
index=[2, np.nan, 1, 5],
columns=['joe', 'jim'])
i, j = [np.nan, 5, 5, np.nan, 1, 2, np.nan], [1, 3, 3, 1, 2, 0, 1]
assert_frame_equal(df.reindex(i), df.iloc[j])
df.index = df.index.astype('object')
assert_frame_equal(df.reindex(i), df.iloc[j], check_index_type=False)
# GH10388
df = pd.DataFrame({'other': ['a', 'b', np.nan, 'c'],
'date': ['2015-03-22', np.nan,
'2012-01-08', np.nan],
'amount': [2, 3, 4, 5]})
df['date'] = pd.to_datetime(df.date)
df['delta'] = (pd.to_datetime('2015-06-18') - df['date']).shift(1)
left = df.set_index(['delta', 'other', 'date']).reset_index()
right = df.reindex(columns=['delta', 'other', 'date', 'amount'])
assert_frame_equal(left, right)
def test_reindex_name_remains(self):
s = Series(random.rand(10))
df = DataFrame(s, index=np.arange(len(s)))
i = Series(np.arange(10), name='iname')
df = df.reindex(i)
self.assertEqual(df.index.name, 'iname')
df = df.reindex(Index(np.arange(10), name='tmpname'))
self.assertEqual(df.index.name, 'tmpname')
s = Series(random.rand(10))
df = DataFrame(s.T, index=np.arange(len(s)))
i = Series( | np.arange(10) | numpy.arange |
import os
import sys
sys.path.insert(1, os.path.dirname(os.path.realpath(__file__)) + '/../')
from common import utils
import models
from common.log import log, Log, LogLevel
from common.state import State
from common import cuda
from common import paths
import common.torch
import common.numpy
import math
import torch
import numpy
import argparse
class TestPerturbations:
"""
Test a trained classifier.
"""
def __init__(self, args=None):
"""
Initialize.
:param args: optional arguments if not to use sys.argv
:type args: [str]
"""
self.args = None
""" Arguments of program. """
parser = self.get_parser()
if args is not None:
self.args = parser.parse_args(args)
else:
self.args = parser.parse_args()
self.test_codes = None
""" (numpy.ndarray) Codes for testing. """
self.perturbation_codes = None
""" (numpy.ndarray) Perturbation codes for testing. """
self.model = None
""" (encoder.Encoder) Model to train. """
self.perturbations = None
""" (numpy.ndarray) Perturbations per test image. """
self.original_accuracy = None
""" (numpy.ndarray) Success of classifier. """
self.transfer_accuracy = None
""" (numpy.ndarray) Success of classifier. """
self.original_success = None
""" (numpy.ndarray) Success per test image. """
self.transfer_success = None
""" (numpy.ndarray) Success per test image. """
if self.args.log_file:
utils.makedir(os.path.dirname(self.args.log_file))
Log.get_instance().attach(open(self.args.log_file, 'w'))
log('-- ' + self.__class__.__name__)
for key in vars(self.args):
log('[Testing] %s=%s' % (key, str(getattr(self.args, key))))
def __del__(self):
"""
Remove log file.
"""
if self.args is not None:
if self.args.log_file:
Log.get_instance().detach(self.args.log_file)
def get_parser(self):
"""
Get parser.
:return: parser
:rtype: argparse.ArgumentParser
"""
parser = argparse.ArgumentParser(description='Attack classifier.')
parser.add_argument('-test_images_file', default=paths.test_images_file(), help='HDF5 file containing images.', type=str)
parser.add_argument('-test_codes_file', default=paths.test_codes_file(), help='HDF5 file containing codes.', type=str)
parser.add_argument('-label_index', default=2, help='Label index.', type=int)
parser.add_argument('-classifier_file', default=paths.state_file('classifier'), help='Snapshot state file of classifier.', type=str)
parser.add_argument('-perturbations_file', default=paths.results_file('classifier/perturbations'), help='HDF5 file containing perturbations.', type=str)
parser.add_argument('-original_success_file', default=paths.results_file('classifier/success'), help='HDF5 file containing success.', type=str)
parser.add_argument('-transfer_success_file', default=paths.results_file('classifier/transfer_success', help='HDF5 file containing transfer success.'), type=str)
parser.add_argument('-original_accuracy_file', default=paths.results_file('classifier/accuracy'), help='HDF5 file containing accuracy.', type=str)
parser.add_argument('-transfer_accuracy_file', default=paths.results_file('classifier/transfer_accuracy', help='HDF5 file containing transfer accuracy.'), type=str)
parser.add_argument('-log_file', default=paths.log_file('classifier/attacks'), help='Log file.', type=str)
parser.add_argument('-batch_size', default=128, help='Batch size of attack.', type=int)
parser.add_argument('-no_gpu', dest='use_gpu', action='store_false')
# Some network parameters.
parser.add_argument('-network_architecture', default='standard', help='Classifier architecture to use.', type=str)
parser.add_argument('-network_activation', default='relu', help='Activation function to use.', type=str)
parser.add_argument('-network_no_batch_normalization', default=False, help='Do not use batch normalization.', action='store_true')
parser.add_argument('-network_channels', default=16, help='Channels of first convolutional layer, afterwards channels are doubled.', type=int)
parser.add_argument('-network_dropout', default=False, action='store_true', help='Whether to use dropout.')
parser.add_argument('-network_units', default='1024,1024,1024,1024', help='Units for MLP.')
return parser
def test(self):
"""
Test classifier to identify valid samples to attack.
"""
self.model.eval()
assert self.model.training is False
assert self.perturbation_codes.shape[0] == self.perturbations.shape[0]
assert self.test_codes.shape[0] == self.test_images.shape[0]
assert len(self.perturbations.shape) == 4
assert len(self.test_images.shape) == 4
perturbations_accuracy = None
num_batches = int(math.ceil(self.perturbations.shape[0] / self.args.batch_size))
for b in range(num_batches):
b_start = b * self.args.batch_size
b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])
batch_perturbations = common.torch.as_variable(self.perturbations[b_start: b_end], self.args.use_gpu)
batch_classes = common.torch.as_variable(self.perturbation_codes[b_start: b_end], self.args.use_gpu)
batch_perturbations = batch_perturbations.permute(0, 3, 1, 2)
output_classes = self.model(batch_perturbations)
values, indices = torch.max(torch.nn.functional.softmax(output_classes, dim=1), dim=1)
errors = torch.abs(indices - batch_classes)
perturbations_accuracy = common.numpy.concatenate(perturbations_accuracy, errors.data.cpu().numpy())
for n in range(batch_perturbations.size(0)):
log('[Testing] %d: original success=%d, transfer accuracy=%d' % (n, self.original_success[b_start + n], errors[n].item()))
self.transfer_success[perturbations_accuracy == 0] = -1
self.transfer_success = self.transfer_success.reshape((self.N_samples, self.N_attempts))
self.transfer_success = numpy.swapaxes(self.transfer_success, 0, 1)
utils.makedir(os.path.dirname(self.args.transfer_success_file))
utils.write_hdf5(self.args.transfer_success_file, self.transfer_success)
log('[Testing] wrote %s' % self.args.transfer_success_file)
num_batches = int(math.ceil(self.test_images.shape[0] / self.args.batch_size))
for b in range(num_batches):
b_start = b * self.args.batch_size
b_end = min((b + 1) * self.args.batch_size, self.test_images.shape[0])
batch_images = common.torch.as_variable(self.test_images[b_start: b_end], self.args.use_gpu)
batch_classes = common.torch.as_variable(self.test_codes[b_start: b_end], self.args.use_gpu)
batch_images = batch_images.permute(0, 3, 1, 2)
output_classes = self.model(batch_images)
values, indices = torch.max(torch.nn.functional.softmax(output_classes, dim=1), dim=1)
errors = torch.abs(indices - batch_classes)
self.transfer_accuracy = common.numpy.concatenate(self.transfer_accuracy, errors.data.cpu().numpy())
if b % 100 == 0:
log('[Testing] computing accuracy %d' % b)
self.transfer_accuracy = self.transfer_accuracy == 0
log('[Testing] original accuracy=%g' % (numpy.sum(self.original_accuracy)/float(self.original_accuracy.shape[0])))
log('[Testing] transfer accuracy=%g' % (numpy.sum(self.transfer_accuracy)/float(self.transfer_accuracy.shape[0])))
log('[Testing] accuracy difference=%g' % ( | numpy.sum(self.transfer_accuracy != self.original_accuracy) | numpy.sum |
import numpy as np
import pandas as pd
import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, TensorDataset, DataLoader
from torch.nn.utils.rnn import pad_sequence
from utils import build_dense_graph
# Graph-based Knowledge Tracing: Modeling Student Proficiency Using Graph Neural Network.
# For more information, please refer to https://dl.acm.org/doi/10.1145/3350546.3352513
# Author: jhljx
# Email: <EMAIL>
class KTDataset(Dataset):
def __init__(self, features, questions, answers):
super(KTDataset, self).__init__()
self.features = features
self.questions = questions
self.answers = answers
def __getitem__(self, index):
return self.features[index], self.questions[index], self.answers[index]
def __len__(self):
return len(self.features)
def pad_collate(batch):
(features, questions, answers) = zip(*batch)
features = [torch.LongTensor(feat) for feat in features]
questions = [torch.LongTensor(qt) for qt in questions]
answers = [torch.LongTensor(ans) for ans in answers]
feature_pad = pad_sequence(features, batch_first=True, padding_value=-1)
question_pad = pad_sequence(questions, batch_first=True, padding_value=-1)
answer_pad = pad_sequence(answers, batch_first=True, padding_value=-1)
return feature_pad, question_pad, answer_pad
def load_dataset(file_path, batch_size, graph_type, dkt_graph_path=None, train_ratio=0.7, val_ratio=0.2, shuffle=True, model_type='GKT', use_binary=True, res_len=2, use_cuda=True):
r"""
Parameters:
file_path: input file path of knowledge tracing data
batch_size: the size of a student batch
graph_type: the type of the concept graph
shuffle: whether to shuffle the dataset or not
use_cuda: whether to use GPU to accelerate training speed
Return:
concept_num: the number of all concepts(or questions)
graph: the static graph is graph type is in ['Dense', 'Transition', 'DKT'], otherwise graph is None
train_data_loader: data loader of the training dataset
valid_data_loader: data loader of the validation dataset
test_data_loader: data loader of the test dataset
NOTE: stole some code from https://github.com/lccasagrande/Deep-Knowledge-Tracing/blob/master/deepkt/data_util.py
"""
df = pd.read_csv(file_path)
if "skill_id" not in df.columns:
raise KeyError(f"The column 'skill_id' was not found on {file_path}")
if "correct" not in df.columns:
raise KeyError(f"The column 'correct' was not found on {file_path}")
if "user_id" not in df.columns:
raise KeyError(f"The column 'user_id' was not found on {file_path}")
# if not (df['correct'].isin([0, 1])).all():
# raise KeyError(f"The values of the column 'correct' must be 0 or 1.")
# Step 1.1 - Remove questions without skill
df.dropna(subset=['skill_id'], inplace=True)
# Step 1.2 - Remove users with a single answer
df = df.groupby('user_id').filter(lambda q: len(q) > 1).copy()
# Step 2 - Enumerate skill id
df['skill'], _ = pd.factorize(df['skill_id'], sort=True) # we can also use problem_id to represent exercises
# Step 3 - Cross skill id with answer to form a synthetic feature
# use_binary: (0,1); !use_binary: (1,2,3,4,5,6,7,8,9,10,11,12). Either way, the correct result index is guaranteed to be 1
if use_binary:
df['skill_with_answer'] = df['skill'] * 2 + df['correct']
else:
df['skill_with_answer'] = df['skill'] * res_len + df['correct'] - 1
# Step 4 - Convert to a sequence per user id and shift features 1 timestep
feature_list = []
question_list = []
answer_list = []
seq_len_list = []
def get_data(series):
feature_list.append(series['skill_with_answer'].tolist())
question_list.append(series['skill'].tolist())
answer_list.append(series['correct'].eq(1).astype('int').tolist())
seq_len_list.append(series['correct'].shape[0])
df.groupby('user_id').apply(get_data)
max_seq_len = np.max(seq_len_list)
print('max seq_len: ', max_seq_len)
student_num = len(seq_len_list)
print('student num: ', student_num)
feature_dim = int(df['skill_with_answer'].max() + 1)
print('feature_dim: ', feature_dim)
question_dim = int(df['skill'].max() + 1)
print('question_dim: ', question_dim)
concept_num = question_dim
# print('feature_dim:', feature_dim, 'res_len*question_dim:', res_len*question_dim)
# assert feature_dim == res_len * question_dim
kt_dataset = KTDataset(feature_list, question_list, answer_list)
train_size = int(train_ratio * student_num)
val_size = int(val_ratio * student_num)
test_size = student_num - train_size - val_size
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(kt_dataset, [train_size, val_size, test_size])
print('train_size: ', train_size, 'val_size: ', val_size, 'test_size: ', test_size)
train_data_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=pad_collate)
valid_data_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=pad_collate)
test_data_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=shuffle, collate_fn=pad_collate)
graph = None
if model_type == 'GKT':
if graph_type == 'Dense':
graph = build_dense_graph(concept_num)
elif graph_type == 'Transition':
graph = build_transition_graph(question_list, seq_len_list, train_dataset.indices, student_num, concept_num)
elif graph_type == 'DKT':
graph = build_dkt_graph(dkt_graph_path, concept_num)
if use_cuda and graph_type in ['Dense', 'Transition', 'DKT']:
graph = graph.cuda()
return concept_num, graph, train_data_loader, valid_data_loader, test_data_loader
def build_transition_graph(question_list, seq_len_list, indices, student_num, concept_num):
graph = np.zeros((concept_num, concept_num))
student_dict = dict(zip(indices, | np.arange(student_num) | numpy.arange |
import os
import numpy as np
import gym
import argparse
import sys
import rlschool
from rlschool.quadrupedal.envs.env_wrappers.MonitorEnv import Param_Dict
from rlschool.quadrupedal.robots import robot_config
from rlschool.quadrupedal.envs.env_builder import SENSOR_MODE
from copy import copy
import pybullet as p
sensor_mode = copy(SENSOR_MODE)
def param2dynamic_dict(params):
param = copy(params)
param = np.clip(param,-1,1)
dynamic_param = {}
dynamic_param['control_latency'] = np.clip(40+10*param[0],0,80)
dynamic_param['footfriction'] = | np.clip(0.2+10*param[1],0,20) | numpy.clip |
from collections import defaultdict
from collections.abc import MutableSequence, Iterable
import io
import numpy as np
from numpy.polynomial import Polynomial
import pandas as pd
from .data import NEUTRON_MASS
from .endf import get_head_record, get_cont_record, get_tab1_record, get_list_record
try:
from .reconstruct import wave_number, penetration_shift, reconstruct_mlbw, \
reconstruct_slbw, reconstruct_rm
_reconstruct = True
except ImportError:
_reconstruct = False
import openmc.checkvalue as cv
class Resonances(object):
"""Resolved and unresolved resonance data
Parameters
----------
ranges : list of openmc.data.ResonanceRange
Distinct energy ranges for resonance data
Attributes
----------
ranges : list of openmc.data.ResonanceRange
Distinct energy ranges for resonance data
resolved : openmc.data.ResonanceRange or None
Resolved resonance range
unresolved : openmc.data.Unresolved or None
Unresolved resonance range
"""
def __init__(self, ranges):
self.ranges = ranges
def __iter__(self):
for r in self.ranges:
yield r
@property
def ranges(self):
return self._ranges
@property
def resolved(self):
resolved_ranges = [r for r in self.ranges
if not isinstance(r, Unresolved)]
if len(resolved_ranges) > 1:
raise ValueError('More than one resolved range present')
elif len(resolved_ranges) == 0:
return None
else:
return resolved_ranges[0]
@property
def unresolved(self):
for r in self.ranges:
if isinstance(r, Unresolved):
return r
else:
return None
@ranges.setter
def ranges(self, ranges):
cv.check_type('resonance ranges', ranges, MutableSequence)
self._ranges = cv.CheckedList(ResonanceRange, 'resonance ranges',
ranges)
@classmethod
def from_endf(cls, ev):
"""Generate resonance data from an ENDF evaluation.
Parameters
----------
ev : openmc.data.endf.Evaluation
ENDF evaluation
Returns
-------
openmc.data.Resonances
Resonance data
"""
file_obj = io.StringIO(ev.section[2, 151])
# Determine whether discrete or continuous representation
items = get_head_record(file_obj)
n_isotope = items[4] # Number of isotopes
ranges = []
for iso in range(n_isotope):
items = get_cont_record(file_obj)
abundance = items[1]
fission_widths = (items[3] == 1) # fission widths are given?
n_ranges = items[4] # number of resonance energy ranges
for j in range(n_ranges):
items = get_cont_record(file_obj)
resonance_flag = items[2] # flag for resolved (1)/unresolved (2)
formalism = items[3] # resonance formalism
if resonance_flag in (0, 1):
# resolved resonance region
erange = _FORMALISMS[formalism].from_endf(ev, file_obj, items)
elif resonance_flag == 2:
# unresolved resonance region
erange = Unresolved.from_endf(file_obj, items, fission_widths)
# erange.material = self
ranges.append(erange)
return cls(ranges)
class ResonanceRange(object):
"""Resolved resonance range
Parameters
----------
target_spin : float
Intrinsic spin, :math:`I`, of the target nuclide
energy_min : float
Minimum energy of the resolved resonance range in eV
energy_max : float
Maximum energy of the resolved resonance range in eV
channel : dict
Dictionary whose keys are l-values and values are channel radii as a
function of energy
scattering : dict
Dictionary whose keys are l-values and values are scattering radii as a
function of energy
Attributes
----------
channel_radius : dict
Dictionary whose keys are l-values and values are channel radii as a
function of energy
energy_max : float
Maximum energy of the resolved resonance range in eV
energy_min : float
Minimum energy of the resolved resonance range in eV
scattering_radius : dict
Dictionary whose keys are l-values and values are scattering radii as a
function of energ
target_spin : float
Intrinsic spin, :math:`I`, of the target nuclide
"""
def __init__(self, target_spin, energy_min, energy_max, channel, scattering):
self.target_spin = target_spin
self.energy_min = energy_min
self.energy_max = energy_max
self.channel_radius = channel
self.scattering_radius = scattering
self._prepared = False
self._parameter_matrix = {}
def __copy__(self):
cls = type(self)
new_copy = cls.__new__(cls)
new_copy.__dict__.update(self.__dict__)
new_copy._prepared = False
return new_copy
@classmethod
def from_endf(cls, ev, file_obj, items):
"""Create resonance range from an ENDF evaluation.
This factory method is only used when LRU=0, indicating that only a
scattering radius appears in MF=2, MT=151. All subclasses of
ResonanceRange override this method with their own.
Parameters
----------
ev : openmc.data.endf.Evaluation
ENDF evaluation
file_obj : file-like object
ENDF file positioned at the second record of a resonance range
subsection in MF=2, MT=151
items : list
Items from the CONT record at the start of the resonance range
subsection
Returns
-------
openmc.data.ResonanceRange
Resonance range data
"""
energy_min, energy_max = items[0:2]
# For scattering radius-only, NRO must be zero
assert items[4] == 0
# Get energy-independent scattering radius
items = get_cont_record(file_obj)
target_spin = items[0]
ap = Polynomial((items[1],))
# Calculate channel radius from ENDF-102 equation D.14
a = Polynomial((0.123 * (NEUTRON_MASS*ev.target['mass'])**(1./3.) + 0.08,))
return cls(target_spin, energy_min, energy_max, {0: a}, {0: ap})
def reconstruct(self, energies):
"""Evaluate cross section at specified energies.
Parameters
----------
energies : float or Iterable of float
Energies at which the cross section should be evaluated
Returns
-------
3-tuple of float or numpy.ndarray
Elastic, capture, and fission cross sections at the specified
energies
"""
if not _reconstruct:
raise RuntimeError("Resonance reconstruction not available.")
# Pre-calculate penetrations and shifts for resonances
if not self._prepared:
self._prepare_resonances()
if isinstance(energies, Iterable):
elastic = np.zeros_like(energies)
capture = np.zeros_like(energies)
fission = np.zeros_like(energies)
for i, E in enumerate(energies):
xse, xsg, xsf = self._reconstruct(self, E)
elastic[i] = xse
capture[i] = xsg
fission[i] = xsf
else:
elastic, capture, fission = self._reconstruct(self, energies)
return {2: elastic, 102: capture, 18: fission}
class MultiLevelBreitWigner(ResonanceRange):
"""Multi-level Breit-Wigner resolved resonance formalism data.
Multi-level Breit-Wigner resolved resonance data is identified by LRF=2 in
the ENDF-6 format.
Parameters
----------
target_spin : float
Intrinsic spin, :math:`I`, of the target nuclide
energy_min : float
Minimum energy of the resolved resonance range in eV
energy_max : float
Maximum energy of the resolved resonance range in eV
channel : dict
Dictionary whose keys are l-values and values are channel radii as a
function of energy
scattering : dict
Dictionary whose keys are l-values and values are scattering radii as a
function of energy
Attributes
----------
atomic_weight_ratio : float
Atomic weight ratio of the target nuclide given as a function of
l-value. Note that this may be different than the value for the
evaluation as a whole.
channel_radius : dict
Dictionary whose keys are l-values and values are channel radii as a
function of energy
energy_max : float
Maximum energy of the resolved resonance range in eV
energy_min : float
Minimum energy of the resolved resonance range in eV
parameters : pandas.DataFrame
Energies, spins, and resonances widths for each resonance
q_value : dict
Q-value to be added to incident particle's center-of-mass energy to
determine the channel energy for use in the penetrability factor. The
keys of the dictionary are l-values.
scattering_radius : dict
Dictionary whose keys are l-values and values are scattering radii as a
function of energy
target_spin : float
Intrinsic spin, :math:`I`, of the target nuclide
"""
def __init__(self, target_spin, energy_min, energy_max, channel, scattering):
super().__init__(target_spin, energy_min, energy_max, channel,
scattering)
self.parameters = None
self.q_value = {}
self.atomic_weight_ratio = None
# Set resonance reconstruction function
if _reconstruct:
self._reconstruct = reconstruct_mlbw
else:
self._reconstruct = None
@classmethod
def from_endf(cls, ev, file_obj, items):
"""Create MLBW data from an ENDF evaluation.
Parameters
----------
ev : openmc.data.endf.Evaluation
ENDF evaluation
file_obj : file-like object
ENDF file positioned at the second record of a resonance range
subsection in MF=2, MT=151
items : list
Items from the CONT record at the start of the resonance range
subsection
Returns
-------
openmc.data.MultiLevelBreitWigner
Multi-level Breit-Wigner resonance parameters
"""
# Read energy-dependent scattering radius if present
energy_min, energy_max = items[0:2]
nro, naps = items[4:6]
if nro != 0:
params, ape = get_tab1_record(file_obj)
# Other scatter radius parameters
items = get_cont_record(file_obj)
target_spin = items[0]
ap = Polynomial((items[1],)) # energy-independent scattering-radius
NLS = items[4] # number of l-values
# Read resonance widths, J values, etc
channel_radius = {}
scattering_radius = {}
q_value = {}
records = []
for l in range(NLS):
items, values = get_list_record(file_obj)
l_value = items[2]
awri = items[0]
q_value[l_value] = items[1]
competitive = items[3]
# Calculate channel radius from ENDF-102 equation D.14
a = | Polynomial((0.123 * (NEUTRON_MASS*awri)**(1./3.) + 0.08,)) | numpy.polynomial.Polynomial |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import unittest
import numpy as np
import paddle
from common_test import CommonTest
from util import softmax_with_cross_entropy, slow
from paddlenlp.transformers import BigBirdForSequenceClassification, \
BigBirdPretrainingCriterion, BigBirdForPretraining, BigBirdModel, \
BigBirdForQuestionAnswering, BigBirdForTokenClassification, BigBirdForMultipleChoice, \
BigBirdForMaskedLM, BigBirdForCausalLM
from paddlenlp.transformers import create_bigbird_rand_mask_idx_list
def create_input_data(config, seed=None):
if seed is not None:
np.random.seed(seed)
rand_mask_idx_list = create_bigbird_rand_mask_idx_list(
config["num_layers"], config["seq_len"], config["seq_len"],
config["nhead"], config["block_size"], config["window_size"],
config["num_global_blocks"], config["num_rand_blocks"], config["seed"])
input_ids = np.random.randint(low=0,
high=config['vocab_size'],
size=(config["batch_size"],
config["seq_len"]))
num_to_predict = int(config["seq_len"] * 0.15)
masked_lm_positions = np.random.choice(
config["seq_len"], (config["batch_size"], num_to_predict),
replace=False)
masked_lm_positions = np.sort(masked_lm_positions)
pred_padding_len = config["seq_len"] - num_to_predict
temp_masked_lm_positions = np.full(masked_lm_positions.size,
0,
dtype=np.int32)
mask_token_num = 0
for i, x in enumerate(masked_lm_positions):
for j, pos in enumerate(x):
temp_masked_lm_positions[
mask_token_num] = i * config["seq_len"] + pos
mask_token_num += 1
masked_lm_positions = temp_masked_lm_positions
return rand_mask_idx_list, input_ids, masked_lm_positions
class NpBigBirdPretrainingCriterion(object):
def __init__(self, vocab_size, use_nsp=False, ignore_index=0):
self.vocab_size = vocab_size
self.use_nsp = use_nsp
self.ignore_index = ignore_index
def __call__(self, prediction_scores, seq_relationship_score,
masked_lm_labels, next_sentence_labels, masked_lm_scale,
masked_lm_weights):
masked_lm_loss = softmax_with_cross_entropy(
prediction_scores, masked_lm_labels, ignore_index=self.ignore_index)
masked_lm_loss = np.transpose(masked_lm_loss, [1, 0])
masked_lm_loss = np.sum(masked_lm_loss * masked_lm_weights) / (
np.sum(masked_lm_weights) + 1e-5)
scale = 1.0
if not self.use_nsp:
scale = 0.0
next_sentence_loss = softmax_with_cross_entropy(seq_relationship_score,
next_sentence_labels)
return masked_lm_loss + np.mean(next_sentence_loss) * scale
class TestBigBirdForSequenceClassification(CommonTest):
def set_input(self):
self.config = copy.deepcopy(
BigBirdModel.pretrained_init_configuration['bigbird-base-uncased'])
self.config['num_layers'] = 2
self.config['vocab_size'] = 1024
self.config['attn_dropout'] = 0.0
self.config['hidden_dropout_prob'] = 0.0
self.config['dim_feedforward'] = 1024
self.config['seq_len'] = 1024
self.config['batch_size'] = 2
self.config['max_position_embeddings'] = 2048
self.rand_mask_idx_list, self.input_ids, self.masked_lm_positions = create_input_data(
self.config)
def set_output(self):
self.expected_shape = (self.config['batch_size'], 2)
def setUp(self):
self.set_model_class()
self.set_input()
self.set_output()
def set_model_class(self):
self.TEST_MODEL_CLASS = BigBirdForSequenceClassification
def test_forward(self):
bigbird = BigBirdModel(**self.config)
model = self.TEST_MODEL_CLASS(bigbird)
input_ids = paddle.to_tensor(self.input_ids)
rand_mask_idx_list = paddle.to_tensor(self.rand_mask_idx_list)
output = model(input_ids, rand_mask_idx_list=rand_mask_idx_list)
self.check_output_equal(self.expected_shape, output.numpy().shape)
class TestBigBirdForQuestionAnswering(CommonTest):
def set_input(self):
self.config = copy.deepcopy(
BigBirdModel.pretrained_init_configuration['bigbird-base-uncased'])
self.config['num_layers'] = 2
self.config['vocab_size'] = 1024
self.config['attn_dropout'] = 0.0
self.config['hidden_dropout_prob'] = 0.0
self.config['dim_feedforward'] = 1024
self.config['seq_len'] = 1024
self.config['batch_size'] = 2
self.config['max_position_embeddings'] = 2048
self.rand_mask_idx_list, self.input_ids, self.masked_lm_positions = create_input_data(
self.config)
def set_output(self):
self.expected_shape1 = (self.config['batch_size'],
self.config['seq_len'])
self.expected_shape2 = (self.config['batch_size'],
self.config['seq_len'])
def setUp(self):
self.set_model_class()
self.set_input()
self.set_output()
def set_model_class(self):
self.TEST_MODEL_CLASS = BigBirdForQuestionAnswering
def test_forward(self):
bigbird = BigBirdModel(**self.config)
model = self.TEST_MODEL_CLASS(bigbird)
input_ids = paddle.to_tensor(self.input_ids)
rand_mask_idx_list = paddle.to_tensor(self.rand_mask_idx_list)
start_logits, end_logits = model(input_ids,
rand_mask_idx_list=rand_mask_idx_list)
self.check_output_equal(self.expected_shape1,
start_logits.numpy().shape)
self.check_output_equal(self.expected_shape2, end_logits.numpy().shape)
class TestBigBirdForTokenClassification(CommonTest):
def set_input(self):
self.config = copy.deepcopy(
BigBirdModel.pretrained_init_configuration['bigbird-base-uncased'])
self.config['num_layers'] = 2
self.config['vocab_size'] = 1024
self.config['attn_dropout'] = 0.0
self.config['hidden_dropout_prob'] = 0.0
self.config['dim_feedforward'] = 1024
self.config['seq_len'] = 1024
self.config['batch_size'] = 2
self.config['max_position_embeddings'] = 2048
self.rand_mask_idx_list, self.input_ids, self.masked_lm_positions = create_input_data(
self.config)
self.num_classes = 2
def set_output(self):
self.expected_shape = (self.config['batch_size'],
self.config['seq_len'], self.num_classes)
def setUp(self):
self.set_model_class()
self.set_input()
self.set_output()
def set_model_class(self):
self.TEST_MODEL_CLASS = BigBirdForTokenClassification
def test_forward(self):
bigbird = BigBirdModel(**self.config)
model = self.TEST_MODEL_CLASS(bigbird, num_classes=self.num_classes)
input_ids = paddle.to_tensor(self.input_ids)
rand_mask_idx_list = paddle.to_tensor(self.rand_mask_idx_list)
output = model(input_ids, rand_mask_idx_list=rand_mask_idx_list)
self.check_output_equal(self.expected_shape, output.numpy().shape)
class TestBigBirdForMultipleChoice(CommonTest):
def set_input(self):
self.config = copy.deepcopy(
BigBirdModel.pretrained_init_configuration['bigbird-base-uncased'])
self.config['num_layers'] = 2
self.config['vocab_size'] = 1024
self.config['attn_dropout'] = 0.0
self.config['hidden_dropout_prob'] = 0.0
self.config['dim_feedforward'] = 1024
self.config['seq_len'] = 1024
self.config['batch_size'] = 2
self.config['max_position_embeddings'] = 2048
self.rand_mask_idx_list, self.input_ids, self.masked_lm_positions = [], [], []
self.num_choices = 2
for i in range(self.num_choices):
rand_mask_idx_list, input_ids, masked_lm_positions = create_input_data(
self.config)
self.rand_mask_idx_list.append(rand_mask_idx_list)
self.input_ids.append(input_ids)
self.masked_lm_positions.append(masked_lm_positions)
self.rand_mask_idx_list = np.array(self.rand_mask_idx_list).swapaxes(
0, 1)
self.input_ids = np.array(self.input_ids).swapaxes(0, 1)
self.masked_lm_positions = | np.array(self.masked_lm_positions) | numpy.array |
"""
==================
Animated histogram
==================
Use a path patch to draw a bunch of rectangles for an animated histogram.
"""
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import matplotlib.path as path
import matplotlib.animation as animation
# Fixing random state for reproducibility
np.random.seed(19680801)
# histogram our data with numpy
data = np.random.randn(1000)
n, bins = np.histogram(data, 100)
# get the corners of the rectangles for the histogram
left = np.array(bins[:-1])
right = np.array(bins[1:])
bottom = np.zeros(len(left))
top = bottom + n
nrects = len(left)
###############################################################################
# Here comes the tricky part -- we have to set up the vertex and path codes
# arrays using `.Path.MOVETO`, `.Path.LINETO` and `.Path.CLOSEPOLY` for each
# rect.
#
# * We need 1 ``MOVETO`` per rectangle, which sets the initial point.
# * We need 3 ``LINETO``'s, which tell Matplotlib to draw lines from
# vertex 1 to vertex 2, v2 to v3, and v3 to v4.
# * We then need one ``CLOSEPOLY`` which tells Matplotlib to draw a line from
# the v4 to our initial vertex (the ``MOVETO`` vertex), in order to close the
# polygon.
#
# .. note::
#
# The vertex for ``CLOSEPOLY`` is ignored, but we still need a placeholder
# in the ``verts`` array to keep the codes aligned with the vertices.
nverts = nrects * (1 + 3 + 1)
verts = np.zeros((nverts, 2))
codes = np.ones(nverts, int) * path.Path.LINETO
codes[0::5] = path.Path.MOVETO
codes[4::5] = path.Path.CLOSEPOLY
verts[0::5, 0] = left
verts[0::5, 1] = bottom
verts[1::5, 0] = left
verts[1::5, 1] = top
verts[2::5, 0] = right
verts[2::5, 1] = top
verts[3::5, 0] = right
verts[3::5, 1] = bottom
###############################################################################
# To animate the histogram, we need an ``animate`` function, which generates
# a random set of numbers and updates the locations of the vertices for the
# histogram (in this case, only the heights of each rectangle). ``patch`` will
# eventually be a `.Patch` object.
patch = None
def animate(i):
# simulate new data coming in
data = | np.random.randn(1000) | numpy.random.randn |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
())
-(||)" bumbleview...
''' Created on Wed Mar 10 08:28:10 2021
This script contains the main functions for the jupy nb 'bumbleview'.
It enables to convert physical wavelength spectra of e.g. petals of flowers to
excitation values on a trichromatic insect's eye.
If you have questions regarding computation of the different values or specialities of the plots, please refer to the jupy nb or Chittka & Kevan 2005.
@author: biothomml
"""
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
def load_data(file_name: str, header=None):
"""
Load (example) files from the data directory.
Parameters
----------
file_name : str
should be a csv file
header : TYPE, optional
Returns
-------
df : a pd dataframe of the file
"""
from importlib import resources
try:
with resources.open_text("data", file_name) as fid:
if header == "infer":
df = pd.read_csv(fid, header=header, index_col=0)
else:
df = pd.read_csv(fid, header=None, index_col=0)
if header is not None:
df.columns = header
except FileNotFoundError:
print(f"There was no file {file_name}. Try again.")
return None
return df
def load_data_colab(file_name: str, header=None):
"""
Load (example) files from the git directory in colab.
Parameters
----------
Returns
-------
"""
FILES_DICT = {
"bombus_sensoring.csv": "https://raw.githubusercontent.com/biothomme/Retinol/bf15f2dcde2cf96e198d89a6e73e1dc2a1f3a609/bumbleview/data/bombus_sensoring.csv",
"apis_sensoring.csv": "https://raw.githubusercontent.com/biothomme/Retinol/bf15f2dcde2cf96e198d89a6e73e1dc2a1f3a609/bumbleview/data/apis_sensoring.csv",
"d65_standards.csv": "https://raw.githubusercontent.com/biothomme/Retinol/bf15f2dcde2cf96e198d89a6e73e1dc2a1f3a609/bumbleview/data/d65_standards.csv",
"background_green_leaf.csv": "https://raw.githubusercontent.com/biothomme/Retinol/bf15f2dcde2cf96e198d89a6e73e1dc2a1f3a609/bumbleview/data/background_green_leaf.csv",
"lucilia_sensoring.csv": "https://raw.githubusercontent.com/biothomme/Retinol/36388668bddcd7c620a1a157deaadbac600a7bff/bumbleview/data/lucilia_sensoring.csv"
}
from importlib import resources
try:
if header == "infer":
df = pd.read_csv(FILES_DICT[file_name], header=header, index_col=0)
else:
df = pd.read_csv(FILES_DICT[file_name], header=None, index_col=0)
if header is not None:
df.columns = header
except FileNotFoundError:
print(f"There was no file {file_name}. Try again.")
return None
return df
def get_header(name: str):
"""
Return header for specific files of the data direcory.
Parameters
----------
name : str
Returns
-------
Header as list
"""
FILES_DICT = {
"bombus": "infer",
"apis": "infer",
"lucilia": "infer",
"d65": ["reflectance"],
"green_leaf_std": ["reflectance"]
}
name = name.lower()
return FILES_DICT[name] if name in FILES_DICT.keys() else None
def get_file_name(name: str):
# help function to retrieve filenames
FILES_DICT = {
"bombus": "bombus_sensoring.csv",
"apis": "apis_sensoring.csv",
"lucilia": "lucilia_sensoring.csv",
"d65": "d65_standards.csv",
"green_leaf_std": "background_green_leaf.csv"
}
name = name.lower()
return FILES_DICT[name] if name in FILES_DICT.keys() else None
def input_flowers():
"""
Build an input field for uploading csv files from the notebook.
Returns
-------
uploader : an upload wrapper from the widget
"""
from IPython.display import display
import ipywidgets as widgets
uploader = widgets.FileUpload(accept='.csv', multiple=False)
display(uploader)
return uploader
def apis_checkbox(lucilia=False):
"""
Build simple checkbox to choose use of bee recepetor sensitivity data.
Parameters
-------
lucilia : defines if Lucilia set is meant; default is false
Returns
-------
cb : checkbox wrapper containing the value if checked or not.
"""
from IPython.display import display
import ipywidgets as widgets
cb = widgets.Checkbox(
value=False,
description=f'Load {"Lucilia" if lucilia else "Apis mellifera"} data',
disabled=False
)
display(cb)
return cb
def parse_flowers(uploader, example=False, data=True, colab=False):
"""
Import the given data and store as a pandas df Parameters
----------
uploader : wrapper of file upload
example : Bool, if example data should be used
data : Bool, if the corresponding file contains spectrum data
colab : Bool, Defines if execting a colab notebook.
Returns
-------
a pandas dataframe with the requested/imported data (can be meta
information or spectrum data)
"""
import codecs
from io import StringIO
if example:
return load_example(data=data, colab=colab)
try:
data_input = list(uploader.value.values())[0]
except IndexError:
print("You did not successfully select a file. The example file will be used.")
return load_example(data=data, colab=colab)
csv_data = codecs.decode(data_input["content"], encoding="utf-8")
# check if comma or semicolon separated
# newline_count = csv_data.count('\n')
for seperator in [",", ";", "\t"]:
seperator_counts = [line.count(seperator) for line in csv_data.split("\n")]
if (seperator_counts[0] != 0 and len(set(seperator_counts[:-1])) == 1):
df = pd.read_csv(StringIO(csv_data), sep=seperator, header=None)
return df
print("csv file was neither seperated by comma, semicolon nor tabs. Please check and try again.")
return
def load_example(data=True, colab=False):
"""
Load the example data of alpine flowers.
(genera: Primula, Gentiana, Rhododendron and Silene)
Parameters
----------
data : Bool, if it should be the spectrum data file that will be returned.
Otherwise, meta information data is returned.
colab : Boolean
Defines if execting a colab notebook.
Returns
-------
df : dataframe with example data.
"""
if data:
df = pd.read_csv(
"data/xmpl_data.csv", header=None, sep=",") if (not colab) else pd.read_csv(
"https://raw.githubusercontent.com/biothomme/Retinol/bf15f2dcde2cf96e198d89a6e73e1dc2a1f3a609/bumbleview/data/xmpl_data.csv", header=None, sep=",")
else:
df = pd.read_csv(
"data/xmpl_meta.csv", header=None, sep=",") if (not colab) else pd.read_csv(
"https://raw.githubusercontent.com/biothomme/Retinol/bf15f2dcde2cf96e198d89a6e73e1dc2a1f3a609/bumbleview/data/xmpl_meta.csv", header=None, sep=",")
return df
def new_floral_spectra(wl_df: pd.DataFrame, meta_df: pd.DataFrame, colab=False):
"""
Construct a new object of the Floral_Spectra class with the given data.
Parameters
----------
wl_df : pd.DataFrame
Dataframe that contains spectral data.
meta_df : pd.DataFrame
Dataframe that maps metainformation (genus, species, leaf area and
additional information) to the corresponding columns of the
spectrum dataframe.
colab : Boolean
Defines if execting a colab notebook.
Returns
-------
floral_spectra : TYPE
new Floral_Spectra object for the input dataset
"""
# try:
floral_spectra = Floral_Spectra(wl_df,
genus_names=meta_df.iloc[:, 0],
species_names=meta_df.iloc[:, 1],
area_names=meta_df.iloc[:, 2],
additional=meta_df.iloc[:, 3],
colab=colab)
print(floral_spectra)
return floral_spectra
# except ValueError:
# print("Your input files did not match. Please try again. Otherwise, the example data was loaded. You can use it instead.")
# return
def get_dropdown_value(key_choice):
# help function to read dropdown value
return key_choice.options[key_choice.value][0]
class Floral_Spectra:
"""
Class Floral_Spectra.
This implements floral spectra to convert those to excitation signals of
insect vision cascades.
It also allows different plots on the data and therefore needs the script
'plotting.py'.
"""
def __init__(self, floral_spectra_data, genus_names=None,
species_names=None, area_names=None, additional=None,
colab=False):
"""
Construct new Floral_Spectra object.
Parameters
----------
floral_spectra_data : pd.DataFrame
Needs to be a dataframe containing the spectral data for different
samples.
genus_names : optional
List of genus names corresponding to columns of
floral_spectra_data. The default is None.
species_names : optional
List of species epithets corresponding to columns of
floral_spectra_data. The default is None.
area_names : optional
List of leaf areas corresponding to columns of
floral_spectra_data. The default is None.
additional : optional
List of additional information (e.g. specimen number)
corresponding to columns of floral_spectra_data. The default is
None.
colab : otional
Set to True if executing in a colab notebook. Default is False.
Returns
-------
new Floral_Spectra object.
"""
self.data = floral_spectra_data.iloc[:, 1:]
self.data.index = floral_spectra_data.iloc[:, 0]
df_mid = pd.MultiIndex.from_arrays(
[genus_names, area_names, species_names, additional],
names=("genus", "area", "species", "specimen"))
self.data.columns = df_mid
self.normalized = False
self.converted_to_iv = False
self.hexagon_df = None
self.triangle_df = None
self.pairwise_color_dist = None
if not colab:
self.erg = load_data(get_file_name("bombus"), get_header("bombus"))
else:
self.erg = load_data_colab(
get_file_name("bombus"), get_header("bombus"))
self.changed_erg = False
self.colab = colab
self.trichromatic = True
self.make_directory()
return
def make_directory(self):
"""
Build temporary directory in the background.
Used to save plots and data.
Returns
-------
None.
"""
import tempfile
import os
import datetime
import re
self.temp = tempfile.TemporaryDirectory(dir=os.getcwd())
self.directory = re.sub(
r"[-: \.]", "",
f"{self.temp.name}/bumble_view_{datetime.datetime.now()}")
os.makedirs(self.directory)
return
def normalize(self):
"""
Perform min max normalization / rescaling to [0,1] on wavelength
reflexion spectra.
Returns
-------
None.
"""
if (not self.normalized):
df = self.data - self.data.apply(min)
self.data = df / df.apply(max)
self.normalized = True
return
def select_key(self, key="genus", genus_choice=None):
"""
Dropdownmenu for the jupy nb. Important to select genus or leaf area,
to focus analysis on.
Parameters
----------
key : TYPE, optional
defines if selection should be performed on 'genus' or 'area'
column. The default is "genus".
genus_choice : TYPE, optional
Is necessary if an area choice should be done, because a first
subselection on genus_choice can be done. The default is None.
Returns
-------
key_choice : returns a wrapper containing the choice of the key.
"""
from IPython.display import display
import ipywidgets as widgets
KEY_DICT = {"genus": False, "area": True}
level_index = 1 if KEY_DICT[key] else 0
df = self.data
if (KEY_DICT[key] and genus_choice is not None):
if genus_choice.value != len(genus_choice.options)-1:
df = self.data[get_dropdown_value(genus_choice)]
level_index = 0
options = [(k, i) for i, k in enumerate(set(
df.keys().get_level_values(level_index)))]
options += [(None, len(options))]
key_choice = widgets.Dropdown(
options=options,
value=0,
description=f"{key.capitalize()}:")
display(key_choice)
return key_choice
def bombus_vision(self):
"""
This is the core function to compute all modelled values for the
insect vision simulation.
Returns
-------
None.
"""
if (not self.converted_to_iv) or (self.changed_erg):
self.normalize()
self.trichromatic = self.erg.shape[1] == 3
bombus_df = self.erg
if self.colab:
d65_df = load_data_colab(get_file_name("d65"), get_header("d65"))
green_leaf_std_df = load_data_colab(get_file_name("green_leaf_std"),
get_header("green_leaf_std"))
else:
d65_df = load_data(get_file_name("d65"), get_header("d65"))
green_leaf_std_df = load_data(get_file_name("green_leaf_std"),
get_header("green_leaf_std"))
df = self.data.loc[self.get_wavelength_index(), :]
df.index = np.round(df.index)
# build arrays of minimal wl range for computation
minimal_wl = max(
[min(d65_df.index), min(bombus_df.index),
min(green_leaf_std_df.index), min(df.index)])
maximal_wl = min(
[max(d65_df.index), max(bombus_df.index),
max(green_leaf_std_df.index), max(df.index)])
minimal_range_index = bombus_df.loc[minimal_wl:maximal_wl, :].index
bombus_array = np.asarray(bombus_df.loc[minimal_wl:maximal_wl, :])
green_leaf_std_array = np.asarray(
green_leaf_std_df.loc[minimal_wl:maximal_wl, :]).flatten()
d65_array = np.asarray(d65_df.loc[minimal_wl:maximal_wl, :]).flatten()
data_array = | np.asarray(df.loc[minimal_wl:maximal_wl, :]) | numpy.asarray |
'''
this is EMU^r (recursive computation of expected marginal utility) algorithm of Bhattacharjee et.al
REFERENCES:
<NAME>., <NAME>., <NAME>., <NAME>.: Bridging the gap: Manyobjective optimization and informed decision-making. IEEE Trans. Evolutionary
Computation 21(5), 813{820 (2017)
'''
import numpy as np
import math as m
import copy
from sklearn.cluster import AffinityPropagation
class solution(object):
def __init__(self):
self.index = None
self.objective = None
self.original_objective = None
self.type = None
self.marginalU = 0
self.front = 0
self.pick = 0
self.re_vector = None
class reference_point(object):
def __init__(self):
self.direction = None
self.neighbor = []
self.associate = []
self.identify = None
def compute_emu(p, w):
for i in range(len(p)):
p[i].index = i
obj_mat = np.asarray([i.objective for i in p]).T
w_mat = np.asarray([i.direction for i in w])
u_mat = np.dot(w_mat, obj_mat)
for i in range(len(u_mat)):
temp_index = np.argsort(u_mat[i, :])
for j in p:
if j.index == temp_index[0]:
k = 1
eta = u_mat[i, temp_index[k]] - u_mat[i, temp_index[0]]
while eta == 0.0:
k = k + 1
if k >= len(temp_index):
eta = 0
break
eta = u_mat[i, temp_index[k]] - u_mat[i, temp_index[0]]
j.marginalU += eta
else:
j.marginalU += 0
return p
def Compute(p, w):
front_current = 0
current_array = p
while len(current_array) > 1:
current_array = compute_emu(current_array, w)
front_current += 1
next_array = []
for i in current_array:
if i.marginalU != 0:
i.front = front_current
else:
next_array.append(i)
current_array = next_array
if len(current_array) == 1:
front_current += 1
current_array[0].front = front_current
else:
pass
for i in range(front_current):
front_now = front_current - i
if front_now != 1:
temp_front_array = [j.marginalU for j in p if j.front == front_now]
temp_max_emu = max(temp_front_array)
for k in p:
if k.front == front_now-1:
k.marginalU += temp_max_emu
else:
pass
else:
pass
return p
def Associate(p, w):
obj_mat = np.asarray([i.objective for i in p]).T
w_mat = np.asarray([i.direction for i in w])
d_mat = | np.dot(w_mat, obj_mat) | numpy.dot |
# This module has been generated automatically from space group information
# obtained from the Computational Crystallography Toolbox
#
"""
Space groups
This module contains a list of all the 230 space groups that can occur in
a crystal. The variable space_groups contains a dictionary that maps
space group numbers and space group names to the corresponding space
group objects.
.. moduleauthor:: <NAME> <<EMAIL>>
"""
#-----------------------------------------------------------------------------
# Copyright (C) 2013 The Mosaic Development Team
#
# Distributed under the terms of the BSD License. The full license is in
# the file LICENSE.txt, distributed as part of this software.
#-----------------------------------------------------------------------------
import numpy as N
class SpaceGroup(object):
"""
Space group
All possible space group objects are created in this module. Other
modules should access these objects through the dictionary
space_groups rather than create their own space group objects.
"""
def __init__(self, number, symbol, transformations):
"""
:param number: the number assigned to the space group by
international convention
:type number: int
:param symbol: the Hermann-Mauguin space-group symbol as used
in PDB and mmCIF files
:type symbol: str
:param transformations: a list of space group transformations,
each consisting of a tuple of three
integer arrays (rot, tn, td), where
rot is the rotation matrix and tn/td
are the numerator and denominator of the
translation vector. The transformations
are defined in fractional coordinates.
:type transformations: list
"""
self.number = number
self.symbol = symbol
self.transformations = transformations
self.transposed_rotations = N.array([N.transpose(t[0])
for t in transformations])
self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2]
for t in transformations]))
def __repr__(self):
return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol))
def __len__(self):
"""
:return: the number of space group transformations
:rtype: int
"""
return len(self.transformations)
def symmetryEquivalentMillerIndices(self, hkl):
"""
:param hkl: a set of Miller indices
:type hkl: Scientific.N.array_type
:return: a tuple (miller_indices, phase_factor) of two arrays
of length equal to the number of space group
transformations. miller_indices contains the Miller
indices of each reflection equivalent by symmetry to the
reflection hkl (including hkl itself as the first element).
phase_factor contains the phase factors that must be applied
to the structure factor of reflection hkl to obtain the
structure factor of the symmetry equivalent reflection.
:rtype: tuple
"""
hkls = N.dot(self.transposed_rotations, hkl)
p = N.multiply.reduce(self.phase_factors**hkl, -1)
return hkls, p
space_groups = {}
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(1, 'P 1', transformations)
space_groups[1] = sg
space_groups['P 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(2, 'P -1', transformations)
space_groups[2] = sg
space_groups['P -1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(3, 'P 1 2 1', transformations)
space_groups[3] = sg
space_groups['P 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(4, 'P 1 21 1', transformations)
space_groups[4] = sg
space_groups['P 1 21 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(5, 'C 1 2 1', transformations)
space_groups[5] = sg
space_groups['C 1 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(6, 'P 1 m 1', transformations)
space_groups[6] = sg
space_groups['P 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(7, 'P 1 c 1', transformations)
space_groups[7] = sg
space_groups['P 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(8, 'C 1 m 1', transformations)
space_groups[8] = sg
space_groups['C 1 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(9, 'C 1 c 1', transformations)
space_groups[9] = sg
space_groups['C 1 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(10, 'P 1 2/m 1', transformations)
space_groups[10] = sg
space_groups['P 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(11, 'P 1 21/m 1', transformations)
space_groups[11] = sg
space_groups['P 1 21/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(12, 'C 1 2/m 1', transformations)
space_groups[12] = sg
space_groups['C 1 2/m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(13, 'P 1 2/c 1', transformations)
space_groups[13] = sg
space_groups['P 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(14, 'P 1 21/c 1', transformations)
space_groups[14] = sg
space_groups['P 1 21/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(15, 'C 1 2/c 1', transformations)
space_groups[15] = sg
space_groups['C 1 2/c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(16, 'P 2 2 2', transformations)
space_groups[16] = sg
space_groups['P 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(17, 'P 2 2 21', transformations)
space_groups[17] = sg
space_groups['P 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(18, 'P 21 21 2', transformations)
space_groups[18] = sg
space_groups['P 21 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(19, 'P 21 21 21', transformations)
space_groups[19] = sg
space_groups['P 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(20, 'C 2 2 21', transformations)
space_groups[20] = sg
space_groups['C 2 2 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(21, 'C 2 2 2', transformations)
space_groups[21] = sg
space_groups['C 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(22, 'F 2 2 2', transformations)
space_groups[22] = sg
space_groups['F 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(23, 'I 2 2 2', transformations)
space_groups[23] = sg
space_groups['I 2 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(24, 'I 21 21 21', transformations)
space_groups[24] = sg
space_groups['I 21 21 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(25, 'P m m 2', transformations)
space_groups[25] = sg
space_groups['P m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(26, 'P m c 21', transformations)
space_groups[26] = sg
space_groups['P m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(27, 'P c c 2', transformations)
space_groups[27] = sg
space_groups['P c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(28, 'P m a 2', transformations)
space_groups[28] = sg
space_groups['P m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(29, 'P c a 21', transformations)
space_groups[29] = sg
space_groups['P c a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(30, 'P n c 2', transformations)
space_groups[30] = sg
space_groups['P n c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(31, 'P m n 21', transformations)
space_groups[31] = sg
space_groups['P m n 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(32, 'P b a 2', transformations)
space_groups[32] = sg
space_groups['P b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(33, 'P n a 21', transformations)
space_groups[33] = sg
space_groups['P n a 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(34, 'P n n 2', transformations)
space_groups[34] = sg
space_groups['P n n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(35, 'C m m 2', transformations)
space_groups[35] = sg
space_groups['C m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(36, 'C m c 21', transformations)
space_groups[36] = sg
space_groups['C m c 21'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(37, 'C c c 2', transformations)
space_groups[37] = sg
space_groups['C c c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(38, 'A m m 2', transformations)
space_groups[38] = sg
space_groups['A m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(39, 'A b m 2', transformations)
space_groups[39] = sg
space_groups['A b m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(40, 'A m a 2', transformations)
space_groups[40] = sg
space_groups['A m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(41, 'A b a 2', transformations)
space_groups[41] = sg
space_groups['A b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(42, 'F m m 2', transformations)
space_groups[42] = sg
space_groups['F m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(43, 'F d d 2', transformations)
space_groups[43] = sg
space_groups['F d d 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(44, 'I m m 2', transformations)
space_groups[44] = sg
space_groups['I m m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(45, 'I b a 2', transformations)
space_groups[45] = sg
space_groups['I b a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(46, 'I m a 2', transformations)
space_groups[46] = sg
space_groups['I m a 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(47, 'P m m m', transformations)
space_groups[47] = sg
space_groups['P m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(48, 'P n n n :2', transformations)
space_groups[48] = sg
space_groups['P n n n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(49, 'P c c m', transformations)
space_groups[49] = sg
space_groups['P c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(50, 'P b a n :2', transformations)
space_groups[50] = sg
space_groups['P b a n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(51, 'P m m a', transformations)
space_groups[51] = sg
space_groups['P m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(52, 'P n n a', transformations)
space_groups[52] = sg
space_groups['P n n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(53, 'P m n a', transformations)
space_groups[53] = sg
space_groups['P m n a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(54, 'P c c a', transformations)
space_groups[54] = sg
space_groups['P c c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(55, 'P b a m', transformations)
space_groups[55] = sg
space_groups['P b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(56, 'P c c n', transformations)
space_groups[56] = sg
space_groups['P c c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(57, 'P b c m', transformations)
space_groups[57] = sg
space_groups['P b c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(58, 'P n n m', transformations)
space_groups[58] = sg
space_groups['P n n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(59, 'P m m n :2', transformations)
space_groups[59] = sg
space_groups['P m m n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(60, 'P b c n', transformations)
space_groups[60] = sg
space_groups['P b c n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(61, 'P b c a', transformations)
space_groups[61] = sg
space_groups['P b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(62, 'P n m a', transformations)
space_groups[62] = sg
space_groups['P n m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(63, 'C m c m', transformations)
space_groups[63] = sg
space_groups['C m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(64, 'C m c a', transformations)
space_groups[64] = sg
space_groups['C m c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(65, 'C m m m', transformations)
space_groups[65] = sg
space_groups['C m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(66, 'C c c m', transformations)
space_groups[66] = sg
space_groups['C c c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(67, 'C m m a', transformations)
space_groups[67] = sg
space_groups['C m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(68, 'C c c a :2', transformations)
space_groups[68] = sg
space_groups['C c c a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(69, 'F m m m', transformations)
space_groups[69] = sg
space_groups['F m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(70, 'F d d d :2', transformations)
space_groups[70] = sg
space_groups['F d d d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(71, 'I m m m', transformations)
space_groups[71] = sg
space_groups['I m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(72, 'I b a m', transformations)
space_groups[72] = sg
space_groups['I b a m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(73, 'I b c a', transformations)
space_groups[73] = sg
space_groups['I b c a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(74, 'I m m a', transformations)
space_groups[74] = sg
space_groups['I m m a'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(75, 'P 4', transformations)
space_groups[75] = sg
space_groups['P 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(76, 'P 41', transformations)
space_groups[76] = sg
space_groups['P 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(77, 'P 42', transformations)
space_groups[77] = sg
space_groups['P 42'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(78, 'P 43', transformations)
space_groups[78] = sg
space_groups['P 43'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(79, 'I 4', transformations)
space_groups[79] = sg
space_groups['I 4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(80, 'I 41', transformations)
space_groups[80] = sg
space_groups['I 41'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(81, 'P -4', transformations)
space_groups[81] = sg
space_groups['P -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(82, 'I -4', transformations)
space_groups[82] = sg
space_groups['I -4'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(83, 'P 4/m', transformations)
space_groups[83] = sg
space_groups['P 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(84, 'P 42/m', transformations)
space_groups[84] = sg
space_groups['P 42/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(85, 'P 4/n :2', transformations)
space_groups[85] = sg
space_groups['P 4/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(86, 'P 42/n :2', transformations)
space_groups[86] = sg
space_groups['P 42/n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(87, 'I 4/m', transformations)
space_groups[87] = sg
space_groups['I 4/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(88, 'I 41/a :2', transformations)
space_groups[88] = sg
space_groups['I 41/a :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(89, 'P 4 2 2', transformations)
space_groups[89] = sg
space_groups['P 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(90, 'P 4 21 2', transformations)
space_groups[90] = sg
space_groups['P 4 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(91, 'P 41 2 2', transformations)
space_groups[91] = sg
space_groups['P 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(92, 'P 41 21 2', transformations)
space_groups[92] = sg
space_groups['P 41 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(93, 'P 42 2 2', transformations)
space_groups[93] = sg
space_groups['P 42 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(94, 'P 42 21 2', transformations)
space_groups[94] = sg
space_groups['P 42 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,3])
trans_den = N.array([1,1,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(95, 'P 43 2 2', transformations)
space_groups[95] = sg
space_groups['P 43 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(96, 'P 43 21 2', transformations)
space_groups[96] = sg
space_groups['P 43 21 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(97, 'I 4 2 2', transformations)
space_groups[97] = sg
space_groups['I 4 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(98, 'I 41 2 2', transformations)
space_groups[98] = sg
space_groups['I 41 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(99, 'P 4 m m', transformations)
space_groups[99] = sg
space_groups['P 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(100, 'P 4 b m', transformations)
space_groups[100] = sg
space_groups['P 4 b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(101, 'P 42 c m', transformations)
space_groups[101] = sg
space_groups['P 42 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(102, 'P 42 n m', transformations)
space_groups[102] = sg
space_groups['P 42 n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(103, 'P 4 c c', transformations)
space_groups[103] = sg
space_groups['P 4 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(104, 'P 4 n c', transformations)
space_groups[104] = sg
space_groups['P 4 n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(105, 'P 42 m c', transformations)
space_groups[105] = sg
space_groups['P 42 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(106, 'P 42 b c', transformations)
space_groups[106] = sg
space_groups['P 42 b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(107, 'I 4 m m', transformations)
space_groups[107] = sg
space_groups['I 4 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(108, 'I 4 c m', transformations)
space_groups[108] = sg
space_groups['I 4 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(109, 'I 41 m d', transformations)
space_groups[109] = sg
space_groups['I 41 m d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(110, 'I 41 c d', transformations)
space_groups[110] = sg
space_groups['I 41 c d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(111, 'P -4 2 m', transformations)
space_groups[111] = sg
space_groups['P -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(112, 'P -4 2 c', transformations)
space_groups[112] = sg
space_groups['P -4 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(113, 'P -4 21 m', transformations)
space_groups[113] = sg
space_groups['P -4 21 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(114, 'P -4 21 c', transformations)
space_groups[114] = sg
space_groups['P -4 21 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(115, 'P -4 m 2', transformations)
space_groups[115] = sg
space_groups['P -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(116, 'P -4 c 2', transformations)
space_groups[116] = sg
space_groups['P -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(117, 'P -4 b 2', transformations)
space_groups[117] = sg
space_groups['P -4 b 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(118, 'P -4 n 2', transformations)
space_groups[118] = sg
space_groups['P -4 n 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(119, 'I -4 m 2', transformations)
space_groups[119] = sg
space_groups['I -4 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(120, 'I -4 c 2', transformations)
space_groups[120] = sg
space_groups['I -4 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(121, 'I -4 2 m', transformations)
space_groups[121] = sg
space_groups['I -4 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([2,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,5])
trans_den = N.array([1,2,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(122, 'I -4 2 d', transformations)
space_groups[122] = sg
space_groups['I -4 2 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(123, 'P 4/m m m', transformations)
space_groups[123] = sg
space_groups['P 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(124, 'P 4/m c c', transformations)
space_groups[124] = sg
space_groups['P 4/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(125, 'P 4/n b m :2', transformations)
space_groups[125] = sg
space_groups['P 4/n b m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(126, 'P 4/n n c :2', transformations)
space_groups[126] = sg
space_groups['P 4/n n c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(127, 'P 4/m b m', transformations)
space_groups[127] = sg
space_groups['P 4/m b m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(128, 'P 4/m n c', transformations)
space_groups[128] = sg
space_groups['P 4/m n c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(129, 'P 4/n m m :2', transformations)
space_groups[129] = sg
space_groups['P 4/n m m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(130, 'P 4/n c c :2', transformations)
space_groups[130] = sg
space_groups['P 4/n c c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(131, 'P 42/m m c', transformations)
space_groups[131] = sg
space_groups['P 42/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(132, 'P 42/m c m', transformations)
space_groups[132] = sg
space_groups['P 42/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(133, 'P 42/n b c :2', transformations)
space_groups[133] = sg
space_groups['P 42/n b c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(134, 'P 42/n n m :2', transformations)
space_groups[134] = sg
space_groups['P 42/n n m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(135, 'P 42/m b c', transformations)
space_groups[135] = sg
space_groups['P 42/m b c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(136, 'P 42/m n m', transformations)
space_groups[136] = sg
space_groups['P 42/m n m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(137, 'P 42/n m c :2', transformations)
space_groups[137] = sg
space_groups['P 42/n m c :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(138, 'P 42/n c m :2', transformations)
space_groups[138] = sg
space_groups['P 42/n c m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(139, 'I 4/m m m', transformations)
space_groups[139] = sg
space_groups['I 4/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(140, 'I 4/m c m', transformations)
space_groups[140] = sg
space_groups['I 4/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(141, 'I 41/a m d :2', transformations)
space_groups[141] = sg
space_groups['I 41/a m d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-3,-3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,-1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(142, 'I 41/a c d :2', transformations)
space_groups[142] = sg
space_groups['I 41/a c d :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(143, 'P 3', transformations)
space_groups[143] = sg
space_groups['P 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(144, 'P 31', transformations)
space_groups[144] = sg
space_groups['P 31'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(145, 'P 32', transformations)
space_groups[145] = sg
space_groups['P 32'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(146, 'R 3 :H', transformations)
space_groups[146] = sg
space_groups['R 3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(147, 'P -3', transformations)
space_groups[147] = sg
space_groups['P -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(148, 'R -3 :H', transformations)
space_groups[148] = sg
space_groups['R -3 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(149, 'P 3 1 2', transformations)
space_groups[149] = sg
space_groups['P 3 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(150, 'P 3 2 1', transformations)
space_groups[150] = sg
space_groups['P 3 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(151, 'P 31 1 2', transformations)
space_groups[151] = sg
space_groups['P 31 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(152, 'P 31 2 1', transformations)
space_groups[152] = sg
space_groups['P 31 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(153, 'P 32 1 2', transformations)
space_groups[153] = sg
space_groups['P 32 1 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(154, 'P 32 2 1', transformations)
space_groups[154] = sg
space_groups['P 32 2 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(155, 'R 3 2 :H', transformations)
space_groups[155] = sg
space_groups['R 3 2 :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(156, 'P 3 m 1', transformations)
space_groups[156] = sg
space_groups['P 3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(157, 'P 3 1 m', transformations)
space_groups[157] = sg
space_groups['P 3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(158, 'P 3 c 1', transformations)
space_groups[158] = sg
space_groups['P 3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(159, 'P 3 1 c', transformations)
space_groups[159] = sg
space_groups['P 3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(160, 'R 3 m :H', transformations)
space_groups[160] = sg
space_groups['R 3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(161, 'R 3 c :H', transformations)
space_groups[161] = sg
space_groups['R 3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(162, 'P -3 1 m', transformations)
space_groups[162] = sg
space_groups['P -3 1 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(163, 'P -3 1 c', transformations)
space_groups[163] = sg
space_groups['P -3 1 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(164, 'P -3 m 1', transformations)
space_groups[164] = sg
space_groups['P -3 m 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(165, 'P -3 c 1', transformations)
space_groups[165] = sg
space_groups['P -3 c 1'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(166, 'R -3 m :H', transformations)
space_groups[166] = sg
space_groups['R -3 m :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,7])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,2,2])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,2,1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,5])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([2,1,1])
trans_den = N.array([3,3,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([2,1,-1])
trans_den = N.array([3,3,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(167, 'R -3 c :H', transformations)
space_groups[167] = sg
space_groups['R -3 c :H'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(168, 'P 6', transformations)
space_groups[168] = sg
space_groups['P 6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(169, 'P 61', transformations)
space_groups[169] = sg
space_groups['P 61'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(170, 'P 65', transformations)
space_groups[170] = sg
space_groups['P 65'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(171, 'P 62', transformations)
space_groups[171] = sg
space_groups['P 62'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(172, 'P 64', transformations)
space_groups[172] = sg
space_groups['P 64'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(173, 'P 63', transformations)
space_groups[173] = sg
space_groups['P 63'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(174, 'P -6', transformations)
space_groups[174] = sg
space_groups['P -6'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(175, 'P 6/m', transformations)
space_groups[175] = sg
space_groups['P 6/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(176, 'P 63/m', transformations)
space_groups[176] = sg
space_groups['P 63/m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(177, 'P 6 2 2', transformations)
space_groups[177] = sg
space_groups['P 6 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(178, 'P 61 2 2', transformations)
space_groups[178] = sg
space_groups['P 61 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,5])
trans_den = N.array([1,1,6])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(179, 'P 65 2 2', transformations)
space_groups[179] = sg
space_groups['P 65 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(180, 'P 62 2 2', transformations)
space_groups[180] = sg
space_groups['P 62 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,2])
trans_den = N.array([1,1,3])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(181, 'P 64 2 2', transformations)
space_groups[181] = sg
space_groups['P 64 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(182, 'P 63 2 2', transformations)
space_groups[182] = sg
space_groups['P 63 2 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(183, 'P 6 m m', transformations)
space_groups[183] = sg
space_groups['P 6 m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(184, 'P 6 c c', transformations)
space_groups[184] = sg
space_groups['P 6 c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(185, 'P 63 c m', transformations)
space_groups[185] = sg
space_groups['P 63 c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(186, 'P 63 m c', transformations)
space_groups[186] = sg
space_groups['P 63 m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(187, 'P -6 m 2', transformations)
space_groups[187] = sg
space_groups['P -6 m 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(188, 'P -6 c 2', transformations)
space_groups[188] = sg
space_groups['P -6 c 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(189, 'P -6 2 m', transformations)
space_groups[189] = sg
space_groups['P -6 2 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(190, 'P -6 2 c', transformations)
space_groups[190] = sg
space_groups['P -6 2 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(191, 'P 6/m m m', transformations)
space_groups[191] = sg
space_groups['P 6/m m m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(192, 'P 6/m c c', transformations)
space_groups[192] = sg
space_groups['P 6/m c c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(193, 'P 63/m c m', transformations)
space_groups[193] = sg
space_groups['P 63/m c m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,1,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,1,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,-1,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,-1,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(194, 'P 63/m m c', transformations)
space_groups[194] = sg
space_groups['P 63/m m c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(195, 'P 2 3', transformations)
space_groups[195] = sg
space_groups['P 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(196, 'F 2 3', transformations)
space_groups[196] = sg
space_groups['F 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(197, 'I 2 3', transformations)
space_groups[197] = sg
space_groups['I 2 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(198, 'P 21 3', transformations)
space_groups[198] = sg
space_groups['P 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(199, 'I 21 3', transformations)
space_groups[199] = sg
space_groups['I 21 3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(200, 'P m -3', transformations)
space_groups[200] = sg
space_groups['P m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(201, 'P n -3 :2', transformations)
space_groups[201] = sg
space_groups['P n -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(202, 'F m -3', transformations)
space_groups[202] = sg
space_groups['F m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(203, 'F d -3 :2', transformations)
space_groups[203] = sg
space_groups['F d -3 :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(204, 'I m -3', transformations)
space_groups[204] = sg
space_groups['I m -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(205, 'P a -3', transformations)
space_groups[205] = sg
space_groups['P a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(206, 'I a -3', transformations)
space_groups[206] = sg
space_groups['I a -3'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(207, 'P 4 3 2', transformations)
space_groups[207] = sg
space_groups['P 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(208, 'P 42 3 2', transformations)
space_groups[208] = sg
space_groups['P 42 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(209, 'F 4 3 2', transformations)
space_groups[209] = sg
space_groups['F 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(210, 'F 41 3 2', transformations)
space_groups[210] = sg
space_groups['F 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(211, 'I 4 3 2', transformations)
space_groups[211] = sg
space_groups['I 4 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(212, 'P 43 3 2', transformations)
space_groups[212] = sg
space_groups['P 43 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(213, 'P 41 3 2', transformations)
space_groups[213] = sg
space_groups['P 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(214, 'I 41 3 2', transformations)
space_groups[214] = sg
space_groups['I 41 3 2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(215, 'P -4 3 m', transformations)
space_groups[215] = sg
space_groups['P -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(216, 'F -4 3 m', transformations)
space_groups[216] = sg
space_groups['F -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(217, 'I -4 3 m', transformations)
space_groups[217] = sg
space_groups['I -4 3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(218, 'P -4 3 n', transformations)
space_groups[218] = sg
space_groups['P -4 3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(219, 'F -4 3 c', transformations)
space_groups[219] = sg
space_groups['F -4 3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,5,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,5])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,5,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,3])
trans_den = N.array([4,4,4])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(220, 'I -4 3 d', transformations)
space_groups[220] = sg
space_groups['I -4 3 d'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(221, 'P m -3 m', transformations)
space_groups[221] = sg
space_groups['P m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,-1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(222, 'P n -3 n :2', transformations)
space_groups[222] = sg
space_groups['P n -3 n :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,-1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(223, 'P m -3 n', transformations)
space_groups[223] = sg
space_groups['P m -3 n'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(224, 'P n -3 m :2', transformations)
space_groups[224] = sg
space_groups['P n -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(225, 'F m -3 m', transformations)
space_groups[225] = sg
space_groups['F m -3 m'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,0])
trans_den = N.array([2,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([2,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,1])
trans_den = N.array([1,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,0])
trans_den = N.array([1,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(226, 'F m -3 c', transformations)
space_groups[226] = sg
space_groups['F m -3 c'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,-1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,0,-1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,-1,-1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,3,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([-1,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,1])
trans_den = N.array([1,2,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,3])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([4,4,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,-1,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,1])
trans_den = N.array([2,1,2])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([3,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([3,1,1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,-1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,-1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,-1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,-1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,-1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,1,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,0,0,-1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,1,0,0,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,-1,0,0,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,0,0,1,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([-1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,-1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,1,0,0,0,-1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([4,2,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,-1])
trans_den = N.array([2,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,1,0])
trans_den = N.array([2,2,1])
transformations.append((rot, trans_num, trans_den))
sg = SpaceGroup(227, 'F d -3 m :2', transformations)
space_groups[227] = sg
space_groups['F d -3 m :2'] = sg
transformations = []
rot = N.array([1,0,0,0,1,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,0,0])
trans_den = N.array([1,1,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,-1,0,1,0])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = N.array([4,1,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([1,0,0,0,0,1,0,-1,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,1,0,1,0,-1,0,0])
rot.shape = (3, 3)
trans_num = N.array([1,3,0])
trans_den = N.array([4,4,1])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,0,-1,0,1,0,1,0,0])
rot.shape = (3, 3)
trans_num = N.array([0,1,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,-1,0,1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([0,1,3])
trans_den = N.array([1,4,4])
transformations.append((rot, trans_num, trans_den))
rot = N.array([0,1,0,-1,0,0,0,0,1])
rot.shape = (3, 3)
trans_num = N.array([1,0,3])
trans_den = | N.array([4,1,4]) | numpy.array |
import sys
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from mpl_toolkits import mplot3d
def trajectory_generator(T_final, N, traj=0, show_traj=False):
'''
Generates a circular trajectory given a final time and a sampling time
'''
r = 1 # radius
th = np.linspace(0,6*np.pi,N)
c_x, c_y = [0,0] # center coordinates
## circular trajectory
if traj ==0:
t = np.linspace(0,T_final,N)
x = r * np.cos(th) + c_x
y = r * np.sin(th) + c_y
z = np.ones_like(th)
if show_traj == True:
plt.figure()
ax = plt.axes(projection = "3d")
plt.title('Reference trajectory')
ax.plot3D(x, y, z)
ax.set_xlabel("x[m]")
ax.set_ylabel("y[m]")
ax.set_zlabel("z[m]")
plt.show()
## hellical trajectory
if traj ==1:
t = np.linspace(0,T_final,N)
x = r * np.cos(th) + c_x
y = r * np.sin(th) + c_y
z = np.linspace(1,2,N)
if show_traj == True:
plt.figure()
ax = plt.axes(projection = "3d")
plt.title('Reference trajectory')
ax.plot3D(x, y, z)
plt.show()
## vertical trajectory
if traj ==2:
t = np.linspace(0,T_final,N)
x = np.ones_like(t)
y = np.zeros_like(t)
z = np.linspace(1,2,N)
if show_traj == True:
plt.figure()
ax = plt.axes(projection = "3d")
plt.title('Reference trajectory')
ax.plot3D(x, y, z)
plt.show()
return t,x,y,z
def trajectory_generator2D( x0: np.array, # initial position of the quadrotor
N_hover: int, # number of time steps in the hovering phase
N_traj: int, # number of time steps in the simulation
N: int, # number of time step in a single time horizon (used to add an additional horizon in order for the closed loop simulation to work)
radius: float, # radius of the circular trajectory
show_traj=False): # boolean to show trajectory before the simulation
'''
Generates a circular trajectory with a hovering time of T_hover at the start,
given a trajectory time and a sampling time.
'''
# hovering trajectory
y_hover = np.ones(N_hover) * x0[0]
z_hover = np.ones(N_hover) * x0[1]
# circular trajectory parameters
theta = np.linspace(0,4*np.pi, N_traj+N)
c_x, c_y = [4,5] # center coordinates
## circular trajectory
y_circle = radius * np.cos(theta) + c_x
z_circle = radius * np.sin(theta) + c_y
# appending the hovering and the circular trajectories
y = np.append(y_hover, y_circle)
z = np.append(z_hover, z_circle)
if show_traj == True:
fig, ax = plt.subplots()
plt.title('Reference trajectory')
ax.plot(y, z)
ax.set_xlabel("y[m]")
ax.set_ylabel("z[m]")
plt.show()
return y,z
# trajectory generation with velocities
def trajectory_generotaor2D_with_vel( x0: np.array, # initial potision of the quadrotor
N_hover: int, # number of time steps in the hovering phase
model: object, # model of the drone (used to check if the maximum )
radius: float, # radius of the circular trajectory
freq: float, # used to control the speed of the trajectory
T_traj: float, # final time of the tre
Tf: float, # control horizon (used to add an additional horizon in order for the closed loop simulation to work)
dt: float):
# hovering trajectory
y_hover = np.ones(N_hover) * x0[0]
z_hover = np.ones(N_hover) * x0[1]
vz_hover = np.zeros(N_hover)
vy_hover = np.zeros(N_hover)
t = np.arange(0,T_traj+Tf,dt)
c_y, c_z = [4,5] # center coordinates
y_circle = radius * | np.cos(freq * t) | numpy.cos |
# -*- coding: utf-8 -*-
"""
This modules provides functions to calculate correlations between spike trains.
.. autosummary::
:toctree: toctree/spike_train_correlation
covariance
correlation_coefficient
cross_correlation_histogram
spike_time_tiling_coefficient
spike_train_timescale
:copyright: Copyright 2015-2016 by the Elephant team, see `doc/authors.rst`.
:license: Modified BSD, see LICENSE.txt for details.
"""
from __future__ import division, print_function, unicode_literals
import warnings
import neo
import numpy as np
import quantities as pq
import scipy.signal
from scipy import integrate
from elephant.utils import deprecated_alias
__all__ = [
"covariance",
"correlation_coefficient",
"cross_correlation_histogram",
"spike_time_tiling_coefficient",
"spike_train_timescale"
]
# The highest sparsity of the `BinnedSpikeTrain` matrix for which
# memory-efficient (sparse) implementation of `covariance()` is faster than
# with the corresponding numpy dense array.
_SPARSITY_MEMORY_EFFICIENT_THR = 0.1
class _CrossCorrHist(object):
"""
Cross-correlation histogram for `BinnedSpikeTrain`s.
This class is used inside :func:`cross_correlation_histogram` function
and is not meant to be used outside of it.
Parameters
----------
binned_spiketrain_i, binned_spiketrain_j :
elephant.conversion.BinnedSpikeTrain
Binned spike trains to cross-correlate. The two spike trains must
have the same `t_start` and `t_stop`.
window : list or tuple
List of integers - (left_edge, right_edge).
Refer to the docs of `cross_correlation_histogram()`.
"""
def __init__(self, binned_spiketrain_i, binned_spiketrain_j, window):
self.binned_spiketrain_i = binned_spiketrain_i
self.binned_spiketrain_j = binned_spiketrain_j
self.window = window
@staticmethod
def get_valid_lags(binned_spiketrain_i, binned_spiketrain_j):
"""
Computes the lags at which the cross-correlation
of the input spiketrains can be calculated with full
overlap.
Parameters
----------
binned_spiketrain_i, binned_spiketrain_j :
elephant.conversion.BinnedSpikeTrain
Binned spike trains to cross-correlate. The input spike trains can
have any `t_start` and `t_stop`.
Returns
-------
lags : np.ndarray
Array of lags at which the cross-correlation can be computed
at full overlap (valid mode).
"""
bin_size = binned_spiketrain_i._bin_size
# see cross_correlation_histogram for the examples
if binned_spiketrain_i.n_bins < binned_spiketrain_j.n_bins:
# ex. 1) lags range: [-2, 5] ms
# ex. 2) lags range: [1, 2] ms
left_edge = (binned_spiketrain_j._t_start -
binned_spiketrain_i._t_start) / bin_size
right_edge = (binned_spiketrain_j._t_stop -
binned_spiketrain_i._t_stop) / bin_size
else:
# ex. 3) lags range: [-1, 3] ms
left_edge = (binned_spiketrain_j._t_stop -
binned_spiketrain_i._t_stop) / bin_size
right_edge = (binned_spiketrain_j._t_start -
binned_spiketrain_i._t_start) / bin_size
right_edge = int(right_edge)
left_edge = int(left_edge)
lags = np.arange(left_edge, right_edge + 1, dtype=np.int32)
return lags
def correlate_memory(self, cch_mode):
"""
Slow, but memory-safe mode.
Return
-------
cross_corr : np.ndarray
Cross-correlation of `self.binned_spiketrain1` and
`self.binned_spiketrain2`.
"""
st1_spmat = self.binned_spiketrain_i.sparse_matrix
st2_spmat = self.binned_spiketrain_j.sparse_matrix
left_edge, right_edge = self.window
# extract the nonzero column indices of 1-d matrices
st1_bin_idx_unique = st1_spmat.nonzero()[1]
st2_bin_idx_unique = st2_spmat.nonzero()[1]
# 'valid' mode requires bins correction due to the shift in t_starts
# 'full' and 'pad' modes don't need this correction
if cch_mode == "valid":
if self.binned_spiketrain_i.n_bins > \
self.binned_spiketrain_j.n_bins:
st2_bin_idx_unique += right_edge
else:
st2_bin_idx_unique += left_edge
st1_spmat = st1_spmat.data
st2_spmat = st2_spmat.data
# Initialize the counts to an array of zeros,
# and the bin IDs to integers
# spanning the time axis
nr_lags = right_edge - left_edge + 1
cross_corr = np.zeros(nr_lags)
# Compute the CCH at lags in left_edge,...,right_edge only
for idx, i in enumerate(st1_bin_idx_unique):
il = np.searchsorted(st2_bin_idx_unique, left_edge + i)
ir = np.searchsorted(st2_bin_idx_unique,
right_edge + i, side='right')
timediff = st2_bin_idx_unique[il:ir] - i
assert ((timediff >= left_edge) & (
timediff <= right_edge)).all(), 'Not all the '
'entries of cch lie in the window'
cross_corr[timediff - left_edge] += (
st1_spmat[idx] * st2_spmat[il:ir])
st2_bin_idx_unique = st2_bin_idx_unique[il:]
st2_spmat = st2_spmat[il:]
return cross_corr
def correlate_speed(self, cch_mode):
"""
Fast, but might require a lot of memory.
Parameters
----------
cch_mode : str
Cross-correlation mode.
Returns
-------
cross_corr : np.ndarray
Cross-correlation of `self.binned_spiketrain1` and
`self.binned_spiketrain2`.
"""
# Retrieve the array of the binned spike trains
st1_arr = self.binned_spiketrain_i.to_array()[0]
st2_arr = self.binned_spiketrain_j.to_array()[0]
left_edge, right_edge = self.window
if cch_mode == 'pad':
# Zero padding to stay between left_edge and right_edge
pad_width = min(max(-left_edge, 0), max(right_edge, 0))
st2_arr = | np.pad(st2_arr, pad_width=pad_width, mode='constant') | numpy.pad |
# octree的具体实现,包括构建和查找
import random
import math
import numpy as np
import time
from result_set import KNNResultSet, RadiusNNResultSet
# 节点,构成OCtree的基本元素
class Octant:
def __init__(self, children, center, extent, point_indices, is_leaf):
self.children = children
self.center = center
self.extent = extent
self.point_indices = point_indices
self.is_leaf = is_leaf
def __str__(self):
output = ''
output += 'center: [%.2f, %.2f, %.2f], ' % (self.center[0], self.center[1], self.center[2])
output += 'extent: %.2f, ' % self.extent
output += 'is_leaf: %d, ' % self.is_leaf
output += 'children: ' + str([x is not None for x in self.children]) + ", "
output += 'point_indices: ' + str(self.point_indices)
return output
# 功能:翻转octree
# 输入:
# root: 构建好的octree
# depth: 当前深度
# max_depth:最大深度
def traverse_octree(root: Octant, depth, max_depth):
depth[0] += 1
if max_depth[0] < depth[0]:
max_depth[0] = depth[0]
if root is None:
pass
elif root.is_leaf:
print(root)
else:
for child in root.children:
traverse_octree(child, depth, max_depth)
depth[0] -= 1
# 功能:通过递归的方式构建octree
# 输入:
# root:根节点
# db:原始数据
# center: 中心
# extent: 当前分割区间
# point_indices: 点的key
# leaf_size: scale
# min_extent: 最小分割区间
def octree_recursive_build(root, db, center, extent, point_indices, leaf_size, min_extent):
if len(point_indices) == 0:
return None
if root is None:
root = Octant([None for i in range(8)], center, extent, point_indices, is_leaf=True)
# determine whether to split this octant
if len(point_indices) <= leaf_size or extent <= min_extent:
root.is_leaf = True
else:
# 作业4
# 屏蔽开始
#root有子节点,is_leaf置为False
root.is_leaf = False
#创建8个子节点
children_point_indices = [[] for i in range(8)]
#遍历每一个点
for point_idx in point_indices:
point_db = db[point_idx]
#计算当前点该放置到哪个子节点
morton_code = 0
#判断该放到x轴的哪一侧
if point_db[0] > center[0]:
morton_code = morton_code | 1
#判断该放到y轴的哪一侧
if point_db[1] > center[1]:
morton_code = morton_code | 2
#判断该放到z轴的哪一侧
if point_db[2] > center[2]:
morton_code = morton_code | 4
#子节点存储点的索引
children_point_indices[morton_code].append(point_idx)
# create children
factor = [-0.5, 0.5]
for i in range(8):
#计算每一个子节点的center坐标
child_center_x = center[0] + factor[(i & 1) > 0] * extent
child_center_y = center[1] + factor[(i & 2) > 0] * extent
child_center_z = center[2] + factor[(i & 4) > 0] * extent
#子节点的extent
child_extent = 0.5 * extent
child_center = np.asarray([child_center_x, child_center_y, child_center_z])
#递归创建子节点的八叉树
root.children[i] = octree_recursive_build(root.children[i],
db,
child_center,
child_extent,
children_point_indices[i],
leaf_size,
min_extent)
# 屏蔽结束
return root
# 功能:判断当前query区间是否在octant内
# 输入:
# query: 索引信息
# radius:索引半径
# octant:octree
# 输出:
# 判断结果,即True/False
def inside(query: np.ndarray, radius: float, octant:Octant):
"""
Determines if the query ball is inside the octant
:param query:
:param radius:
:param octant:
:return:
"""
#查询点到中心的三个轴的偏移量
query_offset = query - octant.center
#偏移量的绝对值
query_offset_abs = np.fabs(query_offset)
possible_space = query_offset_abs + radius
return np.all(possible_space < octant.extent)
# 功能:判断当前query区间是否和octant有重叠部分
# 输入:
# query: 索引信息
# radius:索引半径
# octant:octree
# 输出:
# 判断结果,即True/False
def overlaps(query: np.ndarray, radius: float, octant:Octant):
"""
Determines if the query ball overlaps with the octant
:param query:
:param radius:
:param octant:
:return:
"""
query_offset = query - octant.center
query_offset_abs = np.fabs(query_offset)
# completely outside, since query is outside the relevant area
max_dist = radius + octant.extent
if np.any(query_offset_abs > max_dist):
return False
# if pass the above check, consider the case that the ball is contacting the face of the octant
if np.sum((query_offset_abs < octant.extent).astype(np.int)) >= 2:
return True
# conside the case that the ball is contacting the edge or corner of the octant
# since the case of the ball center (query) inside octant has been considered,
# we only consider the ball center (query) outside octant
x_diff = max(query_offset_abs[0] - octant.extent, 0)
y_diff = max(query_offset_abs[1] - octant.extent, 0)
z_diff = max(query_offset_abs[2] - octant.extent, 0)
return x_diff * x_diff + y_diff * y_diff + z_diff * z_diff < radius * radius
# 功能:判断当前query是否包含octant
# 输入:
# query: 索引信息
# radius:索引半径
# octant:octree
# 输出:
# 判断结果,即True/False
def contains(query: np.ndarray, radius: float, octant:Octant):
"""
Determine if the query ball contains the octant
:param query:
:param radius:
:param octant:
:return:
"""
query_offset = query - octant.center
query_offset_abs = np.fabs(query_offset)
query_offset_to_farthest_corner = query_offset_abs + octant.extent
return np.linalg.norm(query_offset_to_farthest_corner) < radius
# 功能:在octree中查找信息
# 输入:
# root: octree
# db:原始数据
# result_set: 索引结果
# query:索引信息
def octree_radius_search_fast(root: Octant, db: np.ndarray, result_set: RadiusNNResultSet, query: np.ndarray):
if root is None:
return False
# 作业5
# 提示:尽量利用上面的inside、overlaps、contains等函数
# 屏蔽开始
if contains(query, result_set.worstDist(), root):
# compare the contents of the octant
leaf_points = db[root.point_indices, :]
diff = np.linalg.norm( | np.expand_dims(query, 0) | numpy.expand_dims |
import os
import cv2
import math
import shutil
import pytesseract
import numpy as np
import scipy.stats as stats
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
#Module to detect whether the object in the video sequence is moving or not.
def MovementDetection(VideoPath):
if(os.path.exists(VideoPath) == False):
print("Error(In MovementDetection): Path does not exists")
return []
cap =cv2.VideoCapture(VideoPath)
ret, frame1 = cap.read()
ret, frame2 = cap.read()
image_list=[] #For storing image frames
while(cap.isOpened()):
original_frame1=frame1.copy()
#Computes absoulute difference between two consecutive frames
diff = cv2.absdiff(frame2, frame1)
#Converts the frame obtained to grayscale
gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
#Preprocessing of the frame
blur = cv2.GaussianBlur(gray, (5,5), 0)
_,thresh=cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY)
dilated = cv2.dilate(thresh, None, iterations=3)
contours, _=cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
frame1=cv2.line(frame1, (0, 290), (640, 290), (0,255,0), 2)
for contour in contours:
(x, y, w, h) = cv2.boundingRect(contour)
if(cv2.contourArea(contour) < 800):
continue
else:
#Region of Interest(ROI)
if((y>=250) and (y<= 275)):
image_list.append(original_frame1)
frame1=frame2
ret, frame2 = cap.read()
if not ret:
break;
ret, frame=cap.read()
cap.release()
return image_list
# Vehicle Detection
def DetectVehicle(img, net, classes):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
#img = cv2.imread(image)
img = cv2.resize(img, None, fx=1, fy=1)
height, width, channels = img.shape
blob = cv2.dnn.blobFromImage(img, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = | np.argmax(scores) | numpy.argmax |
# -*- coding: utf-8 -*-
import argparse
import os
import time
from collections import OrderedDict
import cv2
import numpy as np
import re
# PyTorch Imports
import torch
import torch.backends.cudnn as cudnn
from torch.autograd import Variable
# Tesseract imports
import pytesseract
from pytesseract import Output
# Craft imports
from CRAFT_pytorch import craft_utils
from CRAFT_pytorch import file_utils
from CRAFT_pytorch import imgproc
from CRAFT_pytorch.craft import CRAFT
#tesseract config
custom_config = r'--psm 11'
receipt_ocr = {}
def get_date(extracted_text):
# regex for date. The pattern in the receipt is in 30.07.2007 in DD:MM:YYYY
date_pattern = r'(0[1-9]|[12][0-9]|3[01]|0[1-9]|1[012])[-./](0[1-9]|[12][0-9]|3[01]|0[1-9]|1[012])[-./](20[012][0-9]|[0-3][0-9])'
pattern = re.compile(date_pattern)
matches = pattern.finditer(extracted_text)
date = ''
for match in matches:
date = extracted_text[match.span()[0]:match.span()[1]]
receipt_ocr['date'] = date
# print(receipt_ocr)
def get_time(extracted_text):
# regex for time. The pattern in the receipt is in 8:47:20
time_pattern = r'([0-9]|0[0-9]|[1][0-9]|2[0-4])*[:]*([0-5][0-9])[:]([0-5][0-9])*'
pattern = re.compile(time_pattern)
matches = pattern.finditer(extracted_text)
time = ''
for match in matches:
time = extracted_text[match.span()[0]:match.span()[1]]
receipt_ocr['time'] = time
# print(receipt_ocr)
def get_total(extracted_text):
total_pattern = r'([tTiI][oOaA][tTlLiL][oOaA0cC]|([NnMm][Ee][TtLliI]))'
splits = extracted_text.split('\n')
lines_with_total = []
for line in splits:
if re.search(total_pattern, line):
lines_with_total.append(line)
amount = []
amount_pattern = r'[0-9]+\.[0-9]+'
pattern = re.compile(amount_pattern)
for line in lines_with_total:
matches = pattern.finditer(line)
for match in matches:
amount.append(float(line[match.span()[0]:match.span()[1]]))
try:
receipt_ocr['total'] = str(max(amount))
except:
receipt_ocr['total'] = None
# print(receipt_ocr)
def get_company_name(extracted_text):
splits = extracted_text.splitlines()
i = 0
pattern = r'([0-9]+|[-./|]+|\\)'
for split in splits:
# print(split)
if split==' ':
# print(split)
i+=1
continue
if re.search(pattern, split):
# print(split)
i+=1
else:
break
try:
restaurant_name = splits[i] + '\n' + splits[i+2]
receipt_ocr['CompanyName'] = restaurant_name
except:
receipt_ocr['CompanyName'] = ''
# print(receipt_ocr)
def get_GST_number(extracted_text):
pattern = r'(GST|3ST)'
splits = extracted_text.split('\n')
lines_with_GST = []
for line in splits:
if re.search(pattern, line, re.IGNORECASE):
lines_with_GST.append(line)
gst_num = ''
gst_num_pattern = r'[0-9]{2,15}\s*[a-zA-Z]*[0-9]*[a-zA-Z]*[0-9]*\s*[0-9]*'
pattern = re.compile(gst_num_pattern)
for line in lines_with_GST:
matches = pattern.finditer(line)
for match in matches:
gst_num_curr = line[match.span()[0]:match.span()[1]]
if len(gst_num_curr) > len(gst_num):
gst_num = gst_num_curr
receipt_ocr['GSTNumber'] = gst_num
# print(receipt_ocr)
def get_email(extracted_text):
pattern = (r'[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+')
pattern = re.compile(pattern)
matches = pattern.finditer(extracted_text)
email = ''
for match in matches:
email = extracted_text[match.span()[0]:match.span()[1]]
receipt_ocr['email'] = email
# print(receipt_ocr)
def get_phone_number(extracted_text):
pattern = (r'(Telephone|tel|Ph|Phone|Mob|Mobile|dial)')
splits = extracted_text.split('\n')
lines_with_phone_num = []
for line in splits:
if re.search(pattern, line, re.IGNORECASE):
lines_with_phone_num.append(line)
phone_num = []
phone_num_pattern = r'[+-]*[0-9]+[-]*[0-9]*\s*[+-]*[0-9]*[-.)(]*[0-9]*\s*'
pattern = re.compile(phone_num_pattern)
for line in lines_with_phone_num:
matches = pattern.finditer(line)
for match in matches:
phone_num.append(line[match.span()[0]:match.span()[1]])
receipt_ocr['PhoneNumber'] = phone_num
# print(receipt_ocr)
def get_invoice_number(extracted_text):
pattern = (r'(invoice|bill|inv|inc|doc|document|order|ord|receipt|billing|token|trn|transaction|trx|tally|statement)')
splits = extracted_text.split('\n')
lines_with_invoice_num = []
for line in splits:
if re.search(pattern, line, re.IGNORECASE):
lines_with_invoice_num.append(line)
invoice_num = []
invoice_num_pattern = r'[a-zA-Z]*[0-9]+[/:-]*[0-9]*[/:-]*[0-9]*'
pattern = re.compile(invoice_num_pattern)
for line in lines_with_invoice_num:
matches = pattern.finditer(line)
for match in matches:
invoice_num.append(line[match.span()[0]:match.span()[1]])
print(invoice_num)
final_invoice = ''
for invoice in invoice_num:
if '/' not in invoice and ':' not in invoice and ' ' not in invoice:
final_invoice_curr = invoice
if len(final_invoice_curr) > len(final_invoice):
final_invoice = final_invoice_curr
if final_invoice == '':
final_invoice = None
receipt_ocr['InvoiceNumber'] = final_invoice
# print(receipt_ocr)
def get_currency(extracted_text):
pattern = r'(RM|USD|EUR|JPY|GBP|AUD|CAD|CHF|CNY|SEK|NZD|INR|RS)'
pattern = re.compile(pattern)
matches = pattern.finditer(extracted_text)
currency = ''
for match in matches:
currency = extracted_text[match.span()[0]:match.span()[1]]
receipt_ocr['currency'] = currency
def str2bool(v):
return v.lower() in ("yes", "y", "true", "t", "1")
parser = argparse.ArgumentParser(description='CRAFT Text Detection')
parser.add_argument('--trained_model', default='CRAFT_pytorch/weights/craft_mlt_25k.pth', type=str, help='pretrained model')
parser.add_argument('--text_threshold', default=0.7, type=float, help='text confidence threshold')
parser.add_argument('--low_text', default=0.4, type=float, help='text low-bound score')
parser.add_argument('--link_threshold', default=0.4, type=float, help='link confidence threshold')
parser.add_argument('--cuda', default=True, type=str2bool, help='Use cuda for inference')
parser.add_argument('--canvas_size', default=1280, type=int, help='image size for inference')
parser.add_argument('--mag_ratio', default=1.5, type=float, help='image magnification ratio')
parser.add_argument('--poly', default=False, action='store_true', help='enable polygon type')
parser.add_argument('--show_time', default=False, action='store_true', help='show processing time')
args = parser.parse_args()
# Store results here
result_folder = './result/'
# image_path = '/home/sravanchittupalli/konnoha/clones/Invoice-Processing-System/tesseract/assets/input/X00016469619.jpg'
if not os.path.isdir(result_folder):
os.mkdir(result_folder)
def test_net(net, image, text_threshold, link_threshold, low_text, cuda, poly, refine_net=None):
t0 = time.time()
# resize
img_resized, target_ratio, size_heatmap = imgproc.resize_aspect_ratio(image, args.canvas_size, interpolation=cv2.INTER_LINEAR, mag_ratio=args.mag_ratio)
ratio_h = ratio_w = 1 / target_ratio
# preprocessing
x = imgproc.normalizeMeanVariance(img_resized)
x = torch.from_numpy(x).permute(2, 0, 1) # [h, w, c] to [c, h, w]
x = Variable(x.unsqueeze(0)) # [c, h, w] to [b, c, h, w]
if cuda:
x = x.cuda()
# forward pass
with torch.no_grad():
y, feature = net(x)
# make score and link map
score_text = y[0,:,:,0].cpu().data.numpy()
score_link = y[0,:,:,1].cpu().data.numpy()
# refine link
if refine_net is not None:
with torch.no_grad():
y_refiner = refine_net(y, feature)
score_link = y_refiner[0,:,:,0].cpu().data.numpy()
t0 = time.time() - t0
t1 = time.time()
# Post-processing
boxes, polys = craft_utils.getDetBoxes(score_text, score_link, text_threshold, link_threshold, low_text, poly)
# coordinate adjustment
boxes = craft_utils.adjustResultCoordinates(boxes, ratio_w, ratio_h)
polys = craft_utils.adjustResultCoordinates(polys, ratio_w, ratio_h)
for k in range(len(polys)):
if polys[k] is None: polys[k] = boxes[k]
t1 = time.time() - t1
# render results (optional)
render_img = score_text.copy()
render_img = | np.hstack((render_img, score_link)) | numpy.hstack |
import os
import numpy as np
import pandas as pd
from scipy.io import loadmat
import torch
from torchvision import datasets, transforms
from torch.utils.data import TensorDataset, Dataset
from base import BaseDataLoader, BaseDataLoader2, BaseDataLoader3
from utils.dataset import ECGDatasetWithIndex
from sklearn.preprocessing import MinMaxScaler
from utils.dataset import load_label_files, load_labels, load_weights
from scipy.signal import savgol_filter, medfilt, wiener
from data_loader.preprocessing import cheby_lowpass_filter, butter_lowpass_filter, plot
from data_loader.util import load_challenge_data, get_classes, CustomTensorDataset, CustomTensorListDataset, custom_collate_fn
import augmentation.transformers as module_transformers
import random
import time
import pickle
from utils.util import smooth_labels
# official data
class ChallengeDataLoader0(BaseDataLoader2):
"""
challenge2020 data loading
"""
def __init__(self, label_dir, data_dir, split_index, batch_size, shuffle=True, num_workers=2, training=True, training_size=None, rule_based=False, index_rb = [63,70,61], is_for_meta=False, modify_E=True, modify_label=False):
start = time.time()
self.label_dir = label_dir
self.data_dir = data_dir
print('Loading data...')
weights_file = 'evaluation/weights.csv'
normal_class = '426783006'
equivalent_classes = [['713427006', '59118001'], ['284470004', '63593006'], ['427172004', '17338001']]
# Find the label files.
print('Finding label...')
label_files = load_label_files(label_dir)
time_record_1 = time.time()
print("Finding label cost {}s".format(time_record_1-start))
# Load the labels and classes.
print('Loading labels...')
classes, labels_onehot, labels = load_labels(label_files, normal_class, equivalent_classes)
time_record_2 = time.time()
print("Loading label cost {}s".format(time_record_2-time_record_1))
# from scipy.io import savemat
# savemat('./classes.mat', {'val': classes})
# Load the weights for the Challenge metric.
print('Loading weights...')
weights = load_weights(weights_file, classes)
self.weights = weights
time_record_3 = time.time()
print("Loading weights cost {}s".format(time_record_3-time_record_2))
# Classes that are scored with the Challenge metric.
indices = np.any(weights, axis=0) # Find indices of classes in weight matrix.
classes_scored = [x for i, x in enumerate(classes) if indices[i]]
# from scipy.io import savemat
# savemat('evaluation/scored_classes_indices.mat', {'val': indices})
# Load short signals and remove from labels
# short_signals = loadmat(os.path.join(data_dir, 'short_signals.mat'))['val']
# short_signals_ids = list(short_signals.reshape((short_signals.shape[1], )))
split_idx = loadmat(split_index)
train_index, val_index, test_index = split_idx['train_index'], split_idx['val_index'], split_idx['test_index']
train_index = train_index.reshape((train_index.shape[1], ))
if training_size is not None:
train_index = train_index[0:training_size]
val_index = val_index.reshape((val_index.shape[1], ))
test_index = test_index.reshape((test_index.shape[1], ))
num_files = len(label_files)
recordings = list()
labels_onehot_new = list()
file_names = list()
bb = []
dd = []
# save_labels = list()
# names = list()
if modify_label:
df = pd.read_csv('process/data_lxy/data_lxy.csv', error_bad_lines=False)
files_lxy = list(df.iloc[:, 0][2:].values)
labels_lxy = df.iloc[2:252, 1:26].values.astype(int)
for i in range(num_files):
file = os.path.basename(label_files[i])
name, ext = os.path.splitext(file)
if name in files_lxy:
idx = files_lxy.index(name)
label = labels_onehot[i]
label[indices] = labels_lxy[idx][:24]
label = label.astype(bool)
labels_onehot[i] = label
# print(np.all(labels_onehot[i][indices]==labels_lxy[idx][:24]))
# print(name)
# print(files_lxy[idx])
for i in range(num_files):
recording, header, name = load_challenge_data(label_files[i], data_dir)
recording[np.isnan(recording)] = 0
if modify_E and name.startswith('E'):
recording *= 4.88
recordings.append(recording)
file_names.append(name)
rr = np.array(recording)
if np.isnan(rr).any():
print(i)
bb.append(i)
dd.append(rr)
labels_onehot_new.append(labels_onehot[i])
time_record_4 = time.time()
print("Loading data cost {}s".format(time_record_4-time_record_3))
for i in range(len(recordings)):
if np.isnan(recordings[i]).any():
print(i)
# slided data
recordings_all = list()
labels_onehot_all = list()
for i in range(len(recordings)):
for j in range(recordings[i].shape[0]):
recordings_all.append(recordings[i][j])
labels_onehot_all.append(labels_onehot_new[i])
recordings_all = np.array(recordings_all)
labels_onehot_all = np.array(labels_onehot_all)
# np.random.shuffle(labels_onehot_all)
# labels_onehot = np.array(labels_onehot, dtype='float64')
# labels_onehot = smooth_labels(labels_onehot)
print(np.isnan(recordings_all).any())
num = recordings_all.shape[0]
c = []
a = []
for i in range(num):
if np.isnan(recordings_all[i]).any():
print(' {}/{}'.format(i, num))
c.append(i)
a.append(recordings_all[i])
print(c)
print(a)
# Get number of samples for each category
self.count = np.sum(labels_onehot_all, axis=0)
self.indices = indices
# Get rule-based classed index
# name = ['心动过缓', '窦性心动过速', '窦性心动过缓', '窦性心律不齐', '窦性心率']
# dx = ['bradycardia', 'sinus tachycardia', 'sinus bradycardia', 'sinus arrhythmia', 'sinus rhythm']
# abb = ['Brady', 'STach', 'SB', 'SA', 'SNR']
# code = ['426627000', '427084000', '426177001', '427393009', '426783006']
# idx = [63, 70, 61, 72, 68]
if rule_based:
# index_rb = loadmat('rule_based/index.mat')['val']
# index_rb = index_rb.reshape([index_rb.shape[1], ])
indices_rb = np.ones((indices.shape[0], ))
indices_rb[index_rb] = 0
self.indices_rb = indices_rb.astype(bool)
self.index_rb = index_rb
X = torch.from_numpy(recordings_all).float()
# Y = torch.from_numpy(labels_onehot)
Y = torch.from_numpy(labels_onehot_all).float()
if is_for_meta == False:
self.dataset = TensorDataset(X, Y)
else:
self.dataset = ECGDatasetWithIndex(X, Y)
end = time.time()
print('time to get and process data: {}'.format(end-start))
super().__init__(self.dataset, batch_size, shuffle, train_index, val_index, test_index, num_workers)
self.valid_data_loader.file_names = file_names
self.test_data_loader.file_names = file_names
if rule_based:
self.test_data_loader.indices_rb = self.indices_rb
self.test_data_loader.index_rb = self.index_rb
# official data (filtered\balanced\slided_and_cut)
class ChallengeDataLoader1(BaseDataLoader2):
"""
challenge2020 data loading
"""
def __init__(self, label_dir, data_dir, batch_size, shuffle=True, validation_split=0.0, test_split=0.0, num_workers=1, training=True):
self.label_dir = label_dir
self.data_dir = data_dir
print('Loading data...')
weights_file = 'evaluation/weights.csv'
normal_class = '426783006'
equivalent_classes = [['713427006', '59118001'], ['284470004', '63593006'], ['427172004', '17338001']]
# Find the label files.
print('Finding label...')
label_files = load_label_files(label_dir)
# Load the labels and classes.
print('Loading labels...')
classes, labels_onehot, labels = load_labels(label_files, normal_class, equivalent_classes)
# Load the weights for the Challenge metric.
print('Loading weights...')
weights = load_weights(weights_file, classes)
# Classes that are scored with the Challenge metric.
indices = np.any(weights, axis=0) # Find indices of classes in weight matrix.
# from scipy.io import savemat
# savemat('evaluation/scored_classes_indices.mat', {'val': indices})
# Load short signals and remove from labels
# short_signals = loadmat(os.path.join(data_dir, 'short_signals.mat'))['val']
# short_signals_ids = list(short_signals.reshape((short_signals.shape[1], )))
num_files = len(label_files)
recordings = list()
labels_onehot_new = list()
labels_new = list()
bb = []
dd = []
for i in range(num_files):
# if i in short_signals_ids:
# continue
recording, header = load_challenge_data(label_files[i], data_dir)
recording[np.isnan(recording)] = 0
recordings.append(recording)
rr = np.array(recording)
if np.isnan(rr).any():
print(i)
bb.append(i)
dd.append(rr)
labels_onehot_new.append(labels_onehot[i])
labels_new.append(labels[i])
# shuffle
recordings_shuffled, labels_onehot_shuffled, labels_shuffled = self.shuffle(recordings, labels_onehot_new, labels_new)
for i in range(len(recordings_shuffled)):
if np.isnan(recordings_shuffled[i]).any():
print(i)
# slided data
recordings_all = list()
labels_onehot_all = list()
labels_all = list()
for i in range(len(recordings_shuffled)):
for j in range(recordings_shuffled[i].shape[0]):
recordings_all.append(recordings_shuffled[i][j])
labels_onehot_all.append(labels_onehot_shuffled[i])
labels_all.append(labels_shuffled[i])
recordings_all = np.array(recordings_all)
labels_onehot_all = np.array(labels_onehot_all)
print(np.isnan(recordings_all).any())
num = recordings_all.shape[0]
c = []
a = []
for i in range(num):
if np.isnan(recordings_all[i]).any():
print(' {}/{}'.format(i, num))
c.append(i)
a.append(recordings_all[i])
print(c)
print(a)
# Get number of samples for each category
self.count = np.sum(labels_onehot_all, axis=0)
self.indices = indices
X = torch.from_numpy(recordings_all).float()
# Y = torch.from_numpy(labels_onehot)
Y = torch.from_numpy(labels_onehot_all.astype(int))
self.dataset = TensorDataset(X, Y)
train_idx, valid_idx, test_idx = self.split_val_test(len(Y), validation_split, test_split)
super().__init__(self.dataset, batch_size, shuffle, train_idx, valid_idx, test_idx, num_workers)
def shuffle(self, recordings, labels_onehot, labels):
randnum = random.randint(0, 100)
random.seed(randnum)
random.shuffle(recordings)
random.seed(randnum)
random.shuffle(labels_onehot)
random.seed(randnum)
random.shuffle(labels)
return recordings, labels_onehot, labels
def split_val_test(self, n_sample, validation_split, test_split):
idx_full = np.arange(n_sample)
valid_idx = idx_full[-int(n_sample*(validation_split+test_split)): -int(n_sample*test_split)]
test_idx = idx_full[-int(n_sample*test_split):]
train_idx = idx_full[:-int(n_sample*(validation_split+test_split))]
return train_idx, valid_idx, test_idx
# DataLoader (augmentation + 25 classes)
class ChallengeDataLoader2(BaseDataLoader3):
"""
challenge2020 data loading
"""
def __init__(self, label_dir, data_dir, split_index, batch_size, shuffle=True, num_workers=4, training=True, training_size=None, normalization=False, augmentations=None, p=0.5, _25classes=False, modify_E=True, modify_label=True):
start = time.time()
self.label_dir = label_dir
self.data_dir = data_dir
print('Loading data...')
weights_file = 'evaluation/weights.csv'
normal_class = '426783006'
equivalent_classes = [['713427006', '59118001'], ['284470004', '63593006'], ['427172004', '17338001']]
# Find the label files.
print('Finding label...')
label_files = load_label_files(label_dir)
time_record_1 = time.time()
print("Finding label cost {}s".format(time_record_1 - start))
# Load the labels and classes.
print('Loading labels...')
classes, labels_onehot, labels = load_labels(label_files, normal_class, equivalent_classes)
time_record_2 = time.time()
print("Loading label cost {}s".format(time_record_2 - time_record_1))
# Load the weights for the Challenge metric.
print('Loading weights...')
weights = load_weights(weights_file, classes)
self.weights = weights
time_record_3 = time.time()
print("Loading label cost {}s".format(time_record_3 - time_record_2))
# Classes that are scored with the Challenge metric.
indices = np.any(weights, axis=0) # Find indices of classes in weight matrix.
indices_unscored = ~indices
# Get number of samples for each category
self.indices = indices
split_idx = loadmat(split_index)
train_index, val_index, test_index = split_idx['train_index'], split_idx['val_index'], split_idx['test_index']
train_index = train_index.reshape((train_index.shape[1],))
if training_size is not None:
train_index = train_index[0:training_size]
val_index = val_index.reshape((val_index.shape[1],))
test_index = test_index.reshape((test_index.shape[1],))
num_files = len(label_files)
train_recordings = list()
train_labels_onehot = list()
val_recordings = list()
val_labels_onehot = list()
test_recordings = list()
test_labels_onehot = list()
file_names = list()
if modify_label:
df = pd.read_csv('process/data_lxy/data_lxy.csv', error_bad_lines=False)
files_lxy = list(df.iloc[:, 0][2:].values)
labels_lxy = df.iloc[2:252, 1:26].values.astype(int)
for i in range(num_files):
file = os.path.basename(label_files[i])
name, ext = os.path.splitext(file)
if name in files_lxy:
idx = files_lxy.index(name)
label = labels_onehot[i]
label[indices] = labels_lxy[idx][:24]
label = label.astype(bool)
labels_onehot[i] = label
for i in range(num_files):
recording, header, name = load_challenge_data(label_files[i], data_dir)
recording[np.isnan(recording)] = 0
file_names.append(name)
if modify_E and name.startswith('E'):
recording *= 4.88
if i in train_index:
for j in range(recording.shape[0]):
train_recordings.append(recording[j])
if _25classes:
label = np.ones((25, )).astype(bool)
label[:24] = labels_onehot[i, indices]
label[24] = labels_onehot[i, indices_unscored].any()
train_labels_onehot.append(label)
else:
train_labels_onehot.append(labels_onehot[i])
elif i in val_index:
for j in range(recording.shape[0]):
val_recordings.append(recording[j])
if _25classes:
label = np.ones((25, )).astype(bool)
label[:24] = labels_onehot[i, indices]
label[24] = labels_onehot[i, indices_unscored].any()
val_labels_onehot.append(label)
else:
val_labels_onehot.append(labels_onehot[i])
else:
for j in range(recording.shape[0]):
test_recordings.append(recording[j])
if _25classes:
label = np.ones((25, )).astype(bool)
label[:24] = labels_onehot[i, indices]
label[24] = labels_onehot[i, indices_unscored].any()
test_labels_onehot.append(label)
else:
test_labels_onehot.append(labels_onehot[i])
time_record_4 = time.time()
print("Loading data cost {}s".format(time_record_4 - time_record_3))
print(np.isnan(train_recordings).any())
print(np.isnan(val_recordings).any())
print(np.isnan(test_recordings).any())
train_recordings = np.array(train_recordings)
train_labels_onehot = np.array(train_labels_onehot)
val_recordings = np.array(val_recordings)
val_labels_onehot = np.array(val_labels_onehot)
test_recordings = np.array(test_recordings)
test_labels_onehot = np.array(test_labels_onehot)
# Normalization
if normalization:
train_recordings = self.normalization(train_recordings)
val_recordings = self.normalization(val_recordings)
test_recordings = self.normalization(test_recordings)
X_train = torch.from_numpy(train_recordings).float()
Y_train = torch.from_numpy(train_labels_onehot).float()
X_val = torch.from_numpy(val_recordings).float()
Y_val = torch.from_numpy(val_labels_onehot).float()
X_test = torch.from_numpy(test_recordings).float()
Y_test = torch.from_numpy(test_labels_onehot).float()
#############################################################
if augmentations:
transformers = list()
for key, value in augmentations.items():
module_args = dict(value['args'])
transformers.append(getattr(module_transformers, key)(**module_args))
train_transform = transforms.Compose(transformers)
self.train_dataset = CustomTensorDataset(X_train, Y_train, transform=train_transform, p=p)
else:
self.train_dataset = TensorDataset(X_train, Y_train)
#############################################################
self.val_dataset = TensorDataset(X_val, Y_val)
self.test_dataset = TensorDataset(X_test, Y_test)
end = time.time()
print('time to get and process data: {}'.format(end - start))
super().__init__(self.train_dataset, self.val_dataset, self.test_dataset, batch_size, shuffle, num_workers)
self.valid_data_loader.file_names = file_names
self.valid_data_loader.idx = val_index
self.test_data_loader.file_names = file_names
self.test_data_loader.idx = test_index
def normalization(self, X):
mm = MinMaxScaler()
for i in range(len(X)):
data = X[i].swapaxes(0, 1)
data_scaled = mm.fit_transform(data)
data_scaled = data_scaled.swapaxes(0, 1)
X[i] = data_scaled
return X
# Dataloader (over-sampled data)
class ChallengeDataLoader3(BaseDataLoader3):
"""
challenge2020 data loading
"""
def __init__(self, label_dir, data_dir, train_data_dir, split_index, batch_size, shuffle=True, num_workers=2, training=True, training_size=None, augmentations=None, p=0.5):
start = time.time()
self.label_dir = label_dir
self.data_dir = data_dir
self.train_data_dir = train_data_dir
print('Loading data...')
weights_file = 'evaluation/weights.csv'
normal_class = '426783006'
equivalent_classes = [['713427006', '59118001'], ['284470004', '63593006'], ['427172004', '17338001']]
# Find the label files.
print('Finding label...')
label_files = load_label_files(label_dir)
time_record_1 = time.time()
print("Finding label cost {}s".format(time_record_1-start))
# Load the labels and classes.
print('Loading labels...')
classes, labels_onehot, labels = load_labels(label_files, normal_class, equivalent_classes)
time_record_2 = time.time()
print("Loading label cost {}s".format(time_record_2-time_record_1))
# Load the weights for the Challenge metric.
print('Loading weights...')
weights = load_weights(weights_file, classes)
self.weights = weights
time_record_3 = time.time()
print("Loading label cost {}s".format(time_record_3-time_record_2))
# Classes that are scored with the Challenge metric.
indices = np.any(weights, axis=0) # Find indices of classes in weight matrix.
split_idx = loadmat(split_index)
train_index, val_index, test_index = split_idx['train_index'], split_idx['val_index'], split_idx['test_index']
train_index = train_index.reshape((train_index.shape[1], ))
if training_size is not None:
train_index = train_index[0:training_size]
val_index = val_index.reshape((val_index.shape[1], ))
test_index = test_index.reshape((test_index.shape[1], ))
num_files = len(label_files)
train_recordings = list()
train_labels_onehot = list()
val_recordings = list()
val_labels_onehot = list()
test_recordings = list()
test_labels_onehot = list()
file_names = list()
for i in range(num_files):
if i in train_index:
recording, header, name = load_challenge_data(label_files[i], train_data_dir)
else:
recording, header, name = load_challenge_data(label_files[i], data_dir)
recording[ | np.isnan(recording) | numpy.isnan |
import os
import shutil
import matplotlib.pyplot as plt
import numpy as np
import flopy
pth = os.path.join("..", "examples", "data", "mf6-freyberg")
name = "freyberg"
tpth = os.path.join("temp", "t078")
# delete the directory if it exists
if os.path.isdir(tpth):
shutil.rmtree(tpth)
# make the directory
os.makedirs(tpth)
def __export_ascii_grid(modelgrid, file_path, v, nodata=0.0):
shape = v.shape
xcenters = modelgrid.xcellcenters[0, :]
cellsize = xcenters[1] - xcenters[0]
with open(file_path, "w") as f:
f.write(f"NCOLS {shape[1]}\n")
f.write(f"NROWS {shape[0]}\n")
f.write(f"XLLCENTER {modelgrid.xoffset + 0.5 * cellsize}\n")
f.write(f"YLLCENTER {modelgrid.yoffset + 0.5 * cellsize}\n")
f.write(f"CELLSIZE {cellsize}\n")
f.write(f"NODATA_VALUE {nodata}\n")
np.savetxt(f, v, fmt="%.4f")
return
# derived from original modflow6-examples function in ex-gwt-prudic2004t2
def __get_lake_connection_data(
nrow, ncol, delr, delc, lakibd, idomain, lakebed_leakance
):
lakeconnectiondata = []
nlakecon = [0, 0]
lak_leakance = lakebed_leakance
for i in range(nrow):
for j in range(ncol):
if lakibd[i, j] == 0:
continue
else:
ilak = lakibd[i, j] - 1
# back
if i > 0:
ci2d, ci = (i - 1, j), (0, i - 1, j)
if lakibd[ci2d] == 0 and idomain[ci] > 0:
h = [
ilak,
nlakecon[ilak],
ci,
"horizontal",
lak_leakance,
0.0,
0.0,
0.5 * delc,
delr,
]
nlakecon[ilak] += 1
lakeconnectiondata.append(h)
# left
if j > 0:
ci2d, ci = (i, j - 1), (0, i, j - 1)
if lakibd[ci2d] == 0 and idomain[ci] > 0:
h = [
ilak,
nlakecon[ilak],
ci,
"horizontal",
lak_leakance,
0.0,
0.0,
0.5 * delr,
delc,
]
nlakecon[ilak] += 1
lakeconnectiondata.append(h)
# right
if j < ncol - 1:
ci2d, ci = (i, j + 1), (0, i, j + 1)
if lakibd[ci2d] == 0 and idomain[ci] > 0:
h = [
ilak,
nlakecon[ilak],
ci,
"horizontal",
lak_leakance,
0.0,
0.0,
0.5 * delr,
delc,
]
nlakecon[ilak] += 1
lakeconnectiondata.append(h)
# front
if i < nrow - 1:
ci2d, ci = (i + 1, j), (0, i + 1, j)
if lakibd[ci2d] == 0 and idomain[ci] > 0:
h = [
ilak,
nlakecon[ilak],
ci,
"horizontal",
lak_leakance,
0.0,
0.0,
0.5 * delc,
delr,
]
nlakecon[ilak] += 1
lakeconnectiondata.append(h)
# vertical
v = [
ilak,
nlakecon[ilak],
(1, i, j),
"vertical",
lak_leakance,
0.0,
0.0,
0.0,
0.0,
]
nlakecon[ilak] += 1
lakeconnectiondata.append(v)
return lakeconnectiondata, nlakecon
def test_base_run():
sim = flopy.mf6.MFSimulation().load(
sim_name=name,
sim_ws=pth,
exe_name="mf6",
verbosity_level=0,
)
ws = os.path.join(tpth, "freyberg")
sim.set_sim_path(ws)
# remove the well package
gwf = sim.get_model("freyberg")
gwf.remove_package("wel_0")
# write the simulation files and run the model
sim.write_simulation()
sim.run_simulation()
# export bottom, water levels, and k11 as ascii raster files
# for interpolation in test_lake()
bot = gwf.dis.botm.array.squeeze()
__export_ascii_grid(
gwf.modelgrid,
os.path.join(ws, "bot.asc"),
bot,
)
top = gwf.output.head().get_data().squeeze() + 2.0
top = np.where(gwf.dis.idomain.array.squeeze() < 1.0, 0.0, top)
__export_ascii_grid(
gwf.modelgrid,
os.path.join(ws, "top.asc"),
top,
)
k11 = gwf.npf.k.array.squeeze()
__export_ascii_grid(
gwf.modelgrid,
os.path.join(ws, "k11.asc"),
k11,
)
return
def test_lake():
ws = os.path.join(tpth, "freyberg")
top = flopy.utils.Raster.load(os.path.join(ws, "top.asc"))
bot = flopy.utils.Raster.load(os.path.join(ws, "bot.asc"))
k11 = flopy.utils.Raster.load(os.path.join(ws, "k11.asc"))
sim = flopy.mf6.MFSimulation().load(
sim_name=name,
sim_ws=ws,
exe_name="mf6",
verbosity_level=0,
)
# get groundwater flow model
gwf = sim.get_model("freyberg")
# define extent of lake
lakes = gwf.dis.idomain.array.squeeze() * -1
lakes[32:, :] = -1
# fill bottom
bot_tm = bot.resample_to_grid(
gwf.modelgrid,
band=bot.bands[0],
method="linear",
extrapolate_edges=True,
)
# mm = flopy.plot.PlotMapView(modelgrid=gwf.modelgrid)
# mm.plot_array(bot_tm)
# determine a reasonable lake bottom
idx = np.where(lakes > -1)
lak_bot = bot_tm[idx].max() + 2.0
# interpolate top elevations
top_tm = top.resample_to_grid(
gwf.modelgrid,
band=top.bands[0],
method="linear",
extrapolate_edges=True,
)
# set the elevation to the lake bottom in the area of the lake
top_tm[idx] = lak_bot
# mm = flopy.plot.PlotMapView(modelgrid=gwf.modelgrid)
# v = mm.plot_array(top_tm)
# cs = mm.contour_array(
# top_tm, colors="white", linewidths=0.5, levels=np.arange(0, 25, 2)
# )
# plt.clabel(cs, fmt="%.1f", colors="white", fontsize=7)
# plt.colorbar(v, shrink=0.5)
gwf.dis.top = top_tm
gwf.dis.botm = bot_tm.reshape(gwf.modelgrid.shape)
# v = gwf.dis.top.array
# v = gwf.dis.botm.array
k11_tm = k11.resample_to_grid(
gwf.modelgrid,
band=k11.bands[0],
method="linear",
extrapolate_edges=True,
)
gwf.npf.k = k11_tm
# mm = flopy.plot.PlotMapView(modelgrid=gwf.modelgrid)
# mm.plot_array(k11_tm)
(
idomain,
pakdata_dict,
connectiondata,
) = flopy.mf6.utils.get_lak_connections(
gwf.modelgrid,
lakes,
bedleak=5e-9,
)
assert (
pakdata_dict[0] == 54
), f"number of lake connections ({pakdata_dict[0]}) not equal to 54."
assert len(connectiondata) == 54, (
"number of lake connectiondata entries ({}) not equal "
"to 54.".format(len(connectiondata))
)
lak_pak_data = []
for key, value in pakdata_dict.items():
lak_pak_data.append([key, 35.0, value])
lak_spd = {0: [[0, "rainfall", 3.2e-9]]}
lak = flopy.mf6.ModflowGwflak(
gwf,
print_stage=True,
nlakes=1,
packagedata=lak_pak_data,
connectiondata=connectiondata,
perioddata=lak_spd,
pname="LAK-1",
filename="freyberg.lak",
)
idomain = gwf.dis.idomain.array
lakes.shape = idomain.shape
gwf.dis.idomain = np.where(lakes > -1, 1, idomain)
# convert to Newton-Raphson fomulation and update the linear accelerator
gwf.name_file.newtonoptions = "NEWTON UNDER_RELAXATION"
sim.ims.linear_acceleration = "BICGSTAB"
# write the revised simulation files and run the model
sim.write_simulation()
success = sim.run_simulation(silent=False)
assert success, f"could not run {sim.name} with lake"
return
def test_embedded_lak_ex01():
nper = 1
nlay, nrow, ncol = 5, 17, 17
shape3d = (nlay, nrow, ncol)
delr = (
250.0,
1000.0,
1000.0,
1000.0,
1000.0,
1000.0,
500.0,
500.0,
500.0,
500.0,
500.0,
1000.0,
1000.0,
1000.0,
1000.0,
1000.0,
250.0,
)
delc = delr
top = 500.0
botm = (
107.0,
97.0,
87.0,
77.0,
67.0,
)
lake_map = np.ones(shape3d, dtype=np.int32) * -1
lake_map[0, 6:11, 6:11] = 0
lake_map[1, 7:10, 7:10] = 0
lake_map = np.ma.masked_where(lake_map < 0, lake_map)
strt = 115.0
k11 = 30
k33 = (
1179.0,
30.0,
30.0,
30.0,
30.0,
)
load_pth = os.path.join("..", "examples", "data", "mf2005_test")
ml = flopy.modflow.Modflow.load(
"l1a2k.nam",
model_ws=load_pth,
load_only=["EVT"],
check=False,
)
rch_rate = 0.116e-1
evt_rate = 0.141e-1
evt_depth = 15.0
evt_surf = ml.evt.surf[0].array
chd_top_bottom = (
160.0,
158.85,
157.31,
155.77,
154.23,
152.69,
151.54,
150.77,
150.0,
149.23,
148.46,
147.31,
145.77,
144.23,
142.69,
141.15,
140.0,
)
chd_spd = []
for k in range(nlay):
for i in range(nrow):
if 0 < i < nrow - 1:
chd_spd.append([k, i, 0, chd_top_bottom[0]])
chd_spd.append([k, i, ncol - 1, chd_top_bottom[-1]])
else:
for jdx, v in enumerate(chd_top_bottom):
chd_spd.append([k, i, jdx, v])
chd_spd = {0: chd_spd}
name = "lak_ex01"
ws = os.path.join(tpth, "lak_ex01")
sim = flopy.mf6.MFSimulation(
sim_name=name,
exe_name="mf6",
sim_ws=ws,
)
tdis = flopy.mf6.ModflowTdis(
sim,
nper=nper,
)
ims = flopy.mf6.ModflowIms(
sim,
print_option="summary",
linear_acceleration="BICGSTAB",
outer_maximum=1000,
inner_maximum=100,
outer_dvclose=1e-8,
inner_dvclose=1e-9,
)
gwf = flopy.mf6.ModflowGwf(
sim,
modelname=name,
newtonoptions="newton under_relaxation",
print_input=True,
)
dis = flopy.mf6.ModflowGwfdis(
gwf,
nlay=nlay,
nrow=nrow,
ncol=ncol,
delr=delr,
delc=delc,
top=top,
botm=botm,
)
ic = flopy.mf6.ModflowGwfic(
gwf,
strt=strt,
)
npf = flopy.mf6.ModflowGwfnpf(
gwf,
icelltype=1,
k=k11,
k33=k33,
)
chd = flopy.mf6.ModflowGwfchd(
gwf,
stress_period_data=chd_spd,
)
rch = flopy.mf6.ModflowGwfrcha(
gwf,
recharge=rch_rate,
)
evt = flopy.mf6.ModflowGwfevta(
gwf,
surface=evt_surf,
depth=evt_depth,
rate=evt_rate,
)
oc = flopy.mf6.ModflowGwfoc(
gwf,
printrecord=[("HEAD", "ALL"), ("BUDGET", "ALL")],
)
(
idomain,
pakdata_dict,
connectiondata,
) = flopy.mf6.utils.get_lak_connections(
gwf.modelgrid,
lake_map,
bedleak=0.1,
)
assert (
pakdata_dict[0] == 57
), f"number of lake connections ({pakdata_dict[0]}) not equal to 57."
assert len(connectiondata) == 57, (
"number of lake connectiondata entries ({}) not equal "
"to 57.".format(len(connectiondata))
)
lak_pak_data = []
for key, value in pakdata_dict.items():
lak_pak_data.append([key, 110.0, value])
lak_spd = {
0: [
[0, "rainfall", rch_rate],
[0, "evaporation", 0.0103],
]
}
lak = flopy.mf6.ModflowGwflak(
gwf,
print_stage=True,
print_flows=True,
nlakes=1,
packagedata=lak_pak_data,
connectiondata=connectiondata,
perioddata=lak_spd,
pname="LAK-1",
)
# reset idomain
gwf.dis.idomain = idomain
# write the simulation files and run the model
sim.write_simulation()
success = sim.run_simulation(silent=False)
assert success, f"could not run {sim.name}"
def test_embedded_lak_prudic():
lakebed_leakance = 1.0 # Lakebed leakance ($ft^{-1}$)
nlay = 8 # Number of layers
nrow = 36 # Number of rows
ncol = 23 # Number of columns
delr = float(405.665) # Column width ($ft$)
delc = float(403.717) # Row width ($ft$)
delv = 15.0 # Layer thickness ($ft$)
top = 100.0 # Top of the model ($ft$)
shape2d = (nrow, ncol)
shape3d = (nlay, nrow, ncol)
# load data from text files
data_ws = os.path.join("..", "examples", "data", "mf6_test")
fname = os.path.join(data_ws, "prudic2004t2_bot1.dat")
bot0 = np.loadtxt(fname)
botm = np.array(
[bot0]
+ [
np.ones(shape2d, dtype=float) * (bot0 - (delv * k))
for k in range(1, nlay)
]
)
fname = os.path.join(data_ws, "prudic2004t2_idomain1.dat")
idomain0 = np.loadtxt(fname, dtype=np.int32)
idomain = np.array(nlay * [idomain0], dtype=np.int32)
fname = os.path.join(data_ws, "prudic2004t2_lakibd.dat")
lakibd = np.loadtxt(fname, dtype=int)
lake_map = np.ones(shape3d, dtype=np.int32) * -1
lake_map[0, :, :] = lakibd[:, :] - 1
# build StructuredGrid
model_grid = flopy.discretization.StructuredGrid(
nlay=nlay,
nrow=nrow,
ncol=ncol,
delr=np.ones(ncol, dtype=float) * delr,
delc=np.ones(nrow, dtype=float) * delc,
top=np.ones(shape2d, dtype=float) * top,
botm=botm,
idomain=idomain,
)
# base case
cdata, lakconn = __get_lake_connection_data(
nrow, ncol, delr, delc, lakibd, idomain, lakebed_leakance
)
# flopy test
(
idomain_rev,
pakdata_dict,
connectiondata,
) = flopy.mf6.utils.get_lak_connections(
model_grid,
lake_map,
idomain=idomain,
bedleak=lakebed_leakance,
)
# evaluate the number of connections
for idx, nconn in enumerate(lakconn):
assert pakdata_dict[idx] == nconn, (
"number of connections calculated by get_lak_connections ({}) "
"not equal to {} for lake {}.".format(
pakdata_dict[idx], nconn, idx + 1
)
)
# compare connectiondata
for idx, (cd, cdbase) in enumerate(zip(connectiondata, cdata)):
for jdx in (
0,
1,
2,
3,
7,
8,
):
match = True
if jdx not in (
7,
8,
):
if cd[jdx] != cdbase[jdx]:
match = False
else:
match = np.allclose(cd[jdx], cdbase[jdx])
if not match:
print(
f"connection data do match for connection {idx} for lake {cd[0]}"
)
break
assert match, f"connection data do not match for connection {jdx}"
# evaluate the revised idomain, only layer 1 has been adjusted
idomain0_test = idomain[0, :, :].copy()
idomain0_test[lakibd > 0] = 0
idomain_test = idomain.copy()
idomain[0, :, :] = idomain0_test
assert np.array_equal(
idomain_rev, idomain_test
), "idomain not updated correctly with lakibd"
return
def test_embedded_lak_prudic_mixed():
lakebed_leakance = 1.0 # Lakebed leakance ($ft^{-1}$)
nlay = 8 # Number of layers
nrow = 36 # Number of rows
ncol = 23 # Number of columns
delr = float(405.665) # Column width ($ft$)
delc = float(403.717) # Row width ($ft$)
delv = 15.0 # Layer thickness ($ft$)
top = 100.0 # Top of the model ($ft$)
shape2d = (nrow, ncol)
shape3d = (nlay, nrow, ncol)
# load data from text files
data_ws = os.path.join("..", "examples", "data", "mf6_test")
fname = os.path.join(data_ws, "prudic2004t2_bot1.dat")
bot0 = np.loadtxt(fname)
botm = np.array(
[bot0]
+ [
np.ones(shape2d, dtype=float) * (bot0 - (delv * k))
for k in range(1, nlay)
]
)
fname = os.path.join(data_ws, "prudic2004t2_idomain1.dat")
idomain0 = | np.loadtxt(fname, dtype=np.int32) | numpy.loadtxt |
# -*- coding: utf-8 -*-
''' Data Transforms Module
This module contains functions for transforming PV power data, including time-axis standardization and
2D-array generation
'''
from datetime import timedelta
import numpy as np
import pandas as pd
from scipy.signal import argrelextrema
from sklearn.neighbors.kde import KernelDensity
from solardatatools.clear_day_detection import find_clear_days
from solardatatools.utilities import total_variation_filter, total_variation_plus_seasonal_filter
def standardize_time_axis(df, datetimekey='Date-Time'):
'''
This function takes in a pandas data frame containing tabular time series data, likely generated with a call to
pandas.read_csv(). It is assumed that each row of the data frame corresponds to a unique date-time, though not
necessarily on standard intervals. This function will attempt to convert a user-specified column containing time
stamps to python datetime objects, assign this column to the index of the data frame, and then standardize the
index over time. By standardize, we mean reconstruct the index to be at regular intervals, starting at midnight of
the first day of the data set. This solves a couple common data errors when working with raw data. (1) Missing data
points from skipped scans in the data acquisition system. (2) Time stamps that are at irregular exact times,
including fractional seconds.
:param df: A pandas data frame containing the tabular time series data
:param datetimekey: An optional key corresponding to the name of the column that contains the time stamps
:return: A new data frame with a standardized time axis
'''
# convert index to timeseries
try:
df[datetimekey] = pd.to_datetime(df[datetimekey])
df.set_index('Date-Time', inplace=True)
except KeyError:
time_cols = [col for col in df.columns if np.logical_or('Time' in col, 'time' in col)]
key = time_cols[0]
df[datetimekey] = pd.to_datetime(df[key])
df.set_index(datetimekey, inplace=True)
# standardize the timeseries axis to a regular frequency over a full set of days
diff = (df.index[1:] - df.index[:-1]).seconds
freq = int(np.median(diff)) # the number of seconds between each measurement
start = df.index[0]
end = df.index[-1]
time_index = pd.date_range(start=start.date(), end=end.date() + timedelta(days=1), freq='{}s'.format(freq))[:-1]
df = df.reindex(index=time_index, method='nearest')
return df.fillna(value=0)
def make_2d(df, key='dc_power'):
'''
This function constructs a 2D array (or matrix) from a time series signal with a standardized time axis. The data is
chunked into days, and each consecutive day becomes a column of the matrix.
:param df: A pandas data frame contained tabular data with a standardized time axis.
:param key: The key corresponding to the column in the data frame contained the signal to make into a matrix
:return: A 2D numpy array with shape (measurements per day, days in data set)
'''
if df is not None:
days = df.resample('D').max().index[1:-1]
start = days[0]
end = days[-1]
n_steps = int(24 * 60 * 60 / df.index.freq.delta.seconds)
D = df[key].loc[start:end].iloc[:-1].values.reshape(n_steps, -1, order='F')
return D
else:
return
def fix_time_shifts(data, verbose=False, return_ixs=False, clear_day_filter=True,
c1=10., c2=500., c3=5.):
'''
This is an algorithm to detect and fix time stamping shifts in a PV power database. This is a common data error
that can have a number of causes: improper handling of DST, resetting of a data logger clock, or issues with
storing the data in the database. The algorithm performs as follows:
Part 1:
a) Estimate solar noon for each day relative to the provided time axis. This is estimated as the "center of
mass" in time of the energy production each day.
b) Filter this signal for clear days
c) Fit a total variation filter with seasonal baseline to the output of (b)
d) Perform KDE-based clustering on the output of (c)
e) Extract the days on which the transitions between clusters occur
Part 2:
a) Find the average solar noon value for each cluster
b) Taking the first cluster as a reference point, find the offsets in average values between the first cluster
and all others
c) Adjust the time axis for all clusters after the first by the amount calculated in (b)
:param data: A 2D numpy array containing a solar power time series signal (see `data_transforms.make_2d`)
:param verbose: An option to print information about what clusters are found
:param return_ixs: An option to return the indices of the boundary days for the clusters
:return:
'''
D = data
#################################################################################################################
# Part 1: Detecting the days on which shifts occurs. If no shifts are detected, the algorithm exits, returning
# the original data array. Otherwise, the algorithm proceeds to Part 2.
#################################################################################################################
# Find "center of mass" of each day's energy content. This generates a 1D signal from the 2D input signal.
div1 = np.dot(np.linspace(0, 24, D.shape[0]), D)
div2 = np.sum(D, axis=0)
s1 = np.empty_like(div1)
s1[:] = np.nan
msk = div2 != 0
s1[msk] = np.divide(div1[msk], div2[msk])
# Apply a clear day filter
if clear_day_filter:
m = find_clear_days(D)
s1_f = np.empty_like(s1)
s1_f[:] = np.nan
s1_f[m] = s1[m]
else:
s1_f = s1
# Apply total variation filter (with seasonal baseline if >1yr of data)
if len(s1) > 365:
s2, s_seas = total_variation_plus_seasonal_filter(s1_f, c1=c1, c2=c2)
else:
s2 = total_variation_filter(s1_f, C=c3)
# Perform clustering with KDE
kde = KernelDensity(kernel='gaussian', bandwidth=0.05).fit(s2[:, np.newaxis])
X_plot = np.linspace(0.95 * np.min(s2), 1.05 * np.max(s2))[:, np.newaxis]
log_dens = kde.score_samples(X_plot)
mins = argrelextrema(log_dens, np.less)[0] # potential cut points to make clusters
maxs = argrelextrema(log_dens, np.greater)[0] # locations of the max point in each cluster
# Drop clusters with too few members
keep = np.ones_like(maxs, dtype=np.bool)
for ix, mx in enumerate(maxs):
if np.exp(log_dens)[mx] < 1e-1:
keep[ix] = 0
mx_keep = maxs[keep]
mx_drop = maxs[~keep]
mn_drop = []
# Determine closest clusters in keep set to each cluster that should be dropped
for md in mx_drop:
dists = np.abs(X_plot[:, 0][md] - X_plot[:, 0][mx_keep])
max_merge = mx_keep[np.argmin(dists)]
# Determine which minimum index to remove to correctly merge clusters
for mn in mins:
cond1 = np.logical_and(mn < max_merge, mn > md)
cond2 = np.logical_and(mn > max_merge, mn < md)
if np.logical_or(cond1, cond2):
if verbose:
print('merge', md, 'with', max_merge, 'by dropping', mn)
mn_drop.append(mn)
mins_new = np.array([i for i in mins if i not in mn_drop])
# Assign cluster labels to days in data set
clusters = np.zeros_like(s1)
if len(mins_new) > 0:
for it, ex in enumerate(X_plot[:, 0][mins_new]):
m = s2 >= ex
clusters[m] = it + 1
# Identify indices corresponding to days when time shifts occurred
index_set = np.arange(D.shape[1]-1)[clusters[1:] != clusters[:-1]] + 1
# Exit if no time shifts detected
if len(index_set) == 0:
if verbose:
print('No time shifts found')
if return_ixs:
return D, []
else:
return D
#################################################################################################################
# Part 2: Fixing the time shifts.
#################################################################################################################
if verbose:
print('Time shifts found at: ', index_set)
ixs = np.r_[[None], index_set, [None]]
# Take averages of solar noon estimates over the segments of the data set defined by the shift points
A = []
for i in range(len(ixs) - 1):
avg = np.average( | np.ma.masked_invalid(s1_f[ixs[i]:ixs[i + 1]]) | numpy.ma.masked_invalid |
"""*****************************************************************************************
MIT License
Copyright (c) 2022 <NAME>, <NAME>, <NAME>, <NAME>, <NAME>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*****************************************************************************************"""
import Utils
from helper_functions import Fast_Caratheodory
import numpy as np
from scipy.optimize import linprog
from numpy import linalg as la
from scipy.linalg import null_space
from numpy.linalg import matrix_rank
from sklearn.decomposition import TruncatedSVD
import time
######################################################## Caratheodory ##################################################
def computeInitialWeightVector(P, p):
"""
This function given a point, solves the linear program dot(self.P.P^T, x) = p where x \in [0, \infty)^n,
and n denotes the number of rows of self.P.P.
:param p: A numpy array representing a point.
:return: A numpy array of n non-negative weights with respect to each row of self.P.P
"""
N = P.shape[0] # number of rows of P
# # Solve the linear program using scipy
# ts = time.time()
Q = P.T
Q = np.vstack((Q, np.ones((1, N))))
b = np.hstack((p, 1))
res = linprog(np.ones((N,)), A_eq=Q, b_eq=b, options={'maxiter': int(1e7), 'tol': 1e-10})
w = res.x
assert (np.linalg.norm(np.dot(P.T, w) - p) <= 1e-9, np.linalg.norm(np.dot(P.T, w) - p))
return w
def attainCaratheodorySet(P, p):
"""
The function at hand returns a set of at most d+1 indices of rows of P where d denotes the dimension of
rows of P. It calls the algorithms implemented by <NAME>, <NAME> and <NAME> at
"Fast and Accurate Least-Mean-Squares Solvers".
:param p: A numpy array denoting a point.
:return: The indices of points from self.P.P which p is a convex combination of.
"""
d = P.shape[1]
u = computeInitialWeightVector(P, p) # compute initial weight vector
# print('Sum of weights {}'.format(np.sum(u)))
if np.count_nonzero(u) > (d + 1): # if the number of positive weights exceeds d+1
u = Fast_Caratheodory(P, u.flatten(), False)
assert(np.linalg.norm(p - np.dot(P.T, u)) <= 1e-9, np.linalg.norm(p - np.dot(P.T, u)))
return np.where(u != 0)[0]
############################################################ AMVEE #####################################################
def isPD(B):
"""Returns true when input is positive-definite, via Cholesky"""
try:
_ = la.cholesky(B)
return True
except la.LinAlgError:
return False
def nearestPD(A):
"""Find the nearest positive-definite matrix to input
A Python/Numpy port of <NAME>'s `nearestSPD` MATLAB code [1], which
credits [2].
[1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd
[2] <NAME>, "Computing a nearest symmetric positive semidefinite
matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6
"""
B = (A + A.T) / 2
_, s, V = la.svd(B)
H = np.dot(V.T, np.dot(np.diag(s), V))
A2 = (B + H) / 2
A3 = (A2 + A2.T) / 2
if isPD(A3):
return A3
spacing = np.spacing(la.norm(A))
# The above is different from [1]. It appears that MATLAB's `chol` Cholesky
# decomposition will accept matrixes with exactly 0-eigenvalue, whereas
# Numpy's will not. So where [1] uses `eps(mineig)` (where `eps` is Matlab
# for `np.spacing`), we use the above definition. CAVEAT: our `spacing`
# will be much larger than [1]'s `eps(mineig)`, since `mineig` is usually on
# the order of 1e-16, and `eps(1e-16)` is on the order of 1e-34, whereas
# `spacing` will, for Gaussian random matrixes of small dimension, be on
# othe order of 1e-16. In practice, both ways converge, as the unit test
# below suggests.
I = np.eye(A.shape[0])
k = 1
while not isPD(A3):
mineig = np.min(np.real(la.eigvals(A3)))
A3 += I * (-mineig * k ** 2 + spacing)
k += 1
return A3
def computeAxesPoints(E, C):
"""
This function finds the vertices of the self.E (the MVEE of P or the inscribed version of it)
:return: A numpy matrix containing the vertices of the ellipsoid.
"""
if not isPD(E):
E = nearestPD(E)
# L = np.linalg.cholesky(self.E) # compute the cholesky decomposition of self.E
# U, D, V = np.linalg.svd(L, full_matrices=True) # attain the length of each axis of the ellipsoid and the
# # rotation of the ellipsoid
_, D, V = np.linalg.svd(E, full_matrices=True)
ellips_points = np.multiply(1.0 / np.sqrt(D[:, np.newaxis]), V.T) # attain the vertices of the ellipsoid assuming it was
# centered at the origin
return np.vstack((ellips_points + C.flatten(), - ellips_points + C.flatten()))
def volumeApproximation(P):
"""
This is our implementation of Algorithm 4.1 at the paper "On Khachiyan’s Algorithm for te Computation of Minimum
Volume Enclosing Ellipsoids" by <NAME> and <NAME>. It serves to compute a set of at most
2*self.P.d points which will be used for computing an initial ellipsoid.
:return: A numpy array of 2 * self.P.d indices of points from self.P.P
"""
basis = None
basis_points = []
n, d = P
if n <= 2 * d:
# if number of points is less than 2*self.P.d, then return their indices in self.P.P
return [i for i in range(n)]
v = np.random.randn(d) # start with a random vector
while np.linalg.matrix_rank(basis) < d: # while rank of basis is less than self.P.d
if basis is not None: # if we already have computed basis points
if basis.shape[1] == d:
# if this line is reached then it means that there is numerical instability
print('Numerical Issues!')
_, _, V = np.linalg.svd(basis[:, :-1], full_matrices=True)
return list(range(n))
orth_basis = null_space(basis.T) # get the orthant of basis
v = orth_basis[:, 0] if orth_basis.ndim > 1 else orth_basis # set v to be the first column of basis
Q = np.dot(P, v.T) # get the dot product of each row of self.P.P and v
if len(basis_points) > 0: # if there are already chosen points, then their dot product is depricated
Q[basis_points] = np.nan
p_alpha = np.nanargmax(np.dot(P, v.T)) # get the index of row with largest non nan dot product value
p_beta = np.nanargmin(np.dot(P, v.T)) # get the index of row with smallest non nan dot product value
v = np.expand_dims(P[p_beta, :] - P[p_alpha, :], 1) # let v be the substraction between the
# row of the largest dot product and the
# point with the smallest dot product
if basis is None: # if no basis was computed
basis = v / np.linalg.norm(v)
else: # add v to the basis
basis = np.hstack((basis, v / np.linalg.norm(v, 2)))
basis_points.append(p_alpha) # add the index of the point with largest dot product
basis_points.append(p_beta) # add the index of the point with smallest dot product
return basis_points
def computemahalanobisDistance(Q, ellip):
"""
This function is used for computing the distance between the rows of Q and ellip using the Mahalanobis
loss function.
:param ellip: A numpy array representing a p.s.d matrix (an ellipsoid)
:return: The Mahalanobis distance between each row in self.P.P to ellip.
"""
s = np.einsum("ij,ij->i", np.dot(Q, ellip), Q) # compute the distance efficiently
return s
def computeEllipsoid(P, weights):
"""
This function computes the ellipsoid which is the MVEE of self.P.
:param weights: a numpy of array of weights with respest to the rows of self.P.P.
:return:
- The MVEE of self.P.P in a p.s.d. matrix form.
- The center of the MVEE of self.P.P.
"""
if weights.ndim == 1: # make sure that the weights are not flattened
weights = np.expand_dims(weights, 1)
c = np.dot(P.T, weights) # attain the center of the MVEE
d = P.shape[1]
Q = P[np.where(weights.flatten() > 0.0)[0], :] # get all the points with positive weights
weights2 = weights[np.where(weights.flatten() > 0.0)[0], :] # get all the positive weights
# compute a p.s.d matrix which will represent the ellipsoid
ellipsoid = 1.0 / d * np.linalg.inv(np.dot(np.multiply(Q, weights2).T, Q)
- np.multiply.outer(c.T.ravel(), c.T.ravel()))
return ellipsoid, c
def enlargeByTol(ellipsoid):
"""
The function at hand enlarges the MVEE (the ellipsoid) by a fact or (1 + Utils.TOL).
:param ellipsoid: A numpy matrix represent a p.s.d matrix
:return: An enlarged version of ellipsoid.
"""
return ellipsoid / (1 + Utils.TOL) ** 2.0
def getContainedEllipsoid(ellipsoid):
"""
This function returns a dialtion of E such that it will be contained in the convex hull of self.P.P.
:param ellipsoid: A p.s.d matrix which represents the MVEE of self.P.P
:return: A dilated version of the MVEE of self.P.P such that it will be contained in the convex hull
of self.P.P.
"""
return ellipsoid * ellipsoid.shape[1] ** 2 * (1 + Utils.TOL) ** 2 # get inscribed ellipsoid
def computeEllipInHigherDimension(Q, weights):
"""
The function at hand computes the ellipsoid in a self.P.d + 1 dimensional space (with respect to the
lifted points) which is centered at the origin.
:param weights: A numpy array of weights with respect to each lifter point in self.Q
:return:
"""
idxs = np.where(weights > 0.0)[0] # get all indices of points with positive weights
weighted_Q = np.multiply(Q[idxs, :], np.expand_dims(np.sqrt(weights[idxs]), 1)) # multiply the postive
# weights with their
# corresponding points
delta = np.sum(np.einsum('bi,bo->bio', weighted_Q, weighted_Q), axis=0) # compute an ellipsoid which is
# centered at the origin
return delta
def optimalityCondition(d, Q, ellip, weights):
"""
This function checks if the MVEE of P is found in the context of <NAME> and <NAME>
algorithm.
:param ellip: A numpy array representing a p.s.d matrix.
:param weights: A numpy array of weights with respect to the rows of P.
:return: A boolean value whether the desired MVEE has been achieved or not.
"""
pos_weights_idxs = np.where(weights > 0)[0] # get the indices of all the points with positive weights
current_dists = computemahalanobisDistance(Q, ellip) # compute the Mahalanobis distance between ellip and
# the rows of P
# check if all the distance are at max (1 + self.tol) * (self.P.d +1) and the distances of the points
# with positive weights are at least (1.0 - self.tol) * (self.P.d + 1)
return np.all(current_dists <= (1.0 + Utils.TOL) * (d + 1)) and \
np.all(current_dists[pos_weights_idxs] >= (1.0 - Utils.TOL) * (d + 1)), current_dists
def yilidrimAlgorithm(P):
"""
This is our implementation of Algorithm 4.2 at the paper "On Khachiyan’s Algorithm for te Computation of Minimum
Volume Enclosing Ellipsoids" by <NAME> and <NAME>. It serves to compute an MVEE of self.P.P
faster than Khachiyan's algorithm.
:return: The MVEE ellipsoid of self.P.P.
"""
n, d = P.shape
Q = np.hstack((P, np.ones((n, 1))))
chosen_indices = volumeApproximation(P) # compute an initial set of points which will give the initial
# ellipsoid
if len(chosen_indices) == n: # if all the points were chosen then simply run Khachiyan's algorithm.
# Might occur due to numerical instabilities.
return khachiyanAlgorithm(P)
weights = np.zeros((n, 1)).flatten() # initial the weights to zeros
weights[chosen_indices] = 1.0 / len(chosen_indices) # all the chosen indices of points by the
# volume Approximation algorithm are given uniform weights
ellip = np.linalg.inv(computeEllipInHigherDimension(Q, weights)) # compute the initial ellipsoid
while True: # run till conditions are fulfilled
stop_flag, distances = optimalityCondition(d, Q, ellip, weights) # check if current ellipsoid is desired
# MVEE, and get the distance between rows
# of self.P.P to current ellipsoid
pos_weights_idx = np.where(weights > 0)[0] # get indices of points with positive weights
if stop_flag: # if desired MVEE is achieved
break
j_plus = np.argmax(distances) # index of maximal distance from the ellipsoid
k_plus = distances[j_plus] # maximal distance from the ellipsoid
j_minus = pos_weights_idx[np.argmin(distances[pos_weights_idx])] # get the the index of the points with
# positive weights which also have the
# smallest distance from the current
# ellipsoid
k_minus = distances[j_minus] # the smallest distance of the point among the points with positive weights
eps_plus = k_plus / (d + 1.0) - 1.0
eps_minus = 1.0 - k_minus / (d + 1.0)
if eps_plus > eps_minus: # new point is found and it is important
beta_current = (k_plus - d - 1.0) / ((d + 1) * (k_plus - 1.0))
weights = (1.0 - beta_current) * weights
weights[j_plus] = weights[j_plus] + beta_current
else: # a point which was already found before, yet has large impact on the ellipsoid
beta_current = min((d + 1.0 - k_minus) / ((d + 1.0) * (k_minus - 1.0)),
weights[j_minus]/(1 - weights[j_minus]))
weights = weights * (1 + beta_current)
weights[j_minus] = weights[j_minus] - beta_current
weights[weights < 0.0] = 0.0 # all negative weights are set to zero
ellip = np.linalg.inv(computeEllipInHigherDimension(weights)) # recompute the ellipsoid
return computeEllipsoid(P, weights)
def khachiyanAlgorithm(P):
"""
This is our implementation of Algorithm 3.1 at the paper "On Khachiyan’s Algorithm for te Computation of Minimum
Volume Enclosing Ellipsoids" by <NAME> and <NAME>. It serves to compute an MVEE of self.P.P
using Khachiyan's algorithm.
:return: The MVEE ellipsoid of self.P.P.
"""
err = 1
count = 1 # used for debugging purposes
n, d = P.shape
u = np.ones((n, 1)) / n # all points have uniform weights
Q = np.hstack((P, np.ones((n, 1))))
while err > Utils.TOL: # while the approximation of the ellipsoid is higher than desired
X = np.dot(np.multiply(Q, u).T, Q) # compute ellipsoid
M = computemahalanobisDistance(Q, np.linalg.inv(X)) # get Mahalanobis distances between rows of self.P.P
# and current ellipsoid
j = np.argmax(M) # index of point with maximal distance from current ellipsoid
max_val = M[j] # the maximal Mahalanobis distance from the rows of self.P.P and the current ellipsoid
step_size = (max_val - d - 1) / ((d + 1) * (max_val - 1))
new_u = (1 - step_size) * u # update weights
new_u[j, 0] += step_size
count += 1
err = np.linalg.norm(new_u - u) # set err to be the change between updated weighted and current weights
u = new_u
return computeEllipsoid(P, u)
def computeMVEE(P, alg_type=1):
"""
This function is responsible for running the desired algorithm chosen by the user (or by default value) for
computing the MVEE of P.
:param alg_type: An algorithm type indicator where 1 stands for yilidrim and 0 stands kachaiyan.
:return:
- The inscribed version of MVEE of P.
- The center of the MVEE of P.
- The vertices of the inscribed ellipsoid.
"""
global ax
if alg_type == 1: # yilidrim is chosen or by default
E, C = yilidrimAlgorithm(P)
else: # Kachaiyan, slower yet more numerically stable
E, C = khachiyanAlgorithm(P)
# self.plotEllipsoid(self.E, self.C, self.computeAxesPoints())
contained_ellipsoid = getContainedEllipsoid(E) # get inscribed ellipsoid
return contained_ellipsoid, C, computeAxesPoints(contained_ellipsoid, C)
################################################## ApproximateCenterProblems ###########################################
def computeLINFCoresetKOne(P):
"""
The function at hand computes an L∞ coreset for the matrix vector multiplication or the dot product, with
respect to the weighted set of points P.
:return:
- C: the coreset points, which are a subset of the rows of P
- idx_in_P: the indices with respect to the coreset points C in P.
- an upper bound on the approximation which our L∞ coreset is associated with.
"""
global max_time
r = matrix_rank(P[:, :-1]) # get the rank of P or the dimension of the span of P
d = P.shape[1]
if r < d - 1: # if the span of P is a subspace in REAL^d
svd = TruncatedSVD(n_components=r) # an instance of TruncatedSVD
Q = svd.fit_transform(P[:, :-1]) # reduce the dimensionality of P by taking their dot product by the
# subspace which spans P
Q = np.hstack((Q, np.expand_dims(P[:, -1], 1))) # concatenate the indices to their respected "projected"
# points
else: # if the span of P is REAL^d where d is the dimension of P
Q = P
start_time = time.time() # start counting the time here
if r > 1: # if the dimension of the "projected points" is not on a line
if Q.shape[1] - 1 >= Q.shape[0]:
return Q, np.arange(Q.shape[0]).astype(np.int), Utils.UPPER_BOUND(r)
else:
_, _, S = computeMVEE(Q[:, :-1], alg_type=0) # compute the MVEE of Q
else: # otherwise
# get the index of the maximal and minimal point on the line, i.e., both its ends
idx_in_P = np.unique([np.argmin(Q[:, :-1]).astype(np.int),
np.argmax(Q[:, :-1]).astype(np.int)]).tolist()
return Q[idx_in_P], idx_in_P, Utils.UPPER_BOUND(r)
C = []
# idx_in_P_list = []
# C_list = []
# ts = time.time()
# for q in S: # for each boundary points along the axis of the MVEE of Q
# K = attainCaratheodorySet(P[:, :-1], q) # get d+1 indices of points from Q where q is their convex
# # combination
# idx_in_P_list += [int(idx) for idx in K] # get the indices of the coreset point in Q
# C_list += [int(Q[idx, -1]) for idx in K] # the actual coreset points
# # print('Time for list {}'.format(time.time() - ts))
idx_in_P = np.empty((2*(Utils.J + 1) ** 2, )).astype(np.int)
C = np.empty((2*(Utils.J + 1) ** 2, )).astype(np.int)
idx = 0
# ts = time.time()
for q in S: # for each boundary points along the axis of the MVEE of Q
K = attainCaratheodorySet(Q[:, :-1], q) # get d+1 indices of points from Q where q is their convex
# combination
idx_in_P[idx:idx+K.shape[0]] = K.astype(np.int) # get the indices of the coreset point in Q
C[idx:idx+K.shape[0]] = Q[idx_in_P[idx:idx+K.shape[0]], -1].astype(np.int)
idx += K.shape[0]
# print('Time for numpy {}'.format(time.time() - ts))
return np.unique(C[:idx]), np.unique(idx_in_P[:idx]), Utils.UPPER_BOUND(r)
####################################################### Bicriteria #####################################################
def attainClosestPointsToSubspaces(P, W, flats, indices):
"""
This function returns the closest n/2 points among all of the n points to a list of flats.
:param flats: A list of flats where each flat is represented by an orthogonal matrix and a translation vector.
:param indices: A list of indices of points in self.P.P
:return: The function returns the closest n/2 points to flats.
"""
dists = np.empty((P[indices, :].shape[0], ))
N = indices.shape[0]
if not Utils.ACCELERATE_BICRETERIA:
for i in range(N):
dists[i] = np.min([
Utils.computeDistanceToSubspace(P[np.array([indices[i]]), :], flats[j][0], flats[j][1])
for j in range(len(flats))])
else:
dists = Utils.computeDistanceToSubspace(P[indices, :], flats[0], flats[1])
idxs = np.argpartition(dists, N // 2)[:N//2]
return idxs.tolist()
return np.array(indices)[np.argsort(dists).astype(np.int)[:int(N / 2)]].tolist()
def sortDistancesToSubspace(P, X, v, points_indices):
"""
The function at hand sorts the distances in an ascending order between the points and the flat denoted by (X,v).
:param X: An orthogonal matrix which it's span is a subspace.
:param v: An numpy array denoting a translation vector.
:param points_indices: a numpy array of indices for computing the distance to a subset of the points.
:return: sorted distances between the subset points addressed by points_indices and the flat (X,v).
"""
dists = Utils.computeDistanceToSubspace(P[points_indices, :], X, v) # compute the distance between the subset
# of points towards
# the flat which is represented by (X,v)
return np.array(points_indices)[np.argsort(dists).astype(np.int)].tolist() # return sorted distances
def computeSubOptimalFlat(P, weights):
"""
This function computes the sub optimal flat with respect to l2^2 loss function, which relied on computing the
SVD factorization of the set of the given points, namely P.
:param P: A numpy matrix which denotes the set of points.
:param weights: A numpy array of weightes with respect to each row (point) in P.
:return: A flat which best fits P with respect to the l2^2 loss function.
"""
v = np.average(P, axis=0, weights=weights) # compute the weighted mean of the points
svd = TruncatedSVD(algorithm='randomized', n_iter=1, n_components=Utils.J).fit(P-v)
V = svd.components_
return V, v # return a flat denoted by an orthogonal matrix and a translation vector
def clusterIdxsBasedOnKSubspaces(P, B):
"""
This functions partitions the points into clusters a list of flats.
:param B: A list of flats
:return: A numpy array such each entry contains the index of the flat to which the point which is related to the
entry is assigned to.
"""
n = P.shape[0]
idxs = np.arange(n) # a numpy array of indices
centers = np.array(B) # a numpy array of the flats
dists = np.apply_along_axis(lambda x: Utils.computeDistanceToSubspace(P[idxs, :], x[0], x[1]), 1, centers) # compute the
# distance between
# each point and
# each flat
idxs = np.argmin(dists, axis=0)
return idxs # return the index of the closest flat to each point in self.P.P
def addFlats(P, W, S, B):
"""
This function is responsible for computing a set of all possible flats which passes through j+1 points.
:param S: list of j+1 subsets of points.
:return: None (Add all the aforementioned flats into B).
"""
indices = [np.arange(S[i].shape[0]) for i in range(len(S))]
points = np.meshgrid(*indices) # compute a mesh grid using the duplicated coefs
points = np.array([p.flatten() for p in points]) # flatten each point in the meshgrid for computing the
# all possible ordered sets of j+1 points
idx = len(B)
for i in range(points.shape[1]):
A = [S[j][points[j, i]][0] for j in range(points.shape[0])]
P_sub, W_sub = P[A, :], W[A]
B.append(computeSubOptimalFlat(P_sub, W_sub))
return np.arange(idx, len(B)), B
def computeBicriteria(P, W):
"""
The function at hand is an implemetation of Algorithm Approx-k-j-Flats(P, k, j) at the paper
"Bi-criteria Linear-time Approximations for Generalized k-Mean/Median/Center". The algorithm returns an
(2^j, O(log(n) * (jk)^O(j))-approximation algorithm for the (k,j)-projective clustering problem using the l2^2
loss function.
:return: A (2^j, O(log(n) * (jk)^O(j)) approximation solution towards the optimal solution.
"""
n = P.shape[0]
Q = np.arange(0, n, 1)
t = 1
B = []
tol_sample_size = Utils.K * (Utils.J + 1)
sample_size = (lambda t: int(np.ceil(Utils.K * (Utils.J + 1) * (2 + np.log(Utils.J + 1) +
np.log(Utils.K) +
min(t, np.log(np.log(n)))))))
while np.size(Q) >= tol_sample_size: # run we have small set of points
S = []
for i in range(0, Utils.J+1): # Sample j + 1 subsets of the points in an i.i.d. fashion
random_sample = np.random.choice(Q, size=sample_size(t))
S.append(random_sample[:, np.newaxis])
if not Utils.ACCELERATE_BICRETERIA:
F = addFlats(P, W, S, B)
else:
S = np.unique(np.vstack(S).flatten())
F = computeSubOptimalFlat(P[S, :], W[S])
B.append(F)
sorted_indices = attainClosestPointsToSubspaces(P, W, F, Q)
Q = np.delete(Q, sorted_indices)
t += 1
if not Utils.ACCELERATE_BICRETERIA:
_, B = addFlats(P, W, [Q for i in range(Utils.J + 1)], B)
else:
F = computeSubOptimalFlat(P[Q.flatten(), :], W[Q.flatten()])
B.append(F)
return B
################################################### L1Coreset ##########################################################
def applyBiCriterea(P, W):
"""
The function at hand runs a bicriteria algorithm, which then partition the rows of P into clusters.
:return:
- B: The set of flats which give the bicriteria algorithm, i.e., O((jk)^{j+1}) j-flats which attain 2^j
approximation towards the optimal (k,j)-projective clustering problem involving self.P.P.
- idxs: The set of indices where each entry is with respect to a point in P and contains
index of the flat in B which is assigned to respected point in P.
"""
B = computeBicriteria(P,W) # compute the set of flats which bi-cirteria algorithm returns
idxs = clusterIdxsBasedOnKSubspaces(P, B) # compute for each point which flat fits it best
return B, idxs
def initializeSens(P, B, idxs):
"""
This function initializes the sensitivities using the bicriteria algorithm, to be the distance between each
point to it's closest flat from the set of flats B divided by the sum of distances between self.P.P and B.
:param B: A set of flats where each flat is represented by an orthogonal matrix and a translation vector.
:param idxs: A numpy array which represents the clustering which B imposes on self.P.P
:return: None.
"""
centers_idxs = np.unique(idxs) # number of clusters imposed by B
sensitivity_additive_term = np.zeros((P.shape[0], ))
for center_idx in centers_idxs: # go over each cluster of points from self.P.P
cluster_per_center = np.where(idxs == center_idx)[0] # get all points in certain cluster
# compute the distance of each point in the cluster to its respect flat
cost_per_point_in_cluster = Utils.computeDistanceToSubspace(P[cluster_per_center, :-1],
B[center_idx][0], B[center_idx][1])
# ost_per_point_in_cluster = np.apply_along_axis(lambda x:
# Utils.computeDistanceToSubspace(x, B[center_idx][0],
# B[center_idx][1]), 1,
# self.set_P.P[cluster_per_center, :-1])
# set the sensitivity to the distance of each point from its respected flat divided by the total distance
# between cluster points and the respected flat
sensitivity_additive_term[cluster_per_center] = 2 ** Utils.J * \
np.nan_to_num(cost_per_point_in_cluster /
np.sum(cost_per_point_in_cluster))
return sensitivity_additive_term
def Level(P, k, V, desired_eps=0.01):
"""
The algorithm is an implementation of Algorithm 7 of "Coresets for Gaussian Mixture Models of Any shapes" by Zahi
Kfir and <NAME>.
:param P: A Pointset object, i.e., a weighted set of points.
:param k: The number of $j$-subspaces which defines the (k,j)-projective clustering problem.
:param V: A set of numpy arrays
:param desired_eps: An approximation error, default value is set to 0.01.
:return: A list "C" of subset of points of P.P.
"""
t = V.shape[0] # numnber of points in V
d = P.shape[1] - 1 # exclude last entry of each point for it is the concatenated index
# C = [[]] #np.empty((P.shape[0] + Utils.J ** (2 * Utils.K), P.shape[1])) # initialize list of coresets
# U = [[]] #np.empty((P.shape[0] + Utils.J ** (2 * Utils.K), P.shape[1])) # list of each point in V \setminus V_0 minus its
# projection onto a specific affine subspace, see below
C = np.zeros((P.shape[0], ), dtype="bool")
D = np.zeros((P.shape[0], ), dtype="bool")
if k <= 1 or t-1 >= Utils.J:
return np.array([])
# ts = time.time()
A, v = Utils.computeAffineSpan(V)
# print('Affine took {}'.format(time.time() - ts))
dists_from_P_to_A = Utils.computeDistanceToSubspace(P[:, :-1], A.T, v)
non_zero_idxs = np.where(dists_from_P_to_A > 1e-11)[0]
d_0 = 0 if len(non_zero_idxs) < 1 else np.min(dists_from_P_to_A[non_zero_idxs])
c = 1 / d ** (1.5 * (d + 1))
M = np.max(np.abs(P[:, :-1]))
on_j_subspace = np.where(dists_from_P_to_A <= 1e-11)[0]
B = [[]]
if on_j_subspace.size != 0:
B[0] = P[on_j_subspace, :]
if B[0].shape[0] >= Utils.J ** (2 * k):
indices_in_B = B[0][:, -1]
Q = np.hstack((B[0][:,:-1], np.arange(B[0].shape[0])[:, np.newaxis]))
temp = computeLInfCoreset(B[0], k-1)
C[indices_in_B[temp].astype(np.int)] = True
else:
C[B[0][:, -1].astype(np.int)] = True
# current_point += temp.shape[0]
# D = [P[C]]
# print('Bound is {}'.format(int(np.ceil(8 * np.log(M) + np.log(1.0/c)) + 1)))
if d_0 > 0:
for i in range(1, int(np.ceil(8 * np.log(M) + np.log(1.0/c)) + 1)):
B.append(P[np.where(np.logical_and(2 ** (i-1) * d_0 <= dists_from_P_to_A,
dists_from_P_to_A <= 2 ** i * d_0))[0], :])
if len(B[i]) > 0:
if len(B[i]) >= Utils.J ** (2 * k):
indices_B = B[i][:, -1]
Q_B = np.hstack((B[i][:, :-1], np.arange(B[i].shape[0])[:, np.newaxis]))
temp = computeLInfCoreset(Q_B, k-1)
if temp.size > 0:
C[indices_B[temp].astype(np.int)] = True
else:
C[B[i][:, -1].astype(np.int)] = True
temp = np.arange(B[i].shape[0]).astype(np.int)
list_of_coresets = [x for x in B if len(x) > 0]
Q = np.vstack(list_of_coresets)
indices_Q = Q[:, -1]
Q = np.hstack((Q[:, :-1], np.arange(Q.shape[0])[:, np.newaxis]))
if temp.size > 0:
for point in B[i][temp, :]:
indices = Level(Q, k-1, | np.vstack((V, point[np.newaxis, :-1])) | numpy.vstack |
# import numpy in two ways, both uses needed
import numpy as np
import numpy
import unittest
from numba import njit, jit
from numba.core.errors import TypingError, UnsupportedError
from numba.core import ir
from numba.tests.support import TestCase, IRPreservingTestPipeline
class TestClosure(TestCase):
def run_jit_closure_variable(self, **jitargs):
Y = 10
def add_Y(x):
return x + Y
c_add_Y = jit('i4(i4)', **jitargs)(add_Y)
self.assertEqual(c_add_Y(1), 11)
# Like globals in Numba, the value of the closure is captured
# at time of JIT
Y = 12 # should not affect function
self.assertEqual(c_add_Y(1), 11)
def test_jit_closure_variable(self):
self.run_jit_closure_variable(forceobj=True)
def test_jit_closure_variable_npm(self):
self.run_jit_closure_variable(nopython=True)
def run_rejitting_closure(self, **jitargs):
Y = 10
def add_Y(x):
return x + Y
c_add_Y = jit('i4(i4)', **jitargs)(add_Y)
self.assertEqual(c_add_Y(1), 11)
# Redo the jit
Y = 12
c_add_Y_2 = jit('i4(i4)', **jitargs)(add_Y)
self.assertEqual(c_add_Y_2(1), 13)
Y = 13 # should not affect function
self.assertEqual(c_add_Y_2(1), 13)
self.assertEqual(c_add_Y(1), 11) # Test first function again
def test_rejitting_closure(self):
self.run_rejitting_closure(forceobj=True)
def test_rejitting_closure_npm(self):
self.run_rejitting_closure(nopython=True)
def run_jit_multiple_closure_variables(self, **jitargs):
Y = 10
Z = 2
def add_Y_mult_Z(x):
return (x + Y) * Z
c_add_Y_mult_Z = jit('i4(i4)', **jitargs)(add_Y_mult_Z)
self.assertEqual(c_add_Y_mult_Z(1), 22)
def test_jit_multiple_closure_variables(self):
self.run_jit_multiple_closure_variables(forceobj=True)
def test_jit_multiple_closure_variables_npm(self):
self.run_jit_multiple_closure_variables(nopython=True)
def run_jit_inner_function(self, **jitargs):
def mult_10(a):
return a * 10
c_mult_10 = jit('intp(intp)', **jitargs)(mult_10)
c_mult_10.disable_compile()
def do_math(x):
return c_mult_10(x + 4)
c_do_math = jit('intp(intp)', **jitargs)(do_math)
c_do_math.disable_compile()
with self.assertRefCount(c_do_math, c_mult_10):
self.assertEqual(c_do_math(1), 50)
def test_jit_inner_function(self):
self.run_jit_inner_function(forceobj=True)
def test_jit_inner_function_npm(self):
self.run_jit_inner_function(nopython=True)
class TestInlinedClosure(TestCase):
"""
Tests for (partial) closure support in njit. The support is partial
because it only works for closures that can be successfully inlined
at compile time.
"""
def test_inner_function(self):
def outer(x):
def inner(x):
return x * x
return inner(x) + inner(x)
cfunc = njit(outer)
self.assertEqual(cfunc(10), outer(10))
def test_inner_function_with_closure(self):
def outer(x):
y = x + 1
def inner(x):
return x * x + y
return inner(x) + inner(x)
cfunc = njit(outer)
self.assertEqual(cfunc(10), outer(10))
def test_inner_function_with_closure_2(self):
def outer(x):
y = x + 1
def inner(x):
return x * y
y = inner(x)
return y + inner(x)
cfunc = njit(outer)
self.assertEqual(cfunc(10), outer(10))
def test_inner_function_with_closure_3(self):
code = """
def outer(x):
y = x + 1
z = 0
def inner(x):
nonlocal z
z += x * x
return z + y
return inner(x) + inner(x) + z
"""
ns = {}
exec(code.strip(), ns)
cfunc = njit(ns['outer'])
self.assertEqual(cfunc(10), ns['outer'](10))
def test_inner_function_nested(self):
def outer(x):
def inner(y):
def innermost(z):
return x + y + z
s = 0
for i in range(y):
s += innermost(i)
return s
return inner(x * x)
cfunc = njit(outer)
self.assertEqual(cfunc(10), outer(10))
def test_bulk_use_cases(self):
""" Tests the large number of use cases defined below """
# jitted function used in some tests
@njit
def fib3(n):
if n < 2:
return n
return fib3(n - 1) + fib3(n - 2)
def outer1(x):
""" Test calling recursive function from inner """
def inner(x):
return fib3(x)
return inner(x)
def outer2(x):
""" Test calling recursive function from closure """
z = x + 1
def inner(x):
return x + fib3(z)
return inner(x)
def outer3(x):
""" Test recursive inner """
def inner(x):
if x < 2:
return 10
else:
inner(x - 1)
return inner(x)
def outer4(x):
""" Test recursive closure """
y = x + 1
def inner(x):
if x + y < 2:
return 10
else:
inner(x - 1)
return inner(x)
def outer5(x):
""" Test nested closure """
y = x + 1
def inner1(x):
z = y + x + 2
def inner2(x):
return x + z
return inner2(x) + y
return inner1(x)
def outer6(x):
""" Test closure with list comprehension in body """
y = x + 1
def inner1(x):
z = y + x + 2
return [t for t in range(z)]
return inner1(x)
_OUTER_SCOPE_VAR = 9
def outer7(x):
""" Test use of outer scope var, no closure """
z = x + 1
return x + z + _OUTER_SCOPE_VAR
_OUTER_SCOPE_VAR = 9
def outer8(x):
""" Test use of outer scope var, with closure """
z = x + 1
def inner(x):
return x + z + _OUTER_SCOPE_VAR
return inner(x)
def outer9(x):
""" Test closure assignment"""
z = x + 1
def inner(x):
return x + z
f = inner
return f(x)
def outer10(x):
""" Test two inner, one calls other """
z = x + 1
def inner(x):
return x + z
def inner2(x):
return inner(x)
return inner2(x)
def outer11(x):
""" return the closure """
z = x + 1
def inner(x):
return x + z
return inner
def outer12(x):
""" closure with kwarg"""
z = x + 1
def inner(x, kw=7):
return x + z + kw
return inner(x)
def outer13(x, kw=7):
""" outer with kwarg no closure"""
z = x + 1 + kw
return z
def outer14(x, kw=7):
""" outer with kwarg used in closure"""
z = x + 1
def inner(x):
return x + z + kw
return inner(x)
def outer15(x, kw=7):
""" outer with kwarg as arg to closure"""
z = x + 1
def inner(x, kw):
return x + z + kw
return inner(x, kw)
def outer16(x):
""" closure is generator, consumed locally """
z = x + 1
def inner(x):
yield x + z
return list(inner(x))
def outer17(x):
""" closure is generator, returned """
z = x + 1
def inner(x):
yield x + z
return inner(x)
def outer18(x):
""" closure is generator, consumed in loop """
z = x + 1
def inner(x):
yield x + z
for i in inner(x):
t = i
return t
def outer19(x):
""" closure as arg to another closure """
z1 = x + 1
z2 = x + 2
def inner(x):
return x + z1
def inner2(f, x):
return f(x) + z2
return inner2(inner, x)
def outer20(x):
""" Test calling numpy in closure """
z = x + 1
def inner(x):
return x + numpy.cos(z)
return inner(x)
def outer21(x):
""" Test calling numpy import as in closure """
z = x + 1
def inner(x):
return x + np.cos(z)
return inner(x)
def outer22():
"""Test to ensure that unsupported *args raises correctly"""
def bar(a, b):
pass
x = 1, 2
bar(*x)
# functions to test that are expected to pass
f = [outer1, outer2, outer5, outer6, outer7, outer8,
outer9, outer10, outer12, outer13, outer14,
outer15, outer19, outer20, outer21]
for ref in f:
cfunc = njit(ref)
var = 10
self.assertEqual(cfunc(var), ref(var))
# test functions that are expected to fail
with self.assertRaises(NotImplementedError) as raises:
cfunc = jit(nopython=True)(outer3)
cfunc(var)
msg = "Unsupported use of op_LOAD_CLOSURE encountered"
self.assertIn(msg, str(raises.exception))
with self.assertRaises(NotImplementedError) as raises:
cfunc = jit(nopython=True)(outer4)
cfunc(var)
msg = "Unsupported use of op_LOAD_CLOSURE encountered"
self.assertIn(msg, str(raises.exception))
with self.assertRaises(TypingError) as raises:
cfunc = jit(nopython=True)(outer11)
cfunc(var)
msg = "Cannot capture the non-constant value"
self.assertIn(msg, str(raises.exception))
with self.assertRaises(UnsupportedError) as raises:
cfunc = jit(nopython=True)(outer16)
cfunc(var)
msg = "The use of yield in a closure is unsupported."
self.assertIn(msg, str(raises.exception))
with self.assertRaises(UnsupportedError) as raises:
cfunc = jit(nopython=True)(outer17)
cfunc(var)
msg = "The use of yield in a closure is unsupported."
self.assertIn(msg, str(raises.exception))
with self.assertRaises(UnsupportedError) as raises:
cfunc = jit(nopython=True)(outer18)
cfunc(var)
msg = "The use of yield in a closure is unsupported."
self.assertIn(msg, str(raises.exception))
with self.assertRaises(UnsupportedError) as raises:
cfunc = jit(nopython=True)(outer22)
cfunc()
msg = "Calling a closure with *args is unsupported."
self.assertIn(msg, str(raises.exception))
def test_closure_renaming_scheme(self):
# See #7380, this checks that inlined (from closure) variables have a
# name derived from the function they were defined in.
@njit(pipeline_class=IRPreservingTestPipeline)
def foo(a, b):
def bar(z):
x = 5
y = 10
return x + y + z
return bar(a), bar(b)
self.assertEqual(foo(10, 20), (25, 35))
# check IR. Look for the `x = 5`... there should be
# Two lots of `const(int, 5)`, one for each inline
# The LHS of the assignment will have a name like:
# closure__locals__bar_v2_x
# Ensure that this is the case!
func_ir = foo.overloads[foo.signatures[0]].metadata['preserved_ir']
store = []
for blk in func_ir.blocks.values():
for stmt in blk.body:
if isinstance(stmt, ir.Assign):
if isinstance(stmt.value, ir.Const):
if stmt.value.value == 5:
store.append(stmt)
self.assertEqual(len(store), 2)
for i in store:
name = i.target.name
regex = r'closure__locals__bar_v[0-9]+.x'
self.assertRegex(name, regex)
class TestObjmodeFallback(TestCase):
# These are all based on tests from real life issues where, predominantly,
# the object mode fallback compilation path would fail as a result of the IR
# being mutated by closure inlining in npm. Tests are named after issues,
# all of which failed to compile as of 0.44.
decorators = [jit, jit(forceobj=True)]
def test_issue2955(self):
def numbaFailure(scores, cooc):
rows, cols = scores.shape
for i in range(rows):
coxv = scores[i]
groups = sorted(set(coxv), reverse=True)
[set(np.argwhere(coxv == x).flatten()) for x in groups]
x = np.random.random((10, 10))
y = np.abs((np.random.randn(10, 10) * 1.732)).astype(int)
for d in self.decorators:
d(numbaFailure)(x, y)
def test_issue3239(self):
def fit(X, y):
if type(X) is not np.ndarray:
X = np.array(X)
if type(y) is not np.ndarray:
y = np.array(y)
m, _ = X.shape
X = np.hstack((
np.array([[1] for _ in range(m)]),
X
))
res = np.dot(np.dot(X, X.T), y)
intercept = res[0]
coefs = res[1:]
return intercept, coefs
for d in self.decorators:
res = d(fit)(np.arange(10).reshape(1, 10),
np.arange(10).reshape(1, 10))
exp = fit(np.arange(10).reshape(1, 10),
| np.arange(10) | numpy.arange |
import sys
import os
import itertools
import numpy as np
import pandas as pd
import pytest
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
import pysynth.ipf
import test_data
IPF_PRECISION = 1e-10
np.random.seed(1711)
SEED_GEN_PARAMS = [
((4, 4), 0),
((8, 5), 0),
((5, 3, 3), 0),
((2, 8, 7, 4, 3), 0),
((4, 4), 0.1),
((8, 5), 0.2),
((5, 3, 3), 0.1),
((2, 8, 7, 4, 3), 0.05),
]
def generate_seed_matrix(shape, zero_fraction):
seed_matrix = np.random.rand(*shape)
if zero_fraction > 0:
seed_matrix[np.random.rand(*shape) < zero_fraction] = 0
return seed_matrix
@pytest.mark.parametrize('shape, zero_fraction', SEED_GEN_PARAMS)
def test_ipf_correct(shape, zero_fraction):
seed_matrix = generate_seed_matrix(shape, zero_fraction)
marginals = [
np.random.rand(dim) for dim in shape
]
for i, marginal in enumerate(marginals):
margsum = marginal.sum()
marginals[i] = np.array([val * 50 / margsum for val in marginal])
ipfed = pysynth.ipf.ipf(marginals, seed_matrix, precision=IPF_PRECISION)
# check the shape and zeros are retained
assert ipfed.shape == shape
assert ((seed_matrix == 0) == (ipfed == 0)).all()
if zero_fraction == 0:
for i, marginal in enumerate(marginals):
ipfed_sum = ipfed.sum(axis=tuple(j for j in range(ipfed.ndim) if j != i))
# check the marginal sums match
assert (abs(ipfed_sum - marginal) < (IPF_PRECISION * ipfed.size / len(marginal) * 10)).all()
def test_ipf_dim_mismatch():
with pytest.raises(ValueError):
pysynth.ipf.ipf(list(np.ones((3,2))), np.random.rand(2,2))
def test_ipf_sum_mismatch():
with pytest.raises(ValueError):
pysynth.ipf.ipf([np.ones(2), np.full(2, 2)], np.random.rand(2,2))
def test_ipf_shape_mismatch():
with pytest.raises(ValueError):
pysynth.ipf.ipf([np.ones(2), | np.full((2, 4), .25) | numpy.full |
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
File Name: data_helper
Description : 数据预处理
Author : charl
date: 2018/8/3
-------------------------------------------------
Change Activity:
2018/8/3:
-------------------------------------------------
"""
import sys
import numpy as np
import pickle as pkl
import re
import itertools
import time
import gc
import gzip
from collections import Counter
from tensorflow.contrib import learn
from gensim.models.word2vec import Word2Vec
from random import random
from preprocess import MyVocabularyProcessor
class InputHelper(object):
pre_emb = dict()
vocab_processor = None
def cleanText(self, s):
s = re.sub(r"[^\x00-\x7F]+", " ", s)
s = re.sub(r'[\~\!\`\^\*\{\}\[\]\#\<\>\?\+\=\-\_\(\)]+', "", s)
s = re.sub(r'( [0-9,\.]+)', r"\1 ", s)
s = re.sub(r'\$', " $ ", s)
s = re.sub('[ ]+', ' ', s)
return s.lower()
def getVocab(self, vocab_path, max_document_length, filter_h_pad):
if self.vocab_processor == None:
print("Loading vocab")
vocab_processor = MyVocabularyProcessor(max_document_length - filter_h_pad, min_frequency=0)
self.vocab_processor = vocab_processor.restore(vocab_path)
return self.vocab_processor
def loadW2V(self, emb_path, type="bin"):
print("Loading W2V data...")
num_keys = 0
if type == "textgz":
for line in gzip.open(emb_path):
l = line.strip().split()
st = l[0].lower()
self.pre_emb[st] = np.asarray(l[1:])
num_keys = len(self.pre_emb)
else:
self.pre_emb = Word2Vec.load_word2vec_format(emb_path, binary=True)
# self.wv.init_sims
self.pre_emb.init_sims(replace=True)
num_keys = len(self.pre_emb.vocab)
print("Loaded word2vec len", num_keys)
gc.collect()
def deletePreEmb(self):
self.pre_emb = dict()
gc.collect()
def getTsvData(self, filePath):
print("Loading training data from" + filePath)
x1 = []
x2 = []
y = []
# positive samples from file
for line in open(filePath):
l = line.strip().split("\t")
if len(l) < 2:
continue
if random() > 0.5:
x1.append(l[0].lower())
x2.append(l[1].lower())
else:
x1.append(l[1].lower())
x2.append(l[2].lower())
y.append(int(l[2]))
return np.asarray(x1), np.asarray(x2), np.asarray(y)
def getTsvDataCharBased(self, filepath):
print("Loading training data from" + filepath)
x1 = []
x2 = []
y = []
# positive samples from file
for line in open(filepath):
l = line.strip().split("\t")
if len(l) < 2:
continue
if random() > 0.5:
x1.append(l[0].lower())
x2.append(l[1].lower())
else:
x1.append(l[1].lower())
x2.append(l[0].lower())
y.append(1) # np.array([0,1]))
# generate random negative samples
combined = np.asarray(x1 + x2)
# 有时候我们有随机打乱一个数组的需求,例如训练时随机打乱样本,我们可以使用 numpy.random.shuffle() 或者 numpy.random.permutation() 来完成。
# shuffle 的参数只能是 array_like,而 permutation 除了 array_like 还可以是 int 类型,如果是 int 类型,那就随机打乱 numpy.arange(int)。
# shuffle 返回 None,这点尤其要注意,也就是说没有返回值,而 permutation 则返回打乱后的 array。
shuffle_indices = np.random.permutation(np.arange(len(combined)))
combined_shuff = combined[shuffle_indices]
for i in range(len(combined)):
x1.append(combined[i])
x2.append(combined_shuff[i])
y.append(0) # np.array([1,0]))
return np.asarray(x1), np.asarray(x2), np.asarray(y)
def getTsvTestData(self, filepath):
print("Loading testing/labelled data from " + filepath)
x1 = []
x2 = []
y = []
# positive samples from file
for line in open(filepath):
l = line.strip().split("\t")
if len(l) < 3:
continue
x1.append(l[1].lower())
x2.append(l[2].lower())
y.append(int(l[0])) # np.array([0,1]))
return np.asarray(x1), np.asarray(x2), | np.asarray(y) | numpy.asarray |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jul 2 15:28:36 2021
@author: Briana
"""
import numpy as np
# Continuum Subtracted Models #
def OI_gaussian(x, theta):
z, sig, inten = theta
mu = 6300*(1+z)
return inten * (np.exp(-0.5*np.power(x - mu, 2.) / (np.power(sig, 2.))))
def OII_gaussian(x, theta):
z, sig, inten = theta
mu = 3727*(1+z)
return inten * (np.exp(-0.5*np.power(x - mu, 2.) / (np.power(sig, 2.))))
def OIII_Te_gaussian(x, theta):
z, sig, inten = theta
mu = 4363*(1+z)
return inten * (np.exp(-0.5*np.power(x - mu, 2.) / (np.power(sig, 2.))))
def Hb_gaussian(x, theta):
z, sig, inten = theta
mu = 4861*(1+z)
return inten * (np.exp(-0.5*np.power(x - mu, 2.) / (np.power(sig, 2.))))
def NeIII_gaussian(x, theta):
z, sig, inten = theta
mu = 3870*(1+z)
return inten * (np.exp(-0.5*np.power(x - mu, 2.) / (np.power(sig, 2.))))
# fit the OIII doublet and fixes the ratio to 2.89
def OII_doub_gaussian(x, theta):
z, sig, inten1, inten2 = theta
mu1 = 3726*(1+z)
mu2 = 3729*(1+z)
return (inten1 * (np.exp(-0.5*np.power(x - mu1, 2.) /
(np.power(sig, 2.))))) + (inten2 * (np.exp(-0.5*np.power(x - mu2, 2.) /
(np.power(sig, 2.)))))
# fit the OIII doublet and fixes the ratio to 2.89
def OIII_doub_gaussian(x, theta):
z, sig, inten = theta
mu1 = 5007*(1+z)
mu2 = 4959*(1+z)
return (inten * (np.exp(-0.5*np.power(x - mu1, 2.) / (np.power(sig, 2.))))) + \
((inten/2.98) * (np.exp(-0.5*np.power(x - mu2, 2.) / (np.power(sig, 2.)))))
# fits independent SII doublet, no fixed ratio so get 2 intensity values
def SII_doub_gaussian(x, theta):
z, sig, inten1, inten2 = theta
mu1 = 6731*(1+z)
mu2 = 6717*(1+z)
return (inten1 * (np.exp(-0.5*np.power(x - mu1, 2.) / (np.power(sig, 2.))))) + \
(inten2 * (np.exp(-0.5*np.power(x - mu2, 2.) / (np.power(sig, 2.)))))
# fit the OIII doublet and fixes the ratio to 2.89. Also fits
# Hb which is blueward of the doublet
def OIII_Hb_trip_gaussian(x, theta):
z, sig, inten1, inten2 = theta
mu1 = 5007*(1+z)
mu2 = 4959*(1+z)
mu3 = 4861*(1+z)
return (inten1 * (np.exp(-0.5*np.power(x - mu1, 2.) / (np.power(sig, 2.))))) + \
((inten1/2.98) * (np.exp(-0.5*np.power(x - mu2, 2.) / (np.power(sig, 2.))))) + \
(inten2 * (np.exp(-0.5*np.power(x - mu3, 2.) / (np.power(sig, 2.)))))
# fit the NII doublet and fixes the ratio to 2.5 and
# also fits Ha which is between the lines
def NII_Ha_trip_gaussian(x, theta):
z, sig, inten1, inten2 = theta
mu1 = 6583*(1+z)
mu2 = 6562*(1+z)
mu3 = 6549*(1+z)
return (inten1 * (np.exp(-0.5*np.power(x - mu1, 2.) / (np.power(sig, 2.))))) + \
(inten2 * (np.exp(-0.5*np.power(x - mu2, 2.) / (np.power(sig, 2.))))) + \
((inten1/3.0) * (np.exp(-0.5*np.power(x - mu3, 2.) / (np.power(sig, 2.)))))
# Models with Continuum
def OI_gaussian_cont(x, theta):
z, sig, inten, m, b = theta
mu = 6300*(1+z)
return ((m*x)+b) + inten * (np.exp(-0.5*np.power(x - mu, 2.) /
(np.power(sig, 2.))))
def OII_gaussian_cont(x, theta):
z, sig, inten, m, b = theta
mu = 3727*(1+z)
return ((m*x)+b) + inten * (np.exp(-0.5*np.power(x - mu, 2.) /
(np.power(sig, 2.))))
def OIII_Te_gaussian_cont(x, theta):
z, sig, inten, m, b = theta
mu = 4363*(1+z)
return ((m*x)+b) + inten * (np.exp(-0.5*np.power(x - mu, 2.) /
(np.power(sig, 2.))))
def Hb_gaussian_cont(x, theta):
z, sig, inten, m, b = theta
mu = 4861*(1+z)
return ((m*x)+b) + inten * (np.exp(-0.5*np.power(x - mu, 2.) /
(np.power(sig, 2.))))
def NeIII_gaussian_cont(x, theta):
z, sig, inten, m, b = theta
mu = 3870*(1+z)
return ((m*x)+b) + inten * (np.exp(-0.5*np.power(x - mu, 2.) /
(np.power(sig, 2.))))
# fit the OIII doublet and fixes the ratio to 2.89
def OII_doub_gaussian_cont(x, theta):
z, sig, inten1, inten2, m, b = theta
mu1 = 3726*(1+z)
mu2 = 3729*(1+z)
return ((m*x)+b) + (inten1 * (np.exp(-0.5*np.power(x - mu1, 2.) / (np.power(sig, 2.))))) + \
(inten2 * (np.exp(-0.5*np.power(x - mu2, 2.) / (np.power(sig, 2.)))))
# fit the OIII doublet and fixes the ratio to 2.89
def OIII_doub_gaussian_cont(x, theta):
z, sig, inten, m, b = theta
mu1 = 5007*(1+z)
mu2 = 4959*(1+z)
return ((m*x)+b) + (inten * (np.exp(-0.5*np.power(x - mu1, 2.) / (np.power(sig, 2.))))) + \
((inten/2.98) * (np.exp(-0.5*np.power(x - mu2, 2.) / (np.power(sig, 2.)))))
# fits independent SII doublet, no fixed ratio so get 2 intensity values
def SII_doub_gaussian_cont(x, theta):
z, sig, inten1, inten2, m, b = theta
mu1 = 6731*(1+z)
mu2 = 6717*(1+z)
return ((m*x)+b) + (inten1 * (np.exp(-0.5* | np.power(x - mu1, 2.) | numpy.power |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.