prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ Created on Mon Apr 13 13:23:05 2020 @author: kvstr """ import numpy as np import scipy.sparse as sparse from scipy.sparse import linalg from scipy.linalg import solve_banded from scipy.interpolate import griddata import time from numba import njit from numba import prange import matplotlib.pyplot as plt import vtk from vtk.util.numpy_support import vtk_to_numpy from skimage.measure import block_reduce # %% Continuity # @njit(parallel=True) def Continuity(u, v, x, y): """ Calculation of the continuity error in a 2D flow field Parameters ---------- u: MxN Array u-velocity matrix v: MxN Array v-velocity matrix x: Nx1 vector x-coordinates of points y: Mx1 vector y-coordinates of points Returns ------- error : NxM array Continuity error on each grid point """ if not u.shape == v.shape: print('Fields have different sizes') return None else: error = abs(np.divide((u[:-1, 1:] - u[:-1, :-1]),\ np.gradient(x, axis=1)[:-1, :-1])\ +np.divide(v[1:, :-1] - v[:-1, :-1],\ np.gradient(y, axis=0)[:-1, :-1])) error = np.pad(error, ((0, 1),), constant_values=0) return error # %% Momentum # @njit # (parallel=True) def Momentum(vort, u, v, dx, dy): """ Calculation of the momentum error in a 2D flow field Parameters ---------- vort : NxM array Vorticity value on each grid point. u : NxM array u-velocity value on each grid point. v : NxM array v-velocity value on each grid point. dx : Mx1 Array x-distance cell centre-face. dy : Nx1 y-distance cell centre-face. Returns ------- error: NxM array Momentum error on each grid point. """ nu = 1.05e-6 if not (np.shape(vort) == np.shape(u) and np.shape(vort) == np.shape(v)): print('Momentum: Shape mismatch') return None else: # Vorticity Gradient x vortx = np.zeros_like(vort) vortxx = np.zeros_like(vortx) vortx[:, -1] = np.divide(vort[:, -1]-vort[:, -2], dx[-1]+dx[-2]) vortx[:, 0] = np.divide(vort[:, 1]-vort[:, 0], dx[1]+dx[0]) for i in range(1, vort.shape[1]-1): vortx[:, i] = (np.divide(vort[:, i+1]*dx[i] - vort[:, i]*dx[i+1], dx[i]+dx[i+1]) -np.divide(vort[:, i]*dx[i-1] - vort[:, i-1]*dx[i], dx[i]+dx[i-1])) / 2*dx[i] vortxx[:, -1] = np.divide(vortx[:, -1]-vortx[:, -2], dx[-1]+dx[-2]) vortxx[:, 0] = np.divide(vortx[:, 1]-vortx[:, 0], dx[0]+dx[1]) for i in range(1, vortx.shape[1]-1): vortxx[:, i] = (np.divide(vortx[:, i+1]*dx[i] - vortx[:, i]*dx[i+1], dx[i]+dx[i+1]) -np.divide(vortx[:, i]*dx[i-1] - vortx[:, i-1]*dx[i], dx[i]+dx[i-1])) / 2*dx[i] # Vorticity Gradient y vorty = np.zeros_like(vort) vortyy = np.zeros_like(vortx) vorty[-1, :] = np.divide(vort[-1, :]-vort[-2, :], dy[-1]+dy[-2]) vorty[0, :] = np.divide(vort[1, :]-vort[0, :], dy[0]+dy[1]) for i in range(1, vort.shape[0]-1): vorty[i, :] = (np.divide(vort[i+1, :]*dy[i] - vort[i, :]*dy[i+1], dy[i]+dy[i+1]) -np.divide(vort[i, :]*dy[i-1] - vort[i-1, :]*dy[i], dy[i]+dy[i-1])) / 2*dy[i] vortyy[-1, :] = np.divide(vorty[-1, :]-vorty[-2, :], dy[-1]+dy[-2]) vortyy[0, :] = np.divide(vorty[1, :]-vorty[0, :], dy[0]+dy[1]) for i in range(1, vorty.shape[0]-1): vortyy[i, :] = (np.divide(vorty[i+1, :]*dy[i] - vorty[i, :]*dy[i+1], dy[i]+dy[i+1]) -np.divide(vorty[i, :]*dy[i-1] - vorty[i-1, :]*dy[i], dy[i]+dy[i-1])) / 2*dy[i] t1 = np.multiply(u, vortx) t2 = np.multiply(v, vorty) t3 = nu * (vortxx+vortyy) error = abs(np.subtract(t1+t2, t3)) return error # %% CellSizes def CellSizes(x, y): """ Calculates the distance from cell centre to cell face in either direction Parameters ---------- x : Mx1 Array x-Coordinates of cell centers. y : Nx1 Array y-Coordinates of cell centers. Returns ------- dx : Mx1 Array x-distance cell centre-face. dy : Nx1 y-distance cell centre-face. """ # Calcuating Cell sizes x-direction first = np.where(np.gradient(x) == 1)[0][0] last = np.where(np.gradient(x) == 1)[0][-1] dx = np.ones_like(x)*.5 for i in np.linspace(first-1, 0, first, dtype=int): dx[i] = x[i+1] - x[i] - dx[i+1] for i in range(last, x.shape[0]): dx[i] = x[i] - x[i-1] - dx[i-1] # Calculating cell sizes in y-direction first = np.where(np.gradient(y) == 1)[0][0] last = np.where(np.gradient(y) == 1)[0][-1] dy = np.ones_like(y)*.5 for i in np.linspace(first-1, 0, first, dtype=int): dy[i] = y[i+1] - y[i] - dy[i+1] for i in range(last, y.shape[0]): dy[i] = y[i] - y[i-1] -dy[i-1] return dx, dy # %% Vorticity def Vorticity(u, v, dx, dy): """ Calculates the Vorticity from velocity Components and Cell sizes Parameters ---------- u : NxM Array u-velocity at each grid point. v : NxM Array v-velocity at each grid point. dx : Mx1 Array Half cell sizes in x-direction. dy : Nx1 Array Half cell sizes in y-direction. Returns ------- vort : NxM Array Vorticity at each grid point. """ # Gradient v-velocity dvdx = np.zeros_like(v) dvdx[:, 0] = np.divide(v[:, 1] - v[:, 0], dx[0]+dx[1]) dvdx[:, -1] =
np.divide(v[:, -1]-v[:, -2], dx[-1]+dx[-2])
numpy.divide
#!/usr/bin/env python3 """Example 6.2, page 125""" import copy import multiprocessing as mp import numpy as np import matplotlib.pyplot as plt # Create graph: vertices are states, edges are actions (transitions) STATE_ACTIONS = {'left': ('left', 'left'), 'a': ('left', 'b'), 'b': ('a', 'c'), 'c': ('b', 'd'), 'd': ('c', 'e'), 'e': ('d', 'right'), 'right': ('right', 'right')} # List of states STATES = list(STATE_ACTIONS.keys()) TERMINALS = 'left', 'right' # Transition probabilities PROBABILITIES = np.full((len(STATES), 2), [0.5, 0.5]) # State values (probability to reach 'Right' state) INIT_VALUES = np.full(len(STATES), 0.5) np.put(INIT_VALUES, [0, -1], 0) TRUE_VALUES = np.arange(1, 6) / 6 # Reward for each action REWARDS = np.zeros((len(STATES), 2), dtype=int) REWARDS[5, 1] = 1 class RandomWalk: """Represents Markov reward process defined by arbitrary graph""" def __init__(self, graph, values, probabilities, rewards, terminals): """Map states to numebers""" state_names = list(graph.keys()) state_to_index = dict([(state, idx) for idx, state in enumerate(state_names)]) # left, a, b, c, d, e, right -> 0, 1, 2, 3, 4, 5, 6 self.states = [state_to_index[state] for state in state_names] self.terminals = [state_to_index[state] for state in state_names if state in terminals] # (left, b), ... -> [0, 2], ... self.actions = list() for actions in graph.values(): action_idxs = [state_to_index[state] for state in actions] self.actions.append(action_idxs) self.values = copy.copy(values) self.probabilities = probabilities self.rewards = rewards def get_true_values(self): true_values = copy.copy(INIT_VALUES) updated_values = np.empty(len(self.states)) while sum(abs(true_values - updated_values)) > 1e-5: for state in self.states[1: -1]: true_values[state] = updated_values[state] next_values = np.array([updated_values[self.actions[state][0]], updated_values[self.actions[state][1]]]) updated_values[state] = sum(self.probabilities[state] * (next_values + self.rewards[state])) return true_values def step(self, state): """Single step of the Markov reward process""" # Choose next state index next_state_idxs = range(len(self.actions[state])) next_state_idx = np.random.choice(next_state_idxs, p=self.probabilities[state]) # Get next state and reward next_state = self.actions[state][next_state_idx] reward = self.rewards[state][next_state_idx] return next_state, reward def generate_episode(self, state=3): """Generates sequences of states and rewards, default starting state is C. Returns pairs (S_0, R_1), (S_1, R_2), ... . Terminal state is omitted""" state_sequence = list() reward_sequence = list() while state not in self.terminals: state_sequence.append(state) state, reward = self.step(state) reward_sequence.append(reward) return state_sequence, reward_sequence def mc_episode_estimate(self, state=3, alpha=0.1): """Estimate single episode" with Monte-Carlo method""" state_sequence, reward_sequence = self.generate_episode(state) return_sequence = np.cumsum(reward_sequence[::-1])[::-1] for state, _return in zip(state_sequence, return_sequence): self.values[state] += alpha * (_return - self.values[state]) return self.values def td_episode_estimate(self, state=3, alpha=0.1): """Estimate single episode" with temporal-difference method""" while state not in self.terminals: next_state, reward = self.step(state) self.values[state] += alpha * (reward + self.values[next_state] - self.values[state]) state = next_state return self.values @staticmethod def mc_batch_episode_increment(state_seq, reward_seq, values, value_increments): return_sequence =
np.cumsum(reward_seq[::-1])
numpy.cumsum
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] new_records = np.array(new_record) #Reading file data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here census = np.concatenate((data, new_records)) age = census[:,0] max_age = np.max(age) min_age = np.min(age) age_mean = round(np.mean(age),2) age_std = round(np.std(age),2) print(max_age) print(min_age) print(age_mean) print(age_std) race0,race1,race2,race3,race4 = [], [], [], [], [] for i in census: if(i[2] == 0): race0.append(i) elif(i[2] == 1): race1.append(i) elif(i[2] == 2): race2.append(i) elif(i[2] == 3): race3.append(i) elif(i[2] == 4): race4.append(i) race_0 = np.array(race0) race_1 = np.array(race1) race_2 =
np.array(race2)
numpy.array
''' Testing of the zoo ''' import pytest import numpy as np np.random.seed(100) from freelunch.zoo import animal, particle, krill from freelunch.util import BadObjectiveFunctionScores, InvalidSolutionUpdate animals = [particle, krill] def test_animal(): location_1 = np.array([1,1,1]) fitness_1 = 2 location_2 = np.array([0,0,0]) fitness_2 = 0 location_3 = np.array([2,2,2]) fitness_3 = 10 friend = animal(dna=location_1, fitness=fitness_1) assert(np.all(friend.dna == location_1)) assert(friend.fitness == 2) assert(np.all(friend.best_pos == location_1)) assert(friend.best == 2) friend.move(location_2, fitness_2) assert(np.all(friend.dna == location_2)) assert(friend.fitness == 0) assert(np.all(friend.best_pos == location_2)) assert(friend.best == 0) friend.move(location_3, fitness_3) assert(np.all(friend.dna == location_3)) assert(friend.fitness == 10) assert(np.all(friend.best_pos == location_2)) assert(friend.best == 0) with pytest.raises(ValueError): friend.move(location_3, np.inf) with pytest.raises(ValueError): friend.move(location_3, np.nan) with pytest.raises(ValueError): friend.move(location_3, []) with pytest.raises(InvalidSolutionUpdate): friend.move(np.array([np.inf,1,1]), 1) with pytest.raises(InvalidSolutionUpdate): friend.move(np.array([np.nan,1,1]), 1) with pytest.raises(InvalidSolutionUpdate): friend.move(np.array([1+2j,1,1]), 1) friend = animal(dna=location_1, fitness=fitness_1) friend2 = animal(dna=location_2, fitness=fitness_2) assert(friend2 < friend) assert(friend > friend2) friend2._fitness = None # Or will throw error assert(friend < friend2) assert(not (friend2 < friend)) assert(friend2 > friend) assert(not (friend > friend2)) friend._fitness = None # Or will throw error with pytest.raises(BadObjectiveFunctionScores): friend < friend2 with pytest.raises(BadObjectiveFunctionScores): friend > friend2 @pytest.mark.parametrize('creature', animals) def test_particle(creature): location_1 = np.array([1,1,1]) vel = np.random.randn(1,3) fitness_1 = 2 location_2 = np.array([0,0,0]) fitness_2 = 0 location_3 = np.array([2,2,2]) fitness_3 = 10 friend = creature(pos=location_1, vel=vel, fitness=fitness_1) assert(np.all(friend.dna == location_1)) assert(friend.fitness == 2) assert(np.all(friend.best_pos == location_1)) assert(friend.best == 2) friend.move(location_2, vel, fitness_2) assert(np.all(friend.dna == location_2)) assert(friend.fitness == 0) assert(np.all(friend.best_pos == location_2)) assert(friend.best == 0) friend.move(location_3, vel, fitness_3) assert(np.all(friend.dna == location_3)) assert(friend.fitness == 10) assert(np.all(friend.best_pos == location_2)) assert(friend.best == 0) with pytest.raises(ValueError): friend.move(location_3, vel, np.inf) with pytest.raises(ValueError): friend.move(location_3, vel, np.nan) with pytest.raises(ValueError): friend.move(location_3,vel, []) with pytest.raises(InvalidSolutionUpdate): friend.move(np.array([np.inf,1,1]), vel, 1) with pytest.raises(InvalidSolutionUpdate): friend.move(
np.array([np.nan,1,1])
numpy.array
#------------------------------------------- # # FILENAME: IFI_compare_RadIA_PIREP.py # # CREATED: 12.15.2021 - dserke # # PURPOSE: 1) ingest matched RadIA and PIREPs csv file, 2) manipulate and plot the data # #------------------------------------------- #------------------------------------------- # IMPORT LIBRARIES #------------------------------------------- import pandas as pd import geopandas as gpd import numpy as np from numpy import * import csv import wradlib as wrl import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap from mpl_toolkits.axes_grid1 import make_axes_locatable import warnings warnings.filterwarnings('ignore') #------------------------------------------- # DEFINE INPUT PATHS #------------------------------------------- # ... define raduis (r) of earth in km r_km = 6378.1 ft_TO_m = 0.3048 nbins = 1832.0 range_res_m = 250.0 bw_deg = 1.0 # half power beam width (deg) vol_deg = [0.5, 1.5, 2.5, 3.5, 4.5] lat_KBBX = 39.4969580 lon_KBBX = -121.6316557 alt_KBBX_m = 221.0 * ft_TO_m sitecoords = (lon_KBBX, lat_KBBX, alt_KBBX_m) # ... define base path dir base_path_dir = '/d1/serke/projects/' # ... paths to Rv3 INTs and PIRP csv data files Rv3PIR_dir = base_path_dir+'RADIA_FAA/data/RadIAv3PIREPs/' # ... names of Rv3 INTs and PIRP csv data files # ... NOTE: currently, these files just represent ICICLE F17 Rv3PIR_FZDZ_name = 'exfout_MrmsPostProcessor_fzdz_interest.csv' Rv3PIR_SSLW_name = 'exfout_MrmsPostProcessor_slw_interest.csv' Rv3PIR_PIRP_name = 'exmatch_MrmsPostProcessor.csv' # ... path to NEXRAD site location csv nexrad_sites_dir = base_path_dir+'case_studies/SNOWIE_2017/data/RadIA_data/nexrad_site_data/' nexrad_sites_name = 'nexrad_site_whdr.csv' #------------------------------------------- # LOAD INPUT DATASETS #------------------------------------------- # ... radar data into radar object Rv3PIR_FZDZ = pd.read_csv(Rv3PIR_dir+Rv3PIR_FZDZ_name, header=0, index_col=0) Rv3PIR_SSLW = pd.read_csv(Rv3PIR_dir+Rv3PIR_SSLW_name, header=0, index_col=0) Rv3PIR_PIRP = pd.read_csv(Rv3PIR_dir+Rv3PIR_PIRP_name, header=0, index_col=0) # ... radar site location dataset nexrad_sites = pd.read_csv(nexrad_sites_dir+nexrad_sites_name, header=0, index_col=1) # ... low res countries dataset countries = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) #------------------------------------------- # MANIPULATE INPUT DATA #------------------------------------------- # Data from full month Feb2019 ICICLE have a few missing RadIA matchups (rows) # ... find missing integers in RadIA FZDZ/SSLW lists def find_missing(input): return [x for x in range(input[0], input[-1]+1) if x not in input] missing_SSLW_inds = find_missing(Rv3PIR_SSLW.index) missing_FZDZ_inds = find_missing(Rv3PIR_FZDZ.index) # ... exclude the inds missing from FZDZ/SSLW dfs from the PIRP df Rv3PIR_PIRP.drop(Rv3PIR_PIRP.index[[missing_SSLW_inds]], inplace=True) # ... exclude ind 0 from the PIRP df #Rv3PIR_PIRP.drop(Rv3PIR_PIRP.index[[0]], inplace=True) Rv3PIR_FZDZ.index = Rv3PIR_FZDZ.index-1 Rv3PIR_SSLW.index = Rv3PIR_SSLW.index-1 # ... define function for distance between two lat/lon points def haversine_distance(lat1, lon1, lat2, lon2): phi1 = np.radians(lat1) phi2 = np.radians(lat2) delta_phi = np.radians(lat2 - lat1) delta_lambda = np.radians(lon2 - lon1) a = np.sin(delta_phi / 2)**2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2)**2 res = r_km * (2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))) return np.round(res, 2) # ... calculate distance between Rv3PIR_PIRP lon/lat and nexrad_sites LAT_DEG/LON_DEG nexrad_distfromPIRPmin_km = [] for index_PIRP, row_PIRP in enumerate(range(Rv3PIR_PIRP.shape[0])): dist_from_nexrads_km = [] for index, row in enumerate(range(nexrad_sites.shape[0])): dist_from_nexrads_km.append(haversine_distance(Rv3PIR_PIRP[' lat'][index_PIRP], Rv3PIR_PIRP[' lon'][index_PIRP], nexrad_sites[' LAT_DEG'][index], nexrad_sites[' LON_DEG'][index])) #print(index, dist_from_nexrads_km[index]) # ... add DistFromPIRP to sites df nexrad_sites['DistFromPIRP'] = dist_from_nexrads_km # ... find min dist of PIRP from all sites and save to list nexrad_distfromPIRPmin_km.append(nexrad_sites['DistFromPIRP'].min()) # ... concat closest nexrad site dist to PIRP to Rv3PIR_PIRP df Rv3PIR_PIRP['Distfromnexrad_min_km'] = nexrad_distfromPIRPmin_km # ... concatenate Rv3 algo INT outputs and PIRP input pandas dfs into one df Rv3PIR_ALL = pd.concat([Rv3PIR_FZDZ, Rv3PIR_SSLW, Rv3PIR_PIRP], axis=1) #Rv3PIR_MAXint = Rv3PIR_ALL[[' fzdz_interestmax', ' slw_interestmax']] # ... create new Rv3/PIRP pandas df containing only Rv3 INT=NaN values Rv3PIR_RNAN = Rv3PIR_ALL.loc[ (Rv3PIR_ALL[' fzdz_interestmax'].astype(np.float).isna()) & (Rv3PIR_ALL[' slw_interestmax'].astype(np.float).isna()) ] # ... create new Rv3/PIRP pandas df containing only (Rv3 INT=NaN & PIRP sev > 0) values Rv3PIR_RNAN_Sg0 = Rv3PIR_ALL.loc[ (Rv3PIR_ALL[' fzdz_interestmax'].astype(np.float).isna()) & (Rv3PIR_ALL[' slw_interestmax'].astype(np.float).isna()) & (Rv3PIR_ALL[' iint1'] > 0) ] # ... create new Rv3/PIRP pandas df containing only (Rv3 INT=NaN & PIRP sev > 0) values Rv3PIR_RVAL_Sg0 = Rv3PIR_ALL.loc[ ~(Rv3PIR_ALL[' fzdz_interestmax'].astype(np.float).isna()) & ~(Rv3PIR_ALL[' slw_interestmax'].astype(np.float).isna()) & (Rv3PIR_ALL[' iint1'] > 0) ] # ... indexing/filtering of dataframe values PIRP_tot_num = np.array(Rv3PIR_ALL[' iint1'])[np.array(Rv3PIR_ALL[' iint1'])].shape[0] PIRP_pos_num = np.array(Rv3PIR_ALL[' iint1'])[np.array(Rv3PIR_ALL[' iint1']) > 0.0].shape[0] PIRP_neg_num = np.array(Rv3PIR_ALL[' iint1'])[np.array(Rv3PIR_ALL[' iint1']) < 0.0].shape[0] SSLW_pos_num = (np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' slw_interestmax']).astype(np.float) >= 0.5]).shape[0] SSLW_neg_num = (np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' slw_interestmax']).astype(np.float) < 0.5]).shape[0] SSLW_neg = (np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' slw_interestmax']).astype(np.float) < 0.5]) FZDZ = (np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float) >= 0.0]) FZDZ_pos_num = (np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float) >= 0.5]).shape[0] FZDZ_neg_num = (np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float) < 0.5]).shape[0] FZDZ_neg = [np.array(Rv3PIR_ALL[' iint1'])[(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float) < 0.5]] Rv3_pos_ind = [(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float) >= 0.5] or [(Rv3PIR_ALL[' slw_interestmax']).astype(np.float) >= 0.5] Rv3_neg_ind = [(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float) < 0.5] and [(Rv3PIR_ALL[' slw_interestmax']).astype(np.float) < 0.5] Rv3_pos_num = sum(sum(Rv3_pos_ind)) Rv3_neg_num = sum(sum(Rv3_neg_ind)) ranges = np.arange(nbins) * range_res_m #------------------------------------------- # PLOTS #------------------------------------------- #def mscatter(x,y,ax=None, m=None, **kw): # import matplotlib.markers as mmarkers # if not ax: ax=plt.gca() # sc = ax.scatter(x,y,**kw) # if (m is not None) and (len(m)==len(x)): # paths = [] # for marker in m: # if isinstance(marker, mmarkers.MarkerStyle): # marker_obj = marker # else: # marker_obj = mmarkers.MarkerStyle(marker) # path = marker_obj.get_path().transformed( # marker_obj.get_transform()) # paths.append(path) # sc.set_paths(paths) # return sc cMap = 'viridis' # SCATTER PLOTS # ... for R-v3 FZDZ/SSLW ints with PIREP sev color-coded points fig, ax = plt.subplots(figsize = (15, 15)) m = ['*','o','o','o','o','o','o','o','o','o'] #scatter = mscatter(np.array(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float), np.array(Rv3PIR_ALL[' slw_interestmax']).astype(np.float), c=np.array(Rv3PIR_ALL[' iint1']).astype(np.float), s=75, m=m, ax=ax) #plt.show() ax.scatter(np.array(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float), np.array(Rv3PIR_ALL[' slw_interestmax']).astype(np.float), c=np.array(Rv3PIR_ALL[' iint1']).astype(np.float), cmap=cMap, vmin=-1, vmax=8, s=75, marker='o') ax.grid(color='grey', linestyle='--', linewidth=1) ax.set_title('RadIA-v3 INT(MAX) near PIREPs for ICICLE F17', fontsize=20) ax.text(0.02, 0.61, 'N(P-TOT) = '+str(PIRP_tot_num), c='black', fontsize = 20) ax.text(0.02, 0.56, 'N(P-POS) = '+str(PIRP_pos_num), c='green', fontsize = 20) ax.text(0.07, 0.51, 'N(R-G50) = '+str(sum(sum(Rv3_pos_ind))), c='green', fontsize = 20) ax.text(0.02, 0.46, 'N(P-NEG) = '+str(PIRP_neg_num), c='red', fontsize = 20) ax.text(0.07, 0.41, 'N(R-L50) = '+str(sum(sum(Rv3_neg_ind))), c='red', fontsize = 20) ax.set_xlabel('FZDZ INT', fontsize = 16) ax.set_ylabel('SSLW INT', fontsize = 16) ax.plot([0.0, 0.5], [0.5, 0.5], 'r--', label='test') ax.plot([0.5, 0.5], [0.5, 0.0], 'r--', label='test') plt.xlim(0.0, 1.02) plt.ylim(0.0, 1.02) plt.show() # ... for R-v3 SSLW ints vs PIREP sev m, b = np. polyfit(np.array(Rv3PIR_RVAL_Sg0[' slw_interestmax']).astype(np.float), np.array(Rv3PIR_RVAL_Sg0[' iint1']).astype(np.float), 1) fig, ax = plt.subplots(figsize = (15, 15)) ax.scatter(np.array(Rv3PIR_RVAL_Sg0[' slw_interestmax']).astype(np.float), np.array(Rv3PIR_RVAL_Sg0[' iint1']).astype(np.float), c='grey', cmap=cMap, vmin=-1, vmax=8, s=75, marker='o') ax.plot(np.array(Rv3PIR_RVAL_Sg0[' slw_interestmax']).astype(np.float), m*np.array(Rv3PIR_RVAL_Sg0[' slw_interestmax']).astype(np.float) + b) ax.grid(color='grey', linestyle='--', linewidth=1) plt.show() # ... for R-v3 FZDZ ints vs PIREP sev m, b = np. polyfit(np.array(Rv3PIR_RVAL_Sg0[' fzdz_interestmax']).astype(np.float), np.array(Rv3PIR_RVAL_Sg0[' iint1']).astype(np.float), 1) fig, ax = plt.subplots(figsize = (15, 15)) ax.scatter(np.array(Rv3PIR_RVAL_Sg0[' fzdz_interestmax']).astype(np.float), np.array(Rv3PIR_RVAL_Sg0[' iint1']).astype(np.float), c='grey', cmap=cMap, vmin=-1, vmax=8, s=75, marker='o') ax.plot(np.array(Rv3PIR_RVAL_Sg0[' slw_interestmax']).astype(np.float), m*np.array(Rv3PIR_RVAL_Sg0[' slw_interestmax']).astype(np.float) + b) ax.grid(color='grey', linestyle='--', linewidth=1) plt.show() ## SCATTER PLOTS ## ...for R-v3 FZDZ ints versus PIREP reporting height with PIREP sev color-coded points #fig, ax = plt.subplots(figsize = (15, 15)) #ax.scatter(np.array(Rv3PIR_ALL[' fzdz_interestmax']).astype(np.float), Rv3PIR_ALL[' flvl'], c=np.array(Rv3PIR_ALL[' iint1']).astype(np.float), cmap=cMap, vmin=-1, vmax=8, s=75, marker='o') #ax.set_xlabel('FZDZ INT', fontsize = 16) #ax.set_ylabel('F-lvl [kft]', fontsize = 16) #plt.grid(b=True, alpha=0.5) #plt.show() # 3 PLOTS: RANGE/ALT FOR 1) CLEAR AIR VCP VOLUME, 2) PIREP SEV WHEN Rv3=NaN, 3) PIREP SEV WHEN Rv3=VAL wrl.vis.plot_scan_strategy(ranges, vol_deg, sitecoords, beamwidth=bw_deg, vert_res=1000., maxalt=15000., range_res=5000., maxrange=200000., units='km', cmap='viridis') fig, ax = plt.subplots(figsize = (16, 8)) plt.scatter(
np.array(Rv3PIR_RNAN_Sg0['Distfromnexrad_min_km'])
numpy.array
import matplotlib.pyplot as plt import numpy as np import scipy.optimize def plotdata(f1,f2,line=False,killme=False): x1,y1,x2,y2=[],[],[],[] for i in range(m): if y[i]:x1.append(f1[i]),y1.append(f2[i]) else:x2.append(f1[i]),y2.append(f2[i]) plt.plot(x1, y1, 'rx') plt.plot(x2, y2, 'bo') plt.ylabel('exame 1') plt.xlabel('exame 2') plt.xticks(np.arange(min(f1), max(f1)+1, 50)) plt.yticks(np.arange(min(f2), max(f2)+1, 50)) plt.legend(['ex1','ex2']) if line: l1 = np.array([min(f1),max(f1)]) l2=(-1./theta[2])*(theta[1]*l1 + theta[0]) plt.plot(l1, l2, '-g') if killme: # haha fix this u = np.linspace(-1, 1.5, 50) v = np.linspace(-1, 1.5, 50) z=np.zeros((len(u),len(v))) for i in range(1,len(u)+1): for j in range(1,len(v)+1): z[i,j]=mapFeature(u[i],v[j])*theta z=z.transpose() plt.contour(u, v, z, [0, 0], 'LineWidth', 2) plt.show() def sigmoid(z): return 1/(1+
np.exp(-z)
numpy.exp
import pandas as pd import numpy as np import os # Generate the risk distribution parameters from the risk_distribution.py script from risk_distribution import * # Import parameters from parameters.py script from parameters import * # Set path for saving dataframes base_path = '...' sims = 10000 # Functions to return probabilistic variables in suitable format def gamma(alpha, beta): alpha = np.array([alpha] * sims) beta = np.array([beta] * sims) samples = np.random.gamma(alpha, beta) return samples def gamma_specified(min, multiplier, alpha, beta): min = np.array([min] * sims).T alpha = np.array([alpha] * sims) beta =
np.array([beta] * sims)
numpy.array
""" mle.py This code is part of Optimization of Hardware Parameters on a Real-Time Sound Localization System paper It contains some support functions for pso.py Authors: <NAME> <NAME> <NAME> <NAME> """ import numpy as np from itertools import combinations as comb propSpeed = 340.29 #propagation speed of signal def dist (Pi, Pj) : """ Calculate the distance of the arrays Pi and Pj Pi, Pj : 1D or 2D ndarrays , each line is a coordinate vector return 2D ndarray with the distance/distances between each line of Pi and Pj Broadcasting allowed """ i = 1 if (Pi.ndim == 2 or Pj.ndim == 2) else None diff = Pi - Pj square = diff**2 dist = np.sqrt(np.sum(square, axis=i, keepdims=True)) dist = dist.reshape((dist.shape[0], 1)) if (i == None) else dist return dist def arrayMatrix(array): """ Generates matrix that is used in MLE calculus for some array array: row 2D ndarray with the coordinates of all sensors [xi yi zi] is the coordinates of i-th sensor, i in [1..M] 1th sensor is the reference array = [[x1 ... xM] [y1 ... yM] [z1 ... zM]].T return matrix M M = -pseudoInverse([[(xM-x1) ... (xM-x1)] [(yM-y1) ... (yM-y1)] [(zM-z1) ... (yM-y1)]].T) """ M = array[1:] - array[0] M = -np.linalg.pinv(M) return M def mleMatrices (tdoa, array, M): """ Generates matrices for MLE (maximum likelihood estimation) calculation tdoa : column 2D ndarray with the TDOA from some reference sensor array : row 2D ndarray with the coordinates of all sensors [xi yi zi] is the coordinates of i-th sensor, i in [1..M] 1th sensor is the reference array = [[x1 ... xM] [y1 ... yM] [z1 ... zM]].T M : M matrix related with array variable (calculated with arrayMatrix(array)) return matrices M1, M2 that are used in the MLE calculation Xs = M1 * D1 + M2 Xs => [xs ys zs].T estimate source coordinates column vector D1 => estimated distance between the source and the reference sensor """ A = -tdoa * propSpeed Baux1 = A**2 Baux2 = -array[1:]**2 + array[0]**2 Baux2 = np.sum(Baux2, axis=1, keepdims=True) B = 0.5 * (Baux1 + Baux2) M1 =
np.dot(M, A)
numpy.dot
# -*- coding: utf-8 -*- """ ... """ import LibraryTT.txt2array as conversion import numpy as np from numpy import sqrt import pandas as pd import matplotlib.pyplot as plt import random import math from mpl_toolkits.mplot3d import Axes3D # import open3d as o3d # %matplotlib inline D = conversion.txt2array() DD =
np.copy(D)
numpy.copy
import numpy as np def permutate(data,labels): # permutate the data indices = np.random.permutation(data.index) data = data.reindex(indices) labels = labels.reindex(indices) return (data,labels) def split_test_train(data,labels,percent_train): splitpoint = int(data.index.size * percent_train) trainData = data[0:splitpoint] testData = data[splitpoint + 1:] trainLabels = labels[0:splitpoint] testLabels = labels[splitpoint + 1:] return (trainData,trainLabels,testData,testLabels) def labelMatrixToArray(labelMatrix, threshold): labels = [] exclude = [] for row in labelMatrix.index: r = labelMatrix.loc[row,:] lblInfo = r[r > threshold] lbl = 0 # TODO: for training, it would be better # to remove the ones where 0 is more than 50 and label is less than 15 if lblInfo.size > 0: lbl = lblInfo.index[0] labels.append(lbl) else: exclude.append(row) return (labels, exclude) def normalizeZeroClass(labels, data): counts = labels.groupby(0).size() max = counts[1:].max() zeroIndex = labels[labels[0] == 0.0].index selectedIndex = np.random.choice(zeroIndex, size=max, replace=False) removalIndex = zeroIndex.drop(selectedIndex) labelDF = labels.drop(removalIndex) trainData = data.drop(removalIndex) return (labelDF, trainData, removalIndex) def normalizeZeroClassArray(labels_arr, data): lbls = np.array(labels_arr) zeroIndex = np.where(lbls == 0.0)[0]#lbls[lbls == 0.0].index equalizer = zeroIndex.size-(len(labels_arr)-zeroIndex.size) removalIndex =
np.random.choice(zeroIndex, size=equalizer, replace=False)
numpy.random.choice
#!/usr/bin/env python3 import numpy as np import nabla from nabla import grad, Dual, minimise def close(x, y, eps=1e-12): return abs(x-y)<eps def dualclose(x, y, eps=1e-12): isclose = close(x.real, y.real, eps) for i in range(x.nvars): isclose = isclose and close(x.dual[i], y.dual[i], eps) return isclose def test_dual(): x = Dual(2,3) y = Dual(4,5) assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==8 z = x - y assert z.real==-2 and z.dual[0]==-2 z = x * y assert z.real==8 and z.dual[0]==22 z = x / y assert z.real==0.5 and z.dual[0]==(3*4 - 2*5)/4**2 x = Dual(2,3) y = 4 assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==3 z = x - y assert z.real==-2 and z.dual[0]==3 z = x * y assert z.real==8 and z.dual[0]==12 z = x / y assert z.real==0.5 and z.dual[0]==(3*4 - 2*0)/4**2 x = 2 y = Dual(4,5) assert x<y and y>x and x<=y and y>=x z = x + y assert z.real==6 and z.dual[0]==5 z = x - y assert z.real==-2 and z.dual[0]==-5 z = x * y assert z.real==8 and z.dual[0]==10 z = x / y assert z.real==0.5 and z.dual[0]==(0*4 - 2*5)/4**2 sqrty = np.sqrt(y) ytohalf = y ** 0.5 assert close(sqrty.real, ytohalf.real) and close(sqrty.dual[0], ytohalf.dual[0]) z = 2**y zalt = Dual(2)**y assert close(z.real, zalt.real) and close(z.dual[0], zalt.dual[0]) x = Dual(2,3) y = Dual(4,5) w = x*y z = nabla.dot([x], [y]) assert dualclose(z, w) z = nabla.dot(
np.array([x])
numpy.array
from time import time import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.neighbors import NearestNeighbors from vae import VAE def plot_label_clusters(encoder, decoder, data, labels): # display a 2D plot of the digit classes in the latent space z_mean, _, _ = encoder.predict(data) plt.figure(figsize=(12, 10)) plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels) plt.colorbar() plt.xlabel("z[0]") plt.ylabel("z[1]") plt.show() def main(training: bool = False): (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() mnist_digits = np.concatenate([x_train, x_test], axis=0) labels = np.concatenate([y_train, y_test], axis=0) mnist_digits = np.expand_dims(mnist_digits, -1).astype("float32") / 255 if training: vae = VAE(data_shape=(28,28,1), latent_dim=2, epochs=20, batch_size=128, optimizer=tf.keras.optimizers.Adam) vae.train_vae(mnist_digits, save_model=True) else: vae = VAE(data_shape=(28,28,1), latent_dim=2) vae.full_model = tf.keras.models.load_model('vae') vae.encoder = tf.keras.models.load_model('vae_encoder') vae.decoder = tf.keras.models.load_model('vae_decoder') plot_label_clusters(vae.encoder, vae.decoder, mnist_digits, labels) _,_,Latent = vae.encoder.predict(mnist_digits) # Clusters = KMeans(n_clusters=10, random_state=42) # X_ClusterLabels = Clusters.fit_predict(Latent) neigh = NearestNeighbors(n_neighbors=5) neigh.fit(Latent) test = x_test[0] plt.imshow(test) plt.show() start = time() test =
np.expand_dims(test, 0)
numpy.expand_dims
""" Supporting routines for coordinate conversions as well as vector operations and transformations used in Space Science. """ import scipy import scipy.integrate import numpy as np import datetime import pysat # import reference IGRF fortran code within the package from OMMBV import igrf as igrf import OMMBV.fortran_coords # parameters used to define Earth ellipsoid # WGS84 parameters below earth_a = 6378.1370 earth_b = 6356.75231424518 # standard geoncentric Earth radius # average radius of Earth earth_geo_radius = 6371. def geocentric_to_ecef(latitude, longitude, altitude): """Convert geocentric coordinates into ECEF Parameters ---------- latitude : float or array_like Geocentric latitude (degrees) longitude : float or array_like Geocentric longitude (degrees) altitude : float or array_like Height (km) above presumed spherical Earth with radius 6371 km. Returns ------- x, y, z numpy arrays of x, y, z locations in km """ r = earth_geo_radius + altitude x = r*np.cos(np.deg2rad(latitude))*np.cos(np.deg2rad(longitude)) y = r*np.cos(np.deg2rad(latitude))*np.sin(np.deg2rad(longitude)) z = r*np.sin(np.deg2rad(latitude)) return x, y, z def ecef_to_geocentric(x, y, z, ref_height=None): """Convert ECEF into geocentric coordinates Parameters ---------- x : float or array_like ECEF-X in km y : float or array_like ECEF-Y in km z : float or array_like ECEF-Z in km ref_height : float or array_like Reference radius used for calculating height. Defaults to average radius of 6371 km Returns ------- latitude, longitude, altitude numpy arrays of locations in degrees, degrees, and km """ if ref_height is None: ref_height = earth_geo_radius r = np.sqrt(x**2 + y**2 + z**2) colatitude = np.rad2deg(np.arccos(z/r)) longitude = np.rad2deg(np.arctan2(y, x)) latitude = 90. - colatitude return latitude, longitude, r - ref_height def geodetic_to_ecef(latitude, longitude, altitude): """Convert WGS84 geodetic coordinates into ECEF Parameters ---------- latitude : float or array_like Geodetic latitude (degrees) longitude : float or array_like Geodetic longitude (degrees) altitude : float or array_like Geodetic Height (km) above WGS84 reference ellipsoid. Returns ------- x, y, z numpy arrays of x, y, z locations in km """ ellip = np.sqrt(1. - earth_b**2/earth_a**2) r_n = earth_a/np.sqrt(1. - ellip**2*np.sin(np.deg2rad(latitude))**2) # colatitude = 90. - latitude x = (r_n + altitude)*np.cos(np.deg2rad(latitude))*np.cos(np.deg2rad(longitude)) y = (r_n + altitude)*np.cos(np.deg2rad(latitude))*np.sin(np.deg2rad(longitude)) z = (r_n*(1. - ellip**2) + altitude)*np.sin(np.deg2rad(latitude)) return x, y, z try: ecef_to_geodetic = OMMBV.fortran_coords.ecef_to_geodetic except AttributeError: print('Unable to use Fortran version of ecef_to_geodetic. Please check installation.') def python_ecef_to_geodetic(x, y, z, method=None): """Convert ECEF into Geodetic WGS84 coordinates Parameters ---------- x : float or array_like ECEF-X in km y : float or array_like ECEF-Y in km z : float or array_like ECEF-Z in km method : 'iterative' or 'closed' ('closed' is deafult) String selects method of conversion. Closed for mathematical solution (http://www.epsg.org/Portals/0/373-07-2.pdf , page 96 section 2.2.1) or iterative (http://www.oc.nps.edu/oc2902w/coord/coordcvt.pdf). Returns ------- latitude, longitude, altitude numpy arrays of locations in degrees, degrees, and km """ # quick notes on ECEF to Geodetic transformations # http://danceswithcode.net/engineeringnotes/geodetic_to_ecef/geodetic_to_ecef.html method = method or 'closed' # ellipticity of Earth ellip = np.sqrt(1. - earth_b**2/earth_a**2) # first eccentricity squared e2 = ellip**2 # 6.6943799901377997E-3 longitude = np.arctan2(y, x) # cylindrical radius p = np.sqrt(x**2 + y**2) # closed form solution # a source, http://www.epsg.org/Portals/0/373-07-2.pdf , page 96 section 2.2.1 if method == 'closed': e_prime = np.sqrt((earth_a**2 - earth_b**2)/earth_b**2) theta = np.arctan2(z*earth_a, p*earth_b) latitude = np.arctan2(z + e_prime**2*earth_b*np.sin(theta)**3, p - e2*earth_a*np.cos(theta)**3) r_n = earth_a/np.sqrt(1. - e2*np.sin(latitude)**2) h = p/np.cos(latitude) - r_n # another possibility # http://ir.lib.ncku.edu.tw/bitstream/987654321/39750/1/3011200501001.pdf ## iterative method # http://www.oc.nps.edu/oc2902w/coord/coordcvt.pdf if method == 'iterative': latitude = np.arctan2(p, z) r_n = earth_a/np.sqrt(1. - e2*np.sin(latitude)**2) for i in np.arange(6): # print latitude r_n = earth_a/np.sqrt(1. - e2*np.sin(latitude)**2) h = p/np.cos(latitude) - r_n latitude = np.arctan(z/p/(1. - e2*(r_n/(r_n + h)))) # print h # final ellipsoidal height update h = p/np.cos(latitude) - r_n return np.rad2deg(latitude), np.rad2deg(longitude), h def enu_to_ecef_vector(east, north, up, glat, glong): """Converts vector from East, North, Up components to ECEF Position of vector in geospace may be specified in either geocentric or geodetic coordinates, with corresponding expression of the vector using radial or ellipsoidal unit vectors. Parameters ---------- east : float or array-like Eastward component of vector north : float or array-like Northward component of vector up : float or array-like Upward component of vector latitude : float or array_like Geodetic or geocentric latitude (degrees) longitude : float or array_like Geodetic or geocentric longitude (degrees) Returns ------- x, y, z Vector components along ECEF x, y, and z directions """ # convert lat and lon in degrees to radians rlat = np.radians(glat) rlon = np.radians(glong) x = -east*np.sin(rlon) - north*np.cos(rlon)*np.sin(rlat) + up*np.cos(rlon)*np.cos(rlat) y = east*np.cos(rlon) - north*np.sin(rlon)*
np.sin(rlat)
numpy.sin
from __future__ import division, print_function, absolute_import import numpy as np from copy import deepcopy from ipsolver._constraints import (NonlinearConstraint, LinearConstraint, BoxConstraint) from ipsolver._canonical_constraint import (_parse_constraint, to_canonical, empty_canonical_constraint) from numpy.testing import (TestCase, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_raises, assert_equal, assert_, run_module_suite, assert_allclose, assert_warns, dec) class TestParseConstraint(TestCase): def test_equality_constraint(self): kind = ("equals", [10, 20, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [0, 1, 2]) assert_array_equal(val_eq, [10, 20, 30]) assert_array_equal(ineq, []) assert_array_equal(val_ineq, []) assert_array_equal(sign, []) def test_greater_constraint(self): kind = ("greater", [10, 20, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 1, 2]) assert_array_equal(val_ineq, [10, 20, 30]) assert_array_equal(sign, [-1, -1, -1]) kind = ("greater", [10, np.inf, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 2]) assert_array_equal(val_ineq, [10, 30]) assert_array_equal(sign, [-1, -1]) def test_less_constraint(self): kind = ("less", [10, 20, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 1, 2]) assert_array_equal(val_ineq, [10, 20, 30]) assert_array_equal(sign, [1, 1, 1]) kind = ("less", [10, np.inf, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 2]) assert_array_equal(val_ineq, [10, 30]) assert_array_equal(sign, [1, 1]) def test_interval_constraint(self): kind = ("interval", [10, 20, 30], [50, 60, 70]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 1, 2, 0, 1, 2]) assert_array_equal(val_ineq, [10, 20, 30, 50, 60, 70]) assert_array_equal(sign, [-1, -1, -1, 1, 1, 1]) kind = ("interval", [10, 20, 30], [50, 20, 70]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [1]) assert_array_equal(val_eq, [20]) assert_array_equal(ineq, [0, 2, 0, 2]) assert_array_equal(val_ineq, [10, 30, 50, 70]) assert_array_equal(sign, [-1, -1, 1, 1]) kind = ("interval", [10, 20, 30], [50, 20, np.inf]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [1]) assert_array_equal(val_eq, [20]) assert_array_equal(ineq, [0, 2, 0]) assert_array_equal(val_ineq, [10, 30, 50]) assert_array_equal(sign, [-1, -1, 1]) kind = ("interval", [-np.inf, 20, 30], [50, 20, np.inf]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [1]) assert_array_equal(val_eq, [20]) assert_array_equal(ineq, [2, 0]) assert_array_equal(val_ineq, [30, 50]) assert_array_equal(sign, [-1, 1]) class TestToCanonical(TestCase): def test_empty_constraint(self): x = [1, 2, 3] canonical = empty_canonical_constraint(x, 3) assert_array_equal(canonical.n_eq, 0) assert_array_equal(canonical.n_ineq, 0) c_ineq, c_eq = canonical.constr(x) assert_array_equal(c_ineq, []) assert_array_equal(c_eq, []) J_ineq, J_eq = canonical.jac(x) assert_array_equal(J_ineq, np.empty((0, 3))) assert_array_equal(J_eq, np.empty((0, 3))) assert_array_equal(canonical.hess, None) assert_array_equal(canonical.enforce_feasibility, []) def test_box_to_canonical_conversion(self): box = BoxConstraint(("interval", [10, 20, 30], [50, np.inf, 70]), [False, False, False]) x = [1, 2, 3] x = box.evaluate_and_initialize(x) canonical = to_canonical(box) assert_array_equal(canonical.n_eq, 0) assert_array_equal(canonical.n_ineq, 5) c_ineq, c_eq = canonical.constr(x) assert_array_equal(c_ineq, [10-1, 20-2, 30-3, 1-50, 3-70]) assert_array_equal(c_eq, []) assert_array_equal(c_ineq, canonical.c_ineq0) assert_array_equal(c_eq, canonical.c_eq0) J_ineq, J_eq = canonical.jac(x) assert_array_equal(J_ineq.toarray(), [[-1, 0, 0], [0, -1, 0], [0, 0, -1], [1, 0, 0], [0, 0, 1]]) assert_array_equal(J_eq, np.empty((0, 3))) assert_array_equal(J_ineq.toarray(), canonical.J_ineq0.toarray()) assert_array_equal(J_eq.toarray(), canonical.J_eq0.toarray()) assert_array_equal(canonical.hess, None) assert_array_equal(canonical.enforce_feasibility, [False, False, False, False, False]) def test_linear_to_canonical_conversion(self): A = np.array([[1, 2, 3, 4], [5, 0, 0, 6], [7, 0, 8, 0]]) linear = LinearConstraint(A, ("interval", [10, 20, 30], [10, np.inf, 70]), [False, False, False]) x = [1, 2, 3, 4] x = linear.evaluate_and_initialize(x) canonical = to_canonical(linear) assert_array_equal(canonical.n_eq, 1) assert_array_equal(canonical.n_ineq, 3) c_ineq, c_eq = canonical.constr(x) assert_array_equal(c_eq, [1+4+9+16-10]) assert_array_equal(c_ineq, [20-5*1-6*4, 30-7*1-8*3, 7*1+8*3-70]) assert_array_equal(c_ineq, canonical.c_ineq0) assert_array_equal(c_eq, canonical.c_eq0) J_ineq, J_eq = canonical.jac(x) assert_array_equal(J_eq, [[1, 2, 3, 4]]) assert_array_equal(J_ineq, [[-5, 0, 0, -6], [-7, 0, -8, 0], [7, 0, 8, 0]]) assert_array_equal(J_ineq, canonical.J_ineq0) assert_array_equal(J_eq, canonical.J_eq0) assert_array_equal(canonical.hess, None) assert_array_equal(canonical.enforce_feasibility, [False, False, False]) def test_nonlinear_to_canonical_conversion(self): f1 = 10 g1 = np.array([1, 2, 3, 4]) H1 = np.eye(4) f2 = 1 g2 = np.array([1, 1, 1, 1]) H2 = np.zeros((4, 4)) f3 = 12 g3 = np.array([1, 0, 0, 1]) H3 = np.diag([1, 2, 3, 4]) def fun(x): return np.array([f1 + g1.dot(x) + 1/2*H1.dot(x).dot(x), f2 + g2.dot(x) + 1/2*H2.dot(x).dot(x), f3 + g3.dot(x) + 1/2*H3.dot(x).dot(x)]) def jac(x): return np.vstack([g1 + H1.dot(x), g2 + H2.dot(x), g3 + H3.dot(x)]) def hess(x, v): return v[0]*H1 + v[1]*H2 + v[2]*H3 nonlinear = NonlinearConstraint(fun, ("interval", [10, 20, 30], [10, np.inf, 70]), jac, hess, False) x = [1, 2, 3, 4] x = nonlinear.evaluate_and_initialize(x) canonical = to_canonical(nonlinear) assert_array_equal(canonical.n_eq, 1) assert_array_equal(canonical.n_ineq, 3) c_ineq, c_eq = canonical.constr(x) assert_array_equal(c_ineq, [20-(f2 + g2.dot(x) + 1/2*H2.dot(x).dot(x)), 30-(f3 + g3.dot(x) + 1/2*H3.dot(x).dot(x)), f3 + g3.dot(x) + 1/2*H3.dot(x).dot(x) - 70]) assert_array_equal(c_eq, [f1 + g1.dot(x) + 1/2*H1.dot(x).dot(x) - 10]) assert_array_equal(c_ineq, canonical.c_ineq0) assert_array_equal(c_eq, canonical.c_eq0) J_ineq, J_eq = canonical.jac(x) assert_array_equal(J_eq, np.atleast_2d(g1 + H1.dot(x))) assert_array_equal(J_ineq, np.vstack([-(g2 + H2.dot(x)), -(g3 + H3.dot(x)), g3 + H3.dot(x)])) v_eq = np.array([10]) v_ineq =
np.array([5, 6, 3])
numpy.array
import onnx import os import tensorrt as trt import example import pycuda.driver as cuda import pycuda.autoinit import common import time import numpy as np TRT_LOGGER = trt.Logger(trt.Logger.INFO) #G_LOGGER = trt4.infer.ConsoleLogger(trt4.infer.LogSeverity.WARNING) def get_engine(onnx_file_path, engine_file_path, plugin_factory): """Attempts to load a serialized engine if available, otherwise builds a new TensorRT engine and saves it.""" if os.path.exists(engine_file_path): # If a serialized engine exists, use it instead of building an engine. print("Reading engine from file {}".format(engine_file_path)) with open(engine_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime: #with open(engine_file_path, "rb") as f, trt4.infer.create_infer_runtime(G_LOGGER) as runtime: #return runtime.deserialize_cuda_engine(f.read(), plugin_factory) print(plugin_factory) #return runtime.deserialize_cuda_engine(f.read(), plugin_factory) return runtime.deserialize_cuda_engine(f.read(), plugin_factory) #plugin_factory = trt.OnnxPluginFactory(TRT_LOGGER) plugin_factory= example.Create(TRT_LOGGER) onnx_file = './bisenet.onnx' #engine_file = './bisenet.trt' engine_file = './bisenet.trt' # Output shapes expected by the post-processor output_shapes = [(1, 19, 96, 192)] # Do inference with TensorRT trt_outputs = [] def print_statics(arr): mean = np.mean(arr) max = np.max(arr) min =
np.min(arr)
numpy.min
import torch.utils.data as data import sys sys.path.append('/home/benkesheng/BMI_DETECT/') from sklearn.metrics import mean_absolute_error from sklearn.svm import SVR from Detected import Image_Processor import torch import torch.nn as nn import torch.utils.data as data from torchvision import models, transforms import numpy as np import os import pandas as pd import cv2 import re import csv from PIL import Image from Data import Img_info import random def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True setup_seed(20) END_EPOCH = 0 mask_model = "/home/benkesheng/BMI_DETECT/pose2seg_release.pkl" keypoints_model = "COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml" # P = Image_Processor(mask_model,keypoints_model) IMG_MEAN = [0.485, 0.456, 0.406] IMG_STD = [0.229, 0.224, 0.225] DEVICE = torch.device("cuda:3") IMG_SIZE = 224 BATCH_SIZE = 64 def _get_image_size(img): if transforms.functional._is_pil_image(img): return img.size elif isinstance(img, torch.Tensor) and img.dim() > 2: return img.shape[-2:][::-1] else: raise TypeError("Unexpected type {}".format(type(img))) class Resize(transforms.Resize): def __call__(self, img): h, w = _get_image_size(img) scale = max(w, h) / float(self.size) new_w, new_h = int(w / scale), int(h / scale) return transforms.functional.resize(img, (new_w, new_h), self.interpolation) class Dataset(data.Dataset): def __init__(self, file, transfrom): self.Pic_Names = os.listdir(file) self.file = file self.transfrom = transfrom def __len__(self): return len(self.Pic_Names) def __getitem__(self, idx): img_name = self.Pic_Names[idx] Pic = Image.open(os.path.join(self.file, self.Pic_Names[idx])) Pic = self.transfrom(Pic) try: ret = re.match(r"\d+?_([FMfm])_(\d+?)_(\d+?)_(\d+).+", img_name) BMI = (int(ret.group(4)) / 100000) / (int(ret.group(3)) / 100000) ** 2 Pic_name = os.path.join(self.file, self.Pic_Names[idx]) return (Pic, Pic_name), BMI except: return (Pic, ''), 10000 transform = transforms.Compose([ Resize(IMG_SIZE), transforms.Pad(IMG_SIZE), transforms.CenterCrop(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(IMG_MEAN, IMG_STD) ]) dataset = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_train', transform) # val_dataset = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_val', transform) test_dataset = Dataset('/home/benkesheng/BMI_DETECT/datasets/Image_test', transform) train_size = int(0.8 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size]) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=True) # Vgg16 # Pred_Net = torchvision.models.vgg16(pretrained=True) # for param in Pred_Net.parameters(): # param.requires_grad = True # # Pred_Net.classifier = nn.Sequential( # nn.Linear(25088, 1024), # nn.ReLU(True), # nn.Linear(1024, 512), # nn.ReLU(True), # nn.Linear(512, 256), # nn.ReLU(True), # nn.Linear(256, 20), # nn.ReLU(True), # nn.Linear(20, 1) # ) # Resnet101 Pred_Net = models.resnet101(pretrained=True,num_classes= 1) print(Pred_Net) for param in Pred_Net.parameters(): param.requires_grad = True # Pred_Net.fc = nn.Sequential( # nn.Linear(2048, 1024), # nn.ReLU(True), # nn.Linear(1024, 512), # nn.ReLU(True), # nn.Linear(512, 256), # nn.ReLU(True), # nn.Linear(256, 20), # nn.ReLU(True), # nn.Linear(20, 1) # ) Pred_Net = Pred_Net.to(DEVICE) criterion = nn.MSELoss() optimizer = torch.optim.Adam([ {'params': Pred_Net.parameters()} ], lr=0.0001) def train(model, device, train_loader, epoch): model.train() runing_loss = 0.0 for idx, ((x, n), y) in enumerate(train_loader, 0): x, y = x.to(device), y.to(device) optimizer.zero_grad() y_pred = model(x) # print(y_pred.shape) y = torch.unsqueeze(y, 1) loss = criterion(y_pred.double(), y.double()) loss.backward() optimizer.step() runing_loss += loss.item() print('loss:', loss.item()) print('Train Epoch:{}\t RealLoss:{:.6f}'.format(epoch, runing_loss / len(train_loader))) def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = np.array(y_true),
np.array(y_pred)
numpy.array
"""Generate a single discrete time SIR model. """ from . import data_model import numpy as np from scipy import stats import xarray as xr # Generate Betas # Beta, or the growth rate of the infection, depends on the covariates. # Here we implement three different functional forms for the dependency. SPLIT_TIME = 100 def generate_betas_from_single_random_covariate(num_locations): """Beta depend on a single covariate that is randomly generated. Args: num_locations: an int representing the number of locations to simulate Returns: beta: an xr.DataArray consisting of the growth rate for each epidemic v: an xr.DataArray consisting of the randomly generated covariate for each location alpha: an xr.DataArray consisting of the weights for each covariate """ v = xr.DataArray( np.random.uniform(0.0, 1.0, (num_locations, 1)), dims=['location', 'static_covariate']) alpha = xr.DataArray(np.ones(1), dims=['static_covariate']) beta = 0.4 * np.exp(alpha @ v) return beta, v, alpha def generate_betas_effect_mod(num_locations): """Betas depend on 2 discrete, randomly generated effects. Args: num_locations: an int representing the number of locations to simulate Returns: beta: an xr.DataArray consisting of the growth rate for each epidemic v: an xr.DataArray consisting of the randomly generated covariate for each location alpha: an xr.DataArray consisting of the weights for each covariate """ v = xr.DataArray(np.random.binomial(1, 0.5, size=(num_locations, 2)), dims={'location': num_locations, 'static_covariate': 2}) hd = v.values[:, 0] ws = v.values[:, 1] beta_np = np.exp(np.log(1.5) + np.log(2.0) * (hd == 1) * (ws == 0)) beta = xr.DataArray(beta_np, dims={'location': num_locations}) return beta, v, xr.DataArray(np.array([1, 1]), dims={'static_covariate': 2}) def generate_betas_many_cov2(num_locations, num_pred=1, num_not_pred=2): """Betas depend on real valued vector of covariates. Args: num_locations: an int representing the number of locations to simulate. num_pred: an int representing the number of covariates that affect beta. num_not_pred: an int representing the number of covariates that do not affect beta. Returns: beta: an xr.DataArray consisting of the growth rate for each epidemic v: an xr.DataArray consisting of the randomly generated covariate for each location alpha: an xr.DataArray consisting of the weights for each covariate """ # generate random covariates # sample from range -1, 1 uniformly v = xr.DataArray(np.random.uniform( low=-1.0, high=1.0, size=(num_locations, num_pred + num_not_pred)), dims={'location': num_locations, 'static_covariate': num_pred+num_not_pred}) # construct weights for each covariate alpha_1 = np.ones(num_pred) alpha_0 = np.zeros(num_not_pred) alpha = xr.DataArray(np.concatenate((alpha_1, alpha_0), axis=0), dims={'static_covariate': num_pred+num_not_pred}) # this has a different functional form than we've seen before beta_np = 1 + np.exp(np.matmul(alpha.values, v.values.T)) beta = xr.DataArray(beta_np, dims={'location': num_locations}) return beta, v, alpha def gen_dynamic_beta_random_time(num_locations, num_time_steps): """Betas change at a random time between 1 and num_time_steps-1. Args: num_locations: an int representing the number of locations to simulate num_time_steps: an int representing the number of time steps to simulate Returns: beta: an xr.DataArray consisting of the growth rate for each epidemic with dimensions (location, time) v: an xr.DataArray consisting of the randomly generated covariate for each location with dimensions (location, time, 1) alpha: an xr.DataArray consisting of the weights for each covariate with dimension 1. """ time = np.random.randint(1, num_time_steps-1, num_locations) cov = np.zeros((num_locations, num_time_steps, 1)) for i in range(num_locations): cov[i][time[i]:] = 1 v = xr.DataArray(cov, dims=['location', 'time', 'dynamic_covariate']) alpha = np.random.uniform(-1., 0.)*xr.DataArray(
np.ones(1)
numpy.ones
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data =
np.array([])
numpy.array
""" Code modified from modAL project: https://github.com/modAL-python/modAL Uncertainty measures and uncertainty based sampling strategies for the active learning models. """ from typing import Tuple, Union, Callable, List import numpy as np from scipy.stats import entropy import tensorflow as tf from tensorflow.keras import Model from sklearn.metrics.pairwise import euclidean_distances import lightgbm as lgb from sklearn.model_selection import train_test_split from model import create_dnn, create_dnn2 def shuffled_argmax(values: np.ndarray, n_instances: int = 1) -> np.ndarray: """ Shuffles the values and sorts them afterwards. This can be used to break the tie when the highest utility score is not unique. The shuffle randomizes order, which is preserved by the mergesort algorithm. Args: values: Contains the values to be selected from. n_instances: Specifies how many indices to return. Returns: The indices of the n_instances largest values. """ assert n_instances <= values.shape[0], 'n_instances must be less or equal than the size of utility' # shuffling indices and corresponding values shuffled_idx = np.random.permutation(len(values)) shuffled_values = values[shuffled_idx] # getting the n_instances best instance # since mergesort is used, the shuffled order is preserved sorted_query_idx = np.argsort(shuffled_values, kind='mergesort')[len(shuffled_values)-n_instances:] # inverting the shuffle query_idx = shuffled_idx[sorted_query_idx] return query_idx def multi_argmax(values: np.ndarray, n_instances: int = 1) -> np.ndarray: """ Selects the indices of the n_instances highest values. Args: values: Contains the values to be selected from. n_instances: Specifies how many indices to return. Returns: The indices of the n_instances largest values. """ assert n_instances <= values.shape[0], 'n_instances must be less or equal than the size of utility' max_idx = np.argpartition(-values, n_instances-1, axis=0)[:n_instances] return max_idx def classifier_entropy(classifier: Model, X: np.ndarray, y: np.ndarray, binary_labels:bool = True, dual=False) -> np.ndarray: """ Entropy of predictions of the for the provided samples. Args: classifier: The classifier for which the prediction entropy is to be measured. X: The samples for which the prediction entropy is to be measured. Returns: Entropy of the class probabilities. """ if dual: classwise_uncertainty = classifier(X,y).reshape(-1, 1) classwise_uncertainty =
np.hstack((1-classwise_uncertainty, classwise_uncertainty))
numpy.hstack
import os import sys import numpy as np import pandas as pd import time import scipy.sparse import scipy.sparse.linalg from scipy import stats from scipy.optimize import minimize np.set_printoptions(threshold=sys.maxsize) # Add lib to the python path. from genTestDat import genTestData2D, prodMats2D from est2d import * from est3d import * from npMatrix2d import * from npMatrix3d import * # ================================================================================== # # The below code runs multiple simulations in serial. It takes the following inputs: # # ---------------------------------------------------------------------------------- # # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - nsim: Number of simulations (default=1000) # - mode: String indicating whether to run parameter estimation simulations (mode= # 'param') or T statistic simulations (mode='Tstat'). # - REML: Boolean indicating whether to use ML or ReML estimation. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def sim2D(desInd, OutDir, nsim=1000, mode='param', REML=False): # Loop through and run simulations for simInd in range(1,nsim+1): runSim(simInd, desInd, OutDir, mode, REML) # ================================================================================== # # The below simulates random test data and runs all methods described in the LMM # paper on the simulated data. It requires the following inputs: # # ---------------------------------------------------------------------------------- # # - SimInd: An index to represent the simulation. All output for this simulation will # be saved in files with the index specified by this argument. The # simulation with index 1 will also perform any necessary additional setup # and should therefore be run before any others. # - desInd: Integer value between 1 and 3 representing which design to run. The # designs are as follows: # - Design 1: nlevels=[50], nraneffs=[2] # - Design 2: nlevels=[50,10], nraneffs=[3,2] # - Design 3: nlevels=[100,50,10], nraneffs=[4,3,2] # - OutDir: The output directory. # - mode: String indicating whether to run parameter estimation simulations (mode= # 'param') or T statistic simulations (mode='Tstat'). # - REML: Boolean indicating whether to use ML or ReML estimation. # # ---------------------------------------------------------------------------------- # # Author: <NAME> (06/04/2020) # # ================================================================================== def runSim(simInd, desInd, OutDir, mode='param', REML=False): # Make sure simInd is an int simInd = int(simInd) #=============================================================================== # Setup #=============================================================================== # Decide whether we wish to run T statistics/degrees of freedom estimation if mode=='param': runDF = False else: runDF = True # Different designs if desInd==1: nlevels = np.array([50]) nraneffs = np.array([2]) if desInd==2: nlevels = np.array([50,25]) nraneffs = np.array([3,2]) if desInd==3: nlevels = np.array([100,30,10]) nraneffs = np.array([4,3,2]) # Number of observations n = 1000 # If we are doing a degrees of freedom simulation, create the factor vectors, X and Z if # this is the first run. These will then be used across all following simulations. If we # are doing a simulation to look at parameter estimation, we recreate the design on every # run as our focus is to stress test the performance of the algorithms, rather than compare # performance of one specific model in particular. if simInd == 1 or not runDF: # Delete any factor vectors from a previous batch of simulations. if runDF: for i in range(len(nlevels)): if os.path.isfile(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv')): os.remove(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv')) fvs = None X = None Z = None # Otherwise read the factor vectors, X and Z in from file. else: # Initialize empty factor vectors dict fvs = dict() # Loop through factors and save factor vectors for i in range(len(nlevels)): fvs[i] = pd.io.parsers.read_csv(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv'), header=None).values X = pd.io.parsers.read_csv(os.path.join(OutDir, 'X_' + str(desInd) + '.csv'), header=None).values Z = pd.io.parsers.read_csv(os.path.join(OutDir, 'Z_' + str(desInd) + '.csv'), header=None).values # Generate test data Y,X,Z,nlevels,nraneffs,beta,sigma2,b,D, fvs = genTestData2D(n=n, p=5, nlevels=nlevels, nraneffs=nraneffs, save=True, simInd=simInd, desInd=desInd, OutDir=OutDir, factorVectors=fvs, X=X, Z=Z) # Save the new factor vectors if this is the first run. if simInd == 1 and runDF: # Loop through the factors saving them for i in range(len(nlevels)): pd.DataFrame(fvs[i]).to_csv(os.path.join(OutDir, 'fv_' + str(desInd) + '_' + str(i) + '.csv'), index=False, header=None) pd.DataFrame(X).to_csv(os.path.join(OutDir, 'X_' + str(desInd) + '.csv'), index=False, header=None) pd.DataFrame(Z).to_csv(os.path.join(OutDir, 'Z_' + str(desInd) + '.csv'), index=False, header=None) # Work out number of observations, parameters, random effects, etc n = X.shape[0] p = X.shape[1] q = np.sum(nraneffs*nlevels) qu = np.sum(nraneffs*(nraneffs+1)//2) r = nlevels.shape[0] # Tolerance tol = 1e-6 # Work out factor indices. facInds = np.cumsum(nraneffs*nlevels) facInds = np.insert(facInds,0,0) # Convert D to dict Ddict=dict() for k in np.arange(len(nlevels)): Ddict[k] = D[facInds[k]:(facInds[k]+nraneffs[k]),facInds[k]:(facInds[k]+nraneffs[k])] # Get the product matrices XtX, XtY, XtZ, YtX, YtY, YtZ, ZtX, ZtY, ZtZ = prodMats2D(Y,Z,X) # ----------------------------------------------------------------------------- # Create empty data frame for results: # ----------------------------------------------------------------------------- # Row indices indexVec = np.array(['Time', 'nit', 'llh']) for i in np.arange(p): indexVec = np.append(indexVec, 'beta'+str(i+1)) # Sigma2 indexVec = np.append(indexVec, 'sigma2') # Dk for k in np.arange(r): for j in np.arange(nraneffs[k]*(nraneffs[k]+1)//2): indexVec = np.append(indexVec, 'D'+str(k+1)+','+str(j+1)) # Sigma2*Dk for k in
np.arange(r)
numpy.arange
import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator, MultipleLocator, MaxNLocator from matplotlib.path import Path from matplotlib.patches import PathPatch from matplotlib.colors import BoundaryNorm import matplotlib.image as mpimg import imageio from analysis.mesure import * from util.operations import field_operate as fo from engines.phi.field._grid import CenteredGrid, StaggeredGrid import pdb import sys def plot_field(field, plot_type=['surface'], options=[], Lx=None, Ly=None, dx=None, dy=None, lx='x', ly='y', lbar='field', ltitle='Plot Field', save=False, filename='./field.png', fig=None, ax=None): '''Main function to plot vectorial and scalar fields (including masking fields). USAGE: -plots=[ [ 'plot_type', [ ['plot options' , xx], ['plot options' , xx] ]], [ 'plot_type', [ ['plot options' , xx], ['plot options' , xx] ]] ] plot_type: contourn, mask, surface, streamlines general_plot_options: -edges -> [ [edge_hl_x, edge_hl_y], [edge_hr_x, edge_hr_y], [edge_vb_x, edge_vb_y], [edge_vt_x, edge_vt_y] ] -square -> [x1,x2,y1,y2] -circle -> [x,y,D] -aux_contourn -> True/False -limits -> [min, max] -vector_axis -> 0/1 -indeces -> True/False -grid -> True/False -zoom_position -> [x1,x2,y1,y2] -full_zoom -> True/False ''' #1.1.Staggered grid == Cells walls cx =
np.arange(0, Lx +dx/2, dx)
numpy.arange
import os import re import numpy as np from sklearn import linear_model from scipy import sparse import collections import codecs import random class HMM(object): """ HMM Model """ def __init__(self, dic, decode_type): """ Initialize the model. """ self.num_words = len(dic['word_to_id']) self.num_tags = len(dic['tag_to_id']) self.initial_prob = np.ones([self.num_tags]) self.transition_prob = np.ones([self.num_tags, self.num_tags]) self.emission_prob = np.ones([self.num_tags, self.num_words]) self.decode_type = decode_type self.q = 0 # This is dummy code to create uniform probability distributions. Feel free to remove it. self.initial_prob /= np.sum(self.initial_prob) for i,p in enumerate(self.transition_prob): p /= np.sum(p) for i,p in enumerate(self.emission_prob): p /= np.sum(p) return def train(self, corpus): """ TODO: Train a bigram HMM model using MLE estimates. Update self.initial_prob, self.transition_prob and self.emission_prob appropriately. corpus is a list of dictionaries of the form: {'str_words': str_words, ### List of string words 'words': words, ### List of word IDs 'tags': tags} ### List of tag IDs All three lists above have length equal to the sentence length for each instance. """ # BEGIN CODE transition_counts = np.zeros([self.num_tags, self.num_tags]) #initialize matrix for matrix counts emission_counts = np.zeros([self.num_tags, self.num_words]) #initialize matrix for emission counts initial_counts = np.zeros([self.num_tags]) for sentence in corpus: sentence_tags = sentence["tags"] sentence_words = sentence["words"] idx = 0 # Loop to count emission and transition for t_tags, t_words in zip(sentence_tags, sentence_words): emission_counts[t_tags][t_words] +=1 #add emission counts if idx == 0: initial_counts[t_tags] += 1 if idx > 0: transition_counts[sentence_tags[idx - 1]][t_tags] += 1 idx +=1 self.initial_prob = (1/np.sum(initial_counts)) * initial_counts emission_sum = np.sum(emission_counts, axis=1) transition_sum = np.sum(transition_counts, axis=1) for i in range(self.num_tags): self.emission_prob[i] = (emission_counts[i]) / (emission_sum[i]) self.transition_prob[i] = (transition_counts[i]) / (transition_sum[i]) # END CODE return def greedy_decode(self, sentence): """ Decode a single sentence in Greedy fashion Return a list of tags. """ tags = [] init_scores = [self.initial_prob[t] * self.emission_prob[t][sentence[0]] for t in range(self.num_tags)] tags.append(np.argmax(init_scores)) for w in sentence[1:]: scores = [self.transition_prob[tags[-1]][t] * self.emission_prob[t][w] for t in range(self.num_tags)] tags.append(np.argmax(scores)) assert len(tags) == len(sentence) return tags def viterbi_decode(self, sentence): """ TODO: Decode a single sentence using the Viterbi algorithm. Return a list of tags. """ tags = [] # BEGIN CODE #Initial scores init_scores = [self.initial_prob[t] * self.emission_prob[t][sentence[0]] for t in range(self.num_tags)] #Initialize array to compute viterbi len_sent = len(sentence) viterb_arr = np.zeros([self.num_tags,len_sent]) back_tag_arr = np.zeros([self.num_tags,(len_sent-1)]) viterb_max_list = np.zeros(len(sentence)) for idx, w in enumerate(sentence): # Initial probabilities if idx == 0: for t in range(self.num_tags): viterb_arr[t][idx] = init_scores[t] * self.emission_prob[t][w] else: for t in range(self.num_tags): possible_list = [] for p in range(self.num_tags): possible_list.append(viterb_arr[p][idx-1] * self.transition_prob[p][t] * self.emission_prob[t][w]) viterb_arr[t][idx] = np.max(possible_list) #Get the maximum value back_tag_arr[t][idx-1] = np.argmax(possible_list) tags_revr = [] for idx in list(range(len_sent))[::-1]: if idx == (len_sent - 1): max_b = np.argmax(viterb_arr[:,idx]) tags_revr.append(max_b) else: max_b = back_tag_arr[int(max_b)][idx] tags_revr.append(max_b) tags = tags_revr[::-1] # END CODE assert len(tags) == len(sentence) return tags def tag(self, sentence): """ Tag a sentence using a trained HMM. """ if self.decode_type == 'viterbi': return self.viterbi_decode(sentence) else: return self.greedy_decode(sentence) #assuming the context window is 1 class FFN(object): """ Window-based feed forward neural network classifier """ def __init__(self, dic, embedding, hidden_size=15, window=2): """ Initialize the model. """ self.num_words = len(dic['word_to_id']) self.num_tags = len(dic['tag_to_id']) self.dic=dic self.window = window self.hidden_size = hidden_size self.learning_rate = 0.15 self.eps = 0.0006 # This contains a dictionary of word embeddings {str_word -> embedding} self.embedding=embedding self.embedding_size = list(self.embedding.values())[0].shape[1] # TODO: make sure to initialize these appropriately. #INITIALZIED BELOW. I use he et al (2015) initalization! np.random.seed(117) self.w=np.random.randn(((2*self.window)+1) * self.embedding_size, self.hidden_size) * np.sqrt(2/( (((2*self.window)+1) * self.embedding_size) + self.hidden_size)) # weights for hidden layer self.b1=np.random.rand(self.hidden_size) # bias for hidden layer self.u = np.random.randn(self.hidden_size, 5) * np.sqrt(2/( self.hidden_size + 5)) # weights for output layer self.b2 = np.random.rand(5) # bias for output layer return def make_windowed_data(self, sentence, tags): """ TODO: Convert a single sentence and corresponding tags into a batch of inputs and outputs to the FFN """ input_vector=np.zeros([len(sentence), (2*self.window+1) * self.embedding_size]) output_vector=np.zeros([len(sentence), self.num_tags]) #BEGIN CODE len_sent = len(sentence) for idx, (w, t) in enumerate(zip(sentence, tags)): output_vector[idx][t] = 1 #INPUT VECTOR #Start token for i in [1,2,3,4,5]: k = i - 3 if (0 <= idx + k < len_sent): key_string = (str(sentence[idx + k])).lower() if key_string in self.embedding: input_vector[idx][(i-1) * self.embedding_size: (i) * self.embedding_size] = self.embedding[key_string] else: input_vector[idx][(i-1) * self.embedding_size: (i) * self.embedding_size] = np.zeros(self.embedding_size) else: input_vector[idx][(i-1) * self.embedding_size: (i) * self.embedding_size] = np.zeros(self.embedding_size) #OUTPUT vector #END CODE return input_vector,output_vector def train(self, corpus): """ TODO: Train the FFN with stochastic gradient descent. For each sentence in the corpus, convert it to a batch of inputs, compute the log loss and apply stochastic gradient descent on the parameters. """ # Useful functions def sigmoid(x): return 1/(1+np.exp(-x)) def sigmoid_derivative(x): return sigmoid(x) *(1-sigmoid (x)) def softmax(A): expA = np.exp(A) return expA / expA.sum(axis=0, keepdims=True) def stablesoftmax(A): """Compute the softmax of vector x in a numerically stable way.""" shiftA = A - np.max(A) exps = np.exp(shiftA) return exps / np.sum(exps) eps = self.eps # BEGIN CODE step_size = self.learning_rate #1. TODO: Initialize any useful variables here. i =0 converge_count = 0 # FOR EACH EPOCH: while i < 35 : #FOR EACH sentence in CORPUS: if converge_count < 2: random.shuffle(corpus) #Randomize ordered #if i % 1 ==0: #print("ROUND",i) i +=1 for k, sentence in enumerate(corpus): str_words = sentence["str_words"] sent_tags = sentence["tags"] #2. TODO: Make windowed batch data in_out_obj = self.make_windowed_data(str_words, sent_tags) input_vector = in_out_obj[0] output_vector = in_out_obj[1] #2A create gradients for the entire sentences grad_b2_sum = 0 grad_b1_sum = 0 grad_w_sum = 0 grad_u_sum = 0 len_in = len(input_vector) #3. TODO: Do a forward pass through the network. # loop in the sentence itself for in_vec, out_vec in zip(input_vector, output_vector): sig_input = np.matmul(in_vec, self.w) + self.b1 #print(sig_input.shape) h_t = sigmoid(sig_input) #print(h_t.shape) y_hat = softmax(np.matmul(h_t, self.u) + self.b2) #rint(y_hat.shape) #4. TODO: Do a backward pass through the network to compute required gradients. dJ_dB = y_hat - out_vec dJ_dh = np.matmul(dJ_dB, np.transpose(self.u)) dJ_dA = np.multiply(sigmoid_derivative(sig_input), dJ_dh) grad_b1_sum += dJ_dA grad_b2_sum += dJ_dB grad_w_sum += np.outer(np.transpose(in_vec), dJ_dA) ##OBtain outer product grad_u_sum += np.outer(np.transpose(h_t), (dJ_dB)) #outer product of 2 vectors #if np.isnan(np.linalg.norm(grad_u_sum)) == False: # print("ROUND") # print(y_hat) # print(out_vec) # print(np.linalg.norm(grad_u_sum)) # print(np.linalg.norm(grad_b1_sum)) # print(np.linalg.norm(grad_b2_sum)) #5. TODO: Update the weights (self.w, self.b1, self.u, self.b2)s self.b2 = self.b2 - (step_size * (grad_b2_sum/ len_in)) self.w = self.w - (step_size * (grad_w_sum/len_in)) self.b1 = self.b1 - (step_size * (grad_b1_sum/len_in)) self.u = self.u - (step_size * (grad_u_sum/len_in)) if np.all(np.absolute(grad_u_sum/len_in) < eps) and np.all(np.absolute(grad_b2_sum/len_in) < eps) and np.all(np.absolute(grad_w_sum/len_in) < eps) and np.all(np.absolute(grad_b1_sum/len_in) < eps): self.b2 = self.b2 + (step_size * (grad_b2_sum/ len_in)) self.w = self.w + (step_size * (grad_w_sum/len_in)) self.b1 = self.b1 + (step_size * (grad_b1_sum/len_in)) self.u = self.u + (step_size * (grad_u_sum/len_in)) #print("CONVERGED!") converge_count +=1 eps = eps * 0.9 if converge_count > 1: break else: continue break else: continue break # END CODE return def tag(self, sentence): """ TODO: Tag a sentence using a trained FFN model. Since this model is not sequential (why?), you do not need to do greedy or viterbi decoding. """ tags = [] # Helper functions. def sigmoid(x): return 1/(1+np.exp(-x)) def sigmoid_derivative(x): return sigmoid(x) *(1-sigmoid (x)) def softmax(A): expA =
np.exp(A)
numpy.exp
from contextlib import contextmanager from copy import deepcopy from functools import partial import sys import warnings import numpy as np from numpy.testing import assert_equal import pytest from numpy.testing import assert_allclose from expyfun import ExperimentController, visual, _experiment_controller from expyfun._experiment_controller import _get_dev_db from expyfun._utils import (_TempDir, fake_button_press, _check_skip_backend, fake_mouse_click, requires_opengl21, _wait_secs as wait_secs, known_config_types, _new_pyglet) from expyfun._sound_controllers._sound_controller import _SOUND_CARD_KEYS from expyfun.stimuli import get_tdt_rates std_args = ['test'] # experiment name std_kwargs = dict(output_dir=None, full_screen=False, window_size=(8, 8), participant='foo', session='01', stim_db=0.0, noise_db=0.0, verbose=True, version='dev') def dummy_print(string): """Print.""" print(string) @pytest.mark.parametrize('ws', [(2, 1), (1, 1)]) def test_unit_conversions(hide_window, ws): """Test unit conversions.""" kwargs = deepcopy(std_kwargs) kwargs['stim_fs'] = 44100 kwargs['window_size'] = ws with ExperimentController(*std_args, **kwargs) as ec: verts = np.random.rand(2, 4) for to in ['norm', 'pix', 'deg', 'cm']: for fro in ['norm', 'pix', 'deg', 'cm']: v2 = ec._convert_units(verts, fro, to) v2 = ec._convert_units(v2, to, fro) assert_allclose(verts, v2) # test that degrees yield equiv. pixels in both directions verts = np.ones((2, 1)) v0 = ec._convert_units(verts, 'deg', 'pix') verts = np.zeros((2, 1)) v1 = ec._convert_units(verts, 'deg', 'pix') v2 = v0 - v1 # must check deviation from zero position assert_allclose(v2[0], v2[1]) pytest.raises(ValueError, ec._convert_units, verts, 'deg', 'nothing') pytest.raises(RuntimeError, ec._convert_units, verts[0], 'deg', 'pix') def test_validate_audio(hide_window): """Test that validate_audio can pass through samples.""" with ExperimentController(*std_args, suppress_resamp=True, **std_kwargs) as ec: ec.set_stim_db(_get_dev_db(ec.audio_type) - 40) # 0.01 RMS assert ec._stim_scaler == 1. for shape in ((1000,), (1, 1000), (2, 1000)): samples_in = np.zeros(shape) samples_out = ec._validate_audio(samples_in) assert samples_out.shape == (1000, 2) assert samples_out.dtype == np.float32 assert samples_out is not samples_in for order in 'CF': samples_in = np.zeros((2, 1000), dtype=np.float32, order=order) samples_out = ec._validate_audio(samples_in) assert samples_out.shape == samples_in.shape[::-1] assert samples_out.dtype == np.float32 # ensure that we have not bade a copy, just a view assert samples_out.base is samples_in def test_data_line(hide_window): """Test writing of data lines.""" entries = [['foo'], ['bar', 'bar\tbar'], ['bar2', r'bar\tbar'], ['fb', None, -0.5]] # this is what should be written to the file for each one goal_vals = ['None', 'bar\\tbar', 'bar\\\\tbar', 'None'] assert_equal(len(entries), len(goal_vals)) temp_dir = _TempDir() with std_kwargs_changed(output_dir=temp_dir): with ExperimentController(*std_args, stim_fs=44100, **std_kwargs) as ec: for ent in entries: ec.write_data_line(*ent) fname = ec._data_file.name with open(fname) as fid: lines = fid.readlines() # check the header assert_equal(len(lines), len(entries) + 4) # header, colnames, flip, stop assert_equal(lines[0][0], '#') # first line is a comment for x in ['timestamp', 'event', 'value']: # second line is col header assert (x in lines[1]) assert ('flip' in lines[2]) # ec.__init__ ends with a flip assert ('stop' in lines[-1]) # last line is stop (from __exit__) outs = lines[1].strip().split('\t') assert (all(l1 == l2 for l1, l2 in zip(outs, ['timestamp', 'event', 'value']))) # check the entries ts = [] for line, ent, gv in zip(lines[3:], entries, goal_vals): outs = line.strip().split('\t') assert_equal(len(outs), 3) # check timestamping if len(ent) == 3 and ent[2] is not None: assert_equal(outs[0], str(ent[2])) else: ts.append(float(outs[0])) # check events
assert_equal(outs[1], ent[0])
numpy.testing.assert_equal
#!/usr/bin/env python3 import sys, getopt, math, os, time, traceback import numpy as np import mdtraj as mdt import parmed as pmd ################################# Arguments ################################### # Default parameters traj_file = '' psf_file = '' native_AA_pdb = '' num_samples = 5 n_boot = int(1e4) fasta_seq = '' disordered_pdb = '' # This is the trimer interface region should be removed from propensity estimation offset_sel = '' agg_prop_file = 'agg_pro.dat' deg_sel = ':ILE,VAL,LEU,PHE,CYS,MET,ALA,GLY,TRP' # read control file ctrlfile = '' if len(sys.argv) == 1: print(usage) sys.exit() try: opts, args = getopt.getopt(sys.argv[1:],"hf:", ["ctrlfile="]) except getopt.GetoptError: print(usage) sys.exit() for opt, arg in opts: if opt == '-h': print(usage) sys.exit() elif opt in ("-f", "--ctrlfile"): ctrlfile = arg if not os.path.exists(ctrlfile): print('Error: cannot find control file ' + ctrlfile + '.') sys.exit() file_object = open(ctrlfile,'r') try: for line in file_object: line = line.strip() if not line: # This is a blank line continue if line.startswith('#'): # This is a comment line continue if line.startswith('traj_file'): words = line.split('=') traj_file = words[1].strip() continue if line.startswith('psf_file'): words = line.split('=') psf_file = words[1].strip() continue if line.startswith('native_AA_pdb'): words = line.split('=') native_AA_pdb = words[1].strip() continue if line.startswith('num_samples'): words = line.split('=') num_samples = int(words[1].strip()) continue if line.startswith('n_boot'): words = line.split('=') n_boot = int(words[1].strip()) continue if line.startswith('fasta_seq'): words = line.split('=') fasta_seq = words[1].strip() continue if line.startswith('disordered_pdb'): words = line.split('=') disordered_pdb = words[1].strip() continue if line.startswith('offset_sel'): words = line.split('=') offset_sel = words[1].strip() continue if line.startswith('agg_prop_file'): words = line.split('=') agg_prop_file = words[1].strip() continue if line.startswith('deg_sel'): words = line.split('=') deg_sel = words[1].strip() continue finally: file_object.close() ################################# Functions ################################### def bootstrap(boot_fun, data, n_time): idx_list = np.arange(len(data)) if len(data.shape) == 1: boot_stat = np.zeros(n_time) elif len(data.shape) == 2: boot_stat = np.zeros((n_time, data.shape[1])) else: print('bootstrap: Can only handle 1 or 2 dimentional data') sys.exit() for i in range(n_time): sample_idx_list = np.random.choice(idx_list, len(idx_list)) if len(data.shape) == 1: new_data = data[sample_idx_list] boot_stat[i] = boot_fun(new_data) elif len(data.shape) == 2: new_data = data[sample_idx_list, :] for j in range(data.shape[1]): boot_stat[i,j] = boot_fun(new_data[:,j]) return boot_stat ################################## MAIN ####################################### struct = pmd.load_file(psf_file) ext_struct = pmd.load_file(disordered_pdb) for idx, res in enumerate(ext_struct.residues): struct.residues[idx].name = res.name # Estimate Aggregation site agg_sel = ':' f = open('agg_pro.dat') lines = f.readlines() f.close() for li, line in enumerate(lines): if line.startswith('HITS'): break for line in lines[li+1:]: line = line.strip() if line.startswith('>--->'): agg_sel += line.split(':')[1] break agg_sel += offset_sel print('Agg_sel: %s'%agg_sel) agg_idx = list(pmd.amber.AmberMask(struct, agg_sel).Selected()) # Estimate Degradation site deg_sel += offset_sel print('Deg_sel: %s'%deg_sel) deg_idx = list(pmd.amber.AmberMask(struct, deg_sel).Selected()) # Estimate Chaperone binding site cb_sel = ':' lines = os.popen('ChaperISM.py '+fasta_seq+' -qt').readlines() for li, line in enumerate(lines): if line.startswith(' POSITION '): break cb_site_list = [] for line in lines[li+2:len(lines)-1]: words = line.strip().split() if words[-1] == '*': #cb_site_list += list(np.arange(int(words[0])+1, int(words[0])+8)) cb_site_list.append(int(words[0])+4) cb_site_list = np.unique(cb_site_list) cb_site_list = [str(c) for c in cb_site_list] cb_sel += ','.join(cb_site_list) cb_sel += offset_sel print('CB_sel: %s'%cb_sel) cb_idx = list(pmd.amber.AmberMask(struct, cb_sel).Selected()) # Calculate SASA traj = mdt.load(traj_file, top=psf_file) SASA_list = [] for frame_id in range(traj.n_frames): #for frame_id in range(5): SASA_0 = [] state_id = int(frame_id / num_samples) rep_id = frame_id - state_id * num_samples os.system('mkdir tmp') os.system('cp '+native_AA_pdb+' tmp/') native_AA_name = native_AA_pdb.strip().split('/')[-1] os.chdir('tmp') traj[frame_id].save('tmp.pdb', force_overwrite=True) screen = os.popen('backmap.py -i '+native_AA_name+' -c tmp.pdb 2>&1').readlines() if not os.path.exists('tmp_rebuilt.pdb'): SASA_0 = [np.nan, np.nan, np.nan] for s in screen: print(s) print('Failed to backmap') else: struct = mdt.load('tmp_rebuilt.pdb') sasa = mdt.shrake_rupley(struct, mode='residue')[0] agg_sasa = np.sum(sasa[agg_idx]) deg_sasa = np.sum(sasa[deg_idx]) cb_sasa = np.sum(sasa[cb_idx]) SASA_0 = [agg_sasa, deg_sasa, cb_sasa] SASA_list.append(SASA_0) os.chdir('../') os.system('rm -rf tmp/') print('Frame %d done'%frame_id) struct = mdt.load(disordered_pdb) sasa = mdt.shrake_rupley(struct, mode='residue')[0] agg_sasa = np.sum(sasa[agg_idx]) deg_sasa = np.sum(sasa[deg_idx]) cb_sasa = np.sum(sasa[cb_idx]) SASA_list = [[agg_sasa, deg_sasa, cb_sasa]] + SASA_list SASA_list = np.array(SASA_list) n_states = int((len(SASA_list)-1) / num_samples) SASA_avg = np.zeros((n_states+1, SASA_list.shape[1])) SASA_std = np.zeros((n_states+1, SASA_list.shape[1])) SASA_avg[0,:] = SASA_list[0,:] SASA_std[0,:] = np.zeros(SASA_list.shape[1]) for i in range(n_states): SASA_avg[i+1,:] = np.mean(SASA_list[i*num_samples+1:(i+1)*num_samples+1,:], axis=0) SASA_std[i+1,:] =
np.std(SASA_list[i*num_samples+1:(i+1)*num_samples+1,:], axis=0)
numpy.std
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import numpy as np import math from PIL import Image from ..registry import PIPELINES from collections.abc import Sequence @PIPELINES.register() class Scale(object): """ Scale images. Args: short_size(float | int): Short size of an image will be scaled to the short_size. """ def __init__(self, short_size): self.short_size = short_size def __call__(self, results): """ Performs resize operations. Args: imgs (Sequence[PIL.Image]): List where each item is a PIL.Image. For example, [PIL.Image0, PIL.Image1, PIL.Image2, ...] return: resized_imgs: List where each item is a PIL.Image after scaling. """ imgs = results['imgs'] resized_imgs = [] for i in range(len(imgs)): img = imgs[i] w, h = img.size if (w <= h and w == self.short_size) or (h <= w and h == self.short_size): resized_imgs.append(img) continue if w < h: ow = self.short_size oh = int(self.short_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) else: oh = self.short_size ow = int(self.short_size * 4.0 / 3.0) resized_imgs.append(img.resize((ow, oh), Image.BILINEAR)) results['imgs'] = resized_imgs return results @PIPELINES.register() class RandomCrop(object): """ Random crop images. Args: target_size(int): Random crop a square with the target_size from an image. """ def __init__(self, target_size): self.target_size = target_size def __call__(self, results): """ Performs random crop operations. Args: imgs: List where each item is a PIL.Image. For example, [PIL.Image0, PIL.Image1, PIL.Image2, ...] return: crop_imgs: List where each item is a PIL.Image after random crop. """ imgs = results['imgs'] w, h = imgs[0].size th, tw = self.target_size, self.target_size assert (w >= self.target_size) and (h >= self.target_size), \ "image width({}) and height({}) should be larger than crop size".format( w, h, self.target_size) crop_images = [] x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) for img in imgs: if w == tw and h == th: crop_images.append(img) else: crop_images.append(img.crop((x1, y1, x1 + tw, y1 + th))) results['imgs'] = crop_images return results @PIPELINES.register() class CenterCrop(object): """ Center crop images. Args: target_size(int): Center crop a square with the target_size from an image. """ def __init__(self, target_size): self.target_size = target_size def __call__(self, results): """ Performs Center crop operations. Args: imgs: List where each item is a PIL.Image. For example, [PIL.Image0, PIL.Image1, PIL.Image2, ...] return: ccrop_imgs: List where each item is a PIL.Image after Center crop. """ imgs = results['imgs'] ccrop_imgs = [] for img in imgs: w, h = img.size th, tw = self.target_size, self.target_size assert (w >= self.target_size) and (h >= self.target_size), \ "image width({}) and height({}) should be larger than crop size".format( w, h, self.target_size) x1 = int(round((w - tw) / 2.)) y1 = int(round((h - th) / 2.)) ccrop_imgs.append(img.crop((x1, y1, x1 + tw, y1 + th))) results['imgs'] = ccrop_imgs return results @PIPELINES.register() class MultiScaleCrop(object): def __init__( self, target_size, #NOTE: named target size now, but still pass short size in it! scales=None, max_distort=1, fix_crop=True, more_fix_crop=True): self.target_size = target_size self.scales = scales if scales else [1, .875, .75, .66] self.max_distort = max_distort self.fix_crop = fix_crop self.more_fix_crop = more_fix_crop def __call__(self, results): """ Performs MultiScaleCrop operations. Args: imgs: List where wach item is a PIL.Image. XXX: results: """ imgs = results['imgs'] input_size = [self.target_size, self.target_size] im_size = imgs[0].size # get random crop offset def _sample_crop_size(im_size): image_w, image_h = im_size[0], im_size[1] base_size = min(image_w, image_h) crop_sizes = [int(base_size * x) for x in self.scales] crop_h = [ input_size[1] if abs(x - input_size[1]) < 3 else x for x in crop_sizes ] crop_w = [ input_size[0] if abs(x - input_size[0]) < 3 else x for x in crop_sizes ] pairs = [] for i, h in enumerate(crop_h): for j, w in enumerate(crop_w): if abs(i - j) <= self.max_distort: pairs.append((w, h)) crop_pair = random.choice(pairs) if not self.fix_crop: w_offset = random.randint(0, image_w - crop_pair[0]) h_offset = random.randint(0, image_h - crop_pair[1]) else: w_step = (image_w - crop_pair[0]) / 4 h_step = (image_h - crop_pair[1]) / 4 ret = list() ret.append((0, 0)) # upper left if w_step != 0: ret.append((4 * w_step, 0)) # upper right if h_step != 0: ret.append((0, 4 * h_step)) # lower left if h_step != 0 and w_step != 0: ret.append((4 * w_step, 4 * h_step)) # lower right if h_step != 0 or w_step != 0: ret.append((2 * w_step, 2 * h_step)) # center if self.more_fix_crop: ret.append((0, 2 * h_step)) # center left ret.append((4 * w_step, 2 * h_step)) # center right ret.append((2 * w_step, 4 * h_step)) # lower center ret.append((2 * w_step, 0 * h_step)) # upper center ret.append((1 * w_step, 1 * h_step)) # upper left quarter ret.append((3 * w_step, 1 * h_step)) # upper right quarter ret.append((1 * w_step, 3 * h_step)) # lower left quarter ret.append((3 * w_step, 3 * h_step)) # lower righ quarter w_offset, h_offset = random.choice(ret) return crop_pair[0], crop_pair[1], w_offset, h_offset crop_w, crop_h, offset_w, offset_h = _sample_crop_size(im_size) crop_img_group = [ img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in imgs ] ret_img_group = [ img.resize((input_size[0], input_size[1]), Image.BILINEAR) for img in crop_img_group ] results['imgs'] = ret_img_group return results @PIPELINES.register() class RandomFlip(object): """ Random Flip images. Args: p(float): Random flip images with the probability p. """ def __init__(self, p=0.5): self.p = p def __call__(self, results): """ Performs random flip operations. Args: imgs: List where each item is a PIL.Image. For example, [PIL.Image0, PIL.Image1, PIL.Image2, ...] return: flip_imgs: List where each item is a PIL.Image after random flip. """ imgs = results['imgs'] v = random.random() if v < self.p: results['imgs'] = [ img.transpose(Image.FLIP_LEFT_RIGHT) for img in imgs ] else: results['imgs'] = imgs return results @PIPELINES.register() class Image2Array(object): """ transfer PIL.Image to Numpy array and transpose dimensions from 'dhwc' to 'dchw'. Args: transpose: whether to transpose or not, default False. True for tsn. """ def __init__(self, transpose=True): self.transpose = transpose def __call__(self, results): """ Performs Image to NumpyArray operations. Args: imgs: List where each item is a PIL.Image. For example, [PIL.Image0, PIL.Image1, PIL.Image2, ...] return: np_imgs: Numpy array. """ imgs = results['imgs'] np_imgs = (
np.stack(imgs)
numpy.stack
from models.dss_layer import DSSConv2d, DSSInput, DSSInvolution, DSSAlign import torch.nn as nn import numpy as np import torch import random ######################################################################## # Base Network # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ class DSSNet(nn.Module): def __init__(self, settings=[]): super(DSSNet, self).__init__() self.settings = settings self.selected_out =[] self.fhooks = [] self.split_half = True self.layer_wise_DSS = False self.selected_idx = 0 self.epoch_step = 0 self.is_aligned = False # hooks def search_DSS_cand(self): DSS_cand = [] for m in self.modules(): if isinstance(m, DSSConv2d) or isinstance(m, DSSAlign): DSS_cand.append(m) self.DSS_cand = DSS_cand print(DSS_cand) return DSS_cand def search_th_cand(self): th_cand = [] for m in self.modules(): if isinstance(m, DSSConv2d) or isinstance(m, DSSAlign) or isinstance(m, DSSInput): th_cand.append(m) self.th_cand = th_cand return th_cand def reset_hook(self): for fhook in self.fhooks: fhook.remove() self.fhooks.clear() self.selected_out.clear() def register_rand_hook(self): for fhook in self.fhooks: fhook.remove() self.fhooks.clear() self.selected_out.clear() self.selected_idx = random.choices(range(len(self.DSS_cand)), weights=self.n_connections)[0] # self.selected_idx = np.random.randint(low=0, high=len(self.DSS_cand), size=1)[0] # print('register_rand_hook %d %d '%(self.selected_idx, len(self.fhooks))) self.fhooks.append(self.DSS_cand[self.selected_idx].register_forward_hook(self.forward_hook(self.selected_idx))) # In Sigma-Delta DSS loss is computed layer-wises # Note: this module is compatible only for fully DSSConv2d network with DSSInput def mask_scale_grad(self): if self.layer_wise_DSS: for idx, m in enumerate(self.th_cand): if (idx==self.selected_idx): m.th.requires_grad = True else: m.th.requires_grad = False def reset_mask(self): for m in self.modules(): if isinstance(m, DSSConv2d): m.reset_mask() def pre_process(self): self.clip_scale() # self.change_quantizer() self.mask_scale_grad() if self.epoch_step<self.settings.n_warpup_epochs: self.reset_mask() def register_all_hook(self): for fhook in self.fhooks: fhook.remove() self.fhooks.clear() self.selected_out.clear() # print('register_all_hook %d '%(len(self.fhooks))) for idx, module in enumerate(self.DSS_cand): self.fhooks.append(module.register_forward_hook(self.forward_hook(idx))) def forward_hook(self, selected_idx): def hook(module, input, output): # print('forward_hook idx:%d, numel %d'%(selected_idx, output.numel())) dss_stats = module.get_exp(input) self.selected_out.append([selected_idx, dss_stats]) return hook def reset_mp(self): for module in self.modules(): module.mp = [] module.mp_lft = [] def set_thr(self, scale_val, weight=[]): self.scale = scale_val if len(weight)==0 and isinstance(scale_val, list)==False: for module in self.modules(): module.th.data = torch.tensor(scale_val) # print(module.th.data>0) module.th.requires_grad = (module.th.data>0).item() elif len(scale_val)>1: for idx, module in enumerate(self.modules): module.th.data = torch.tensor(scale_val[idx]) module.th.requires_grad = module.th.data>0 else: for module, weight_ in zip(self.modules, weight): module.th.data = scale_val*weight_ module.th.requires_grad=True module.th.requires_grad = module.th.data def set_training(self, training): for module in self.modules(): if isinstance(module, DSSConv2d) or isinstance(module, DSSInput): module.training = training def set_train_mode(self, flags): def _set_requires_grad(module, atr_name, value): if hasattr(module, atr_name) and getattr(module, atr_name)!=None: getattr(module, atr_name).requires_grad = value for module in self.modules(): _set_requires_grad(module, 'th', flags[0]) _set_requires_grad(module, 'm', flags[1]) _set_requires_grad(module, 'b', flags[2]) _set_requires_grad(module, 'w', flags[3]) def clip_scale(self): for module in self.modules(): if isinstance(module, DSSConv2d) or isinstance(module, DSSInput): quantizer = self.settings.quantizer if quantizer in ['MG_divmul_lin', 'floor', 'ULSQ_muldiv_lin']: module.th.data.clamp_(1.0/(self.settings.max_scale-self.settings.min_scale), None) elif quantizer in ['MG_muldiv_lin','ULSQ_divmul_lin', 'floor_inv', 'nan']: module.th.data.clamp_(None, self.settings.max_scale-self.settings.min_scale) elif quantizer in ['MG_divmul_log', 'floor_log','ULSQ_divmul_log']: module.th.data.clamp_(0, None) elif quantizer in ['MG_muldiv_log','ULSQ_muldiv_log', 'floor_inv_log']: module.th.data.clamp_(None, 0) else: print('Not implemented') def get_scale(self): scale = [] for module in self.modules(): if isinstance(module, DSSConv2d) or isinstance(module, DSSInput): scale.append(module.get_scale().mean().data.item()) return
np.array(scale)
numpy.array
# Copyright 2019 The TensorFlow Hub Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for module search utility.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics import tensorflow.compat.v2 as tf from tensorflow_hub.tools.module_search import utils class TestUtils(tf.test.TestCase): train_samples = 450 test_samples = 50 dim = 10 classes = 7 random_seed = 127 def test_compute_distance_matrix(self): np.random.seed(seed=self.random_seed) x_train = np.random.rand(self.train_samples, self.dim) x_test = np.random.rand(self.test_samples, self.dim) d = utils.compute_distance_matrix(x_train, x_test) self.assertEqual(d.shape, (self.test_samples, self.train_samples)) for i in range(self.test_samples): for j in range(self.train_samples): d_ij = np.linalg.norm(x_train[j, :] - x_test[i, :])**2 self.assertAlmostEqual(d_ij, d[i, j], places=5) def test_compute_distance_matrix_loo(self): np.random.seed(seed=self.random_seed) x_train = np.random.rand(self.train_samples, self.dim) d = utils.compute_distance_matrix_loo(x_train) self.assertEqual(d.shape, (self.train_samples, self.train_samples)) for i in range(self.train_samples): for j in range(self.train_samples): if i == j: self.assertEqual(float("inf"), d[i, j]) else: d_ij = np.linalg.norm(x_train[j, :] - x_train[i, :])**2 self.assertAlmostEqual(d_ij, d[i, j], places=5) def knn_errorrate(self, k): x_train = np.random.rand(self.train_samples, self.dim) x_test = np.random.rand(self.test_samples, self.dim) d = utils.compute_distance_matrix(x_train, x_test) y_test = np.random.randint(self.classes, size=self.test_samples) y_train = np.random.randint(self.classes, size=self.train_samples) err = utils.knn_errorrate(d, y_train, y_test, k=k) knn = KNeighborsClassifier(n_neighbors=k) knn.fit(x_train, y_train) y_pred = knn.predict(x_test) acc = metrics.accuracy_score(y_test, y_pred) self.assertAlmostEqual(1.0 - err, acc, places=5) def test_knn_errorrate(self): np.random.seed(seed=self.random_seed) ks = [1, 3, 5] for idx, val in enumerate(ks): with self.subTest(i=idx): self.knn_errorrate(val) def knn_errorrate_loo(self, k): x_train =
np.random.rand(self.train_samples, self.dim)
numpy.random.rand
import pandas as pd #drop unknow artist import matplotlib as mpl import matplotlib.pyplot as plt log_dir ='logs/' mpl.rcParams['figure.figsize'] = (22, 20) dataset=pd.read_csv('/content/MultitaskPainting100k_Dataset_groundtruth/groundtruth_multiloss_train_header.csv') # indexName=pf[pf['artist']=='Unknown photographer'].index # pf.drop(indexName,inplace=True) # grouped = pf.groupby(['artist']).size().reset_index(name='counts') # p=grouped.sort_values('counts', ascending=False).head(50) # top50=p['artist'].tolist() # dataset=pd.DataFrame() # for name,group in pf.groupby(['artist']): # if name in top50: # dataset=pd.concat([dataset,group],axis=0) # dataset=dataset.reset_index() import numpy as np from collections import Counter from sklearn.model_selection import StratifiedShuffleSplit def generate_classdict(label): counter = Counter(label) class_num=len(counter) class_list=list(counter.keys()) #? class_dict={} class_weight={} total = len(label) count=0 for name,num in counter.items(): class_dict[name]=count class_weight[count]=(total/(num*class_num)) count+=1 return class_num,class_list,class_dict,class_weight X=np.array(dataset['filename'].tolist()) y=np.array(dataset['style'].tolist()) Style_class_num,Style_class_list,Style_class_dict,Style_class_weight=generate_classdict(y) y=np.array(dataset['genre'].tolist()) Objtype_class_num,Objtype_class_list,Objtype_class_dict,Objtype_class_weight=generate_classdict(y) # y=np.array(dataset['Creation Date'].tolist()) # CreationDate_class_num,CreationDate_class_list,CreationDate_class_dict,CreationDate_class_weight=generate_classdict(y) y=np.array(dataset['artist'].tolist()) Artist_class_num,Artist_class_list,Artist_class_dict,Artist_class_weight=generate_classdict(y) sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=0) print(sss.get_n_splits(X, y)) train_frame=pd.DataFrame() test_frame=pd.DataFrame() for train_index, test_index in sss.split(X, y): train_frame=dataset.loc[train_index] test_frame=dataset.loc[test_index] from tensorflow.keras.preprocessing.image import load_img, img_to_array from tensorflow.keras.utils import to_categorical import tensorflow as tf import numpy as np path='/content/images/' train_input_shape = (224,224) batch_size=64 imgs_size=(64,224,224,3) Artist_size=(batch_size,Artist_class_num) Style_size=(batch_size,Style_class_num) Objtype_size=(batch_size,Objtype_class_num) # CreationDate_size=(batch_size,CreationDate_class_num) def multi_task_Gen(): iter=train_frame.iterrows() x_array=np.zeros(imgs_size) y1_array=[] y2_array=[] y3_array=[] y4_array=[] count=0 while True: if count>=batch_size: x_array=np.asarray(x_array) y1_array=np.asarray(y1_array) y2_array=np.asarray(y2_array) y3_array=np.asarray(y3_array) # y4_array=np.asarray(y4_array) # print(x_array.shape) # print(y1_array.shape) # print(y2_array.shape) # print(y3_array.shape) # print(np.array([y1_array,y2_array,y3_array]).shape) yield x_array,{'Artist_output':y1_array,'Style_output':y2_array,'Objtype_output':y3_array}#,'CreationDate_output':y4_array count=0 x_array=np.zeros(imgs_size) y1_array=[] y2_array=[] y3_array=[] # y4_array=[] dataframe = next(iter) # print() #print(to_categorical(class_dict[dataframe[1]['Artist']],num_classes=n_class)) x_array[count]=(img_to_array(load_img(path+dataframe[1]['filename'],target_size=train_input_shape))*1./255) #print(count) y1_array.append(to_categorical(Artist_class_dict[dataframe[1]['artist']],num_classes=Artist_class_num)) y2_array.append(to_categorical(Style_class_dict[dataframe[1]['style']],num_classes=Style_class_num)) y3_array.append(to_categorical(Objtype_class_dict[dataframe[1]['genre']],num_classes=Objtype_class_num)) # y4_array.append(to_categorical(CreationDate_class_dict[dataframe[1]['Creation Date']],num_classes=CreationDate_class_num)) #print(dataframe[1]['Style'],'//',dataframe[1]['Object Type']) count+=1 def multi_task_Gen_valid(): iter=test_frame.iterrows() x_array=
np.zeros(imgs_size)
numpy.zeros
import os import numpy as np import tensorflow as tf ################################# detection #################################### def zero_padding(inputs, pad_1, pad_2): pad_mat = np.array([[0, 0], [pad_1, pad_2], [pad_1, pad_2], [0, 0]]) return tf.pad(tensor=inputs, paddings=pad_mat) def conv_bn(inputs, oc, ks, st, scope, training, rate=1): with tf.compat.v1.variable_scope(scope): if st == 1: layer = tf.compat.v1.layers.conv2d( inputs, oc, ks, strides=st, padding='SAME', use_bias=False, dilation_rate=rate, kernel_regularizer=tf.keras.regularizers.l2(0.5 * (1.0)), kernel_initializer=tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform") ) else: pad_total = ks - 1 pad_1 = pad_total // 2 pad_2 = pad_total - pad_1 padded_inputs = zero_padding(inputs, pad_1, pad_2) layer = tf.compat.v1.layers.conv2d( padded_inputs, oc, ks, strides=st, padding='VALID', use_bias=False, dilation_rate=rate, kernel_regularizer=tf.keras.regularizers.l2(0.5 * (1.0)), kernel_initializer=tf.compat.v1.keras.initializers.VarianceScaling(scale=1.0, mode="fan_avg", distribution="uniform") ) layer = tf.compat.v1.layers.batch_normalization(layer, training=training) return layer def conv_bn_relu(inputs, oc, ks, st, scope, training, rate=1): layer = conv_bn(inputs, oc, ks, st, scope, training, rate=rate) layer = tf.nn.relu(layer) return layer def bottleneck(inputs, oc, st, scope, training, rate=1): with tf.compat.v1.variable_scope(scope): ic = inputs.get_shape().as_list()[-1] if ic == oc: if st == 1: shortcut = inputs else: shortcut = \ tf.nn.max_pool2d(inputs, [1, st, st, 1], [1, st, st, 1], 'SAME') else: shortcut = conv_bn(inputs, oc, 1, st, 'shortcut', training) residual = conv_bn_relu(inputs, oc//4, 1, 1, 'conv1', training) residual = conv_bn_relu(residual, oc//4, 3, st, 'conv2', training, rate) residual = conv_bn(residual, oc, 1, 1, 'conv3', training) output = tf.nn.relu(shortcut + residual) return output def resnet50(inputs, scope, training): with tf.compat.v1.variable_scope(scope): layer = conv_bn_relu(inputs, 64, 7, 2, 'conv1', training) with tf.compat.v1.variable_scope('block1'): for unit in range(2): layer = bottleneck(layer, 256, 1, 'unit%d' % (unit+1), training) layer = bottleneck(layer, 256, 2, 'unit3', training) with tf.compat.v1.variable_scope('block2'): for unit in range(4): layer = bottleneck(layer, 512, 1, 'unit%d' % (unit+1), training, 2) with tf.compat.v1.variable_scope('block3'): for unit in range(6): layer = bottleneck(layer, 1024, 1, 'unit%d' % (unit+1), training, 4) layer = conv_bn_relu(layer, 256, 3, 1, 'squeeze', training) return layer def net_2d(features, training, scope, n_out): with tf.compat.v1.variable_scope(scope): layer = conv_bn_relu(features, 256, 3, 1, 'project', training) with tf.compat.v1.variable_scope('prediction'): hmap = tf.compat.v1.layers.conv2d( layer, n_out, 1, strides=1, padding='SAME', activation=tf.nn.sigmoid, kernel_initializer=tf.compat.v1.initializers.truncated_normal(stddev=0.01) ) return hmap def net_3d(features, training, scope, n_out, need_norm): with tf.compat.v1.variable_scope(scope): layer = conv_bn_relu(features, 256, 3, 1, 'project', training) with tf.compat.v1.variable_scope('prediction'): dmap_raw = tf.compat.v1.layers.conv2d( layer, n_out * 3, 1, strides=1, padding='SAME', activation=None, kernel_initializer=tf.compat.v1.initializers.truncated_normal(stddev=0.01) ) if need_norm: dmap_norm = tf.norm(tensor=dmap_raw, axis=-1, keepdims=True) dmap = dmap_raw / tf.maximum(dmap_norm, 1e-6) else: dmap = dmap_raw h, w = features.get_shape().as_list()[1:3] dmap = tf.reshape(dmap, [-1, h, w, n_out, 3]) if need_norm: return dmap, dmap_norm return dmap def tf_hmap_to_uv(hmap): hmap_flat = tf.reshape(hmap, (tf.shape(input=hmap)[0], -1, tf.shape(input=hmap)[3])) argmax = tf.argmax(input=hmap_flat, axis=1, output_type=tf.int32) argmax_x = argmax // tf.shape(input=hmap)[2] argmax_y = argmax % tf.shape(input=hmap)[2] uv = tf.stack((argmax_x, argmax_y), axis=1) uv = tf.transpose(a=uv, perm=[0, 2, 1]) return uv def get_pose_tile(N): pos_tile = tf.tile( tf.constant( np.expand_dims( np.stack( [ np.tile(
np.linspace(-1, 1, 32)
numpy.linspace
"""Tests for :mod:`numpy.core.fromnumeric`.""" import numpy as np A = np.array(True, ndmin=2, dtype=bool) B = np.array(1.0, ndmin=2, dtype=np.float32) A.setflags(write=False) B.setflags(write=False) a = np.bool_(True) b = np.float32(1.0) c = 1.0 np.take(a, 0) np.take(b, 0) np.take(c, 0) np.take(A, 0) np.take(B, 0) np.take(A, [0]) np.take(B, [0]) np.reshape(a, 1)
np.reshape(b, 1)
numpy.reshape
import datetime import mlir import itertools import pytest import numpy as np from mlir_graphblas import MlirJitEngine from mlir_graphblas.engine import parse_mlir_functions from mlir_graphblas.sparse_utils import MLIRSparseTensor from mlir_graphblas.mlir_builder import MLIRFunctionBuilder from mlir_graphblas.types import AliasMap, SparseEncodingType from mlir_graphblas.functions import ConvertLayout from mlir_graphblas.algorithms import ( triangle_count_combined, dense_neural_network_combined, ) from .jit_engine_test_utils import sparsify_array, GRAPHBLAS_PASSES from typing import List, Callable # TODO a lot of these tests take sums or reductions over an scf.for loop by storing into a memref # It's better practice to use as demonstrated # at https://mlir.llvm.org/docs/Dialects/SCFDialect/#scffor-mlirscfforop @pytest.fixture(scope="module") def engine(): jit_engine = MlirJitEngine() jit_engine.add( """ #trait_densify_csr = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, affine_map<(i,j) -> (i,j)> ], iterator_types = ["parallel", "parallel"] } #CSR64 = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(i,j) -> (i,j)>, pointerBitWidth = 64, indexBitWidth = 64 }> func @csr_densify5x5(%argA: tensor<5x5xf64, #CSR64>) -> tensor<5x5xf64> { %output_storage = constant dense<0.0> : tensor<5x5xf64> %0 = linalg.generic #trait_densify_csr ins(%argA: tensor<5x5xf64, #CSR64>) outs(%output_storage: tensor<5x5xf64>) { ^bb(%A: f64, %x: f64): linalg.yield %A : f64 } -> tensor<5x5xf64> return %0 : tensor<5x5xf64> } func @csr_densify8x8(%argA: tensor<8x8xf64, #CSR64>) -> tensor<8x8xf64> { %output_storage = constant dense<0.0> : tensor<8x8xf64> %0 = linalg.generic #trait_densify_csr ins(%argA: tensor<8x8xf64, #CSR64>) outs(%output_storage: tensor<8x8xf64>) { ^bb(%A: f64, %x: f64): linalg.yield %A : f64 } -> tensor<8x8xf64> return %0 : tensor<8x8xf64> } #trait_densify_csc = { indexing_maps = [ affine_map<(i,j) -> (j,i)>, affine_map<(i,j) -> (i,j)> ], iterator_types = ["parallel", "parallel"] } #CSC64 = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(i,j) -> (j,i)>, pointerBitWidth = 64, indexBitWidth = 64 }> func @csc_densify8x8(%argA: tensor<8x8xf64, #CSC64>) -> tensor<8x8xf64> { %output_storage = constant dense<0.0> : tensor<8x8xf64> %0 = linalg.generic #trait_densify_csc ins(%argA: tensor<8x8xf64, #CSC64>) outs(%output_storage: tensor<8x8xf64>) { ^bb(%A: f64, %x: f64): linalg.yield %A : f64 } -> tensor<8x8xf64> return %0 : tensor<8x8xf64> } """, GRAPHBLAS_PASSES, ) return jit_engine @pytest.fixture(scope="module") def aliases() -> AliasMap: csr64 = SparseEncodingType(["dense", "compressed"], [0, 1], 64, 64) csc64 = SparseEncodingType(["dense", "compressed"], [1, 0], 64, 64) aliases = AliasMap() aliases["CSR64"] = csr64 aliases["CSC64"] = csc64 return aliases def test_ir_builder_convert_layout_wrapper(engine: MlirJitEngine, aliases: AliasMap): # Build Function convert_layout_function = ConvertLayout() ir_builder = MLIRFunctionBuilder( "convert_layout_wrapper", input_types=["tensor<?x?xf64, #CSR64>"], return_types=("tensor<?x?xf64, #CSC64>",), aliases=aliases, ) (input_var,) = ir_builder.inputs convert_layout_result = ir_builder.call(convert_layout_function, input_var) ir_builder.return_vars(convert_layout_result) assert ir_builder.get_mlir() # Test Compiled Function convert_layout_wrapper_callable = ir_builder.compile( engine=engine, passes=GRAPHBLAS_PASSES ) indices = np.array( [ [1, 2], [4, 3], ], dtype=np.uint64, ) values = np.array([1.2, 4.3], dtype=np.float64) sizes = np.array([8, 8], dtype=np.uint64) sparsity = np.array([False, True], dtype=np.bool8) input_tensor = MLIRSparseTensor(indices, values, sizes, sparsity) dense_input_tensor = np.zeros([8, 8], dtype=np.float64) dense_input_tensor[1, 2] = 1.2 dense_input_tensor[4, 3] = 4.3 assert np.isclose(dense_input_tensor, engine.csr_densify8x8(input_tensor)).all() output_tensor = convert_layout_wrapper_callable(input_tensor) assert np.isclose(dense_input_tensor, engine.csc_densify8x8(output_tensor)).all() def test_ir_builder_triple_convert_layout(engine: MlirJitEngine, aliases: AliasMap): # Build Function ir_builder = MLIRFunctionBuilder( "triple_convert_layout", input_types=["tensor<?x?xf64, #CSR64>"], return_types=["tensor<?x?xf64, #CSC64>"], aliases=aliases, ) (input_var,) = ir_builder.inputs # Use different instances of Tranpose to ideally get exactly one convert_layout helper in the final MLIR text inter1 = ir_builder.call(ConvertLayout("csc"), input_var) inter2 = ir_builder.call(ConvertLayout("csr"), inter1) return_var = ir_builder.call(ConvertLayout("csc"), inter2) ir_builder.return_vars(return_var) mlir_text = ir_builder.get_mlir_module() ast = parse_mlir_functions(mlir_text, engine._cli) # verify there are exactly two functions functions = [ node for node in engine._walk_module(ast) if isinstance(node, mlir.astnodes.Function) ] triple_convert_func = functions.pop(-1) assert triple_convert_func.visibility == "public" convert_layout_funcs = [ func for func in functions if func.name.value.startswith("convert_layout_to_cs") ] assert len(convert_layout_funcs) == 2 # Test Compiled Function triple_convert_layout_callable = ir_builder.compile( engine=engine, passes=GRAPHBLAS_PASSES ) indices = np.array( [ [1, 2], [4, 3], ], dtype=np.uint64, ) values = np.array([1.2, 4.3], dtype=np.float64) sizes = np.array([8, 8], dtype=np.uint64) sparsity = np.array([False, True], dtype=np.bool8) input_tensor = MLIRSparseTensor(indices, values, sizes, sparsity) dense_input_tensor =
np.zeros([8, 8], dtype=np.float64)
numpy.zeros
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2021 Centre National d'Etudes Spatiales (CNES). # # This file is part of demcompare # (see https://github.com/CNES/demcompare). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module contains functions associated to raster images. """ # Standard imports import copy import logging import os from typing import List, Tuple, Union # Third party imports import numpy as np import pyproj import rasterio import rasterio.crs import rasterio.mask import rasterio.warp import rasterio.windows import xarray as xr from astropy import units as u from rasterio import Affine from rasterio.warp import Resampling, reproject from scipy import interpolate from scipy.ndimage import filters def read_image(path: str, band: int = 1) -> np.ndarray: """ Read image as array :param path: path :param band: numero of band to extract :return: band array """ img_ds = rasterio.open(path) data = img_ds.read(band) return data def pix_to_coord( transform_array: Union[List, np.ndarray], row: Union[int, np.ndarray], col: Union[List, np.ndarray], ) -> Union[Tuple[Tuple[np.ndarray, np.ndarray], float, float]]: """ Transform pixels to coordinates :param transform_array: Transform :param row: row :param col: column :return: x,y """ transform = Affine.from_gdal( transform_array[0], transform_array[1], transform_array[2], transform_array[3], transform_array[4], transform_array[5], ) x, y = rasterio.transform.xy(transform, row, col, offset="center") if not isinstance(x, int): x = np.array(x) y = np.array(y) return x, y def reproject_dataset( dataset: xr.Dataset, from_dataset: xr.Dataset, interp: str = "bilinear" ) -> xr.Dataset: """ Reproject dataset, and return the corresponding xarray.DataSet :param dataset: Dataset to reproject :param from_dataset: Dataset to get projection from :param interp: interpolation method :return: reprojected dataset """ # Copy dataset reprojected_dataset = copy.copy(from_dataset) interpolation_method = Resampling.bilinear if interp == "bilinear": interpolation_method = Resampling.bilinear elif interp == "nearest": interpolation_method = Resampling.nearest else: logging.warning( "Interpolation method not available, use default 'bilinear'" ) src_transform = Affine.from_gdal( dataset["trans"].data[0], dataset["trans"].data[1], dataset["trans"].data[2], dataset["trans"].data[3], dataset["trans"].data[4], dataset["trans"].data[5], ) dst_transform = Affine.from_gdal( from_dataset["trans"].data[0], from_dataset["trans"].data[1], from_dataset["trans"].data[2], from_dataset["trans"].data[3], from_dataset["trans"].data[4], from_dataset["trans"].data[5], ) source_array = dataset["im"].data dest_array = np.zeros_like(from_dataset["im"].data) dest_array[:, :] = -9999 src_crs = rasterio.crs.CRS.from_dict(dataset.attrs["georef"]) dst_crs = rasterio.crs.CRS.from_dict(from_dataset.attrs["georef"]) # reproject reproject( source=source_array, destination=dest_array, src_transform=src_transform, src_crs=src_crs, dst_transform=dst_transform, dst_crs=dst_crs, resampling=interpolation_method, src_nodata=dataset.attrs["no_data"], dst_nodata=-9999, ) # change output dataset dest_array[dest_array == -9999] = np.nan reprojected_dataset["im"].data = dest_array reprojected_dataset.attrs["no_data"] = dataset.attrs["no_data"] return reprojected_dataset def read_img( img: str, no_data: float = None, ref: str = "WGS84", geoid_path: Union[str, None] = None, zunit: str = "m", load_data: bool = False, ) -> xr.Dataset: """ Read image and transform and return the corresponding xarray.DataSet :param img: Path to the image :param no_data: no_data value in the image :param ref: WGS84 or geoid :param geoid_path: optional, path to local geoid :param zunit: unit :param load_data: load as dem :return: dataset containing the variables : - im : 2D (row, col) xarray.DataArray float32 - trans 1D xarray.DataArray float32 """ img_ds = rasterio.open(img) data = img_ds.read(1) transform = img_ds.transform dataset = create_dataset( data, transform, img, no_data=no_data, ref=ref, geoid_path=geoid_path, zunit=zunit, load_data=load_data, ) return dataset def create_dataset( data: np.ndarray, transform: np.ndarray, img: str, no_data: float = None, ref: str = "WGS84", geoid_path: Union[str, None] = None, zunit: str = "m", load_data: bool = False, ) -> xr.Dataset: """ Create dataset from array and transform, and return the corresponding xarray.DataSet :param data: image data :param transform: image data :param img: image path :param no_data: no_data value in the image :param ref: WGS84 or geoid :param geoid_path: optional path to local geoid, default is EGM96 :param zunit: unit :param load_data: load as dem :return: xarray.DataSet containing the variables : - im : 2D (row, col) xarray.DataArray float32 """ img_ds = rasterio.open(img) georef = img_ds.crs # Manage nodata if no_data is None: meta_nodata = img_ds.nodatavals[0] if meta_nodata is not None: no_data = meta_nodata else: no_data = -9999 if len(data.shape) == 3: # to dim 2 dim_single = np.where(data.shape) == 1 if dim_single == 0: data = data[0, :, :] if dim_single == 2: data = data[:, :, 0] data = data.astype(np.float32) data[data == no_data] = np.nan # convert to meter data = ((data * u.Unit(zunit)).to(u.meter)).value new_zunit = u.meter dataset = xr.Dataset( {"im": (["row", "col"], data.astype(np.float32))}, coords={ "row": np.arange(data.shape[0]), "col": np.arange(data.shape[1]), }, ) transform = np.array(transform.to_gdal()) # Add transform trans_len = np.arange(0, len(transform)) dataset.coords["trans_len"] = trans_len dataset["trans"] = xr.DataArray(data=transform, dims=["trans_len"]) # get plani unit if georef.is_geographic: plani_unit = u.deg else: plani_unit = u.m # Add image conf to the image dataset # Add resolution, and units dataset.attrs = { "no_data": no_data, "input_img": img, "georef": georef, "xres": transform[1], "yres": transform[5], "plani_unit": plani_unit, "zunit": new_zunit, } if load_data is not False: if ref == "geoid": # transform to ellipsoid geoid_offset = get_geoid_offset(dataset, geoid_path) dataset["im"].data += geoid_offset return dataset def read_img_from_array( img_array: np.ndarray, from_dataset: xr.Dataset = None, no_data: float = None, ) -> xr.Dataset: """ Read image, and return the corresponding xarray.DataSet. If from_dataset is None defaults attributes are set. :param img_array: array :param no_data: no_data value in the image :param from_dataset: dataset to copy :return: xarray.DataSet containing the variables : - im : 2D (row, col) xarray.DataArray float32 """ data = np.copy(img_array) # Manage nodata if no_data is None: no_data = -9999 data[data == no_data] = np.nan if from_dataset is None: dataset = xr.Dataset( {"im": (["row", "col"], data.astype(np.float32))}, coords={ "row": np.arange(data.shape[0]), "col": np.arange(data.shape[1]), }, ) # add random resolution dataset.attrs["xres"] = 1 dataset.attrs["yres"] = 1 # add nodata dataset.attrs["no_data"] = no_data else: dataset = copy.deepcopy(from_dataset) dataset["im"] = None dataset.coords["row"] = np.arange(data.shape[0]) dataset.coords["col"] = np.arange(data.shape[1]) dataset["im"] = xr.DataArray( data=data.astype(np.float32), dims=["row", "col"] ) return dataset def load_dems( ref_path: str, dem_path: str, ref_nodata: float = None, dem_nodata: float = None, ref_georef: str = "WGS84", dem_georef: str = "WGS84", ref_geoid_path: Union[str, None] = None, dem_geoid_path: Union[str, None] = None, ref_zunit: str = "m", dem_zunit: str = "m", load_data: Union[bool, dict, Tuple] = True, ) -> Tuple[xr.Dataset, xr.Dataset]: """ Loads both DEMs :param ref_path: path to ref dem :param dem_path:path to sec dem :param ref_nodata: ref no data value (None by default and if set inside metadata) :param dem_nodata: dem no data value (None by default and if set inside metadata) :param ref_georef: ref georef (either WGS84 -default- or geoid) :param dem_georef: dem georef (either WGS84 -default- or geoid) :param ref_geoid_path: optional path to local geoid, default is EGM96 :param dem_geoid_path: optional path to local geoid, default is EGM96 :param ref_zunit: ref z unit :param dem_zunit: dem z unit :param load_data: True if dem are to be fully loaded, other options are False or a dict roi :return: ref and dem datasets """ # Get roi of dem src_dem = rasterio.open(dem_path) dem_crs = src_dem.crs dem_trans = src_dem.transform bounds_dem = src_dem.bounds if load_data is not True: # Use ROI if isinstance(load_data, (tuple, list)): bounds_dem = load_data elif isinstance(load_data, dict): if ( "left" in load_data and "bottom" in load_data and "right" in load_data and "top" in load_data ): # coordinates bounds_dem = ( load_data["left"], load_data["bottom"], load_data["right"], load_data["top"], ) elif ( "x" in load_data and "y" in load_data and "w" in load_data and "h" in load_data ): # coordinates window_dem = rasterio.windows.Window( load_data["x"], load_data["y"], load_data["w"], load_data["h"], ) bounds_dem = rasterio.windows.bounds(window_dem, dem_trans) print(bounds_dem) else: print("Not he right conventions for ROI") # Get roi of ref src_ref = rasterio.open(ref_path) ref_crs = src_ref.crs bounds_ref = src_ref.bounds transformed_ref_bounds = rasterio.warp.transform_bounds( ref_crs, dem_crs, bounds_ref[0], bounds_ref[1], bounds_ref[2], bounds_ref[3], ) # intersect roi if rasterio.coords.disjoint_bounds(bounds_dem, transformed_ref_bounds): raise NameError("ERROR: ROIs do not intersect") intersection_roi = ( max(bounds_dem[0], transformed_ref_bounds[0]), max(bounds_dem[1], transformed_ref_bounds[1]), min(bounds_dem[2], transformed_ref_bounds[2]), min(bounds_dem[3], transformed_ref_bounds[3]), ) # get crop polygon_roi = bounding_box_to_polygon( intersection_roi[0], intersection_roi[1], intersection_roi[2], intersection_roi[3], ) geom_like_polygon = {"type": "Polygon", "coordinates": [polygon_roi]} # crop dem new_cropped_dem, new_cropped_dem_transform = rasterio.mask.mask( src_dem, [geom_like_polygon], all_touched=True, crop=True ) # create datasets dem = create_dataset( new_cropped_dem, new_cropped_dem_transform, dem_path, no_data=dem_nodata, ref=dem_georef, geoid_path=dem_geoid_path, zunit=dem_zunit, load_data=load_data, ) # full_ref represent a dataset with the full image full_ref = create_dataset( src_ref.read(1), src_ref.transform, ref_path, no_data=ref_nodata, ref=ref_georef, geoid_path=ref_geoid_path, zunit=ref_zunit, load_data=load_data, ) # reproject, crop, resample ref = reproject_dataset(full_ref, dem, interp="bilinear") # update dataset input_img with ref old value ref.attrs["input_img"] = full_ref.attrs["input_img"] return ref, dem def bounding_box_to_polygon( left: float, bottom: float, right: float, top: float ) -> List[List[float]]: """ Transform bounding box to polygon :param left: left bound :param bottom: bottom bound :param right: right bound :param top: top bound :return: polygon """ polygon = [ [left, bottom], [right, bottom], [right, top], [left, top], [left, bottom], ] return polygon def translate( dataset: xr.Dataset, x_offset: float, y_offset: float ) -> xr.Dataset: """ Modify transform from dataset :param dataset: :param x_offset: x offset :param y_offset: y offset :return translated dataset """ dataset_translated = copy.copy(dataset) x_off, y_off = pix_to_coord(dataset["trans"].data, y_offset, x_offset) dataset_translated["trans"].data[0] = x_off dataset_translated["trans"].data[3] = y_off return dataset_translated def translate_to_coregistered_geometry( dem1: xr.Dataset, dem2: xr.Dataset, dx: int, dy: int, interpolator: str = "bilinear", ) -> Tuple[xr.Dataset, xr.Dataset]: """ Translate both DSMs to their coregistered geometry. Note that : a) The dem2 georef is assumed to be the reference b) The dem2 shall be the one resampled as it supposedly is the cleaner one. Hence, dem1 is only cropped, dem2 is the only one that might be resampled. However, as dem2 is the ref, dem1 georef is translated to dem2 georef. :param dem1: dataset, master dem :param dem2: dataset, slave dem :param dx: f, dx value in pixels :param dy: f, dy value in pixels :param interpolator: gdal interpolator :return: coregistered DEM as datasets """ # # Translate the georef of dem1 based on dx and dy values # -> this makes dem1 coregistered on dem2 # # note the -0.5 since the (0,0) pixel coord is pixel centered dem1 = translate(dem1, dx - 0.5, dy - 0.5) # # Intersect and reproject both dsms. # -> intersect them to the biggest common grid # now that they have been shifted # -> dem1 is then cropped with intersect so that it lies within intersect # but is not resampled in the process # -> reproject dem2 to dem1 grid, # the intersection grid sampled on dem1 grid # transform_dem1 = Affine.from_gdal( dem1["trans"].data[0], dem1["trans"].data[1], dem1["trans"].data[2], dem1["trans"].data[3], dem1["trans"].data[4], dem1["trans"].data[5], ) bounds_dem1 = rasterio.transform.array_bounds( dem1["im"].data.shape[1], dem1["im"].data.shape[0], transform_dem1 ) transform_dem2 = Affine.from_gdal( dem2["trans"].data[0], dem2["trans"].data[1], dem2["trans"].data[2], dem2["trans"].data[3], dem2["trans"].data[4], dem2["trans"].data[5], ) bounds_dem2 = rasterio.transform.array_bounds( dem2["im"].data.shape[1], dem2["im"].data.shape[0], transform_dem2 ) intersection_roi = ( max(bounds_dem1[0], bounds_dem2[0]), max(bounds_dem1[1], bounds_dem2[1]), min(bounds_dem1[2], bounds_dem2[2]), min(bounds_dem1[3], bounds_dem2[3]), ) # get crop polygon_roi = bounding_box_to_polygon( intersection_roi[0], intersection_roi[1], intersection_roi[2], intersection_roi[3], ) geom_like_polygon = {"type": "Polygon", "coordinates": [polygon_roi]} # crop dem srs_dem1 = rasterio.open( " ", mode="w+", driver="GTiff", width=dem1["im"].data.shape[1], height=dem1["im"].data.shape[0], count=1, dtype=dem1["im"].data.dtype, crs=dem1.attrs["georef"], transform=transform_dem1, ) srs_dem1.write(dem1["im"].data, 1) new_cropped_dem1, new_cropped_dem1_transform = rasterio.mask.mask( srs_dem1, [geom_like_polygon], all_touched=True, crop=True ) # create datasets reproj_dem1 = copy.copy(dem1) reproj_dem1["trans"].data = np.array(new_cropped_dem1_transform.to_gdal()) reproj_dem1 = read_img_from_array( new_cropped_dem1[0, :, :], from_dataset=reproj_dem1, no_data=dem1.attrs["no_data"], ) # reproject, crop, resample reproj_dem2 = reproject_dataset(dem2, reproj_dem1, interp=interpolator) return reproj_dem1, reproj_dem2 def save_tif( dataset: xr.Dataset, filename: str, new_array=None, no_data: float = -32768 ) -> xr.Dataset: """ Write a Dataset in a tiff file. If new_array is set, new_array is used as data. :param dataset: dataset :param filename: output filename :param new_array: new array to write :param no_data: value of nodata to use :return: dataset """ # update from dataset previous_profile = {} previous_profile["crs"] = rasterio.crs.CRS.from_dict( dataset.attrs["georef"] ) previous_profile["transform"] = Affine.from_gdal( dataset["trans"].data[0], dataset["trans"].data[1], dataset["trans"].data[2], dataset["trans"].data[3], dataset["trans"].data[4], dataset["trans"].data[5], ) data = dataset["im"].data if new_array is not None: data = new_array if len(dataset["im"].shape) == 2: row, col = data.shape with rasterio.open( filename, mode="w+", driver="GTiff", width=col, height=row, count=1, dtype=data.dtype, crs=previous_profile["crs"], transform=previous_profile["transform"], ) as source_ds: source_ds.nodata = no_data source_ds.write(data, 1) else: row, col, depth = data.shape with rasterio.open( filename, mode="w+", driver="GTiff", width=col, height=row, count=depth, dtype=data.dtype, crs=previous_profile["crs"], transform=previous_profile["transform"], ) as source_ds: for dsp in range(1, depth + 1): source_ds.write(data[:, :, dsp - 1], dsp) new_dataset = copy.deepcopy(dataset) # update dataset input_img with new filename new_dataset.attrs["input_img"] = filename return new_dataset def get_slope(dataset: xr.Dataset, degree: bool = False) -> np.ndarray: """ Compute slope from dataset Slope is presented here : http://pro.arcgis.com/ \ fr/pro-app/tool-reference/spatial-analyst/how-aspect-works.htm :param dataset: dataset :param degree: True if is in degree :return: slope """ def get_orthodromic_distance( lon1: float, lat1: float, lon2: float, lat2: float ): """ Get Orthodromic distance from two (lat,lon) coordinates :param lon1: :param lat1: :param lon2: :param lat2: :return: orthodromic distance """ # WGS-84 equatorial radius in km radius_equator = 6378137.0 return radius_equator * np.arccos( np.cos(lat1 * np.pi / 180) * np.cos(lat2 * np.pi / 180) * np.cos((lon2 - lon1) * np.pi / 180) + np.sin(lat1 * np.pi / 180) * np.sin(lat2 * np.pi / 180) ) crs = rasterio.crs.CRS.from_dict(dataset.attrs["georef"]) if not crs.is_projected: # Our dem is not projected, we can't simply use the pixel resolution # -> we need to compute resolution between each point ny, nx = dataset["im"].data.shape xp = np.arange(nx) yp = np.arange(ny) xp, yp = np.meshgrid(xp, yp) lon, lat = pix_to_coord(dataset["trans"].data, yp, xp) lonr = np.roll(lon, 1, 1) latl = np.roll(lat, 1, 0) distx = get_orthodromic_distance(lon, lat, lonr, lat) disty = get_orthodromic_distance(lon, lat, lon, latl) # deal withs ingularities at edges distx[:, 0] = distx[:, 1] disty[0] = disty[1] else: distx = np.abs(dataset.attrs["xres"]) disty = np.abs(dataset.attrs["yres"]) conv_x = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) conv_y = conv_x.transpose() # Now we do the convolutions : gx = filters.convolve(dataset["im"].data, conv_x, mode="reflect") gy = filters.convolve(dataset["im"].data, conv_y, mode="reflect") # And eventually we do compute tan(slope) and aspect tan_slope = np.sqrt((gx / distx) ** 2 + (gy / disty) ** 2) / 8 slope = np.arctan(tan_slope) # Just simple unit change as required if degree is False: slope *= 100 else: slope = (slope * 180) / np.pi return slope def interpolate_geoid( geoid_filename: str, coords: np.ndarray, interpol_method: str = "linear" ) -> np.ndarray: """ Bilinear interpolation of geoid :param geoid_filename : coord geoid_filename :param coords : coords matrix 2xN [lon,lat] :param interpol_method : interpolation type :return interpolated position : [lon,lat,estimate geoid] (3D np.array) """ dataset = rasterio.open(geoid_filename) transform = dataset.transform step_x = transform[0] # ascending step_y = -transform[4] # 0 or 0.5 # coin BG [ori_x, ori_y] = transform * ( 0.5, dataset.height - 0.5, ) # positions au centre pixel last_x = ori_x + step_x * dataset.width last_y = ori_y + step_y * dataset.height # transform dep to positions geoid_values = dataset.read(1)[::-1, :].transpose() x = np.arange(ori_x, last_x, step_x) # lat must be in ascending order, y = np.arange(ori_y, last_y, step_y) geoid_grid_coordinates = (x, y) interp_geoid = interpolate.interpn( geoid_grid_coordinates, geoid_values, coords, method=interpol_method, bounds_error=False, fill_value=None, ) return interp_geoid def get_geoid_offset( dataset: xr.Dataset, geoid_path: Union[str, None] ) -> np.ndarray: """ Get offset from geoid to ellipsoid :param dataset : dataset :param geoid_path : optional absolut geoid_path, if None egm96 is used :return offset as array """ # If no geoid path has been given, use the default geoid egm96 # installed in setup.py if geoid_path is None: # this returns the fully resolved path to the python installed module module_path = os.path.dirname(__file__) # Geoid relative Path as installed in setup.py geoid_path = "geoid/egm96_15.gtx" # Create full geoid path geoid_path = os.path.join(module_path, geoid_path) ny, nx = dataset["im"].data.shape xp = np.arange(nx) yp = np.arange(ny) # xp in [-180, 180], yp in [-90, 90] xp[xp > 180] = xp[xp > 180] - 360 xp[xp < 180] = xp[xp < 180] + 360 yp[yp > 90] = yp[yp > 90] - 180 yp[yp < 90] = yp[yp < 90] + 180 xp, yp = np.meshgrid(xp, yp) lon, lat = pix_to_coord(dataset["trans"].data, yp, xp) src_crs = rasterio.crs.CRS.from_dict(dataset.attrs["georef"]) if src_crs.is_projected: # convert to global coordinates proj = pyproj.Proj(src_crs) lon, lat = proj(lon, lat, inverse=True) # transform to list (2xN) lon_1d = np.reshape( lon, (dataset["im"].data.shape[0] * dataset["im"].data.shape[1]) ) lat_1d = np.reshape( lat, (dataset["im"].data.shape[0] * dataset["im"].data.shape[1]) ) coords =
np.zeros((lon_1d.size, 2))
numpy.zeros
import sys import warnings import itertools import platform import pytest from decimal import Decimal import numpy as np from numpy.core import umath from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_equal, assert_raises, assert_raises_regex, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_warns, HAS_REFCOUNT ) class TestResize(object): def test_copies(self): A = np.array([[1, 2], [3, 4]]) Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) assert_equal(np.resize(A, (2, 4)), Ar1) Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) assert_equal(np.resize(A, (4, 2)), Ar2) Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]]) assert_equal(np.resize(A, (4, 3)), Ar3) def test_zeroresize(self): A = np.array([[1, 2], [3, 4]]) Ar = np.resize(A, (0,)) assert_array_equal(Ar, np.array([])) assert_equal(A.dtype, Ar.dtype) Ar = np.resize(A, (0, 2)) assert_equal(Ar.shape, (0, 2)) Ar = np.resize(A, (2, 0)) assert_equal(Ar.shape, (2, 0)) def test_reshape_from_zero(self): # See also gh-6740 A = np.zeros(0, dtype=[('a', np.float32)]) Ar = np.resize(A, (2, 1)) assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype)) assert_equal(A.dtype, Ar.dtype) class TestNonarrayArgs(object): # check that non-array arguments to functions wrap them in arrays def test_choose(self): choices = [[0, 1, 2], [3, 4, 5], [5, 6, 7]] tgt = [5, 1, 5] a = [2, 0, 1] out = np.choose(a, choices) assert_equal(out, tgt) def test_clip(self): arr = [-1, 5, 2, 3, 10, -4, -9] out = np.clip(arr, 2, 7) tgt = [2, 5, 2, 3, 7, 2, 2] assert_equal(out, tgt) def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt) def test_count_nonzero(self): arr = [[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]] tgt = np.array([2, 3]) out = np.count_nonzero(arr, axis=1) assert_equal(out, tgt) def test_cumproduct(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.all(np.cumproduct(A) == np.array([1, 2, 6, 24, 120, 720]))) def test_diagonal(self): a = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] out = np.diagonal(a) tgt = [0, 5, 10] assert_equal(out, tgt) def test_mean(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.mean(A) == 3.5) assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5]))) assert_(np.all(np.mean(A, 1) == np.array([2., 5.]))) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.mean([]))) assert_(w[0].category is RuntimeWarning) def test_ptp(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.ptp(a, axis=0), 15.0) def test_prod(self): arr = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] tgt = [24, 1890, 600] assert_equal(np.prod(arr, axis=-1), tgt) def test_ravel(self): a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] assert_equal(np.ravel(a), tgt) def test_repeat(self): a = [1, 2, 3] tgt = [1, 1, 2, 2, 3, 3] out = np.repeat(a, 2) assert_equal(out, tgt) def test_reshape(self): arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(np.reshape(arr, (2, 6)), tgt) def test_round(self): arr = [1.56, 72.54, 6.35, 3.25] tgt = [1.6, 72.5, 6.4, 3.2] assert_equal(np.around(arr, decimals=1), tgt) def test_searchsorted(self): arr = [-8, -5, -1, 3, 6, 10] out = np.searchsorted(arr, 0) assert_equal(out, 3) def test_size(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.size(A) == 6) assert_(np.size(A, 0) == 2) assert_(np.size(A, 1) == 3) def test_squeeze(self): A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]] assert_equal(np.squeeze(A).shape, (3, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3)) def test_std(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.std(A), 1.707825127659933) assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5])) assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.std([]))) assert_(w[0].category is RuntimeWarning) def test_swapaxes(self): tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]] a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] out = np.swapaxes(a, 0, 2) assert_equal(out, tgt) def test_sum(self): m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] tgt = [[6], [15], [24]] out = np.sum(m, axis=1, keepdims=True) assert_equal(tgt, out) def test_take(self): tgt = [2, 3, 5] indices = [1, 2, 4] a = [1, 2, 3, 4, 5] out = np.take(a, indices) assert_equal(out, tgt) def test_trace(self): c = [[1, 2], [3, 4], [5, 6]] assert_equal(np.trace(c), 5) def test_transpose(self): arr = [[1, 2], [3, 4], [5, 6]] tgt = [[1, 3, 5], [2, 4, 6]] assert_equal(np.transpose(arr, (1, 0)), tgt) def test_var(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.var(A), 2.9166666666666665) assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25])) assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.var([]))) assert_(w[0].category is RuntimeWarning) B = np.array([None, 0]) B[0] = 1j assert_almost_equal(np.var(B), 0.25) class TestIsscalar(object): def test_isscalar(self): assert_(np.isscalar(3.1)) assert_(np.isscalar(np.int16(12345))) assert_(np.isscalar(False)) assert_(np.isscalar('numpy')) assert_(not np.isscalar([3.1])) assert_(not np.isscalar(None)) # PEP 3141 from fractions import Fraction assert_(np.isscalar(Fraction(5, 17))) from numbers import Number assert_(np.isscalar(Number())) class TestBoolScalar(object): def test_logical(self): f = np.False_ t = np.True_ s = "xyz" assert_((t and s) is s) assert_((f and s) is f) def test_bitwise_or(self): f = np.False_ t = np.True_ assert_((t | t) is t) assert_((f | t) is t) assert_((t | f) is t) assert_((f | f) is f) def test_bitwise_and(self): f = np.False_ t = np.True_ assert_((t & t) is t) assert_((f & t) is f) assert_((t & f) is f) assert_((f & f) is f) def test_bitwise_xor(self): f = np.False_ t = np.True_ assert_((t ^ t) is f) assert_((f ^ t) is t) assert_((t ^ f) is t) assert_((f ^ f) is f) class TestBoolArray(object): def setup(self): # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False def test_all_any(self): assert_(self.t.all()) assert_(self.t.any()) assert_(not self.f.all()) assert_(not self.f.any()) assert_(self.nm.any()) assert_(self.im.any()) assert_(not self.nm.all()) assert_(not self.im.all()) # check bad element in all positions for i in range(256 - 7): d = np.array([False] * 256, dtype=bool)[7::] d[i] = True assert_(np.any(d)) e = np.array([True] * 256, dtype=bool)[7::] e[i] = False assert_(not np.all(e)) assert_array_equal(e, ~d) # big array test for blocked libc loops for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: d = np.array([False] * 100043, dtype=bool) d[i] = True assert_(np.any(d), msg="%r" % i) e = np.array([True] * 100043, dtype=bool) e[i] = False assert_(not np.all(e), msg="%r" % i) def test_logical_not_abs(self): assert_array_equal(~self.t, self.f) assert_array_equal(np.abs(~self.t), self.f) assert_array_equal(np.abs(~self.f), self.t) assert_array_equal(np.abs(self.f), self.f) assert_array_equal(~np.abs(self.f), self.t) assert_array_equal(~np.abs(self.t), self.f) assert_array_equal(np.abs(~self.nm), self.im) np.logical_not(self.t, out=self.o) assert_array_equal(self.o, self.f) np.abs(self.t, out=self.o) assert_array_equal(self.o, self.t) def test_logical_and_or_xor(self): assert_array_equal(self.t | self.t, self.t) assert_array_equal(self.f | self.f, self.f) assert_array_equal(self.t | self.f, self.t) assert_array_equal(self.f | self.t, self.t) np.logical_or(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t & self.t, self.t) assert_array_equal(self.f & self.f, self.f) assert_array_equal(self.t & self.f, self.f) assert_array_equal(self.f & self.t, self.f) np.logical_and(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t ^ self.t, self.f) assert_array_equal(self.f ^ self.f, self.f) assert_array_equal(self.t ^ self.f, self.t) assert_array_equal(self.f ^ self.t, self.t) np.logical_xor(self.t, self.t, out=self.o) assert_array_equal(self.o, self.f) assert_array_equal(self.nm & self.t, self.nm) assert_array_equal(self.im & self.f, False) assert_array_equal(self.nm & True, self.nm) assert_array_equal(self.im & False, self.f) assert_array_equal(self.nm | self.t, self.t) assert_array_equal(self.im | self.f, self.im) assert_array_equal(self.nm | True, self.t) assert_array_equal(self.im | False, self.im) assert_array_equal(self.nm ^ self.t, self.im) assert_array_equal(self.im ^ self.f, self.im) assert_array_equal(self.nm ^ True, self.im) assert_array_equal(self.im ^ False, self.im) class TestBoolCmp(object): def setup(self): self.f = np.ones(256, dtype=np.float32) self.ef = np.ones(self.f.size, dtype=bool) self.d = np.ones(128, dtype=np.float64) self.ed = np.ones(self.d.size, dtype=bool) # generate values for all permutation of 256bit simd vectors s = 0 for i in range(32): self.f[s:s+8] = [i & 2**x for x in range(8)] self.ef[s:s+8] = [(i & 2**x) != 0 for x in range(8)] s += 8 s = 0 for i in range(16): self.d[s:s+4] = [i & 2**x for x in range(4)] self.ed[s:s+4] = [(i & 2**x) != 0 for x in range(4)] s += 4 self.nf = self.f.copy() self.nd = self.d.copy() self.nf[self.ef] = np.nan self.nd[self.ed] = np.nan self.inff = self.f.copy() self.infd = self.d.copy() self.inff[::3][self.ef[::3]] = np.inf self.infd[::3][self.ed[::3]] = np.inf self.inff[1::3][self.ef[1::3]] = -np.inf self.infd[1::3][self.ed[1::3]] = -np.inf self.inff[2::3][self.ef[2::3]] = np.nan self.infd[2::3][self.ed[2::3]] = np.nan self.efnonan = self.ef.copy() self.efnonan[2::3] = False self.ednonan = self.ed.copy() self.ednonan[2::3] = False self.signf = self.f.copy() self.signd = self.d.copy() self.signf[self.ef] *= -1. self.signd[self.ed] *= -1. self.signf[1::6][self.ef[1::6]] = -np.inf self.signd[1::6][self.ed[1::6]] = -np.inf self.signf[3::6][self.ef[3::6]] = -np.nan self.signd[3::6][self.ed[3::6]] = -np.nan self.signf[4::6][self.ef[4::6]] = -0. self.signd[4::6][self.ed[4::6]] = -0. def test_float(self): # offset for alignment test for i in range(4): assert_array_equal(self.f[i:] > 0, self.ef[i:]) assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:]) assert_array_equal(self.f[i:] == 0, ~self.ef[i:]) assert_array_equal(-self.f[i:] < 0, self.ef[i:]) assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:]) r = self.f[i:] != 0 assert_array_equal(r, self.ef[i:]) r2 = self.f[i:] != np.zeros_like(self.f[i:]) r3 = 0 != self.f[i:] assert_array_equal(r, r2) assert_array_equal(r, r3) # check bool == 0x1 assert_array_equal(r.view(np.int8), r.astype(np.int8)) assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) # isnan on amd64 takes the same code path assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:]) assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:]) assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:]) assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:]) assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:]) def test_double(self): # offset for alignment test for i in range(2): assert_array_equal(self.d[i:] > 0, self.ed[i:]) assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:]) assert_array_equal(self.d[i:] == 0, ~self.ed[i:]) assert_array_equal(-self.d[i:] < 0, self.ed[i:]) assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:]) r = self.d[i:] != 0 assert_array_equal(r, self.ed[i:]) r2 = self.d[i:] != np.zeros_like(self.d[i:]) r3 = 0 != self.d[i:] assert_array_equal(r, r2) assert_array_equal(r, r3) # check bool == 0x1 assert_array_equal(r.view(np.int8), r.astype(np.int8)) assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) # isnan on amd64 takes the same code path assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:]) assert_array_equal(np.isfinite(self.nd[i:]), ~self.ed[i:]) assert_array_equal(np.isfinite(self.infd[i:]), ~self.ed[i:]) assert_array_equal(np.isinf(self.infd[i:]), self.ednonan[i:]) assert_array_equal(np.signbit(self.signd[i:]), self.ed[i:]) class TestSeterr(object): def test_default(self): err = np.geterr() assert_equal(err, dict(divide='warn', invalid='warn', over='warn', under='ignore') ) def test_set(self): with np.errstate(): err = np.seterr() old = np.seterr(divide='print') assert_(err == old) new = np.seterr() assert_(new['divide'] == 'print') np.seterr(over='raise') assert_(np.geterr()['over'] == 'raise') assert_(new['divide'] == 'print') np.seterr(**old) assert_(np.geterr() == old) @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.") def test_divide_err(self): with np.errstate(divide='raise'): with assert_raises(FloatingPointError): np.array([1.]) / np.array([0.]) np.seterr(divide='ignore') np.array([1.]) / np.array([0.]) def test_errobj(self): olderrobj = np.geterrobj() self.called = 0 try: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(divide='warn'): np.seterrobj([20000, 1, None]) np.array([1.]) / np.array([0.]) assert_equal(len(w), 1) def log_err(*args): self.called += 1 extobj_err = args assert_(len(extobj_err) == 2) assert_("divide" in extobj_err[0]) with np.errstate(divide='ignore'): np.seterrobj([20000, 3, log_err]) np.array([1.]) / np.array([0.]) assert_equal(self.called, 1) np.seterrobj(olderrobj) with np.errstate(divide='ignore'): np.divide(1., 0., extobj=[20000, 3, log_err]) assert_equal(self.called, 2) finally: np.seterrobj(olderrobj) del self.called def test_errobj_noerrmask(self): # errmask = 0 has a special code path for the default olderrobj = np.geterrobj() try: # set errobj to something non default np.seterrobj([umath.UFUNC_BUFSIZE_DEFAULT, umath.ERR_DEFAULT + 1, None]) # call a ufunc np.isnan(np.array([6])) # same with the default, lots of times to get rid of possible # pre-existing stack in the code for i in range(10000): np.seterrobj([umath.UFUNC_BUFSIZE_DEFAULT, umath.ERR_DEFAULT, None]) np.isnan(np.array([6])) finally: np.seterrobj(olderrobj) class TestFloatExceptions(object): def assert_raises_fpe(self, fpeerr, flop, x, y): ftype = type(x) try: flop(x, y) assert_(False, "Type %s did not raise fpe error '%s'." % (ftype, fpeerr)) except FloatingPointError as exc: assert_(str(exc).find(fpeerr) >= 0, "Type %s raised wrong fpe error '%s'." % (ftype, exc)) def assert_op_raises_fpe(self, fpeerr, flop, sc1, sc2): # Check that fpe exception is raised. # # Given a floating operation `flop` and two scalar values, check that # the operation raises the floating point exception specified by # `fpeerr`. Tests all variants with 0-d array scalars as well. self.assert_raises_fpe(fpeerr, flop, sc1, sc2) self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2) self.assert_raises_fpe(fpeerr, flop, sc1, sc2[()]) self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2[()]) def test_floating_exceptions(self): # Test basic arithmetic function errors with np.errstate(all='raise'): # Test for all real and complex float types for typecode in np.typecodes['AllFloat']: ftype = np.obj2sctype(typecode) if np.dtype(ftype).kind == 'f': # Get some extreme values for the type fi = np.finfo(ftype) ft_tiny = fi.tiny ft_max = fi.max ft_eps = fi.eps underflow = 'underflow' divbyzero = 'divide by zero' else: # 'c', complex, corresponding real dtype rtype = type(ftype(0).real) fi = np.finfo(rtype) ft_tiny = ftype(fi.tiny) ft_max = ftype(fi.max) ft_eps = ftype(fi.eps) # The complex types raise different exceptions underflow = '' divbyzero = '' overflow = 'overflow' invalid = 'invalid' self.assert_raises_fpe(underflow, lambda a, b: a/b, ft_tiny, ft_max) self.assert_raises_fpe(underflow, lambda a, b: a*b, ft_tiny, ft_tiny) self.assert_raises_fpe(overflow, lambda a, b: a*b, ft_max, ftype(2)) self.assert_raises_fpe(overflow, lambda a, b: a/b, ft_max, ftype(0.5)) self.assert_raises_fpe(overflow, lambda a, b: a+b, ft_max, ft_max*ft_eps) self.assert_raises_fpe(overflow, lambda a, b: a-b, -ft_max, ft_max*ft_eps) self.assert_raises_fpe(overflow, np.power, ftype(2), ftype(2**fi.nexp)) self.assert_raises_fpe(divbyzero, lambda a, b: a/b, ftype(1), ftype(0)) self.assert_raises_fpe(invalid, lambda a, b: a/b, ftype(np.inf), ftype(np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a/b, ftype(0), ftype(0)) self.assert_raises_fpe(invalid, lambda a, b: a-b, ftype(np.inf), ftype(np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a+b, ftype(np.inf), ftype(-np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a*b, ftype(0), ftype(np.inf)) def test_warnings(self): # test warning code path with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(all="warn"): np.divide(1, 0.) assert_equal(len(w), 1) assert_("divide by zero" in str(w[0].message)) np.array(1e300) * np.array(1e300) assert_equal(len(w), 2) assert_("overflow" in str(w[-1].message)) np.array(np.inf) - np.array(np.inf) assert_equal(len(w), 3) assert_("invalid value" in str(w[-1].message)) np.array(1e-300) * np.array(1e-300) assert_equal(len(w), 4) assert_("underflow" in str(w[-1].message)) class TestTypes(object): def check_promotion_cases(self, promote_func): # tests that the scalars get coerced correctly. b = np.bool_(0) i8, i16, i32, i64 = np.int8(0), np.int16(0), np.int32(0), np.int64(0) u8, u16, u32, u64 = np.uint8(0), np.uint16(0), np.uint32(0), np.uint64(0) f32, f64, fld = np.float32(0), np.float64(0), np.longdouble(0) c64, c128, cld = np.complex64(0), np.complex128(0), np.clongdouble(0) # coercion within the same kind assert_equal(promote_func(i8, i16), np.dtype(np.int16)) assert_equal(promote_func(i32, i8), np.dtype(np.int32)) assert_equal(promote_func(i16, i64), np.dtype(np.int64)) assert_equal(promote_func(u8, u32), np.dtype(np.uint32)) assert_equal(promote_func(f32, f64), np.dtype(np.float64)) assert_equal(promote_func(fld, f32), np.dtype(np.longdouble)) assert_equal(promote_func(f64, fld), np.dtype(np.longdouble)) assert_equal(promote_func(c128, c64), np.dtype(np.complex128)) assert_equal(promote_func(cld, c128), np.dtype(np.clongdouble)) assert_equal(promote_func(c64, fld), np.dtype(np.clongdouble)) # coercion between kinds assert_equal(promote_func(b, i32), np.dtype(np.int32)) assert_equal(promote_func(b, u8), np.dtype(np.uint8)) assert_equal(promote_func(i8, u8), np.dtype(np.int16)) assert_equal(promote_func(u8, i32), np.dtype(np.int32)) assert_equal(promote_func(i64, u32), np.dtype(np.int64)) assert_equal(promote_func(u64, i32), np.dtype(np.float64)) assert_equal(promote_func(i32, f32), np.dtype(np.float64)) assert_equal(promote_func(i64, f32), np.dtype(np.float64)) assert_equal(promote_func(f32, i16), np.dtype(np.float32)) assert_equal(promote_func(f32, u32), np.dtype(np.float64)) assert_equal(promote_func(f32, c64), np.dtype(np.complex64)) assert_equal(promote_func(c128, f32), np.dtype(np.complex128)) assert_equal(promote_func(cld, f64), np.dtype(np.clongdouble)) # coercion between scalars and 1-D arrays assert_equal(promote_func(np.array([b]), i8), np.dtype(np.int8)) assert_equal(promote_func(np.array([b]), u8), np.dtype(np.uint8)) assert_equal(promote_func(np.array([b]), i32), np.dtype(np.int32)) assert_equal(promote_func(np.array([b]), u32), np.dtype(np.uint32)) assert_equal(promote_func(np.array([i8]), i64), np.dtype(np.int8)) assert_equal(promote_func(u64, np.array([i32])), np.dtype(np.int32)) assert_equal(promote_func(i64, np.array([u32])), np.dtype(np.uint32)) assert_equal(promote_func(np.int32(-1), np.array([u64])), np.dtype(np.float64)) assert_equal(promote_func(f64, np.array([f32])), np.dtype(np.float32)) assert_equal(promote_func(fld, np.array([f32])), np.dtype(np.float32)) assert_equal(promote_func(np.array([f64]), fld), np.dtype(np.float64)) assert_equal(promote_func(fld, np.array([c64])), np.dtype(np.complex64)) assert_equal(promote_func(c64, np.array([f64])), np.dtype(np.complex128)) assert_equal(promote_func(np.complex64(3j), np.array([f64])), np.dtype(np.complex128)) # coercion between scalars and 1-D arrays, where # the scalar has greater kind than the array assert_equal(promote_func(np.array([b]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([b]), i64), np.dtype(np.int64)) assert_equal(promote_func(np.array([b]), u64), np.dtype(np.uint64)) assert_equal(promote_func(np.array([i8]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([u16]), f64), np.dtype(np.float64)) # uint and int are treated as the same "kind" for # the purposes of array-scalar promotion. assert_equal(promote_func(np.array([u16]), i32), np.dtype(np.uint16)) # float and complex are treated as the same "kind" for # the purposes of array-scalar promotion, so that you can do # (0j + float32array) to get a complex64 array instead of # a complex128 array. assert_equal(promote_func(np.array([f32]), c128), np.dtype(np.complex64)) def test_coercion(self): def res_type(a, b): return np.add(a, b).dtype self.check_promotion_cases(res_type) # Use-case: float/complex scalar * bool/int8 array # shouldn't narrow the float/complex type for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]: b = 1.234 * a assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype) b = np.longdouble(1.234) * a assert_equal(b.dtype, np.dtype(np.longdouble), "array type %s" % a.dtype) b = np.float64(1.234) * a assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype) b = np.float32(1.234) * a assert_equal(b.dtype, np.dtype('f4'), "array type %s" % a.dtype) b = np.float16(1.234) * a assert_equal(b.dtype, np.dtype('f2'), "array type %s" % a.dtype) b = 1.234j * a assert_equal(b.dtype, np.dtype('c16'), "array type %s" % a.dtype) b = np.clongdouble(1.234j) * a assert_equal(b.dtype, np.dtype(np.clongdouble), "array type %s" % a.dtype) b = np.complex128(1.234j) * a assert_equal(b.dtype, np.dtype('c16'), "array type %s" % a.dtype) b = np.complex64(1.234j) * a assert_equal(b.dtype, np.dtype('c8'), "array type %s" % a.dtype) # The following use-case is problematic, and to resolve its # tricky side-effects requires more changes. # # Use-case: (1-t)*a, where 't' is a boolean array and 'a' is # a float32, shouldn't promote to float64 # # a = np.array([1.0, 1.5], dtype=np.float32) # t = np.array([True, False]) # b = t*a # assert_equal(b, [1.0, 0.0]) # assert_equal(b.dtype, np.dtype('f4')) # b = (1-t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) # # Probably ~t (bitwise negation) is more proper to use here, # but this is arguably less intuitive to understand at a glance, and # would fail if 't' is actually an integer array instead of boolean: # # b = (~t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) def test_result_type(self): self.check_promotion_cases(np.result_type) assert_(np.result_type(None) == np.dtype(None)) def test_promote_types_endian(self): # promote_types should always return native-endian types assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8')) assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8')) assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21')) assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21')) assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21')) assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21')) assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8')) assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8')) assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8')) assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8')) assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8')) assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8')) assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8')) assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8')) assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8')) assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8')) def test_promote_types_strings(self): assert_equal(np.promote_types('bool', 'S'), np.dtype('S5')) assert_equal(np.promote_types('b', 'S'), np.dtype('S4')) assert_equal(np.promote_types('u1', 'S'), np.dtype('S3')) assert_equal(np.promote_types('u2', 'S'), np.dtype('S5')) assert_equal(np.promote_types('u4', 'S'), np.dtype('S10')) assert_equal(np.promote_types('u8', 'S'), np.dtype('S20')) assert_equal(np.promote_types('i1', 'S'), np.dtype('S4')) assert_equal(np.promote_types('i2', 'S'), np.dtype('S6')) assert_equal(np.promote_types('i4', 'S'), np.dtype('S11')) assert_equal(np.promote_types('i8', 'S'), np.dtype('S21')) assert_equal(np.promote_types('bool', 'U'), np.dtype('U5')) assert_equal(np.promote_types('b', 'U'), np.dtype('U4')) assert_equal(np.promote_types('u1', 'U'), np.dtype('U3')) assert_equal(np.promote_types('u2', 'U'), np.dtype('U5')) assert_equal(np.promote_types('u4', 'U'), np.dtype('U10')) assert_equal(np.promote_types('u8', 'U'), np.dtype('U20')) assert_equal(np.promote_types('i1', 'U'), np.dtype('U4')) assert_equal(np.promote_types('i2', 'U'), np.dtype('U6')) assert_equal(np.promote_types('i4', 'U'), np.dtype('U11')) assert_equal(np.promote_types('i8', 'U'), np.dtype('U21')) assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5')) assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('b', 'S1'), np.dtype('S4')) assert_equal(np.promote_types('b', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3')) assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5')) assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10')) assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20')) assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30')) def test_can_cast(self): assert_(np.can_cast(np.int32, np.int64)) assert_(np.can_cast(np.float64, complex)) assert_(not np.can_cast(complex, float)) assert_(np.can_cast('i8', 'f8')) assert_(not np.can_cast('i8', 'f4')) assert_(np.can_cast('i4', 'S11')) assert_(np.can_cast('i8', 'i8', 'no')) assert_(not np.can_cast('<i8', '>i8', 'no')) assert_(np.can_cast('<i8', '>i8', 'equiv')) assert_(not np.can_cast('<i4', '>i8', 'equiv')) assert_(np.can_cast('<i4', '>i8', 'safe')) assert_(not np.can_cast('<i8', '>i4', 'safe')) assert_(np.can_cast('<i8', '>i4', 'same_kind')) assert_(not np.can_cast('<i8', '>u4', 'same_kind')) assert_(np.can_cast('<i8', '>u4', 'unsafe')) assert_(np.can_cast('bool', 'S5')) assert_(not np.can_cast('bool', 'S4')) assert_(np.can_cast('b', 'S4')) assert_(not np.can_cast('b', 'S3')) assert_(np.can_cast('u1', 'S3')) assert_(not np.can_cast('u1', 'S2')) assert_(np.can_cast('u2', 'S5')) assert_(not np.can_cast('u2', 'S4')) assert_(np.can_cast('u4', 'S10')) assert_(not np.can_cast('u4', 'S9')) assert_(np.can_cast('u8', 'S20')) assert_(not np.can_cast('u8', 'S19')) assert_(np.can_cast('i1', 'S4')) assert_(not np.can_cast('i1', 'S3')) assert_(np.can_cast('i2', 'S6')) assert_(not np.can_cast('i2', 'S5')) assert_(np.can_cast('i4', 'S11')) assert_(not np.can_cast('i4', 'S10')) assert_(np.can_cast('i8', 'S21')) assert_(not np.can_cast('i8', 'S20')) assert_(np.can_cast('bool', 'S5')) assert_(not np.can_cast('bool', 'S4')) assert_(np.can_cast('b', 'U4')) assert_(not np.can_cast('b', 'U3')) assert_(np.can_cast('u1', 'U3')) assert_(not
np.can_cast('u1', 'U2')
numpy.can_cast
import numpy as np import math import scipy.integrate as integrate def W3(r, h): r = abs(r)/h C = 8/h**3/math.pi if r > 1: return 0 elif r > 1/2: return C*2*(1-r)**3 else: return C*(1 - 6*r**2 + 6*r**3) def func(x,h,z): return W3(math.sqrt(z**2 + x**2),h)*2*math.pi*x def integral(hsml, z): if hsml**2 - z**2 < 0: return 0 else: return integrate.quad(func, 0, math.sqrt(hsml**2 - z**2), args=(hsml, z))[0] np_W3 = np.frompyfunc(W3,2,1) np_int = np.frompyfunc(integral,2,1) def Mout(Z, hsml, Vz, M, T, H, flag): dz = np.abs(np.abs(Z) - H) dMout = np_int(hsml, dz)*M*np.abs(Vz) if flag == 0: #cold outflow dotM_p = np.where((dz < hsml) & (Z > 0) & (Vz > 0) & (T < 1e5), dMout, 0) dotM_m = np.where((dz < hsml) & (Z < 0) & (Vz < 0) & (T < 1e5), dMout, 0) else: # hot outflow dotM_p = np.where((dz < hsml) & (Z > 0) & (Vz > 0) & (T > 1e5), dMout, 0) dotM_m = np.where((dz < hsml) & (Z < 0) & (Vz < 0) & (T > 1e5), dMout, 0) dotM = dotM_m + dotM_p return dotM def Eout(Z, hsml, Vz, M, U, T, H, flag): dz = np.abs(np.abs(Z) - H) E = 0.5*M*(Vz*Vz) + U*M dEout = np_int(hsml, dz)*E*np.abs(Vz) if flag == 0: #cold outflow dotE_p =
np.where((dz < hsml) & (Z > 0) & (Vz > 0) & (T < 1e5), dEout, 0)
numpy.where
import pickle import random import logging import cv2 import torch import numpy as np from tqdm import tqdm, trange from imgaug.augmenters import Resize import os from natsort import natsorted import re import imgaug.augmenters as iaa from imgaug.augmentables.lines import LineString, LineStringsOnImage from torchvision.transforms import ToTensor from lib.lane import Lane from PIL import Image from torchvision import transforms from scipy.interpolate import InterpolatedUnivariateSpline from torchvision import utils # class Lane: # def __init__(self, points=None, invalid_value=-2., metadata=None): # super(Lane, self).__init__() # self.curr_iter = 0 # self.points = points # self.invalid_value = invalid_value # self.function = InterpolatedUnivariateSpline(points[:, 1], points[:, 0], k=min(3, len(points) - 1)) # self.min_y = points[:, 1].min() - 0.01 # self.max_y = points[:, 1].max() + 0.01 # # self.metadata = metadata or {} # # def __repr__(self): # return '[Lane]\n' + str(self.points) + '\n[/Lane]' # # def __call__(self, lane_ys): # lane_xs = self.function(lane_ys) # # lane_xs[(lane_ys < self.min_y) | (lane_ys > self.max_y)] = self.invalid_value # return lane_xs # # def __iter__(self): # return self # # def __next__(self): # if self.curr_iter < len(self.points): # self.curr_iter += 1 # return self.points[self.curr_iter - 1] # self.curr_iter = 0 # raise StopIteration class Runner: def __init__(self, cfg, exp, device, test_dataset, test_first_dir, test_second_dir, exp_name, hyper, hyper_param, video_name, root_path, webcam=False, resume=False, view=None, deterministic=False): self.cfg = cfg self.exp = exp self.device = device self.resume = resume self.view = view self.test_dataset = test_dataset self.test_first_dir = test_first_dir self.test_second_dir = test_second_dir self.logger = logging.getLogger(__name__) self.dataset_type = hyper_param[3] self.conf_threshold = hyper_param[0] self.nms_thres = hyper_param[1] self.nms_topk = hyper_param[2] self.root = root_path self.video_name = video_name self.hyper = hyper print(self.root) self.exp_name = "/{}/{}/".format(exp_name, self.hyper) self.name = test_first_dir + test_second_dir + test_dataset print(self.name) self.log_dir = self.name + self.exp_name # os.path.join(self.name,self.exp_name) print(self.log_dir) os.makedirs(self.log_dir, exist_ok=True) # Fix seeds torch.manual_seed(cfg['seed'])
np.random.seed(cfg['seed'])
numpy.random.seed
from collections import OrderedDict from functools import reduce import numpy as np import matplotlib.collections as mcoll import matplotlib.mlab as mlab import matplotlib.cbook as cbook from classes.om import ObjectManager from classes.ui import UIManager from classes.ui import RepresentationController from classes.ui import RepresentationView from app.app_utils import MPL_COLORMAPS class DensityRepresentationController(RepresentationController): tid = 'density_representation_controller' _ATTRIBUTES = OrderedDict() _ATTRIBUTES['type'] = { 'default_value': 'wiggle', # 'density', 'type': str } _ATTRIBUTES['colormap'] = { 'default_value': 'Spectral_r', # 'gray', 'type': str } _ATTRIBUTES['interpolation'] = { 'default_value': 'bicubic', # 'none', #'bilinear', 'type': str } _ATTRIBUTES['min_density'] = { 'default_value': None, 'type': float } _ATTRIBUTES['max_density'] = { 'default_value': None, 'type': float } _ATTRIBUTES['density_alpha'] = { 'default_value': 1.0, 'type': float } _ATTRIBUTES['linecolor'] = { 'default_value': 'Black', 'type': str } _ATTRIBUTES['linewidth'] = { 'default_value': 0.6, 'type': float } _ATTRIBUTES['min_wiggle'] = { 'default_value': None, 'type': float } _ATTRIBUTES['max_wiggle'] = { 'default_value': None, 'type': float } _ATTRIBUTES['wiggle_alpha'] = { 'default_value': 0.5, 'type': float } _ATTRIBUTES['fill'] = { 'default_value': None, 'type': str } _ATTRIBUTES['fill_color_left'] = { 'default_value': 'Red', 'type': str } _ATTRIBUTES['fill_color_right'] = { 'default_value': 'Blue', 'type': str } def __init__(self, **state): super().__init__(**state) def PostInit(self): self.subscribe(self.on_change_colormap, 'change.colormap') self.subscribe(self.on_change_density_alpha, 'change.density_alpha' ) self.subscribe(self.on_change_wiggle_alpha, 'change.wiggle_alpha' ) def _get_pg_properties(self): """ """ props = OrderedDict() props['type'] = { 'pg_property': 'EnumProperty', 'label': 'Plot type', 'options_labels': ['Density', 'Wiggle', 'Both'], 'options_values': ['density', 'wiggle', 'both'] } props['colormap'] = { 'pg_property': 'MPLColormapsProperty', 'label': 'Colormap', } props['interpolation'] = { 'pg_property': 'EnumProperty', 'label': 'Colormap interpolation', 'options_labels': ['none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos' ] } props['min_density'] = { 'pg_property': 'FloatProperty', 'label': 'Colormap min value' } props['max_density'] = { 'pg_property': 'FloatProperty', 'label': 'Colormap max value' } props['density_alpha'] = { 'pg_property': 'FloatProperty', 'label': 'Colormap alpha' } props['linecolor'] = { 'pg_property': 'MPLColorsProperty', 'label': 'Wiggle line color' } props['linewidth'] = { 'pg_property': 'FloatProperty', 'label': 'Wiggle line width' } props['min_wiggle'] = { 'pg_property': 'FloatProperty', 'label': 'Wiggle min value' } props['max_wiggle'] = { 'pg_property': 'FloatProperty', 'label': 'Wiggle max value' } props['wiggle_alpha'] = { 'pg_property': 'FloatProperty', 'label': 'Wiggle alpha' } props['fill'] = { 'pg_property': 'EnumProperty', 'label': 'Wiggle fill type', 'options_labels': ['None', 'Left', 'Right', 'Both'], 'options_values': [None, 'left', 'right', 'both'] } props['fill_color_left'] = { 'pg_property': 'MPLColorsProperty', 'label': 'Wiggle left fill color' } props['fill_color_right'] = { 'pg_property': 'MPLColorsProperty', 'label': 'Wiggle right fill color' } return props def on_change_density_alpha(self, new_value, old_value): if new_value >= 0.0 and new_value <= 1.0: self.view.set_density_alpha(new_value) else: self.set_value_from_event('density_alpha', old_value) def on_change_wiggle_alpha(self, new_value, old_value): if new_value >= 0.0 and new_value <= 1.0: self.view.set_wiggle_alpha(new_value) else: self.set_value_from_event('wiggle_alpha', old_value) def on_change_colormap(self, new_value, old_value): if new_value not in MPL_COLORMAPS: msg = 'Invalid colormap. Valid values are: {}'.format(MPL_COLORMAPS) print(msg) self.set_value_from_event('colormap', old_value) else: self.view.set_colormap(new_value) class DensityRepresentationView(RepresentationView): tid = 'density_representation_view' def __init__(self, controller_uid): super().__init__(controller_uid) def PostInit(self): UIM = UIManager() controller = UIM.get(self._controller_uid) # # TODO: Ver um melhor lugar para redefinir a colormap tid, _ = controller.get_data_object_uid() if tid == 'gather' or tid == 'seismic': controller.colormap = 'gray_r' # controller.subscribe(self._draw, 'change.type') controller.subscribe(self.set_interpolation, 'change.interpolation') controller.subscribe(self._draw, 'change.min_density') controller.subscribe(self._draw, 'change.max_density') controller.subscribe(self.set_line_width, 'change.linewidth') controller.subscribe(self.set_line_color, 'change.linecolor') controller.subscribe(self.fill_between, 'change.fill') controller.subscribe(self.fill_color_left, 'change.fill_color_left') controller.subscribe(self.fill_color_right, 'change.fill_color_right') controller.subscribe(self._draw, 'change.min_wiggle') controller.subscribe(self._draw, 'change.max_wiggle') def _draw(self, new_value, old_value): # Bypass function self.draw() def set_colormap(self, colormap): if self._mplot_objects['density']: self._mplot_objects['density'].set_cmap(colormap) toc = self.get_parent_controller() label = toc.get_label() if label: label.set_colormap(colormap) self.draw_canvas() def set_interpolation(self, new_value, old_value): if self._mplot_objects['density']: self._mplot_objects['density'].set_interpolation(new_value) self.draw_canvas() def set_density_alpha(self, alpha): if self._mplot_objects['density']: self._mplot_objects['density'].set_alpha(alpha) self.draw_canvas() def set_wiggle_alpha(self, alpha): if len(self._mplot_objects['wiggle']) == 0: return for idx in range(0, len(self._mplot_objects['wiggle'])): mpl_obj = self._mplot_objects['wiggle'][idx] if mpl_obj is not None: mpl_obj.set_alpha(alpha) self.draw_canvas() def set_line_color(self, new_value, old_value): for idx_line in range(0, len(self._mplot_objects['wiggle']), 3): line = self._mplot_objects['wiggle'][idx_line] line.set_color(new_value) self.draw_canvas() def set_line_width(self, new_value, old_value): for idx_line in range(0, len(self._mplot_objects['wiggle']), 3): line = self._mplot_objects['wiggle'][idx_line] line.set_linewidth(new_value) self.draw_canvas() def fill_color_left(self, new_value, old_value): for idx_fill_obj in range(1, len(self._mplot_objects['wiggle']), 3): fill_mpl_obj = self._mplot_objects['wiggle'][idx_fill_obj] if fill_mpl_obj: fill_mpl_obj.set_color(new_value) self.draw_canvas() def fill_color_right(self, new_value, old_value): for idx_fill_obj in range(2, len(self._mplot_objects['wiggle']), 3): fill_mpl_obj = self._mplot_objects['wiggle'][idx_fill_obj] if fill_mpl_obj: fill_mpl_obj.set_color(new_value) self.draw_canvas() def get_data_info(self, event): """ Retorna a string com informações do dado exibido em tela, de acordo com a posicao do mouse no momento. """ image = self._mplot_objects.get('density') if image: value = image.get_cursor_data(event) # # UIM = UIManager() # controller = UIM.get(self._controller_uid) toc = self.get_parent_controller() x_di_uid, x_index_data = toc.get_index_for_dimension(-2) y_di_uid, y_index_data = toc.get_index_for_dimension(-1) canvas = self.get_canvas() xvalue = canvas.inverse_transform(event.xdata, x_index_data[0], x_index_data[-1] ) # OM = ObjectManager() x_data_index = OM.get(x_di_uid) y_data_index = OM.get(y_di_uid) # if event.ydata < y_index_data[0] or event.ydata > y_index_data[-1]: return None # msg = x_data_index.name + ': {:0.2f}'.format(xvalue) + ', ' \ + y_data_index.name + ': {:0.2f}'.format(event.ydata) msg += ', Value: {:0.2f}'.format(value) return '[' + msg + ']' else: msg = '' return '[' + msg + ']' # raise Exception('Tratar get_data_info para Wiggle.') def draw(self): self.clear() self._mplot_objects['density'] = None self._mplot_objects['wiggle'] = [] # UIM = UIManager() controller = UIM.get(self._controller_uid) toc = self.get_parent_controller() # data = toc.get_filtered_data(dimensions_desired=2) x_di_uid, x_index_data = toc.get_index_for_dimension(-2) y_di_uid, y_index_data = toc.get_index_for_dimension(-1) # OM = ObjectManager() xdata_index = OM.get(x_di_uid) ydata_index = OM.get(y_di_uid) # canvas = self.get_canvas() toc_uid = UIM._getparentuid(self._controller_uid) track_controller_uid = UIM._getparentuid(toc_uid) track_controller = UIM.get(track_controller_uid) # xlim_min, xlim_max = canvas.get_xlim('plot_axes') # if controller.type == 'density' or controller.type == 'both': # (left, right, bottom, top) extent = (xlim_min, xlim_max, np.nanmax(y_index_data), np.nanmin(y_index_data) ) try: image = track_controller.append_artist('AxesImage', cmap=controller.colormap, interpolation=controller.interpolation, extent=extent ) image.set_data(data.T) image.set_label(self._controller_uid) if image.get_clip_path() is None: # image does not already have clipping set, # clip to axes patch image.set_clip_path(image.axes.patch) if controller.min_density is None: controller.set_value_from_event('min_density',
np.nanmin(data)
numpy.nanmin
""" Test functions for linalg module """ import os import sys import itertools import traceback import textwrap import subprocess import pytest import numpy as np from numpy import array, single, double, csingle, cdouble, dot, identity, matmul from numpy import multiply, atleast_2d, inf, asarray from numpy import linalg from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError from numpy.linalg.linalg import _multi_dot_matrix_chain_order from numpy.testing import ( assert_, assert_equal, assert_raises, assert_array_equal, assert_almost_equal, assert_allclose, suppress_warnings, assert_raises_regex, HAS_LAPACK64, ) from numpy.testing._private.utils import requires_memory def consistent_subclass(out, in_): # For ndarray subclass input, our output should have the same subclass # (non-ndarray input gets converted to ndarray). return type(out) is (type(in_) if isinstance(in_, np.ndarray) else np.ndarray) old_assert_almost_equal = assert_almost_equal def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw): if asarray(a).dtype.type in (single, csingle): decimal = single_decimal else: decimal = double_decimal old_assert_almost_equal(a, b, decimal=decimal, **kw) def get_real_dtype(dtype): return {single: single, double: double, csingle: single, cdouble: double}[dtype] def get_complex_dtype(dtype): return {single: csingle, double: cdouble, csingle: csingle, cdouble: cdouble}[dtype] def get_rtol(dtype): # Choose a safe rtol if dtype in (single, csingle): return 1e-5 else: return 1e-11 # used to categorize tests all_tags = { 'square', 'nonsquare', 'hermitian', # mutually exclusive 'generalized', 'size-0', 'strided' # optional additions } class LinalgCase: def __init__(self, name, a, b, tags=set()): """ A bundle of arguments to be passed to a test case, with an identifying name, the operands a and b, and a set of tags to filter the tests """ assert_(isinstance(name, str)) self.name = name self.a = a self.b = b self.tags = frozenset(tags) # prevent shared tags def check(self, do): """ Run the function `do` on this test case, expanding arguments """ do(self.a, self.b, tags=self.tags) def __repr__(self): return f'<LinalgCase: {self.name}>' def apply_tag(tag, cases): """ Add the given tag (a string) to each of the cases (a list of LinalgCase objects) """ assert tag in all_tags, "Invalid tag" for case in cases: case.tags = case.tags | {tag} return cases # # Base test cases # np.random.seed(1234) CASES = [] # square test cases CASES += apply_tag('square', [ LinalgCase("single", array([[1., 2.], [3., 4.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("double", array([[1., 2.], [3., 4.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_2", array([[1., 2.], [3., 4.]], dtype=double), array([[2., 1., 4.], [3., 4., 6.]], dtype=double)), LinalgCase("csingle", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("cdouble", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_2", array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble), array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)), LinalgCase("0x0", np.empty((0, 0), dtype=double), np.empty((0,), dtype=double), tags={'size-0'}), LinalgCase("8x8", np.random.rand(8, 8), np.random.rand(8)), LinalgCase("1x1", np.random.rand(1, 1), np.random.rand(1)), LinalgCase("nonarray", [[1, 2], [3, 4]], [2, 1]), ]) # non-square test-cases CASES += apply_tag('nonsquare', [ LinalgCase("single_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=single), array([2., 1.], dtype=single)), LinalgCase("single_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=single), array([2., 1., 3.], dtype=single)), LinalgCase("double_nsq_1", array([[1., 2., 3.], [3., 4., 6.]], dtype=double), array([2., 1.], dtype=double)), LinalgCase("double_nsq_2", array([[1., 2.], [3., 4.], [5., 6.]], dtype=double), array([2., 1., 3.], dtype=double)), LinalgCase("csingle_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle), array([2. + 1j, 1. + 2j], dtype=csingle)), LinalgCase("csingle_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)), LinalgCase("cdouble_nsq_1", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([2. + 1j, 1. + 2j], dtype=cdouble)), LinalgCase("cdouble_nsq_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)), LinalgCase("cdouble_nsq_1_2", array( [[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("cdouble_nsq_2_2", array( [[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble), array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)), LinalgCase("8x11", np.random.rand(8, 11), np.random.rand(8)), LinalgCase("1x5", np.random.rand(1, 5), np.random.rand(1)), LinalgCase("5x1", np.random.rand(5, 1), np.random.rand(5)), LinalgCase("0x4", np.random.rand(0, 4), np.random.rand(0), tags={'size-0'}), LinalgCase("4x0", np.random.rand(4, 0), np.random.rand(4), tags={'size-0'}), ]) # hermitian test-cases CASES += apply_tag('hermitian', [ LinalgCase("hsingle", array([[1., 2.], [2., 1.]], dtype=single), None), LinalgCase("hdouble", array([[1., 2.], [2., 1.]], dtype=double), None), LinalgCase("hcsingle", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle), None), LinalgCase("hcdouble", array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble), None), LinalgCase("hempty", np.empty((0, 0), dtype=double), None, tags={'size-0'}), LinalgCase("hnonarray", [[1, 2], [2, 1]], None), LinalgCase("matrix_b_only", array([[1., 2.], [2., 1.]]), None), LinalgCase("hmatrix_1x1", np.random.rand(1, 1), None), ]) # # Gufunc test cases # def _make_generalized_cases(): new_cases = [] for case in CASES: if not isinstance(case.a, np.ndarray): continue a = np.array([case.a, 2 * case.a, 3 * case.a]) if case.b is None: b = None else: b = np.array([case.b, 7 * case.b, 6 * case.b]) new_case = LinalgCase(case.name + "_tile3", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape) if case.b is None: b = None else: b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape) new_case = LinalgCase(case.name + "_tile213", a, b, tags=case.tags | {'generalized'}) new_cases.append(new_case) return new_cases CASES += _make_generalized_cases() # # Generate stride combination variations of the above # def _stride_comb_iter(x): """ Generate cartesian product of strides for all axes """ if not isinstance(x, np.ndarray): yield x, "nop" return stride_set = [(1,)] * x.ndim stride_set[-1] = (1, 3, -4) if x.ndim > 1: stride_set[-2] = (1, 3, -4) if x.ndim > 2: stride_set[-3] = (1, -4) for repeats in itertools.product(*tuple(stride_set)): new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)] slices = tuple([slice(None, None, repeat) for repeat in repeats]) # new array with different strides, but same data xi = np.empty(new_shape, dtype=x.dtype) xi.view(np.uint32).fill(0xdeadbeef) xi = xi[slices] xi[...] = x xi = xi.view(x.__class__) assert_(np.all(xi == x)) yield xi, "stride_" + "_".join(["%+d" % j for j in repeats]) # generate also zero strides if possible if x.ndim >= 1 and x.shape[-1] == 1: s = list(x.strides) s[-1] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0" if x.ndim >= 2 and x.shape[-2] == 1: s = list(x.strides) s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_x" if x.ndim >= 2 and x.shape[:-2] == (1, 1): s = list(x.strides) s[-1] = 0 s[-2] = 0 xi = np.lib.stride_tricks.as_strided(x, strides=s) yield xi, "stride_xxx_0_0" def _make_strided_cases(): new_cases = [] for case in CASES: for a, a_label in _stride_comb_iter(case.a): for b, b_label in _stride_comb_iter(case.b): new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b, tags=case.tags | {'strided'}) new_cases.append(new_case) return new_cases CASES += _make_strided_cases() # # Test different routines against the above cases # class LinalgTestCase: TEST_CASES = CASES def check_cases(self, require=set(), exclude=set()): """ Run func on each of the cases with all of the tags in require, and none of the tags in exclude """ for case in self.TEST_CASES: # filter by require and exclude if case.tags & require != require: continue if case.tags & exclude: continue try: case.check(self.do) except Exception as e: msg = f'In test case: {case!r}\n\n' msg += traceback.format_exc() raise AssertionError(msg) from e class LinalgSquareTestCase(LinalgTestCase): def test_sq_cases(self): self.check_cases(require={'square'}, exclude={'generalized', 'size-0'}) def test_empty_sq_cases(self): self.check_cases(require={'square', 'size-0'}, exclude={'generalized'}) class LinalgNonsquareTestCase(LinalgTestCase): def test_nonsq_cases(self): self.check_cases(require={'nonsquare'}, exclude={'generalized', 'size-0'}) def test_empty_nonsq_cases(self): self.check_cases(require={'nonsquare', 'size-0'}, exclude={'generalized'}) class HermitianTestCase(LinalgTestCase): def test_herm_cases(self): self.check_cases(require={'hermitian'}, exclude={'generalized', 'size-0'}) def test_empty_herm_cases(self): self.check_cases(require={'hermitian', 'size-0'}, exclude={'generalized'}) class LinalgGeneralizedSquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_sq_cases(self): self.check_cases(require={'generalized', 'square'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_sq_cases(self): self.check_cases(require={'generalized', 'square', 'size-0'}) class LinalgGeneralizedNonsquareTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_nonsq_cases(self): self.check_cases(require={'generalized', 'nonsquare', 'size-0'}) class HermitianGeneralizedTestCase(LinalgTestCase): @pytest.mark.slow def test_generalized_herm_cases(self): self.check_cases(require={'generalized', 'hermitian'}, exclude={'size-0'}) @pytest.mark.slow def test_generalized_empty_herm_cases(self): self.check_cases(require={'generalized', 'hermitian', 'size-0'}, exclude={'none'}) def dot_generalized(a, b): a = asarray(a) if a.ndim >= 3: if a.ndim == b.ndim: # matrix x matrix new_shape = a.shape[:-1] + b.shape[-1:] elif a.ndim == b.ndim + 1: # matrix x vector new_shape = a.shape[:-1] else: raise ValueError("Not implemented...") r = np.empty(new_shape, dtype=np.common_type(a, b)) for c in itertools.product(*map(range, a.shape[:-2])): r[c] = dot(a[c], b[c]) return r else: return dot(a, b) def identity_like_generalized(a): a = asarray(a) if a.ndim >= 3: r = np.empty(a.shape, dtype=a.dtype) r[...] = identity(a.shape[-2]) return r else: return identity(a.shape[0]) class SolveCases(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase): # kept apart from TestSolve for use for testing with matrices. def do(self, a, b, tags): x = linalg.solve(a, b) assert_almost_equal(b, dot_generalized(a, x)) assert_(consistent_subclass(x, b)) class TestSolve(SolveCases): @pytest.mark.parametrize('dtype', [single, double, csingle, cdouble]) def test_types(self, dtype): x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype) assert_equal(linalg.solve(x, x).dtype, dtype) def test_0_size(self): class ArraySubclass(np.ndarray): pass # Test system of 0x0 matrices a = np.arange(8).reshape(2, 2, 2) b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0, :] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) # Test errors for non-square and only b's dimension being 0 assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b) assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :]) # Test broadcasting error b = np.arange(6).reshape(1, 3, 2) # broadcasting error assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) # Test zero "single equations" with 0x0 matrices. b = np.arange(2).reshape(1, 2).view(ArraySubclass) expected = linalg.solve(a, b)[:, 0:0] result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0]) assert_array_equal(result, expected) assert_(isinstance(result, ArraySubclass)) b = np.arange(3).reshape(1, 3) assert_raises(ValueError, linalg.solve, a, b) assert_raises(ValueError, linalg.solve, a[0:0], b[0:0]) assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b) def test_0_size_k(self): # test zero multiple equation (K=0) case. class ArraySubclass(np.ndarray): pass a = np.arange(4).reshape(1, 2, 2) b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass) expected =
linalg.solve(a, b)
numpy.linalg.solve
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from xgboost import XGBClassifier from sklearn.model_selection import KFold from category_encoders import CountEncoder from sklearn.pipeline import Pipeline from sklearn.metrics import log_loss import matplotlib.pyplot as plt from sklearn.multioutput import MultiOutputClassifier import os import warnings warnings.filterwarnings('ignore') SEED = 777 NFOLDS = 5 DATA_DIR = 'data/' np.random.seed(SEED) train = pd.read_csv(DATA_DIR + 'train_features.csv') targets = pd.read_csv(DATA_DIR + 'train_targets_scored.csv') test = pd.read_csv(DATA_DIR + 'test_features.csv') sub = pd.read_csv(DATA_DIR + 'sample_submission.csv') # drop id col X = train.iloc[:, 1:].to_numpy() X_test = test.iloc[:, 1:].to_numpy() y = targets.iloc[:, 1:].to_numpy() for i in range(len(X[:, 1])): if X[i, 1] == 24: X[i, 1] = 0 if X[i, 1] == 48: X[i, 1] = 1 if X[i, 1] == 72: X[i, 1] = 2 for i in range(len(X[:, 2])): if X[i, 2] == 'D1': X[i, 2] = 0 if X[i, 2] == 'D2': X[i, 2] = 1 for i in range(len(X_test[:, 1])): if X_test[i, 1] == 24: X_test[i, 1] = 0 if X_test[i, 1] == 48: X_test[i, 1] = 1 if X_test[i, 1] == 72: X_test[i, 1] = 2 for i in range(len(X_test[:, 2])): if X_test[i, 2] == 'D1': X_test[i, 2] = 0 if X_test[i, 2] == 'D2': X_test[i, 2] = 1 classifier = MultiOutputClassifier(XGBClassifier(tree_method='gpu_hist')) clf = Pipeline([('encode', CountEncoder(cols=[0, 2])), ('classify', classifier) ]) params = {'classify__estimator__colsample_bytree': 0.6522, 'classify__estimator__gamma': 3.6975, 'classify__estimator__learning_rate': 0.0503, 'classify__estimator__max_delta_step': 2.0706, 'classify__estimator__max_depth': 10, 'classify__estimator__min_child_weight': 31.5800, 'classify__estimator__n_estimators': 166, 'classify__estimator__subsample': 0.8639 } _ = clf.set_params(**params) oof_preds = np.zeros(y.shape) test_preds = np.zeros((test.shape[0], y.shape[1])) oof_losses = [] kf = KFold(n_splits=NFOLDS, random_state=SEED) # drop the cp_type column to make the dataframe in one datatype X_test = X_test[:, 1:] for fn, (trn_idx, val_idx) in enumerate(kf.split(X, y)): print('Starting fold: ', fn) X_train, X_val = X[trn_idx], X[val_idx] y_train, y_val = y[trn_idx], y[val_idx] # drop where cp_type==ctl_vehicle (baseline) ctl_mask = X_train[:, 0] == 'ctl_vehicle' X_train = X_train[~ctl_mask, :] y_train = y_train[~ctl_mask] # drop the cp_type column to make the dataframe in one datatype X_train = X_train[:, 1:] X_val = X_val[:, 1:] # X_test = X_test[:, 1:] clf.fit(X_train.astype('float'), y_train) val_preds = clf.predict_proba(X_val.astype('float')) # list of preds per class val_preds = np.array(val_preds)[:, :, 1].T # take the positive class oof_preds[val_idx] = val_preds loss = log_loss(np.ravel(y_val), np.ravel(val_preds)) oof_losses.append(loss) preds = clf.predict_proba(X_test.astype('float')) preds = np.array(preds)[:, :, 1].T # take the positive class test_preds += preds / NFOLDS print(oof_losses) print('Mean OOF loss across folds',
np.mean(oof_losses)
numpy.mean
import os from collections import deque import dmc2gym import gym import numpy as np import torch import torch.nn.functional as F import torchvision.transforms.functional as TF from numpy.random import randint def make_env(domain_name, task_name, seed=0, episode_length=1000, frame_stack=3, action_repeat=4, image_size=100, mode='train'): """Make environment for experiments""" assert mode in {'train', 'color_easy', 'color_hard', 'video_easy', 'video_hard'}, \ f'specified mode "{mode}" is not supported' env = dmc2gym.make( domain_name=domain_name, task_name=task_name, seed=seed, visualize_reward=False, from_pixels=True, height=image_size, width=image_size, episode_length=episode_length, frame_skip=action_repeat ) env = VideoWrapper(env, mode, seed) env = FrameStack(env, frame_stack) env = ColorWrapper(env, mode, seed) return env class ColorWrapper(gym.Wrapper): """Wrapper for the color experiments""" prefix = "custom_vendor/data" def __init__(self, env, mode, seed=None): assert isinstance(env, FrameStack), 'wrapped env must be a framestack' gym.Wrapper.__init__(self, env) self._max_episode_steps = env._max_episode_steps self._mode = mode self._random_state =
np.random.RandomState(seed)
numpy.random.RandomState
# -*- coding: UTF-8 -*- """Definitions for `Ensembler` class.""" import gc import sys import time import numpy as np import scipy from astrocats.catalog.model import MODEL from astrocats.catalog.quantity import QUANTITY from emcee.autocorr import AutocorrError from mosfit.mossampler import MOSSampler from mosfit.samplers.sampler import Sampler from mosfit.utils import calculate_WAIC, pretty_num class Ensembler(Sampler): """Fit transient events with the provided model.""" _MAX_ACORC = 5 _REPLACE_AGE = 20 def __init__( self, fitter, model=None, iterations=2000, burn=None, post_burn=None, num_temps=1, num_walkers=None, convergence_criteria=None, convergence_type='psrf', gibbs=False, fracking=True, frack_step=20, **kwargs): """Initialize `Ensembler` class.""" super(Ensembler, self).__init__( fitter, num_walkers=num_walkers, **kwargs) self._model = model self._iterations = iterations self._burn = burn self._post_burn = post_burn self._num_temps = num_temps self._cc = convergence_criteria self._ct = convergence_type self._gibbs = gibbs self._fracking = fracking self._frack_step = frack_step self._upload_model = None self._WAIC = None def append_output(self, modeldict): """Append output from the ensembler to the model description.""" self._WAIC = None if self._iterations > 0: self._WAIC = calculate_WAIC(self._scores) modeldict[MODEL.SCORE] = { QUANTITY.VALUE: str(self._WAIC), QUANTITY.KIND: 'WAIC' } modeldict[MODEL.CONVERGENCE] = [] if self._psrf < np.inf: modeldict[MODEL.CONVERGENCE].append( { QUANTITY.VALUE: str(self._psrf), QUANTITY.KIND: 'psrf' } ) if self._acor and self._aacort > 0: acortimes = '<' if self._aa < self._MAX_ACORC else '' acortimes += str(np.int(float(self._emi - self._ams) / self._actc)) modeldict[MODEL.CONVERGENCE].append( { QUANTITY.VALUE: str(acortimes), QUANTITY.KIND: 'autocorrelationtimes' } ) modeldict[MODEL.STEPS] = str(self._emi) def prepare_output(self, check_upload_quality, upload): """Prepare output for writing to disk and uploading.""" prt = self._printer if check_upload_quality: if self._WAIC is None: self._upload_model = False elif self._WAIC is not None and self._WAIC < 0.0: if upload: prt.message('no_ul_waic', ['' if self._WAIC is None else pretty_num(self._WAIC)]) self._upload_model = False if len(self._all_chain): self._pout = self._all_chain[:, :, -1, :] self._lnprobout = self._all_lnprob[:, :, -1] self._lnlikeout = self._all_lnlike[:, :, -1] else: self._pout = self._p self._lnprobout = self._lnprob self._lnlikeout = self._lnlike weight = 1.0 / (self._nwalkers * self._ntemps) self._weights = np.full_like(self._lnlikeout, weight) # Here, we append to the vector of walkers from the full chain based # upon the value of acort (the autocorrelation timescale). if self._acor and self._aacort > 0 and self._aa == self._MAX_ACORC: actc0 = int(np.ceil(self._aacort)) for i in range(1, np.int(float(self._emi - self._ams) / actc0)): self._pout = np.concatenate( (self._all_chain[:, :, -i * self._actc, :], self._pout), axis=1) self._lnprobout = np.concatenate( (self._all_lnprob[:, :, -i * self._actc], self._lnprobout), axis=1) self._lnlikeout = np.concatenate( (self._all_lnlike[:, :, -i * self._actc], self._lnlikeout), axis=1) self._weights = np.full_like(self._lnlikeout, weight) def run(self, walker_data): """Use ensemble sampling to determine posteriors.""" from mosfit.fitter import draw_walker, frack, ln_likelihood, ln_prior prt = self._printer self._emcee_est_t = 0.0 self._bh_est_t = 0.0 if self._burn is not None: self._burn_in = min(self._burn, self._iterations) elif self._post_burn is not None: self._burn_in = max(self._iterations - self._post_burn, 0) else: self._burn_in = int(np.round(self._iterations / 2)) self._ntemps, ndim = ( self._num_temps, self._model._num_free_parameters) if self._num_walkers: self._nwalkers = self._num_walkers else: self._nwalkers = 2 * ndim test_walker = self._iterations > 0 self._lnprob = None self._lnlike = None pool_size = max(self._pool.size, 1) # Derived so only half a walker redrawn with Gaussian distribution. redraw_mult = 0.5 * np.sqrt( 2) * scipy.special.erfinv(float( self._nwalkers - 1) / self._nwalkers) prt.message('nmeas_nfree', [self._model._num_measurements, ndim]) if test_walker: if self._model._num_measurements <= ndim: prt.message('too_few_walkers', warning=True) if self._nwalkers < 10 * ndim: prt.message('want_more_walkers', [10 * ndim, self._nwalkers], warning=True) p0 = [[] for x in range(self._ntemps)] # Generate walker positions based upon loaded walker data, if # available. walkers_pool = [] walker_weights = [] nmodels = len(set([x[0] for x in walker_data])) wp_extra = 0 while len(walkers_pool) < len(walker_data): appended_walker = False for walk in walker_data: if (len(walkers_pool) + wp_extra) % nmodels != walk[0]: continue new_walk = np.full(self._model._num_free_parameters, None) for k, key in enumerate(self._model._free_parameters): param = self._model._modules[key] walk_param = walk[1].get(key) if walk_param is None or 'value' not in walk_param: continue if param: val = param.fraction(walk_param['value']) if not np.isnan(val): new_walk[k] = val walkers_pool.append(new_walk) walker_weights.append(walk[2]) appended_walker = True if not appended_walker: wp_extra += 1 # Make sure weights are normalized. if None not in walker_weights: totw = np.sum(walker_weights) walker_weights = [x / totw for x in walker_weights] # Draw walker positions. This is either done from the priors or from # loaded walker data. If some parameters are not available from the # loaded walker data they will be drawn from their priors instead. pool_len = len(walkers_pool) for i, pt in enumerate(p0): dwscores = [] while len(p0[i]) < self._nwalkers: prt.status( self, desc='drawing_walkers', iterations=[ i * self._nwalkers + len(p0[i]) + 1, self._nwalkers * self._ntemps]) if self._pool.size == 0 or pool_len: self._p, score = draw_walker( test_walker, walkers_pool, replace=pool_len < self._ntemps * self._nwalkers, weights=walker_weights) p0[i].append(self._p) dwscores.append(score) else: nmap = min(self._nwalkers - len(p0[i]), max(self._pool.size, 10)) dws = self._pool.map(draw_walker, [test_walker] * nmap) p0[i].extend([x[0] for x in dws]) dwscores.extend([x[1] for x in dws]) if self._fitter._draw_above_likelihood is not False: self._fitter._draw_above_likelihood = np.mean(dwscores) prt.message('initial_draws', inline=True) self._p = list(p0) self._emi = 0 self._acor = None self._aacort = -1 self._aa = 0 self._psrf = np.inf self._all_chain = np.array([]) self._scores = np.ones((self._ntemps, self._nwalkers)) * -np.inf tft = 0.0 # Total self._fracking time sli = 1.0 # Keep track of how many times chain halved s_exception = None kmat = None ages = np.zeros((self._ntemps, self._nwalkers), dtype=int) oldp = self._p max_chunk = 1000 kmat_chunk = 5 iter_chunks = int(np.ceil(float(self._iterations) / max_chunk)) iter_arr = [max_chunk if xi < iter_chunks - 1 else self._iterations - max_chunk * (iter_chunks - 1) for xi, x in enumerate(range(iter_chunks))] # Make sure a chunk separation is located at self._burn_in chunk_is = sorted(set( np.concatenate(([0, self._burn_in], np.cumsum(iter_arr))))) iter_arr = np.diff(chunk_is) # The argument of the for loop runs emcee, after each iteration of # emcee the contents of the for loop are executed. converged = False exceeded_walltime = False ici = 0 try: if self._iterations > 0: sampler = MOSSampler( self._ntemps, self._nwalkers, ndim, ln_likelihood, ln_prior, pool=self._pool) st = time.time() while (self._iterations > 0 and ( self._cc is not None or ici < len(iter_arr))): slr = int(np.round(sli)) ic = (max_chunk if self._cc is not None else iter_arr[ici]) if exceeded_walltime: break if (self._cc is not None and converged and self._emi > self._iterations): break for li, ( self._p, self._lnprob, self._lnlike) in enumerate( sampler.sample( self._p, iterations=ic, gibbs=self._gibbs if self._emi >= self._burn_in else True)): if (self._fitter._maximum_walltime is not False and time.time() - self._fitter._start_time > self._fitter._maximum_walltime): prt.message('exceeded_walltime', warning=True) exceeded_walltime = True break self._emi = self._emi + 1 emim1 = self._emi - 1 messages = [] # Increment the age of each walker if their positions are # unchanged. for ti in range(self._ntemps): for wi in range(self._nwalkers): if np.array_equal(self._p[ti][wi], oldp[ti][wi]): ages[ti][wi] += 1 else: ages[ti][wi] = 0 # Record then reset sampler proposal/acceptance counts. accepts = list( np.mean(sampler.nprop_accepted / sampler.nprop, axis=1)) sampler.nprop = np.zeros( (sampler.ntemps, sampler.nwalkers), dtype=np.float) sampler.nprop_accepted = np.zeros( (sampler.ntemps, sampler.nwalkers), dtype=np.float) # During self._burn-in only, redraw any walkers with scores # significantly worse than their peers, or those that are # stale (i.e. remained in the same position for a long # time). if emim1 <= self._burn_in: pmedian = [np.median(x) for x in self._lnprob] pmead = [np.mean([abs(y - pmedian) for y in x]) for x in self._lnprob] redraw_count = 0 bad_redraws = 0 for ti, tprob in enumerate(self._lnprob): for wi, wprob in enumerate(tprob): if (wprob <= pmedian[ti] - max(redraw_mult * pmead[ti], float(self._nwalkers)) or np.isnan(wprob) or ages[ti][wi] >= self._REPLACE_AGE): redraw_count = redraw_count + 1 dxx = np.random.normal( scale=0.01, size=ndim) tar_x = np.array( self._p[np.random.randint( self._ntemps)][ np.random.randint(self._nwalkers)]) # Reflect if out of bounds. new_x = np.clip(np.where( np.where(tar_x + dxx < 1.0, tar_x + dxx, tar_x - dxx) > 0.0, tar_x + dxx, tar_x - dxx), 0.0, 1.0) new_like = ln_likelihood(new_x) new_prob = new_like + ln_prior(new_x) if new_prob > wprob or np.isnan(wprob): self._p[ti][wi] = new_x self._lnlike[ti][wi] = new_like self._lnprob[ti][wi] = new_prob else: bad_redraws = bad_redraws + 1 if redraw_count > 0: messages.append( '{:.0%} redraw, {}/{} success'.format( redraw_count / (self._nwalkers * self._ntemps), redraw_count - bad_redraws, redraw_count)) oldp = self._p.copy() # Calculate the autocorrelation time. low = 10 asize = 0.5 * (emim1 - self._burn_in) / low if asize >= 0 and self._ct == 'acor': acorc = max( 1, min(self._MAX_ACORC, int(np.floor(0.5 * self._emi / low)))) self._aacort = -1.0 self._aa = 0 self._ams = self._burn_in cur_chain = (np.concatenate( (self._all_chain, sampler.chain[:, :, :li + 1:slr, :]), axis=2) if len(self._all_chain) else sampler.chain[:, :, :li + 1:slr, :]) for a in range(acorc, 1, -1): ms = self._burn_in if ms >= self._emi - low: break try: acorts = sampler.get_autocorr_time( chain=cur_chain, low=low, c=a, min_step=int(np.round(float(ms) / sli)), max_walkers=5, fast=True) acort = max([ max(x) for x in acorts ]) except AutocorrError: continue else: self._aa = a self._aacort = acort * sli self._ams = ms break self._acor = [self._aacort, self._aa, self._ams] self._actc = int(np.ceil(self._aacort / sli)) actn = np.int( float(self._emi - self._ams) / self._actc) if (self._cc is not None and actn >= self._cc and self._emi > self._iterations): prt.message('converged') converged = True break # Calculate the PSRF (Gelman-Rubin statistic). if li > 1 and self._emi > self._burn_in + 2: cur_chain = (np.concatenate( (self._all_chain, sampler.chain[:, :, :li + 1:slr, :]), axis=2) if len(self._all_chain) else sampler.chain[:, :, :li + 1:slr, :]) vws = np.zeros((self._ntemps, ndim)) for ti in range(self._ntemps): for xi in range(ndim): vchain = cur_chain[ ti, :, int(np.floor( self._burn_in / sli)):, xi] vws[ti][xi] = self.psrf(vchain) self._psrf = np.max(vws) if np.isnan(self._psrf): self._psrf = np.inf if (self._ct == 'psrf' and self._cc is not None and self._psrf < self._cc and self._emi > self._iterations): prt.message('converged') converged = True break if self._cc is not None: self._emcee_est_t = -1.0 else: self._emcee_est_t = float( time.time() - st - tft) / self._emi * ( self._iterations - self._emi ) + tft / self._emi * max( 0, self._burn_in - self._emi) # Perform self._fracking if we are still in the self._burn # in phase and iteration count is a multiple of the frack # step. frack_now = (self._fracking and self._frack_step != 0 and self._emi <= self._burn_in and self._emi % self._frack_step == 0) self._scores = [np.array(x) for x in self._lnprob] if emim1 % kmat_chunk == 0: sout = self._model.run_stack( self._p[np.unravel_index( np.argmax(self._lnprob), self._lnprob.shape)], root='objective') kmat = sout.get('kmat') kdiag = sout.get('kdiagonal') variance = sout.get('obandvs', sout.get('variance')) if kdiag is not None and kmat is not None: kmat[np.diag_indices_from(kmat)] += kdiag elif kdiag is not None and kmat is None: kmat = np.diag(kdiag + variance) prt.status( self, desc='fracking' if frack_now else ('burning' if self._emi < self._burn_in else 'walking'), scores=self._scores, kmat=kmat, accepts=accepts, iterations=[self._emi, None if self._cc is not None else self._iterations], acor=self._acor, psrf=[self._psrf, self._burn_in], messages=messages, make_space=emim1 == 0, convergence_type=self._ct, convergence_criteria=self._cc) if s_exception: break if not frack_now: continue # Fracking starts here sft = time.time() ijperms = [[x, y] for x in range(self._ntemps) for y in range(self._nwalkers)] ijprobs = np.array([ 1.0 # self._lnprob[x][y] for x in range(self._ntemps) for y in range( self._nwalkers) ]) ijprobs -= max(ijprobs) ijprobs = [
np.exp(0.1 * x)
numpy.exp
import numpy as np from ..Fourier.FFT import FFT from scipy.signal import detrend from .GetWindows import GetWindows from ..LombScargle.LombScargle import LombScargle from .DetectGaps import DetectGaps from ..CrossPhase.CrossPhase import CrossPhase from ..Tools.PolyDetrend import PolyDetrend from ..Tools.RemoveStep import RemoveStep def Spectrogram(t,v,wind,slip,Freq=None,Method='FFT',WindowFunction=None, Param=None,Detrend=True,FindGaps=True,GoodData=None, Quiet=True,LenW=None,Threshold=0.0,Fudge=False, OneSided=True,Tax=None,Steps=None): ''' Creates a spectogram using a sliding window. Inputs ====== t : time array in seconds v : array of values the same length as t. If using crossphase, this should be a list or tuple containing two arrays. wind : sliding window length in seconds slip : difference in time between the start of one window and the next - when slip < wind, each window will have an overlap, when slip > wind, there will be gaps where some data will be unused and when slip == wind, each window is adjacent in time. Freq : a list of frequencies (Hz) to solve for - only does anything when using L-S Method : Currently either 'FFT' or 'LS' WindowFunction : Select a window function to apply to the data before the transform, the options are: 'none','cosine-bell','hamming', 'triangle','welch','blackman','nuttall','blackman-nuttall', 'flat-top','cosine','gaussian' Param : This parameter is used to alter some of the window functions (see WindowFunctions.py). Detrend : This will linearly detrend each time window before the transform. FindGaps : This tells the routine to scan for data gaps, when set to False - the data are assumed to be perfect. GoodData : This can be set to a boolean array which tells the DetectGaps function which data points are good (True) or bad (False), if set to None, then any non-finite data is assumed to be bad. Quiet : When set to True, the function produces no stdout output; when False, stdout shows the progress. LenW : This can be set to an integer value in order to force a specific window length (the number of elements, as opposed to the length in time defined using wind) Threshold: If set to a value above 0, then all values which correspond to frequencies where the amplitude is less than Threshold are set to 0, effectively removing noise from the spectra. Fudge: (LS Only!) This applies a fudge for when f == Nyquist frequency, because small floating point numbers have relatively large errors. This should only be needed if intending to reproduce a two-sided FFT (also, if doing this then divide A by 2 and P by 4). OneSided: (FFT Only!) This should be set to remove the negative frequencies in the second half of the spectra. In doing so, the amplitudes are doubled and the powers are quadrupled. Tax : (LS only) An array of times at the centre of each bin. Returns ======= Nw : Total number of time windows in the output array LenW : Length of a time window (number of elements) Freq : Array of frequencies in Hz. numpy.recarray : Stores the output of the transform under the following fields: Tspec : Time in seconds of the middle of each time window Pow : Power at each frequency in each window, shape (Nw,LenW) Pha : Phase at each frequency in each window, shape (Nw,LenW) Amp : Amplitude at each frequency in each window, shape (Nw,LenW) Real : Real component at each frequency in each window, shape (Nw,LenW) Imag : Imaginary component at each frequency in each window, shape (Nw,LenW) ''' isLS = 'LS' in Method isCP = 'CP' in Method #check that the frequencies exist if we are using LS #if Freq is None and isLS: #find out the length of the array and Tlen = np.size(t) if Tlen <= 1: return (0,0,0,0,0,0,0,0) if isLS: #we need frequencies here, so we will assume that the data are #evenly spaced and that we can use the FFT frequencies dt,ct = np.unique((t[1:]-t[:-1]),return_counts=True) Res = dt[ct.argmax()] else: Res = t[1] - t[0] #detect and gaps in the input data if FindGaps: ngd,Ti0,Ti1 = DetectGaps(v,GoodData) else: ngd = 1 Ti0 = np.array([0]) Ti1 = np.array([Tlen-1]) #find the number of windows Nw,LenW,Nwind = GetWindows(t,wind,slip,ngd,Ti0,Ti1,LenW) #find the number of frequencies if Freq is None or not isLS: Freq = np.arange(LenW+1,dtype='float32')/(LenW*Res) if OneSided or isLS: Freq = Freq[:LenW//2 + 1] elif not Freq is None and isLS: df = Freq[-1] - Freq[-2] Freq = np.append(Freq,Freq[-1] + np.abs(df)) Nf = Freq.size - 1 #check if we have a predefined time axis if isLS and not Tax is None: Nw = Tax.size ngd = 1 Nwind = np.array([Nw]) CustTax = True else: CustTax = False #create the output arrays dtype = [ ('Tspec','float64'), #mid point in time of the current window ('Pow','float32',(Nf,)), #Power spectra ('Pha','float32',(Nf,)), #phase spectra ('Amp','float32',(Nf,)), #Amplitude ('Real','float32',(Nf,)), #Real components of spectra ('Imag','float32',(Nf)), #Imaginary components of spectra ('Size','int32'), #Number of valid (finite) values used to create spectrum ('Good','float32'), #Fraction of good data ('Var','float32'),] #Variance out = np.recarray(Nw,dtype=dtype) out.fill(np.nan) out.nV = 0.0 #loop through each good secion of the time series and FFT/L-S nd=0 pos=0 for i in range(0,ngd): if nd > 0: #this bit adds a load of NaNs in a gap in the middle of two good sections out.Tspec[pos] = (out.Tspec[pos-1] + t[Ti0[i]] + wind/2.0)/2.0 pos+=1 if Nwind[i] > 0: if CustTax: if isCP: #good = np.where(np.isfinite(v[0]) & np.isfinite(v[1]))[0] Tv0 = v[0]#[good] Tv1 = v[1]#[good] nTv = Tv0.size else: #good = np.where(np.isfinite(v))[0] Tv = v#[good] nTv = Tv.size Tt = t#[good] out.Tspec = Tax if not Steps is None: S = Steps else: #calculate the number of elements in this section and create #an array of the indices to use ng = Ti1[i]-Ti0[i]+1 good = np.arange(ng) + Ti0[i] #copy the subarrays for time and v if isCP: Tv0 = v[0][good] Tv1 = v[1][good] nTv = Tv0.size else: Tv = v[good] nTv = Tv.size Tt = t[good] if not Steps is None: S = Steps[good] #output time array Tax = np.arange(Nwind[i],dtype='float64')*slip + wind/2.0 + Tt[0] out.Tspec[pos:pos+Nwind[i]] = Tax #loop through each window for j in range(0,Nwind[i]): #indices for this current window if CustTax: #for a custom time axis - use all point within 0.5*window #of the midpoint of each element of the time axis inds = np.where((Tt >= (out.Tspec[j] - wind/2.0)) & (Tt < (out.Tspec[j] + wind/2.0)))[0] elif isLS: #for when we use LS but not a custom time axis, use #all elements starting from from Ti0[i]+slip*j until #upto window later inds = np.where((Tt >= (t[Ti0[i]] + slip*j)) & (Tt < (t[Ti0[i]] + slip*j + wind)))[0] else: #otherwise (FFT) everything should be perfectly evenly #spaced, all windows have the same number of elements use0 = np.int32(j*slip/Res) inds = use0 + np.arange(LenW) #check for good and bad values if isCP: badvals = (np.isfinite(Tv0[inds]) == False) | (np.isfinite(Tv1[inds]) == False) else: badvals = (np.isfinite(Tv[inds]) == False) goodvals = badvals == False gd = np.sum(goodvals) #select only good values - unless doing FFT where all #values should be good already if isLS: use = inds[np.where(goodvals)[0]] else: use = inds #this shouldn't really happen, but if the length of the array #doesn't match the indices, or there are dodgy values bad = False if use.size == 0: bad = True elif
np.max(use)
numpy.max
from __future__ import absolute_import, division, print_function import inspect from datetime import datetime import numpy as np import pandas as pd import pytest import xarray as xr import xarray.plot as xplt from xarray import DataArray from xarray.coding.times import _import_cftime from xarray.plot.plot import _infer_interval_breaks from xarray.plot.utils import ( _build_discrete_cmap, _color_palette, _determine_cmap_params, import_seaborn, label_from_attrs) from . import ( assert_array_equal, assert_equal, raises_regex, requires_cftime, requires_matplotlib, requires_matplotlib2, requires_seaborn) # import mpl and change the backend before other mpl imports try: import matplotlib as mpl import matplotlib.pyplot as plt except ImportError: pass @pytest.mark.flaky @pytest.mark.skip(reason='maybe flaky') def text_in_fig(): ''' Return the set of all text in the figure ''' return {t.get_text() for t in plt.gcf().findobj(mpl.text.Text)} def find_possible_colorbars(): # nb. this function also matches meshes from pcolormesh return plt.gcf().findobj(mpl.collections.QuadMesh) def substring_in_axes(substring, ax): ''' Return True if a substring is found anywhere in an axes ''' alltxt = set([t.get_text() for t in ax.findobj(mpl.text.Text)]) for txt in alltxt: if substring in txt: return True return False def easy_array(shape, start=0, stop=1): ''' Make an array with desired shape using np.linspace shape is a tuple like (2, 3) ''' a = np.linspace(start, stop, num=np.prod(shape)) return a.reshape(shape) @requires_matplotlib class PlotTestCase(object): @pytest.fixture(autouse=True) def setup(self): yield # Remove all matplotlib figures plt.close('all') def pass_in_axis(self, plotmethod): fig, axes = plt.subplots(ncols=2) plotmethod(ax=axes[0]) assert axes[0].has_data() @pytest.mark.slow def imshow_called(self, plotmethod): plotmethod() images = plt.gca().findobj(mpl.image.AxesImage) return len(images) > 0 def contourf_called(self, plotmethod): plotmethod() paths = plt.gca().findobj(mpl.collections.PathCollection) return len(paths) > 0 class TestPlot(PlotTestCase): @pytest.fixture(autouse=True) def setup_array(self): self.darray = DataArray(easy_array((2, 3, 4))) def test_label_from_attrs(self): da = self.darray.copy() assert '' == label_from_attrs(da) da.name = 'a' da.attrs['units'] = 'a_units' da.attrs['long_name'] = 'a_long_name' da.attrs['standard_name'] = 'a_standard_name' assert 'a_long_name [a_units]' == label_from_attrs(da) da.attrs.pop('long_name') assert 'a_standard_name [a_units]' == label_from_attrs(da) da.attrs.pop('units') assert 'a_standard_name' == label_from_attrs(da) da.attrs['units'] = 'a_units' da.attrs.pop('standard_name') assert 'a [a_units]' == label_from_attrs(da) da.attrs.pop('units') assert 'a' == label_from_attrs(da) def test1d(self): self.darray[:, 0, 0].plot() with raises_regex(ValueError, 'None'): self.darray[:, 0, 0].plot(x='dim_1') def test_1d_x_y_kw(self): z = np.arange(10) da = DataArray(np.cos(z), dims=['z'], coords=[z], name='f') xy = [[None, None], [None, 'z'], ['z', None]] f, ax = plt.subplots(3, 1) for aa, (x, y) in enumerate(xy): da.plot(x=x, y=y, ax=ax.flat[aa]) with raises_regex(ValueError, 'cannot'): da.plot(x='z', y='z') with raises_regex(ValueError, 'None'): da.plot(x='f', y='z') with raises_regex(ValueError, 'None'): da.plot(x='z', y='f') def test_2d_line(self): with raises_regex(ValueError, 'hue'): self.darray[:, :, 0].plot.line() self.darray[:, :, 0].plot.line(hue='dim_1') self.darray[:, :, 0].plot.line(x='dim_1') self.darray[:, :, 0].plot.line(y='dim_1') self.darray[:, :, 0].plot.line(x='dim_0', hue='dim_1') self.darray[:, :, 0].plot.line(y='dim_0', hue='dim_1') with raises_regex(ValueError, 'cannot'): self.darray[:, :, 0].plot.line(x='dim_1', y='dim_0', hue='dim_1') def test_2d_line_accepts_legend_kw(self): self.darray[:, :, 0].plot.line(x='dim_0', add_legend=False) assert not plt.gca().get_legend() plt.cla() self.darray[:, :, 0].plot.line(x='dim_0', add_legend=True) assert plt.gca().get_legend() # check whether legend title is set assert (plt.gca().get_legend().get_title().get_text() == 'dim_1') def test_2d_line_accepts_x_kw(self): self.darray[:, :, 0].plot.line(x='dim_0') assert plt.gca().get_xlabel() == 'dim_0' plt.cla() self.darray[:, :, 0].plot.line(x='dim_1') assert plt.gca().get_xlabel() == 'dim_1' def test_2d_line_accepts_hue_kw(self): self.darray[:, :, 0].plot.line(hue='dim_0') assert (plt.gca().get_legend().get_title().get_text() == 'dim_0') plt.cla() self.darray[:, :, 0].plot.line(hue='dim_1') assert (plt.gca().get_legend().get_title().get_text() == 'dim_1') def test_2d_before_squeeze(self): a = DataArray(easy_array((1, 5))) a.plot() def test2d_uniform_calls_imshow(self): assert self.imshow_called(self.darray[:, :, 0].plot.imshow) @pytest.mark.slow def test2d_nonuniform_calls_contourf(self): a = self.darray[:, :, 0] a.coords['dim_1'] = [2, 1, 89] assert self.contourf_called(a.plot.contourf) def test2d_1d_2d_coordinates_contourf(self): sz = (20, 10) depth = easy_array(sz) a = DataArray( easy_array(sz), dims=['z', 'time'], coords={ 'depth': (['z', 'time'], depth), 'time': np.linspace(0, 1, sz[1]) }) a.plot.contourf(x='time', y='depth') def test3d(self): self.darray.plot() def test_can_pass_in_axis(self): self.pass_in_axis(self.darray.plot) def test__infer_interval_breaks(self): assert_array_equal([-0.5, 0.5, 1.5], _infer_interval_breaks([0, 1])) assert_array_equal([-0.5, 0.5, 5.0, 9.5, 10.5], _infer_interval_breaks([0, 1, 9, 10])) assert_array_equal( pd.date_range('20000101', periods=4) - np.timedelta64(12, 'h'), _infer_interval_breaks(pd.date_range('20000101', periods=3))) # make a bounded 2D array that we will center and re-infer xref, yref = np.meshgrid(np.arange(6), np.arange(5)) cx = (xref[1:, 1:] + xref[:-1, :-1]) / 2 cy = (yref[1:, 1:] + yref[:-1, :-1]) / 2 x = _infer_interval_breaks(cx, axis=1) x = _infer_interval_breaks(x, axis=0) y = _infer_interval_breaks(cy, axis=1) y = _infer_interval_breaks(y, axis=0) np.testing.assert_allclose(xref, x) np.testing.assert_allclose(yref, y) # test that ValueError is raised for non-monotonic 1D inputs with pytest.raises(ValueError): _infer_interval_breaks(np.array([0, 2, 1]), check_monotonic=True) def test_geo_data(self): # Regression test for gh2250 # Realistic coordinates taken from the example dataset lat = np.array([[16.28, 18.48, 19.58, 19.54, 18.35], [28.07, 30.52, 31.73, 31.68, 30.37], [39.65, 42.27, 43.56, 43.51, 42.11], [50.52, 53.22, 54.55, 54.50, 53.06]]) lon = np.array([[-126.13, -113.69, -100.92, -88.04, -75.29], [-129.27, -115.62, -101.54, -87.32, -73.26], [-133.10, -118.00, -102.31, -86.42, -70.76], [-137.85, -120.99, -103.28, -85.28, -67.62]]) data = np.sqrt(lon ** 2 + lat ** 2) da = DataArray(data, dims=('y', 'x'), coords={'lon': (('y', 'x'), lon), 'lat': (('y', 'x'), lat)}) da.plot(x='lon', y='lat') ax = plt.gca() assert ax.has_data() da.plot(x='lat', y='lon') ax = plt.gca() assert ax.has_data() def test_datetime_dimension(self): nrow = 3 ncol = 4 time = pd.date_range('2000-01-01', periods=nrow) a = DataArray( easy_array((nrow, ncol)), coords=[('time', time), ('y', range(ncol))]) a.plot() ax = plt.gca() assert ax.has_data() @pytest.mark.slow @pytest.mark.filterwarnings('ignore:tight_layout cannot') def test_convenient_facetgrid(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=['y', 'x', 'z']) d.coords['z'] = list('abcd') g = d.plot(x='x', y='y', col='z', col_wrap=2, cmap='cool') assert_array_equal(g.axes.shape, [2, 2]) for ax in g.axes.flat: assert ax.has_data() with raises_regex(ValueError, '[Ff]acet'): d.plot(x='x', y='y', col='z', ax=plt.gca()) with raises_regex(ValueError, '[Ff]acet'): d[0].plot(x='x', y='y', col='z', ax=plt.gca()) @pytest.mark.slow @requires_matplotlib2 def test_subplot_kws(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=['y', 'x', 'z']) d.coords['z'] = list('abcd') g = d.plot( x='x', y='y', col='z', col_wrap=2, cmap='cool', subplot_kws=dict(facecolor='r')) for ax in g.axes.flat: # mpl V2 assert ax.get_facecolor()[0:3] == \ mpl.colors.to_rgb('r') @pytest.mark.slow def test_plot_size(self): self.darray[:, 0, 0].plot(figsize=(13, 5)) assert tuple(plt.gcf().get_size_inches()) == (13, 5) self.darray.plot(figsize=(13, 5)) assert tuple(plt.gcf().get_size_inches()) == (13, 5) self.darray.plot(size=5) assert plt.gcf().get_size_inches()[1] == 5 self.darray.plot(size=5, aspect=2) assert tuple(plt.gcf().get_size_inches()) == (10, 5) with raises_regex(ValueError, 'cannot provide both'): self.darray.plot(ax=plt.gca(), figsize=(3, 4)) with raises_regex(ValueError, 'cannot provide both'): self.darray.plot(size=5, figsize=(3, 4)) with raises_regex(ValueError, 'cannot provide both'): self.darray.plot(size=5, ax=plt.gca()) with raises_regex(ValueError, 'cannot provide `aspect`'): self.darray.plot(aspect=1) @pytest.mark.slow @pytest.mark.filterwarnings('ignore:tight_layout cannot') def test_convenient_facetgrid_4d(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=['y', 'x', 'columns', 'rows']) g = d.plot(x='x', y='y', col='columns', row='rows') assert_array_equal(g.axes.shape, [3, 2]) for ax in g.axes.flat: assert ax.has_data() with raises_regex(ValueError, '[Ff]acet'): d.plot(x='x', y='y', col='columns', ax=plt.gca()) class TestPlot1D(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): d = [0, 1.1, 0, 2] self.darray = DataArray( d, coords={'period': range(len(d))}, dims='period') self.darray.period.attrs['units'] = 's' def test_xlabel_is_index_name(self): self.darray.plot() assert 'period [s]' == plt.gca().get_xlabel() def test_no_label_name_on_x_axis(self): self.darray.plot(y='period') assert '' == plt.gca().get_xlabel() def test_no_label_name_on_y_axis(self): self.darray.plot() assert '' == plt.gca().get_ylabel() def test_ylabel_is_data_name(self): self.darray.name = 'temperature' self.darray.attrs['units'] = 'degrees_Celsius' self.darray.plot() assert 'temperature [degrees_Celsius]' == plt.gca().get_ylabel() def test_xlabel_is_data_name(self): self.darray.name = 'temperature' self.darray.attrs['units'] = 'degrees_Celsius' self.darray.plot(y='period') assert 'temperature [degrees_Celsius]' == plt.gca().get_xlabel() def test_format_string(self): self.darray.plot.line('ro') def test_can_pass_in_axis(self): self.pass_in_axis(self.darray.plot.line) def test_nonnumeric_index_raises_typeerror(self): a = DataArray([1, 2, 3], {'letter': ['a', 'b', 'c']}, dims='letter') with raises_regex(TypeError, r'[Pp]lot'): a.plot.line() def test_primitive_returned(self): p = self.darray.plot.line() assert isinstance(p[0], mpl.lines.Line2D) @pytest.mark.slow def test_plot_nans(self): self.darray[1] = np.nan self.darray.plot.line() def test_x_ticks_are_rotated_for_time(self): time = pd.date_range('2000-01-01', '2000-01-10') a = DataArray(np.arange(len(time)), [('t', time)]) a.plot.line() rotation = plt.gca().get_xticklabels()[0].get_rotation() assert rotation != 0 def test_xyincrease_false_changes_axes(self): self.darray.plot.line(xincrease=False, yincrease=False) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() diffs = xlim[1] - xlim[0], ylim[1] - ylim[0] assert all(x < 0 for x in diffs) def test_slice_in_title(self): self.darray.coords['d'] = 10 self.darray.plot.line() title = plt.gca().get_title() assert 'd = 10' == title class TestPlotHistogram(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): self.darray = DataArray(easy_array((2, 3, 4))) def test_3d_array(self): self.darray.plot.hist() def test_xlabel_uses_name(self): self.darray.name = 'testpoints' self.darray.attrs['units'] = 'testunits' self.darray.plot.hist() assert 'testpoints [testunits]' == plt.gca().get_xlabel() def test_title_is_histogram(self): self.darray.plot.hist() assert 'Histogram' == plt.gca().get_title() def test_can_pass_in_kwargs(self): nbins = 5 self.darray.plot.hist(bins=nbins) assert nbins == len(plt.gca().patches) def test_can_pass_in_axis(self): self.pass_in_axis(self.darray.plot.hist) def test_primitive_returned(self): h = self.darray.plot.hist() assert isinstance(h[-1][0], mpl.patches.Rectangle) @pytest.mark.slow def test_plot_nans(self): self.darray[0, 0, 0] = np.nan self.darray.plot.hist() @requires_matplotlib class TestDetermineCmapParams(object): @pytest.fixture(autouse=True) def setUp(self): self.data = np.linspace(0, 1, num=100) def test_robust(self): cmap_params = _determine_cmap_params(self.data, robust=True) assert cmap_params['vmin'] == np.percentile(self.data, 2) assert cmap_params['vmax'] == np.percentile(self.data, 98) assert cmap_params['cmap'] == 'viridis' assert cmap_params['extend'] == 'both' assert cmap_params['levels'] is None assert cmap_params['norm'] is None def test_center(self): cmap_params = _determine_cmap_params(self.data, center=0.5) assert cmap_params['vmax'] - 0.5 == 0.5 - cmap_params['vmin'] assert cmap_params['cmap'] == 'RdBu_r' assert cmap_params['extend'] == 'neither' assert cmap_params['levels'] is None assert cmap_params['norm'] is None def test_cmap_sequential_option(self): with xr.set_options(cmap_sequential='magma'): cmap_params = _determine_cmap_params(self.data) assert cmap_params['cmap'] == 'magma' def test_cmap_sequential_explicit_option(self): with xr.set_options(cmap_sequential=mpl.cm.magma): cmap_params = _determine_cmap_params(self.data) assert cmap_params['cmap'] == mpl.cm.magma def test_cmap_divergent_option(self): with xr.set_options(cmap_divergent='magma'): cmap_params = _determine_cmap_params(self.data, center=0.5) assert cmap_params['cmap'] == 'magma' def test_nan_inf_are_ignored(self): cmap_params1 = _determine_cmap_params(self.data) data = self.data data[50:55] = np.nan data[56:60] = np.inf cmap_params2 = _determine_cmap_params(data) assert cmap_params1['vmin'] == cmap_params2['vmin'] assert cmap_params1['vmax'] == cmap_params2['vmax'] @pytest.mark.slow def test_integer_levels(self): data = self.data + 1 # default is to cover full data range but with no guarantee on Nlevels for level in np.arange(2, 10, dtype=int): cmap_params = _determine_cmap_params(data, levels=level) assert cmap_params['vmin'] == cmap_params['levels'][0] assert cmap_params['vmax'] == cmap_params['levels'][-1] assert cmap_params['extend'] == 'neither' # with min max we are more strict cmap_params = _determine_cmap_params( data, levels=5, vmin=0, vmax=5, cmap='Blues') assert cmap_params['vmin'] == 0 assert cmap_params['vmax'] == 5 assert cmap_params['vmin'] == cmap_params['levels'][0] assert cmap_params['vmax'] == cmap_params['levels'][-1] assert cmap_params['cmap'].name == 'Blues' assert cmap_params['extend'] == 'neither' assert cmap_params['cmap'].N == 4 assert cmap_params['norm'].N == 5 cmap_params = _determine_cmap_params( data, levels=5, vmin=0.5, vmax=1.5) assert cmap_params['cmap'].name == 'viridis' assert cmap_params['extend'] == 'max' cmap_params = _determine_cmap_params(data, levels=5, vmin=1.5) assert cmap_params['cmap'].name == 'viridis' assert cmap_params['extend'] == 'min' cmap_params = _determine_cmap_params( data, levels=5, vmin=1.3, vmax=1.5) assert cmap_params['cmap'].name == 'viridis' assert cmap_params['extend'] == 'both' def test_list_levels(self): data = self.data + 1 orig_levels = [0, 1, 2, 3, 4, 5] # vmin and vmax should be ignored if levels are explicitly provided cmap_params = _determine_cmap_params( data, levels=orig_levels, vmin=0, vmax=3) assert cmap_params['vmin'] == 0 assert cmap_params['vmax'] == 5 assert cmap_params['cmap'].N == 5 assert cmap_params['norm'].N == 6 for wrap_levels in [list, np.array, pd.Index, DataArray]: cmap_params = _determine_cmap_params( data, levels=wrap_levels(orig_levels)) assert_array_equal(cmap_params['levels'], orig_levels) def test_divergentcontrol(self): neg = self.data - 0.1 pos = self.data # Default with positive data will be a normal cmap cmap_params = _determine_cmap_params(pos) assert cmap_params['vmin'] == 0 assert cmap_params['vmax'] == 1 assert cmap_params['cmap'] == "viridis" # Default with negative data will be a divergent cmap cmap_params = _determine_cmap_params(neg) assert cmap_params['vmin'] == -0.9 assert cmap_params['vmax'] == 0.9 assert cmap_params['cmap'] == "RdBu_r" # Setting vmin or vmax should prevent this only if center is false cmap_params = _determine_cmap_params(neg, vmin=-0.1, center=False) assert cmap_params['vmin'] == -0.1 assert cmap_params['vmax'] == 0.9 assert cmap_params['cmap'] == "viridis" cmap_params = _determine_cmap_params(neg, vmax=0.5, center=False) assert cmap_params['vmin'] == -0.1 assert cmap_params['vmax'] == 0.5 assert cmap_params['cmap'] == "viridis" # Setting center=False too cmap_params = _determine_cmap_params(neg, center=False) assert cmap_params['vmin'] == -0.1 assert cmap_params['vmax'] == 0.9 assert cmap_params['cmap'] == "viridis" # However, I should still be able to set center and have a div cmap cmap_params = _determine_cmap_params(neg, center=0) assert cmap_params['vmin'] == -0.9 assert cmap_params['vmax'] == 0.9 assert cmap_params['cmap'] == "RdBu_r" # Setting vmin or vmax alone will force symmetric bounds around center cmap_params = _determine_cmap_params(neg, vmin=-0.1) assert cmap_params['vmin'] == -0.1 assert cmap_params['vmax'] == 0.1 assert cmap_params['cmap'] == "RdBu_r" cmap_params = _determine_cmap_params(neg, vmax=0.5) assert cmap_params['vmin'] == -0.5 assert cmap_params['vmax'] == 0.5 assert cmap_params['cmap'] == "RdBu_r" cmap_params = _determine_cmap_params(neg, vmax=0.6, center=0.1) assert cmap_params['vmin'] == -0.4 assert cmap_params['vmax'] == 0.6 assert cmap_params['cmap'] == "RdBu_r" # But this is only true if vmin or vmax are negative cmap_params = _determine_cmap_params(pos, vmin=-0.1) assert cmap_params['vmin'] == -0.1 assert cmap_params['vmax'] == 0.1 assert cmap_params['cmap'] == "RdBu_r" cmap_params = _determine_cmap_params(pos, vmin=0.1) assert cmap_params['vmin'] == 0.1 assert cmap_params['vmax'] == 1 assert cmap_params['cmap'] == "viridis" cmap_params = _determine_cmap_params(pos, vmax=0.5) assert cmap_params['vmin'] == 0 assert cmap_params['vmax'] == 0.5 assert cmap_params['cmap'] == "viridis" # If both vmin and vmax are provided, output is non-divergent cmap_params = _determine_cmap_params(neg, vmin=-0.2, vmax=0.6) assert cmap_params['vmin'] == -0.2 assert cmap_params['vmax'] == 0.6 assert cmap_params['cmap'] == "viridis" def test_norm_sets_vmin_vmax(self): vmin = self.data.min() vmax = self.data.max() for norm, extend in zip([mpl.colors.LogNorm(), mpl.colors.LogNorm(vmin + 1, vmax - 1), mpl.colors.LogNorm(None, vmax - 1), mpl.colors.LogNorm(vmin + 1, None)], ['neither', 'both', 'max', 'min']): test_min = vmin if norm.vmin is None else norm.vmin test_max = vmax if norm.vmax is None else norm.vmax cmap_params = _determine_cmap_params(self.data, norm=norm) assert cmap_params['vmin'] == test_min assert cmap_params['vmax'] == test_max assert cmap_params['extend'] == extend assert cmap_params['norm'] == norm @requires_matplotlib class TestDiscreteColorMap(object): @pytest.fixture(autouse=True) def setUp(self): x = np.arange(start=0, stop=10, step=2) y = np.arange(start=9, stop=-7, step=-3) xy = np.dstack(np.meshgrid(x, y)) distance = np.linalg.norm(xy, axis=2) self.darray = DataArray(distance, list(zip(('y', 'x'), (y, x)))) self.data_min = distance.min() self.data_max = distance.max() @pytest.mark.slow def test_recover_from_seaborn_jet_exception(self): pal = _color_palette('jet', 4) assert type(pal) == np.ndarray assert len(pal) == 4 @pytest.mark.slow def test_build_discrete_cmap(self): for (cmap, levels, extend, filled) in [('jet', [0, 1], 'both', False), ('hot', [-4, 4], 'max', True)]: ncmap, cnorm = _build_discrete_cmap(cmap, levels, extend, filled) assert ncmap.N == len(levels) - 1 assert len(ncmap.colors) == len(levels) - 1 assert cnorm.N == len(levels) assert_array_equal(cnorm.boundaries, levels) assert max(levels) == cnorm.vmax assert min(levels) == cnorm.vmin if filled: assert ncmap.colorbar_extend == extend else: assert ncmap.colorbar_extend == 'max' @pytest.mark.slow def test_discrete_colormap_list_of_levels(self): for extend, levels in [('max', [-1, 2, 4, 8, 10]), ('both', [2, 5, 10, 11]), ('neither', [0, 5, 10, 15]), ('min', [2, 5, 10, 15])]: for kind in ['imshow', 'pcolormesh', 'contourf', 'contour']: primitive = getattr(self.darray.plot, kind)(levels=levels) assert_array_equal(levels, primitive.norm.boundaries) assert max(levels) == primitive.norm.vmax assert min(levels) == primitive.norm.vmin if kind != 'contour': assert extend == primitive.cmap.colorbar_extend else: assert 'max' == primitive.cmap.colorbar_extend assert len(levels) - 1 == len(primitive.cmap.colors) @pytest.mark.slow def test_discrete_colormap_int_levels(self): for extend, levels, vmin, vmax in [('neither', 7, None, None), ('neither', 7, None, 20), ('both', 7, 4, 8), ('min', 10, 4, 15)]: for kind in ['imshow', 'pcolormesh', 'contourf', 'contour']: primitive = getattr(self.darray.plot, kind)( levels=levels, vmin=vmin, vmax=vmax) assert levels >= \ len(primitive.norm.boundaries) - 1 if vmax is None: assert primitive.norm.vmax >= self.data_max else: assert primitive.norm.vmax >= vmax if vmin is None: assert primitive.norm.vmin <= self.data_min else: assert primitive.norm.vmin <= vmin if kind != 'contour': assert extend == primitive.cmap.colorbar_extend else: assert 'max' == primitive.cmap.colorbar_extend assert levels >= len(primitive.cmap.colors) def test_discrete_colormap_list_levels_and_vmin_or_vmax(self): levels = [0, 5, 10, 15] primitive = self.darray.plot(levels=levels, vmin=-3, vmax=20) assert primitive.norm.vmax == max(levels) assert primitive.norm.vmin == min(levels) def test_discrete_colormap_provided_boundary_norm(self): norm = mpl.colors.BoundaryNorm([0, 5, 10, 15], 4) primitive = self.darray.plot.contourf(norm=norm) np.testing.assert_allclose(primitive.levels, norm.boundaries) class Common2dMixin(object): """ Common tests for 2d plotting go here. These tests assume that a staticmethod for `self.plotfunc` exists. Should have the same name as the method. """ @pytest.fixture(autouse=True) def setUp(self): da = DataArray(easy_array((10, 15), start=-1), dims=['y', 'x'], coords={'y': np.arange(10), 'x': np.arange(15)}) # add 2d coords ds = da.to_dataset(name='testvar') x, y = np.meshgrid(da.x.values, da.y.values) ds['x2d'] = DataArray(x, dims=['y', 'x']) ds['y2d'] = DataArray(y, dims=['y', 'x']) ds.set_coords(['x2d', 'y2d'], inplace=True) # set darray and plot method self.darray = ds.testvar # Add CF-compliant metadata self.darray.attrs['long_name'] = 'a_long_name' self.darray.attrs['units'] = 'a_units' self.darray.x.attrs['long_name'] = 'x_long_name' self.darray.x.attrs['units'] = 'x_units' self.darray.y.attrs['long_name'] = 'y_long_name' self.darray.y.attrs['units'] = 'y_units' self.plotmethod = getattr(self.darray.plot, self.plotfunc.__name__) def test_label_names(self): self.plotmethod() assert 'x_long_name [x_units]' == plt.gca().get_xlabel() assert 'y_long_name [y_units]' == plt.gca().get_ylabel() def test_1d_raises_valueerror(self): with raises_regex(ValueError, r'DataArray must be 2d'): self.plotfunc(self.darray[0, :]) def test_3d_raises_valueerror(self): a = DataArray(easy_array((2, 3, 4))) if self.plotfunc.__name__ == 'imshow': pytest.skip() with raises_regex(ValueError, r'DataArray must be 2d'): self.plotfunc(a) def test_nonnumeric_index_raises_typeerror(self): a = DataArray(easy_array((3, 2)), coords=[['a', 'b', 'c'], ['d', 'e']]) with raises_regex(TypeError, r'[Pp]lot'): self.plotfunc(a) def test_can_pass_in_axis(self): self.pass_in_axis(self.plotmethod) def test_xyincrease_defaults(self): # With default settings the axis must be ordered regardless # of the coords order. self.plotfunc(DataArray(easy_array((3, 2)), coords=[[1, 2, 3], [1, 2]])) bounds = plt.gca().get_ylim() assert bounds[0] < bounds[1] bounds = plt.gca().get_xlim() assert bounds[0] < bounds[1] # Inverted coords self.plotfunc(DataArray(easy_array((3, 2)), coords=[[3, 2, 1], [2, 1]])) bounds = plt.gca().get_ylim() assert bounds[0] < bounds[1] bounds = plt.gca().get_xlim() assert bounds[0] < bounds[1] def test_xyincrease_false_changes_axes(self): self.plotmethod(xincrease=False, yincrease=False) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() diffs = xlim[0] - 14, xlim[1] - 0, ylim[0] - 9, ylim[1] - 0 assert all(abs(x) < 1 for x in diffs) def test_xyincrease_true_changes_axes(self): self.plotmethod(xincrease=True, yincrease=True) xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() diffs = xlim[0] - 0, xlim[1] - 14, ylim[0] - 0, ylim[1] - 9 assert all(abs(x) < 1 for x in diffs) def test_x_ticks_are_rotated_for_time(self): time = pd.date_range('2000-01-01', '2000-01-10') a = DataArray( np.random.randn(2, len(time)), [('xx', [1, 2]), ('t', time)]) a.plot(x='t') rotation = plt.gca().get_xticklabels()[0].get_rotation() assert rotation != 0 def test_plot_nans(self): x1 = self.darray[:5] x2 = self.darray.copy() x2[5:] = np.nan clim1 = self.plotfunc(x1).get_clim() clim2 = self.plotfunc(x2).get_clim() assert clim1 == clim2 @pytest.mark.filterwarnings('ignore::UserWarning') @pytest.mark.filterwarnings('ignore:invalid value encountered') def test_can_plot_all_nans(self): # regression test for issue #1780 self.plotfunc(DataArray(np.full((2, 2), np.nan))) @pytest.mark.filterwarnings('ignore: Attempting to set') def test_can_plot_axis_size_one(self): if self.plotfunc.__name__ not in ('contour', 'contourf'): self.plotfunc(DataArray(np.ones((1, 1)))) def test_disallows_rgb_arg(self): with pytest.raises(ValueError): # Always invalid for most plots. Invalid for imshow with 2D data. self.plotfunc(DataArray(np.ones((2, 2))), rgb='not None') def test_viridis_cmap(self): cmap_name = self.plotmethod(cmap='viridis').get_cmap().name assert 'viridis' == cmap_name def test_default_cmap(self): cmap_name = self.plotmethod().get_cmap().name assert 'RdBu_r' == cmap_name cmap_name = self.plotfunc(abs(self.darray)).get_cmap().name assert 'viridis' == cmap_name @requires_seaborn def test_seaborn_palette_as_cmap(self): cmap_name = self.plotmethod(levels=2, cmap='husl').get_cmap().name assert 'husl' == cmap_name def test_can_change_default_cmap(self): cmap_name = self.plotmethod(cmap='Blues').get_cmap().name assert 'Blues' == cmap_name def test_diverging_color_limits(self): artist = self.plotmethod() vmin, vmax = artist.get_clim() assert round(abs(-vmin - vmax), 7) == 0 def test_xy_strings(self): self.plotmethod('y', 'x') ax = plt.gca() assert 'y_long_name [y_units]' == ax.get_xlabel() assert 'x_long_name [x_units]' == ax.get_ylabel() def test_positional_coord_string(self): self.plotmethod(y='x') ax = plt.gca() assert 'x_long_name [x_units]' == ax.get_ylabel() assert 'y_long_name [y_units]' == ax.get_xlabel() self.plotmethod(x='x') ax = plt.gca() assert 'x_long_name [x_units]' == ax.get_xlabel() assert 'y_long_name [y_units]' == ax.get_ylabel() def test_bad_x_string_exception(self): with raises_regex(ValueError, 'x and y must be coordinate variables'): self.plotmethod('not_a_real_dim', 'y') with raises_regex(ValueError, 'x must be a dimension name if y is not supplied'): self.plotmethod(x='not_a_real_dim') with raises_regex(ValueError, 'y must be a dimension name if x is not supplied'): self.plotmethod(y='not_a_real_dim') self.darray.coords['z'] = 100 def test_coord_strings(self): # 1d coords (same as dims) assert {'x', 'y'} == set(self.darray.dims) self.plotmethod(y='y', x='x') def test_non_linked_coords(self): # plot with coordinate names that are not dimensions self.darray.coords['newy'] = self.darray.y + 150 # Normal case, without transpose self.plotfunc(self.darray, x='x', y='newy') ax = plt.gca() assert 'x_long_name [x_units]' == ax.get_xlabel() assert 'newy' == ax.get_ylabel() # ax limits might change between plotfuncs # simply ensure that these high coords were passed over assert np.min(ax.get_ylim()) > 100. def test_non_linked_coords_transpose(self): # plot with coordinate names that are not dimensions, # and with transposed y and x axes # This used to raise an error with pcolormesh and contour # https://github.com/pydata/xarray/issues/788 self.darray.coords['newy'] = self.darray.y + 150 self.plotfunc(self.darray, x='newy', y='x') ax = plt.gca() assert 'newy' == ax.get_xlabel() assert 'x_long_name [x_units]' == ax.get_ylabel() # ax limits might change between plotfuncs # simply ensure that these high coords were passed over assert np.min(ax.get_xlim()) > 100. def test_default_title(self): a = DataArray(easy_array((4, 3, 2)), dims=['a', 'b', 'c']) a.coords['c'] = [0, 1] a.coords['d'] = u'foo' self.plotfunc(a.isel(c=1)) title = plt.gca().get_title() assert 'c = 1, d = foo' == title or 'd = foo, c = 1' == title def test_colorbar_default_label(self): self.plotmethod(add_colorbar=True) assert ('a_long_name [a_units]' in text_in_fig()) def test_no_labels(self): self.darray.name = 'testvar' self.darray.attrs['units'] = 'test_units' self.plotmethod(add_labels=False) alltxt = text_in_fig() for string in ['x_long_name [x_units]', 'y_long_name [y_units]', 'testvar [test_units]']: assert string not in alltxt def test_colorbar_kwargs(self): # replace label self.darray.attrs.pop('long_name') self.darray.attrs['units'] = 'test_units' # check default colorbar label self.plotmethod(add_colorbar=True) alltxt = text_in_fig() assert 'testvar [test_units]' in alltxt self.darray.attrs.pop('units') self.darray.name = 'testvar' self.plotmethod(add_colorbar=True, cbar_kwargs={'label': 'MyLabel'}) alltxt = text_in_fig() assert 'MyLabel' in alltxt assert 'testvar' not in alltxt # you can use mapping types as well self.plotmethod( add_colorbar=True, cbar_kwargs=(('label', 'MyLabel'), )) alltxt = text_in_fig() assert 'MyLabel' in alltxt assert 'testvar' not in alltxt # change cbar ax fig, (ax, cax) = plt.subplots(1, 2) self.plotmethod( ax=ax, cbar_ax=cax, add_colorbar=True, cbar_kwargs={ 'label': 'MyBar' }) assert ax.has_data() assert cax.has_data() alltxt = text_in_fig() assert 'MyBar' in alltxt assert 'testvar' not in alltxt # note that there are two ways to achieve this fig, (ax, cax) = plt.subplots(1, 2) self.plotmethod( ax=ax, add_colorbar=True, cbar_kwargs={ 'label': 'MyBar', 'cax': cax }) assert ax.has_data() assert cax.has_data() alltxt = text_in_fig() assert 'MyBar' in alltxt assert 'testvar' not in alltxt # see that no colorbar is respected self.plotmethod(add_colorbar=False) assert 'testvar' not in text_in_fig() # check that error is raised pytest.raises( ValueError, self.plotmethod, add_colorbar=False, cbar_kwargs={ 'label': 'label' }) def test_verbose_facetgrid(self): a = easy_array((10, 15, 3)) d = DataArray(a, dims=['y', 'x', 'z']) g = xplt.FacetGrid(d, col='z') g.map_dataarray(self.plotfunc, 'x', 'y') for ax in g.axes.flat: assert ax.has_data() def test_2d_function_and_method_signature_same(self): func_sig = inspect.getcallargs(self.plotfunc, self.darray) method_sig = inspect.getcallargs(self.plotmethod) del method_sig['_PlotMethods_obj'] del func_sig['darray'] assert func_sig == method_sig @pytest.mark.filterwarnings('ignore:tight_layout cannot') def test_convenient_facetgrid(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=['y', 'x', 'z']) g = self.plotfunc(d, x='x', y='y', col='z', col_wrap=2) assert_array_equal(g.axes.shape, [2, 2]) for (y, x), ax in np.ndenumerate(g.axes): assert ax.has_data() if x == 0: assert 'y' == ax.get_ylabel() else: assert '' == ax.get_ylabel() if y == 1: assert 'x' == ax.get_xlabel() else: assert '' == ax.get_xlabel() # Infering labels g = self.plotfunc(d, col='z', col_wrap=2) assert_array_equal(g.axes.shape, [2, 2]) for (y, x), ax in np.ndenumerate(g.axes): assert ax.has_data() if x == 0: assert 'y' == ax.get_ylabel() else: assert '' == ax.get_ylabel() if y == 1: assert 'x' == ax.get_xlabel() else: assert '' == ax.get_xlabel() @pytest.mark.filterwarnings('ignore:tight_layout cannot') def test_convenient_facetgrid_4d(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=['y', 'x', 'columns', 'rows']) g = self.plotfunc(d, x='x', y='y', col='columns', row='rows') assert_array_equal(g.axes.shape, [3, 2]) for ax in g.axes.flat: assert ax.has_data() @pytest.mark.filterwarnings('ignore:This figure includes') def test_facetgrid_map_only_appends_mappables(self): a = easy_array((10, 15, 2, 3)) d = DataArray(a, dims=['y', 'x', 'columns', 'rows']) g = self.plotfunc(d, x='x', y='y', col='columns', row='rows') expected = g._mappables g.map(lambda: plt.plot(1, 1)) actual = g._mappables assert expected == actual def test_facetgrid_cmap(self): # Regression test for GH592 data = (np.random.random(size=(20, 25, 12)) + np.linspace(-3, 3, 12)) d = DataArray(data, dims=['x', 'y', 'time']) fg = d.plot.pcolormesh(col='time') # check that all color limits are the same assert len(set(m.get_clim() for m in fg._mappables)) == 1 # check that all colormaps are the same assert len(set(m.get_cmap().name for m in fg._mappables)) == 1 def test_cmap_and_color_both(self): with pytest.raises(ValueError): self.plotmethod(colors='k', cmap='RdBu') def test_colormap_error_norm_and_vmin_vmax(self): norm = mpl.colors.LogNorm(0.1, 1e1) with pytest.raises(ValueError): self.darray.plot(norm=norm, vmin=2) with pytest.raises(ValueError): self.darray.plot(norm=norm, vmax=2) @pytest.mark.slow class TestContourf(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.contourf) @pytest.mark.slow def test_contourf_called(self): # Having both statements ensures the test works properly assert not self.contourf_called(self.darray.plot.imshow) assert self.contourf_called(self.darray.plot.contourf) def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl.contour.QuadContourSet) @pytest.mark.slow def test_extend(self): artist = self.plotmethod() assert artist.extend == 'neither' self.darray[0, 0] = -100 self.darray[-1, -1] = 100 artist = self.plotmethod(robust=True) assert artist.extend == 'both' self.darray[0, 0] = 0 self.darray[-1, -1] = 0 artist = self.plotmethod(vmin=-0, vmax=10) assert artist.extend == 'min' artist = self.plotmethod(vmin=-10, vmax=0) assert artist.extend == 'max' @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x='x2d', y='y2d') # make sure labels came out ok ax = plt.gca() assert 'x2d' == ax.get_xlabel() assert 'y2d' == ax.get_ylabel() @pytest.mark.slow def test_levels(self): artist = self.plotmethod(levels=[-0.5, -0.4, 0.1]) assert artist.extend == 'both' artist = self.plotmethod(levels=3) assert artist.extend == 'neither' @pytest.mark.slow class TestContour(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.contour) def test_colors(self): # matplotlib cmap.colors gives an rgbA ndarray # when seaborn is used, instead we get an rgb tuple def _color_as_tuple(c): return tuple(c[:3]) # with single color, we don't want rgb array artist = self.plotmethod(colors='k') assert artist.cmap.colors[0] == 'k' artist = self.plotmethod(colors=['k', 'b']) assert (_color_as_tuple(artist.cmap.colors[1]) == (0.0, 0.0, 1.0)) artist = self.darray.plot.contour( levels=[-0.5, 0., 0.5, 1.], colors=['k', 'r', 'w', 'b']) assert (_color_as_tuple(artist.cmap.colors[1]) == (1.0, 0.0, 0.0)) assert (_color_as_tuple(artist.cmap.colors[2]) == (1.0, 1.0, 1.0)) # the last color is now under "over" assert (_color_as_tuple(artist.cmap._rgba_over) == (0.0, 0.0, 1.0)) def test_cmap_and_color_both(self): with pytest.raises(ValueError): self.plotmethod(colors='k', cmap='RdBu') def list_of_colors_in_cmap_deprecated(self): with pytest.raises(Exception): self.plotmethod(cmap=['k', 'b']) @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x='x2d', y='y2d') # make sure labels came out ok ax = plt.gca() assert 'x2d' == ax.get_xlabel() assert 'y2d' == ax.get_ylabel() def test_single_level(self): # this used to raise an error, but not anymore since # add_colorbar defaults to false self.plotmethod(levels=[0.1]) self.plotmethod(levels=1) class TestPcolormesh(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.pcolormesh) def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl.collections.QuadMesh) def test_everything_plotted(self): artist = self.plotmethod() assert artist.get_array().size == self.darray.size @pytest.mark.slow def test_2d_coord_names(self): self.plotmethod(x='x2d', y='y2d') # make sure labels came out ok ax = plt.gca() assert 'x2d' == ax.get_xlabel() assert 'y2d' == ax.get_ylabel() def test_dont_infer_interval_breaks_for_cartopy(self): # Regression for GH 781 ax = plt.gca() # Simulate a Cartopy Axis setattr(ax, 'projection', True) artist = self.plotmethod(x='x2d', y='y2d', ax=ax) assert isinstance(artist, mpl.collections.QuadMesh) # Let cartopy handle the axis limits and artist size assert artist.get_array().size <= self.darray.size @pytest.mark.slow class TestImshow(Common2dMixin, PlotTestCase): plotfunc = staticmethod(xplt.imshow) @pytest.mark.slow def test_imshow_called(self): # Having both statements ensures the test works properly assert not self.imshow_called(self.darray.plot.contourf) assert self.imshow_called(self.darray.plot.imshow) def test_xy_pixel_centered(self): self.darray.plot.imshow(yincrease=False) assert np.allclose([-0.5, 14.5], plt.gca().get_xlim()) assert np.allclose([9.5, -0.5], plt.gca().get_ylim()) def test_default_aspect_is_auto(self): self.darray.plot.imshow() assert 'auto' == plt.gca().get_aspect() @pytest.mark.slow def test_cannot_change_mpl_aspect(self): with raises_regex(ValueError, 'not available in xarray'): self.darray.plot.imshow(aspect='equal') # with numbers we fall back to fig control self.darray.plot.imshow(size=5, aspect=2) assert 'auto' == plt.gca().get_aspect() assert tuple(plt.gcf().get_size_inches()) == (10, 5) @pytest.mark.slow def test_primitive_artist_returned(self): artist = self.plotmethod() assert isinstance(artist, mpl.image.AxesImage) @pytest.mark.slow @requires_seaborn def test_seaborn_palette_needs_levels(self): with pytest.raises(ValueError): self.plotmethod(cmap='husl') def test_2d_coord_names(self): with raises_regex(ValueError, 'requires 1D coordinates'): self.plotmethod(x='x2d', y='y2d') def test_plot_rgb_image(self): DataArray( easy_array((10, 15, 3), start=0), dims=['y', 'x', 'band'], ).plot.imshow() assert 0 == len(find_possible_colorbars()) def test_plot_rgb_image_explicit(self): DataArray( easy_array((10, 15, 3), start=0), dims=['y', 'x', 'band'], ).plot.imshow( y='y', x='x', rgb='band') assert 0 == len(find_possible_colorbars()) def test_plot_rgb_faceted(self): DataArray( easy_array((2, 2, 10, 15, 3), start=0), dims=['a', 'b', 'y', 'x', 'band'], ).plot.imshow( row='a', col='b') assert 0 == len(find_possible_colorbars()) def test_plot_rgba_image_transposed(self): # We can handle the color axis being in any position DataArray( easy_array((4, 10, 15), start=0), dims=['band', 'y', 'x'], ).plot.imshow() def test_warns_ambigious_dim(self): arr = DataArray(easy_array((3, 3, 3)), dims=['y', 'x', 'band']) with pytest.warns(UserWarning): arr.plot.imshow() # but doesn't warn if dimensions specified arr.plot.imshow(rgb='band') arr.plot.imshow(x='x', y='y') def test_rgb_errors_too_many_dims(self): arr = DataArray(easy_array((3, 3, 3, 3)), dims=['y', 'x', 'z', 'band']) with pytest.raises(ValueError): arr.plot.imshow(rgb='band') def test_rgb_errors_bad_dim_sizes(self): arr = DataArray(easy_array((5, 5, 5)), dims=['y', 'x', 'band']) with pytest.raises(ValueError): arr.plot.imshow(rgb='band') def test_normalize_rgb_imshow(self): for kwds in ( dict(vmin=-1), dict(vmax=2), dict(vmin=-1, vmax=1), dict(vmin=0, vmax=0), dict(vmin=0, robust=True), dict(vmax=-1, robust=True), ): da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4)) arr = da.plot.imshow(**kwds).get_array() assert 0 <= arr.min() <= arr.max() <= 1, kwds def test_normalize_rgb_one_arg_error(self): da = DataArray(easy_array((5, 5, 3), start=-0.6, stop=1.4)) # If passed one bound that implies all out of range, error: for kwds in [dict(vmax=-1), dict(vmin=2)]: with pytest.raises(ValueError): da.plot.imshow(**kwds) # If passed two that's just moving the range, *not* an error: for kwds in [dict(vmax=-1, vmin=-1.2), dict(vmin=2, vmax=2.1)]: da.plot.imshow(**kwds) def test_imshow_rgb_values_in_valid_range(self): da = DataArray(np.arange(75, dtype='uint8').reshape((5, 5, 3))) _, ax = plt.subplots() out = da.plot.imshow(ax=ax).get_array() assert out.dtype == np.uint8 assert (out[..., :3] == da.values).all() # Compare without added alpha @pytest.mark.filterwarnings('ignore:Several dimensions of this array') def test_regression_rgb_imshow_dim_size_one(self): # Regression: https://github.com/pydata/xarray/issues/1966 da = DataArray(easy_array((1, 3, 3), start=0.0, stop=1.0)) da.plot.imshow() def test_origin_overrides_xyincrease(self): da = DataArray(easy_array((3, 2)), coords=[[-2, 0, 2], [-1, 1]]) da.plot.imshow(origin='upper') assert plt.xlim()[0] < 0 assert plt.ylim()[1] < 0 plt.clf() da.plot.imshow(origin='lower') assert plt.xlim()[0] < 0 assert plt.ylim()[0] < 0 class TestFacetGrid(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): d = easy_array((10, 15, 3)) self.darray = DataArray( d, dims=['y', 'x', 'z'], coords={ 'z': ['a', 'b', 'c'] }) self.g = xplt.FacetGrid(self.darray, col='z') @pytest.mark.slow def test_no_args(self): self.g.map_dataarray(xplt.contourf, 'x', 'y') # Don't want colorbar labeled with 'None' alltxt = text_in_fig() assert 'None' not in alltxt for ax in self.g.axes.flat: assert ax.has_data() @pytest.mark.slow def test_names_appear_somewhere(self): self.darray.name = 'testvar' self.g.map_dataarray(xplt.contourf, 'x', 'y') for k, ax in zip('abc', self.g.axes.flat): assert 'z = {0}'.format(k) == ax.get_title() alltxt = text_in_fig() assert self.darray.name in alltxt for label in ['x', 'y']: assert label in alltxt @pytest.mark.slow def test_text_not_super_long(self): self.darray.coords['z'] = [100 * letter for letter in 'abc'] g = xplt.FacetGrid(self.darray, col='z') g.map_dataarray(xplt.contour, 'x', 'y') alltxt = text_in_fig() maxlen = max(len(txt) for txt in alltxt) assert maxlen < 50 t0 = g.axes[0, 0].get_title() assert t0.endswith('...') @pytest.mark.slow def test_colorbar(self): vmin = self.darray.values.min() vmax = self.darray.values.max() expected = np.array((vmin, vmax)) self.g.map_dataarray(xplt.imshow, 'x', 'y') for image in plt.gcf().findobj(mpl.image.AxesImage): clim = np.array(image.get_clim()) assert np.allclose(expected, clim) assert 1 == len(find_possible_colorbars()) @pytest.mark.slow def test_empty_cell(self): g = xplt.FacetGrid(self.darray, col='z', col_wrap=2) g.map_dataarray(xplt.imshow, 'x', 'y') bottomright = g.axes[-1, -1] assert not bottomright.has_data() assert not bottomright.get_visible() @pytest.mark.slow def test_norow_nocol_error(self): with raises_regex(ValueError, r'[Rr]ow'): xplt.FacetGrid(self.darray) @pytest.mark.slow def test_groups(self): self.g.map_dataarray(xplt.imshow, 'x', 'y') upperleft_dict = self.g.name_dicts[0, 0] upperleft_array = self.darray.loc[upperleft_dict] z0 = self.darray.isel(z=0) assert_equal(upperleft_array, z0) @pytest.mark.slow def test_float_index(self): self.darray.coords['z'] = [0.1, 0.2, 0.4] g = xplt.FacetGrid(self.darray, col='z') g.map_dataarray(xplt.imshow, 'x', 'y') @pytest.mark.slow def test_nonunique_index_error(self): self.darray.coords['z'] = [0.1, 0.2, 0.2] with raises_regex(ValueError, r'[Uu]nique'): xplt.FacetGrid(self.darray, col='z') @pytest.mark.slow def test_robust(self): z = np.zeros((20, 20, 2)) darray = DataArray(z, dims=['y', 'x', 'z']) darray[:, :, 1] = 1 darray[2, 0, 0] = -1000 darray[3, 0, 0] = 1000 g = xplt.FacetGrid(darray, col='z') g.map_dataarray(xplt.imshow, 'x', 'y', robust=True) # Color limits should be 0, 1 # The largest number displayed in the figure should be less than 21 numbers = set() alltxt = text_in_fig() for txt in alltxt: try: numbers.add(float(txt)) except ValueError: pass largest = max(abs(x) for x in numbers) assert largest < 21 @pytest.mark.slow def test_can_set_vmin_vmax(self): vmin, vmax = 50.0, 1000.0 expected = np.array((vmin, vmax)) self.g.map_dataarray(xplt.imshow, 'x', 'y', vmin=vmin, vmax=vmax) for image in plt.gcf().findobj(mpl.image.AxesImage): clim = np.array(image.get_clim()) assert np.allclose(expected, clim) @pytest.mark.slow def test_can_set_norm(self): norm = mpl.colors.SymLogNorm(0.1) self.g.map_dataarray(xplt.imshow, 'x', 'y', norm=norm) for image in plt.gcf().findobj(mpl.image.AxesImage): assert image.norm is norm @pytest.mark.slow def test_figure_size(self): assert_array_equal(self.g.fig.get_size_inches(), (10, 3)) g = xplt.FacetGrid(self.darray, col='z', size=6) assert_array_equal(g.fig.get_size_inches(), (19, 6)) g = self.darray.plot.imshow(col='z', size=6) assert_array_equal(g.fig.get_size_inches(), (19, 6)) g = xplt.FacetGrid(self.darray, col='z', size=4, aspect=0.5) assert_array_equal(g.fig.get_size_inches(), (7, 4)) g = xplt.FacetGrid(self.darray, col='z', figsize=(9, 4)) assert_array_equal(g.fig.get_size_inches(), (9, 4)) with raises_regex(ValueError, "cannot provide both"): g = xplt.plot(self.darray, row=2, col='z', figsize=(6, 4), size=6) with raises_regex(ValueError, "Can't use"): g = xplt.plot(self.darray, row=2, col='z', ax=plt.gca(), size=6) @pytest.mark.slow def test_num_ticks(self): nticks = 99 maxticks = nticks + 1 self.g.map_dataarray(xplt.imshow, 'x', 'y') self.g.set_ticks(max_xticks=nticks, max_yticks=nticks) for ax in self.g.axes.flat: xticks = len(ax.get_xticks()) yticks = len(ax.get_yticks()) assert xticks <= maxticks assert yticks <= maxticks assert xticks >= nticks / 2.0 assert yticks >= nticks / 2.0 @pytest.mark.slow def test_map(self): assert self.g._finalized is False self.g.map(plt.contourf, 'x', 'y', Ellipsis) assert self.g._finalized is True self.g.map(lambda: None) @pytest.mark.slow def test_map_dataset(self): g = xplt.FacetGrid(self.darray.to_dataset(name='foo'), col='z') g.map(plt.contourf, 'x', 'y', 'foo') alltxt = text_in_fig() for label in ['x', 'y']: assert label in alltxt # everything has a label assert 'None' not in alltxt # colorbar can't be inferred automatically assert 'foo' not in alltxt assert 0 == len(find_possible_colorbars()) g.add_colorbar(label='colors!') assert 'colors!' in text_in_fig() assert 1 == len(find_possible_colorbars()) @pytest.mark.slow def test_set_axis_labels(self): g = self.g.map_dataarray(xplt.contourf, 'x', 'y') g.set_axis_labels('longitude', 'latitude') alltxt = text_in_fig() for label in ['longitude', 'latitude']: assert label in alltxt @pytest.mark.slow def test_facetgrid_colorbar(self): a = easy_array((10, 15, 4)) d = DataArray(a, dims=['y', 'x', 'z'], name='foo') d.plot.imshow(x='x', y='y', col='z') assert 1 == len(find_possible_colorbars()) d.plot.imshow(x='x', y='y', col='z', add_colorbar=True) assert 1 == len(find_possible_colorbars()) d.plot.imshow(x='x', y='y', col='z', add_colorbar=False) assert 0 == len(find_possible_colorbars()) @pytest.mark.slow def test_facetgrid_polar(self): # test if polar projection in FacetGrid does not raise an exception self.darray.plot.pcolormesh( col='z', subplot_kws=dict(projection='polar'), sharex=False, sharey=False) @pytest.mark.filterwarnings('ignore:tight_layout cannot') class TestFacetGrid4d(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): a = easy_array((10, 15, 3, 2)) darray = DataArray(a, dims=['y', 'x', 'col', 'row']) darray.coords['col'] = np.array( ['col' + str(x) for x in darray.coords['col'].values]) darray.coords['row'] = np.array( ['row' + str(x) for x in darray.coords['row'].values]) self.darray = darray @pytest.mark.slow def test_default_labels(self): g = xplt.FacetGrid(self.darray, col='col', row='row') assert (2, 3) == g.axes.shape g.map_dataarray(xplt.imshow, 'x', 'y') # Rightmost column should be labeled for label, ax in zip(self.darray.coords['row'].values, g.axes[:, -1]): assert substring_in_axes(label, ax) # Top row should be labeled for label, ax in zip(self.darray.coords['col'].values, g.axes[0, :]): assert substring_in_axes(label, ax) @pytest.mark.filterwarnings('ignore:tight_layout cannot') class TestFacetedLinePlots(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): self.darray = DataArray(np.random.randn(10, 6, 3, 4), dims=['hue', 'x', 'col', 'row'], coords=[range(10), range(6), range(3), ['A', 'B', 'C', 'C++']], name='<NAME> the 1st') self.darray.hue.name = 'huename' self.darray.hue.attrs['units'] = 'hunits' self.darray.x.attrs['units'] = 'xunits' self.darray.col.attrs['units'] = 'colunits' self.darray.row.attrs['units'] = 'rowunits' def test_facetgrid_shape(self): g = self.darray.plot(row='row', col='col', hue='hue') assert g.axes.shape == (len(self.darray.row), len(self.darray.col)) g = self.darray.plot(row='col', col='row', hue='hue') assert g.axes.shape == (len(self.darray.col), len(self.darray.row)) def test_unnamed_args(self): g = self.darray.plot.line('o--', row='row', col='col', hue='hue') lines = [q for q in g.axes.flat[0].get_children() if isinstance(q, mpl.lines.Line2D)] # passing 'o--' as argument should set marker and linestyle assert lines[0].get_marker() == 'o' assert lines[0].get_linestyle() == '--' def test_default_labels(self): g = self.darray.plot(row='row', col='col', hue='hue') # Rightmost column should be labeled for label, ax in zip(self.darray.coords['row'].values, g.axes[:, -1]): assert substring_in_axes(label, ax) # Top row should be labeled for label, ax in zip(self.darray.coords['col'].values, g.axes[0, :]): assert substring_in_axes(str(label), ax) # Leftmost column should have array name for ax in g.axes[:, 0]: assert substring_in_axes(self.darray.name, ax) def test_test_empty_cell(self): g = self.darray.isel(row=1).drop('row').plot(col='col', hue='hue', col_wrap=2) bottomright = g.axes[-1, -1] assert not bottomright.has_data() assert not bottomright.get_visible() def test_set_axis_labels(self): g = self.darray.plot(row='row', col='col', hue='hue') g.set_axis_labels('longitude', 'latitude') alltxt = text_in_fig() assert 'longitude' in alltxt assert 'latitude' in alltxt def test_both_x_and_y(self): with pytest.raises(ValueError): self.darray.plot.line(row='row', col='col', x='x', y='hue') def test_axes_in_faceted_plot(self): with pytest.raises(ValueError): self.darray.plot.line(row='row', col='col', x='x', ax=plt.axes()) def test_figsize_and_size(self): with pytest.raises(ValueError): self.darray.plot.line(row='row', col='col', x='x', size=3, figsize=4) def test_wrong_num_of_dimensions(self): with pytest.raises(ValueError): self.darray.plot(row='row', hue='hue') self.darray.plot.line(row='row', hue='hue') class TestDatetimePlot(PlotTestCase): @pytest.fixture(autouse=True) def setUp(self): ''' Create a DataArray with a time-axis that contains datetime objects. ''' month = np.arange(1, 13, 1) data = np.sin(2 * np.pi * month / 12.0) darray = DataArray(data, dims=['time']) darray.coords['time'] = np.array([datetime(2017, m, 1) for m in month]) self.darray = darray def test_datetime_line_plot(self): # test if line plot raises no Exception self.darray.plot.line() @requires_seaborn def test_import_seaborn_no_warning(): # GH1633 with pytest.warns(None) as record: import_seaborn() assert len(record) == 0 @requires_matplotlib def test_plot_seaborn_no_import_warning(): # GH1633 with pytest.warns(None) as record: _color_palette('Blues', 4) assert len(record) == 0 @requires_cftime def test_plot_cftime_coordinate_error(): cftime = _import_cftime() time = cftime.num2date(np.arange(5), units='days since 0001-01-01', calendar='noleap') data = DataArray(np.arange(5), coords=[time], dims=['time']) with raises_regex(TypeError, 'requires coordinates to be numeric or dates'): data.plot() @requires_cftime def test_plot_cftime_data_error(): cftime = _import_cftime() data = cftime.num2date(np.arange(5), units='days since 0001-01-01', calendar='noleap') data = DataArray(data, coords=[np.arange(5)], dims=['x']) with raises_regex(NotImplementedError, 'cftime.datetime'): data.plot() test_da_list = [DataArray(easy_array((10, ))), DataArray(easy_array((10, 3))), DataArray(easy_array((10, 3, 2)))] @requires_matplotlib class TestAxesKwargs(object): @pytest.mark.parametrize('da', test_da_list) @pytest.mark.parametrize('xincrease', [True, False]) def test_xincrease_kwarg(self, da, xincrease): plt.clf() da.plot(xincrease=xincrease) assert plt.gca().xaxis_inverted() == (not xincrease) @pytest.mark.parametrize('da', test_da_list) @pytest.mark.parametrize('yincrease', [True, False]) def test_yincrease_kwarg(self, da, yincrease): plt.clf() da.plot(yincrease=yincrease) assert plt.gca().yaxis_inverted() == (not yincrease) @pytest.mark.parametrize('da', test_da_list) @pytest.mark.parametrize('xscale', ['linear', 'log', 'logit', 'symlog']) def test_xscale_kwarg(self, da, xscale): plt.clf() da.plot(xscale=xscale) assert plt.gca().get_xscale() == xscale @pytest.mark.parametrize('da', [DataArray(easy_array((10, ))), DataArray(easy_array((10, 3)))]) @pytest.mark.parametrize('yscale', ['linear', 'log', 'logit', 'symlog']) def test_yscale_kwarg(self, da, yscale): plt.clf() da.plot(yscale=yscale) assert plt.gca().get_yscale() == yscale @pytest.mark.parametrize('da', test_da_list) def test_xlim_kwarg(self, da): plt.clf() expected = (0.0, 1000.0) da.plot(xlim=[0, 1000]) assert plt.gca().get_xlim() == expected @pytest.mark.parametrize('da', test_da_list) def test_ylim_kwarg(self, da): plt.clf() da.plot(ylim=[0, 1000]) expected = (0.0, 1000.0) assert plt.gca().get_ylim() == expected @pytest.mark.parametrize('da', test_da_list) def test_xticks_kwarg(self, da): plt.clf() da.plot(xticks=np.arange(5)) expected =
np.arange(5)
numpy.arange
""" Classes that implement SafeOpt. Authors: - <NAME> (befelix at inf dot ethz dot ch) - <NAME> (carion dot nicolas at gmail dot com) """ from __future__ import print_function, absolute_import, division from collections import Sequence from functools import partial import numpy as np from scipy.spatial.distance import cdist from scipy.special import expit from scipy.stats import norm from builtins import range from .utilities import (plot_2d_gp, plot_3d_gp, plot_contour_gp, linearly_spaced_combinations) from .swarm import SwarmOptimization import logging __all__ = ['SafeOpt', 'SafeOptSwarm'] class GaussianProcessOptimization(object): """ Base class for GP optimization. Handles common functionality. Parameters ---------- gp: GPy Gaussian process fmin : float or list of floats Safety threshold for the function value. If multiple safety constraints are used this can also be a list of floats (the first one is always the one for the values, can be set to None if not wanted). beta: float or callable A constant or a function of the time step that scales the confidence interval of the acquisition function. threshold: float or list of floats The algorithm will not try to expand any points that are below this threshold. This makes the algorithm stop expanding points eventually. If a list, this represents the stopping criterion for all the gps. This ignores the scaling factor. scaling: list of floats or "auto" A list used to scale the GP uncertainties to compensate for different input sizes. This should be set to the maximal variance of each kernel. You should probably leave this to "auto" unless your kernel is non-stationary. """ def __init__(self, gp, fmin, beta=2, num_contexts=0, threshold=0, scaling='auto'): """Initialization, see `GaussianProcessOptimization`.""" super(GaussianProcessOptimization, self).__init__() if isinstance(gp, list): self.gps = gp else: self.gps = [gp] self.gp = self.gps[0] self.fmin = fmin if not isinstance(self.fmin, list): self.fmin = [self.fmin] * len(self.gps) self.fmin = np.atleast_1d(np.asarray(self.fmin).squeeze()) if hasattr(beta, '__call__'): # Beta is a function of t self.beta = beta else: # Assume that beta is a constant self.beta = lambda t: beta if scaling == 'auto': dummy_point = np.zeros((1, self.gps[0].input_dim)) self.scaling = [gpm.kern.Kdiag(dummy_point)[0] for gpm in self.gps] self.scaling = np.sqrt(np.asarray(self.scaling)) else: self.scaling = np.asarray(scaling) if self.scaling.shape[0] != len(self.gps): raise ValueError("The number of scaling values should be " "equal to the number of GPs") self.threshold = threshold self._parameter_set = None self.bounds = None self.num_samples = 0 self.num_contexts = num_contexts self._x = None self._y = None self._get_initial_xy() @property def x(self): return self._x @property def y(self): return self._y @property def data(self): """Return the data within the GP models.""" return self._x, self._y @property def t(self): """Return the time step (number of measurements).""" return self._x.shape[0] def _get_initial_xy(self): """Get the initial x/y data from the GPs.""" self._x = self.gp.X y = [self.gp.Y] for gp in self.gps[1:]: if np.allclose(self._x, gp.X): y.append(gp.Y) else: raise NotImplemented('The GPs have different measurements.') self._y = np.concatenate(y, axis=1) def plot(self, n_samples, axis=None, figure=None, plot_3d=False, **kwargs): """ Plot the current state of the optimization. Parameters ---------- n_samples: int How many samples to use for plotting axis: matplotlib axis The axis on which to draw (does not get cleared first) figure: matplotlib figure Ignored if axis is already defined plot_3d: boolean If set to true shows a 3D plot for 2 dimensional data """ # Fix contexts to their current values if self.num_contexts > 0 and 'fixed_inputs' not in kwargs: kwargs.update(fixed_inputs=self.context_fixed_inputs) true_input_dim = self.gp.kern.input_dim - self.num_contexts if true_input_dim == 1 or plot_3d: inputs = np.zeros((n_samples ** true_input_dim, self.gp.input_dim)) inputs[:, :true_input_dim] = linearly_spaced_combinations( self.bounds[:true_input_dim], n_samples) if not isinstance(n_samples, Sequence): n_samples = [n_samples] * len(self.bounds) axes = [] if self.gp.input_dim - self.num_contexts == 1: # 2D plots with uncertainty for gp, fmin in zip(self.gps, self.fmin): if fmin == -np.inf: fmin = None ax = plot_2d_gp(gp, inputs, figure=figure, axis=axis, fmin=fmin, **kwargs) axes.append(ax) else: if plot_3d: for gp in self.gps: plot_3d_gp(gp, inputs, figure=figure, axis=axis, **kwargs) else: for gp in self.gps: plot_contour_gp(gp, [np.linspace(self.bounds[0][0], self.bounds[0][1], n_samples[0]), np.linspace(self.bounds[1][0], self.bounds[1][1], n_samples[1])], figure=figure, axis=axis) def _add_context(self, x, context): """Add the context to a vector. Parameters ---------- x : ndarray context : ndarray Returns ------- x_extended : ndarray """ context = np.atleast_2d(context) num_contexts = context.shape[1] x2 = np.empty((x.shape[0], x.shape[1] + num_contexts), dtype=float) x2[:, :x.shape[1]] = x x2[:, x.shape[1]:] = context return x2 def _add_data_point(self, gp, x, y, context=None): """Add a data point to a particular GP. This should only be called on its own if you know what you're doing. This does not update the global data stores self.x and self.y. Parameters ---------- x: 2d-array y: 2d-array context: array_like The context(s) used for the data points gp: instance of GPy.model.GPRegression If specified, determines the GP to which we add the data point to. Note that this should only be used if that data point is going to be removed again. """ if context is not None: x = self._add_context(x, context) gp.set_XY(np.vstack([gp.X, x]), np.vstack([gp.Y, y])) def add_new_data_point(self, x, y, context=None): """ Add a new function observation to the GPs. Parameters ---------- x: 2d-array y: 2d-array context: array_like The context(s) used for the data points. """ x = np.atleast_2d(x) y = np.atleast_2d(y) if self.num_contexts: x = self._add_context(x, context) for i, gp in enumerate(self.gps): not_nan = ~np.isnan(y[:, i]) if np.any(not_nan): # Add data to GP (context already included in x) self._add_data_point(gp, x[not_nan, :], y[not_nan, [i]]) # Update global data stores self._x = np.concatenate((self._x, x), axis=0) self._y = np.concatenate((self._y, y), axis=0) def _remove_last_data_point(self, gp): """Remove the last data point of a specific GP. This does not update global data stores, self.x and self.y. Parameters ---------- gp: Instance of GPy.models.GPRegression The gp that the last data point should be removed from """ gp.set_XY(gp.X[:-1, :], gp.Y[:-1, :]) def remove_last_data_point(self): """Remove the data point that was last added to the GP.""" last_y = self._y[-1] for gp, yi in zip(self.gps, last_y): if not np.isnan(yi): gp.set_XY(gp.X[:-1, :], gp.Y[:-1, :]) self._x = self._x[:-1, :] self._y = self._y[:-1, :] class SafeOpt(GaussianProcessOptimization): """A class for Safe Bayesian Optimization. This class implements the `SafeOpt` algorithm. It uses a Gaussian process model in order to determine parameter combinations that are safe with high probability. Based on these, it aims to both expand the set of safe parameters and to find the optimal parameters within the safe set. Parameters ---------- gp: GPy Gaussian process A Gaussian process which is initialized with safe, initial data points. If a list of GPs then the first one is the value, while all the other ones are safety constraints. parameter_set: 2d-array List of parameters fmin: list of floats Safety threshold for the function value. If multiple safety constraints are used this can also be a list of floats (the first one is always the one for the values, can be set to None if not wanted) lipschitz: list of floats The Lipschitz constant of the system, if None the GP confidence intervals are used directly. beta: float or callable A constant or a function of the time step that scales the confidence interval of the acquisition function. threshold: float or list of floats The algorithm will not try to expand any points that are below this threshold. This makes the algorithm stop expanding points eventually. If a list, this represents the stopping criterion for all the gps. This ignores the scaling factor. scaling: list of floats or "auto" A list used to scale the GP uncertainties to compensate for different input sizes. This should be set to the maximal variance of each kernel. You should probably leave this to "auto" unless your kernel is non-stationary. Examples -------- >>> from safeopt import SafeOpt >>> from safeopt import linearly_spaced_combinations >>> import GPy >>> import numpy as np Define a Gaussian process prior over the performance >>> x = np.array([[0.]]) >>> y = np.array([[1.]]) >>> gp = GPy.models.GPRegression(x, y, noise_var=0.01**2) >>> bounds = [[-1., 1.]] >>> parameter_set = linearly_spaced_combinations([[-1., 1.]], ... num_samples=100) Initialize the Bayesian optimization and get new parameters to evaluate >>> opt = SafeOpt(gp, parameter_set, fmin=[0.]) >>> next_parameters = opt.optimize() Add a new data point with the parameters and the performance to the GP. The performance has normally be determined through an external function call. >>> performance = np.array([[1.]]) >>> opt.add_new_data_point(next_parameters, performance) """ def __init__(self, gp, parameter_set, fmin, lipschitz=None, beta=2, num_contexts=0, threshold=0, scaling='auto'): """Initialization, see `SafeOpt`.""" super(SafeOpt, self).__init__(gp, fmin=fmin, beta=beta, num_contexts=num_contexts, threshold=threshold, scaling=scaling) if self.num_contexts > 0: context_shape = (parameter_set.shape[0], self.num_contexts) self.inputs = np.hstack((parameter_set, np.zeros(context_shape, dtype=parameter_set.dtype))) self.parameter_set = self.inputs[:, :-self.num_contexts] else: self.inputs = self.parameter_set = parameter_set self.liptschitz = lipschitz if self.liptschitz is not None: if not isinstance(self.liptschitz, list): self.liptschitz = [self.liptschitz] * len(self.gps) self.liptschitz = np.atleast_1d( np.asarray(self.liptschitz).squeeze()) # Value intervals self.Q = np.empty((self.inputs.shape[0], 2 * len(self.gps)), dtype=np.float) # Safe set self.S = np.zeros(self.inputs.shape[0], dtype=np.bool) # Switch to use confidence intervals for safety if lipschitz is None: self._use_lipschitz = False else: self._use_lipschitz = True # Set of expanders and maximizers self.G = self.S.copy() self.M = self.S.copy() @property def use_lipschitz(self): """ Boolean that determines whether to use the Lipschitz constant. By default this is set to False, which means the adapted SafeOpt algorithm is used, that uses the GP confidence intervals directly. If set to True, the `self.lipschitz` parameter is used to compute the safe and expanders sets. """ return self._use_lipschitz @use_lipschitz.setter def use_lipschitz(self, value): if value and self.liptschitz is None: raise ValueError('Lipschitz constant not defined') self._use_lipschitz = value @property def parameter_set(self): """Discrete parameter samples for Bayesian optimization.""" return self._parameter_set @parameter_set.setter def parameter_set(self, parameter_set): self._parameter_set = parameter_set # Plotting bounds (min, max value self.bounds = list(zip(np.min(self._parameter_set, axis=0), np.max(self._parameter_set, axis=0))) self.num_samples = [len(np.unique(self._parameter_set[:, i])) for i in range(self._parameter_set.shape[1])] @property def context_fixed_inputs(self): """Return the fixed inputs for the current context.""" n = self.gp.input_dim - 1 nc = self.num_contexts if nc > 0: contexts = self.inputs[0, -self.num_contexts:] return list(zip(range(n, n - nc, -1), contexts)) @property def context(self): """Return the current context variables.""" if self.num_contexts: return self.inputs[0, -self.num_contexts:] @context.setter def context(self, context): """Set the current context and update confidence intervals. Parameters ---------- context: ndarray New context that should be applied to the input parameters """ if self.num_contexts: if context is None: raise ValueError('Need to provide value for context.') self.inputs[:, -self.num_contexts:] = context def update_confidence_intervals(self, context=None): """Recompute the confidence intervals form the GP. Parameters ---------- context: ndarray Array that contains the context used to compute the sets """ beta = self.beta(self.t) # Update context to current setting self.context = context # Iterate over all functions for i in range(len(self.gps)): # Evaluate acquisition function mean, var = self.gps[i].predict_noiseless(self.inputs) mean = mean.squeeze() std_dev = np.sqrt(var.squeeze()) # Update confidence intervals self.Q[:, 2 * i] = mean - beta * std_dev self.Q[:, 2 * i + 1] = mean + beta * std_dev def compute_safe_set(self): """Compute only the safe set based on the current confidence bounds.""" # Update safe set self.S[:] = np.all(self.Q[:, ::2] > self.fmin, axis=1) def compute_sets(self, full_sets=False): """ Compute the safe set of points, based on current confidence bounds. Parameters ---------- context: ndarray Array that contains the context used to compute the sets full_sets: boolean Whether to compute the full set of expanders or whether to omit computations that are not relevant for running SafeOpt (This option is only useful for plotting purposes) """ beta = self.beta(self.t) # Update safe set self.compute_safe_set() # Reference to confidence intervals l, u = self.Q[:, :2].T if not np.any(self.S): self.M[:] = False self.G[:] = False return # Set of possible maximisers # Maximizers: safe upper bound above best, safe lower bound self.M[:] = False self.M[self.S] = u[self.S] >= np.max(l[self.S]) max_var = np.max(u[self.M] - l[self.M]) / self.scaling[0] # Optimistic set of possible expanders l = self.Q[:, ::2] u = self.Q[:, 1::2] self.G[:] = False # For the run of the algorithm we do not need to calculate the # full set of potential expanders: # We can skip the ones already in M and ones that have lower # variance than the maximum variance in M, max_var or the threshold. # Amongst the remaining ones we only need to find the # potential expander with maximum variance if full_sets: s = self.S else: # skip points in M, they will already be evaluated s = np.logical_and(self.S, ~self.M) # Remove points with a variance that is too small s[s] = (np.max((u[s, :] - l[s, :]) / self.scaling, axis=1) > max_var) s[s] = np.any(u[s, :] - l[s, :] > self.threshold * beta, axis=1) if not np.any(s): # no need to evaluate any points as expanders in G, exit return def sort_generator(array): """Return the sorted array, largest element first.""" return array.argsort()[::-1] # set of safe expanders G_safe = np.zeros(np.count_nonzero(s), dtype=np.bool) if not full_sets: # Sort, element with largest variance first sort_index = sort_generator(np.max(u[s, :] - l[s, :], axis=1)) else: # Sort index is just an enumeration of all safe states sort_index = range(len(G_safe)) for index in sort_index: if self.use_lipschitz: # Distance between current index point and all other unsafe # points d = cdist(self.inputs[s, :][[index], :], self.inputs[~self.S, :]) # Check if expander for all GPs for i in range(len(self.gps)): # Skip evaluation if 'no' safety constraint if self.fmin[i] == -np.inf: continue # Safety: u - L * d >= fmin G_safe[index] =\ np.any(u[s, i][index] - self.liptschitz[i] * d >= self.fmin[i]) # Stop evaluating if not expander according to one # safety constraint if not G_safe[index]: break else: # Check if expander for all GPs for i, gp in enumerate(self.gps): # Skip evlauation if 'no' safety constraint if self.fmin[i] == -np.inf: continue # Add safe point with its max possible value to the gp self._add_data_point(gp=gp, x=self.parameter_set[s, :][index, :], y=u[s, i][index], context=self.context) # Prediction of previously unsafe points based on that mean2, var2 = gp.predict_noiseless(self.inputs[~self.S]) # Remove the fake data point from the GP again self._remove_last_data_point(gp=gp) mean2 = mean2.squeeze() var2 = var2.squeeze() l2 = mean2 - beta * np.sqrt(var2) # If any unsafe lower bound is suddenly above fmin then # the point is an expander G_safe[index] = np.any(l2 >= self.fmin[i]) # Break if one safety GP is not an expander if not G_safe[index]: break # Since we sorted by uncertainty and only the most # uncertain element gets picked by SafeOpt anyways, we can # stop after we found the first one if G_safe[index] and not full_sets: break # Update safe set (if full_sets is False this is at most one point self.G[s] = G_safe def get_new_query_point(self, ucb=False): """ Compute a new point at which to evaluate the function. Parameters ---------- ucb: bool If True the safe-ucb criteria is used instead. Returns ------- x: np.array The next parameters that should be evaluated. """ if not np.any(self.S): raise EnvironmentError('There are no safe points to evaluate.') if ucb: max_id = np.argmax(self.Q[self.S, 1]) x = self.inputs[self.S, :][max_id, :] else: # Get lower and upper bounds l = self.Q[:, ::2] u = self.Q[:, 1::2] MG = np.logical_or(self.M, self.G) value = np.max((u[MG] - l[MG]) / self.scaling, axis=1) x = self.inputs[MG, :][np.argmax(value), :] if self.num_contexts: return x[:-self.num_contexts] else: return x def optimize(self, context=None, ucb=False): """Run Safe Bayesian optimization and get the next parameters. Parameters ---------- context: ndarray A vector containing the current context ucb: bool If True the safe-ucb criteria is used instead. Returns ------- x: np.array The next parameters that should be evaluated. """ # Update confidence intervals based on current estimate self.update_confidence_intervals(context=context) # Update the sets if ucb: self.compute_safe_set() else: self.compute_sets() return self.get_new_query_point(ucb=ucb) def get_maximum(self, context=None): """ Return the current estimate for the maximum. Parameters ---------- context: ndarray A vector containing the current context Returns ------- x - ndarray Location of the maximum y - 0darray Maximum value Notes ----- Uses the current context and confidence intervals! Run update_confidence_intervals first if you recently added a new data point. """ self.update_confidence_intervals(context=context) # Compute the safe set (that's cheap anyways) self.compute_safe_set() # Return nothing if there are no safe points if not
np.any(self.S)
numpy.any
import os import ee import geemap import json import requests import numpy as np import pandas as pd import matplotlib.pylab as plt from datetime import datetime from datetime import timedelta import rasterio as rio from rasterio import plot from rasterio import warp try: ee.Initialize() except: ee.Authenticate() ee.Initialize() class dataCollector: def __init__(self, beam=None, oaurl=None, track=None, date=None, latlims=None, lonlims=None, verbose=False): if (beam is None) or ((oaurl is None) and (None in [track, date, latlims, lonlims])): raise Exception('''Please specify a beam and - either: an OpenAltimetry API url, - or: a track, date, latitude limits and longitude limits.''') else: if oaurl is not None: url = oaurl tofind = '&beamName=' ids = url.find(tofind) while ids>-1: url = url.replace(url[ids:ids+len(tofind)+4],'') ids = url.find(tofind) iprod = url.find('/atl') url = url.replace(url[iprod:iprod+6],'/atlXX') url += tofind + beam + '&client=jupyter' idate = url.find('date=') + len('date=') date = url[idate:idate+10] itrack = url.find('trackId=') + len('trackId=') trackend = url[itrack:].find('&') track = int(url[itrack:itrack+trackend]) bb = [] for s in ['minx=', 'maxx=', 'miny=', 'maxy=']: ids = url.find(s) + len(s) ide = url[ids:].find('&') bb.append(float(url[ids:ids+ide])) lonlims = bb[:2] latlims = bb[2:] elif None not in [track, date, latlims, lonlims]: url = 'https://openaltimetry.org/data/api/icesat2/atlXX?' url += 'date={date}&minx={minx}&miny={miny}&maxx={maxx}&maxy={maxy}&trackId={track}&beamName={beam}'.format( date=date,minx=lonlims[0],miny=latlims[0],maxx=lonlims[1],maxy=latlims[1],track=track,beam=beam) url += '&outputFormat=json&client=jupyter' self.url = url self.date = date self.track = track self.beam = beam self.latlims = latlims self.lonlims = lonlims if verbose: print('OpenAltimetry API URL:', self.url) print('Date:', self.date) print('Track:', self.track) print('Beam:', self.beam) print('Latitude limits:', self.latlims) print('Longitude limits:', self.lonlims) def requestData(self, verbose=False): if verbose: print('---> requesting ATL03 data...',end='') product = 'atl03' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() lat, lon, h, confs = [], [], [], [] for beam in data: for confidence in beam['series']: for p in confidence['data']: confs.append(confidence['name']) lat.append(p[0]) lon.append(p[1]) h.append(p[2]) self.atl03 = pd.DataFrame(list(zip(lat,lon,h,confs)), columns = ['lat','lon','h','conf']) if verbose: print(' Done.') print('---> requesting ATL06 data...',end='') product = 'atl06' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() self.atl06 = pd.DataFrame(data['series'][0]['lat_lon_elev'], columns = ['lat','lon','h']) if verbose: print(' Done.') print('---> requesting ATL07 data...',end='') product = 'atl07' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() self.atl07 = pd.DataFrame(data['series'][0]['lat_lon_elev'], columns = ['lat','lon','h']) if verbose: print(' Done.') print('---> requesting ATL08 data...',end='') product = 'atl08' request_url = self.url.replace('atlXX',product) data = requests.get(request_url).json() self.atl08 = pd.DataFrame(data['series'][0]['lat_lon_elev_canopy'], columns = ['lat','lon','h','canopy']) if verbose: print(' Done.') ################################################################################################ def plotData(self,ax=None,title='some Data I found on OpenAltimetry',plot_atl07=True,plot_atl08=True): # get data if not already there if 'atl03' not in vars(self).keys(): print('Data has not yet been requested from OpenAltimetry yet. Doing this now.') self.requestData(verbose=True) axes_not_specified = True if ax == None else False # create the figure and axis if axes_not_specified: fig, ax = plt.subplots(figsize=[10,6]) atl03 = ax.scatter(self.atl03.lat, self.atl03.h, s=2, color='black', alpha=0.2, label='ATL03') atl06, = ax.plot(self.atl06.lat, self.atl06.h, label='ATL06') if plot_atl07 == True: atl07, = ax.plot(self.atl07.lat, self.atl07.h, label='ATL07') if plot_atl08 == True: atl08, = ax.plot(self.atl08.lat, self.atl08.h, label='ATL08', linestyle='--') heights = self.atl03.h[self.atl03.conf != 'Noise'] y_min1 = np.min(heights) y_max1 = np.max(heights) if plot_atl08 == True: maxprods = np.nanmax((self.atl06.h.max(), self.atl08.h.max())) minprods = np.nanmin((self.atl06.h.min(), self.atl08.h.min())) else: maxprods = np.nanmax(self.atl06.h.max()) minprods = np.nanmin((self.atl06.h.min(), self.atl07.h.min())) hrange = maxprods - minprods y_min2 = minprods - hrange * 0.5 y_max2 = maxprods + hrange * 0.5 y_min = np.nanmin((y_min1, y_min2)) y_max = np.nanmax((y_max1, y_max2)) x_min = self.atl08.lat.min() x_max = self.atl08.lat.max() ax.set_xlim((x_min, x_max)) ax.set_ylim((y_min, y_max)) # label the axes ax.set_title(title) ax.set_xlabel('latitude') ax.set_ylabel('elevation in meters') # add a legend ax.legend(loc='lower right') # add some text to provide info on what is plotted info = 'ICESat-2 track {track:d}-{beam:s} on {date:s}\n({lon:.4f}E, {lat:.4f}N)'.format(track=self.track, beam=self.beam, date=self.date, lon=np.mean(self.lonlims), lat=np.mean(self.latlims)) infotext = ax.text(0.03, 0.03, info, horizontalalignment='left', verticalalignment='bottom', transform=ax.transAxes, fontsize=7, bbox=dict(edgecolor=None, facecolor='white', alpha=0.9, linewidth=0)) if axes_not_specified: fig.tight_layout() return fig else: return ax ################################################################################################ def plotData_hv(self): import holoviews as hv from holoviews import opts hv.extension('bokeh', 'matplotlib') confdict = {'Noise': -1.0, 'Buffer': 0.0, 'Low': 1.0, 'Medium': 2.0, 'High': 3.0} self.atl03['conf_num'] = [confdict[x] for x in self.atl03.conf] self.atl08['canopy_h'] = self.atl08.h + self.atl08.canopy atl03scat = hv.Scatter(self.atl03, 'lat', vdims=['h', 'conf_num'], label='ATL03')\ .opts(color='conf_num', alpha=1, cmap='dimgray_r') atl06line = hv.Curve(self.atl06, 'lat', 'h', label='ATL06')\ .opts(color='r', alpha=0.5, line_width=3) atl08line = hv.Curve(self.atl08, 'lat', 'h', label='ATL08')\ .opts(color='b', alpha=1, line_width=1) atl08scat = hv.Scatter(self.atl08, 'lat', 'canopy_h', label='ATL08 Canopy') atl08scat = atl08scat.opts(alpha=1, color='g', size=4) hrange = self.atl06.h.max() - self.atl06.h.min() overlay = (atl03scat * atl06line * atl08line * atl08scat).opts( height=500, width=800, xlabel='latitude', ylabel='elevation', title='ICESat-2 track %d %s on %s' % (self.track,self.beam.upper(),self.date), legend_position='bottom_right', ylim=(self.atl06.h.min()-hrange, self.atl06.h.max()+hrange), xlim=(self.atl06.lat.min(), self.atl06.lat.max()) ) return overlay ################################################################################################ def makeGEEmap(self, days_buffer=25): # get data if not already there if 'atl03' not in vars(self).keys(): print('Data has not yet been requested from OpenAltimetry yet. Doing this now.') self.requestData(verbose=True) def dist_latlon2meters(lat1, lon1, lat2, lon2): # returns the distance between two lat/lon coordinate points along the earth's surface in meters R = 6371000 def deg2rad(deg): return deg * (np.pi/180) dlat = deg2rad(lat2-lat1) dlon = deg2rad(lon2-lon1) a = np.sin(dlat/2) * np.sin(dlat/2) + np.cos(deg2rad(lat1)) * np.cos(deg2rad(lat2)) * np.sin(dlon/2) * np.sin(dlon/2) c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)) return R * c lat1, lat2 = self.atl08.lat[0], self.atl08.lat.iloc[-1] lon1, lon2 = self.atl08.lon[0], self.atl08.lon.iloc[-1] center_lat = (lat1 + lat2) / 2 center_lon = (lon1 + lon2) / 2 ground_track_length = dist_latlon2meters(lat1, lon1, lat2, lon2) print('The ground track is %d meters long.' % np.round(ground_track_length)) collection_name1 = 'COPERNICUS/S2_SR' # Sentinel-2 earth engine collection # https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR collection_name2 = 'LANDSAT/LC08/C01/T2' # Landsat 8 earth engine collection # https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T2 # Note: Landsat 8 ingestion into Earth Engine seems to not have reached Antarctica yet, so using raw scenes... # the point of interest (center of the track) as an Earth Engine Geometry point_of_interest = ee.Geometry.Point(center_lon, center_lat) def query_scenes(self, days_buffer): # get the dates datetime_requested = datetime.strptime(self.date, '%Y-%m-%d') search_start = (datetime_requested - timedelta(days=days_buffer)).strftime('%Y-%m-%d') search_end = (datetime_requested + timedelta(days=days_buffer)).strftime('%Y-%m-%d') print('Search for imagery from {start:s} to {end:s}.'.format(start=search_start, end=search_end)) # the collection to query: # 1) merge Landsat 8 and Sentinel-2 collections # 2) filter by acquisition date # 3) filter by the point of interest # 4) sort by acquisition date collection = ee.ImageCollection(collection_name1) \ .merge(ee.ImageCollection(collection_name2)) \ .filterDate(search_start, search_end) \ .filterBounds(point_of_interest) \ .sort('system:time_start') info = collection.getInfo() n_imgs = len(info['features']) print('--> Number of scenes found within +/- %d days of ICESat-2 overpass: %d' % (days_buffer, n_imgs)) return (collection, info, n_imgs) # query collection for initial days_buffer collection, info, n_imgs = query_scenes(self, days_buffer) # if query returns more than 20 images, try to narrow it down tries = 0 while (n_imgs > 20) & (tries<5): print('----> This is too many. Narrowing it down...') days_buffer = np.round(days_buffer * 15 / n_imgs) collection, info, n_imgs = query_scenes(self, days_buffer) n_imgs = len(info['features']) tries += 1 # if query returns no images, then return if n_imgs < 1: print('NO SCENES FOUND. Try to widen your search by including more dates.') return # region of interest around the ground track (use this area to scale visualization factors) buffer_around_center_meters = ground_track_length/2 region_of_interest = point_of_interest.buffer(buffer_around_center_meters) # make an earth engine feature collection from the ground track so we can show it on the map ground_track_coordinates = list(zip(self.atl08.lon, self.atl08.lat)) ground_track_projection = 'EPSG:4326' # <-- this specifies that our data longitude/latitude in degrees [https://epsg.io/4326] gtx_feature = ee.FeatureCollection(ee.Geometry.LineString(coords=ground_track_coordinates, proj=ground_track_projection, geodesic=True)) Map = geemap.Map(center=(40, -100), zoom=4) Map.add_basemap('HYBRID') for i, feature in enumerate(info['features']): # get the relevant info thisDate = datetime.fromtimestamp(feature['properties']['system:time_start']/1e3) dtstr = thisDate.strftime('%Y-%m-%d') dt = (thisDate - datetime.strptime(self.date, '%Y-%m-%d')).days ID = feature['id'] rel = 'before' if dt<0 else 'after' print('%02d: %s (%3d days %s ICESat-2 overpass): %s' % (i, dtstr, np.abs(dt), rel, ID)) # get image by id, and normalize rgb range image_id = feature['id'] thisScene = ee.Image(image_id) rgb = thisScene.select('B4', 'B3', 'B2') rgbmax = rgb.reduce(ee.Reducer.max()).reduceRegion(reducer=ee.Reducer.max(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgbmin = rgb.reduce(ee.Reducer.min()).reduceRegion(reducer=ee.Reducer.min(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgb = rgb.unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) # if the image is Landsat 8, then pan-sharpen the image if 'LANDSAT' in ID: pan = thisScene.select('B8').unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) huesat = rgb.rgbToHsv().select('hue', 'saturation') rgb = ee.Image.cat(huesat, pan).hsvToRgb().clamp(0.0, 1.0) # make the image uint8 rgb = rgb.multiply(255).uint8() # add to map (only show the first layer, then can toggle others on in map) show_layer = True if i==0 else False Map.addLayer(rgb, name='%02d: %d days, %s'%(i,dt,ID), shown=show_layer) # show ground track on map, and center on our region of interest Map.addLayer(gtx_feature, {'color': 'red'}, 'ground track') Map.centerObject(region_of_interest,zoom=11) return Map ################################################################################################ def plotDataAndMap(self, scene_id, crs='EPSG:3857', title='ICESat-2 Data'): from utils.curve_intersect import intersection # get data if not already there if 'atl03' not in vars(self).keys(): print('Data has not yet been requested from OpenAltimetry yet. Doing this now.') self.requestData(verbose=True) # plot the ICESat-2 data fig = plt.figure(figsize=[12,5]) ax_data = fig.add_subplot(122) self.plotData(ax_data, title=title) # get the image and plot ax_img = fig.add_subplot(121) def dist_latlon2meters(lat1, lon1, lat2, lon2): # returns the distance between two lat/lon coordinate points along the earth's surface in meters R = 6371000 def deg2rad(deg): return deg * (np.pi/180) dlat = deg2rad(lat2-lat1) dlon = deg2rad(lon2-lon1) a = np.sin(dlat/2) * np.sin(dlat/2) + np.cos(deg2rad(lat1)) * np.cos(deg2rad(lat2)) * np.sin(dlon/2) * np.sin(dlon/2) c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a)) return R * c lat1, lat2 = self.atl08.lat[0], self.atl08.lat.iloc[-1] lon1, lon2 = self.atl08.lon[0], self.atl08.lon.iloc[-1] center_lat = (lat1 + lat2) / 2 center_lon = (lon1 + lon2) / 2 ground_track_length = dist_latlon2meters(lat1, lon1, lat2, lon2) # the point of interest (center of the track) as an Earth Engine Geometry point_of_interest = ee.Geometry.Point(center_lon, center_lat) # region of interest around the ground track (use this area to scale visualization factors) buffer_around_center_meters = ground_track_length*0.52 region_of_interest = point_of_interest.buffer(buffer_around_center_meters) thisScene = ee.Image(scene_id) info = thisScene.getInfo() # get the relevant info thisDate = datetime.fromtimestamp(info['properties']['system:time_start']/1e3) dtstr = thisDate.strftime('%Y-%m-%d') download_folder = 'downloads/' download_filename = '%s%s-8bitRGB.tif' % (download_folder, scene_id.replace('/', '-')) if os.path.exists(download_filename): print('This file already exists, not downloading again: %s' % download_filename) else: # get image by id, and normalize rgb range rgb = thisScene.select('B4', 'B3', 'B2') rgbmax = rgb.reduce(ee.Reducer.max()).reduceRegion(reducer=ee.Reducer.max(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgbmin = rgb.reduce(ee.Reducer.min()).reduceRegion(reducer=ee.Reducer.min(), geometry=region_of_interest, bestEffort=True, maxPixels=1e6) rgb = rgb.unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) # if the image is Landsat 8, then pan-sharpen the image if 'LANDSAT' in scene_id: pan = thisScene.select('B8').unitScale(ee.Number(rgbmin.get('min')), ee.Number(rgbmax.get('max'))).clamp(0.0, 1.0) huesat = rgb.rgbToHsv().select('hue', 'saturation') rgb = ee.Image.cat(huesat, pan).hsvToRgb().clamp(0.0, 1.0) # make the image uint8 rgb = rgb.multiply(255).uint8() rgb_info = rgb.getInfo() downloadURL = rgb.getDownloadUrl({'name': 'mySatelliteImage', 'crs': crs, 'scale': rgb_info['bands'][0]['crs_transform'][0], 'region': region_of_interest, 'filePerBand': False, 'format': 'GEO_TIFF'}) response = requests.get(downloadURL) if not os.path.exists(download_folder): os.makedirs(download_folder) with open(download_filename, 'wb') as fd: fd.write(response.content) print('Downloaded %s' % download_filename) img = rio.open(download_filename) plot.show(img, ax=ax_img) # get the graticule right latlon_bbox = warp.transform(img.crs, {'init': 'epsg:4326'}, [img.bounds[i] for i in [0,2,2,0,0]], [img.bounds[i] for i in [1,1,3,3,1]]) min_lat = np.min(latlon_bbox[1]) max_lat = np.max(latlon_bbox[1]) min_lon = np.min(latlon_bbox[0]) max_lon = np.max(latlon_bbox[0]) latdiff = max_lat-min_lat londiff = max_lon-min_lon diffs = np.array([0.0001, 0.0002, 0.00025, 0.0004, 0.0005, 0.001, 0.002, 0.0025, 0.004, 0.005, 0.01, 0.02, 0.025, 0.04, 0.05, 0.1, 0.2, 0.25, 0.4, 0.5, 1, 2]) latstep = np.min(diffs[diffs>latdiff/8]) lonstep = np.min(diffs[diffs>londiff/8]) minlat = np.floor(min_lat/latstep)*latstep maxlat = np.ceil(max_lat/latstep)*latstep minlon = np.floor(min_lon/lonstep)*lonstep maxlon = np.ceil(max_lon/lonstep)*lonstep # plot meridians and parallels xl = (img.bounds.left, img.bounds.right) yl = (img.bounds.bottom, img.bounds.top) meridians =
np.arange(minlon,maxlon, step=lonstep)
numpy.arange
from dataTool import ReadLabels, ReadXYZ, VisualizePointCloudClassesAsync, modelPath, DataTool from imports import * import math import numpy as np from time import time import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.utils import Sequence from tensorflow.keras.layers import Input, BatchNormalization, Dense, Dropout, InputLayer from sklearn.neighbors import KDTree from sklearn.metrics import confusion_matrix from PIL import Image, ImageEnhance, ImageOps import random # from notify_run import Notify class Const: @staticmethod def IsWindowsMachine(): if os.path.isdir("C:/Program Files"): return True else: return False if os.path.isdir("C:/Program Files"): batchSize = 8 else: batchSize = 16 #25 #Placeholders classCount = Label.Semantic3D.Count-1 classNames = Label.Semantic3D.Names testFiles = [] excludeFiles = [] Paths = Paths.Semantic3D epochs = 100 pointComponents = 3 featureComponents = 3 #rgb classCount = 0 npoints = 8192 blocksize = 8 test_step = 0.5 name = "" #Algorithm configuration noFeature = False Fusion = False Scale = False Rotate = False Mirror = False Jitter = False FtrAugment = False logsPath = "./logs" ### MODEL CONFIG pl = 64 ### MODEL CONFIG def BuildSpecDict(self): return {"noFeature" : self.noFeature, "Fusion" : self.Fusion, "Scale" : self.Scale, "Rotate" : self.Rotate, "Mirror" : self.Mirror, "Jitter" : self.Jitter, "FtrAugment" : False if self.noFeature else self.FtrAugment, } def Name(self, UID = ""): modelName = self.name modelName += f"({len(self.TrainFiles())}&{len(self.TestFiles())})" for spec, value in self.BuildSpecDict().items(): if(value == True): modelName += f"({spec})" if(UID != ""): modelName += f"_{UID}" return modelName @staticmethod def RemoveUID(name : str): return name.replace(f"_{Const.ParseModelUID(name)}", "") @staticmethod def UID(): import uuid return uuid.uuid4().hex @staticmethod def ParseModelConfig(file): config = Paths.FileName(file).split("_")[0].replace("("," ").replace(")","").replace("vox ","").split(" ") const = None if(config[0] == NPM3D.name): const = NPM3D() if(config[0] == Semantic3D.name): const = Semantic3D() for conf in config[1:]: if conf == "noFeature" or conf == "NOCOL": const.noFeature = True elif conf == "Fusion": const.Fusion = True elif conf == "Scale": const.Scale = True elif conf == "Rotate": const.Rotate = True elif conf == "Mirror": const.Mirror = True elif conf == "Jitter": const.Jitter = True elif conf == "FtrAugment": const.FtrAugment = True return const @staticmethod def ParseModelUID(file): parts = Paths.FileName(file).split("_") if(len(parts) >= 2): return parts[1] else: return None @staticmethod def ParseModelName(file, withUID = True): parts = Paths.FileName(file, withoutExt = False).split("_") name = parts[0] if(withUID and len(parts) > 1): name += "_"+parts[1] return name def TestFiles(self): return Paths.JoinPaths(self.Paths.processedTrain, self.testFiles) def TrainFiles(self): return Paths.GetFiles(self.Paths.processedTrain, excludeFiles = self.TestFiles()+self.excludeFiles) class Semantic3D(Const): pointComponents = 3 featureComponents = 3 #rgb classCount = Label.Semantic3D.Count-1 classNames = Label.Semantic3D.Names test_step = 0.8 name = "Sem3D" Paths = Paths.Semantic3D testFiles = [ "untermaederbrunnen_station3_xyz_intensity_rgb_voxels.npy", "domfountain_station1_xyz_intensity_rgb_voxels.npy", ] excludeFiles = [] fileNames = {"birdfountain_station1_xyz_intensity_rgb" : "birdfountain1", "castleblatten_station1_intensity_rgb" : "castleblatten1", "castleblatten_station5_xyz_intensity_rgb" : "castleblatten5", "marketplacefeldkirch_station1_intensity_rgb" : "marketsquarefeldkirch1", "marketplacefeldkirch_station4_intensity_rgb" : "marketsquarefeldkirch4", "marketplacefeldkirch_station7_intensity_rgb" : "marketsquarefeldkirch7", "sg27_station3_intensity_rgb" : "sg27_3", "sg27_station6_intensity_rgb" : "sg27_6", "sg27_station8_intensity_rgb" : "sg27_8", "sg27_station10_intensity_rgb" : "sg27_10", "sg28_station2_intensity_rgb" : "sg28_2", "sg28_station5_xyz_intensity_rgb" : "sg28_5", "stgallencathedral_station1_intensity_rgb" : "stgallencathedral1", "stgallencathedral_station3_intensity_rgb" : "stgallencathedral3", "stgallencathedral_station6_intensity_rgb" : "stgallencathedral6", "MarketplaceFeldkirch_Station4_rgb_intensity-reduced" : "marketsquarefeldkirch4-reduced", "sg27_station10_rgb_intensity-reduced" : "sg27_10-reduced", "sg28_Station2_rgb_intensity-reduced" : "sg28_2-reduced", "StGallenCathedral_station6_rgb_intensity-reduced" : "stgallencathedral6-reduced", } class Curbs(Const): pointComponents = 3 featureComponents = 3 classCount = 2 classNames = Label.Curbs.Names test_step = 0.5 name = "Curbs" Paths = Paths.Curbs if os.path.isdir("C:/Program Files"): batchSize = 8 else: batchSize = 25 testFiles = [ "park_extracted.npy", "Jelskio_str_trimmed.npy", ] excludeFiles = [ "powerlines_dataset" ] def FilterCurbAndLineFiles(self, files): return [file for file in files if not file.endswith("_curbs.npy") and not file.endswith("_lines.npy")] def TestFiles(self): return self.FilterCurbAndLineFiles(super(Curbs, self).TestFiles()) def TrainFiles(self): return self.FilterCurbAndLineFiles(super(Curbs, self).TrainFiles()) class NPM3D(Const): pointComponents = 3 featureComponents = 1 classCount = Label.NPM3D.Count-1 classNames = Label.NPM3D.Names test_step = 0.5 name = "NPM3D" Paths = Paths.NPM3D testFiles = [ # "Lille1_1_0.npy", # "Lille1_1_1.npy", # "Lille1_1_2.npy", # "Lille1_1_3.npy", # "Lille1_1_4.npy", # "Lille1_1_5.npy", # "Lille1_1_6.npy", # "Lille1_1_7.npy", # "Lille1_1_8.npy", # "Lille1_2_0.npy", # "Lille1_2_1.npy", "Lille2_0.npy", "Lille2_1.npy", "Lille2_2.npy", "Lille2_8.npy", "Lille2_9.npy", # "Paris_0.npy", # "Paris_1.npy", ] excludeFiles = [ # "Lille1_1_7.npy", # "Lille1_2_2.npy", "Lille2_10.npy", # "Paris_2.npy", ] class WeightsMul(tf.keras.layers.Layer): def __init__(self, shape, lowBound, highBound, **kwargs): super(WeightsMul, self).__init__(**kwargs) self.shape = shape self.lowBound = lowBound self.highBound = highBound def build(self, input_shape): init = tf.random_uniform_initializer(self.lowBound, self.highBound) self.vars = self.add_weight(shape=(self.shape), initializer = init, trainable = True, dtype=tf.float32) def call(self, inputs): return tf.matmul(inputs, self.vars) def get_config(self): config = super(WeightsMul, self).get_config() config.update({'shape': self.shape, 'lowBound': self.lowBound, 'highBound': self.highBound}) return config class GatherNDLayer(tf.keras.layers.Layer): def __init__(self, **kwargs): super(GatherNDLayer, self).__init__(**kwargs) def call(self, array, indices): return tf.gather_nd(array, indices, batch_dims=1) def get_config(self): config = super(GatherNDLayer, self).get_config() return config class SubstractCenters(tf.keras.layers.Layer): def __init__(self, dim, n_centers, **kwargs): super(SubstractCenters, self).__init__(**kwargs) self.dim = dim self.n_centers = n_centers def build(self, input_shape): center_data = np.zeros((self.dim, self.n_centers)) for i in range(self.n_centers): coord = np.random.rand(self.dim)*2 - 1 while (coord**2).sum() > 1: coord = np.random.rand(self.dim)*2 - 1 center_data[:,i] = coord self.centers = self.add_weight(shape = (center_data.shape), initializer = tf.constant_initializer(center_data), trainable = True, dtype=tf.float32) def call(self, points): return points - self.centers def get_config(self): config = super(SubstractCenters, self).get_config() config.update({'dim': self.dim, 'n_centers': self.n_centers}) return config class UnitBallNormalize(tf.keras.layers.Layer): def __init__(self, **kwargs): super(UnitBallNormalize, self).__init__(**kwargs) def call(self, points): maxi = tf.sqrt(tf.reduce_max(tf.reduce_sum(tf.square(tf.stop_gradient(points)), axis = 3), axis = 2)) maxi = tf.where(tf.equal(maxi, 0.0), tf.constant(1.0), maxi) points = points / tf.expand_dims(tf.expand_dims(maxi, 2), 3) return points def get_config(self): config = super(UnitBallNormalize, self).get_config() return config def PtConv(fts, points, K, next_pts, in_features, out_features, n_centers = 16): next_pts_ = None if isinstance(next_pts, int) and points.get_shape()[1] != next_pts: # convolution with reduction indices, next_pts_ = KDTreeSampleLayer(K, next_pts)(points) elif (next_pts is None) or (isinstance(next_pts, int) and points.get_shape()[1] == next_pts): # convolution without reduction indices = KDTreeLayer(K)(points, points) next_pts_ = points else: # convolution with up sampling or projection on given points indices = KDTreeLayer(K)(points, next_pts) next_pts_ = next_pts if next_pts is None or isinstance(next_pts, int): next_pts = next_pts_ # get the features and point cooridnates associated with the indices pts = GatherNDLayer()(points, indices) if fts is None: features = tf.expand_dims(tf.ones_like(pts[:,:,:,0]), 3) else: features = GatherNDLayer()(fts, indices) # center the neighborhoods pts = pts - tf.expand_dims(next_pts,2) # normalize to unit ball, or not pts = UnitBallNormalize()(pts) # compute the distances dists = SubstractCenters(3, n_centers)(tf.expand_dims(pts, 4)) dShape = dists.shape dists = tf.reshape(dists, (-1, dShape[1], dShape[2], dShape[3]*dShape[4])) dists = DenseInitialized(2*n_centers, activation="relu")(dists) dists = DenseInitialized(n_centers, activation="relu")(dists) dists = DenseInitialized(n_centers, activation="relu")(dists) # compute features fs = features.shape # [batch, points, n_centers, in_features] ds = dists.shape features = tf.transpose(features,[0, 1, 3, 2]) features = tf.reshape(features, (-1, features.shape[2], features.shape[3])) #features.shape[0]*features.shape[1] dists = tf.reshape(dists, (-1, dists.shape[2], dists.shape[3])) #dists.shape[0]*dists.shape[1] features = tf.matmul(features, dists) features = tf.reshape(features, (-1, ds[1], features.shape[1]*features.shape[2])) bound = math.sqrt(3.0) * math.sqrt(2.0 / (in_features + out_features)) features = WeightsMul([in_features * n_centers, out_features], -bound, bound)(features) features = features / fs[2] # normalization and activation features = BatchNormalization(epsilon = 1e-05, momentum=0.9)(features) features = tf.nn.relu(features) return features, next_pts def LinearInitializer(k): k = np.sqrt(1.0/float(k)) return tf.random_uniform_initializer(k*-1, k) def DenseInitialized(out_features, activation = None, name = None): def DenseInit(x): return Dense(out_features, kernel_initializer = tf.initializers.lecun_normal(), bias_initializer = tf.initializers.lecun_normal(), activation = activation, name = name, )(x) return DenseInit def CreateModel(classCount, ftsComp, in_fts = None, in_pts = None, returnFeatures = False, noColor = False, applySoftmax = True): print("Creating new model...") if(in_fts is None and in_pts is None): in_pts = Input(shape=(Const.npoints, Const.pointComponents), dtype=tf.float32) #points if(noColor): in_fts = None else: in_fts = Input(shape=(Const.npoints, ftsComp), dtype=tf.float32) #featuress if(noColor): in_fts = None pl = Const.pl ### Down Sample x0, _ = PtConv(in_fts, in_pts, K = 16, next_pts = None, in_features = ftsComp, out_features = pl) x1, pts1 = PtConv(x0, in_pts, K = 16, next_pts = 2048, in_features = pl, out_features = pl) x2, pts2 = PtConv(x1, pts1, K = 16, next_pts = 1024, in_features = pl, out_features = pl) x3, pts3 = PtConv(x2, pts2, K = 16, next_pts = 256, in_features = pl, out_features = pl) x4, pts4 = PtConv(x3, pts3, K = 8, next_pts = 64, in_features = pl, out_features = pl*2) x5, pts5 = PtConv(x4, pts4, K = 8, next_pts = 16, in_features = pl*2, out_features = pl*2) x6, pts6 = PtConv(x5, pts5, K = 4, next_pts = 8, in_features = pl*2, out_features = pl*2) ## Up Sample x5d, _ = PtConv(x6, pts6, K = 4, next_pts = pts5, in_features = pl*2, out_features = pl*2) x5d = tf.concat([x5d, x5], axis = 2) x4d, _ = PtConv(x5d, pts5, K = 4, next_pts = pts4, in_features = pl*4, out_features = pl*2) x4d = tf.concat([x4d, x4], axis = 2) x3d, _ = PtConv(x4d, pts4, K = 4, next_pts = pts3, in_features = pl*4, out_features = pl) x3d = tf.concat([x3d, x3], axis = 2) x2d, _ = PtConv(x3d, pts3, K = 8, next_pts = pts2, in_features = pl*2, out_features = pl) x2d = tf.concat([x2d, x2], axis = 2) x1d, _ = PtConv(x2d, pts2, K = 8, next_pts = pts1, in_features = pl*2, out_features = pl) x1d = tf.concat([x1d, x1], axis = 2) x0d, _ = PtConv(x1d, pts1, K = 8, next_pts = in_pts, in_features = pl*2, out_features = pl) x0d = tf.concat([x0d, x0], axis = 2) ### Output layer out_labels = Dropout(rate=0.5)(x0d) out_labels = tf.reshape(out_labels, (-1, out_labels.shape[2])) out_labels = DenseInitialized(classCount)(out_labels) out_labels = tf.reshape(out_labels, (-1, x0d.shape[1], out_labels.shape[1])) if(applySoftmax): out_labels = tf.nn.softmax(out_labels) if(noColor): inputList = [in_pts] else: inputList = [in_fts, in_pts] if(returnFeatures): return Model(inputList, [x0d, out_labels], name ="model") model = Model(inputList, out_labels, name ="model") model = CompileModel(model, classCount) # print(model.summary()) return model def ModifyModelOutput(model, classCount): dropoutLayer = model.layers[len(model.layers)-5] #take output of the drop out layer out_labels = dropoutLayer.output out_labels = tf.reshape(out_labels, (-1, out_labels.shape[2]), name = "lbl_reshape_1") out_labels = DenseInitialized(classCount, name = "lbl_dense")(out_labels) out_labels = tf.reshape(out_labels, (-1, dropoutLayer.input.shape[1], out_labels.shape[1]), name = "lbl_reshape_2") out_labels = tf.nn.softmax(out_labels, name = "lbl_softmax") return Model(model.inputs, out_labels, name ="model") def ReadModel(modelPath): if(not modelPath.endswith(".h5")): modelPath += ".h5" if(not os.path.exists(modelPath)): if(os.path.exists(os.path.join("." , "data", modelPath))): modelPath = os.path.join("." , "data", modelPath) elif(os.path.exists(os.path.join("." , "data", Const.ParseModelName(modelPath, False)))): file = os.path.basename(modelPath) folder = os.path.join("." , "data", Const.ParseModelName(modelPath, False)) modelPath = os.path.join(folder, file) elif(os.path.exists(os.path.join("." , "data", Const.ParseModelName(modelPath)))): file = os.path.basename(modelPath) folder = os.path.join("." , "data", Const.ParseModelName(modelPath)) modelPath = os.path.join(folder, file) if(not os.path.exists(modelPath)): raise FileNotFoundError model = tf.keras.models.load_model(modelPath, compile=False, custom_objects={'NearestNeighborsLayer': NearestNeighborsLayer, 'SampleNearestNeighborsLayer': SampleNearestNeighborsLayer, 'SubstractCenters': SubstractCenters, 'WeightsMul': WeightsMul, 'GatherNDLayer':GatherNDLayer, 'UnitBallNormalize':UnitBallNormalize, 'KDTreeSampleLayer':KDTreeSampleLayer, 'KDTreeLayer':KDTreeLayer, }) PrintToLog("{} model loaded".format(modelPath)) return model def LatestModel(path): if(Const.ParseModelUID(path) is None): folders = [os.path.join("." , "data",folder) for folder in os.listdir(os.path.join("." , "data")) if os.path.isdir(os.path.join("." , "data",folder)) and path == Const.RemoveUID(Const.ParseModelName(folder)) and len(Paths.GetFiles(os.path.join("." , "data",folder), findExtesions=".h5")) > 0] path = max(folders, key=os.path.getctime) else: path = os.path.join("." , "data", Const.ParseModelName(path)) try: latestModel = max(Paths.GetFiles(path, findExtesions=".h5"), key=os.path.getctime) except: print(f"No model found in: {path}") latestModel = None return latestModel import re def ModelValMIOU(path): result = re.findall("val\((.+)\)", path) return float(result[0]) def HighestValMIOUModel(path): if(not os.path.isdir(path)): path = os.path.join("." , "data", os.path.basename(path).split("_")[0]) latestModel = max(Paths.GetFiles(path, findExtesions=".h5"), key=ModelValMIOU) return latestModel def LoadModel(modelPath, consts): model = ReadModel(modelPath) modified = False if(model.output.shape[2] != consts.classCount): print("Model output {} classes changed to {}".format(model.output.shape[2], consts.classCount)) modified = True model = ModifyModelOutput(model, consts.classCount) model = CompileModel(model, consts.classCount) # model.summary() return model, modified def ReadModelConfig(path): Model = ReadModel(path) modelConfig = Const.ParseModelConfig(path) return Model, modelConfig def CreateModelCopy(Model, modelConfig, in_pts, in_RGB): inputFeatures = 1 if modelConfig.noFeature else modelConfig.featureComponents newModel = CreateModel(modelConfig.classCount, inputFeatures, in_RGB, in_pts, noColor=modelConfig.noFeature, returnFeatures=True, applySoftmax=False) if(Model != None): for new_layer, layer in zip(newModel.layers, Model.layers): new_layer.set_weights(layer.get_weights()) return newModel def FuseModels(modelPaths, consts): fusionModel = None assert(len(modelPaths) == 2 or modelPaths is None) print("Model fusion") if(not modelPaths is None): ModelA, modelAConfig = ReadModelConfig(modelPaths[0]) ModelB, modelBConfig = ReadModelConfig(modelPaths[1]) else: consts.noFeature = False modelAConfig = consts consts.noFeature = True modelBConfig = consts in_RGB = None if(not modelAConfig.noFeature or not modelBConfig.noFeature): in_RGB = Input(shape=(Const.npoints, consts.featureComponents), dtype=tf.float32, name = "In_RGB") #features in_pts = Input(shape=(Const.npoints, Const.pointComponents), dtype=tf.float32, name = "In_pts") #points newModelA = CreateModelCopy(ModelA, modelAConfig, in_pts, in_RGB) newModelB = CreateModelCopy(ModelB, modelBConfig, in_pts, in_RGB) x = tf.concat((newModelA.output[0], newModelB.output[0]), axis = 2) #fuse features from both models x1, _ = PtConv(x, in_pts, K = 16, next_pts = Const.npoints, in_features = 2*128, out_features = 96) x2, _ = PtConv(x1, in_pts, K = 16, next_pts = Const.npoints, in_features = 96, out_features = 48) x0d = tf.concat([x2, newModelA.output[1], newModelB.output[1]], axis = 2) out_labels = tf.reshape(x0d, (-1, x0d.shape[2])) out_labels = Dropout(rate=0.5)(out_labels) out_labels = DenseInitialized(consts.classCount)(out_labels) out_labels = tf.reshape(out_labels, (-1, x0d.shape[1], out_labels.shape[1])) out_labels = tf.nn.softmax(out_labels) fusionModel = Model([in_pts] if in_RGB is None else [in_RGB, in_pts], out_labels, name ="model") nontrainableNames = [x.name for x in newModelA.layers] + [x.name for x in newModelB.layers] # nontrainableNames = [x.name for x in newModelA.layers] count = 0 for i, layer in enumerate(fusionModel.layers): if(layer.name in nontrainableNames): layer.trainable = False count += 1 PrintToLog(f"{len(fusionModel.layers)-count}/{len(fusionModel.layers)} layers are trainable.") fusionModel = CompileModel(fusionModel, consts.classCount) # fusionModel.summary() return fusionModel class MIOU(tf.keras.metrics.Metric): def __init__(self, classCount, name='miou', **kwargs): super(MIOU, self).__init__(name=name, **kwargs) self.cm = self.add_weight(name=name, shape = (classCount, classCount), initializer='zeros', dtype = tf.int64) self.classCount = classCount def update_state(self, y_true, y_pred, sample_weight=None): TrueLbl = tf.argmax(tf.reshape(y_true, [-1, self.classCount]), axis= 1) PredLbl = tf.argmax(tf.reshape(y_pred, [-1, self.classCount]), axis= 1) confusion_matrix = tf.math.confusion_matrix(TrueLbl, PredLbl, self.classCount) self.cm.assign_add(tf.cast(confusion_matrix, tf.int64)) def result(self): union = tf.linalg.diag_part(self.cm) rowSum = tf.math.reduce_sum(self.cm, axis = 0) colSum = tf.math.reduce_sum(self.cm, axis = 1) intersection = (colSum + rowSum - union) intersection = tf.where(tf.equal(intersection, tf.constant(0, dtype=tf.int64)), tf.constant(1, dtype=tf.int64), intersection) iou = union / intersection miou = tf.expand_dims(tf.convert_to_tensor(tf.reduce_sum(iou) / tf.cast(iou.shape[0], dtype=np.float64)), 0) return tf.concat((tf.expand_dims(miou,1), tf.cast(tf.expand_dims(iou,1), tf.float64)), 0) def reset_states(self): # The state of the metric will be reset at the start of each epoch. self.cm.assign(tf.zeros((self.classCount, self.classCount), dtype=tf.int64)) def moving_miou_metric(classCount): def moving_iou(y_true, y_pred): TrueLbl = tf.argmax(tf.reshape(y_true, [-1, classCount]), axis= 1) PredLbl = tf.argmax(tf.reshape(y_pred, [-1, classCount]), axis= 1) cm = tf.math.confusion_matrix(TrueLbl, PredLbl, classCount) union = tf.linalg.diag_part(cm) rowSum = tf.math.reduce_sum(cm, axis = 0) colSum = tf.math.reduce_sum(cm, axis = 1) intersection = (colSum + rowSum - union)+1 iou = union / intersection return tf.reduce_sum(iou) / tf.cast(tf.math.maximum(iou.shape[0], 1), dtype=np.float64) return moving_iou class IOU(tf.keras.metrics.Metric): def __init__(self, classCount, classIndex, name='iou', **kwargs): super(IOU, self).__init__(name=name, **kwargs) self.cm = self.add_weight(name=name, shape = (classCount, classCount), initializer='zeros', dtype = tf.int64) self.classCount = classCount self.classIndex = classIndex def update_state(self, y_true, y_pred, sample_weight=None): TrueLbl = tf.argmax(tf.reshape(y_true, [-1, self.classCount]), axis= 1) PredLbl = tf.argmax(tf.reshape(y_pred, [-1, self.classCount]), axis= 1) confusion_matrix = tf.math.confusion_matrix(TrueLbl, PredLbl, self.classCount) self.cm.assign_add(tf.cast(confusion_matrix, tf.int64)) def result(self): union = tf.linalg.diag_part(self.cm) rowSum = tf.math.reduce_sum(self.cm, axis = 0) colSum = tf.math.reduce_sum(self.cm, axis = 1) intersection = (colSum + rowSum - union) intersection = tf.where(tf.equal(intersection, tf.constant(0, dtype=tf.int64)), tf.constant(1, dtype=tf.int64), intersection) iou = union / intersection return tf.cast(tf.expand_dims(iou, 1)[self.classIndex], tf.float64) def reset_states(self): # The state of the metric will be reset at the start of each epoch. self.cm.assign(tf.zeros((self.classCount, self.classCount), dtype=tf.int64)) def weighted_categorical_crossentropy(weights): # weights = [0.9,0.05,0.04,0.01] def wcce(y_true, y_pred): Kweights = tf.constant(weights) y_true = tf.cast(y_true, y_pred.dtype) return tf.keras.losses.categorical_crossentropy(y_true, y_pred) * tf.math.reduce_sum(y_true * Kweights, axis=-1) return wcce def CompileModel(model, classCount): model.compile( optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3, epsilon = 1e-8), loss = tf.keras.losses.CategoricalCrossentropy(), # loss = weighted_categorical_crossentropy([0.7, 5]), metrics= [IOU(classCount, 0, name="other"), IOU(classCount, 1, name="curb")] if classCount == 2 else [MIOU(classCount)] ) return model class IOUPerClass(tf.keras.callbacks.Callback): def __init__(self, plot_path, classNames, firstEpoch = 0, metric = "miou"): self.metric = metric self.epoch = firstEpoch self.classCount = len(classNames) self.classNames = classNames self.path = plot_path print(f"IOU logs path: {self.path}") self.writers = [] self.val_writers = [] ioupath = os.path.join(plot_path, "iou") os.makedirs(ioupath, exist_ok=True) for i in range(self.classCount): path = os.path.join(ioupath, classNames[i]) os.makedirs(path, exist_ok=True) self.writers.append(tf.summary.create_file_writer(path)) path = os.path.join(ioupath, "val_"+classNames[i]) os.makedirs(path, exist_ok=True) self.val_writers.append(tf.summary.create_file_writer(path)) # print("Writer path: ", path) self.InitializeMIOUWriter() def InitializeMIOUWriter(self): mioupath = os.path.join(self.path, "miou") os.makedirs(mioupath, exist_ok=True) path = os.path.join(mioupath, "miou") os.makedirs(path, exist_ok=True) self.miou_writer = tf.summary.create_file_writer(path) path = os.path.join(mioupath, "val_miou") os.makedirs(path, exist_ok=True) self.val_miou_writer = tf.summary.create_file_writer(path) def WriteLog(self, writer, metric, logs, epoch, tag = "miou"): value = logs.get(metric) if(value is None): print(f"Failed getting {metric} log") return False with writer.as_default(): tf.summary.scalar(tag, value[0][0], step=epoch) writer.flush() def WriteLogs(self, writers, metric, logs, epoch, tag = "iou"): metrix = logs.get(metric) if(metrix is None): print(f"Failed getting {metric} log") return False iou = [i[0] for i in metrix[len(metrix)-self.classCount:]] for i in range(len(iou)): with writers[i].as_default(): tf.summary.scalar(tag, iou[i], step=epoch) writers[i].flush() def on_epoch_end(self, batch, logs=None): self.WriteLogs(self.writers, self.metric, logs, self.epoch) self.WriteLogs(self.val_writers, "val_"+self.metric, logs, self.epoch) self.WriteLog(self.miou_writer, self.metric, logs, self.epoch) self.WriteLog(self.val_miou_writer, "val_"+self.metric, logs, self.epoch) self.epoch += 1 logSaveDir = "" def WriteToLog(msg): if(os.path.isdir(logSaveDir)): logFile = open(logSaveDir+f"/training.log", "a") logFile.write(msg+"\n") logFile.close() def PrintToLog(msg): print(msg) WriteToLog(msg) class ModelSaveCallback(tf.keras.callbacks.Callback): def __init__(self, saveDir, trainingSteps, metric = "accuracy", modelNamePrefix = "", sendNotifications = False): super().__init__() self.saveDir = saveDir self.metric = metric self.modelNamePrefix = modelNamePrefix self.epoch = 0 self.trainingSteps = trainingSteps self.sendNotifications = sendNotifications if(self.sendNotifications): self.notifyDevice = Notify() os.makedirs(self.saveDir, exist_ok=True) WriteToLog(f"Training: {modelNamePrefix}") def on_epoch_end(self, epoch, logs=None): self.epoch = epoch + 1 if(len(logs) > 0): miou = logs.get(self.metric)[0]*100 val_metric = "val_"+self.metric val_miou = logs.get(val_metric)[0]*100 SaveModel(self.saveDir, epoch, self.model, miou, val_miou, self.modelNamePrefix) message = "Ep: {0}. {1}: {2:.3}%. {3}: {4:.3}%".format(self.epoch, self.metric, miou, val_metric, val_miou) WriteToLog(message) f = open("demofile3.txt", "w") f.write("Woops! I have deleted the content!") f.close() if(self.sendNotifications): try: self.notifyDevice.send(self.modelNamePrefix + " " + message) except: print("notifyDevice error") # def on_batch_end(self, batch, logs=None): # progress = batch/self.trainingSteps * 100 # if(progress % 10 == 0): # try: # message = "Ep. {0} {1}% done. {2}: {3:.3}%".format(self.epoch+1, int(progress), self.metric, logs.get(self.metric)*100) # self.notifyDevice.send(message) # except: # print("notifyDevice error") def ParseEpoch(modelPath): filename = os.path.basename(modelPath) return int(filename.split("_")[2]) def GetValidationData(testFiles, consts, batchesCount = 100, newDataGeneration = False): print("Gathering validation data...") print(f"Test files: {testFiles}") if(newDataGeneration): PrintToLog("Use TestSequence for validation.") assert(len(testFiles) == 1) seq = TestSequence(testFiles[0], consts, test = True) else: PrintToLog("Use TrainSequence for validation.") seq = TrainSequence(testFiles, batchesCount, consts, dataAugmentation = False) if not consts.noFeature: ftsList = np.zeros((0, consts.npoints, consts.featureComponents), np.float32) ptsList = np.zeros((0, consts.npoints, 3), np.float32) lbsList = np.zeros((0, consts.npoints, consts.classCount), np.uint8) if(newDataGeneration): indexes = np.arange(min(batchesCount, len(seq))) np.random.shuffle(indexes) else: indexes = range(batchesCount) for i in indexes: if consts.noFeature: if(newDataGeneration): ptslbl = seq.__getitem__(i) else: pts, lbl = seq.__getitem__(i) ptslbl = [pts[0], lbl] ptsList = np.concatenate((ptsList, ptslbl[0]), 0) lbsList = np.concatenate((lbsList, ptslbl[1]), 0) else: if(newDataGeneration): ftsptslbl = seq.__getitem__(i) else: ftspts, lbl = seq.__getitem__(i) ftsptslbl = [ftspts[0], ftspts[1], lbl] ftsList = np.concatenate((ftsList, ftsptslbl[0]), 0) ptsList = np.concatenate((ptsList, ftsptslbl[1]), 0) lbsList = np.concatenate((lbsList, ftsptslbl[2]), 0) PrintToLog(f"Generated {len(lbsList)} validation samples.") if consts.noFeature: return (ptsList, lbsList) else: return ([ftsList, ptsList], lbsList) def TrainModel(trainFiles, testFiles, consts : Const, modelPath = None, saveDir = Paths.dataPath, classes = None, first_epoch = 0, epochs = None, sendNotifications = False): model = None modelName = None if(modelPath != None): if(not isinstance(modelPath, list)): modelName = Const.ParseModelName(modelPath) if(consts.Name() != Const.RemoveUID(modelName)): modelName = consts.Name(consts.UID()) logSaveDir = saveDir + f"/{modelName}/" if(isinstance(modelPath, list)): model = FuseModels(modelPath, consts) else: model, modified = LoadModel(modelPath, consts) if(not modified): first_epoch = ParseEpoch(modelPath) +1 else: if(consts.Fusion): model = FuseModels(None, consts) else: model = CreateModel(consts.classCount, 1 if consts.noFeature else consts.featureComponents, noColor=consts.noFeature) if(modelName is None or modelName == ""): modelName = consts.Name(consts.UID()) logSaveDir = saveDir + f"/{modelName}/" PrintToLog("Train {} on {} files. Test on {} files".format(modelName, len(trainFiles), len(testFiles))) PrintToLog("Validate on :" + str(testFiles)) trainingSteps = int((1000*16)/consts.batchSize) if not Const.IsWindowsMachine() else int(10) PrintToLog("Batch size: {}, trainingSteps: {}".format(consts.batchSize, trainingSteps)) logsPath = os.path.join(consts.logsPath, Const.RemoveUID(modelName)) os.makedirs(logsPath, exist_ok=True) callbacks_list = [] callbacks_list.append(ModelSaveCallback(logSaveDir, trainingSteps, "curb", modelNamePrefix = modelName, sendNotifications=sendNotifications)) # callbacks_list.append(IOUPerClass(logsPath, consts.classNames[1:], first_epoch+1)) # callbacks_list.append(tf.keras.callbacks.TensorBoard(log_dir=logsPath, update_freq="batch", histogram_freq=0, profile_batch = 0)) # tensorboard 2.0.2 seq = TrainSequence(trainFiles, trainingSteps, consts) validationSteps = int(((150 if not Const.IsWindowsMachine() else 10) * 16)/consts.batchSize) validationData = None if len(testFiles) == 0 else GetValidationData(testFiles, consts, validationSteps) if(epochs is None): epochs = 20 if consts.Fusion else 100 model.fit(seq, validation_data = validationData, epochs = epochs, batch_size = consts.batchSize, workers = consts.batchSize, max_queue_size = 300, callbacks=callbacks_list, initial_epoch = first_epoch) def EvaluateModels(modelsList, testFiles, consts, x = None, y = None): if(x is None or y is None): validationSteps = int(((150 if not Const.IsWindowsMachine() else 10) * 16)/consts.batchSize) x, y = GetValidationData(testFiles, consts, validationSteps, newDataGeneration = False) for file in modelsList: model, _ = LoadModel(file, consts) metrics = model.evaluate(x, y, batch_size = consts.batchSize, workers = consts.batchSize, max_queue_size = 300) # print(f"miou: {metrics[2][0][0]*100:.3}") def SaveModel(saveDir, epoch, model, train_score, val_score=0, modelNamePrefix = ""): if(modelNamePrefix != ""): modelNamePrefix += "_" fileName = saveDir+"/{0}{1}{2}{3}.h5".format(modelNamePrefix, epoch, f"_train({train_score:.3})", f"_val({val_score:.3})" if val_score != 0 else "") if(not os.path.isdir(saveDir)): os.mkdir(saveDir) if(os.path.exists(fileName)): os.remove(fileName) model.save(fileName, include_optimizer=False) def RotatePointCloud(batch_data): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ rotation_angle = np.random.uniform() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, sinval, 0], [-sinval, cosval, 0], [0, 0, 1],]) return np.dot(batch_data, rotation_matrix) def JitterRGB(features): features = features.astype(np.uint8) assert(np.max(features) > 1) img = Image.fromarray(np.expand_dims(features,0), mode="RGB") low = 0.4 high = 1.6 #1 is baseline img = ImageEnhance.Brightness(img).enhance(np.random.uniform(low, high)) img = ImageEnhance.Color(img).enhance(np.random.uniform(low, high)) img = ImageEnhance.Contrast(img).enhance(np.random.uniform(low, high)) img = ImageEnhance.Sharpness(img).enhance(np.random.uniform(low, high)) if(np.random.uniform(low, high) > 1): img = ImageOps.equalize(img) if(np.random.uniform(low, high) > 1): img = ImageOps.autocontrast(img) new_features = np.array(img).reshape((-1, 3)) return new_features def JitterReflectance(features, sigma=40): #input [0; 255] assert(features.shape[1] == 1) randJitters = np.random.randint(-sigma, sigma, size = features.shape) features += randJitters features = np.clip(features, 0, 255) return features def JitterPoints(points, sigma=0.01): """ Randomly jitter points. jittering is per point. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, jittered batch of point clouds """ C = 3 assert(points.shape[1] == C) randJitters = np.random.uniform(-sigma, sigma, size = points.shape) return points + randJitters def Mirror(points, axis, min = True): if(min): axisValue = np.amin(points[:,axis]) else: axisValue = np.amax(points[:,axis]) distances = np.abs(points[:, axis] - axisValue) newpoints = np.array(points, copy=True) newpoints[:,axis] = newpoints[:,axis] + distances*(-2 if min else 2) return newpoints def MirrorPoints(points): assert(len(points.shape) == 2 and points.shape[1] == 3) mirrorDirection = random.choice(["xMin", "xMax", "yMin", "yMax", ""]) if(mirrorDirection == "xMin"): points = Mirror(points, 0, min = True) elif(mirrorDirection == "xMax"): points = Mirror(points, 0, min = False) elif(mirrorDirection == "yMin"): points = Mirror(points, 1, min = True) elif(mirrorDirection == "yMax"): points = Mirror(points, 1, min = False) return points def ScalePoints(points, sigma = 0.02): """ Scale up or down random by small percentage Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, scaled batch of point clouds """ assert(points.shape[1]==3) scale = np.random.uniform(1-sigma, 1+sigma) scale_matrix = np.array([[scale, 0, 0], [0, scale, 0], [0, 0, scale]]) scaled = np.dot(points, scale_matrix) return scaled class TrainSequence(Sequence): def __init__(self, filelist, iteration_number, consts : Const, dataAugmentation = True): self.filelist = filelist self.ptsList = [np.load(file) for file in self.filelist] self.ptsList = sorted(self.ptsList, key=len) self.ptsListCount = np.cumsum([len(pts) for pts in self.ptsList]) self.cts = consts self.dataAugmentation = dataAugmentation self.iterations = iteration_number def __len__(self): return int(self.iterations) def PickRandomPoint(self, lbl): lblIdx = [] while True: randClass = random.randint(0, self.cts.classCount-1) lblIdx = np.where(lbl == randClass)[0] if(len(lblIdx) >= 2): break return lblIdx[random.randint(0, len(lblIdx)-1)] def __getitem__(self, _): if not self.cts.noFeature: ftsList = np.zeros((self.cts.batchSize, self.cts.npoints, self.cts.featureComponents), np.float32) ptsList = np.zeros((self.cts.batchSize, self.cts.npoints, 3), np.float32) lbsList = np.zeros((self.cts.batchSize, self.cts.npoints, self.cts.classCount), np.uint8) for i in range(self.cts.batchSize): # load the data ptIdx = random.randint(0, self.ptsListCount[-1]) pts = self.ptsList[np.argmax(self.ptsListCount >= ptIdx)] # if(self.cts.featureComponents == 1): # keepPts = (pts[:, 4] != 0) # else: # keepPts = (pts[:, 6] != 0) # pts = pts[keepPts] # get the features if(self.cts.featureComponents == 1): if not self.cts.noFeature: fts = np.expand_dims(pts[:,3], 1).astype(np.float32) lbs = pts[:,4].astype(int) else: if not self.cts.noFeature: fts = pts[:,3:6].astype(np.float32) lbs = pts[:,6].astype(int) if(np.min(lbs) == 1): lbs -= 1 #class 0 is filtered out # get the point coordinates pts = pts[:, :3] # pick a random point pt_id = random.randint(0, pts.shape[0]-1) pt = pts[pt_id] # create the mask mask_x = np.logical_and(pts[:,0]<pt[0]+self.cts.blocksize/2, pts[:,0]>pt[0]-self.cts.blocksize/2) mask_y = np.logical_and(pts[:,1]<pt[1]+self.cts.blocksize/2, pts[:,1]>pt[1]-self.cts.blocksize/2) mask = np.logical_and(mask_x, mask_y) temppts = pts[mask] templbs = lbs[mask] if not self.cts.noFeature: tempfts = fts[mask] # random selection choice = np.random.choice(temppts.shape[0], self.cts.npoints, replace=True) temppts = temppts[choice] if not self.cts.noFeature: tempfts = tempfts[choice] templbs = templbs[choice] encodedLbs = np.zeros((len(templbs), self.cts.classCount)) encodedLbs[np.arange(len(templbs)),templbs] = 1 templbs = encodedLbs # if self.dataAugmentation: # dt = DataTool() # dt.VisualizePointCloudAsync([temppts], [tempfts/255]) # data augmentation if self.dataAugmentation: if(self.cts.Mirror): temppts = MirrorPoints(temppts) if(self.cts.Rotate): temppts = RotatePointCloud(temppts) if(self.cts.Scale): temppts = ScalePoints(temppts, sigma = 0.02) if(self.cts.Jitter): temppts = JitterPoints(temppts, sigma = 0.01) if(not self.cts.noFeature and self.cts.FtrAugment): if(self.cts.featureComponents == 3): tempfts = JitterRGB(tempfts) elif(self.cts.featureComponents == 1): tempfts = JitterReflectance(tempfts) if(not self.cts.noFeature): tempfts = tempfts.astype(np.float32) tempfts = tempfts/255 # - 0.5 # if self.dataAugmentation: # # visualize data # dt = DataTool() # dt.VisualizePointCloud([temppts], [tempfts], windowName = "Augmented") # linePoints = np.where(templbs[:, 1] == 1)[0] # DataTool().VisualizePointCloud([np.delete(temppts, linePoints, axis=0), temppts[linePoints]], [[0,0,1], [1,0,0]], windowName="Sampled") if not self.cts.noFeature: ftsList[i] = np.expand_dims(tempfts, 0) ptsList[i] = np.expand_dims(temppts, 0) lbsList[i] = np.expand_dims(templbs, 0) if self.cts.noFeature: return [ptsList], lbsList else: # works for RGB and fusion models return [ftsList, ptsList], lbsList class TestSequence(Sequence): def __init__(self, filename, consts, splitDataSetToParts = -1, windowsMachineCap = True, test = False): self.filename = filename self.batchSize = consts.batchSize self.npoints = consts.npoints self.nocolor = consts.noFeature self.bs = consts.blocksize self.featureComponents = consts.featureComponents self.fusion = consts.Fusion self.test = test if(self.test): self.classCount = consts.classCount self.lbl = [] if(self.filename.endswith(".ply")): from plyfile import PlyData plydata = PlyData.read(self.filename) x = plydata["vertex"].data["x"].astype(np.float32) y = plydata["vertex"].data["y"].astype(np.float32) z = plydata["vertex"].data["z"].astype(np.float32) fts = plydata["vertex"].data["reflectance"].astype(np.float32) self.xyzrgb = np.concatenate((np.expand_dims(x,1), np.expand_dims(y,1), np.expand_dims(z,1), np.expand_dims(fts, 1)), axis=1) elif(self.filename.endswith(".npy")): xyzftsl = np.load(self.filename) if(xyzftsl.shape[1] == 5): self.xyzrgb = xyzftsl[:, :4] if(self.test): self.lbl = xyzftsl[:, 4] - 1 else: #if(xyzftsl.shape[1] == 7): self.xyzrgb = xyzftsl[:, :6] if(self.test): self.lbl = xyzftsl[:, 6] - 1 elif(self.filename.endswith(".las")): from dataTool import ReadXYZRGB xyz, rgb = ReadXYZRGB(self.filename) self.xyzrgb = np.concatenate((xyz, rgb), 1) print("Test_step:", consts.test_step) step = consts.test_step discretized = ((self.xyzrgb[:,:2]).astype(float)/step).astype(int) self.allpts = np.unique(discretized, axis=0) self.allpts = self.allpts.astype(np.float)*step if(consts.IsWindowsMachine() and windowsMachineCap): self.allpts = self.allpts[:115] #small sample for testing self.splitDataSetToParts = splitDataSetToParts if(self.splitDataSetToParts != -1): self.ptIndex = 0 else: self.pts = self.allpts self.idxList = np.zeros((len(self.pts), self.npoints), np.int64) self.sparseCubes = 0 self.sparseCubesPtCount = 0 def LenParts(self): if(self.splitDataSetToParts != -1): return math.ceil(len(self.allpts)/self.splitDataSetToParts) else: return 1 def NextPart(self): if(self.splitDataSetToParts <= 0): return False if(self.ptIndex >= len(self.allpts)): return False self.nextIndex = np.min([self.ptIndex+self.splitDataSetToParts, len(self.allpts)]) self.pts = self.allpts[self.ptIndex : self.nextIndex] self.ptIndex = self.nextIndex self.idxList = np.zeros((len(self.pts), self.npoints), np.int64) return True def __len__(self): return math.ceil(len(self.pts)/self.batchSize) def compute_mask(self, pt, bs): # build the mask mask_x = np.logical_and(self.xyzrgb[:,0]<pt[0]+bs/2, self.xyzrgb[:,0]>pt[0]-bs/2) mask_y = np.logical_and(self.xyzrgb[:,1]<pt[1]+bs/2, self.xyzrgb[:,1]>pt[1]-bs/2) mask = np.logical_and(mask_x, mask_y) return mask def __getitem__(self, index): size = min(self.batchSize, len(self.pts) - (index * self.batchSize)) if not self.nocolor: ftsList = np.zeros((size, self.npoints, self.featureComponents), np.float32) ptsList =
np.zeros((size, self.npoints, 3), np.float32)
numpy.zeros
import numpy as np class NaiveBayes: def fit(self,X,y): n_samples, n_features = X.shape self._classes = np.unique(y) n_classes = len(self._classes) self._mean = np.zeros((n_classes, n_features),dtype=np.float64) self._var = np.zeros((n_classes, n_features), dtype=np.float64) self._priors = np.zeros(n_classes, dtype=np.float64) for c in self._classes: X_c = X[c==y] self._mean[c,:] = X_c.mean(axis=0) self._var[c, :] = X_c.var(axis=0) self._priors[c] = X_c.shape[0]/float(n_samples) def predict(self,X): y_pred = [self._predict(x) for x in X] return y_pred def _predict(self,x): posteriors = [] for idx, c in enumerate(self._classes): prior = np.log(self._priors[idx]) class_conditional = np.prod(self.calculate(idx,x)) posterior = prior+class_conditional posteriors.append(posterior) return self._classes[
np.argmax(posteriors)
numpy.argmax
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-present : DESY PHOTON SCIENCE # authors: # <NAME>, <EMAIL> import datetime import gc import sys import time import tkinter as tk from tkinter import filedialog import numpy as np from matplotlib import pyplot as plt from skimage.feature import peak_local_max import bcdi.graph.graph_utils as gu import bcdi.postprocessing.postprocessing_utils as pu import bcdi.simulation.simulation_utils as simu import bcdi.utils.utilities as util from bcdi.experiment.detector import create_detector from bcdi.graph.colormap import ColormapFactory helptext = """ Calculate the position of the Bragg peaks for a mesocrystal given the lattice type, the unit cell parameter and beamline-related parameters. Assign 3D Gaussians to each lattice point and rotates the unit cell in order to maximize the cross-correlation of the simulated data with experimental data. The experimental data should be sparse (using a photon threshold), and Bragg peaks maximum must be clearly identifiable. Laboratory frame convention (CXI): z downstream, y vertical up, x outboard. Reciprocal space basis: qx downstream, qz vertical up, qy outboard. """ datadir = "D:/data/P10_March2020_CDI/test_april/data/align_06_00248/pynx/" savedir = "D:/data/P10_March2020_CDI/test_april/data/align_06_00248/simu/" comment = "" # should start with _ ################ # sample setup # ################ unitcell = "fcc" # supported unit cells: 'cubic', 'bcc', 'fcc', 'bct' # It can be a number or tuple of numbers depending on the unit cell. unitcell_ranges = [22.9, 22.9] # in nm, values of the unit cell parameters to test # cubic, FCC or BCC unit cells: [start, stop]. # BCT unit cell: [start1, stop1, start2, stop2] (stop is included) unitcell_step = 0.05 # in nm ######################### # unit cell orientation # ######################### angles_ranges = [ -45, -45, -45, 45, -45, 45, ] # [start, stop, start, stop, start, stop], in degrees # ranges to span for the rotation around qx downstream, qz vertical up and # qy outboard respectively (stop is included) angular_step = 5 # in degrees ####################### # beamline parameters # ####################### sdd = 4.95 # in m, sample to detector distance energy = 8250 # in ev X-ray energy ################## # detector setup # ################## detector = "Eiger4M" # "Eiger2M" or "Maxipix" or "Eiger4M" direct_beam = ( 1303, 1127, ) # tuple of int (vertical, horizontal): position of the direct beam in pixels # this parameter is important for gridding the data onto the laboratory frame roi_detector = [] # [direct_beam[0] - 972, direct_beam[0] + 972, # direct_beam[1] - 883, direct_beam[1] + 883] # [Vstart, Vstop, Hstart, Hstop], leave [] to use the full detector binning = [4, 4, 4] # binning of the detector ########################## # peak detection options # ########################## photon_threshold = 1000 # intensity below this value will be set to 0 min_distance = 50 # minimum distance between Bragg peaks in pixels peak_width = 0 # the total width will be (2*peak_width+1) ########### # options # ########### kernel_length = 11 # width of the 3D gaussian window debug = True # True to see more plots correct_background = False # True to create a 3D background bckg_method = "normalize" # 'subtract' or 'normalize' ################################## # end of user-defined parameters # ################################## ####################### # Initialize detector # ####################### detector = create_detector(name=detector, binning=binning, roi=roi_detector) ################### # define colormap # ################### bad_color = "1.0" # white background my_cmap = ColormapFactory(bad_color=bad_color).cmap plt.ion() ################################### # load experimental data and mask # ################################### root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename( initialdir=datadir, title="Select the data to fit", filetypes=[("NPZ", "*.npz")] ) data = np.load(file_path)["data"] nz, ny, nx = data.shape print( "Sparsity of the data:", str("{:.2f}".format((data == 0).sum() / (nz * ny * nx) * 100)), "%", ) try: file_path = filedialog.askopenfilename( initialdir=datadir, title="Select the mask", filetypes=[("NPZ", "*.npz")] ) mask = np.load(file_path)["mask"] data[np.nonzero(mask)] = 0 del mask gc.collect() except FileNotFoundError: pass try: file_path = filedialog.askopenfilename( initialdir=datadir, title="Select q values", filetypes=[("NPZ", "*.npz")] ) exp_qvalues = np.load(file_path) qvalues_flag = True except FileNotFoundError: exp_qvalues = None qvalues_flag = False ########################## # apply photon threshold # ########################## data[data < photon_threshold] = 0 print( "Sparsity of the data after photon threshold:", str("{:.2f}".format((data == 0).sum() / (nz * ny * nx) * 100)), "%", ) ###################### # calculate q values # ###################### if unitcell == "bct": pivot, _, q_values, _, _ = simu.lattice( energy=energy, sdd=sdd, direct_beam=direct_beam, detector=detector, unitcell=unitcell, unitcell_param=[unitcell_ranges[0], unitcell_ranges[2]], euler_angles=[0, 0, 0], offset_indices=True, ) else: pivot, _, q_values, _, _ = simu.lattice( energy=energy, sdd=sdd, direct_beam=direct_beam, detector=detector, unitcell=unitcell, unitcell_param=unitcell_ranges[0], euler_angles=[0, 0, 0], offset_indices=True, ) nbz, nby, nbx = len(q_values[0]), len(q_values[1]), len(q_values[2]) comment = ( comment + str(nbz) + "_" + str(nby) + "_" + str(nbx) + "_" + str(binning[0]) + "_" + str(binning[1]) + "_" + str(binning[2]) ) if (nbz != nz) or (nby != ny) or (nbx != nx): print( "The experimental data and calculated q values have different shape," ' check "roi_detector" parameter!' ) sys.exit() print("Origin of the reciprocal space at pixel", pivot) ########################## # plot experimental data # ########################## if debug: gu.multislices_plot( data, sum_frames=True, title="data", vmin=0, vmax=np.log10(data).max(), scale="log", plot_colorbar=True, cmap=my_cmap, is_orthogonal=True, reciprocal_space=True, ) if qvalues_flag: gu.contour_slices( data, q_coordinates=(exp_qvalues["qx"], exp_qvalues["qz"], exp_qvalues["qy"]), sum_frames=True, title="Experimental data", levels=np.linspace(0, np.log10(data.max()) + 1, 20, endpoint=False), scale="log", plot_colorbar=False, is_orthogonal=True, reciprocal_space=True, ) else: gu.contour_slices( data, q_coordinates=q_values, sum_frames=True, title="Experimental data", levels=np.linspace(0, np.log10(data.max()) + 1, 20, endpoint=False), scale="log", plot_colorbar=False, is_orthogonal=True, reciprocal_space=True, ) ################################################ # remove background from the experimental data # ################################################ if correct_background: file_path = filedialog.askopenfilename( initialdir=datadir, title="Select the 1D background file", filetypes=[("NPZ", "*.npz")], ) avg_background = np.load(file_path)["background"] distances = np.load(file_path)["distances"] if qvalues_flag: data = util.remove_avg_background( array=data, avg_background=avg_background, avg_qvalues=distances, q_values=(exp_qvalues["qx"], exp_qvalues["qz"], exp_qvalues["qy"]), method=bckg_method, ) else: print("Using calculated q values for background subtraction") data = util.remove_avg_background( array=data, q_values=q_values, avg_background=avg_background, avg_qvalues=distances, method=bckg_method, ) np.savez_compressed(datadir + "data-background_" + comment + ".npz", data=data) gu.multislices_plot( data, sum_frames=True, title="Background subtracted data", vmin=0, vmax=np.log10(data).max(), scale="log", plot_colorbar=True, cmap=my_cmap, is_orthogonal=True, reciprocal_space=True, ) ############################################# # find Bragg peaks in the experimental data # ############################################# density_map = np.copy(data) # find peaks local_maxi = peak_local_max( density_map, exclude_border=False, min_distance=min_distance, indices=True ) nb_peaks = local_maxi.shape[0] print("Number of Bragg peaks isolated:", nb_peaks) print("Bragg peaks positions:") print(local_maxi) density_map[:] = 0 for idx in range(nb_peaks): piz, piy, pix = local_maxi[idx] density_map[ piz - peak_width : piz + peak_width + 1, piy - peak_width : piy + peak_width + 1, pix - peak_width : pix + peak_width + 1, ] = 1 nonzero_indices = np.nonzero(density_map) bragg_peaks = density_map[ nonzero_indices ] # 1D array of length: nb_peaks*(2*peak_width+1)**3 if debug: gu.multislices_plot( density_map, sum_frames=True, title="Bragg peaks positions", slice_position=pivot, vmin=0, vmax=1, scale="linear", cmap=my_cmap, is_orthogonal=True, reciprocal_space=True, ) plt.pause(0.1) ######################### # define the peak shape # ######################### peak_shape = pu.blackman_window( shape=(kernel_length, kernel_length, kernel_length), normalization=100 ) ##################################### # define the list of angles to test # ##################################### angles_qx = np.linspace( start=angles_ranges[0], stop=angles_ranges[1], num=max(1, np.rint((angles_ranges[1] - angles_ranges[0]) / angular_step) + 1), ) angles_qz = np.linspace( start=angles_ranges[2], stop=angles_ranges[3], num=max(1, np.rint((angles_ranges[3] - angles_ranges[2]) / angular_step) + 1), ) angles_qy = np.linspace( start=angles_ranges[4], stop=angles_ranges[5], num=max(1, np.rint((angles_ranges[5] - angles_ranges[4]) / angular_step) + 1), ) nb_angles = len(angles_qx) * len(angles_qz) * len(angles_qy) print("Number of angles to test: ", nb_angles) #################################################### # loop over rotation angles and lattice parameters # #################################################### start = time.time() if unitcell == "bct": a_values = np.linspace( start=unitcell_ranges[0], stop=unitcell_ranges[1], num=max( 1, np.rint((unitcell_ranges[1] - unitcell_ranges[0]) / unitcell_step) + 1 ), ) c_values = np.linspace( start=unitcell_ranges[2], stop=unitcell_ranges[3], num=max( 1, np.rint((unitcell_ranges[3] - unitcell_ranges[2]) / unitcell_step) + 1 ), ) nb_lattices = len(a_values) * len(c_values) print("Number of lattice parameters to test: ", nb_lattices) print("Total number of iterations: ", nb_angles * nb_lattices) corr = np.zeros( (len(angles_qx), len(angles_qz), len(angles_qy), len(a_values), len(c_values)) ) for idz, alpha in enumerate(angles_qx): for idy, beta in enumerate(angles_qz): for idx, gamma in enumerate(angles_qy): for idw, a in enumerate(a_values): for idv, c in enumerate(c_values): _, _, _, rot_lattice, _ = simu.lattice( energy=energy, sdd=sdd, direct_beam=direct_beam, detector=detector, unitcell=unitcell, unitcell_param=(a, c), euler_angles=(alpha, beta, gamma), offset_indices=False, ) # peaks in the format [[h, l, k], ...]: # CXI convention downstream , vertical up, outboard # assign the peak shape to each lattice point struct_array = simu.assign_peakshape( array_shape=(nbz, nby, nbx), lattice_list=rot_lattice, peak_shape=peak_shape, pivot=pivot, ) # calculate the correlation between experimental data # and simulated data corr[idz, idy, idx, idw, idv] = np.multiply( bragg_peaks, struct_array[nonzero_indices] ).sum() else: a_values = np.linspace( start=unitcell_ranges[0], stop=unitcell_ranges[1], num=max( 1, np.rint((unitcell_ranges[1] - unitcell_ranges[0]) / unitcell_step) + 1 ), ) nb_lattices = len(a_values) print("Number of lattice parameters to test: ", nb_lattices) print("Total number of iterations: ", nb_angles * nb_lattices) corr = np.zeros((len(angles_qx), len(angles_qz), len(angles_qy), len(a_values))) for idz, alpha in enumerate(angles_qx): for idy, beta in enumerate(angles_qz): for idx, gamma in enumerate(angles_qy): for idw, a in enumerate(a_values): _, _, _, rot_lattice, _ = simu.lattice( energy=energy, sdd=sdd, direct_beam=direct_beam, detector=detector, unitcell=unitcell, unitcell_param=a, euler_angles=(alpha, beta, gamma), offset_indices=False, ) # peaks in the format [[h, l, k], ...]: # CXI convention downstream , vertical up, outboard # assign the peak shape to each lattice point struct_array = simu.assign_peakshape( array_shape=(nbz, nby, nbx), lattice_list=rot_lattice, peak_shape=peak_shape, pivot=pivot, ) # calculate the correlation between experimental data # and simulated data corr[idz, idy, idx, idw] = np.multiply( bragg_peaks, struct_array[nonzero_indices] ).sum() end = time.time() print( "\nTime ellapsed in the loop over angles and lattice parameters:", str(datetime.timedelta(seconds=int(end - start))), ) ########################################## # plot the correlation matrix at maximum # ########################################## comment = comment + "_" + unitcell if unitcell == "bct": # corr is 5D piz, piy, pix, piw, piv = np.unravel_index(abs(corr).argmax(), corr.shape) alpha, beta, gamma = angles_qx[piz], angles_qz[piy], angles_qy[pix] best_param = a_values[piw], c_values[piv] text = ( unitcell + " unit cell of parameter(s) = {:.2f} nm, {:.2f}".format( best_param[0], best_param[1] ) + " nm" ) print( "Maximum correlation for (angle_qx, angle_qz, angle_qy) = " "{:.2f}, {:.2f}, {:.2f}".format(alpha, beta, gamma) ) print("Maximum correlation for a", text) corr_angles = np.copy(corr[:, :, :, piw, piv]) corr_lattice = np.copy(corr[piz, piy, pix, :, :]) vmin = corr_lattice.min() vmax = 1.1 * corr_lattice.max() save_lattice = True if all(corr_lattice.shape[idx] > 1 for idx in range(corr_lattice.ndim)): # 2D fig, ax = plt.subplots(nrows=1, ncols=1) plt0 = ax.contourf( c_values, a_values, corr_lattice, np.linspace(vmin, vmax, 20, endpoint=False), cmap=my_cmap, ) plt.colorbar(plt0, ax=ax) ax.set_ylabel("a parameter (nm)") ax.set_xlabel("c parameter (nm)") ax.set_title("Correlation map for lattice parameters") else: # 1D or 0D nonzero_dim = np.nonzero(np.asarray(corr_lattice.shape) != 1)[0] if len(nonzero_dim) == 0: # 0D print("The unit cell lattice parameters are not scanned") save_lattice = False else: # 1D corr_lattice = np.squeeze(corr_lattice) labels = ["a parameter (nm)", "c parameter (nm)"] fig = plt.figure() if nonzero_dim[0] == 0: plt.plot(a_values, corr_lattice, ".-r") else: # index 1 plt.plot(c_values, corr_lattice, ".-r") plt.xlabel(labels[nonzero_dim[0]]) plt.ylabel("Correlation") plt.pause(0.1) if save_lattice: plt.savefig( savedir + "correlation_lattice_" + comment + "_param a={:.2f}nm,c={:.2f}nm".format(best_param[0], best_param[1]) + ".png" ) else: # corr is 4D piz, piy, pix, piw = np.unravel_index(abs(corr).argmax(), corr.shape) alpha, beta, gamma = angles_qx[piz], angles_qz[piy], angles_qy[pix] best_param = a_values[piw] text = ( unitcell + " unit cell of parameter = " + str("{:.2f}".format(best_param)) + " nm" ) print( "Maximum correlation for (angle_qx, angle_qz, angle_qy) = " "{:.2f}, {:.2f}, {:.2f}".format(alpha, beta, gamma) ) print("Maximum correlation for a", text) corr_angles = np.copy(corr[:, :, :, piw]) corr_lattice = np.copy(corr[piz, piy, pix, :]) fig = plt.figure() plt.plot(a_values, corr_lattice, ".r") plt.xlabel("a parameter (nm)") plt.ylabel("Correlation") plt.pause(0.1) plt.savefig( savedir + "correlation_lattice_" + comment + "_param a={:.2f}nm".format(best_param) + ".png" ) vmin = corr_angles.min() vmax = 1.1 * corr_angles.max() save_angles = True if all(corr_angles.shape[idx] > 1 for idx in range(corr_angles.ndim)): # 3D fig, _, _ = gu.contour_slices( corr_angles, (angles_qx, angles_qz, angles_qy), sum_frames=False, title="Correlation map for rotation angles", slice_position=[piz, piy, pix], plot_colorbar=True, levels=
np.linspace(vmin, vmax, 20, endpoint=False)
numpy.linspace
import unittest from unittest.mock import Mock, MagicMock, patch, call, mock_open from lattice_mc import init_lattice from lattice_mc.lattice_site import Site from lattice_mc.lattice import Lattice import numpy as np #TODO write integration tests for creating lattices class InitLatticeTestCase( unittest.TestCase ): """Test for Specific Lattice initialisation routines""" @patch( 'lattice_mc.lattice_site.Site' ) @patch( 'lattice_mc.lattice.Lattice' ) def test_square_lattice( self, mock_lattice, mock_site ): mock_site.side_effect = range(2*3) mock_lattice.return_value = 'foo' a = 2 b = 3 spacing = 1.0 lattice = init_lattice.square_lattice( a, b, spacing ) expected_site_calls = [ [ 1, np.array([ 0., 0., 0.]), [2, 2, 5, 3], 0.0, 'L' ], [ 2, np.array([ 1., 0., 0.]), [1, 1, 6, 4], 0.0, 'L' ], [ 3,
np.array([ 0., 1., 0.])
numpy.array
import numpy as np class MemsZonalReconstructor(object): THRESHOLD_RMS = 0.25 # threshold for wf rms to select actuators outside the specified mask def __init__(self, cmask, ifs_stroke, ifs): self._cmask = cmask self._ifs = ifs self._check_input_mask() self._ifs[:].mask = cmask self._ifs_stroke = ifs_stroke self._num_of_acts = ifs.shape[0] self._normalize_influence_function() self._reset() def _reset(self): self._acts_in_pupil = None self._im = None self._rec = None def _compute_all(self): self._build_valid_actuators_list() self._build_interaction_matrix() self._build_reconstruction_matrix_via_pinv() def _get_svd(self): self.u, self.s, self.vh = np.linalg.svd( self.interaction_matrix, full_matrices=False) def _check_input_mask(self): ''' Checks cmask dimensions True if cmask is fully inscribed in the ifs mask ''' assert self.mask.shape == self._ifs[ 0].shape, "cmask has not the same dimension of ifs mask!\nGot:{self.mask.shape}\nShould be:{self._ifs[0].shape}" ifs_mask = self._ifs[0].mask intersection_mask = np.ma.mask_or(ifs_mask, self.mask) assert (intersection_mask == self.mask).all( ) == True, "input mask is not valid!\nShould be fully inscribed in the ifs mask!" def _normalize_influence_function(self): # normalizzare al pushpull o al max registarto nel pixel self._normalized_ifs = self._ifs[:] / self._ifs_stroke def _build_interaction_matrix(self): self._im = np.column_stack([self._normalized_ifs[act][self.mask == False] for act in self.selected_actuators]) @property def interaction_matrix(self): if self._im is None: self._build_interaction_matrix() return self._im def _build_reconstruction_matrix_via_pinv(self): self._rec =
np.linalg.pinv(self.interaction_matrix)
numpy.linalg.pinv
# <NAME>, Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, # National Institutes of Health Clinical Center, July 2019 """Procedure in the demo mode""" import os import numpy as np from time import time import torch import nibabel as nib from tqdm import tqdm import cv2 from openpyxl import load_workbook import matplotlib.pyplot as plt import pandas as pd from maskrcnn.config import cfg from maskrcnn.data.datasets.load_ct_img import load_prep_img from maskrcnn.structures.image_list import to_image_list from maskrcnn.data.datasets.evaluation.DeepLesion.post_process import post_process_results from maskrcnn.data.datasets.load_ct_img import windowing, windowing_rev from maskrcnn.utils.draw import draw_results def exec_model(model): """test model on user-provided data, instead of the preset DeepLesion dataset""" import_tag_data() model.eval() device = torch.device(cfg.MODEL.DEVICE) #while True: #info = "Please input the path of a nifti CT volume >> " #while True: #path = input(info) # ------- Zhoubing 100 datasets ------- # for num in range(12): # if num + 1 < 10: # img_num = 'img000' + str(num + 1) # #data_dir = '/nfs/masi/leeh43/MULAN_universal_lesion_analysis/results' # #img_dir = '_nfs_masi_leeh43_zhoubing100_img_' + img_num + '.nii.gz/' # #result = os.path.join(data_dir, img_dir + 'results.txt' ) # main_dir = '/nfs/masi/leeh43/zhoubing100/img/' # img_dir = os.path.join(main_dir, img_num + '.nii.gz') # # if num + 1 >= 10 and num + 1 < 100: # img_num = 'img00' + str(num + 1) # main_dir = '/nfs/masi/leeh43/zhoubing100/img/' # img_dir = os.path.join(main_dir, img_num + '.nii.gz') # # if num + 1 == 100: # img_num = 'img0' + str(num + 1) # main_dir = '/nfs/masi/leeh43/zhoubing100/img/' # img_dir = os.path.join(main_dir, img_num + '.nii.gz') # if not os.path.exists(img_dir): # print('file does not exist!') # continue # #try: # ------- ImageVU B Datasets ------- data_dir = os.path.join('/nfs/masi/tangy5/ImageVU_B_bpr_pipeline/INPUTS/cropped/images') count = 0 for item in os.listdir(data_dir): img_dir = os.path.join(data_dir, item) print('reading image ...') nifti_data = nib.load(img_dir) count = count + 1 print('Number of Datasets: %d' % count) print('Load Image: %s' % img_dir) #break #except: #print('load nifti file error!') while True: win_sel = '1' #input('Window to show, 1:soft tissue, 2:lung, 3: bone >> ') if win_sel not in ['1', '2', '3']: continue win_show = [[-175, 275], [-1500, 500], [-500, 1300]] win_show = win_show[int(win_sel)-1] break vol, spacing, slice_intv = load_preprocess_nifti(nifti_data) slice_num_per_run = max(1, int(float(cfg.TEST.TEST_SLICE_INTV_MM)/slice_intv+.5)) num_total_slice = vol.shape[2] total_time = 0 imageVU_dir = 'ImageVU_B_result' output_dir = os.path.join(cfg.RESULTS_DIR,imageVU_dir,img_dir.replace(os.sep, '_')) if not os.path.exists(output_dir): os.mkdir(output_dir) slices_to_process = range(int(slice_num_per_run/2), num_total_slice, slice_num_per_run) msgs_all = [] print('predicting ...') for slice_idx in tqdm(slices_to_process): log_file_s = os.path.join(output_dir, 'slice_' + str(slice_idx) + '_resize_shape.csv') log_file_c = os.path.join(output_dir, 'slice_' + str(slice_idx) + '_contour_location.csv') log_file_r = os.path.join(output_dir, 'slice_' + str(slice_idx) + '_recist_location.csv') log_file_mask = os.path.join(output_dir, 'slice_' + str(slice_idx) + '_mask_c.csv') mask_list = [] ims, im_np, im_scale, crop, mask_list = get_ims(slice_idx, vol, spacing, slice_intv, mask_list) im_list = to_image_list(ims, cfg.DATALOADER.SIZE_DIVISIBILITY).to(device) start_time = time() with torch.no_grad(): result = model(im_list) result = [o.to("cpu") for o in result] df_resize = pd.DataFrame() df_contours = pd.DataFrame() df_recists = pd.DataFrame() df_mask = pd.DataFrame() shape_0, shape_1 = [], [] cour_list1, cour_list2 = [], [] recist_list1, recist_list2 = [], [] info = {'spacing': spacing, 'im_scale': im_scale} post_process_results(result[0], info) total_time += time() - start_time output_fn = os.path.join(output_dir, '%d.png'%(slice_idx+1)) real_slice_num = slice_idx + 1 #contour_list.append('Slice_'+str(real_slice_num)) #recist_list.append(('Slice_'+str(real_slice_num))) shape_0.append(im_np.shape[0]) shape_1.append(im_np.shape[1]) overlay, msgs = gen_output(im_np, result[0], info, win_show, cour_list1, cour_list2, recist_list1, recist_list2) df_resize['Shape_0'] = shape_0 df_resize['Shape_1'] = shape_1 df_contours['list1'] = cour_list1 df_contours['list2'] = cour_list2 df_recists['list1'] = recist_list1 df_mask['c'] = mask_list df_resize.to_csv(log_file_s, index=False) df_contours.to_csv(log_file_c, index = False) df_recists.to_csv(log_file_r, index = False) df_mask.to_csv(log_file_mask, index = False) cv2.imwrite(output_fn, overlay) msgs_all.append('slice %d\r\n' % (slice_idx+1)) for msg in msgs: msgs_all.append(msg+'\r\n') msgs_all.append('\r\n') #np.savetxt(log_file_c, cour_list1, cour_list2, delimiter=',', fmt='%s') with open(os.path.join(output_dir, 'results.txt'), 'w') as f: f.writelines(msgs_all) print('result images and text saved to', output_dir) print('processing time: %d ms per slice' % int(1000.*total_time/len(slices_to_process))) def import_tag_data(): cellname = lambda row, col: '%s%d' % (chr(ord('A') + col - 1), row) fn = os.path.join(cfg.PROGDAT_DIR, '%s_%s.xlsx' % ('test_handlabeled', cfg.EXP_NAME)) wb = load_workbook(fn) sheet = wb.get_active_sheet() tags = [] thresolds = [] for p in range(2, sheet.max_row): tags.append(sheet[cellname(p, 1)].value) thresolds.append(float(sheet[cellname(p, 8)].value)) assert tags == cfg.runtime_info.tag_list cfg.runtime_info.tag_sel_val = torch.tensor(thresolds).to(torch.float) def load_preprocess_nifti(data): vol = (data.get_data().astype('int32') + 32768).astype('uint16') # to be consistent with png files # spacing = -data.get_affine()[0,1] # slice_intv = -data.get_affine()[2,2] aff = data.get_affine()[:3, :3] spacing = np.abs(aff[:2, :2]).max() slice_intv = np.abs(aff[2, 2]) # TODO: Ad-hoc code for normalizing the orientation of the volume. # The aim is to make vol[:,:,i] an supine right-left slice # It works for the authors' data, but maybe not suitable for some kinds of nifti files if
np.abs(aff[0, 0])
numpy.abs
import numpy as np from PTSS import PtssJoint as ptssjnt from PTSS import Ptss as ptss from CFNS import CyFns as cfns # define the 4th order Runge-Kutta algorithm. class RK4: def rk4(self, y0, dy, step): k1 = step * dy k2 = step * (dy + 1 / 2 * k1) k3 = step * (dy + 1 / 2 * k2) k4 = step * (dy + k3) y1 = y0 + 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4) return y1 # list the functions used in the modules class FNS: def __init__(self): self.cfns = cfns() # ____________________________________________________________________________________________________________ # Common Functions # threshold at some value def thresh_fn(self, x, thresh): return np.sign(x - thresh) * (x - thresh) * self.indic_fn(x - thresh) # bound within some interval def bound_fn(self, x, thresh): rightbd = np.heaviside(thresh - x, 0) out = x * rightbd + thresh * (rightbd + 1) % 2 leftbd = np.heaviside(out - -thresh, 0) out = out * leftbd + -thresh * ((leftbd + 1) % 2) return out # cutoff outside some interval def cutoff_fn(self, x, thresh): rightbd = np.heaviside(x - thresh, 0) rightout = x * rightbd leftbd = np.heaviside(-x - thresh, 0) leftout = x * leftbd return rightout + leftout # check at some value def delta_fn(self, x, a): if np.all(x == a) == True: return 1 else: return 0 # check within some interval def cond_fn(self, x, a): out = np.heaviside(a - x, 0) * np.heaviside(x - -a, 0) return out # check at some index def index_fn(self, j, i, b, a): return 1 - self.delta_fn(j, b) * self.delta_fn(i, a) # check sign at zero def indic_fn(self, x): return np.heaviside(x, 0) # binary sampling function def sample_fn(self, x, thresh): return 1 * self.indic_fn(x - thresh) # sigmoid sampling function def sigmoid_fn(self, x, offset, power): return x**power / (offset**power + x**power) # enlarge array size def enlarge(self, x, y, stride, num, type): # given x is large and y is small and type is number of relevant dimensions if type == '3': for a in range(0, num, stride): for b in range(0, num, stride): for c in range(0, num, stride): new_a = a // stride new_b = b // stride new_c = c // stride x[a][b][c] = y[new_a][new_b][new_c] return x if type == '2': for a in range(0, num, stride): for b in range(0, num, stride): new_a = a // stride new_b = b // stride x[a][b] = y[new_a][new_b] return x # shrink array size def shrink(self, x, y, stride, num, type): # given x is large and y is small and type is number of relevant dimensions new_num = num // stride if type == '3': for a in range(0, new_num): for b in range(0, new_num): for c in range(0, new_num): new_a = self.index_bound(a * stride, num) new_b = self.index_bound(b * stride, num) new_c = self.index_bound(c * stride, num) y[a][b][c] = x[new_a][new_b][new_c] return y if type == '2': for a in range(0, new_num): for b in range(0, new_num): new_a = self.index_bound(a * stride, num) new_b = self.index_bound(b * stride, num) y[a][b] = x[new_a][new_b] return y # bound index def index_bound(self, x, size): if x < size: return x else: return size - 1 # ____________________________________________________________________________________________________________ # EYES Module # bound array index def retmap_bound(self, x, size): if x < 0: return 0 if x > size - 1: return size - 1 else: return x # check if maximal value of array is not at center def fixate(self, gaz_map, size): fix_map = np.ones((2, 2 * size, 2 * size)) for s in range(2): fix_map[s][size, size] = 1 if np.array_equal(fix_map, gaz_map) == True: return 0 else: return 1 # compute difference btw agonist and antagonist for learning variables def diff_mat(self, x, size): mat = np.zeros((2, 2, 2, size, size)) for s in range(2): for m in range(2): mat[s][m] = x[s][m][0] - x[s][m][1], x[s][m][1] - x[s][m][0] return mat # check epoch within an interval in the forward direction def forwd_period(self, t, T, interval): if (t // interval) * interval + 0 <= t and t < (t // interval) * interval + T: return 1 else: return 0 # check epoch within an interval in the backward direction def backw_period(self, t, T, interval): if (t // interval + 1) * interval - T <= t and t < (t // interval + 1) * interval + 0: return 1 else: return 0 # list epochs within some interval def intv_period(self, t, interval): lb = (t // interval) * interval ub = (t // interval + 1) * interval return np.arange(lb, ub, 1) # list epoch-value pairs within some interval def add_error(self, z, t, interval): range = self.intv_period(t, interval) value = [z] * interval add = [(x, y) for x, y in zip(range, value)] return add # check if equal to the zero array def test_zero(self, x): if np.array_equal(x, np.zeros(x.shape)): return 1 else: return 0 # extract index of maximal value for an array centered at zero def argmax(self, x, size): if self.test_zero(x) != 1: out = np.array(np.unravel_index(np.argmax(x), x.shape)) - size # format is (height, width) return out else: return np.zeros(2) # populate in a neighborhood around the given index def arrmax(self, max, size): ptts = ptss(2 * size, 2 * size) out = np.zeros((2, 2 * size, 2 * size)) for s in range(2): b_max, a_max = np.array(max[s], dtype=int) bound = ptts.ptss_bound(b_max, a_max, 2 * size, 2 * size, '2') for b in bound[0]: for a in bound[1]: out[s][b][a] = ptts.ptss_gradient(b, a, b_max, a_max, '2') return out # compute sum btw agonist and antagonist def sum_mus(self, x): mus = np.zeros((2)) for s in range(2): mus[s] = np.sum(x[s]) return mus # extract agonist def extract_ang(self, x): out = np.zeros(3) for k in range(3): out[k] = x[k][0] return out # convert normalized activity into angle for eye variables def conv_targ(self, x): # for eye movement and representation ang_rang = 1.0 *
np.radians([-45, 45])
numpy.radians
#-*- coding:utf-8 -*- """ @author: scorpio.lu @datetime:2020-06-11 15:22 @software: PyCharm @contact: <EMAIL> ---------- 路有敬亭山 ---------- """ import os import argparse import sys from datetime import datetime import numpy as np import math import cv2 from scipy.spatial.distance import cdist import oneflow as flow from reid_model import resreid, HS_reid from data_loader import Market1501 parser = argparse.ArgumentParser(description="flags for person re-identification") parser.add_argument("--gpu_num_per_node", type=int, default=1, required=False) parser.add_argument("--model", type=str, default="resreid", required=False, help="resreid or pcbreid") parser.add_argument("--batch_size", type=int, default=300, required=False) parser.add_argument("--data_dir", type=str, default='/home/oneflow_reid/person_reid/dataset', required=False, help="dataset directory") parser.add_argument("-image_height", "--image_height", type=int, default=256, required=False) parser.add_argument("-image_width", "--image_width", type=int, default=128, required=False) parser.add_argument("--use_tensorrt", dest="use_tensorrt", action="store_true", default=False, required=False, help="inference with tensorrt") parser.add_argument("--model_load_dir", type=str, default='/home/oneflow_reid/person_reid/model', required=False, help="model load directory") parser.add_argument("--log_dir", type=str, default="./output", required=False, help="log info save directory") args = parser.parse_args() model={'resreid': resreid, 'HS-reid': HS_reid} func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) flow.config.gpu_device_num(args.gpu_num_per_node) if args.use_tensorrt: func_config.use_tensorrt(True) input_blob = flow.FixedTensorDef((args.batch_size, 3, args.image_height, args.image_width), dtype=flow.float) #input_blob = flow.MirroredTensorDef((args.batch_size, 3, args.image_height, args.image_width), dtype=flow.float) def resize_image(img, origin_h, origin_w, image_height, image_width): w = image_width h = image_height resized=np.zeros((3, image_height, image_width), dtype=np.float32) part=np.zeros((3, origin_h, image_width), dtype = np.float32) w_scale = (float)(origin_w - 1) / (w - 1) h_scale = (float)(origin_h - 1) / (h - 1) for c in range(w): if c == w-1 or origin_w == 1: val = img[:, :, origin_w-1] else: sx = c * w_scale ix = int(sx) dx = sx - ix val = (1 - dx) * img[:, :, ix] + dx * img[:, :, ix+1] part[:, :, c] = val for r in range(h): sy = r * h_scale iy = int(sy) dy = sy - iy val = (1-dy)*part[:, iy, :] resized[:, r, :] = val if r==h-1 or origin_h==1: continue resized[:, r, :] = resized[:, r, :] + dy * part[:, iy+1, :] return resized def batch_image_preprocess(img_paths, img_height, img_weidth): result_list = [] base = np.ones([args.image_height, args.image_width]) norm_mean = [base * 0.485, base * 0.456, base * 0.406] # imagenet mean norm_std = [0.229, 0.224, 0.225] # imagenet std for img_path in img_paths: img = cv2.imread(img_path, cv2.IMREAD_COLOR) img = img.transpose(2, 0, 1).astype(np.float32) # hwc->chw img = img / 255 # /255 # to tensor img[[0, 1, 2], :, :] = img[[2, 1, 0], :, :] # bgr2rgb w = img_weidth h = img_height origin_h = img.shape[1] origin_w = img.shape[2] resize_img = resize_image(img, origin_h, origin_w, h, w) # normalize resize_img[0] = (resize_img[0] - norm_mean[0])/ norm_std[0] resize_img[1] = (resize_img[1] - norm_mean[1]) / norm_std[1] resize_img[2] = (resize_img[2] - norm_mean[2]) / norm_std[2] result_list.append(resize_img) results = np.asarray(result_list).astype(np.float32) return results def evaluate(qf, q_pids, q_camids, gf, g_pids, g_camids, max_rank=50): num_g = len(gf) num_q = len(qf) print('Computing distance matrix ...') dist = cdist(qf, gf).astype(np.float16) dist = np.power(dist, 2).astype(np.float16) print('Computing CMC and mAP ...') if num_g < max_rank: max_rank = num_g print('Note: number of gallery samples is quite small, got {}'.format(num_g)) indices = np.argsort(dist, axis=1) matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32) all_cmc = [] all_AP = [] num_valid_q = 0. for q_idx in range(num_q): q_pid = q_pids[q_idx] q_camid = q_camids[q_idx] order = indices[q_idx] remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid) keep = np.invert(remove) raw_cmc = matches[q_idx][keep] if not np.any(raw_cmc): continue cmc = raw_cmc.cumsum() cmc[cmc > 1] = 1 all_cmc.append(cmc[:max_rank]) num_valid_q += 1. num_rel = raw_cmc.sum() tmp_cmc = raw_cmc.cumsum() tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)] tmp_cmc = np.asarray(tmp_cmc) * raw_cmc AP = tmp_cmc.sum() / num_rel all_AP.append(AP) assert num_valid_q > 0, 'Error: all query identities do not appear in gallery' all_cmc = np.asarray(all_cmc).astype(np.float32) all_cmc = all_cmc.sum(0) / num_valid_q mAP = np.mean(all_AP) return all_cmc, mAP @flow.function(func_config) def reid_eval_job(image=input_blob): features = resreid(image, trainable=False) return features class ReIDInference(object): def __init__(self): check_point = flow.train.CheckPoint() if args.model_load_dir: assert os.path.isdir(args.model_load_dir) print("Restoring model from {}.".format(args.model_load_dir)) check_point.load(args.model_load_dir) else: print("Init model on demand.") check_point.init() snapshot_save_path = os.path.join(args.model_save_dir, "last_snapshot") if not os.path.exists(snapshot_save_path): os.makedirs(snapshot_save_path) print("Saving model to {}.".format(snapshot_save_path)) check_point.save(snapshot_save_path) def inference(self, imgs): query_images = batch_image_preprocess(imgs, args.image_height, args.image_width) batch_times = math.ceil(len(imgs)/args.batch_size) features = [] for i in range(batch_times): start = max(0, i*args.batch_size) end = min((i+1)*args.batch_size, len(query_images)) array = query_images[start:end] feature = reid_eval_job([array]).get() features.extend(feature.ndarray_list_[0]) return features def main(): print("=".ljust(66, "=")) print("Running {}: num_gpu = {}.".format(args.model, args.gpu_num_per_node)) print("=".ljust(66, "=")) for arg in vars(args): print("{} = {}".format(arg, getattr(args, arg))) print("-".ljust(66, "-")) print("Time stamp: {}".format(str(datetime.now().strftime("%Y-%m-%d-%H:%M:%S")))) flow.env.grpc_use_no_signal() flow.env.log_dir(args.log_dir) obj = ReIDInference() print("Loading data from {}".format(args.data_dir)) dataset = Market1501(root=args.data_dir) query_img, query_id, query_cam_id = zip(*dataset.query) gallery_img, gallery_id, gallery_cam_id = zip(*dataset.gallery) print('extracting query features...') query_features = obj.inference(query_img) print('extracting query features done...') print('extracting gallery features...') gallery_features = obj.inference(gallery_img) print('extracting gallery features done...') cmc, mAP = evaluate(query_features, np.array(query_id),
np.array(query_cam_id)
numpy.array
from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal, assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings ) # Test data _ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) # Rows of _ndat with nans removed _rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), np.array([0.1042, -0.5954]), np.array([0.1610, 0.1859, 0.3146])] # Rows of _ndat with nans converted to ones _ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170], [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833], [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954], [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]]) # Rows of _ndat with nans converted to zeros _ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170], [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833], [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954], [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]]) class TestNanFunctions_MinMax(TestCase): nanfuncs = [np.nanmin, np.nanmax] stdfuncs = [np.min, np.max] def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): for axis in [None, 0, 1]: tgt = rf(mat, axis=axis, keepdims=True) res = nf(mat, axis=axis, keepdims=True) assert_(res.ndim == tgt.ndim) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.zeros(3) tgt = rf(mat, axis=1) res = nf(mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_dtype_from_input(self): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: mat = np.eye(3, dtype=c) tgt = rf(mat, axis=1).dtype.type res = nf(mat, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, axis=None).dtype.type res = nf(mat, axis=None).dtype.type assert_(res is tgt) def test_result_values(self): for nf, rf in zip(self.nanfuncs, self.stdfuncs): tgt = [rf(d) for d in _rdat] res = nf(_ndat, axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalars with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(np.nan))) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any()) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) # check that rows of nan are dealt with for subclasses (#4628) mat[1] = np.nan for f in self.nanfuncs: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(not np.any(np.isnan(res))) assert_(len(w) == 0) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) and not np.isnan(res[2, 0])) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat) assert_(np.isscalar(res)) assert_(res != np.nan) assert_(len(w) == 0) class TestNanFunctions_ArgminArgmax(TestCase): nanfuncs = [np.nanargmin, np.nanargmax] def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_result_values(self): for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]): for row in _ndat: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in") ind = f(row) val = row[ind] # comparing with NaN is tricky as the result # is always false except for NaN != NaN assert_(not np.isnan(val)) assert_(not fcmp(val, row).any()) assert_(not np.equal(val, row[:ind]).any()) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: assert_raises(ValueError, f, mat, axis=axis) assert_raises(ValueError, f, np.nan) def test_empty(self): mat = np.zeros((0, 3)) for f in self.nanfuncs: for axis in [0, None]: assert_raises(ValueError, f, mat, axis=axis) for axis in [1]: res = f(mat, axis=axis) assert_equal(res, np.zeros(0)) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) class TestNanFunctions_IntTypes(TestCase): int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64) mat = np.array([127, 39, 93, 87, 46]) def integer_arrays(self): for dtype in self.int_types: yield self.mat.astype(dtype) def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt) def test_nanmax(self): tgt = np.max(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmax(mat), tgt) def test_nanargmin(self): tgt = np.argmin(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanargmin(mat), tgt) def test_nanargmax(self): tgt = np.argmax(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanargmax(mat), tgt) def test_nansum(self): tgt = np.sum(self.mat) for mat in self.integer_arrays(): assert_equal(np.nansum(mat), tgt) def test_nanprod(self): tgt = np.prod(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanprod(mat), tgt) def test_nancumsum(self): tgt = np.cumsum(self.mat) for mat in self.integer_arrays(): assert_equal(np.nancumsum(mat), tgt) def test_nancumprod(self): tgt = np.cumprod(self.mat) for mat in self.integer_arrays(): assert_equal(np.nancumprod(mat), tgt) def test_nanmean(self): tgt = np.mean(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmean(mat), tgt) def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt) def test_nanstd(self): tgt = np.std(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanstd(mat), tgt) tgt = np.std(self.mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanstd(mat, ddof=1), tgt) class SharedNanFunctionsTestsMixin(object): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): for axis in [None, 0, 1]: tgt = rf(mat, axis=axis, keepdims=True) res = nf(mat, axis=axis, keepdims=True) assert_(res.ndim == tgt.ndim) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.zeros(3) tgt = rf(mat, axis=1) res = nf(mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt) def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_input(self): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: mat = np.eye(3, dtype=c) tgt = rf(mat, axis=1).dtype.type res = nf(mat, axis=1).dtype.type assert_(res is tgt, "res %s, tgt %s" % (res, tgt)) # scalar case tgt = rf(mat, axis=None).dtype.type res = nf(mat, axis=None).dtype.type assert_(res is tgt) def test_result_values(self): for nf, rf in zip(self.nanfuncs, self.stdfuncs): tgt = [rf(d) for d in _rdat] res = nf(_ndat, axis=1) assert_almost_equal(res, tgt) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) class TestNanFunctions_SumProd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nansum, np.nanprod] stdfuncs = [np.sum, np.prod] def test_allnans(self): # Check for FutureWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = np.nansum([np.nan]*3, axis=None) assert_(res == 0, 'result is not 0') assert_(len(w) == 0, 'warning raised') # Check scalar res = np.nansum(np.nan) assert_(res == 0, 'result is not 0') assert_(len(w) == 0, 'warning raised') # Check there is no warning for not all-nan np.nansum([0]*3, axis=None) assert_(len(w) == 0, 'unwanted warning raised') def test_empty(self): for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]): mat = np.zeros((0, 3)) tgt = [tgt_value]*3 res = f(mat, axis=0) assert_equal(res, tgt) tgt = [] res = f(mat, axis=1) assert_equal(res, tgt) tgt = tgt_value res = f(mat, axis=None) assert_equal(res, tgt) class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nancumsum, np.nancumprod] stdfuncs = [np.cumsum, np.cumprod] def test_allnans(self): for f, tgt_value in zip(self.nanfuncs, [0, 1]): # Unlike other nan-functions, sum/prod/cumsum/cumprod don't warn on all nan input with assert_no_warnings(): res = f([np.nan]*3, axis=None) tgt = tgt_value*np.ones((3)) assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((3))' % (tgt_value)) # Check scalar res = f(np.nan) tgt = tgt_value*np.ones((1)) assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((1))' % (tgt_value)) # Check there is no warning for not all-nan f([0]*3, axis=None) def test_empty(self): for f, tgt_value in zip(self.nanfuncs, [0, 1]): mat = np.zeros((0, 3)) tgt = tgt_value*np.ones((0, 3)) res = f(mat, axis=0) assert_equal(res, tgt) tgt = mat res = f(mat, axis=1) assert_equal(res, tgt) tgt = np.zeros((0)) res = f(mat, axis=None) assert_equal(res, tgt) def test_keepdims(self): for f, g in zip(self.nanfuncs, self.stdfuncs): mat = np.eye(3) for axis in [None, 0, 1]: tgt = f(mat, axis=axis, out=None) res = g(mat, axis=axis, out=None) assert_(res.ndim == tgt.ndim) for f in self.nanfuncs: d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: rs = np.random.RandomState(0) d[rs.rand(*d.shape) < 0.5] = np.nan res = f(d, axis=None) assert_equal(res.shape, (1155,)) for axis in np.arange(4): res = f(d, axis=axis) assert_equal(res.shape, (3, 5, 7, 11)) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: for axis in np.arange(2): res = f(mat, axis=axis) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 3)) res = f(mat) assert_(res.shape == (1, 3*3)) def test_result_values(self): for axis in (-2, -1, 0, 1, None): tgt = np.cumprod(_ndat_ones, axis=axis) res = np.nancumprod(_ndat, axis=axis) assert_almost_equal(res, tgt) tgt = np.cumsum(_ndat_zeros,axis=axis) res = np.nancumsum(_ndat, axis=axis) assert_almost_equal(res, tgt) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.eye(3) for axis in (-2, -1, 0, 1): tgt = rf(mat, axis=axis) res = nf(mat, axis=axis, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nanmean, np.nanvar, np.nanstd] stdfuncs = [np.mean, np.var, np.std] def test_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype) def test_out_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: out = np.empty(_ndat.shape[0], dtype=dtype) assert_raises(TypeError, f, _ndat, axis=1, out=out) def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt) def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with suppress_warnings() as sup: sup.record(RuntimeWarning) sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(np.isnan(res), tgt) if any(tgt): assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 0) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalar assert_(np.isnan(f(np.nan))) assert_(len(w) == 2) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): mat = np.zeros((0, 3)) for f in self.nanfuncs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(mat, axis=axis), np.zeros([])) assert_(len(w) == 0) class TestNanFunctions_Median(TestCase): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() np.nanmedian(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for axis in [None, 0, 1]: tgt = np.median(mat, axis=axis, out=None, overwrite_input=False) res = np.nanmedian(mat, axis=axis, out=None, overwrite_input=False) assert_(res.ndim == tgt.ndim) d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: w = np.random.random((4, 200)) * np.array(d.shape)[:, None] w = w.astype(np.intp) d[tuple(w)] = np.nan with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = np.nanmedian(d, axis=None, keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanmedian(d, axis=(0, 1), keepdims=True) assert_equal(res.shape, (1, 1, 7, 11)) res = np.nanmedian(d, axis=(0, 3), keepdims=True) assert_equal(res.shape, (1, 5, 7, 1)) res = np.nanmedian(d, axis=(1,), keepdims=True) assert_equal(res.shape, (3, 1, 7, 11)) res = np.nanmedian(d, axis=(0, 1, 2, 3), keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanmedian(d, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1)) def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.median(mat, axis=1) res = np.nanmedian(nan_mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.median(mat, axis=None) res = np.nanmedian(nan_mat, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanmedian(nan_mat, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_small_large(self): # test the small and large code paths, current cutoff 400 elements for s in [5, 20, 51, 200, 1000]: d = np.random.randn(4, s) # Randomly set some elements to NaN: w = np.random.randint(0, d.size, size=d.size // 5) d.ravel()[w] = np.nan d[:,0] = 1. # ensure at least one good value # use normal median without nans to compare tgt = [] for x in d: nonan = np.compress(~np.isnan(x), x) tgt.append(np.median(nonan, overwrite_input=True)) assert_array_equal(np.nanmedian(d, axis=-1), tgt) def test_result_values(self): tgt = [np.median(d) for d in _rdat] res = np.nanmedian(_ndat, axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for axis in [None, 0, 1]: with suppress_warnings() as sup: sup.record(RuntimeWarning) assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) if axis is None: assert_(len(sup.log) == 1) else: assert_(len(sup.log) == 3) # Check scalar assert_(np.isnan(np.nanmedian(np.nan))) if axis is None: assert_(len(sup.log) == 2) else: assert_(len(sup.log) == 4) def test_empty(self): mat = np.zeros((0, 3)) for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(np.nanmedian(mat, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(np.nanmedian(mat, axis=axis), np.zeros([])) assert_(len(w) == 0) def test_scalar(self): assert_(np.nanmedian(0.) == 0.) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(np.AxisError, np.nanmedian, d, axis=-5) assert_raises(np.AxisError, np.nanmedian, d, axis=(0, -5)) assert_raises(np.AxisError, np.nanmedian, d, axis=4) assert_raises(np.AxisError, np.nanmedian, d, axis=(0, 4)) assert_raises(ValueError, np.nanmedian, d, axis=(1, 1)) def test_float_special(self): with suppress_warnings() as sup: sup.filter(RuntimeWarning) for inf in [np.inf, -np.inf]: a = np.array([[inf, np.nan], [np.nan, np.nan]]) assert_equal(np.nanmedian(a, axis=0), [inf, np.nan]) assert_equal(np.nanmedian(a, axis=1), [inf, np.nan]) assert_equal(np.nanmedian(a), inf) # minimum fill value check a = np.array([[np.nan, np.nan, inf], [np.nan, np.nan, inf]]) assert_equal(np.nanmedian(a), inf) assert_equal(np.nanmedian(a, axis=0), [np.nan, np.nan, inf]) assert_equal(np.nanmedian(a, axis=1), inf) # no mask path a = np.array([[inf, inf], [inf, inf]]) assert_equal(np.nanmedian(a, axis=1), inf) a = np.array([[inf, 7, -inf, -9], [-10, np.nan, np.nan, 5], [4, np.nan, np.nan, inf]], dtype=np.float32) if inf > 0: assert_equal(np.nanmedian(a, axis=0), [4., 7., -inf, 5.]) assert_equal(np.nanmedian(a), 4.5) else: assert_equal(np.nanmedian(a, axis=0), [-10., 7., -inf, -9.]) assert_equal(np.nanmedian(a), -2.5) assert_equal(np.nanmedian(a, axis=-1), [-1., -2.5, inf]) for i in range(0, 10): for j in range(1, 10): a = np.array([([np.nan] * i) + ([inf] * j)] * 2) assert_equal(np.nanmedian(a), inf) assert_equal(np.nanmedian(a, axis=1), inf) assert_equal(np.nanmedian(a, axis=0), ([np.nan] * i) + [inf] * j) a = np.array([([np.nan] * i) + ([-inf] * j)] * 2) assert_equal(np.nanmedian(a), -inf) assert_equal(np.nanmedian(a, axis=1), -inf) assert_equal(np.nanmedian(a, axis=0), ([np.nan] * i) + [-inf] * j) class TestNanFunctions_Percentile(TestCase): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() np.nanpercentile(ndat, 30) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for axis in [None, 0, 1]: tgt = np.percentile(mat, 70, axis=axis, out=None, overwrite_input=False) res = np.nanpercentile(mat, 70, axis=axis, out=None, overwrite_input=False) assert_(res.ndim == tgt.ndim) d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: w = np.random.random((4, 200)) * np.array(d.shape)[:, None] w = w.astype(np.intp) d[tuple(w)] = np.nan with suppress_warnings() as sup: sup.filter(RuntimeWarning) res = np.nanpercentile(d, 90, axis=None, keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanpercentile(d, 90, axis=(0, 1), keepdims=True) assert_equal(res.shape, (1, 1, 7, 11)) res = np.nanpercentile(d, 90, axis=(0, 3), keepdims=True) assert_equal(res.shape, (1, 5, 7, 1)) res = np.nanpercentile(d, 90, axis=(1,), keepdims=True) assert_equal(res.shape, (3, 1, 7, 11)) res = np.nanpercentile(d, 90, axis=(0, 1, 2, 3), keepdims=True) assert_equal(res.shape, (1, 1, 1, 1)) res = np.nanpercentile(d, 90, axis=(0, 1, 3), keepdims=True) assert_equal(res.shape, (1, 1, 7, 1)) def test_out(self): mat = np.random.rand(3, 3) nan_mat = np.insert(mat, [0, 2], np.nan, axis=1) resout = np.zeros(3) tgt = np.percentile(mat, 42, axis=1) res = np.nanpercentile(nan_mat, 42, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) # 0-d output: resout = np.zeros(()) tgt = np.percentile(mat, 42, axis=None) res = np.nanpercentile(nan_mat, 42, axis=None, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) res = np.nanpercentile(nan_mat, 42, axis=(0, 1), out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_result_values(self): tgt = [np.percentile(d, 28) for d in _rdat] res = np.nanpercentile(_ndat, 28, axis=1) assert_almost_equal(res, tgt) # Transpose the array to fit the output convention of numpy.percentile tgt = np.transpose([np.percentile(d, (28, 98)) for d in _rdat]) res = np.nanpercentile(_ndat, (28, 98), axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(np.nanpercentile(mat, 60, axis=axis)).all()) if axis is None: assert_(len(w) == 1) else: assert_(len(w) == 3) assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalar assert_(np.isnan(np.nanpercentile(np.nan, 60))) if axis is None: assert_(len(w) == 2) else: assert_(len(w) == 4) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): mat = np.zeros((0, 3)) for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(np.nanpercentile(mat, 40, axis=axis)).all()) assert_(len(w) == 1) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(np.nanpercentile(mat, 40, axis=axis), np.zeros([])) assert_(len(w) == 0) def test_scalar(self): assert_equal(np.nanpercentile(0., 100), 0.) a = np.arange(6) r = np.nanpercentile(a, 50, axis=0) assert_equal(r, 2.5) assert_(np.isscalar(r)) def test_extended_axis_invalid(self): d = np.ones((3, 5, 7, 11)) assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=-5)
assert_raises(np.AxisError, np.nanpercentile, d, q=5, axis=(0, -5))
numpy.testing.assert_raises
#!/usr/bin/env python # coding: utf-8 DESCRIPTION="This script do sparse encoding." #from memory_profiler import profile import numpy as np import argparse import logging import random from sklearn.decomposition import sparse_encode import sys from os.path import dirname sys.path.append(dirname(__file__)) from my_target_counter import TargetCounter logger = logging.getLogger(__file__) def my_sparse_encode(X,alpha,method,n_references): refs = list(range(X.shape[0])) random.shuffle(refs) if 0<=n_references: # use limited number of samples for space coding (if n_references is directed) refs = refs[:n_references] X_sparse = np.zeros((X.shape[0],len(refs))) references = np.array([X[i] for i in refs]) for i in range(X.shape[0]): if i in refs: idx = refs.index(i) x_sps = sparse_encode([X[i]],\ np.r_[references[:idx],np.array([[0]*X.shape[1]]),references[idx+1:]],\ algorithm=method,\ alpha=alpha,\ n_jobs=1)[0] X_sparse[i] = x_sps else: X_sparse[i] = sparse_encode([X[i]],references,algorithm=method,alpha=alpha,n_jobs=1)[0] X_sparse =
np.array(X_sparse)
numpy.array
""" Tools for calculating Gradient Descent for ||Ax-b||. """ import matplotlib.pyplot as plt import numpy as np def main(): ################################################################################ # TODO(student): Input Variables A =
np.array([[1, 0], [0, 1]])
numpy.array
import os import re import sys sys.path.append('.') import cv2 import math import time import scipy import argparse import matplotlib import numpy as np import pylab as plt import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from collections import OrderedDict from scipy.ndimage.morphology import generate_binary_structure from scipy.ndimage.filters import gaussian_filter, maximum_filter from lib.network.rtpose_vgg import get_model from lib.network import im_transform from lib.config import update_config, cfg from evaluate.coco_eval import get_outputs, handle_paf_and_heat from lib.utils.common import Human, BodyPart, CocoPart, CocoColors, CocoPairsRender, draw_humans from lib.utils.paf_to_pose import paf_to_pose_cpp def compare(pose1,pose2): diff = np.mean(abs(pose1-pose2)) return diff def homography(P,Q,R,S,b): A= np.zeros((8,8)) A[0,0:3]=P A[1,3:6]=P A[2,0:3]=Q A[3,3:6]=Q A[4,0:3]=R A[5,3:6]=R A[6,0:3]=S A[7,3:6]=S for j in range(0,4): A[2*j,6:8]= -b[2*j] * A[2*j,0:2] A[2*j+1,6:8]= -b[2*j+1] * A[2*j+1,3:5] #print(A) #Calculate the homography h= np.dot(
np.linalg.inv(A)
numpy.linalg.inv
import logging import os import random import time import warnings from collections import OrderedDict from contextlib import contextmanager from pathlib import Path from typing import List, Optional import cv2 import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as data from IPython.display import Audio from sklearn.metrics import average_precision_score, f1_score from sklearn.model_selection import StratifiedKFold import librosa import librosa.display as display import soundfile as sf import utils from catalyst.dl import Callback, CallbackOrder, State class DFTBase(nn.Module): def __init__(self): """Base class for DFT and IDFT matrix""" super(DFTBase, self).__init__() def dft_matrix(self, n): (x, y) = np.meshgrid(np.arange(n), np.arange(n)) omega = np.exp(-2 * np.pi * 1j / n) W = np.power(omega, x * y) return W def idft_matrix(self, n): (x, y) = np.meshgrid(np.arange(n), np.arange(n)) omega =
np.exp(2 * np.pi * 1j / n)
numpy.exp
import os import timeit from typing import List import numpy as np from numpy.random import RandomState from numpy.testing import assert_allclose, assert_almost_equal import pytest from scipy.special import gamma import arch.univariate.recursions_python as recpy CYTHON_COVERAGE = os.environ.get("ARCH_CYTHON_COVERAGE", "0") in ("true", "1", "True") try: import arch.univariate.recursions as rec_cython missing_extension = False except ImportError: missing_extension = True if missing_extension: rec = recpy else: rec = rec_cython try: import numba # noqa missing_numba = False except ImportError: missing_numba = True pytestmark = pytest.mark.filterwarnings("ignore::arch.compat.numba.PerformanceWarning") class Timer(object): def __init__( self, first, first_name, second, second_name, model_name, setup, repeat=5, number=10, ) -> None: self.first_code = first self.second_code = second self.setup = setup self.first_name = first_name self.second_name = second_name self.model_name = model_name self.repeat = repeat self.number = number self._run = False self.times: List[float] = [] self._codes = [first, second] self.ratio = np.inf def display(self): if not self._run: self.time() self.ratio = self.times[0] / self.times[1] title = self.model_name + " timing" print("\n" + title) print("-" * len(title)) print(self.first_name + ": " + "{:0.3f} ms".format(1000 * self.times[0])) print(self.second_name + ": " + "{:0.3f} ms".format(1000 * self.times[1])) if self.ratio < 1: print( "{0} is {1:0.1f}% faster".format( self.first_name, 100 * (1 / self.ratio - 1) ) ) else: print( "{0} is {1:0.1f}% faster".format( self.second_name, 100 * (self.ratio - 1) ) ) print( self.first_name + "/" + self.second_name + " Ratio: {:0.3f}\n".format(self.ratio) ) def time(self): self.times = [] for code in self._codes: timer = timeit.Timer(code, setup=self.setup) self.times.append(min(timer.repeat(self.repeat, self.number))) class TestRecursions(object): @classmethod def setup_class(cls): cls.nobs = 1000 cls.rng = RandomState(12345) cls.resids = cls.rng.standard_normal(cls.nobs) cls.sigma2 = np.zeros_like(cls.resids) var = cls.resids.var() var_bounds = np.array([var / 1000000.0, var * 1000000.0]) cls.var_bounds = np.ones((cls.nobs, 2)) * var_bounds cls.backcast = 1.0 cls.timer_setup = """ import numpy as np import arch.univariate.recursions as rec import arch.univariate.recursions_python as recpy nobs = 10000 resids = np.random.standard_normal(nobs) sigma2 = np.zeros_like(resids) var = resids.var() backcast = 1.0 var_bounds = np.array([var / 1000000.0, var * 1000000.0]) var_bounds = np.ones((nobs, 2)) * var_bounds """ def test_garch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_numba = sigma2.copy() recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([0.1, -0.4, 0.3, 0.2]) recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 0.4, 3, 2]) recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 0.4, 0.3, 0.2]) mod_fresids = fresids.copy() mod_fresids[:1] = np.inf recpy.garch_recursion_python( parameters, mod_fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.garch_recursion( parameters, mod_fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_harch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) lags = np.array([1, 5, 22], dtype=np.int32) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() recpy.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() rec.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-0.1, -0.4, 0.3, 0.2]) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) mod_resids = resids.copy() mod_resids[:10] = np.inf recpy.harch_recursion_python( parameters, mod_resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.harch_recursion( parameters, mod_resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_arch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) p = 3 recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() recpy.arch_recursion( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() rec.arch_recursion( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-0.1, -0.4, 0.3, 0.2]) recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert
np.all(sigma2 <= 2 * self.var_bounds[:, 1])
numpy.all
import numpy as np import cv2 import warnings warnings.filterwarnings('ignore') import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt import os import scipy import imageio from scipy.ndimage import gaussian_filter1d, gaussian_filter from sklearn import linear_model from sklearn.model_selection import train_test_split from matplotlib.colors import ListedColormap import statsmodels.api as sm import pandas as pd from statsmodels.stats.anova import AnovaRM from sklearn import linear_model from helper_code.registration_funcs import model_arena, get_arena_details from helper_code.processing_funcs import speed_colors from helper_code.analysis_funcs import * from important_code.shuffle_test import permutation_test, permutation_correlation plt.rcParams.update({'font.size': 30}) def plot_traversals(self): ''' plot all traversals across the arena ''' # initialize parameters sides = ['back', 'front'] # sides = ['back'] types = ['spontaneous'] #, 'evoked'] fast_color = np.array([.5, 1, .5]) slow_color = np.array([1, .9, .9]) edge_vector_color = np.array([1, .95, .85]) homing_vector_color = np.array([.725, .725, .725]) edge_vector_color = np.array([.98, .9, .6])**4 homing_vector_color = np.array([0, 0, 0]) non_escape_color = np.array([0,0,0]) condition_colors = [[.5,.5,.5], [.3,.5,.8], [0,.7,1]] time_thresh = 15 #20 for ev comparison speed_thresh = 2 p = 0 HV_cutoff = .681 # .5 for exploratory analysis # initialize figures fig, fig2, fig3, ax, ax2, ax3 = initialize_figures_traversals(self) #, types = len(types)+1) # initialize lists for stats all_data = [] all_conditions = [] edge_vector_time_all = np.array([]) # loop over spontaneous vs evoked for t, type in enumerate(types): # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): strategies = [0, 0, 0] # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # initialize the arena arena, arena_color, scaling_factor, obstacle = initialize_arena(self, sub_experiments, sub_conditions) path_ax, path_fig = get_arena_plot(obstacle, sub_conditions, sub_experiments) # initialize edginess all_traversals_edgy = {} all_traversals_homy = {} proportion_edgy = {} for s in sides: all_traversals_edgy[s] = [] all_traversals_homy[s] = [] proportion_edgy[s] = [] m = 0 # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse in the experiment for i, mouse in enumerate(self.analysis[experiment][condition]['back traversal']): mouse_data = [] print(mouse) # loop over back and front sides for s, start in enumerate(sides): if start == 'front' and type == 'evoked': continue # find all the paths across the arena traversal = self.analysis[experiment][condition][start + ' traversal'][mouse] # get the duration of those paths # duration = traversal[t*5+3] if traversal: if traversal[t*5]: x_end_loc = np.array([x_loc[-1] * scaling_factor for x_loc in np.array(traversal[t * 5 + 0])[:, 0]]) if traversal[4] < 10: continue number_of_edge_vectors = np.sum((np.array(traversal[t*5+3]) < speed_thresh) * \ (np.array(traversal[t*5+2]) > HV_cutoff) * \ # (abs(x_end_loc - 50) < 30) * \ (np.array(traversal[t*5+1]) < time_thresh*30*60) ) / min(traversal[4], time_thresh) * time_thresh # print(traversal[4]) number_of_homing_vectors = np.sum((np.array(traversal[t*5+3]) < speed_thresh) * \ (np.array(traversal[t*5+2]) < HV_cutoff) * \ # (abs(x_end_loc - 50) < 30) * \ (np.array(traversal[t*5+1]) < time_thresh*30*60) )/ min(traversal[4], time_thresh) * time_thresh all_traversals_edgy[start].append( number_of_edge_vectors ) all_traversals_homy[start].append(number_of_homing_vectors) # print(number_of_edge_vectors) mouse_data.append(number_of_edge_vectors) # get the time of edge vectors if condition == 'obstacle' and 'wall' in experiment: edge_vector_idx = ( (np.array(traversal[t * 5 + 3]) < speed_thresh) * (np.array(traversal[t * 5 + 2]) > HV_cutoff) ) edge_vector_time = np.array(traversal[t*5+1])[edge_vector_idx] / 30 / 60 edge_vector_time_all = np.concatenate((edge_vector_time_all, edge_vector_time)) # prop_edgy = np.sum((np.array(traversal[t*5 + 3]) < speed_thresh) * \ # (np.array(traversal[t*5 + 2]) > HV_cutoff) * \ # (np.array(traversal[t * 5 + 1]) < time_thresh * 30 * 60)) / \ # np.sum((np.array(traversal[t * 5 + 3]) < speed_thresh) * \ # (np.array(traversal[t * 5 + 1]) < time_thresh * 30 * 60)) else: all_traversals_edgy[start].append(0) all_traversals_homy[start].append(0) # if np.isnan(prop_edgy): prop_edgy = .5 # prop_edgy = prop_edgy / .35738 # proportion_edgy[start].append(prop_edgy) traversal_coords = np.array(traversal[t*5+0]) pre_traversal = np.array(traversal[10]) else: # all_traversals_edginess[start].append(0) continue m += .5 # loop over all paths show = False if show and traversal: for trial in range(traversal_coords.shape[0]): # make sure it qualifies if traversal[t * 5 + 3][trial] > speed_thresh: continue if traversal[t*5+1][trial] > time_thresh*30*60: continue if not len(pre_traversal[0][0]): continue # if abs(traversal_coords[trial][0][-1]*scaling_factor - 50) > 30: continue # downsample to get even coverage # if c == 2 and np.random.random() > (59 / 234): continue # if c == 1 and np.random.random() > (59 / 94): continue if traversal[t*5+2][trial]> HV_cutoff: plot_color = edge_vector_color else: plot_color = homing_vector_color display_traversal(scaling_factor, traversal_coords, pre_traversal, trial, path_ax, plot_color) if mouse_data: # all_data.append(mouse_data) all_conditions.append(c) # save image path_fig.savefig(os.path.join(self.summary_plots_folder, self.labels[c] + ' traversals.eps'), format='eps', bbox_inches='tight', pad_inches=0) # plot the data if type == 'spontaneous' and len(sides) > 1: plot_number_edgy = np.array(all_traversals_edgy['front']).astype(float) + np.array(all_traversals_edgy['back']).astype(float) plot_number_homy = np.array(all_traversals_homy['front']).astype(float) + np.array(all_traversals_homy['back']).astype(float) print(np.sum(plot_number_edgy + plot_number_homy)) # plot_proportion_edgy = (np.array(proportion_edgy['front']).astype(float) + np.array(proportion_edgy['back']).astype(float)) / 2 plot_proportion_edgy = plot_number_edgy / (plot_number_edgy + plot_number_homy) all_data.append(plot_number_edgy) else: plot_number_edgy = np.array(all_traversals_edgy[sides[0]]).astype(float) plot_number_homy = np.array(all_traversals_homy[sides[0]]).astype(float) plot_proportion_edgy = plot_number_edgy / (plot_number_edgy + plot_number_homy) # plot_proportion_edgy = np.array(proportion_edgy[sides[0]]).astype(float) for i, (plot_data, ax0) in enumerate(zip([plot_number_edgy, plot_number_homy], [ax, ax3])): #, plot_proportion_edgy , ax2 print(plot_data) print(np.sum(plot_data)) # plot each trial # scatter_axis = scatter_the_axis( (p*4/3+.5/3), plot_data) ax0.scatter(np.ones_like(plot_data)* (p*4/3+.5/3)* 3 - .2, plot_data, color=[0,0,0, .4], edgecolors='none', s=25, zorder=99) # do kde # if i==0: bw = .5 # else: bw = .02 bw = .5 kde = fit_kde(plot_data, bw=bw) plot_kde(ax0, kde, plot_data, z=4 * p + .8, vertical=True, normto=.3, color=[.5, .5, .5], violin=False, clip=True) ax0.plot([4 * p + -.2, 4 * p + -.2], [np.percentile(plot_data, 25), np.percentile(plot_data, 75)], color = [0,0,0]) ax0.plot([4 * p + -.4, 4 * p + -.0], [np.percentile(plot_data, 50), np.percentile(plot_data, 50)], color = [1,1,1], linewidth = 2) # else: # # kde = fit_kde(plot_data, bw=.03) # # plot_kde(ax0, kde, plot_data, z=4 * p + .8, vertical=True, normto=1.2, color=[.5, .5, .5], violin=False, clip=True) # bp = ax0.boxplot([plot_data, [0, 0]], positions=[4 * p + -.2, -10], showfliers=False, zorder=99) # ax0.set_xlim([-1, 4 * len(self.experiments) - 1]) p+=1 # plot a stacked bar of strategies # fig3 = plot_strategies(strategies, homing_vector_color, non_escape_color, edge_vector_color) # fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal categories - ' + self.labels[c] + '.png'), format='png', bbox_inches = 'tight', pad_inches = 0) # fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal categories - ' + self.labels[c] + '.eps'), format='eps', bbox_inches = 'tight', pad_inches = 0) # make timing hist plt.figure() bins = np.arange(0,22.5,2.5) plt.hist(edge_vector_time_all, bins = bins, color = [0,0,0], weights = np.ones_like(edge_vector_time_all) / 2.5 / m) #condition_colors[c]) plt.ylim([0,2.1]) plt.show() # # save the plot fig.savefig(os.path.join(self.summary_plots_folder, 'Traversal # EVS comparison.png'), format='png', bbox_inches='tight', pad_inches=0) fig.savefig(os.path.join(self.summary_plots_folder, 'Traversal # EVS comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal # HVS comparison.png'), format='png', bbox_inches='tight', pad_inches=0) fig3.savefig(os.path.join(self.summary_plots_folder, 'Traversal # HVS comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) group_A = [[d] for d in all_data[0]] group_B = [[d] for d in all_data[2]] permutation_test(group_A, group_B, iterations = 100000, two_tailed = False) group_A = [[d] for d in all_data[2]] group_B = [[d] for d in all_data[1]] permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # fig2.savefig(os.path.join(self.summary_plots_folder, 'Traversal proportion edgy.png'), format='png', bbox_inches='tight', pad_inches=0) # fig2.savefig(os.path.join(self.summary_plots_folder, 'Traversal proportion edgy.eps'), format='eps', bbox_inches='tight', pad_inches=0) plt.show() def plot_speed_traces(self, speed = 'absolute'): ''' plot the speed traces ''' max_speed = 60 # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) RT, end_idx, scaling_factor, speed_traces, subgoal_speed_traces, time, time_axis, trial_num = \ initialize_variables(number_of_trials, self,sub_experiments) # create custom colormap colormap = speed_colormap(scaling_factor, max_speed, n_bins=256, v_min=0, v_max=max_speed) # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop over each trial for trial in range(len(self.analysis[experiment][condition]['speed'][mouse])): if trial > 2: continue trial_num = fill_in_trial_data(RT, condition, end_idx, experiment, mouse, scaling_factor, self, speed_traces, subgoal_speed_traces, time, trial, trial_num) # print some useful metrics print_metrics(RT, end_idx, number_of_mice, number_of_trials) # put the speed traces on the plot fig = show_speed_traces(colormap, condition, end_idx, experiment, number_of_trials, speed, speed_traces, subgoal_speed_traces, time_axis, max_speed) # save the plot fig.savefig(os.path.join(self.summary_plots_folder,'Speed traces - ' + self.labels[c] + '.png'), format='png', bbox_inches = 'tight', pad_inches = 0) fig.savefig(os.path.join(self.summary_plots_folder,'Speed traces - ' + self.labels[c] + '.eps'), format='eps', bbox_inches = 'tight', pad_inches = 0) plt.show() print('done') def plot_escape_paths(self): ''' plot the escape paths ''' # initialize parameters edge_vector_color = [np.array([1, .95, .85]), np.array([.98, .9, .6])**4] homing_vector_color = [ np.array([.725, .725, .725]), np.array([0, 0, 0])] non_escape_color = np.array([0,0,0]) fps = 30 escape_duration = 18 #6 #9 for food # 18 for U min_distance_to_shelter = 30 HV_cutoff = 0.681 #.75 #.7 # initialize all data for stats all_data = [[], [], [], []] all_conditions = [] # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # initialize the arena arena, arena_color, scaling_factor, obstacle = initialize_arena(self, sub_experiments, sub_conditions) # more arena stuff for this analysis type arena_reference = arena_color.copy() arena_color[arena_reference == 245] = 255 get_arena_details(self, experiment=sub_experiments[0]) shelter_location = [s / scaling_factor / 10 for s in self.shelter_location] # initialize strategy array strategies = np.array([0,0,0]) path_ax, path_fig = get_arena_plot(obstacle, sub_conditions, sub_experiments) # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): if 'void' in experiment or 'dark' in experiment or ('off' in experiment and condition == 'no obstacle') or 'quick' in experiment: escape_duration = 18 elif 'food' in experiment: escape_duration = 9 else: escape_duration = 12 # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): print(mouse) # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # color based on visual vs tactile obst avoidance # if mouse == 'CA7190' or mouse == 'CA3210' or mouse == 'CA3155' or mouse == 'CA8100': # edge_vector_color = [np.array([.6, .4, .99]),np.array([.6, .4, .99])] # homing_vector_color = [np.array([.6, .4, .99]),np.array([.6, .4, .99])] # else: # edge_vector_color = [np.array([.8, .95, 0]),np.array([.8, .95, 0])] # homing_vector_color = [np.array([.8, .95, 0]),np.array([.8, .95, 0])] # show escape paths show_escape_paths(HV_cutoff, arena, arena_color, arena_reference, c, condition, edge_vector_color, escape_duration, experiment, fps, homing_vector_color, min_distance_to_shelter, mouse, non_escape_color, scaling_factor, self, shelter_location, strategies, path_ax, determine_strategy = False) #('dark' in experiment and condition=='obstacle')) # save image # scipy.misc.imsave(os.path.join(self.summary_plots_folder, 'Escape paths - ' + self.labels[c] + '.png'), arena_color[:,:,::-1]) imageio.imwrite(os.path.join(self.summary_plots_folder, 'Escape paths - ' + self.labels[c] + '.png'), arena_color[:,:,::-1]) path_fig.savefig(os.path.join(self.summary_plots_folder, 'Escape plot - ' + self.labels[c] + '.png'), format='png', bbox_inches='tight', pad_inches=0) path_fig.savefig(os.path.join(self.summary_plots_folder, 'Escape plot - ' + self.labels[c] + '.eps'), format='eps', bbox_inches='tight', pad_inches=0) # plot a stacked bar of strategies fig = plot_strategies(strategies, homing_vector_color, non_escape_color, edge_vector_color) fig.savefig(os.path.join(self.summary_plots_folder, 'Escape categories - ' + self.labels[c] + '.png'), format='png', bbox_inches = 'tight', pad_inches = 0) fig.savefig(os.path.join(self.summary_plots_folder, 'Escape categories - ' + self.labels[c] + '.eps'), format='eps', bbox_inches = 'tight', pad_inches = 0) plt.show() print('escape') # strategies = np.array([4,5,0]) # fig = plot_strategies(strategies, homing_vector_color, non_escape_color, edge_vector_color) # plt.show() # fig.savefig(os.path.join(self.summary_plots_folder, 'Trajectory by previous edge-vectors 2.png'), format='png', bbox_inches='tight', pad_inches=0) # fig.savefig(os.path.join(self.summary_plots_folder, 'Trajectory by previous edge-vectors 2.eps'), format='eps', bbox_inches='tight', pad_inches=0) # group_A = [[0],[1],[0,0,0],[0,0],[0,1],[1,0],[0,0,0]] # group_B = [[1,0,0],[0,0,0,0],[0,0,0],[1,0,0],[0,0,0]] # permutation_test(group_B, group_A, iterations = 10000, two_tailed = False) obstacle = [[0],[1],[0,0,0],[0,0],[0,1],[1],[0,0,0], [1]] # obstacle_exp = [[0,1],[0,0,0,0,1],[0,1],[0]] open_field = [[1,0,0,0,0],[0,0,0,0,0],[0,0,0,0],[1,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0,0,0]] # U_shaped = [[0,1],[1,1], [1,1], [0,0,1], [0,0,0], [0], [1], [0], [0,1], [0,1,0,0], [0,0,0]] # permutation_test(open_field, obstacle, iterations = 10000, two_tailed = False) # do same edgy homing then stop to both obstacle = [[0],[1],[0,0,0],[0,0],[0,1],[1],[0,0,0], [1], [1], [0,0,0]] open_field = [[1],[0,0,0],[0,0,0],[1,0,0],[0,0,0],[0,0,1]] #stop at 3 trials # do same edgy homing then stop to both --> exclude non escapes obstacle = [[0],[1],[0,0,0],[0],[0,1],[1],[0,0,0], [1], [1], [0,0,0]] open_field = [[1],[0,0],[0,0,0],[1,0,0],[0,0,0],[0,1]] #stop at 3 trials def plot_edginess(self): # initialize parameters fps = 30 escape_duration = 12 #9 #6 HV_cutoff = .681 #.681 ETD = 10 #10 traj_loc = 40 edge_vector_color = np.array([.98, .9, .6])**5 edge_vector_color = np.array([.99, .94, .6]) ** 3 # edge_vector_color = np.array([.99, .95, .6]) ** 5 homing_vector_color = np.array([0, 0, 0]) # homing_vector_color = np.array([.85, .65, .8]) # edge_vector_color = np.array([.65, .85, .7]) # colors for diff conditions colors = [np.array([.7, 0, .3]), np.array([0, .8, .5])] colors = [np.array([.3,.3,.3]), np.array([1, .2, 0]), np.array([0, .8, .4]), np.array([0, .7, .9])] colors = [np.array([.3, .3, .3]), np.array([1, .2, 0]), np.array([.7, 0, .7]), np.array([0, .7, .9]), np.array([0,1,0])] # colors = [np.array([0, 0, 0]), np.array([0, 0, 0]),np.array([0, 0, 0]), np.array([0, 0, 0])] offset = [0,.2, .2, 0] # initialize figures fig, fig2, fig3, fig4, _, ax, ax2, ax3 = initialize_figures(self) # initialize all data for stats all_data = [[],[],[],[]] all_conditions = [] mouse_ID = []; m = 1 dist_data_EV_other_all = [] delta_ICs, delta_x_end = [], [] time_to_shelter, was_escape = [], [] repetitions = 1 for rand_select in range(repetitions): m = -1 # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): num_trials_total = 0 num_trials_escape = 0 # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) t_total = 0 # initialize array to fill in with each trial's data edginess, end_idx, time_since_down, time_to_shelter, time_to_shelter_all, prev_edginess, scaling_factor, time_in_center, trial_num, _, _, dist_to_SH, dist_to_other_SH = \ initialize_variable_edginess(number_of_trials, self, sub_experiments) mouse_ID_trial = edginess.copy() # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): if 'void' in experiment or 'dark' in experiment or ('off' in experiment and condition == 'no obstacle') or 'quick' in experiment: escape_duration = 18 elif 'food' in experiment: escape_duration = 12 else: escape_duration = 12 # elif 'up' in experiment and 'probe' in condition: # escape_duration = 12 # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['start time']): m+=1 # initialize mouse data for stats mouse_data = [[],[],[],[]] print(mouse) skip_mouse = False if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop over each trial prev_homings = [] x_edges_used = [] t = 0 for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): trial_num += 1 # impose conditions if 'food' in experiment: if t > 12: continue if condition == 'no obstacle' and self.analysis[experiment][condition]['start time'][mouse][trial] < 20: continue num_trials_total += 1 elif 'void' in experiment: if t > 5: continue else: if t>2: continue # if trial > 2: continue num_trials_total += 1 # if trial!=2: continue # if 'off' in experiment and trial: continue # if trial < 3 and 'wall down' in experiment: continue # if condition == 'obstacle' and not 'non' in experiment and \ # self.analysis[experiment][condition]['start time'][mouse][trial] < 20: continue # if c == 0 and not (trial > 0): continue # if c == 1 and not (trial): continue # if c == 2 and not (trial == 0): continue # if trial and ('lights on off' in experiment and not 'baseline' in experiment): continue if 'Square' in experiment: HV_cutoff = .56 HV_cutoff = 0 y_idx = self.analysis[experiment][condition]['path'][mouse][trial][1] if y_idx[0] * scaling_factor > 50: continue else: # skip certain trials y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # print(y_start) # print(x_start) if y_start > 25: continue if abs(x_start-50) > 30: continue end_idx[trial_num] = self.analysis[experiment][condition]['end time'][mouse][trial] RT = self.analysis[experiment][condition]['RT'][mouse][trial] if np.isnan(end_idx[trial_num]) or (end_idx[trial_num] > escape_duration * fps): # if not ('up' in experiment and 'probe' in condition and not np.isnan(RT)): # mouse_data[3].append(0) continue ''' check for previous edgy homings ''' # if 'dark' in experiment or True: # num_prev_edge_vectors, x_edge = get_num_edge_vectors(self, experiment, condition, mouse, trial) # # print(num_prev_edge_vectors) # if num_prev_edge_vectors and c: continue # if not num_prev_edge_vectors and not c: continue # if num_prev_edge_vectors < 3 and (c==0): continue # if num_prev_edge_vectors > 0 and c < 4: continue # if t>1 and c == 2: continue # if num_prev_edge_vectors >= 2: print('prev edgy homing'); continue # if x_edge in x_edges_used: print('prev edgy escape'); continue # # print('-----------' + mouse + '--------------') # # if self.analysis[experiment][condition]['edginess'][mouse][trial] <= HV_cutoff: # print(' HV ') # else: # print(' EDGY ') # # edgy trial has occurred # print('EDGY TRIAL ' + str(trial)) # x_edges_used.append(x_edge) # # # select only *with* prev homings # if not num_prev_edge_vectors: # if not x_edge in x_edges_used: # if self.analysis[experiment][condition]['edginess'][mouse][trial] > HV_cutoff: # x_edges_used.append(x_edge) # continue # print(t) num_trials_escape += 1 # add data edginess[trial_num] = self.analysis[experiment][condition]['edginess'][mouse][trial] time_since_down[trial_num] = np.sqrt((x_start - 50)**2 + (y_start - 50)**2 )# self.analysis[experiment][condition]['start angle'][mouse][trial] print(edginess[trial_num]) if 'Square' in experiment: if edginess[trial_num] <=-.3: # and False: #.15 edginess[trial_num] = np.nan continue # edginess to current edge as opposed to specific edge if (('moves left' in experiment and condition == 'no obstacle') \ or ('moves right' in experiment and condition== 'obstacle')): # and False: if edginess[trial_num] <= -0: # and False: edginess[trial_num] = np.nan continue edginess[trial_num] = edginess[trial_num] - 1 # shelter edginess if False: y_pos = self.analysis[experiment][condition]['path'][mouse][trial][1][:int(end_idx[trial_num])] * scaling_factor x_pos = self.analysis[experiment][condition]['path'][mouse][trial][0][:int(end_idx[trial_num])] * scaling_factor # get the latter phase traj y_pos_1 = 55 y_pos_2 = 65 x_pos_1 = x_pos[np.argmin(abs(y_pos - y_pos_1))] x_pos_2 = x_pos[np.argmin(abs(y_pos - y_pos_2))] #where does it end up slope = (y_pos_2 - y_pos_1) / (x_pos_2 - x_pos_1) intercept = y_pos_1 - x_pos_1 * slope x_pos_proj = (80 - intercept) / slope # compared to x_pos_shelter_R = 40 #40.5 # defined as mean of null dist # if 'long' in self.labels[c]: # x_pos_shelter_R += 18 # compute the metric shelter_edginess = (x_pos_proj - x_pos_shelter_R) / 18 edginess[trial_num] = -shelter_edginess # if condition == 'obstacle' and 'left' in experiment:edginess[trial_num] = -edginess[trial_num] # for putting conditions together # get previous edginess #TEMPORARY COMMENT # if not t: # SH_data = self.analysis[experiment][condition]['prev homings'][mouse][-1] # time_to_shelter.append(np.array(SH_data[2])) # was_escape.append(np.array(SH_data[4])) if False: # or True: time_to_shelter, SR = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial, trial_num, edginess, delta_ICs, delta_x_end) print(prev_edginess[trial_num]) print(trial + 1) print('') # get time in center # time_in_center[trial_num] = self.analysis[experiment][condition]['time exploring obstacle'][mouse][trial] # time_in_center[trial_num] = num_PORHVs # if num_PORHVs <= 1: # edginess[trial_num] = np.nan # continue # if (prev_edginess[trial_num] < HV_cutoff and not t) or skip_mouse: # edginess[trial_num] = np.nan # skip_mouse = True # continue ''' qualify by prev homings ''' # if prev_edginess[trial_num] < .4: # and c: # edginess[trial_num] = np.nan # prev_edginess[trial_num] = np.nan # continue num_prev_edge_vectors, x_edge = get_num_edge_vectors(self, experiment, condition, mouse, trial, ETD = 10) # print(str(num_prev_edge_vectors) + ' EVs') # # if not num_prev_edge_vectors >= 1 and c ==0: # edginess[trial_num] = np.nan # t+=1 # continue # if not num_prev_edge_vectors < 1 and c ==1: # edginess[trial_num] = np.nan # t+=1 # continue # print(num_prev_edge_vectors) # if num_prev_edge_vectors !=0 and c==3: # edginess[trial_num] = np.nan # t+=1 # continue # if num_prev_edge_vectors != 1 and c == 2: # edginess[trial_num] = np.nan # t += 1 # continue # if num_prev_edge_vectors != 2 and num_prev_edge_vectors != 3 and c ==1: # edginess[trial_num] = np.nan # t += 1 # continue # # if num_prev_edge_vectors < 4 and c ==0: # edginess[trial_num] = np.nan # t += 1 # continue # # print(trial + 1) # print(prev_edginess[trial_num]) # print(edginess[trial_num]) # print('') # print(t) # get time since obstacle removal? # time_since_down[trial_num] = self.analysis[experiment][condition]['start time'][mouse][trial] - self.analysis[experiment]['probe']['start time'][mouse][0] # add data for stats mouse_data[0].append(int(edginess[trial_num] > HV_cutoff)) mouse_data[1].append(edginess[trial_num]) mouse_data[2].append(prev_edginess[trial_num]) mouse_data[3].append(self.analysis[experiment][condition]['start time'][mouse][trial] - self.analysis[experiment][condition]['start time'][mouse][0]) mouse_ID_trial[trial_num] = m t += 1 t_total += 1 #append data for stats if mouse_data[0]: all_data[0].append(mouse_data[0]) all_data[1].append(mouse_data[1]) all_data[2].append(mouse_data[2]) all_data[3].append(mouse_data[3]) all_conditions.append(c) mouse_ID.append(m); m+= 1 else: print(mouse) print('0 trials') # get prev homings time_to_shelter_all.append(time_to_shelter) dist_data_EV_other_all = np.append(dist_data_EV_other_all, dist_to_other_SH[edginess > HV_cutoff]) # print(t_total) ''' plot edginess by condition ''' # get the data # data = abs(edginess) data = edginess plot_data = data[~np.isnan(data)] # print(np.percentile(plot_data, 25)) # print(np.percentile(plot_data, 50)) # print(np.percentile(plot_data, 75)) # print(np.mean(plot_data > HV_cutoff)) # plot each trial scatter_axis = scatter_the_axis(c, plot_data) ax.scatter(scatter_axis[plot_data>HV_cutoff], plot_data[plot_data>HV_cutoff], color=edge_vector_color[::-1], s=15, zorder = 99) ax.scatter(scatter_axis[plot_data<=HV_cutoff], plot_data[plot_data<=HV_cutoff], color=homing_vector_color[::-1], s=15, zorder = 99) bp = ax.boxplot([plot_data, [0,0]], positions = [3 * c - .2, -10], showfliers=False, zorder=99) plt.setp(bp['boxes'], color=[.5,.5,.5], linewidth = 2) plt.setp(bp['whiskers'], color=[.5,.5,.5], linewidth = 2) plt.setp(bp['medians'], linewidth=2) ax.set_xlim([-1, 3 * len(self.experiments) - 1]) # ax.set_ylim([-.1, 1.15]) ax.set_ylim([-.1, 1.3]) #do kde try: if 'Square' in experiment: kde = fit_kde(plot_data, bw=.06) plot_kde(ax, kde, plot_data, z=3*c + .3, vertical=True, normto=.8, color=[.5,.5,.5], violin=False, clip=False, cutoff = HV_cutoff+0.0000001, cutoff_colors = [homing_vector_color[::-1], edge_vector_color[::-1]]) ax.set_ylim([-1.5, 1.5]) else: kde = fit_kde(plot_data, bw=.04) plot_kde(ax, kde, plot_data, z=3*c + .3, vertical=True, normto=1.3, color=[.5,.5,.5], violin=False, clip=True, cutoff = HV_cutoff, cutoff_colors = [homing_vector_color[::-1], edge_vector_color[::-1]]) except: pass # plot the polar plot or initial trajectories # plt.figure(fig4.number) fig4 = plt.figure(figsize=( 5, 5)) # ax4 = plt.subplot(1,len(self.experiments),len(self.experiments) - c, polar=True) ax4 = plt.subplot(1, 1, 1, polar=True) plt.axis('off') ax.margins(0, 0) ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) ax4.set_xlim([-np.pi / 2 - .1, 0]) # ax4.set_xlim([-np.pi - .1, 0]) mean_value_color = max(0, min(1, np.mean(plot_data))) mean_value_color = np.sum(plot_data > HV_cutoff) / len(plot_data) mean_value = np.mean(plot_data) value_color = mean_value_color * edge_vector_color[::-1] + (1 - mean_value_color) * homing_vector_color[::-1] ax4.arrow(mean_value + 3 * np.pi / 2, 0, 0, 1.9, color=[abs(v)**1 for v in value_color], alpha=1, width = 0.05, linewidth=2) ax4.plot([0, 0 + 3 * np.pi / 2], [0, 2.25], color=[.5,.5,.5], alpha=1, linewidth=1, linestyle = '--') ax4.plot([0, 1 + 3 * np.pi / 2], [0, 2.25], color=[.5,.5,.5], alpha=1, linewidth=1, linestyle = '--') # ax4.plot([0, -1 + 3 * np.pi / 2], [0, 2.25], color=[.5, .5, .5], alpha=1, linewidth=1, linestyle='--') scatter_axis_EV = scatter_the_axis_polar(plot_data[plot_data > HV_cutoff], 2.25, 0) #0.05 scatter_axis_HV = scatter_the_axis_polar(plot_data[plot_data <= HV_cutoff], 2.25, 0) ax4.scatter(plot_data[plot_data > HV_cutoff] + 3 * np.pi/2, scatter_axis_EV, s = 30, color=edge_vector_color[::-1], alpha = .8, edgecolors = None) ax4.scatter(plot_data[plot_data <= HV_cutoff] + 3 * np.pi/2, scatter_axis_HV, s = 30, color=homing_vector_color[::-1], alpha=.8, edgecolors = None) fig4.savefig(os.path.join(self.summary_plots_folder, 'Angle comparison - ' + self.labels[c] + '.png'), format='png', transparent=True, bbox_inches='tight', pad_inches=0) fig4.savefig(os.path.join(self.summary_plots_folder, 'Angle comparison - ' + self.labels[c] + '.eps'), format='eps', transparent=True, bbox_inches='tight', pad_inches=0) # print(len(plot_data)) if len(plot_data) > 1 and False: # or True: ''' plot the correlation ''' # do both prev homings and time in center # np.array(time_since_down) # 'Time since removal' for plot_data_corr, fig_corr, ax_corr, data_label in zip([prev_edginess, time_in_center], [fig2, fig3], [ax2, ax3], ['Prior homings','Exploration']): # plot_data_corr = plot_data_corr[~np.isnan(data)] # plot data ax_corr.scatter(plot_data_corr, plot_data, color=colors[c], s=60, alpha=1, edgecolors=colors[c]/2, linewidth=1) #color=[.5, .5, .5] #edgecolors=[.2, .2, .2] # do correlation r, p = scipy.stats.pearsonr(plot_data_corr, plot_data) print(r, p) # do linear regression plot_data_corr, prediction = do_linear_regression(plot_data, plot_data_corr) # plot linear regresssion ax_corr.plot(plot_data_corr, prediction['Pred'].values, color=colors[c], linewidth=1, linestyle='--', alpha=.7) #color=[.0, .0, .0] ax_corr.fill_between(plot_data_corr, prediction['lower'].values, prediction['upper'].values, color=colors[c], alpha=.075) #color=[.2, .2, .2] fig_corr.savefig(os.path.join(self.summary_plots_folder, 'Edginess by ' + data_label + ' - ' + self.labels[c] + '.png'), format='png') fig_corr.savefig(os.path.join(self.summary_plots_folder, 'Edginess by ' + data_label + ' - ' + self.labels[c] + '.eps'), format='eps') # test correlation and stats thru permutation test # data_x = list(np.array(all_data[2])[np.array(all_conditions) == c]) # data_y = list(np.array(all_data[1])[np.array(all_conditions) == c]) # permutation_correlation(data_x, data_y, iterations=10000, two_tailed=False, pool_all = True) print(num_trials_escape) print(num_trials_total) print(num_trials_escape / num_trials_total) # save the plot fig.savefig(os.path.join(self.summary_plots_folder, 'Edginess comparison.png'), format='png', bbox_inches='tight', pad_inches=0) fig.savefig(os.path.join(self.summary_plots_folder, 'Edginess comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) # fig5.savefig(os.path.join(self.summary_plots_folder, 'Angle dist comparison.png'), format='png', bbox_inches='tight', pad_inches=0) # fig5.savefig(os.path.join(self.summary_plots_folder, 'Angle dist comparison.eps'), format='eps', bbox_inches='tight', pad_inches=0) plt.show() time_to_shelter_all = np.concatenate(list(flatten(time_to_shelter_all))).astype(float) np.percentile(time_to_shelter_all, 25) np.percentile(time_to_shelter_all, 75) group_A = list(np.array(all_data[0])[np.array(all_conditions) == 2]) group_B = list(np.array(all_data[0])[np.array(all_conditions) == 3]) permutation_test(group_A, group_B, iterations = 10000, two_tailed = False) group_A = list(np.array(all_data[1])[(np.array(all_conditions) == 1) + (np.array(all_conditions) == 2)]) group_B = list(np.array(all_data[1])[np.array(all_conditions) == 3]) permutation_test(group_A, group_B, iterations = 10000, two_tailed = False) import pandas df = pandas.DataFrame(data={"mouse_id": mouse_ID, "condition": all_conditions, "x-data": all_data[2], "y-data": all_data[1]}) df.to_csv("./Foraging Path Types.csv", sep=',', index=False) group_B = list(flatten(np.array(all_data[0])[np.array(all_conditions) == 1])) np.sum(group_B) / len(group_B) np.percentile(abs(time_since_down[edginess < HV_cutoff]), 50) np.percentile(abs(time_since_down[edginess < HV_cutoff]), 25) np.percentile(abs(time_since_down[edginess < HV_cutoff]), 75) np.percentile(abs(time_since_down[edginess > HV_cutoff]), 50) np.percentile(abs(time_since_down[edginess > HV_cutoff]), 25) np.percentile(abs(time_since_down[edginess > HV_cutoff]), 75) group_A = [[d] for d in abs(time_since_down[edginess > HV_cutoff])] group_B = [[d] for d in abs(time_since_down[edginess < HV_cutoff])] permutation_test(group_A, group_B, iterations=10000, two_tailed=True) WE = np.concatenate(was_escape) TTS_spont = np.concatenate(time_to_shelter)[~WE] TTS_escape = np.concatenate(time_to_shelter)[WE] trials = np.array(list(flatten(all_data[3]))) edgy = np.array(list(flatten(all_data[0]))) np.mean(edgy[trials == 0]) np.mean(edgy[trials == 1]) np.mean(edgy[trials == 2]) np.mean(edgy[trials == 3]) np.mean(edgy[trials == 4]) np.mean(edgy[trials == 5]) np.mean(edgy[trials == 6]) np.mean(edgy[trials == 7]) np.mean(edgy[trials == 8]) np.mean(edgy[trials == 9]) np.mean(edgy[trials == 10]) np.mean(edgy[trials == 11]) np.mean(edgy[trials == 12]) np.mean(edgy[trials == 13]) ''' TRADITIONAL METRICS ''' def plot_metrics_by_strategy(self): ''' plot the escape paths ''' # initialize parameters edge_vector_color = np.array([1, .95, .85]) homing_vector_color = np.array([.725, .725, .725]) non_escape_color = np.array([0,0,0]) ETD = 10#0 traj_loc = 40 fps = 30 # escape_duration = 12 #12 #9 #12 9 for food 12 for dark HV_cutoff = .681 #.65 edgy_cutoff = .681 # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, num_prev_homings_EV, duration_RT, duration, prev_edginess, edginess, _, _, _, _, \ _, _, _, _, _, scaling_factor, time, trial_num, trials, edginess, avg_speed, avg_speed_RT, peak_speed, RT, escape_speed, strategy = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) mouse_id = efficiency.copy() m = 0 # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): print(mouse) # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop across all trials t = 0 for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): if 'food' in experiment: escape_duration = 9 else: escape_duration = 12 trial_num += 1 # impose coniditions - escape duration end_time = self.analysis[experiment][condition]['end time'][mouse][trial] if np.isnan(end_time) or (end_time > (escape_duration * fps)): continue # skip certain trials y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # needs to start at top if y_start > 25: continue if abs(x_start - 50) > 30: continue # get the strategy used # edgy_escape = self.analysis[experiment][condition]['edginess'][mouse][trial] > edgy_cutoff # is it a homing vector # strategy_code = 0 # TEMPORARY COMMENTING # if not edgy_escape: # if self.analysis[experiment][condition]['edginess'][mouse][trial] < HV_cutoff: strategy_code = 0 # homing vector # else: continue # else: # get the strategy used -- NUMBER OF PREVIOUS EDGE VECTOR HOMINGS time_to_shelter, SR = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, [], [], scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) if t > 2: continue # if c == 0 and trial: continue # if c == 1 and trial != 2: continue t+=1 # if prev_edginess[trial_num] >= HV_cutoff: strategy_code = 1 # path learning # elif prev_edginess[trial_num] < HV_cutoff: strategy_code = 2 # map-based # else: continue # how many prev homings to that edge: if 0, then map-based, if >1, then PL if len(self.analysis[experiment]['probe']['start time'][mouse]): edge_time = self.analysis[experiment]['probe']['start time'][mouse][0] - 1 else: edge_time = 19 edge_time = np.min((edge_time, self.analysis[experiment][condition]['start time'][mouse][trial])) # print(edge_time) num_edge_vectors, _ = get_num_edge_vectors(self, experiment, condition, mouse, trial, ETD=ETD, time_threshold=edge_time, other_side = False) num_edge_vectors = get_num_homing_vectors(self, experiment, condition, mouse, trial, spontaneous = False, time_threshold = edge_time) print(num_edge_vectors) # if 'wall up' in experiment and 'no' in condition: num_edge_vectors = 0 # print(num_edge_vectors) if False or True: if num_edge_vectors == 1: strategy_code = 1 # print('EV -- ' + mouse + ' - trial ' + str(trial)) elif num_edge_vectors == 0: strategy_code = 0 # print('NO EV -- ' + mouse + ' - trial ' + str(trial)) else: continue else: strategy_code = 0 strategy[trial_num] = strategy_code # add data for each metric RT[trial_num] = self.analysis[experiment][condition]['RT'][mouse][trial] avg_speed[trial_num] = np.mean(self.analysis[experiment][condition]['speed'][mouse][trial][10*fps : 10*fps+int(end_time)]) * scaling_factor * 30 avg_speed_RT[trial_num] = np.mean(self.analysis[experiment][condition]['speed'][mouse][trial][10*fps + int(RT[trial_num]*30) : 10*fps+int(end_time)]) * scaling_factor * 30 peak_speed[trial_num] = np.max(self.analysis[experiment][condition]['speed'][mouse][trial][10*fps : 10*fps+int(end_time)])*fps*scaling_factor escape_speed[trial_num] = self.analysis[experiment][condition]['optimal path length'][mouse][trial] * scaling_factor / (end_time/30) efficiency[trial_num] = np.min((1, self.analysis[experiment][condition]['optimal path length'][mouse][trial] / \ self.analysis[experiment][condition]['full path length'][mouse][trial])) efficiency_RT[trial_num] = np.min((1, self.analysis[experiment][condition]['optimal RT path length'][mouse][trial] / \ self.analysis[experiment][condition]['RT path length'][mouse][trial])) duration_RT[trial_num] = (end_time / fps - RT[trial_num]) / self.analysis[experiment][condition]['optimal RT path length'][mouse][trial] / scaling_factor * 100 duration[trial_num] = end_time / fps / self.analysis[experiment][condition]['optimal path length'][mouse][trial] / scaling_factor * 100 # duration[trial_num] = trial # duration_RT[trial_num] = self.analysis[experiment][condition]['start time'][mouse][trial] avg_speed[trial_num] = self.analysis[experiment][condition]['time exploring far (pre)'][mouse][trial] / 60 # add data for stats mouse_id[trial_num] = m m+=1 # for metric, data in zip(['Reaction time', 'Peak speed', 'Avg speed', 'Path efficiency - RT','Duration - RT', 'Duration'],\ # [RT, peak_speed, avg_speed_RT, efficiency_RT, duration_RT, duration]): # for metric, data in zip(['Reaction time', 'Avg speed', 'Path efficiency - RT'], #,'Peak speed', 'Duration - RT', 'Duration'], \ # [RT, avg_speed_RT, efficiency_RT]): #peak_speed, , duration_RT, duration for metric, data in zip(['Path efficiency - RT'], [efficiency_RT]): # for metric, data in zip([ 'Duration - RT'], # [ duration_RT]): # for metric, data in zip(['trial', 'time', 'time exploring back'], # [duration, duration_RT, avg_speed]): # format data x_data = strategy[~np.isnan(data)] y_data = data[~np.isnan(data)] if not c: OF_data = y_data # make figure fig, ax = plt.subplots(figsize=(11, 9)) plt.axis('off') # ax.margins(0, 0) ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) # ax.set_title(metric) if 'Reaction time' in metric: ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [1, 1], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [2, 2], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [3, 3], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [4, 4], linestyle='--', color=[.5, .5, .5, .5]) elif 'Peak speed' in metric: ax.plot([-.75, 3], [40, 40], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [80, 80], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [120, 120], linestyle='--', color=[.5, .5, .5, .5]) elif 'Avg speed' in metric: ax.plot([-.75, 3], [25, 25], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [50, 50], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [75, 75], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) elif 'Path efficiency' in metric: ax.plot([-.75, 3], [.5,.5], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [.75, .75], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [1, 1], linestyle='--', color=[.5, .5, .5, .5]) elif 'Duration' in metric: ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [10, 10], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [5, 5], linestyle='--', color=[.5, .5, .5, .5]) elif 'time' == metric: ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [10, 10], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [20, 20], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [30, 30], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [40, 40], linestyle='--', color=[.5, .5, .5, .5]) elif 'exploring' in metric: ax.plot([-.75, 3], [2.5, 2.5], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [5.0, 5.0], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [7.5, 7.5], linestyle='--', color=[.5, .5, .5, .5]) ax.plot([-.75, 3], [0, 0], linestyle='--', color=[.5, .5, .5, .5]) #initialize stats array stats_data = [[], [], []] # go thru each strategy for s in [0,1,2]: # format data if not np.sum(x_data==s): continue plot_data = y_data[x_data==s] median = np.percentile(plot_data, 50); third_quartile = np.percentile(plot_data, 75); first_quartile = np.percentile(plot_data, 25) # print(first_quartile) # print(median) # print(third_quartile) # if 'Reaction' in metric: print(str(first_quartile), str(median), str(third_quartile)) IQR = third_quartile - first_quartile # remove outliers if not metric == 'trial': outliers = abs(plot_data - median) > 2*IQR # plot_data = plot_data[~outliers] # plot all data ax.scatter(np.ones_like(plot_data)*s, plot_data, color=[0,0,0], s=30, zorder = 99) # plot kde if 'efficiency' in metric: bw_factor = .02 elif 'speed' in metric or 'efficiency' in metric or metric == 'time': bw_factor = .04 elif 'exploring' in metric: bw_factor = .06 elif 'Duration' in metric: bw_factor = .07 else: bw_factor = .09 kde = fit_kde(plot_data, bw=np.median(y_data)*bw_factor) plot_kde(ax, kde, plot_data, z= s + .1, vertical=True, normto=.4, color=[.75, .75, .75], violin=False, clip=True) # plot errorbar ax.errorbar(s - .15, median, yerr=np.array([[median - first_quartile], [third_quartile - median]]), color=[0, 0, 0], capsize=10, capthick=3, alpha=1, linewidth=3) ax.scatter(s - .15, median, color=[0, 0, 0], s=175, alpha=1) # print(len(plot_data)) # get mouse ids for stats mouse_id_stats = mouse_id[~np.isnan(data)] mouse_id_stats = mouse_id_stats[x_data==s] if not metric == 'trial': mouse_id_stats = mouse_id_stats[~outliers] # for m in np.unique(mouse_id_stats): # stats_data[s].append( list(plot_data[mouse_id_stats==m]) ) print(metric) # for ss in [[0,1]]: #, [0,2], [1,2]]: # group_A = stats_data[ss[0]] # group_B = stats_data[ss[1]] # permutation_test(group_A, group_B, iterations=10000, two_tailed=True) # save figure fig.savefig(os.path.join(self.summary_plots_folder, metric + ' - ' + self.labels[c] + '.png'), format='png', bbox_inches='tight', pad_inches=0) fig.savefig(os.path.join(self.summary_plots_folder, metric + ' - ' + self.labels[c] + '.eps'), format='eps', bbox_inches='tight', pad_inches=0) plt.show() plt.close('all') group_A = [[e] for e in tr1_eff] group_B = [[e] for e in tr3_eff] group_C = [[e] for e in OF_eff] permutation_test(group_A, group_B, iterations=10000, two_tailed=True) permutation_test(group_A, group_C, iterations=10000, two_tailed=True) permutation_test(group_B, group_C, iterations=10000, two_tailed=True) ''' DIST OF TURN ANGLES ''' # def plot_metrics_by_strategy(self): # ''' plot the escape paths ''' # # ETD = 10 # traj_loc = 40 # # fps = 30 # escape_duration = 12 # # colors = [[.3,.3,.3,.5], [.5,.5,.8, .5]] # # # make figure # fig, ax = plt.subplots(figsize=(11, 9)) # fig2, ax2 = plt.subplots(figsize=(11, 9)) # # plt.axis('off') # # ax.margins(0, 0) # # ax.xaxis.set_major_locator(plt.NullLocator()) # # ax.yaxis.set_major_locator(plt.NullLocator()) # all_angles_pre = [] # all_angles_escape = [] # # # # loop over experiments and conditions # for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # # extract experiments from nested list # sub_experiments, sub_conditions = extract_experiments(experiment, condition) # # get the number of trials # number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) # number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # # initialize array to fill in with each trial's data # shape = self.analysis[sub_experiments[0]]['obstacle']['shape'] # scaling_factor = 100 / shape[0] # turn_angles_pre = [] # turn_angles_escape = [] # # # loop over each experiment and condition # for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # # loop over each mouse # for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): # print(mouse) # # control analysis # if self.analysis_options['control'] and not mouse=='control': continue # if not self.analysis_options['control'] and mouse=='control': continue # # loop across all trials # t = 0 # for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): # # impose coniditions - escape duration # end_time = self.analysis[experiment][condition]['end time'][mouse][trial] # if np.isnan(end_time) or (end_time > (escape_duration * fps)): continue # # # ## COMMENT ONE OR THE OTHER IF TESTING PRE OR ESCAPE # #pre # # if trial < 2: continue # # if t: continue # # # escape # if t > 2: continue # # # skip certain trials # y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor # x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # # needs to start at top # if y_start > 25: continue # if abs(x_start - 50) > 30: continue # # turn_angles_pre.append(list(abs(np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][3])))) # >145 # turn_angles_escape.append(abs(self.analysis[experiment][condition]['movement'][mouse][trial][2])) # >145 # # # # turn_angles_pre.append(list(np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][3]))) # # turn_angles_escape.append(self.analysis[experiment][condition]['movement'][mouse][trial][2]) # # t += 1 # # # # # format data # hist_data_pre = np.array(list(flatten(turn_angles_pre))) # hist_data_escape = np.array(list(flatten(turn_angles_escape))) # # # for permutation test # # all_angles_pre.append(turn_angles_pre) # # all_angles_escape.append([[tae] for tae in turn_angles_escape]) # # ax.set_title('Prior movement angles') # ax2.set_title('Escape movement angles') # ax.plot([0, 0], [0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax.plot([90, 90],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax.plot([180, 180],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax2.plot([0, 0], [0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax2.plot([90, 90],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # ax2.plot([180, 180],[0, .4], linestyle='--', color=[.5, .5, .5, .5]) # # # format data # bin_width = 30 # hist_pre, n, _ = ax.hist(hist_data_pre, bins=np.arange(-0, 180+bin_width, bin_width), color=colors[c], weights = np.ones_like(hist_data_pre) * 1/ len(hist_data_pre)) # hist_escape, n, _ = ax2.hist(hist_data_escape, bins=np.arange(-0, 180+bin_width, bin_width), color=colors[c], weights = np.ones_like(hist_data_escape) * 1/ len(hist_data_escape)) # # count_pre, n = np.histogram(hist_data_pre, bins=np.arange(-0, 180+bin_width, bin_width)) # count_escape, n = np.histogram(hist_data_escape, bins=np.arange(-0, 180+bin_width, bin_width)) # # # for chi squared # all_angles_pre.append(count_pre) # all_angles_escape.append(count_escape) # # # # save figure # fig.savefig(os.path.join(self.summary_plots_folder, 'Prior Angle dist.png'), format='png', bbox_inches='tight', pad_inches=0) # fig.savefig(os.path.join(self.summary_plots_folder, 'Prior Angle dist.eps'), format='eps', bbox_inches='tight', pad_inches=0) # # save figure # fig2.savefig(os.path.join(self.summary_plots_folder, 'Escape Angle dist.png'), format='png', bbox_inches='tight', pad_inches=0) # fig2.savefig(os.path.join(self.summary_plots_folder, 'Escape Angle dist.eps'), format='eps', bbox_inches='tight', pad_inches=0) # # plt.show() # # # scipy.stats.chi2_contingency(all_angles_pre) # scipy.stats.chi2_contingency(all_angles_escape) # # # group_A = all_angles_pre[0] # group_B = all_angles_pre[1] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # group_A = all_angles_escape[0] # group_B = all_angles_escape[1] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # plt.close('all') # # ''' # DIST OF EDGE VECTORS # ''' # def plot_metrics_by_strategy(self): # ''' plot the escape paths ''' # # ETD = 10 # traj_loc = 40 # # fps = 30 # escape_duration = 12 # # dist_thresh = 5 # time_thresh = 20 # # colors = [[.3,.3,.3,.5], [.5,.5,.8, .5]] # # # make figure # fig1, ax1 = plt.subplots(figsize=(11, 9)) # fig2, ax2 = plt.subplots(figsize=(11, 9)) # # plt.axis('off') # # ax.margins(0, 0) # # ax.xaxis.set_major_locator(plt.NullLocator()) # # ax.yaxis.set_major_locator(plt.NullLocator()) # all_EVs = [] # all_HVs = [] # # # # loop over experiments and conditions # for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # # extract experiments from nested list # sub_experiments, sub_conditions = extract_experiments(experiment, condition) # # get the number of trials # number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) # number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # # initialize array to fill in with each trial's data # shape = self.analysis[sub_experiments[0]]['obstacle']['shape'] # scaling_factor = 100 / shape[0] # EVs = [] # HVs = [] # edge_vector_time_exp = [] # # # loop over each experiment and condition # for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # # loop over each mouse # for i, mouse in enumerate(self.analysis[experiment][condition]['speed']): # print(mouse) # # control analysis # if self.analysis_options['control'] and not mouse=='control': continue # if not self.analysis_options['control'] and mouse=='control': continue # # just take the last trial # trial = len(self.analysis[experiment][condition]['start time'][mouse])-1 # if trial < 0: # if condition == 'obstacle': # condition_use = 'no obstacle' # trial = 0 # elif condition == 'no obstacle': # condition_use = 'obstacle' # trial = len(self.analysis[experiment][condition]['start time'][mouse])-1 # if mouse == 'CA7220': trial = 1 #compensate for extra vid # else: condition_use = condition # # # get the prev homings # SH_data = self.analysis[experiment][condition_use]['prev homings'][mouse][trial] # # # get their start time # homing_time = np.array(SH_data[3]) # edge_vector_time_exp.append(list(homing_time)) # # # get their x value # SH_x = np.array(SH_data[0]) # # # only use spontaneous # stim_evoked = np.array(SH_data[4]) # SH_x = SH_x[~stim_evoked] # homing_time = homing_time[~stim_evoked] # # # normalize to 20 min # SH_x = SH_x[homing_time < time_thresh] / np.min((time_thresh, self.analysis[experiment][condition_use]['start time'][mouse][trial])) * 20 # # # get number of edge vectors # num_edge_vectors = np.sum(abs(SH_x - 25) < dist_thresh) + np.sum(abs(SH_x - 75) < dist_thresh) # num_homing_vectors = np.sum(abs(SH_x - 50) < dist_thresh) # print(num_edge_vectors) # # # # get the prev anti homings # anti_SH_data = self.analysis[experiment][condition_use]['prev anti-homings'][mouse][trial] # # # get their start time # homing_time = np.array(anti_SH_data[3]) # edge_vector_time_exp.append(list(homing_time)) # # # get their x value # anti_SH_x = np.array(anti_SH_data[0]) # # # limit to 20 min # anti_SH_x = anti_SH_x[homing_time < time_thresh] / np.min((time_thresh, self.analysis[experiment][condition_use]['start time'][mouse][trial])) * 20 # # # get number of edge vectors # num_anti_edge_vectors = np.sum(abs(anti_SH_x - 25) < dist_thresh) + np.sum(abs(anti_SH_x - 75) < dist_thresh) # num_anti_homing_vectors = np.sum(abs(anti_SH_x - 50) < dist_thresh) # print(num_anti_edge_vectors) # # # append to list # EVs.append(num_edge_vectors + num_anti_edge_vectors ) # HVs.append(num_edge_vectors + num_anti_edge_vectors - (num_homing_vectors + num_anti_homing_vectors)) # print(EVs) # all_EVs.append(EVs) # all_HVs.append(HVs) # # # make timing hist # plt.figure() # plt.hist(list(flatten(edge_vector_time_exp)), bins=np.arange(0, 22.5, 2.5)) #, color=condition_colors[c]) # # # plot EVs and HVs # for plot_data, ax, fig in zip([EVs, HVs], [ax1, ax2], [fig1, fig2]): # # scatter_axis = scatter_the_axis(c * 4 / 3 + .5 / 3, plot_data) # ax.scatter(scatter_axis, plot_data, color=[0, 0, 0], s=25, zorder=99) # # do kde # kde = fit_kde(plot_data, bw=.5) # plot_kde(ax, kde, plot_data, z=4 * c + .8, vertical=True, normto=1.2, color=[.5, .5, .5], violin=False, clip=False) # True) # # # save figure # fig.savefig(os.path.join(self.summary_plots_folder, 'EV dist - ' + self.labels[c] + '.png'), format='png', bbox_inches='tight', pad_inches=0) # fig.savefig(os.path.join(self.summary_plots_folder, 'EV dist - ' + self.labels[c] + '.eps'), format='eps', bbox_inches='tight', pad_inches=0) # # # plt.show() # # # group_A = all_EVs[1] # group_B = all_EVs[2] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # group_A = all_HVs[0] # group_B = all_HVs[1] # permutation_test(group_A, group_B, iterations = 10000, two_tailed = True) # # plt.close('all') ''' PREDICTION PLOTS, BY TURN ANGLE OR EXPLORATION/EDGINESS | | v ''' def plot_prediction(self): by_angle_not_edginess = False if by_angle_not_edginess: # initialize parameters fps = 30 escape_duration = 12 ETD = 10 #4 traj_loc = 40 # initialize figures fig1, ax1, fig2, ax2, fig3, ax3 = initialize_figures_prediction(self) plt.close(fig2); plt.close(fig3) # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) mouse_trial_list = [] IC_x_all, IC_y_all, IC_angle_all, IC_time_all, turn_angles_all = [], [], [], [], [] # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, x_pred, y_pred, angle_pred, time_pred, mean_pred, initial_body_angle, initial_x, initial_y, x_edge, _, \ _, _, _, _, scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) # initialize array to fill in with each trial's data edginess, end_idx, angle_turned, _, _, prev_edginess, scaling_factor, _, trial_num, _, _, dist_to_SH, dist_to_other_SH = \ initialize_variable_edginess(number_of_trials, self, sub_experiments) for shuffle_time in [False, True]: angle_turned_all, x_pred_all, y_pred_all, angle_pred_all, time_pred_all, mean_pred_all = [], [], [], [], [], [] num_repeats = shuffle_time * 499 + 1 #* 19 num_repeats = shuffle_time * 19 + 1 # * 19 prediction_scores_all = [] for r in range(num_repeats): trial_num = -1 # loop over each experiment and condition for e, (experiment_real, condition_real) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse_real in enumerate(self.analysis[experiment_real][condition_real]['start time']): if self.analysis_options['control'] and not mouse_real=='control': continue if not self.analysis_options['control'] and mouse_real=='control': continue # loop over each trial prev_homings = [] t = 0 for trial_real in range(len(self.analysis[experiment_real][condition_real]['end time'][mouse_real])): trial_num += 1 # impose conditions if t > 2: continue end_idx[trial_num] = self.analysis[experiment_real][condition_real]['end time'][mouse_real][trial_real] if np.isnan(end_idx[trial_num]): continue if (end_idx[trial_num] > escape_duration * fps): continue # skip certain trials y_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][1][0] * scaling_factor x_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][0][0] * scaling_factor if y_start > 25: continue if abs(x_start-50) > 30: continue # use different data if shuffle: # if shuffle_time: # experiment, condition, mouse, trial = mouse_trial_list[np.random.randint(len(mouse_trial_list))] # else: # experiment, condition, mouse, trial = experiment_real, condition_real, mouse_real, trial_real ''' just use real mouse ''' experiment, condition, mouse, trial = experiment_real, condition_real, mouse_real, trial_real ''' control ICs, real escape ''' # # get the angle turned during the escape angle_turned[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][2] # angle_turned[trial_num] = abs(self.analysis[experiment_real][condition_real]['edginess'][mouse_real][trial_real]) # get the angle turned, delta x, delta y, and delta phi of previous homings bout_start_angle = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][1] bout_start_position = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][0] start_time = self.analysis[experiment_real][condition_real]['start time'][mouse_real][trial_real] # get initial conditions and endpoint quantities IC_x = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][0][-ETD:]) IC_y = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][1][-ETD:]) IC_angle = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][2][-ETD:]) IC_time = np.array(self.analysis[experiment][condition]['prev homings'][mouse][trial][3][-ETD:]) turn_angles = np.array(self.analysis[experiment][condition]['prev movements'][mouse][trial][3][-ETD:]) # MOE = 10 # x_edge_trial = self.analysis[experiment][condition]['x edge'][mouse][trial] # SH_x = np.array(self.analysis[experiment][condition]['prev homings'][mouse][trial][0][-ETD:]) # if x_edge_trial > 50 and np.sum(SH_x > 25 + MOE): # IC_x = IC_x[SH_x > 25 + MOE] # IC_y = IC_y[SH_x > 25 + MOE] # IC_angle = IC_angle[SH_x > 25 + MOE] # IC_time = IC_time[SH_x > 25 + MOE] # turn_angles = turn_angles[SH_x > 25 + MOE] # elif np.sum(SH_x > 75 - MOE): # IC_x = IC_x[SH_x > 75 - MOE] # IC_y = IC_y[SH_x > 75 - MOE] # IC_angle = IC_angle[SH_x > 75 - MOE] # IC_time = IC_time[SH_x > 75 - MOE] # turn_angles = turn_angles[SH_x > 75 - MOE] if not shuffle_time: # gather previous movements IC_x_all = np.concatenate((IC_x_all, IC_x)) IC_y_all = np.concatenate((IC_y_all, IC_y)) IC_angle_all = np.concatenate((IC_angle_all, IC_angle)) IC_time_all = np.concatenate((IC_time_all, IC_time)) turn_angles_all = np.concatenate((turn_angles_all, turn_angles)) else: # sample randomly from these movements random_idx = np.random.choice(len(IC_x_all), len(IC_x_all), replace = False) IC_x = IC_x_all[random_idx] IC_y = IC_y_all[random_idx] IC_angle = IC_angle_all[random_idx] IC_time = IC_time_all[random_idx] turn_angles = turn_angles_all[random_idx] # calculate difference in ICs delta_x = abs( np.array(IC_x - bout_start_position[0]) ) delta_y = abs( np.array(IC_y - bout_start_position[1]) ) delta_angle = abs( np.array(IC_angle - bout_start_angle) ) delta_angle[delta_angle > 180] = 360 - delta_angle[delta_angle > 180] delta_time = start_time - np.array(IC_time) ''' prediction data -- angle turned is a function of prev movement and ICs ''' x_weights = (1 / (delta_x+.0001)) / np.sum(1/(delta_x+.0001)) y_weights = (1 / (delta_y+.0001)) / np.sum(1 / (delta_y+.0001)) angle_weights = (1 / (delta_angle+.0001)) / np.sum(1 / (delta_angle+.0001)) time_weights = (1 / (delta_time+.0001)) / np.sum(1 / (delta_time+.0001)) x_pred[trial_num] = np.sum(turn_angles * x_weights) y_pred[trial_num] = np.sum(turn_angles * y_weights) angle_pred[trial_num] = np.sum(turn_angles * angle_weights) time_pred[trial_num] = np.sum(turn_angles * time_weights) * 0 mean_pred[trial_num] = np.mean(turn_angles) * 0 # try mean pred is the *closest* angle to real # x_pred[trial_num] = 0 # y_pred[trial_num] = 0 # angle_pred[trial_num] = 0 # time_pred[trial_num] = 0 # mean_pred[trial_num] = turn_angles[np.argmin( abs(turn_angles - angle_turned[trial_num]) )] # ''' turn angle prediction to edginess prediction ''' if not shuffle_time: edginess[trial_num] = abs(self.analysis[experiment][condition]['edginess'][mouse][trial]) initial_body_angle[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][1] initial_x[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][0][0] initial_y[trial_num] = self.analysis[experiment_real][condition_real]['movement'][mouse_real][trial_real][0][1] x_edge[trial_num] = self.analysis[experiment][condition]['x edge'][mouse][trial_real] # add mouse and trial to list of mice and trials if not shuffle_time: mouse_trial_list.append([experiment, condition, mouse, trial]) t+=1 ''' concatenate??... ''' # angle_turned_all = np.concatenate((angle_turned_all, angle_turned)) # # x_pred_all = np.concatenate((x_pred_all, x_pred)) # y_pred_all = np.concatenate((y_pred_all, y_pred)) # angle_pred_all = np.concatenate((angle_pred_all, angle_pred)) # time_pred_all = np.concatenate((time_pred_all, time_pred )) # mean_pred_all = np.concatenate((mean_pred_all, mean_pred )) # # # IC_angle_array = np.ones((len(angle_turned_all[~np.isnan(angle_turned_all)]), 5)) # angle_metrics = [x_pred_all[~np.isnan(angle_turned_all)], y_pred_all[~np.isnan(angle_turned_all)], angle_pred_all[~np.isnan(angle_turned_all)], \ # time_pred_all[~np.isnan(angle_turned_all)], mean_pred_all[~np.isnan(angle_turned_all)]] # for i, angle_metric in enumerate(angle_metrics): # # IC_angle_array[:, i] = angle_metric # # # get the data # predict_data_y_all = [ angle_turned_all[~np.isnan(angle_turned_all)].reshape(-1, 1)] # for the movements input data ''' don't concatenate... ''' IC_angle_array = np.ones((len(angle_turned[~np.isnan(angle_turned)]), 5)) angle_metrics = [x_pred[~np.isnan(angle_turned)], y_pred[~np.isnan(angle_turned)], angle_pred[~np.isnan(angle_turned)], \ time_pred[~np.isnan(angle_turned)], mean_pred[~np.isnan(angle_turned)]] for i, angle_metric in enumerate(angle_metrics): # IC_angle_array[:, i] = angle_metric # get the data predict_data_y_all_angle = [angle_turned[~np.isnan(angle_turned)].reshape(-1, 1)] # for the movements input data predict_data_y_all_edgy = [edginess[~np.isnan(edginess)].reshape(-1, 1)] # for the movements input data data_y_labels = ['angle'] predict_data_x_all = [IC_angle_array] # turn angles predict_data_y_all = predict_data_y_all_angle # angles ''' predict edginess from turn angle ''' predict_edginess = True if predict_edginess: if not shuffle_time: initial_body_angle = initial_body_angle[~np.isnan(initial_body_angle)].reshape(-1, 1) initial_x = initial_x[~np.isnan(initial_x)].reshape(-1, 1) initial_y = initial_y[~np.isnan(initial_y)].reshape(-1, 1) x_edge = x_edge[~np.isnan(x_edge)].reshape(-1, 1) # create the model LR = linear_model.Ridge(alpha=.1) # train the model LR.fit(predict_data_x_all[0], predict_data_y_all_angle[0]) print(LR.score(predict_data_x_all[0], predict_data_y_all_angle[0])) # get the model prediction # model_prediction = LR.predict(predict_data_x_all[0]) model_prediction = predict_data_y_all_angle[0] # predict body angles after turn predicted_body_angle = initial_body_angle[~np.isnan(initial_body_angle)].reshape(-1, 1) - model_prediction predicted_body_angle[predicted_body_angle >180] = predicted_body_angle[predicted_body_angle >180] - 360 predicted_body_angle[(predicted_body_angle > 0) * (predicted_body_angle < 90)] = -1 # super edgy to the right predicted_body_angle[(predicted_body_angle > 0) * (predicted_body_angle > 90)] = 1 # super edgy to the right # predict position at y = 40; set reasonable boundaries x_at_40 = np.maximum(15 * np.ones_like(initial_x), np.minimum(90 * np.ones_like(initial_x), initial_x - (40 - initial_y) / np.tan(np.deg2rad(predicted_body_angle)) )) # get edginess y_pos_end = 86.5; x_pos_end = 50; y_edge = 50 slope = (y_pos_end - initial_y) / (x_pos_end - (initial_x+.0001)) intercept = initial_y - initial_x * slope distance_to_line = abs(40 - slope * x_at_40 - intercept) / np.sqrt((-slope) ** 2 + (1) ** 2) homing_vector_at_center = (40 - intercept) / slope # do line from starting position to edge position slope = (y_edge - initial_y) / (x_edge - initial_x) intercept = initial_y - initial_x * slope distance_to_edge = abs(40 - slope * x_at_40 - intercept) / np.sqrt((-slope) ** 2 + (1) ** 2) # compute the max possible deviation edge_vector_at_center = (40 - intercept) / slope line_to_edge_offset = abs(homing_vector_at_center - edge_vector_at_center) # + 5 # get index at center point (wall location) # prev_edginess = np.maximum(np.zeros_like(distance_to_line), np.minimum(1.2*np.ones_like(distance_to_line), # (distance_to_line - distance_to_edge + line_to_edge_offset) / (2 * line_to_edge_offset) )) prev_edginess = abs((distance_to_line - distance_to_edge + line_to_edge_offset) / (2 * line_to_edge_offset)) predict_data_x_all = [prev_edginess] # predicted prev edginess #scipy.stats.zscore( predict_data_y_all = predict_data_y_all_edgy # edginess # edgy input colors input_colors = [ [[0, .6, .4], [.5,.5,.5]], [[0, .6, .4], [.5,.5,.5]], [[.6, 0, .4], [.5,.5,.5]] ] # split the data for cross val num_trials = 1000 - 985 * shuffle_time #985 # loop acros angle prediction and traj prediction for i, (fig, ax, predict_data_x) in enumerate(zip([fig1, fig2, fig3],[ax1, ax2, ax3], predict_data_x_all)): # get prediction data predict_data_y = predict_data_y_all[i] # get color color = input_colors[i][int(shuffle_time)] # initialize prediction arrays prediction_scores = np.zeros(num_trials) for j in range(num_trials): test_size = 0.5 # test_size = 0.25 # if shuffle_time: test_size = 0.25 # get x-val set X_train, X_test, y_train, y_test = train_test_split(predict_data_x, \ predict_data_y, test_size=test_size, random_state=j) # create the model LR = linear_model.Ridge(alpha = .1) # .15, .5 # train the model LR.fit(X_train, y_train) # get the score prediction_scores[j] = LR.score(X_test, y_test) # exclude super negative ones # prediction_scores = prediction_scores[prediction_scores > np.percentile(prediction_scores, 10)] # put into larger array prediction_scores_all = np.concatenate((prediction_scores_all, prediction_scores)) print(np.median(prediction_scores_all)) # exclude super negative ones # prediction_scores_all = prediction_scores_all[prediction_scores_all > np.percentile(prediction_scores_all, 5)] #do kde kde = fit_kde(prediction_scores_all, bw=.03) # .04 plot_kde(ax, kde, prediction_scores_all, z = 0, vertical=False, color=color, violin=False, clip=False) # True) #plt.show() fig.savefig(os.path.join(self.summary_plots_folder,'Predictions of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.png'), format='png') fig.savefig(os.path.join(self.summary_plots_folder,'Predictions of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.eps'), format='eps') plt.show() print('hi') else: ''' PREDICTION PLOTS EDGINESS OR BY **EXPLORATION** ''' fps = 30 escape_duration = 12 ETD = 10 #4 traj_loc = 40 # mean_types = ['even', 'space', 'angle'] #, 'time', 'shelter time'] mean_types = ['space', 'angle', 'shelter time'] #, 'escape'] mean_type = 'even' mean_colors = [[0, .6, .4], [0, .6, .8], [0, .6, .8], [.4, 0, 1] ] mean_colors = [[0, .6, .4], [.4, 0, .8], [0, .6, .8], [.5, .5, .5]] # initialize figures fig1, ax1, fig2, ax2, fig3, ax3 = initialize_figures_prediction(self) for m, mean_type in enumerate(mean_types): # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) mouse_trial_list = [] # initialize array to fill in with each trial's data edginess, end_idx, angle_turned, _, _, prev_edginess, scaling_factor, _, trial_num, prev_movement_and_ICs, data_y_for_prev_movement, dist_to_SH, dist_to_other_SH = \ initialize_variable_edginess(number_of_trials, self, sub_experiments) # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, num_prev_homings_EV, num_prev_homings_front_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre, \ time_exploring_obstacle_post, time_exploring_far_pre, time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) for shuffle_time in [False]: num_repeats = shuffle_time * 19 + 1 for r in range(num_repeats): trial_num = -1 # loop over each experiment and condition for e, (experiment_real, condition_real) in enumerate(zip(sub_experiments, sub_conditions)): # loop over each mouse for i, mouse_real in enumerate(self.analysis[experiment_real][condition_real]['start time']): if self.analysis_options['control'] and not mouse_real=='control': continue if not self.analysis_options['control'] and mouse_real=='control': continue # loop over each trial prev_homings = [] t = 0 for trial_real in range(len(self.analysis[experiment_real][condition_real]['end time'][mouse_real])): trial_num += 1 # impose conditions if t > 2: continue end_idx[trial_num] = self.analysis[experiment_real][condition_real]['end time'][mouse_real][trial_real] if np.isnan(end_idx[trial_num]): continue if (end_idx[trial_num] > escape_duration * fps): continue # skip certain trials y_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][1][0] * scaling_factor x_start = self.analysis[experiment_real][condition_real]['path'][mouse_real][trial_real][0][0] * scaling_factor if y_start > 25: continue if abs(x_start-50) > 30: continue # use different data if shuffle: if shuffle_time: experiment, condition, mouse, trial = mouse_trial_list[np.random.randint(len(mouse_trial_list))] else: experiment, condition, mouse, trial = experiment_real, condition_real, mouse_real, trial_real # just add real data for edginess etc if not shuffle_time: # add data edginess[trial_num] = abs(self.analysis[experiment][condition]['edginess'][mouse][trial]) # get previous edginess time_to_shelter, SR = get_prev_edginess(ETD, condition_real, experiment_real, mouse_real, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial_real, trial_num, edginess, [], [], mean = mean_type, get_initial_conditions=True) # _, _, prev_edginess_all, elig_idx = get_all_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) # add data fill_in_trial_data_efficiency(ETD, condition, efficiency, efficiency_RT, experiment, mouse, num_prev_homings_EV, num_prev_homings_front_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre, time_exploring_obstacle_post, time_exploring_far_pre, time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, self, time, trial, trial_num, trials, edginess, t) # add mouse and trial to list of mice and trials if not shuffle_time: mouse_trial_list.append([experiment, condition, mouse, trial]) t+=1 # format mean prior trajectory if not shuffle_time: prev_edginess = prev_edginess[~np.isnan(edginess)] exploration_array = np.ones((len(edginess[~np.isnan(edginess)]), 2)) exploration_metrics = [time_exploring_far_pre[~np.isnan(edginess)], time_exploring_far_post[~np.isnan(edginess)]] for i, exploration_metric in enumerate(exploration_metrics): # exploration_array[:, i] = exploration_metric if shuffle_time: # regress out other variable m = (((np.mean(prev_edginess) * np.mean(exploration_array[:, i])) - np.mean(prev_edginess * exploration_array[:, i])) / ((np.mean(prev_edginess) ** 2) - np.mean(prev_edginess ** 2))) regressed_data = exploration_array[:, i] - prev_edginess * m exploration_array[:, i] = regressed_data if shuffle_time: # regress out exploration from mean prior traj for exploration_metric in exploration_metrics: m = (((np.mean(exploration_metric) * np.mean(prev_edginess)) - np.mean(exploration_metric * prev_edginess)) / ((np.mean(exploration_metric) ** 2) - np.mean(exploration_metric ** 2))) regressed_data = prev_edginess - exploration_array[:, 0] * m prev_edginess = regressed_data # get the data predict_data_y_all = [ edginess[~np.isnan(edginess)].reshape(-1, 1), # for the EXPLORATION input data edginess[~np.isnan(edginess)].reshape(-1, 1)] # for the mean edginess input data # turn_angle_for_prev_movement ] # for the movements input data data_y_labels = ['exploration','trajectory'] #, 'angle'] predict_data_x_all = [exploration_array, # exploration data prev_edginess.reshape(-1, 1)]#, # mean prev edginess # prev_movements_and_ICs_array] # all prev homing movements # edgy input colors input_colors = [ [[0, .6, .4], [.5,.5,.5]], [[0, .6, .4], [.5,.5,.5]], [[.6, 0, .4], [.5,.5,.5]] ] # split the data for cross val num_trials = 1000 # loop acros angle prediction and traj prediction for i, (fig, ax, predict_data_x) in enumerate(zip([fig1, fig2, fig3],[ax1, ax2, ax3], predict_data_x_all)): # get prediction data predict_data_y = predict_data_y_all[i] # get color color = input_colors[i][int(shuffle_time)] # color = mean_colors[m] # initialize prediction arrays prediction_scores = np.zeros(num_trials) for j in range(num_trials): test_size = 0.5 if shuffle_time and i==2: test_size = .025 # get x-val set X_train, X_test, y_train, y_test = train_test_split(predict_data_x, \ predict_data_y, test_size=test_size, random_state=j) # create the model # LR = linear_model.LinearRegression() # if i: # LR = linear_model.LogisticRegression() # else: LR = linear_model.Ridge(alpha = .1) # .15, .5 # train the model # try: LR.fit(X_train, y_train) # except: # print('i=h') # print(LR.coef_) # get the score prediction_scores[j] = LR.score(X_test, y_test) print(data_y_labels[i]) print(np.median(prediction_scores)) # exclude super negative ones prediction_scores = prediction_scores[prediction_scores > np.percentile(prediction_scores, 10)] # plot the scores # ax.scatter(prediction_scores, np.zeros_like(prediction_scores), color=color, s=20, alpha = .1) #do kde kde = fit_kde(prediction_scores, bw=.04) # .04 plot_kde(ax, kde, prediction_scores, z = 0, vertical=False, color=color, violin=False, clip=False) # True) fig.savefig(os.path.join(self.summary_plots_folder,'Prediction of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.png'), format='png') fig.savefig(os.path.join(self.summary_plots_folder,'Precition of ' + data_y_labels[i] + ' - ' + self.labels[c] + '.eps'), format='eps') plt.show() print('hi') # # get the correlation # r, p = scipy.stats.pearsonr(exploration_array[:, 0], edginess) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) # # m = (((np.mean(prev_edginess) * np.mean(exploration_array[:, 0])) - np.mean(prev_edginess * exploration_array[:, 0])) / # ((np.mean(prev_edginess) ** 2) - np.mean(prev_edginess ** 2))) # # regressed_data = exploration_array[:, 0] - prev_edginess * m # r, p = scipy.stats.pearsonr(prev_edginess, regressed_data) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) # # # get the correlation after regressing out prev edginess # r, p = scipy.stats.pearsonr(regressed_data, edginess) # print('r = ' + str(np.round(r, 3)) + '\n= ' + str(np.round(p, 3))) # # # def plot_efficiency(self): # # initialize parameters # fps = 30 # traj_loc = 40 # escape_duration = 12 # 12 #6 # HV_cutoff = .681 # ETD = 10 # # ax2, fig2, ax3, fig3 = initialize_figures_efficiency(self) # efficiency_data = [[], [], [], []] # duration_data = [[], [], [], []] # # initialize arrays for stats # efficiency_data_all = [] # duration_data_all = [] # prev_homings_data_all = [] # all_conditions = [] # mouse_ID = []; # m = 1 # data_condition = ['naive', 'experienced'] # # data_condition = ['food','escape'] # # data_condition = ['OR - EV', 'OR - HV', 'OF'] # fig1, ax1 = plt.subplots(figsize=(13, 5)) # # colors = [[1,0,0],[0,0,0]] # kde_colors = [ [1, .4, .4], [.75, .75, .75]] # # # loop over experiments and conditions # for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): # # extract experiments from nested list # sub_experiments, sub_conditions = extract_experiments(experiment, condition) # # get the number of trials # number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) # number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # # initialize array to fill in with each trial's data # efficiency, efficiency_RT, end_idx, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring, distance_exploring, time_exploring_obstacle, time_exploring_far, \ # scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ # initialize_variables_efficiency(number_of_trials, self, sub_experiments) # # loop over each experiment and condition # for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): # if 'void' in experiment or 'dark' in experiment: # escape_duration = 12 # # loop over each mouse # for i, mouse in enumerate(self.analysis[experiment][condition]['full path length']): # # initialize arrays for stats # efficiency_data_mouse = [] # duration_data_mouse = [] # prev_homings_data_mouse = [] # # control analysis # if self.analysis_options['control'] and not mouse == 'control': continue # if not self.analysis_options['control'] and mouse == 'control': continue # # loop over each trial # t = 0 # for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): # # trial_num += 1 # if t > 2 and not 'food' in experiment and not 'void' in experiment: continue # # if t > 8: continue # # print(t) # # impose coniditions # end_idx[trial_num] = self.analysis[experiment][condition]['end time'][mouse][trial] # if (end_idx[trial_num] > escape_duration * fps) or np.isnan(end_idx[trial_num]): continue # # skip certain trials # y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor # x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor # if y_start > 25: continue # if abs(x_start - 50) > 25: continue # 25 # # # get prev edginess # _, _ = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, # scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) # # # only do predict edgy: # # if c == 0: # # if prev_edginess[trial_num] <= HV_cutoff and 'down' in experiment: continue # # elif c == 1: # # if prev_edginess[trial_num] > HV_cutoff and 'down' in experiment: continue # # # add data # fill_in_trial_data_efficiency(ETD, condition, efficiency, efficiency_RT, experiment, mouse, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_HV, # time_exploring, distance_exploring, time_exploring_obstacle, time_exploring_far, # self, time, trial, trial_num, trials, edginess, t) # # # normalize end idx to # RT = self.analysis[experiment][condition]['RT'][mouse][trial] # if not RT: # print(RT) # continue # RT_all[trial_num] = RT # # avg_speed[trial_num] = self.analysis[experiment][condition]['RT path length'][mouse][trial] * scaling_factor / ( # (end_idx[trial_num] - RT) / fps) # # avg_speed[trial_num] = self.analysis[experiment][condition]['full path length'][mouse][trial] * scaling_factor / (end_idx[trial_num] / fps) # # end_idx[trial_num] = (end_idx[trial_num] / fps) / self.analysis[experiment][condition]['optimal path length'][mouse][ # trial] / scaling_factor * 100 # # # add data for stats # efficiency_data_mouse.append(efficiency[trial_num]) # # duration_data_mouse.append(end_idx[trial_num]) #TEMP COMMENTING # duration_data_mouse.append(RT) # prev_homings_data_mouse.append(num_prev_homings_EV[trial_num]) # # t += 1 # # # append data for stats # if efficiency_data_mouse: # efficiency_data_all.append(efficiency_data_mouse) # duration_data_all.append(duration_data_mouse) # prev_homings_data_all.append(prev_homings_data_mouse) # all_conditions.append(data_condition[c]) # mouse_ID.append(m); # m += 1 # # # format end ind # # end_idx = np.array([e/30 for e in end_idx]) # end_idx[np.isnan(efficiency)] = np.nan # # loop over data to plot # for i, (data, data_label) in enumerate(zip([efficiency_RT, end_idx, RT_all, avg_speed, edginess], # ['Efficiency'])): # , 'Duration', 'Reaction Time', 'Speed', 'Trajectory'])): #edginess, 'Trajectory', # # for i, (data, data_label) in enumerate(zip([edginess], ['Trajectory'])): # edginess, 'Trajectory', # # # for i, (data, data_label) in enumerate(zip([edginess, efficiency, end_idx], ['Trajectory', 'Efficiency', 'Duration'])): # # for x_data, x_data_label in zip([num_prev_homings], ['Prior homings']): # plot_data = data[~np.isnan(data)] # # # for x_data, x_data_label in zip([trials, time, num_prev_homings_EV, num_prev_homings_HV, prev_edginess, time_exploring, distance_exploring, time_exploring_far, time_exploring_obstacle], # # ['Trials', 'Time', 'Edge vector homings', 'Homing vector homings', 'Mean prior trajectory','Time exploring', 'Distance explored', 'Time exploring far side', 'Time exploring obstacle']): # # for x_data, x_data_label in zip([trials, time_exploring], ['trial number']): # , 'Time exploring']): # # print('\nCorrelation between ' + data_label + ' and ' + x_data_label) # # # only plot escapes # data_for_box_plot = data[~np.isnan(data)] # print(len(data_for_box_plot)) # x_data = x_data[~np.isnan(data)] # # # get the correlation # r, p = scipy.stats.pearsonr(x_data, data_for_box_plot) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) # # # initialize figure # plt.title(data_label + ' x ' + x_data_label) # # set up the figure # # if data_label=='Efficiency': ax1.set_ylim([-.03, 1.03]) # # elif data_label=='Duration': ax1.set_ylim([-.1, 7]) # # if np.max(x_data) < 5: # ax1.set_xticks(np.unique(x_data).astype(int)) # else: # ax1.set_xticks(np.arange(5, 25, 5)) # # ax1.set_xlim([5,20]) # # # jitter the axis # scatter_axis = scatter_the_axis_efficiency(plot_data, x_data + c/3 - .2) # # plot each trial # ax1.scatter(scatter_axis, plot_data, color=colors[c], s=15, alpha=1, edgecolor=colors[c], linewidth=1) # # for x in np.unique(x_data): # # plot kde # kde = fit_kde(plot_data[x_data==x], bw=.02) #.2) # .04 # plot_kde(ax1, kde, plot_data[x_data==x], z=x + c/3 - .15, vertical=True, normto=.15, color=kde_colors[c], violin=False, clip=True) # # # box and whisker # bp = ax1.boxplot([plot_data[x_data==x], [0, 0]], positions=[x + c / 3 - .2, -10], showfliers=False, widths = [0.05, .05], zorder=99) # plt.setp(bp['boxes'], color=[.5, .5, .5], linewidth=2) # plt.setp(bp['whiskers'], color=[.5, .5, .5], linewidth=2) # plt.setp(bp['medians'], linewidth=2) # ax1.set_xlim(.25, 3.75) # ax1.set_ylim(.5, 1.05) # # ax1.set_ylim(.95, 1.9) # ax1.set_xticks([1,2,3]) # ax1.set_xticklabels([1,2,3]) # # # # # # for each trial # # for x in np.unique(x_data): # # # plot kde # # kde = fit_kde(plot_data[x_data>=0], bw=.02) #.2) # .04 # # plot_kde(ax1, kde, plot_data[x_data>=0], z=x + c/3 - .15, vertical=True, normto=.15, color=kde_colors[c], violin=False, clip=True) # # # # # box and whisker # # bp = ax1.boxplot([plot_data[x_data>=0], [0, 0]], positions=[x + c / 3 - .2, -10], showfliers=False, widths = [0.05, .05], zorder=99) # # plt.setp(bp['boxes'], color=[.5, .5, .5], linewidth=2) # # plt.setp(bp['whiskers'], color=[.5, .5, .5], linewidth=2) # # plt.setp(bp['medians'], linewidth=2) # # ax1.set_xlim(.25, 3.75) # # ax1.set_ylim(.5, 1.05) # # # ax1.set_ylim(.95, 1.9) # # ax1.set_xticks([1,2,3]) # # ax1.set_xticklabels([1,2,3]) # # # # # jitter the axis # # scatter_axis = scatter_the_axis_efficiency(plot_data, np.ones_like(plot_data) * (x + c/3 - .2)) # # # plot each trial # # ax1.scatter(scatter_axis, plot_data, color=colors[c], s=15, alpha=1, edgecolor=colors[c], linewidth=1) # # # # ax1.plot([-1, 4], [1, 1], linestyle='--', color=[.5, .5, .5, .5]) # # save the plot # plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.png'), format='png') # plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.eps'), format='eps') # # plt.show() # print('done') # # # def plot_efficiency(self): # initialize parameters fps = 30 traj_loc = 40 escape_duration = 12 #12 #6 HV_cutoff = .681 ETD = 10 # ax2, fig2, ax3, fig3 = initialize_figures_efficiency(self) efficiency_data = [[],[],[],[]] duration_data = [[],[],[],[]] # initialize arrays for stats efficiency_data_all = [] duration_data_all = [] prev_homings_data_all = [] all_conditions = [] mouse_ID = []; m = 1 # data_condition = ['naive','experienced'] data_condition = ['escape', 'food'] # data_condition = ['OR - EV', 'OR - HV', 'OF'] # data_condition = ['Obstacle removed (no shelter)', 'obstacle removed', 'acute OR', 'obstacle'] colors = [[0,0,0],[1,0,0]] # plot_stuff = True do_traversals = False # loop over experiments and conditions for c, (experiment, condition) in enumerate(zip(self.experiments, self.conditions)): print(' - - - -- - - - -- - - - - - - -- - - - - - - - - -') # extract experiments from nested list sub_experiments, sub_conditions = extract_experiments(experiment, condition) # get the number of trials number_of_trials = get_number_of_trials(sub_experiments, sub_conditions, self.analysis) number_of_mice = get_number_of_mice(sub_experiments, sub_conditions, self.analysis) # initialize array to fill in with each trial's data efficiency, efficiency_RT, end_idx, num_prev_homings_EV, num_prev_homings_front_EV, num_prev_homings_other_EV, num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre,\ time_exploring_obstacle_post,time_exploring_far_pre,time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, scaling_factor, time, trial_num, trials, edginess, prev_edginess, dist_to_SH, dist_to_other_SH, RT_all, avg_speed, _ = \ initialize_variables_efficiency(number_of_trials, self, sub_experiments) # loop over each experiment and condition for e, (experiment, condition) in enumerate(zip(sub_experiments, sub_conditions)): if 'void' in experiment or 'dark' in experiment: escape_duration = 12 if 'food' in experiment: escape_duration = 9 # else:escape_duration = 9 # loop over each mouse for i, mouse in enumerate(self.analysis[experiment][condition]['start time']): print(mouse) # initialize arrays for stats efficiency_data_mouse = [] duration_data_mouse = [] prev_homings_data_mouse = [] # control analysis if self.analysis_options['control'] and not mouse=='control': continue if not self.analysis_options['control'] and mouse=='control': continue # loop over each trial t = 0 for trial in range(len(self.analysis[experiment][condition]['end time'][mouse])): trial_num += 1 if t > 2 and not 'food' in experiment and not 'void' in experiment and not 'dark' in experiment: continue if 'food' in experiment and condition == 'no obstacle' and self.analysis[experiment][condition]['start time'][mouse][trial] < 20: continue if t > 8: continue # if t > 2: continue # if 'on off' in experiment and trial: continue # print(t) # impose coniditions end_idx[trial_num] = self.analysis[experiment][condition]['end time'][mouse][trial] if (end_idx[trial_num] > escape_duration * fps) or np.isnan(end_idx[trial_num]): continue # skip certain trials y_start = self.analysis[experiment][condition]['path'][mouse][trial][1][0] * scaling_factor x_start = self.analysis[experiment][condition]['path'][mouse][trial][0][0] * scaling_factor if y_start > 25: continue if abs(x_start-50) > 30: continue #25 # get prev edginess _, _ = get_prev_edginess(ETD, condition, experiment, mouse, prev_edginess, dist_to_SH, dist_to_other_SH, scaling_factor, self, traj_loc, trial, trial_num, edginess, [], []) # only do predict edgy: # if c == 0: # if prev_edginess[trial_num] <= HV_cutoff and 'down' in experiment: continue # elif c == 1: # if prev_edginess[trial_num] > HV_cutoff and 'down' in experiment: continue # add data fill_in_trial_data_efficiency(ETD, condition, efficiency, efficiency_RT, experiment, mouse, num_prev_homings_EV,num_prev_homings_front_EV, num_prev_homings_other_EV,num_prev_homings_HV, time_exploring_pre, time_exploring_post, distance_exploring_pre, distance_exploring_post, time_exploring_obstacle_pre, time_exploring_obstacle_post, time_exploring_far_pre, time_exploring_far_post, time_exploring_edge, time_exploring_other_edge, self, time, trial, trial_num, trials, edginess, t) # if edginess[trial_num] < HV_cutoff: continue if do_traversals: traversal = self.analysis[experiment][condition]['back traversal'][mouse] # get the duration of those paths # duration = traversal[t*5+3] if traversal: x_edge = self.analysis[experiment][condition]['x edge'][mouse][trial] # if x_edge==25: x_edge = 75 # else: x_edge = 25 spont_edge = [] for trav in traversal[0 * 5 + 0]: spont_edge.append(trav[0][-1]*scaling_factor) esc_edge = [] for trav in traversal[1 * 5 + 0]: esc_edge.append(trav[0][-1]*scaling_factor) num_prev_homings_EV[trial_num] = np.sum((np.array(traversal[0 * 5 + 3]) < 1.5) * (abs(np.array(spont_edge)-x_edge) < 25) * \ (np.array(traversal[0 * 5 + 2]) > HV_cutoff) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[0 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial]-(15+20*('void' in experiment))) * 30 * 60)) + \ np.sum((np.array(traversal[1 * 5 + 3]) < 1.5) * (abs(np.array(esc_edge)-x_edge) < 25) * \ (np.array(traversal[1 * 5 + 2]) > HV_cutoff) * \ (np.array(traversal[1 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[1 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - (15+20*('void' in experiment))) * 30 * 60)) num_prev_homings_HV[trial_num] = np.sum((np.array(traversal[0 * 5 + 3]) < 1.5) * (abs(np.array(spont_edge)-x_edge) < 25) * \ (np.array(traversal[0 * 5 + 2]) < HV_cutoff) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[0 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial]-(15+20*('void' in experiment))) * 30 * 60)) + \ np.sum((np.array(traversal[1 * 5 + 3]) < 1.5) * (abs(np.array(esc_edge)-x_edge) < 25) * \ (np.array(traversal[1 * 5 + 2]) < HV_cutoff) * \ (np.array(traversal[1 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[1 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - (15+20*('void' in experiment))) * 30 * 60)) eligible_homings = ~((np.array(traversal[0 * 5 + 2]) > HV_cutoff) * (abs(np.array(spont_edge)-x_edge) > 40)) * (np.array(traversal[0 * 5 + 3]) < 3) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[0 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - 15) * 30 * 60) if np.sum(eligible_homings): mean_homing = np.mean(np.array(traversal[0 * 5 + 2])[eligible_homings]) else: mean_homing = 0 eligible_escapes = ~((np.array(traversal[1 * 5 + 2]) > HV_cutoff) * (abs(np.array(esc_edge) - x_edge) > 40)) * (np.array(traversal[1 * 5 + 3]) < 3) * \ (np.array(traversal[1 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60) * \ (np.array(traversal[1 * 5 + 1]) > (self.analysis[experiment][condition]['start time'][mouse][trial] - 15) * 30 * 60) if np.sum(eligible_escapes): mean_escape = np.mean(np.array(traversal[1 * 5 + 2])[eligible_escapes]) else: mean_escape = 0 prev_edginess[trial_num] = ( mean_homing * np.sum(eligible_homings) + mean_escape * np.sum(eligible_escapes) ) / \ (np.sum(eligible_homings) + np.sum(eligible_escapes)) else: num_prev_homings_EV[trial_num] = 0 # prev_edginess[trial_num] = 0 if np.isnan(prev_edginess[trial_num]): prev_edginess[trial_num] = 0 traversal = self.analysis[experiment][condition]['front traversal'][mouse] # get the duration of those paths # duration = traversal[t*5+3] if traversal: x_edge = self.analysis[experiment][condition]['x edge'][mouse][trial] spont_edge = [] for trav in traversal[0 * 5 + 0]: spont_edge.append(trav[0][-1]*scaling_factor) esc_edge = [] for trav in traversal[1 * 5 + 0]: esc_edge.append(trav[0][-1]*scaling_factor) num_prev_homings_other_EV[trial_num] = np.sum((np.array(traversal[0 * 5 + 3]) < 1.5) * (abs(np.array(spont_edge)-x_edge) < 25) * \ (np.array(traversal[0 * 5 + 2]) > HV_cutoff) * \ (np.array(traversal[0 * 5 + 1]) < self.analysis[experiment][condition]['start time'][mouse][trial] * 30 * 60)) else: num_prev_homings_other_EV[trial_num] = 0 # print(mouse) # print(trial + 1) # print(num_prev_homings_EV[trial_num]) # print(num_prev_homings_other_EV[trial_num]) # print(edginess[trial_num]) # print('') # normalize end idx to RT = self.analysis[experiment][condition]['RT'][mouse][trial] # if not RT: # print(RT) # continue RT_all[trial_num] = RT avg_speed[trial_num] = self.analysis[experiment][condition]['RT path length'][mouse][trial] * scaling_factor / ((end_idx[trial_num] - RT) / fps) # avg_speed[trial_num] = self.analysis[experiment][condition]['full path length'][mouse][trial] * scaling_factor / (end_idx[trial_num] / fps) time[trial_num] = self.analysis[experiment][condition]['start time'][mouse][trial] time[trial_num] = (end_idx[trial_num] / fps) / self.analysis[experiment][condition]['optimal path length'][mouse][trial] / scaling_factor * 100 time[trial_num] = abs(50 - x_start) end_idx[trial_num] = (end_idx[trial_num] / fps - RT) / self.analysis[experiment][condition]['optimal RT path length'][mouse][trial] / scaling_factor * 100 # add data for stats efficiency_data_mouse.append([efficiency_RT[trial_num], trial]) duration_data_mouse.append([end_idx[trial_num], trial]) #TEMP COMMENTING #RT # duration_data_mouse.append(num_prev_homings_EV[trial_num]) prev_homings_data_mouse.append(num_prev_homings_EV[trial_num]) t += 1 # print(trial+1) #append data for stats if efficiency_data_mouse: efficiency_data_all.append(efficiency_data_mouse) duration_data_all.append(duration_data_mouse) prev_homings_data_all.append(prev_homings_data_mouse) all_conditions.append(data_condition[c]) mouse_ID.append(m); m+= 1 # format end ind # end_idx = np.array([e/30 for e in end_idx]) end_idx[np.isnan(efficiency)] = np.nan # loop over data to plot # for i, (data, data_label) in enumerate(zip([edginess, efficiency_RT, end_idx, RT_all, avg_speed], ['Trajectory'])): #,'Efficiency', 'Duration', 'Reaction Time', 'Speed', 'Trajectory'])): #edginess, 'Trajectory', # for i, (data, data_label) in enumerate(zip([edginess], ['Trajectory'])): for i, (data, data_label) in enumerate(zip([end_idx], ['RT duration', 'RT duration', 'Efficiency', 'RT'])): # time, , efficiency_RT, RT_all # for i, (data, data_label) in enumerate(zip([RT_all], ['Reaction time'])): # for i, (data, data_label) in enumerate(zip([edginess, efficiency, end_idx], ['Trajectory', 'Efficiency', 'Duration'])): # for x_data, x_data_label in zip([num_prev_homings], ['Prior homings']): plot_data = data[~np.isnan(data)] if False or True: # for x_data, x_data_label in zip([trials, time, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_HV, prev_edginess, time_exploring, distance_exploring, time_exploring_far, time_exploring_obstacle, time_exploring_edge, time_exploring_other_edge], # ['Trials', 'Time', 'Edge vector homings','Other edge vector homings', 'Homing vector homings', 'Mean prior trajectory','Time exploring', 'Distance explored', 'Time exploring far side', 'Time exploring obstacle', 'Time exploring edge', 'Time exploring other edge']): # for x_data, x_data_label in zip([trials, time, time_exploring_pre, distance_exploring_pre, time_exploring_post, distance_exploring_post, # time_exploring_far_pre,time_exploring_far_post, time_exploring_obstacle_pre, time_exploring_obstacle_post, time_exploring_other_edge, time_exploring_edge], # ['Trials', 'Time', 'Time exploring (pre)', 'Distance explored (pre)', 'Time exploring (post)', 'Distance explored (post)', # 'Time exploring far side (pre)', 'Time exploring far side (post)', 'Time exploring obstacle (pre)', 'Time exploring obstacle (post)', # 'Time exploring other edge (pre)', 'Time exploring edge (pre)']): # num_homings_combined = (num_prev_homings_EV>0).astype(int) - (num_prev_homings_HV>0).astype(int) # num_homings_combined[num_prev_homings_EV==0] = -1 # # for x_data, x_data_label in zip([time, num_prev_homings_EV>0, num_prev_homings_EV, num_prev_homings_other_EV, num_prev_homings_other_EV>0, # num_prev_homings_front_EV, num_prev_homings_front_EV>0, prev_edginess, num_prev_homings_HV, num_prev_homings_HV>2, num_homings_combined], # ['Time', '1 Edge vector homings', 'Edge vector homings','Other edge vector homings','1 other edge vector homings', # 'Front edge vectors','1 front edge vector', 'Mean prior trajectory', 'Homing vector homings', '1 Homing vector homing', 'Combined homings']): # for x_data, x_data_label in zip([trials, num_prev_homings_EV>0, num_prev_homings_EV, prev_edginess], ['trial', '1 Edge vector homings', 'Edge vector homings', 'Mean prior trajectory']): for x_data, x_data_label in zip([trials], ['trial']): # ,edginess>HV_cutoff #, 'edginess' print('\nCorrelation between ' + data_label + ' and ' + x_data_label) # only plot escapes data_for_box_plot = data[~np.isnan(data)] x_data = x_data[~np.isnan(data)] print(np.sum(x_data==0)) # get the correlation r, p = scipy.stats.pearsonr(x_data, data_for_box_plot) print('r = ' + str(np.round(r, 3)) + '\np = ' + str(p)) if p < .05: print('SIGGY STATDUST') # m = (((np.mean(x_data) * np.mean(data_for_box_plot)) - np.mean(x_data * data_for_box_plot)) / # ((np.mean(x_data) ** 2) - np.mean(x_data ** 2))) # regressed_data = data_for_box_plot - x_data * m # r, p = scipy.stats.pearsonr(x_data, regressed_data) # print('r = ' + str(np.round(r, 3)) + '\np = ' + str(np.round(p, 3))) if plot_stuff and not np.isnan(r): fig1, ax1 = plt.subplots(figsize=(15, 15)) # initialize figure # fig1, ax1 = plt.subplots(figsize=(9, 9)) plt.title(data_label + ' x ' + x_data_label) # set up the figure # if data_label=='Efficiency': ax1.set_ylim([-.03, 1.03]) # elif data_label=='Duration': ax1.set_ylim([-.1, 7]) # if np.max(x_data) < 5: # ax1.set_xticks(np.unique(x_data).astype(int)) # else: # ax1.set_xticks(np.arange(5, 25, 5)) # ax1.set_xlim([5,20]) # jitter the axis scatter_axis = scatter_the_axis_efficiency(plot_data, x_data) # plot each trial ax1.scatter(scatter_axis, plot_data, color=colors[0], s=40, alpha=1, edgecolor=colors[0], linewidth=1) # ax1.scatter(scatter_axis[plot_data > HV_cutoff], plot_data[plot_data > HV_cutoff], color=[0,0,0], s=50, alpha=1, edgecolor=[0, 0, 0], linewidth=1) # do a linear regression try: x_data, prediction = do_linear_regression(plot_data, x_data.astype(int)) except: print('hi') # # plot kde kde = fit_kde(plot_data, bw=.02) #.2) # .04 plot_kde(ax1, kde, plot_data, z=c + .1, vertical=True, normto=.3, color=[.75, .75, .75], violin=False, clip=True) # True) # plot the linear regression # ax1.plot(x_data, prediction['Pred'].values, color=colors[0], linewidth=1, linestyle='--', alpha=.7) # ax1.fill_between(x_data, prediction['lower'].values, prediction['upper'].values, color=colors[0], alpha=.05) # 6 # save the plot plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.png'), format='png') plt.savefig(os.path.join(self.summary_plots_folder, data_label + ' by ' + x_data_label + ' - ' + self.labels[c] + '.eps'), format='eps') # plt.show() # plt.close() # plot the boxplot # if data_label == 'Efficiency': # ax, fig = ax2, fig2 # efficiency_data[c] = plot_data # elif data_label == 'Duration': # ax, fig = ax3, fig3 # duration_data[c] = plot_data # else: continue # scatter_axis = scatter_the_axis_efficiency(plot_data, np.ones_like(plot_data)*c) # ax.scatter(scatter_axis, plot_data, color=[0, 0, 0], s=40, alpha=1, edgecolor=[0, 0, 0], linewidth=1) # # plot kde # kde = fit_kde(plot_data, bw=.02) #.2) # .04 # plot_kde(ax, kde, plot_data, z=c + .1, vertical=True, normto=.3, color=[.75, .75, .75], violin=False, clip=True) # True) # # plot errorbar # median = np.percentile(plot_data, 50) # third_quartile = np.percentile(plot_data, 75) # first_quartile = np.percentile(plot_data, 25) # ax.errorbar(c - .2, median, yerr=np.array([[median - first_quartile], [third_quartile - median]]), color=[0,0,0], capsize=10, capthick=3, alpha=1, linewidth=3) # ax.scatter(c - .2, median, color=[0,0,0], s=175, alpha=1) # # save the plot # fig.savefig(os.path.join(self.summary_plots_folder, data_label + ' comparison - ' + self.labels[c] + '.png'), format='png') # fig.savefig(os.path.join(self.summary_plots_folder, data_label + ' comparison - ' + self.labels[c] + '.eps'), format='eps') plt.show() # test correlation and stats thru permutation test data_x = prev_homings_data_all data_y = efficiency_data_all # permutation_correlation(data_x, data_y, iterations=10000, two_tailed=False, pool_all=False) # # # do t test # t, p = scipy.stats.ttest_ind(efficiency_data[0], efficiency_data[1], equal_var=False) # print('Efficiency: ' + str(p)) # print(np.mean(efficiency_data[0])) # print(np.mean(efficiency_data[1])) # # t, p = scipy.stats.ttest_ind(duration_data[0], duration_data[1], equal_var=False) # print('Duration: ' + str(p)) # print(np.mean(duration_data[0])) # print(np.mean(duration_data[1])) # efficiency_0 = [] efficiency_more = [] for m, mouse_data in enumerate(efficiency_data_all): EV_array = np.array(duration_data_all[m]) efficiency_array =
np.array(mouse_data)
numpy.array
import os import numpy as np import qtawesome as qta from qtpy.QtCore import Qt from qtpy.QtWidgets import QDialog, QMessageBox, QDialogButtonBox, QFileDialog from common import parse_file, np_to_str from ui.preferences import Ui_preferencesDialog DISPLAY_SMOOTH_GRAPHS = 'display/smooth_graphs' STYLE_MATPLOTLIB_THEME_DEFAULT = 'beq_dark' STYLE_MATPLOTLIB_THEME = 'style/matplotlib_theme' LOGGING_LEVEL = 'logging/level' SCREEN_GEOMETRY = 'screen/geometry' SCREEN_WINDOW_STATE = 'screen/window_state' SYSTEM_CHECK_FOR_UPDATES = 'system/check_for_updates' SYSTEM_CHECK_FOR_BETA_UPDATES = 'system/check_for_beta_updates' RECORDER_TARGET_FS = 'recorder/target/fs' RECORDER_TARGET_SAMPLES_PER_BATCH = 'recorder/target/samples_per_batch' RECORDER_TARGET_ACCEL_ENABLED = 'recorder/target/accel_enabled' RECORDER_TARGET_ACCEL_SENS = 'recorder/target/accel_sens' RECORDER_TARGET_GYRO_ENABLED = 'recorder/target/gyro_enabled' RECORDER_TARGET_GYRO_SENS = 'recorder/target/gyro_sens' RECORDER_SAVED_IPS = 'recorder/saved_ips' BUFFER_SIZE = 'buffer/size' ANALYSIS_RESOLUTION = 'analysis/resolution' ANALYSIS_TARGET_FS = 'analysis/target_fs' ANALYSIS_WINDOW_DEFAULT = 'Default' ANALYSIS_AVG_WINDOW = 'analysis/avg_window' ANALYSIS_PEAK_WINDOW = 'analysis/peak_window' ANALYSIS_DETREND = 'analysis/detrend' ANALYSIS_HPF_RTA = 'analysis/hpfrta' CHART_MAG_MIN = 'chart/mag_min' CHART_MAG_MAX = 'chart/mag_max' CHART_FREQ_MIN = 'chart/freq_min' CHART_FREQ_MAX = 'chart/freq_max' CHART_SPECTRO_SCALE_FACTOR = 'chart/spectro/scale_factor' CHART_SPECTRO_SCALE_ALGO = 'chart/spectro/scale_algo' SUM_X_SCALE = 'sum/x_scale' SUM_Y_SCALE = 'sum/y_scale' SUM_Z_SCALE = 'sum/z_scale' WAV_DOWNLOAD_DIR = 'wav/download_dir' SNAPSHOT_GROUP = 'snapshot' RTA_TARGET = 'rta/target' RTA_HOLD_SECONDS = 'rta/hold_secs' RTA_SMOOTH_WINDOW = 'rta/smooth_window' RTA_SMOOTH_POLY = 'rta/smooth_poly' DEFAULT_PREFS = { ANALYSIS_RESOLUTION: 1.0, ANALYSIS_TARGET_FS: 1000, ANALYSIS_AVG_WINDOW: ANALYSIS_WINDOW_DEFAULT, ANALYSIS_PEAK_WINDOW: ANALYSIS_WINDOW_DEFAULT, ANALYSIS_DETREND: 'constant', ANALYSIS_HPF_RTA: False, BUFFER_SIZE: 30, CHART_MAG_MIN: 40, CHART_MAG_MAX: 120, CHART_FREQ_MIN: 1, CHART_FREQ_MAX: 125, CHART_SPECTRO_SCALE_FACTOR: '8x', CHART_SPECTRO_SCALE_ALGO: 'Lanczos', DISPLAY_SMOOTH_GRAPHS: True, RECORDER_TARGET_FS: 500, RECORDER_TARGET_SAMPLES_PER_BATCH: 8, RECORDER_TARGET_ACCEL_ENABLED: True, RECORDER_TARGET_ACCEL_SENS: 4, RECORDER_TARGET_GYRO_ENABLED: False, RECORDER_TARGET_GYRO_SENS: 500, RTA_HOLD_SECONDS: 10.0, RTA_SMOOTH_WINDOW: 31, RTA_SMOOTH_POLY: 7, SUM_X_SCALE: 2.2, SUM_Y_SCALE: 2.4, SUM_Z_SCALE: 1.0, STYLE_MATPLOTLIB_THEME: STYLE_MATPLOTLIB_THEME_DEFAULT, SYSTEM_CHECK_FOR_UPDATES: True, SYSTEM_CHECK_FOR_BETA_UPDATES: False, WAV_DOWNLOAD_DIR: os.path.join(os.path.expanduser('~'), 'Music'), } TYPES = { ANALYSIS_RESOLUTION: float, ANALYSIS_TARGET_FS: int, ANALYSIS_HPF_RTA: bool, BUFFER_SIZE: int, CHART_MAG_MIN: int, CHART_MAG_MAX: int, CHART_FREQ_MIN: int, CHART_FREQ_MAX: int, DISPLAY_SMOOTH_GRAPHS: bool, RECORDER_TARGET_FS: int, RECORDER_TARGET_SAMPLES_PER_BATCH: int, RECORDER_TARGET_ACCEL_ENABLED: bool, RECORDER_TARGET_ACCEL_SENS: int, RECORDER_TARGET_GYRO_ENABLED: bool, RECORDER_TARGET_GYRO_SENS: int, RTA_HOLD_SECONDS: float, RTA_SMOOTH_POLY: int, RTA_SMOOTH_WINDOW: int, SUM_X_SCALE: float, SUM_Y_SCALE: float, SUM_Z_SCALE: float, SYSTEM_CHECK_FOR_UPDATES: bool, SYSTEM_CHECK_FOR_BETA_UPDATES: bool, } singleton = None class Preferences: def __init__(self, settings): self.__settings = settings global singleton singleton = self def has(self, key): ''' checks for existence of a value. :param key: the key. :return: True if we have a value. ''' return self.get(key) is not None def get(self, key, default_if_unset=True): ''' Gets the value, if any. :param key: the settings key. :param default_if_unset: if true, return a default value. :return: the value. ''' default_value = DEFAULT_PREFS.get(key, None) if default_if_unset is True else None value_type = TYPES.get(key, None) if value_type is not None: return self.__settings.value(key, defaultValue=default_value, type=value_type) else: return self.__settings.value(key, defaultValue=default_value) def enter(self, key): self.__settings.beginGroup(key) def get_children(self): return self.__settings.childKeys() def get_child_groups(self): return self.__settings.childGroups() def exit(self): self.__settings.endGroup() def get_all(self, prefix): ''' Get all values with the given prefix. :param prefix: the prefix. :return: the values, if any. ''' self.__settings.beginGroup(prefix) try: return set(filter(None.__ne__, [self.__settings.value(x) for x in self.__settings.childKeys()])) finally: self.__settings.endGroup() def set(self, key, value): ''' sets a new value. :param key: the key. :param value: the value. ''' if value is None: self.__settings.remove(key) else: self.__settings.setValue(key, value) def clear_all(self, prefix): ''' clears all under the given group ''' self.__settings.beginGroup(prefix) self.__settings.remove('') self.__settings.endGroup() def clear(self, key): ''' Removes the stored value. :param key: the key. ''' self.set(key, None) def reset(self): ''' Resets all preferences. ''' self.__settings.clear() class PreferencesDialog(QDialog, Ui_preferencesDialog): ''' Allows user to set some basic preferences. ''' def __init__(self, preferences, style_root, recorder_store, spectro, parent=None): super(PreferencesDialog, self).__init__(parent) self.__style_root = style_root self.__recorder_store = recorder_store self.setupUi(self) self.__preferences = preferences self.__spectro = spectro self.__should_clear_target = False self.__new_target = None self.buttonBox.button(QDialogButtonBox.RestoreDefaults).clicked.connect(self.__reset) self.checkForUpdates.setChecked(self.__preferences.get(SYSTEM_CHECK_FOR_UPDATES)) self.checkForBetaUpdates.setChecked(self.__preferences.get(SYSTEM_CHECK_FOR_BETA_UPDATES)) self.xScale.setValue(self.__preferences.get(SUM_X_SCALE)) self.yScale.setValue(self.__preferences.get(SUM_Y_SCALE)) self.zScale.setValue(self.__preferences.get(SUM_Z_SCALE)) self.magMin.setValue(self.__preferences.get(CHART_MAG_MIN)) self.magMax.setValue(self.__preferences.get(CHART_MAG_MAX)) self.highpassRTA.setChecked(self.__preferences.get(ANALYSIS_HPF_RTA)) self.init_combo(ANALYSIS_DETREND, self.detrend, lambda a: f"{a[0].upper()}{a[1:]}") self.magMin.valueChanged['int'].connect(self.__balance_mag) self.magMax.valueChanged['int'].connect(self.__balance_mag) self.freqMin.setValue(self.__preferences.get(CHART_FREQ_MIN)) self.freqMax.setValue(self.__preferences.get(CHART_FREQ_MAX)) self.freqMin.valueChanged['int'].connect(self.__balance_freq) self.freqMax.valueChanged['int'].connect(self.__balance_freq) self.wavSaveDir.setText(self.__preferences.get(WAV_DOWNLOAD_DIR)) self.spectroScaleAlgo.setCurrentText(self.__preferences.get(CHART_SPECTRO_SCALE_ALGO)) self.spectroScaleFactor.setCurrentText(self.__preferences.get(CHART_SPECTRO_SCALE_FACTOR)) self.wavSaveDirPicker.setIcon(qta.icon('fa5s.folder-open')) self.addRecorderButton.setIcon(qta.icon('fa5s.plus')) self.deleteRecorderButton.setIcon(qta.icon('fa5s.times')) enable_delete = False if self.__preferences.get(RECORDER_SAVED_IPS) is not None: ips = self.__preferences.get(RECORDER_SAVED_IPS).split('|') for ip in ips: self.recorders.addItem(ip) enable_delete = True else: self.recorderIP.setFocus(Qt.OtherFocusReason) self.deleteRecorderButton.setEnabled(enable_delete) self.addRecorderButton.setEnabled(False) self.__reset_target_buttons() self.clearTarget.setIcon(qta.icon('fa5s.times', color='red')) self.loadTarget.setIcon(qta.icon('fa5s.folder-open')) self.createTarget.setIcon(qta.icon('fa5s.bezier-curve')) self.createTarget.setToolTip('Draw a target curve') self.createTarget.clicked.connect(self.__create_target) def __reset_target_buttons(self): has_target = self.__preferences.has(RTA_TARGET) self.clearTarget.setEnabled(has_target) self.targetSet.setChecked(has_target) def __create_target(self): from model.target import CreateTargetDialog dialog = CreateTargetDialog(self, self.__preferences, fs=self.__preferences.get(RECORDER_TARGET_FS)) dialog.exec() self.__reset_target_buttons() def __balance_mag(self, val): keep_range(self.magMin, self.magMax, 10) def __balance_freq(self, val): keep_range(self.freqMin, self.freqMax, 10) def validate_ip(self, ip): valid_ip = self.__is_valid_ip(ip) existing_ip = self.recorders.findText(ip, Qt.MatchExactly) self.addRecorderButton.setEnabled(valid_ip and existing_ip == -1) def add_recorder(self): self.recorders.addItem(self.recorderIP.text()) self.recorderIP.clear() def delete_recorder(self): idx = self.recorders.currentIndex() if idx > -1: self.recorders.removeItem(idx) self.deleteRecorderButton.setEnabled(self.recorders.count() > 0) def clear_target(self): ''' Clears any RTA target. ''' self.__should_clear_target = True self.__new_target = None self.targetSet.setChecked(False) def load_target(self): ''' Allows user to select an FRD file to set the target. ''' parsers = {'frd': self.__parse_frd, 'txt': self.__parse_frd} _, data = parse_file('FRD (*.frd *.txt)', 'Load Target', parsers) self.__new_target = data self.targetSet.setChecked(data is not None) @staticmethod def __is_valid_ip(ip): ''' checks if the string is a valid ip:port. ''' tokens = ip.split(':') if len(tokens) == 2: ip_tokens = tokens[0].split('.') if len(ip_tokens) == 4: try: first, *nums = [int(i) for i in ip_tokens] if 0 < first <= 255: if all(0 <= i <= 255 for i in nums): return 0 < int(tokens[1]) < 65536 except Exception as e: pass return False def __reset(self): ''' Reset all settings ''' result = QMessageBox.question(self, 'Reset Preferences?', f"All preferences will be restored to their default values. This action is irreversible.\nAre you sure you want to continue?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No) if result == QMessageBox.Yes: self.__preferences.reset() self.alert_on_change('Defaults Restored') self.reject() def init_combo(self, key, combo, translater=lambda a: a): ''' Initialises a combo box from either settings or a default value. :param key: the settings key. :param combo: the combo box. :param translater: a lambda to translate from the stored value to the display name. ''' stored_value = self.__preferences.get(key) idx = -1 if stored_value is not None: idx = combo.findText(translater(stored_value)) if idx != -1: combo.setCurrentIndex(idx) def accept(self): ''' Saves the locations if they exist. ''' self.__preferences.set(SYSTEM_CHECK_FOR_UPDATES, self.checkForUpdates.isChecked()) self.__preferences.set(SYSTEM_CHECK_FOR_BETA_UPDATES, self.checkForBetaUpdates.isChecked()) self.__preferences.set(SUM_X_SCALE, self.xScale.value()) self.__preferences.set(SUM_Y_SCALE, self.yScale.value()) self.__preferences.set(SUM_Z_SCALE, self.zScale.value()) self.__preferences.set(WAV_DOWNLOAD_DIR, self.wavSaveDir.text()) self.__preferences.set(CHART_MAG_MIN, self.magMin.value()) self.__preferences.set(CHART_MAG_MAX, self.magMax.value()) self.__preferences.set(CHART_FREQ_MIN, self.freqMin.value()) self.__preferences.set(CHART_FREQ_MAX, self.freqMax.value()) self.__preferences.set(CHART_SPECTRO_SCALE_ALGO, self.spectroScaleAlgo.currentText()) self.__preferences.set(CHART_SPECTRO_SCALE_FACTOR, self.spectroScaleFactor.currentText()) self.__preferences.set(ANALYSIS_DETREND, self.detrend.currentText().lower()) self.__preferences.set(ANALYSIS_HPF_RTA, self.highpassRTA.isChecked()) # TODO would be nicer to be able to listen to specific values self.__spectro.update_scale() if self.recorders.count() > 0: ips = [self.recorders.itemText(i) for i in range(self.recorders.count())] self.__preferences.set(RECORDER_SAVED_IPS, '|'.join(ips)) self.__recorder_store.load(ips) else: self.__preferences.clear(RECORDER_SAVED_IPS) self.__recorder_store.clear() if self.__should_clear_target is True: self.__preferences.clear(RTA_TARGET) if self.__new_target is not None: self.__preferences.set(RTA_TARGET, self.__new_target) QDialog.accept(self) def pick_save_dir(self): dir_name = QFileDialog.getExistingDirectory(self, 'Export WAV', self.wavSaveDir.text(), QFileDialog.ShowDirsOnly) if len(dir_name) > 0: self.wavSaveDir.setText(dir_name) @staticmethod def alert_on_change(title, text='Change will not take effect until the application is restarted', icon=QMessageBox.Warning): msg_box = QMessageBox() msg_box.setText(text) msg_box.setIcon(icon) msg_box.setWindowTitle(title) msg_box.exec() @staticmethod def __parse_frd(file_name): ''' Reads an FRD file and converts it into x,y vals but returns the raw txt (i.e. we validate the data on load). :param file_name: the file. :return: file_name, the frd as an ndarray in str format. ''' if file_name is not None: comment_char = None with open(file_name) as f: c = f.read(1) if not c.isalnum(): comment_char = c f, m =
np.genfromtxt(file_name, comments=comment_char, unpack=True, usecols=(0, 1))
numpy.genfromtxt
from spada.io.error import SpadaError from itertools import combinations import numpy as np class GeneExpression: def __init__(self, txs, ctrl_ids, case_ids): self._allTxs = txs self._storedTxs = [] self._top_ctrl = (None, 0) self._top_case = (None, 0) self._expressionCtrl = np.array([]) self._expressionCase = np.array([]) self._matchedExpressionCtrl = np.array([]) self._dPSI = np.array([]) self._wtdPSI = np.array([]) self._dExp = np.array([]) self._wtdExp = np.array([]) self._idsCase = case_ids self._idsCtrl = ctrl_ids self._complete = False def addTx(self, tx, expressionCtrl, expressionCase): if self._expressionCtrl.size == 0: self._expressionCtrl = np.empty(shape = (0, expressionCtrl.shape[1])) self._expressionCtrl = np.vstack((self._expressionCtrl, expressionCtrl)) medianCtrl = np.median(expressionCtrl) if medianCtrl > self._top_ctrl[1]: self._top_ctrl = (tx, medianCtrl) if self._expressionCase.size == 0: self._expressionCase = np.empty(shape = (0, expressionCase.shape[1])) self._expressionCase = np.vstack((self._expressionCase, expressionCase)) medianCase = np.median(expressionCase) if medianCase > self._top_case[1]: self._top_case = (tx, medianCase) self._storedTxs.append(tx) @property def isComplete(self): if not self._complete and not self._allTxs.difference(self._storedTxs): self._matchedExpressionCtrl = self.matchExpressions(self._expressionCtrl) psiCtrl = self.computePSI(self._matchedExpressionCtrl) psiCase = self.computePSI(self._expressionCase) self._dPSI = psiCase - psiCtrl self._wtdPSI = self.computeExpectedDelta(expression = self._expressionCtrl) geneMatchedExpressionCtrl = self._matchedExpressionCtrl.sum(axis = 0) geneExpressionCtrl = self._expressionCtrl.sum(axis = 0) geneExpressionCase = self._expressionCase.sum(axis = 0) self._dExp = geneExpressionCase - geneMatchedExpressionCtrl self._wtdExp = self.computeExpectedDelta(psi = geneExpressionCtrl) self._complete = True return self._complete def computePSI(self, expression, nan_rm = False): if expression.shape == (0,): raise SpadaError("Expression empty.") psi = expression / expression.sum(axis = 0) if nan_rm: nancols = np.where(np.isnan(psi))[1] psi = np.delete(psi, nancols, axis = 1) return psi def computeExpectedDelta(self, expression = None, psi = np.array([]), nan_rm = True): if psi.shape == (0,): psi = self.computePSI(expression, nan_rm) expectedDelta = [ abs(a - b) for a, b in combinations(psi.T, 2) ] expectedDelta = np.array(expectedDelta) expectedDelta = expectedDelta.T return expectedDelta def matchExpressions(self, expressionCtrl): mask_case = [ i in self._idsCtrl for i in self._idsCase ] mask_ctrl = [ self._idsCtrl.index(i) for i in self._idsCase if i in self._idsCtrl ] median = np.median(expressionCtrl, axis=1) matched = np.tile(median, (len(self._idsCase),1)).T matched[:,mask_case] = expressionCtrl[:,mask_ctrl] return matched def cutoff(self, wt, percent): if wt.shape == (0,): cutoff = np.inf else: cutoff = np.percentile(wt, percent, axis = 1) cutoff = cutoff.reshape(cutoff.shape[0], 1) return cutoff def detectSwitches(self, minExpression = 0.1, pSplicing = 95, pDE = 95): switches = {} if self.isComplete: bigChange = abs(self._dPSI) > self.cutoff(self._wtdPSI, pSplicing) notDE = abs(self._dExp) < self.cutoff(
np.expand_dims(self._wtdExp, 0)
numpy.expand_dims
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from pywt import WaveletPacket2D import pywt.data arr = pywt.data.aero() wp2 = WaveletPacket2D(arr, 'db2', 'symmetric', maxlevel=2) # Show original figure plt.imshow(arr, interpolation="nearest", cmap=plt.cm.gray) path = ['d', 'v', 'h', 'a'] # Show level 1 nodes fig = plt.figure() for i, p2 in enumerate(path): ax = fig.add_subplot(2, 2, i + 1) ax.imshow(np.sqrt(np.abs(wp2[p2].data)), origin='image', interpolation="nearest", cmap=plt.cm.gray) ax.set_title(p2) # Show level 2 nodes for p1 in path: fig = plt.figure() for i, p2 in enumerate(path): ax = fig.add_subplot(2, 2, i + 1) p1p2 = p1 + p2 ax.imshow(np.sqrt(np.abs(wp2[p1p2].data)), origin='image', interpolation="nearest", cmap=plt.cm.gray) ax.set_title(p1p2) fig = plt.figure() i = 1 for row in wp2.get_level(2, 'freq'): for node in row: ax = fig.add_subplot(len(row), len(row), i) ax.set_title("%s=(%s row, %s col)" % ( (node.path,) + wp2.expand_2d_path(node.path))) ax.imshow(np.sqrt(
np.abs(node.data)
numpy.abs
## UNCOMMENTING THESE TWO LINES WILL FORCE KERAS/TF TO RUN ON CPU #import os #os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import tensorflow as tf from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.callbacks import ModelCheckpoint from tensorflow.python.keras.models import model_from_json from tensorflow.python.keras.layers import ZeroPadding3D, Dense, Activation,Conv3D,MaxPooling3D,AveragePooling3D,Flatten,Dropout from tensorflow.keras import utils import numpy as np import matplotlib.pyplot as plt import cv2 import os import scipy.io import generate_trend RESULTS_PATH = "results" try: open(RESULTS_PATH, 'w') except: print(f"Invalid path: {RESULTS_PATH}") exit() # CONSTANTS NB_VIDEOS_BY_CLASS_TRAIN = 200 NB_VIDEOS_BY_CLASS_VALIDATION = 200 # Tendencies (linear, 2nd order, 3rd order) TENDANCIES_MIN = (-3,-1,-1) TENDANCIES_MAX = (3,1,1) TENDANCIES_ORDER = (1,2,3) LENGTH_VIDEO = 60 IMAGE_WIDTH = 25 IMAGE_HEIGHT = 25 IMAGE_CHANNELS = 1 SAMPLING = 1 / 30 t = np.linspace(0, LENGTH_VIDEO * SAMPLING - SAMPLING, LENGTH_VIDEO) # coefficients for the fitted-ppg method a0 = 0.440240602542388 a1 = -0.334501803331783 b1 = -0.198990393984879 a2 = -0.050159136439220 b2 = 0.099347477830878 w = 2 * np.pi HEART_RATES = np.linspace(55, 240, 75) NB_CLASSES = len(HEART_RATES) # prepare labels and label categories labels = np.zeros(NB_CLASSES + 1) for i in range(NB_CLASSES + 1): labels[i] = i labels_cat = utils.to_categorical(labels) EPOCHS = 5000 CONTINUE_TRAINING = False SAVE_ALL_MODELS = False train_loss = [] val_loss = [] train_acc = [] val_acc = [] # 1. DEFINE OR LOAD MODEL / WEIGHTS if (CONTINUE_TRAINING == False): init_batch_nb = 0 model = Sequential() model.add(Conv3D(filters=32, kernel_size=(58,20,20), input_shape=(LENGTH_VIDEO, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS))) model.add(MaxPooling3D(pool_size=(2,2,2))) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.2)) model.add(Dense(NB_CLASSES + 1, activation='softmax')) else: # load model model = model_from_json(open('../../model_conv3D.json').read()) model.load_weights('../../weights_conv3D.h5') # load statistics dummy = np.loadtxt('../../statistics_loss_acc.txt') init_batch_nb = dummy.shape[0] train_loss = dummy[:,0].tolist() train_acc = dummy[:,1].tolist() val_loss = dummy[:,2].tolist() val_acc = dummy[:,3].tolist() model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) data = {} # 2. GENERATE VALIDATION DATA xvalidation = np.zeros(shape=((NB_CLASSES + 1) * NB_VIDEOS_BY_CLASS_VALIDATION, LENGTH_VIDEO, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS)) yvalidation = np.zeros(shape=((NB_CLASSES + 1) * NB_VIDEOS_BY_CLASS_VALIDATION, NB_CLASSES + 1)) c = 0 # for each frequency for i_freq in range(len(HEART_RATES)): for i_videos in range(NB_VIDEOS_BY_CLASS_VALIDATION): t2 = t + (np.random.randint(low=0, high=33) * SAMPLING) # phase. 33 corresponds to a full phase shift for HR=55 bpm signal = a0 + a1 * np.cos(t2 * w * HEART_RATES[i_freq] / 60) + b1 * np.sin(t2 * w * HEART_RATES[i_freq] / 60) + a2 * np.cos(2 * t2 * w * HEART_RATES[i_freq] / 60) + b2 * np.sin(2 * t2 * w * HEART_RATES[i_freq] / 60) signal = signal - np.min(signal) signal = signal /
np.max(signal)
numpy.max
import os import sys import glob import cv2 import numpy as np import _pickle as cPickle from tqdm import tqdm sys.path.append('../lib') from align import align_nocs_to_depth from utils import load_depth def create_img_list(data_dir): """ Create train/val/test data list for CAMERA and Real. """ # # CAMERA dataset # for subset in ['train', 'val']: # img_list = [] # img_dir = os.path.join(data_dir, 'CAMERA', subset) # folder_list = [name for name in os.listdir(img_dir) if os.path.isdir(os.path.join(img_dir, name))] # for i in range(10*len(folder_list)): # folder_id = int(i) // 10 # img_id = int(i) % 10 # img_path = os.path.join(subset, '{:05d}'.format(folder_id), '{:04d}'.format(img_id)) # img_list.append(img_path) # with open(os.path.join(data_dir, 'CAMERA', subset+'_list_all.txt'), 'w') as f: # for img_path in img_list: # f.write("%s\n" % img_path) # Real dataset for subset in ['train', 'test']: img_list = [] img_dir = os.path.join(data_dir, 'Real', subset) folder_list = [name for name in sorted(os.listdir(img_dir)) if os.path.isdir(os.path.join(img_dir, name))] for folder in folder_list: img_paths = glob.glob(os.path.join(img_dir, folder, '*_color.png')) img_paths = sorted(img_paths) for img_full_path in img_paths: img_name = os.path.basename(img_full_path) img_ind = img_name.split('_')[0] img_path = os.path.join(subset, folder, img_ind) img_list.append(img_path) with open(os.path.join(data_dir, 'Real', subset+'_list_all.txt'), 'w') as f: for img_path in img_list: f.write("%s\n" % img_path) print('Write all data paths to file done!') def process_data(img_path, depth): """ Load instance masks for the objects in the image. """ mask_path = img_path + '_mask.png' mask = cv2.imread(mask_path)[:, :, 2] mask = np.array(mask, dtype=np.int32) all_inst_ids = sorted(list(np.unique(mask))) assert all_inst_ids[-1] == 255 del all_inst_ids[-1] # remove background num_all_inst = len(all_inst_ids) h, w = mask.shape coord_path = img_path + '_coord.png' coord_map = cv2.imread(coord_path)[:, :, :3] coord_map = coord_map[:, :, (2, 1, 0)] # flip z axis of coord map coord_map = np.array(coord_map, dtype=np.float32) / 255 coord_map[:, :, 2] = 1 - coord_map[:, :, 2] class_ids = [] instance_ids = [] model_list = [] masks = np.zeros([h, w, num_all_inst], dtype=np.uint8) coords = np.zeros((h, w, num_all_inst, 3), dtype=np.float32) bboxes = np.zeros((num_all_inst, 4), dtype=np.int32) meta_path = img_path + '_meta.txt' with open(meta_path, 'r') as f: i = 0 for line in f: line_info = line.strip().split(' ') inst_id = int(line_info[0]) cls_id = int(line_info[1]) # background objects and non-existing objects if cls_id == 0 or (inst_id not in all_inst_ids): continue if len(line_info) == 3: model_id = line_info[2] # Real scanned objs else: model_id = line_info[3] # CAMERA objs # remove one mug instance in CAMERA train due to improper model if model_id == 'b9be7cfe653740eb7633a2dd89cec754': continue # process foreground objects inst_mask = np.equal(mask, inst_id) # bounding box horizontal_indicies = np.where(np.any(inst_mask, axis=0))[0] vertical_indicies = np.where(np.any(inst_mask, axis=1))[0] assert horizontal_indicies.shape[0], print(img_path) x1, x2 = horizontal_indicies[[0, -1]] y1, y2 = vertical_indicies[[0, -1]] # x2 and y2 should not be part of the box. Increment by 1. x2 += 1 y2 += 1 # object occupies full image, rendering error, happens in CAMERA dataset if np.any(np.logical_or((x2-x1) > 600, (y2-y1) > 440)): return None, None, None, None, None, None # not enough valid depth observation final_mask = np.logical_and(inst_mask, depth > 0) if np.sum(final_mask) < 64: continue class_ids.append(cls_id) instance_ids.append(inst_id) model_list.append(model_id) masks[:, :, i] = inst_mask coords[:, :, i, :] = np.multiply(coord_map, np.expand_dims(inst_mask, axis=-1)) bboxes[i] = np.array([y1, x1, y2, x2]) i += 1 # no valid foreground objects if i == 0: return None, None, None, None, None, None masks = masks[:, :, :i] coords = np.clip(coords[:, :, :i, :], 0, 1) bboxes = bboxes[:i, :] return masks, coords, class_ids, instance_ids, model_list, bboxes def annotate_camera_train(data_dir): """ Generate gt labels for CAMERA train data. """ camera_train = open(os.path.join(data_dir, 'CAMERA', 'train_list_all.txt')).read().splitlines() intrinsics = np.array([[577.5, 0, 319.5], [0, 577.5, 239.5], [0, 0, 1]]) # meta info for re-label mug category with open(os.path.join(data_dir, 'obj_models/mug_meta.pkl'), 'rb') as f: mug_meta = cPickle.load(f) valid_img_list = [] for img_path in tqdm(camera_train): img_full_path = os.path.join(data_dir, 'CAMERA', img_path) all_exist = os.path.exists(img_full_path + '_color.png') and \ os.path.exists(img_full_path + '_coord.png') and \ os.path.exists(img_full_path + '_depth.png') and \ os.path.exists(img_full_path + '_mask.png') and \ os.path.exists(img_full_path + '_meta.txt') if not all_exist: continue depth = load_depth(img_full_path) masks, coords, class_ids, instance_ids, model_list, bboxes = process_data(img_full_path, depth) if instance_ids is None: continue # Umeyama alignment of GT NOCS map with depth image scales, rotations, translations, error_messages, _ = \ align_nocs_to_depth(masks, coords, depth, intrinsics, instance_ids, img_path) if error_messages: continue # re-label for mug category for i in range(len(class_ids)): if class_ids[i] == 6: T0 = mug_meta[model_list[i]][0] s0 = mug_meta[model_list[i]][1] T = translations[i] - scales[i] * rotations[i] @ T0 s = scales[i] / s0 scales[i] = s translations[i] = T # write results gts = {} gts['class_ids'] = class_ids # int list, 1 to 6 gts['bboxes'] = bboxes # np.array, [[y1, x1, y2, x2], ...] gts['scales'] = scales.astype(np.float32) # np.array, scale factor from NOCS model to depth observation gts['rotations'] = rotations.astype(np.float32) # np.array, R gts['translations'] = translations.astype(np.float32) # np.array, T gts['instance_ids'] = instance_ids # int list, start from 1 gts['model_list'] = model_list # str list, model id/name with open(img_full_path + '_label.pkl', 'wb') as f: cPickle.dump(gts, f) valid_img_list.append(img_path) # write valid img list to file with open(os.path.join(data_dir, 'CAMERA/train_list.txt'), 'w') as f: for img_path in valid_img_list: f.write("%s\n" % img_path) def annotate_real_train(data_dir): """ Generate gt labels for Real train data through PnP. """ real_train = open(os.path.join(data_dir, 'Real/train_list_all.txt')).read().splitlines() intrinsics = np.array([[591.0125, 0, 322.525], [0, 590.16775, 244.11084], [0, 0, 1]]) # scale factors for all instances scale_factors = {} path_to_size = glob.glob(os.path.join(data_dir, 'obj_models/real_train', '*_norm.txt')) for inst_path in sorted(path_to_size): instance = os.path.basename(inst_path).split('.')[0] bbox_dims = np.loadtxt(inst_path) scale_factors[instance] = np.linalg.norm(bbox_dims) # meta info for re-label mug category with open(os.path.join(data_dir, 'obj_models/mug_meta.pkl'), 'rb') as f: mug_meta = cPickle.load(f) valid_img_list = [] for img_path in tqdm(real_train): img_full_path = os.path.join(data_dir, 'Real', img_path) all_exist = os.path.exists(img_full_path + '_color.png') and \ os.path.exists(img_full_path + '_coord.png') and \ os.path.exists(img_full_path + '_depth.png') and \ os.path.exists(img_full_path + '_mask.png') and \ os.path.exists(img_full_path + '_meta.txt') if not all_exist: continue depth = load_depth(img_full_path) masks, coords, class_ids, instance_ids, model_list, bboxes = process_data(img_full_path, depth) if instance_ids is None: continue # compute pose num_insts = len(class_ids) scales = np.zeros(num_insts) rotations = np.zeros((num_insts, 3, 3)) translations = np.zeros((num_insts, 3)) for i in range(num_insts): s = scale_factors[model_list[i]] mask = masks[:, :, i] idxs = np.where(mask) coord = coords[:, :, i, :] coord_pts = s * (coord[idxs[0], idxs[1], :] - 0.5) coord_pts = coord_pts[:, :, None] img_pts = np.array([idxs[1], idxs[0]]).transpose() img_pts = img_pts[:, :, None].astype(float) distCoeffs = np.zeros((4, 1)) # no distoration retval, rvec, tvec = cv2.solvePnP(coord_pts, img_pts, intrinsics, distCoeffs) assert retval R, _ = cv2.Rodrigues(rvec) T =
np.squeeze(tvec)
numpy.squeeze
"""This module contains methods to randomly sample, either uniformly or using LHS, test problems for a fix budget (inclusive of the initial training data). """ import numpy as np from pyDOE2 import lhs from .. import test_problems def perform_LHS_runs(problem_name, budget=250, n_exp_start=1, n_exp_end=51): """Generates the LHS samples for a fixed budget (inclusive of training). Generates a fixed budget of LHS locations (inclusive of those in the training data) for optimisation runs in [n_exp_start, n_exp_end]. This function is not for the PitzDaily test problem because it has a constraint function and therefore needs to be uniformly sampled from to make sure each sample generated does not violate the constraint; instead, ``perform_uniform_runs`` can be used. The results of the will be stored in the 'results' directory with the name: '{problem_name:}_{run_no:}_{budget:}_LHS.npz' Parameters ---------- problem_name : string Test problem name to perform the optimisation run on. This will attempt to import problem_name from the test_problems module. budget : int Total number of expensive evaluations to carry out. Note that the budget includes points in the initial training data. n_exp_start : int Starting number of the experiment. n_exp_end : int Ending number (inclusive) of the experiment. """ exp_nos =
np.arange(n_exp_start, n_exp_end + 1)
numpy.arange
# -*- coding: utf-8 -*- """ For testing netneurotools.stats functionality """ import itertools import numpy as np import pytest from netneurotools import datasets, stats @pytest.mark.xfail def test_permtest_1samp(): assert False # n1, n2, n3 = 10, 15, 20 # rs = np.random.RandomState(1234) # rvn1 = rs.normal(loc=8, scale=10, size=(n1, n2, n3)) # t1, p1 = stats.permtest_1samp(rvn1, 1, axis=0) def test_permtest_rel(): dr, pr = -0.0005, 0.4175824175824176 dpr = ([dr, -dr], [pr, pr]) rvs1 = np.linspace(1, 100, 100) rvs2 = np.linspace(1.01, 99.989, 100) rvs1_2D = np.array([rvs1, rvs2]) rvs2_2D =
np.array([rvs2, rvs1])
numpy.array
import struct import socket import pickle import json from torch.optim import SGD, Adam, AdamW import sys import time import random import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt #import seaborn as sns import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torch.autograd import Variable from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve from sklearn.metrics import classification_report, confusion_matrix from sklearn.metrics import accuracy_score, auc, f1_score, precision_score, recall_score, roc_auc_score from sklearn.preprocessing import MinMaxScaler import Metrics import wfdb import ast import math import os.path import utils import Models #np.set_printoptions(threshold=np.inf) cwd = os.path.dirname(os.path.abspath(__file__)) mlb_path = os.path.join(cwd, "..","Benchmark", "output", "mlb.pkl") scaler_path = os.path.join(cwd, "..","Benchmark", "output", "standard_scaler.pkl") ptb_path = os.path.join(cwd, "..", "server", "../server/PTB-XL", "ptb-xl/") import wandb wandb.init(project="non-IID,clean", entity="split-learning-medical") client_num = 1 num_classes = 2 pretrain_this_client = 0 simultrain_this_client = 0 pretrain_epochs = 50 IID = 0 f = open('parameter_client.json', ) data = json.load(f) # set parameters fron json file #epoch = data["training_epochs"] lr = data["learningrate"] batchsize = data["batchsize"] batch_concat = data["batch_concat"] host = data["host"] port = data["port"] max_recv = data["max_recv"] autoencoder = data["autoencoder"] detailed_output = data["detailed_output"] count_flops = data["count_flops"] plots = data["plots"] autoencoder_train = data["autoencoder_train"] deactivate_train_after_num_epochs = data["deactivate_train_after_num_epochs"] grad_encode = data["grad_encode"] train_gradAE_active = data["train_gradAE_active"] deactivate_grad_train_after_num_epochs = data["deactivate_grad_train_after_num_epochs"] wandb.init(config={ "learning_rate": lr, #"epochs": epoch, "batch_size": batchsize, "autoencoder": autoencoder }) wandb.config.update({"learning_rate": lr, "PC: ": 2}) def print_json(): print("learningrate: ", lr) print("grad_encode: ", grad_encode) print("gradAE_train: ", train_gradAE_active) print("deactivate_grad_train_after_num_epochs: ", deactivate_grad_train_after_num_epochs) #print("Getting the metadata epoch: ", epoch) print("Getting the metadata host: ", host) print("Getting the metadata port: ", port) print("Getting the metadata batchsize: ", batchsize) print("Autoencoder: ", autoencoder) print("detailed_output: ", detailed_output) print("count_flops: ", count_flops) print("plots: ", plots) print("autoencoder_train: ", autoencoder_train) print("deactivate_train_after_num_epochs: ", deactivate_train_after_num_epochs) # load data from json file class PTB_XL(Dataset): def __init__(self, stage=None): self.stage = stage if self.stage == 'train': global X_train global y_train self.y_train = y_train self.X_train = X_train if self.stage == 'val': global y_val global X_val self.y_val = y_val self.X_val = X_val if self.stage == 'test': global y_test global X_test self.y_test = y_test self.X_test = X_test if self.stage == 'raw': global y_raw global X_raw self.y_raw = y_raw self.X_raw = X_raw def __len__(self): if self.stage == 'train': return len(self.y_train) if self.stage == 'val': return len(self.y_val) if self.stage == 'test': return len(self.y_test) if self.stage == 'raw': return len(self.y_raw) def __getitem__(self, idx): if self.stage == 'train': sample = self.X_train[idx].transpose((1, 0)), self.y_train[idx] if self.stage == 'val': sample = self.X_val[idx].transpose((1, 0)), self.y_val[idx] if self.stage == 'test': sample = self.X_test[idx].transpose((1, 0)), self.y_test[idx] if self.stage == 'raw': sample = self.X_raw[idx].transpose((1, 0)), self.y_raw[idx] return sample def init(): train_dataset = PTB_XL('train') val_dataset = PTB_XL('val') if IID: train_1, rest1 = torch.utils.data.random_split(train_dataset, [3853, 15414], generator=torch.Generator().manual_seed(42)) train_2, rest2 = torch.utils.data.random_split(rest1, [3853, 11561], generator=torch.Generator().manual_seed(42)) train_3, rest3 = torch.utils.data.random_split(rest2, [3853, 7708], generator=torch.Generator().manual_seed(42)) train_4, train_5 = torch.utils.data.random_split(rest3, [3853, 3855], generator=torch.Generator().manual_seed(42)) if client_num == 1: train_dataset = train_1 if client_num == 2: train_dataset = train_2 if client_num == 3: train_dataset = train_3 if client_num == 4: train_dataset = train_4 if client_num == 5: train_dataset = train_5 if pretrain_this_client: raw_dataset = PTB_XL('raw') print("len raw dataset", len(raw_dataset)) pretrain_dataset, no_dataset = torch.utils.data.random_split(raw_dataset, [963, 18304], generator=torch.Generator().manual_seed(42)) print("pretrain_dataset length: ", len(pretrain_dataset)) global pretrain_loader pretrain_loader = torch.utils.data.DataLoader(pretrain_dataset, batch_size=batchsize, shuffle=True) if simultrain_this_client: raw_dataset = PTB_XL('raw') print("len raw dataset", len(raw_dataset)) pretrain_dataset, no_dataset = torch.utils.data.random_split(raw_dataset, [963, 18304], generator=torch.Generator().manual_seed(42)) print("len train dataset", len(train_dataset)) train_dataset = torch.utils.data.ConcatDataset((pretrain_dataset, train_dataset)) print("len mixed-train dataset", len(train_dataset)) print("train_dataset length: ", len(train_dataset)) print("val_dataset length: ", len(train_dataset)) global train_loader global val_loader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchsize, shuffle=True) """ def new_split(): global train_loader global val_loader train_dataset, val_dataset = torch.utils.data.random_split(training_dataset, [size_train_dataset, len(training_dataset) - size_train_dataset]) print("train_dataset size: ", size_train_dataset) print("val_dataset size: ", len(training_dataset) - size_train_dataset) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batchsize, shuffle=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batchsize, shuffle=True) """ if count_flops: #Does not work on the Jetson Nano yet. The amount of FLOPs doesn't depend on the architecture. Measuring FLOPs on the PC and JetsonNano would result in the same outcome. # The paranoid switch prevents the FLOPs count # Solution: sudo sh -c 'echo 1 >/proc/sys/kernel/perf_event_paranoid' # Needs to be done after every restart of the PC from ptflops import get_model_complexity_info from pypapi import events, papi_high as high def str_to_number(label): a = np.zeros(5) if not label: return a for i in label: if i == 'NORM': a[0] = 1 if i == 'MI': a[1] = 1 if i == 'STTC': a[2] = 1 if i == 'HYP': a[3] = 1 if i == 'CD': a[4] = 1 return a #send/recieve system: def send_msg(sock, getid, content): """ pickles the content (creates bitstream), adds header and send message via tcp port :param sock: socket :param content: content to send via tcp port """ msg = [getid, content] # add getid msg = pickle.dumps(msg) msg = struct.pack('>I', len(msg)) + msg # add 4-byte length in network byte order #print("communication overhead send: ", sys.getsizeof(msg), " bytes") global data_send_per_epoch data_send_per_epoch += sys.getsizeof(msg) sock.sendall(msg) def recieve_msg(sock): """ recieves the meassage with helper function, umpickles the message and separates the getid from the actual massage content :param sock: socket """ msg = recv_msg(sock) # receive client message from socket msg = pickle.loads(msg) return msg def recieve_request(sock): """ recieves the meassage with helper function, umpickles the message and separates the getid from the actual massage content :param sock: socket """ msg = recv_msg(sock) # receive client message from socket msg = pickle.loads(msg) getid = msg[0] content = msg[1] handle_request(sock, getid, content) def recv_msg(sock): """ gets the message length (which corresponds to the first 4 bytes of the recieved bytestream) with the recvall function :param sock: socket :return: returns the data retrieved from the recvall function """ # read message length and unpack it into an integer raw_msglen = recvall(sock, 4) if not raw_msglen: return None msglen = struct.unpack('>I', raw_msglen)[0] #print("Message length:", msglen) global data_recieved_per_epoch data_recieved_per_epoch += msglen # read the message data return recvall(sock, msglen) def recvall(sock, n): """ returns the data from a recieved bytestream, helper function to receive n bytes or return None if EOF is hit :param sock: socket :param n: length in bytes (number of bytes) :return: message """ # data = b'' while len(data) < n: if detailed_output: print("Start function sock.recv") packet = sock.recv(n - len(data)) if not packet: return None data += packet # print("Daten: ", data) return data def handle_request(sock, getid, content): """ executes the requested function, depending on the get id, and passes the recieved message :param sock: socket :param getid: id of the function, that should be executed if the message is recieved :param content: message content """ #print("request mit id:", getid) switcher = { 0: initialize_model, 1: train_epoch, 2: val_stage, 3: test_stage, } switcher.get(getid, "invalid request recieved")(sock, content) def serverHandler(conn): while True: recieve_request(conn) def grad_postprocessing(grad): grad_new = grad.numpy() for a in range(64): #scaler.fit(grad[a]) grad_new[a] = scaler.inverse_transform(grad[a]) grad_new = torch.DoubleTensor(grad_new).to(device) return grad_new def train_epoch(s, pretraining): #new_split() #new random dist between train and val loss_grad_total = 0 global epoch epoch += 1 flops_forward_epoch, flops_encoder_epoch, flops_backprop_epoch, flops_rest, flops_send = 0,0,0,0,0 #Specify AE configuration train_active = 0 #default: AE is pretrained train_grad_active = 0 if epoch < deactivate_train_after_num_epochs: if autoencoder_train: train_active = 1 if epoch < deactivate_grad_train_after_num_epochs: if train_gradAE_active: train_grad_active = 1 global data_send_per_epoch, data_recieved_per_epoch, data_send_per_epoch_total, data_recieved_per_epoch_total data_send_per_epoch, data_recieved_per_epoch = 0, 0 correct_train, total_train, train_loss = 0, 0, 0 batches_aborted, total_train_nr, total_val_nr, total_test_nr = 0, 0, 0, 0 hamming_epoch, precision_epoch, recall_epoch, f1_epoch, auc_train = 0, 0, 0, 0, 0 #encoder_grad_server = 0 epoch_start_time = time.time() loader = pretrain_loader if pretraining else train_loader for b, batch in enumerate(loader): if count_flops: x = high.read_counters() #print("batch: ", b) # print("FLOPs dataloader: ", x) # if b % 100 == 0: # print("batch ", b, " / ", total_batch) forward_time = time.time() active_training_time_batch_client = 0 start_time_batch_forward = time.time() # define labels and data per batch x_train, label_train = batch x_train = x_train.to(device) # x_train = x_train.to(device) label_train = label_train.double().to(device) if len(x_train) != 64: break if count_flops: x = high.read_counters() flops_rest += x[0] # reset Flop Counter optimizer.zero_grad() # sets gradients to 0 - start for backprop later client_output_backprop = client(x_train) client_output_train = client_output_backprop.detach().clone() if count_flops: x = high.read_counters() #print("FLOPs forward: ", x) flops_forward_epoch += x[0] client_output_train_without_ae_send = 0 if autoencoder: if train_active: optimizerencode.zero_grad() # client_output_train_without_ae = client_output_train.clone().detach().requires_grad_(False) client_encoded = encode(client_output_train) client_output_send = client_encoded.detach().clone() if train_active: client_output_train_without_ae_send = client_output_train.detach().clone() else: client_output_send = client_output_train.detach().clone() # client_output_send = encode(client_output_train) if count_flops: x = high.read_counters() flops_encoder_epoch += x[0] global encoder_grad_server msg = { 'client_output_train': client_output_send, 'client_output_train_without_ae': client_output_train_without_ae_send, 'label_train': label_train, # concat_labels, 'batch_concat': batch_concat, 'batchsize': batchsize, 'train_active': train_active, 'encoder_grad_server': encoder_grad_server, 'train_grad_active': train_grad_active, 'grad_encode': grad_encode } active_training_time_batch_client += time.time() - start_time_batch_forward if detailed_output: print("Send the message to server") send_msg(s, 0, msg) # while concat_counter_recv < concat_counter_send: msg = recieve_msg(s) # print("msg: ", msg) if pretraining == 0: wandb.log({"dropout_threshold": msg["dropout_threshold"]}, commit=False) # decode grad: client_grad_without_encode = msg["client_grad_without_encode"] client_grad = msg["grad_client"] global scaler scaler = msg["scaler"] if msg["grad_encode"]: if train_grad_active: # print("train_active") optimizer_grad_decoder.zero_grad() client_grad = Variable(client_grad, requires_grad=True) client_grad_decode = grad_decoder(client_grad) if train_grad_active: loss_grad_autoencoder = error_grad_autoencoder(client_grad_without_encode, client_grad_decode) loss_grad_total += loss_grad_autoencoder.item() loss_grad_autoencoder.backward() encoder_grad_server = client_grad.grad.detach().clone()# optimizer_grad_decoder.step() # print("loss_grad_autoencoder: ", loss_grad_autoencoder) else: encoder_grad_server = 0 client_grad_decode = grad_postprocessing(client_grad_decode.detach().clone().cpu()) else: if msg["client_grad_abort"] == 0: client_grad_decode = client_grad.detach().clone() #else: # client_grad = "abort" encoder_grad_server = 0 start_time_batch_backward = time.time() encoder_grad = msg["encoder_grad"] if client_grad == "abort": # print("client_grad: ", client_grad) train_loss_add, add_correct_train, add_total_train = msg["train_loss"], msg["add_correct_train"], \ msg["add_total_train"] correct_train += add_correct_train total_train_nr += 1 total_train += add_total_train train_loss += train_loss_add batches_aborted += 1 output_train = msg["output_train"] # print("train_loss: ", train_loss/total_train_nr) # meter.update(output_train, label_train, train_loss/total_train_nr) pass else: if train_active: client_encoded.backward(encoder_grad) optimizerencode.step() # concat_tensors[concat_counter_recv].to(device) # concat_tensors[concat_counter_recv].backward(client_grad) # client_output_backprob.to(device) # if b % 1000 == 999: # print("Backprop with: ", client_grad) if count_flops: x = high.read_counters() # reset counter flops_rest += x[0] flops_send += x[0] client_output_backprop.backward(client_grad_decode) optimizer.step() if count_flops: x = high.read_counters() # print("FLOPs backprob: ", x) flops_backprop_epoch += x[0] train_loss_add, add_correct_train, add_total_train = msg["train_loss"], msg["add_correct_train"], \ msg["add_total_train"] correct_train += add_correct_train total_train_nr += 1 total_train += add_total_train train_loss += train_loss_add output_train = msg["output_train"] # print("train_loss: ", train_loss/total_train_nr) # meter.update(output_train, label_train, train_loss/total_train_nr) # wandb.watch(client, log_freq=100) output = torch.round(output_train) # if np.sum(label.cpu().detach().numpy()[0]) > 1: # if np.sum(output.cpu().detach().numpy()[0] > 1): # print("output[0]: ", output.cpu().detach().numpy()[0]) # print("label [0]: ", label.cpu().detach().numpy()[0]) #if (total_train_nr % 100 == 0): # print("output[0]: ", output.cpu().detach().numpy()[0]) # print("label [0]: ", label_train.cpu().detach().numpy()[0]) #global batches_abort_rate_total #batches_abort_rate_total.append(batches_aborted / total_train_nr) active_training_time_batch_client += time.time() - start_time_batch_backward #active_training_time_batch_server = msg["active_trtime_batch_server"] #active_training_time_epoch_client += active_training_time_batch_client #active_training_time_epoch_server += active_training_time_batch_server # try: roc_auc = roc_auc_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(),average='micro') auc_train += roc_auc except: # print("auc_train_exception: ") # print("label: ", label) # print("output: ", output) pass hamming_epoch += Metrics.Accuracy(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu()) # accuracy_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu()) precision_epoch += precision_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_train.detach().clone().cpu(), torch.round(output).detach().clone().cpu(), average='micro', zero_division=0) epoch_endtime = time.time() - epoch_start_time if pretraining: status_epoch_train = "epoch: {}, AUC_train: {:.4f}, Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, trainingtime for epoch: {:.6f}s, batches abortrate:{:.2f}, train_loss: {:.4f} ".format( epoch, auc_train / total_train_nr, hamming_epoch / total_train_nr, precision_epoch / total_train_nr, recall_epoch / total_train_nr, f1_epoch / total_train_nr, epoch_endtime, batches_aborted / total_train_nr, train_loss / total_train_nr) print("status_epoch_pretrain: ", status_epoch_train) else: flops_client_forward_total.append(flops_forward_epoch) flops_client_encoder_total.append(flops_encoder_epoch) flops_client_backprop_total.append(flops_backprop_epoch) print("data_send_per_epoch: ", data_send_per_epoch / 1000000, " MegaBytes") print("data_recieved_per_epoch: ", data_recieved_per_epoch / 1000000, "MegaBytes") data_send_per_epoch_total.append(data_send_per_epoch) data_recieved_per_epoch_total.append(data_recieved_per_epoch) status_epoch_train = "epoch: {}, AUC_train: {:.4f}, Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, trainingtime for epoch: {:.6f}s, batches abortrate:{:.2f}, train_loss: {:.4f} ".format( epoch, auc_train / total_train_nr, hamming_epoch / total_train_nr, precision_epoch / total_train_nr, recall_epoch / total_train_nr, f1_epoch / total_train_nr, epoch_endtime, batches_aborted / total_train_nr, train_loss / total_train_nr) print("status_epoch_train: ", status_epoch_train) if count_flops: print("MegaFLOPS_forward_epoch", flops_forward_epoch / 1000000) print("MegaFLOPS_encoder_epoch", flops_encoder_epoch / 1000000) print("MegaFLOPS_backprop_epoch", flops_backprop_epoch / 1000000) print("MegaFLOPS_rest", flops_rest / 1000000) print("MegaFLOPS_send", flops_send / 1000000) wandb.log({"Batches Abortrate": batches_aborted / total_train_nr, "MegaFLOPS Client Encoder": flops_encoder_epoch / 1000000, "MegaFLOPS Client Forward": flops_forward_epoch / 1000000, "MegaFLOPS Client Backprop": flops_backprop_epoch / 1000000}, commit=False) global auc_train_log auc_train_log = auc_train / total_train_nr global accuracy_train_log accuracy_train_log = hamming_epoch / total_train_nr global batches_abort_rate_total batches_abort_rate_total.append(batches_aborted / total_train_nr) initial_weights = client.state_dict() send_msg(s, 2, initial_weights) msg = 0 send_msg(s, 3, msg) def val_stage(s, pretraining=0): total_val_nr, val_loss_total, correct_val, total_val = 0, 0, 0, 0 val_losses, val_accs = [], [] hamming_epoch, precision_epoch, recall_epoch, f1_epoch, accuracy, auc_val = 0, 0, 0, 0, 0, 0 val_time = time.time() with torch.no_grad(): for b_t, batch_t in enumerate(val_loader): x_val, label_val = batch_t x_val, label_val = x_val.to(device), label_val.double().to(device) optimizer.zero_grad() output_val = client(x_val, drop=False) client_output_val = output_val.clone().detach().requires_grad_(True) if autoencoder: client_output_val = encode(client_output_val) msg = {'client_output_val/test': client_output_val, 'label_val/test': label_val, } if detailed_output: print("The msg is:", msg) send_msg(s, 1, msg) if detailed_output: print("294: send_msg success!") msg = recieve_msg(s) if detailed_output: print("296: recieve_msg success!") correct_val_add = msg["correct_val/test"] val_loss = msg["val/test_loss"] output_val_server = msg["output_val/test_server"] val_loss_total += val_loss correct_val += correct_val_add total_val_add = len(label_val) total_val += total_val_add total_val_nr += 1 try: roc_auc = roc_auc_score(label_val.detach().clone().cpu(), torch.round(output_val_server).detach().clone().cpu(), average='micro') auc_val += roc_auc except: # print("auc_train_exception: ") # print("label: ", label) # print("output: ", output) pass output_val_server = torch.round(output_val_server) hamming_epoch += Metrics.Accuracy(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu()) #accuracy_score(label_val.detach().clone().cpu(), # torch.round(output_val_server).detach().clone().cpu()) precision_epoch += precision_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_val.detach().clone().cpu(), output_val_server.detach().clone().cpu(), average='micro', zero_division=0) status_epoch_val = "epoch: {},AUC_val: {:.4f} ,Accuracy: {:.4f}, Precision: {:.4f}, Recall: {:.4f}, F1: {:.4f}, val_loss: {:.4f}".format( epoch, auc_val / total_val_nr, hamming_epoch / total_val_nr, precision_epoch / total_val_nr, recall_epoch / total_val_nr, f1_epoch / total_val_nr, val_loss_total / total_val_nr) print("status_epoch_val: ", status_epoch_val) if pretraining == 0: wandb.log({"Loss_val": val_loss_total / total_val_nr, "Accuracy_val_micro": hamming_epoch / total_val_nr, "F1_val": f1_epoch / total_val_nr, "AUC_val": auc_val / total_val_nr, "AUC_train": auc_train_log, "Accuracy_train_micro": accuracy_train_log}) send_msg(s, 3, 0) def test_stage(s, epoch): loss_test = 0.0 correct_test, total_test = 0, 0 hamming_epoch = 0 precision_epoch = 0 recall_epoch = 0 f1_epoch = 0 total_test_nr = 0 with torch.no_grad(): for b_t, batch_t in enumerate(val_loader): x_test, label_test = batch_t x_test, label_test = x_test.to(device), label_test.double().to(device) optimizer.zero_grad() output_test = client(x_test, drop=False) client_output_test = output_test.clone().detach().requires_grad_(True) if autoencoder: client_output_test = encode(client_output_test) msg = {'client_output_val/test': client_output_test, 'label_val/test': label_test, } if detailed_output: print("The msg is:", msg) send_msg(s, 1, msg) if detailed_output: print("294: send_msg success!") msg = recieve_msg(s) if detailed_output: print("296: recieve_msg success!") correct_test_add = msg["correct_val/test"] test_loss = msg["val/test_loss"] output_test_server = msg["output_val/test_server"] loss_test += test_loss correct_test += correct_test_add total_test_add = len(label_test) total_test += total_test_add total_test_nr += 1 output_test_server = torch.round(output_test_server) hamming_epoch += Metrics.Accuracy(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu()) #accuracy_score(label_test.detach().clone().cpu(), #torch.round(output_test_server).detach().clone().cpu()) precision_epoch += precision_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') # recall_epoch += Plots.Recall(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() recall_epoch += recall_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') # f1_epoch += Plots.F1Measure(label_train.detach().clone().cpu(), output.detach().clone().cpu()).item() f1_epoch += f1_score(label_test.detach().clone().cpu(), output_test_server.detach().clone().cpu(), average='micro') status_test = "test: hamming_epoch: {:.4f}, precision_epoch: {:.4f}, recall_epoch: {:.4f}, f1_epoch: {:.4f}".format( hamming_epoch / total_test_nr, precision_epoch / total_test_nr, recall_epoch / total_test_nr, f1_epoch / total_test_nr) print("status_test: ", status_test) global data_send_per_epoch_total global data_recieved_per_epoch_total global batches_abort_rate_total data_transfer_per_epoch = 0 average_dismissal_rate = 0 total_flops_forward = 0 total_flops_encoder = 0 total_flops_backprob = 0 for data in data_send_per_epoch_total: data_transfer_per_epoch += data for data in data_recieved_per_epoch_total: data_transfer_per_epoch += data for data in batches_abort_rate_total: average_dismissal_rate += data for flop in flops_client_forward_total: total_flops_forward += flop for flop in flops_client_encoder_total: total_flops_encoder += flop for flop in flops_client_backprop_total: total_flops_backprob += flop total_flops = total_flops_backprob + total_flops_encoder + total_flops_forward print("total FLOPs forward: ", total_flops_forward) print("total FLOPs encoder: ", total_flops_encoder) print("total FLOPs backprob: ", total_flops_backprob) print("total FLOPs client: ", total_flops) print("Average data transfer/epoch: ", data_transfer_per_epoch / epoch / 1000000, " MB") print("Average dismissal rate: ", average_dismissal_rate / epoch) wandb.config.update({"Average data transfer/epoch (MB): ": data_transfer_per_epoch / epoch / 1000000, "Average dismissal rate: ": average_dismissal_rate / epoch, "total_MegaFLOPS_forward": total_flops_forward/1000000, "total_MegaFLOPS_encoder": total_flops_encoder/1000000, "total_MegaFLOPS_backprob": total_flops_backprob/1000000, "total_MegaFLOPS": total_flops/1000000}) msg = 0 send_msg(s, 3, msg) def initialize_model(s, msg): """ if new connected client is not the first connected client, the initial weights are fetched from the server :param conn: """ #msg = recieve_msg(s) if msg == 0: #print("msg == 0") pass else: print("msg != 0") client.load_state_dict(msg, strict=False) print("model successfully initialized") #print("start_training") # start_training(s) #train_epoch(s) def initIID(): global X_train, X_val, y_val, y_train, y_test, X_test sampling_frequency = 100 datafolder = ptb_path task = 'superdiagnostic' outputfolder = mlb_path # Load PTB-XL data data, raw_labels = utils.load_dataset(datafolder, sampling_frequency) # Preprocess label data labels = utils.compute_label_aggregations(raw_labels, datafolder, task) # Select relevant data and convert to one-hot data, labels, Y, _ = utils.select_data(data, labels, task, min_samples=0, outputfolder=outputfolder) input_shape = data[0].shape print(input_shape) # 1-9 for training X_train = data[labels.strat_fold < 10] y_train = Y[labels.strat_fold < 10] # 10 for validation X_val = data[labels.strat_fold == 10] y_val = Y[labels.strat_fold == 10] # X_test = data[labels.strat_fold == 10] # y_test = Y[labels.strat_fold == 10] num_classes = 5 # <=== number of classes in the finetuning dataset input_shape = [1000, 12] # <=== shape of samples, [None, 12] in case of different lengths print(X_train.shape, y_train.shape, X_val.shape, y_val.shape) # , X_test.shape, y_test.shape) import pickle standard_scaler = pickle.load(open(scaler_path, "rb")) X_train = utils.apply_standardizer(X_train, standard_scaler) X_val = utils.apply_standardizer(X_val, standard_scaler) global X_raw, y_raw X_raw = X_train y_raw = y_train def init_nonIID(): global X_train, X_val, y_val, y_train, y_test, X_test norm, mi, sttc, hyp, cd = [],[],[],[],[] for a in range(len(y_train)): if label_class(y_train[a], 0): sttc.append(X_train[a]) if label_class(y_train[a], 1): hyp.append(X_train[a]) if label_class(y_train[a], 2): mi.append(X_train[a]) if label_class(y_train[a], 3): norm.append(X_train[a]) if label_class(y_train[a], 4): cd.append(X_train[a]) """ print("norm shape: ", len(norm)) print("mi shape: ", len(mi)) print("sttc shape: ", len(sttc)) print("hyp shape: ", len(hyp)) print("cd shape: ", len(cd)) print("norm label: ", label_norm[0]) print("mi label: ", label_mi[0]) print("sttc label: ", label_sttc[0]) print("hyp label: ", label_hyp[0]) print("cd label: ", label_cd[0]) print("norm label: ", len(label_norm)) print("mi label: ", len(label_mi)) print("sttc label: ", len(label_sttc)) print("hyp label: ", len(label_hyp)) print("cd label: ", len(label_cd)) """ if client_num == 1: if num_classes == 1: print("Client number: ", client_num, " Class norm") X_train = norm y_train = label_norm if num_classes == 2: print("Client number: ", client_num, " Class norm, mi") X_train = np.concatenate((norm, mi), axis=0) y_train = np.concatenate((label_norm, label_mi), axis=0) if num_classes == 3: print("Client number: ", client_num, " Class norm, mi, sttc") X_train = np.concatenate((norm, mi), axis=0) X_train = np.concatenate((X_train, sttc), axis=0) y_train = np.concatenate((label_norm, label_mi), axis=0) y_train = np.concatenate((y_train, label_sttc), axis=0) if client_num == 2: if num_classes == 1: print("Client number: ", client_num, " Class mi") X_train = mi y_train = label_mi if num_classes == 2: print("Client number: ", client_num, " Class mi, sttc") X_train = np.concatenate((mi, sttc), axis=0) y_train =
np.concatenate((label_mi, label_sttc), axis=0)
numpy.concatenate
from gym import Env from gym.utils import seeding from gym import spaces import numpy as np import keras.backend as K class BaseEnv(Env): metadata = {'render.modes': ['human', 'ansi']} def __init__(self, action_mapping): self._seed() self.verbose = 0 self.viewer = None self.batch_size = 32 self.optimizer = None self.model = None self.current_step = 0 self.action_mapping = action_mapping self.action_space = action_mapping.action_space bounds = float('inf') self.observation_space = spaces.Box(-bounds, bounds, (4,)) self.viewer = None self.best = None self.evaluate_test = False Env.__init__(self) def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def create_model(self): pass def create_optimizer(self): pass def loss_scale(self, loss): return -np.log(loss) def _step(self, action): self.action_mapping.step(self.optimizer, action) loss_before = self.losses(self.data_val) if self.best is None: self.best = loss_before self.model.fit(self.data_train[0], self.data_train[1], validation_data=(self.data_val[0], self.data_val[1]), nb_epoch=1, verbose=self.verbose, batch_size=self.batch_size) loss_after = self.losses(self.data_val) self.current_step += 1 observation = self._observation() if (loss_after > 1e10) or (not np.all(
np.isfinite(observation)
numpy.isfinite
# Copyright 2020-2022 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # OS Libraries import os import os.path import datetime # Data Structure Libraries from collections import deque # ROS Libraries import rospy # ROS Messages from std_msgs.msg import Header from sensor_msgs.msg import Image from gmapping.msg import doubleMap, mapModel # Math Libraries import numpy as np import numpy.ma as ma from cv_bridge import CvBridge import matplotlib import matplotlib.pyplot as plt # Project Libraries from fmp_slam_eval.map_colorizer import MapColorizer from fmp_slam_eval.enums import DiscreteStates as DiSt from map_simulator.utils import map_msg_to_numpy, map_msg_extent, mkdir_p # Use non-interactive plotting back-end due to issues with rospy.spin() matplotlib.use('SVG') class FMPPlotter: """ Class for plotting/coloring different statistics from the Full Map Posterior distribution and publishing them as images or saving them in files. """ def __init__(self): """ Constructor """ rospy.init_node('fmp_plot') # Object for pseudo-coloring and plotting the maps self._map_colorizer = MapColorizer() self._sub_topic_map_model = "map_model" self._sub_topic_fmp_alpha = "fmp_alpha" self._sub_topic_fmp_beta = "fmp_beta" self._map_model = None # TODO: this two guys: # do_img_raw = rospy.get_param("~img_raw" , False) # do_img_fmp = rospy.get_param("~img_fmp" , False) do_img_stat = rospy.get_param("~img_stat", False) do_img_mlm = rospy.get_param("~img_mlm", False) do_img_para = rospy.get_param("~img_para", False) self._pub_img = rospy.get_param("~pub_img", False) self._topic_prefix = rospy.get_param("~pub_topic_prefix", "/fmp_img/") self._save_img = rospy.get_param("~save_img", False) self._resolution = rospy.get_param("~resolution", 300) timestamp = datetime.datetime.now().strftime('%y%m%d_%H%M%S') path_prefix = rospy.get_param("~path_prefix", "exp") default_path = os.path.join(os.path.join(os.path.expanduser('~')), 'Desktop') default_path = os.path.join(default_path, 'FMP_img') default_path = os.path.join(default_path, path_prefix + "_" + timestamp) save_dir = rospy.get_param("~save_dir", default_path) save_dir = os.path.expanduser(save_dir) save_dir = os.path.expandvars(save_dir) save_dir = os.path.normpath(save_dir) self._save_dir = save_dir # Image config dictionary sub_img_stat_mean_cfg = {"key": "mean", "dir": os.path.join("stats", "mean"), "file_prefix": "mean", "topic": "stats/mean", "calc_f": self._calc_mean} sub_img_stat_var_cfg = {"key": "var", "dir": os.path.join("stats", "var"), "file_prefix": "var", "topic": "stats/var", "calc_f": self._calc_var} img_stat_cfg = {"do": do_img_stat, "img": [sub_img_stat_mean_cfg, sub_img_stat_var_cfg]} sub_img_mlm_cfg = {"key": "mlm", "dir": "mlm", "file_prefix": "mlm", "topic": "mlm", "calc_f": self._calc_mlm} img_mlm_cfg = {"do": do_img_mlm, "img": [sub_img_mlm_cfg]} sub_img_par_alpha_cfg = {"key": "alpha", "dir": os.path.join("param", "alpha"), "file_prefix": "alpha", "topic": "param/alpha", "calc_f": self._calc_para_alpha} sub_img_par_beta_cfg = {"key": "beta", "dir": os.path.join("param", "beta"), "file_prefix": "beta", "topic": "param/beta", "calc_f": self._calc_para_beta} img_par_cfg = {"do": do_img_para, "img": [sub_img_par_alpha_cfg, sub_img_par_beta_cfg]} self._img_cfg = { "stat": img_stat_cfg, "mlm": img_mlm_cfg, "par": img_par_cfg } fmp_param_sub_required = False # Queues for storing messages self._alpha_beta_dict = {} self._alpha_beta_queue = deque() # Max and Min dictionaries for stabilizing the color scales for continuous values self._max_values = {} self._min_values = {} # Create Publishers self._publishers = {} for img_set_key, img_set_cfg in self._img_cfg.items(): fmp_param_sub_required = fmp_param_sub_required or img_set_cfg['do'] if self._pub_img and img_set_cfg['do']: for img_cfg in img_set_cfg['img']: key = img_cfg['key'] topic = self._topic_prefix + img_cfg['topic'] self._publishers[key] = rospy.Publisher(topic, Image, latch=True, queue_size=1) something_to_do = (self._pub_img or self._save_img) and fmp_param_sub_required # Don't start the node if not needed... if not something_to_do: rospy.logerr("Nothing to do here! Why though?!?") rospy.logdebug("Setting values:") rospy.logdebug("\tpub_img: {}, save_img: {}".format(self._pub_img, self._save_img)) rospy.logdebug("\tdo_img_stat: {}, do_img_mlm: {}, do_img_para: {}".format(do_img_stat, do_img_mlm, do_img_para)) rospy.logdebug("\tsomething_to_do: {}".format(something_to_do)) rospy.signal_shutdown('Nothing to do') return # Create Subscribers # To map model rospy.Subscriber(self._sub_topic_map_model, mapModel, self._map_model_callback) # To alpha and beta parameters (if publishing or saving images, and at least one image is generated) if (self._pub_img or self._save_img) and fmp_param_sub_required: rospy.Subscriber(self._sub_topic_fmp_alpha, doubleMap, self._map2d_alpha_callback, queue_size=1) rospy.Subscriber(self._sub_topic_fmp_beta, doubleMap, self._map2d_beta_callback, queue_size=1) # Create save path if not exists if self._save_img and fmp_param_sub_required: if not os.path.exists(self._save_dir): mkdir_p(self._save_dir) self._busy = False # Thread lock flag for plot_from_queue rospy.Timer(rospy.Duration(1), self._plot_from_queue) rospy.spin() def _plot_from_queue(self, event): """ Function called periodically to check if there are any maps in the queue to be plotted. While there are still alpha and beta maps stored in the queue, it will plot the configured images. :param event: Caller event. Unused except for logging. :return: None """ if self._busy: rospy.loginfo("Another thread is already plotting. Caller: {}".format(event)) else: self._busy = True while self._alpha_beta_queue: seq = self._alpha_beta_queue.popleft() self._plot(seq, self._alpha_beta_dict[seq]) del self._alpha_beta_dict[seq] self._busy = False def _plot(self, seq, dic): """ Generates the desired images and plots for a given sequence of alpha and beta maps. :param seq: (int) Sequence number of the received maps :params dic: (dict) Dictionary containing the alpha and beta maps, as well as their prior values. It should be formatted as: dic = {'alpha': {'prior': (int), 'map': (2D np.ndarray)}, 'beta' : {'prior': (int), 'map': (2D np.ndarray)}} :return: None """ if not self._pub_img and not self._save_img: return extent_a = dic['alpha']['extent'] extent_b = dic['beta']['extent'] if extent_a != extent_b: raise ValueError("Map extent of alpha {} differs from beta {}!".format(extent_a, extent_b)) self._map_colorizer.set_wm_extent(extent_a) alpha = dic['alpha']['map'] + dic['alpha']['prior'] beta = dic['beta']['map'] + dic['beta']['prior'] for img_set_key, img_set_cfg in self._img_cfg.items(): if img_set_cfg['do']: rospy.loginfo('Plotting %s', img_set_key) for img_cfg in img_set_cfg['img']: img_key = img_cfg['key'] img_calc = img_cfg['calc_f'] rospy.loginfo("\tComputing continuous and discrete images for %s.", img_key) # Compute the images to plot using the configured calculation_function ('calc_f') img_cont, img_disc, ds_list, v_min, v_max, occ, log_scale = img_calc(alpha, beta) self._map_colorizer.set_disc_state_list(ds_list) self._map_colorizer.set_cont_bounds(img_cont, v_min=v_min, v_max=v_max, occupancy_map=occ, log_scale=log_scale) rgba_img = self._map_colorizer.colorize(img_cont, img_disc) del img_cont del img_disc if self._save_img: path = os.path.join(self._save_dir, img_cfg['dir']) if not os.path.exists(path): mkdir_p(path) filename = img_cfg['file_prefix'] + '_s' + str(seq) raw_filename = 'raw_' + filename + '.png' filename = filename + '.svg' mlp_path = os.path.join(path, filename) raw_path = os.path.join(path, raw_filename) fig, ax = plt.subplots(figsize=[20, 20]) ax.imshow(rgba_img, extent=extent_a) self._map_colorizer.draw_cb_cont(fig) if ds_list: self._map_colorizer.draw_cb_disc(fig) rospy.loginfo("\t\tSaving image %s to %s.", img_key, mlp_path) plt.savefig(mlp_path, bbox_inches='tight', dpi=self._resolution) plt.close() del fig del ax rospy.loginfo("\t\tSaving image %s to %s.", img_key, raw_path) plt.imsave(raw_path, rgba_img, vmin=0, vmax=1) plt.close() rospy.loginfo("\t\tImages saved.") if self._pub_img: publisher = self._publishers[img_key] rospy.loginfo("\t\tGenerating image message to %s.", img_key) rgba_img = 255 * rgba_img rgba_img = rgba_img.astype(np.uint8) image_msg_head = Header() image_msg_head.seq = seq image_msg_head.stamp = rospy.Time.now() image_msg_head.frame_id = 'map' br = CvBridge() image_msg = br.cv2_to_imgmsg(rgba_img, encoding="rgba8") del rgba_img image_msg.header = image_msg_head publisher.publish(image_msg) del image_msg rospy.loginfo("\t\tImage published.") def _map_model_callback(self, msg): """ Method called when receiving a map model type. It just sets the local field with the message's value. :param msg: (gmapping.mapModel) An integer stating the type of map model used by the SLAM algorithm and some constants for comparisons. :return: None """ mm = msg.map_model mm_str = '' if mm == mapModel.REFLECTION_MODEL: mm_str = 'Reflection Model' elif mm == mapModel.DECAY_MODEL: mm_str = 'Exponential Decay Model' else: rospy.logerr('No idea what kind of model %d is! Going with Reflection Model.', mm) mm = mapModel.REFLECTION_MODEL rospy.loginfo("Received Map Model: (%d, %s)", mm, mm_str) self._map_model = mm def _add_to_dict(self, a_b, msg): """ Adds the received map and prior to the object's buffer dictionary. :param a_b: (string) Indicates which of the parameters has been received: "alpha"|"beta" :param msg: (gmapping.doubleMap) Double Map message containing the prior and map parameters. :return: None """ seq = msg.header.seq map_dict = { a_b: { 'map': map_msg_to_numpy(msg), 'extent': map_msg_extent(msg), 'prior': msg.param } } if a_b == 'alpha': b_a = 'beta' else: b_a = 'alpha' rospy.loginfo('Received msg for {} with seq {}'.format(a_b, seq)) if seq in self._alpha_beta_dict: self._alpha_beta_dict[seq][a_b] = map_dict[a_b] if b_a in self._alpha_beta_dict[seq]: rospy.loginfo('Collected alpha/beta info for seq {}'.format(seq)) self._alpha_beta_queue.append(seq) else: self._alpha_beta_dict[seq] = map_dict def _map2d_alpha_callback(self, msg): """ Method called when receiving a map with the alpha parameters of the full posterior map distribution. It adds the received map to the buffer dictionary until both parameter maps have been received. :param msg: (gmapping.doubleMap) A floating point gmapping map message. :return: None """ self._add_to_dict('alpha', msg) def _map2d_beta_callback(self, msg): """ Method called when receiving a map with the beta parameters of the full posterior map distribution. It adds the received map to the buffer dictionary until both parameter maps have been received. :param msg: (gmapping.doubleMap) A floating point gmapping map message. :return: None """ self._add_to_dict('beta', msg) def _calc_mean(self, alpha, beta): """ Takes the alpha and beta parameter maps and computes the mean depending on the mapping model used. :param alpha: (nd.array) A 2D array containing the alpha parameters of the PDF of the map posterior. :param beta: (nd.array) A 2D array containing the beta parameters of the PDF of the map posterior. :return: (tuple) A tuple consisting of: * means (ma.array), * special-case discrete-valued means (ma.array), * list of special discrete states (list) * minimum continuous value (float) for color map scaling * maximum continuous value (float) for color map scaling * whether the map represents occupancy (bool) * whether the color scale should be logarithmic (bool) """ shape = alpha.shape v_min = 0 occ = True if self._map_model == mapModel.DECAY_MODEL: numerator = alpha denominator = beta undef_mask = (denominator == 0) zero_mask = (numerator == 0) all_mask = np.logical_or(undef_mask, zero_mask) numerator = ma.masked_array(numerator) numerator[all_mask] = ma.masked means = ma.divide(numerator, denominator) means_ds = ma.zeros(shape, dtype=np.int8) means_ds[undef_mask] = DiSt.UNDEFINED.value means_ds[zero_mask] = DiSt.ZERO.value means_ds[~all_mask] = ma.masked ds_list = [DiSt.UNDEFINED, DiSt.ZERO] v_max = None log_scale = True elif self._map_model == mapModel.REFLECTION_MODEL: denominator = alpha + beta undef_mask = (denominator == 0) numerator = ma.masked_array(alpha) numerator[undef_mask] = ma.masked means = ma.divide(numerator, denominator) means_ds = ma.zeros(shape, dtype=np.int8) means_ds[undef_mask] = DiSt.UNDEFINED.value means_ds[~undef_mask] = ma.masked ds_list = [DiSt.UNDEFINED] v_max = 1 log_scale = False else: means = ma.ones(shape) means_ds = None ds_list = [] v_max = None log_scale = False rospy.logerr('No valid map model defined!') return means, means_ds, ds_list, v_min, v_max, occ, log_scale def _calc_var(self, alpha, beta): """ Takes the alpha and beta parameter maps and computes the variance depending on the mapping model used. :param alpha: (nd.array) A 2D array containing the alpha parameters of the PDF of the map posterior. :param beta: (nd.array) A 2D array containing the beta parameters of the PDF of the map posterior. :return: (tuple) A tuple consisting of: * variances (ma.array), * special-case discrete-valued variances (ma.array), * list of special discrete states (list) * minimum continuous value (float) for color map scaling * maximum continuous value (float) for color map scaling * whether the map represents occupancy (bool) * whether the color scale should be logarithmic (bool) """ shape = alpha.shape v_min = 0 occ = False if self._map_model == mapModel.DECAY_MODEL: numerator = alpha denominator = np.multiply(beta, beta) undef_mask = (denominator == 0) zero_mask = (numerator == 0) all_mask = np.logical_or(undef_mask, zero_mask) numerator = ma.masked_array(numerator) numerator[all_mask] = ma.masked variances = ma.divide(numerator, denominator) vars_ds = ma.zeros(shape, dtype=np.int8) vars_ds[undef_mask] = DiSt.UNDEFINED.value vars_ds[zero_mask] = DiSt.ZERO.value vars_ds[~all_mask] = ma.masked ds_list = [DiSt.UNDEFINED, DiSt.ZERO] v_max = None log_scale = True elif self._map_model == mapModel.REFLECTION_MODEL: a_plus_b = alpha + beta numerator = np.multiply(alpha, beta) denominator = np.multiply(np.multiply(a_plus_b, a_plus_b), (a_plus_b + 1)) undef_mask = (denominator == 0) numerator = ma.masked_array(numerator) numerator[undef_mask] = ma.masked variances = ma.divide(numerator, denominator) vars_ds = ma.zeros(shape, dtype=np.int8) vars_ds[undef_mask] = DiSt.UNDEFINED.value vars_ds[~undef_mask] = ma.masked ds_list = [DiSt.UNDEFINED] v_max = None log_scale = False else: variances = ma.ones(shape) vars_ds = None ds_list = [] v_max = 1 log_scale = False rospy.logerr('No valid map model defined!') return variances, vars_ds, ds_list, v_min, v_max, occ, log_scale def _calc_mlm(self, alpha, beta): """ Takes the alpha and beta parameter maps and computes the most-likely map depending on the mapping model used. :param alpha: (nd.array) A 2D array containing the alpha parameters of the PDF of the map posterior. :param beta: (nd.array) A 2D array containing the beta parameters of the PDF of the map posterior. :return: (tuple) A tuple consisting of: * most-likely map values (ma.array), * special-case discrete-valued most-likely map values (ma.array), * list of special discrete states (list) * minimum continuous value (float) for color map scaling * maximum continuous value (float) for color map scaling * whether the map represents occupancy (bool) * whether the color scale should be logarithmic (bool) """ shape = alpha.shape numerator = ma.masked_array(alpha - 1) v_min = 0 if self._map_model == mapModel.REFLECTION_MODEL: denominator = alpha + beta - 2 undef_mask = (denominator == 0) n_undef_mask = ~undef_mask unif_mask = np.logical_and(alpha == 1, beta == 1) unif_mask = np.logical_and(unif_mask, n_undef_mask) bimod_mask = np.logical_and(alpha < 1, beta < 1) bimod_mask = np.logical_and(bimod_mask, n_undef_mask) mask = np.logical_or(undef_mask, unif_mask) mask = np.logical_or(mask, bimod_mask) numerator[mask] = ma.masked mlm = ma.divide(numerator, denominator) mlm_ds = ma.zeros(shape, dtype=np.int8) mlm_ds[~mask] = ma.masked mlm_ds[unif_mask] = DiSt.UNIFORM.value mlm_ds[undef_mask] = DiSt.UNDEFINED.value mlm_ds[bimod_mask] = DiSt.BIMODAL.value ds_list = [DiSt.UNDEFINED, DiSt.UNIFORM, DiSt.BIMODAL] v_max = 1 log_scale = False elif self._map_model == mapModel.DECAY_MODEL: denominator = beta undef_mask = np.logical_or(denominator == 0, alpha < 1) n_undef_mask = ~undef_mask zero_mask = np.logical_and(numerator == 0, n_undef_mask) all_mask =
np.logical_or(undef_mask, zero_mask)
numpy.logical_or
#!/usr/bin/env python """ TODO: Modify module doc. """ from __future__ import division __author__ = "<NAME>" __copyright__ = "Copyright 2013, The Materials Virtual Lab" __version__ = "0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "4/12/14" import inspect import itertools import numpy as np from pymatgen import Lattice import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from pymatgen.util.plotting_utils import get_publication_quality_plot class SpaceGroupVisualizer(object): def __init__(self): pass def plot(self, sg): cs = sg.crystal_system params = { "a": 10, "b": 12, "c": 14, "alpha": 20, "beta": 30, "gamma": 40 } cs = "rhombohedral" if cs == "Trigonal" else cs func = getattr(Lattice, cs.lower()) kw = {k: params[k] for k in inspect.getargspec(func).args} lattice = func(**kw) global plt fig = plt.figure(figsize=(10, 10)) #ax = fig.add_subplot(111, projection='3d') for i in range(2): plt.plot([0, lattice.matrix[i][0]], [0, lattice.matrix[i][1]], 'k-') plt.plot([lattice.matrix[0][0], lattice.matrix[0][0]], [0, lattice.matrix[1][1]], 'k-') plt.plot([0, lattice.matrix[0][0]], [lattice.matrix[1][1], lattice.matrix[1][1]], 'k-') l =
np.arange(0, 0.02, 0.02 / 100)
numpy.arange
import math import numpy as np from genetic_algorithm.ga import GA def objective_1(): cfg = {} cfg["name"] = "Sphere-2D" cfg["dimension"] = 2 cfg["obj_func"] = lambda x: np.sum(np.power(x, 2)) cfg["fitness_func"] = lambda x: np.sum(
np.power(x, 2)
numpy.power
#!/usr/bin/env python """Computes the raw detections using the DPM. Additionally, estimates 3D pose for each detection.""" import itertools import os import argparse import logging import math from collections import namedtuple from nyc3dcars import SESSION, Photo, Detection, Model, VehicleType, IMAGE_DIR from sqlalchemy import func from sqlalchemy.orm import joinedload import numpy import scipy.misc from celery.task import task import pygeo import pydro.io import pydro.features def in_range(val, low, high): """Checks if angle is within a certain range.""" low -= 1e-5 high += 1e-5 twopi = 2 * math.pi low = (low % twopi + twopi) % twopi val = (val % twopi + twopi) % twopi high = (high % twopi + twopi) % twopi while high < low: high += 2 * math.pi while val < low: val += 2 * math.pi return val < high def compute_car_pose(photo, bbox, angle, vehicle_types): """Compute 3D pose for 2D bounding box.""" camera_rotation = numpy.array([[photo.r11, photo.r12, photo.r13], [photo.r21, photo.r22, photo.r23], [photo.r31, photo.r32, photo.r33]]) camera_position = - \ camera_rotation.T.dot([[photo.t1], [photo.t2], [photo.t3]]) # Small correction factor computed from NYC3DCars annotation results. dataset_correction = numpy.array([ [photo.dataset.t1], [photo.dataset.t2], [photo.dataset.t3], ]) camera_position += dataset_correction # Just approximate it for this first calculation and correct it later. vehicle_height = 1.445 det_focal = photo.focal det_height = photo.height det_width = photo.width det_bottom = bbox.y2 * det_height det_top = bbox.y1 * det_height det_middle = (bbox.x1 + bbox.x2) / 2 * det_width new_dir = numpy.array([[(det_middle - det_width / 2) / det_focal], [(det_height / 2 - det_bottom) / det_focal], [-1]]) distance = vehicle_height / ((det_height / 2 - det_top) / det_focal - ( det_height / 2 - det_bottom) / det_focal) car_position_wrt_camera = distance * new_dir car_position = camera_rotation.T.dot(car_position_wrt_camera) car_ecef = car_position + camera_position car_lla = pygeo.ECEFToLLA(car_ecef.T) car_enu = pygeo.LLAToENU(car_lla).reshape((3, 3)) middle_x = (bbox.x1 + bbox.x2) / 2 middle_y = (bbox.y1 + bbox.y2) / 2 left_ray = numpy.array( [[(bbox.x1 * photo.width - det_width / 2) / det_focal], [(det_height / 2 - middle_y * photo.height) / det_focal], [-1]]) left_ray_enu = car_enu.T.dot(camera_rotation.T.dot(left_ray)) right_ray = numpy.array( [[(bbox.x2 * photo.width - det_width / 2) / det_focal], [(det_height / 2 - middle_y * photo.height) / det_focal], [-1]]) right_ray_enu = car_enu.T.dot(camera_rotation.T.dot(right_ray)) middle_ray = numpy.array( [[(middle_x * photo.width - det_width / 2) / det_focal], [(det_height / 2 - middle_y * photo.height) / det_focal], [-1]]) middle_ray_enu = car_enu.T.dot(camera_rotation.T.dot(middle_ray)) top_ray = numpy.array( [[(middle_x * photo.width - det_width / 2) / det_focal], [(det_height / 2 - bbox.y1 * photo.height) / det_focal], [-1]]) top_ray_enu = car_enu.T.dot(camera_rotation.T.dot(top_ray)) bottom_ray = numpy.array( [[(middle_x * photo.width - det_width / 2) / det_focal], [(det_height / 2 - bbox.y2 * photo.height) / det_focal], [-1]]) bottom_ray_enu = car_enu.T.dot(camera_rotation.T.dot(bottom_ray)) middle_angle = math.atan2(middle_ray_enu[1], middle_ray_enu[0]) right_angle = math.atan2(right_ray_enu[1], right_ray_enu[0]) left_angle = math.atan2(left_ray_enu[1], left_ray_enu[0]) if not angle: total_angle = middle_angle else: total_angle = middle_angle + angle for vehicle_type in vehicle_types: half_width = 0.3048 * vehicle_type.tight_width / 2 half_length = 0.3048 * vehicle_type.tight_length / 2 height = 0.3048 * vehicle_type.tight_height pointa = numpy.array([[half_width], [half_length]]) pointb = numpy.array([[half_width], [-half_length]]) pointc = numpy.array([[-half_width], [-half_length]]) pointd =
numpy.array([[-half_width], [half_length]])
numpy.array
import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch import torch.tensor as ts import mdn_base from data_handler import Data_Handler as DH from misc_mixture_density_network import Mixture_Density_Network as MDN from myfilter import KalmanFilter, model_CV, fill_diag print("Program: evaluation\n") data_path = './data/eval_data1.csv' # eval_data1 or eval_data1 model_path = './model/Model_CASE_p5m20_512_256_256_128_64' df = pd.read_csv(data_path) # for test data = df.to_numpy()[:,:-2] labels = df.to_numpy()[:,-2:] N = data.shape[0] print('There are {} samples.'.format(N)) # Don't change these parameters maxT = 20 past = 5 # take the past instants num_gaus = 10 # the number of Gaussian components layer_param = [512, 256, 256, 128, 64] # Body architecture (MLP layers) data_shape = (1, past*2+4) label_shape = (1, 2) # Load the MDN model myMDN = MDN(data_shape, label_shape, num_gaus=num_gaus, layer_param=layer_param, verbose=False) myMDN.build_Network() model = myMDN.model model.load_state_dict(torch.load(model_path)) model.eval() Loss_MDN = [] Loss1_MDN = [] Loss_KF = [] # fig,ax = plt.subplots() for idx in range(N): if (idx%2000 == 0): print("\r{}/{} ".format(idx,N), end='') sample = data[idx,:] # list: [x_h, y_h, x_t, y_t, T, type] label = labels[idx,:] ### Kalman filter X0 = np.array([[sample[0],sample[1],0,0]]).transpose() kf_model = model_CV(X0, Ts=1) P0 = fill_diag((1,1,1,1)) Q = fill_diag((1,1,1,1)) R = fill_diag((1,1)) KF = KalmanFilter(kf_model,P0,Q,R) Y = [np.array(sample[2:4]), np.array(sample[4:6]), np.array(sample[6:8]), np.array(sample[8:10]), np.array(sample[10:12])] for kf_i in range(len(Y)+int(sample[-2])): if kf_i<len(Y): KF.one_step(np.array([[0]]), np.array(Y[kf_i]).reshape(2,1)) else: KF.predict(np.array([[0]]),evolve_P=False) KF.append_state(KF.X) ### MDN beta_test = ts(np.tile(np.array([sample]), (1,1)).astype(np.float32)) alp, mu, sigma = model(beta_test) alp1, mu1, sigma1 = mdn_base.take_mainCompo(alp, mu, sigma, main=1) alp, mu, sigma = mdn_base.take_mainCompo(alp, mu, sigma, main=3) alp, mu, sigma = mdn_base.take_goodCompo(alp, mu, sigma, thre=0.1) ### Loss _, loss_KF = mdn_base.loss_MaDist(ts([1]), ts([KF.X[:2].reshape(-1)]), ts([[KF.P[0,0],KF.P[1,1]]]), ts(label)) Loss_KF.append(loss_KF.detach().float().item()) _, loss_MDN = mdn_base.loss_MaDist(alp[0],mu[0],sigma[0],ts(label)) Loss_MDN.append(loss_MDN.detach().float().item()) _, loss1_MDN = mdn_base.loss_MaDist(alp1[0],mu1[0],sigma1[0],ts(label)) Loss1_MDN.append(loss1_MDN.detach().float().item()) if idx==5000: fig, ax1 = plt.subplots() h1 = ax1.hist(np.array(Loss_KF)[np.array(Loss_KF)<10], bins=20, alpha=0.5, label='KF') h2 = ax1.hist(np.array(Loss_MDN)[np.array(Loss_MDN)<10], bins=20, alpha=0.5, label='MDN') h3 = ax1.hist(
np.array(Loss1_MDN)
numpy.array
import warnings import pytest import numpy as np import os,sys,inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) sys.path.insert(0,parentdir) from ADPYNE.AutoDiff import AutoDiff, vectorize import ADPYNE.elemFunctions as ef # helper function tests def test_convertNonArray_array(): AD = AutoDiff(np.array([[1,2]]),1) assert np.all(np.equal(AD.val, np.array([[1,2]]))) def test_convertNonArray_num(): AD = AutoDiff(1,1) assert np.all(np.equal(AD.val, np.array([[1]]))) def test_calcJacobian_array(): AD = AutoDiff(1,2) assert np.all(np.equal(AD.jacobian, np.array([[1]]))) def test_calcJacobian_array_withJ(): AD = AutoDiff(1,1,1,0,np.array([[1]])) assert np.all(np.equal(AD.jacobian, np.array([[1]]))) def test_calcJacobian_vector(): AD = AutoDiff(4, np.array([[2, 1]]).T, n=2, k=1) assert np.all(np.equal(AD.jacobian, np.array([[1, 0]]))) AD = AutoDiff(3, np.array([[1, 2]]).T, n=2, k=2) assert np.all(np.equal(AD.jacobian, np.array([[0, 1]]))) def test_calcDerivative(): AD = AutoDiff(4, 2, n=4, k=3) assert np.all(np.equal(AD.der, np.array([[0, 0, 2, 0]]))) # addition tests def test_add_ad_results(): # single input cases # positive numbers x = AutoDiff(5, 2) f = x + x assert f.val == 10 assert f.der == 4 assert f.jacobian == 2 # negative numbers y = AutoDiff(-5, 2) f = y + y assert f.val == -10 assert f.der == 4 assert f.jacobian == 2 def test_add_vector_results(): x = AutoDiff(np.array([[3],[1]]), np.array([[2, 1]]).T, 2, 1) y = AutoDiff(np.array([[2],[-3]]), np.array([[3, 2]]).T, 2, 2) f = x + y assert np.all(f.val == np.array([[5], [-2]])) assert np.all(f.der == np.array([[2, 3], [1, 2]])) assert np.all(f.jacobian == np.array([[1, 1], [1, 1]])) def test_add_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x + 3 assert f.val == 8 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = x + 3 assert f.val == -2 assert f.der == 2 assert f.jacobian == 1 def test_add_constant_vector_results(): x = AutoDiff(np.array([[1, 3]]).T, np.array([[2, 1]]).T, 2, 1) f = x + 3 assert np.all(f.val == np.array([[4, 6]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # reverse addition tests def test_radd_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = 3 + x assert f.val == 8 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = 3 + x assert f.val == -2 assert f.der == 2 assert f.jacobian == 1 def test_radd_constant_vector_results(): x = AutoDiff(np.array([[1, 3]]).T, np.array([[2, 1]]).T, 2, 1) f = 3 + x assert np.all(f.val == np.array([[4, 6]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # subtraction tests def test_sub_ad_results(): # single input cases # positive numbers x = AutoDiff(5, 2) f = x - x assert f.val == 0 assert f.der == 0 assert f.jacobian == 0 # negative numbers y = AutoDiff(-5, 2) f = y - y assert f.val == 0 assert f.der == 0 assert f.jacobian == 0 def test_sub_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) y = AutoDiff([2, -3], [3, 2], 2, 2) f = x - y assert np.all(f.val == np.array([[1], [4]])) assert np.all(f.der == np.array([[2, -3], [1, -2]])) assert np.all(f.jacobian == np.array([[1, -1], [1, -1]])) def test_sub_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x - 3 assert f.val == 2 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = x - 3 assert f.val == -8 assert f.der == 2 assert f.jacobian == 1 def test_sub_constant_vector_results(): x = AutoDiff([1, 3], [2, 1], 2, 1) f = x - 3 assert np.all(f.val == np.array([[-2, 0]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # reverse subtraction tests def test_rsub_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = 3 - x assert f.val == -2 assert f.der == 2 assert f.jacobian == 1 # negative numbers x = AutoDiff(-5, 2) f = 3 - x assert f.val == 8 assert f.der == 2 assert f.jacobian == 1 def test_rsub_constant_vector_results(): x = AutoDiff([1, 3], [2, 1], 2, 1) f = 3 - x assert np.all(f.val == np.array([[2, 0]]).T) assert np.all(f.der == np.array([[2, 0], [1, 0]])) assert np.all(f.jacobian == np.array([[1, 0], [1, 0]])) # multiplication tests def test_mul_ad_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x * x assert f.val == 25 assert f.der == 20 assert f.jacobian == 10 # negative numbers x = AutoDiff(-5, 2) f = x * x assert f.val == 25 assert f.der == -20 assert f.jacobian == -10 def test_mul_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) y = AutoDiff([2, -3], [1, 2], 2, 2) f = x*y assert np.all(f.val == np.array([[6, -3]]).T) assert np.all(f.der == np.array([[4, 3], [-3, 2]])) assert np.all(f.jacobian == np.array([[2, 3], [-3, 1]])) def test_mul_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x * 3 assert f.val == 15 assert f.der == 6 assert f.jacobian == 3 # negative numbers x = AutoDiff(-5, 2) f = x * 3 assert f.val == -15 assert f.der == 6 assert f.jacobian == 3 def test_mul_constant_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) f = x * 3 assert np.all(f.val == np.array([[9, 3]]).T) assert np.all(f.der == np.array([[6, 0], [3, 0]])) assert np.all(f.jacobian == np.array([[3, 0], [3, 0]])) # reverse multiplication tests def test_rmul_constant_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = 3 * x assert f.val == 15 assert f.der == 6 assert f.jacobian == 3 # negative numbers x = AutoDiff(-5, 2) f = 3 * x assert f.val == -15 assert f.der == 6 assert f.jacobian == 3 def test_rmul_constant_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) f = 3 * x assert np.all(f.val == np.array([[9, 3]]).T) assert np.all(f.der == np.array([[6, 0], [3, 0]])) assert np.all(f.jacobian == np.array([[3, 0], [3, 0]])) # division tests def test_truediv_ad_results(): # single input case # positive numbers x = AutoDiff(5, 2) f = x / x assert f.val == 1 assert f.der == 0 assert f.jacobian == 0 # negative numbers x = AutoDiff(-5, 2) f = x / x assert f.val == 1 assert f.der == 0 assert f.jacobian == 0 def test_truediv_vector_results(): x = AutoDiff([3, 1], [2, 1], 2, 1) y = AutoDiff([2, -3], [1, 2], 2, 2) f = x/y assert np.all(f.val == np.array([[3/2, -1/3]]).T) assert np.all(f.der == np.array([[1, -0.75], [-1/3, -2/9]])) assert np.all(f.jacobian == np.array([[0.5, -0.75], [-1/3, -1/9]])) def test_truediv_constant_results(): # single input case # positive numbers x = AutoDiff(9, 6) f = x / 3 assert f.val == 3 assert f.der == 2 assert f.jacobian == (1/3) # negative numbers x = AutoDiff(-9, 6) f = x / 3 assert f.val == -3 assert f.der == 2 assert f.jacobian == (1/3) def test_truediv_constant_vector_results(): x = AutoDiff([-9, 3], [2, 1], 2, 1) f = x / 3 assert np.all(f.val == np.array([[-3, 1]]).T) assert np.all(f.der == np.array([[2/3, 0], [1/3, 0]])) assert np.all(f.jacobian == np.array([[1/3, 0], [1/3, 0]])) # reverse division tests def test_rtruediv_constant_results(): # single input case # positive numbers x = AutoDiff(3, 2) f = 6 / x assert f.val == 2 assert f.der == -4/3 assert f.jacobian == -2/3 # negative numbers x = AutoDiff(-3, 2) f = 6 / x assert f.val == -2 assert f.der == -4/3 assert f.jacobian == -2/3 def test_rtruediv_constant_vector_results(): x = AutoDiff([-9, 3], [2, 1], 1, 1) f = 3 / x assert np.all(f.val == np.array([[-1/3, 1]]).T) assert np.all(f.der == np.array([[-3*((-9)**(-2))*2], [-3*((3)**(-2))*1]])) assert np.all(f.jacobian == np.array([[-3*((-9)**(-2))*1], [-3*((3)**(-2))*1]])) # power tests def test_pow_ad_results(): x = AutoDiff(2, 1) f = x**x assert f.val == 4 assert f.der == 4 + np.log(16) assert f.jacobian == 4 + np.log(16) def test_rpow_vector_results(): x = AutoDiff([4, 3], [2, 1], 2, 1) y = AutoDiff([2, 1], [1, 3], 2, 2) f = x**y assert np.all(f.val == np.array([[4**2, 3**1]]).T) assert np.all(f.der == np.array([[2*(4**(2-1))*2, (4**2) * np.log(4) * 1], [1*(3**(1-1))*1, (3**1) * np.log(3)*3]])) assert np.all(f.jacobian == np.array([[2*(4**(2-1))*1, (4**2) * np.log(4) * 1], [1*(3**(1-1))*1, (3**1) * np.log(3)*1]])) def test_pow_constant_results(): # positive numbers x = AutoDiff(5, 2) f = x**3 assert f.val == 125 assert f.der == 150 assert f.jacobian == 75 # negative numbers x = AutoDiff(-5, 2) f = x**3 assert f.val == -125 assert f.der == 150 assert f.jacobian == 75 def test_pow_constant_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = x**3 assert np.all(f.val == np.array([[4**3, 3**3]]).T) assert np.all(f.der == np.array([[3*(4**2)*2], [3*(3**2)*1]])) assert np.all(f.jacobian == np.array([[3*(4**2)*1], [3*(3**2)*1]])) # reverse power tests def test_rpow_constant_results(): x = AutoDiff(5, 2) f = 3**x assert f.val == 243 assert f.der == 486 * np.log(3) assert f.jacobian == 243 * np.log(3) def test_rpow_constant_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = 3**x assert np.all(f.val == np.array([[3**(4), 3**3]]).T) assert np.all(f.der == np.array([[(3**(4))*2 * np.log(3)], [(3**(3))*1 * np.log(3)]])) assert np.all(f.jacobian == np.array([[(3**(4))*1 * np.log(3)], [(3**(3))*1 * np.log(3)]])) # positive tests def test_pos_results(): # positive numbers x = AutoDiff(5, 2) f = + x assert f.val == 5 assert f.der == 2 assert f.jacobian == 1 # negative numbers y = AutoDiff(-5, 2) f = + y assert f.val == -5 assert f.der == 2 assert f.jacobian == 1 def test_pos_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = + x assert np.all(f.val == np.array([[4, 3]]).T) assert np.all(f.der == np.array([[2], [1]])) assert np.all(f.jacobian == np.array([[1], [1]])) y = AutoDiff([-4, -3], [2, 1], 1, 1) g = + y assert np.all(g.val == np.array([[-4, -3]]).T) assert np.all(g.der == np.array([[2], [1]])) assert np.all(g.jacobian == np.array([[1], [1]])) # negation tests def test_neg_results(): # positive numbers x = AutoDiff(5, 2) f = - x assert f.val == -5 assert f.der == -2 assert f.jacobian == -1 # negative numbers y = AutoDiff(-5, 2) f = - y assert f.val == 5 assert f.der == -2 assert f.jacobian == -1 def test_neg_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = - x assert np.all(f.val == np.array([[-4, -3]]).T) assert np.all(f.der == np.array([[-2], [-1]])) assert np.all(f.jacobian == np.array([[-1], [-1]])) y = AutoDiff([-4, -3], [2, 1], 1, 1) g = - y assert np.all(g.val == np.array([[4, 3]]).T) assert np.all(g.der == np.array([[-2], [-1]])) assert np.all(g.jacobian == np.array([[-1], [-1]])) def test_neg_constant_results(): x = 3 f = - x assert f == -3 # absolute value tests def test_abs_results(): # positive numbers x = AutoDiff(5, 2) f = abs(x) assert f.val == 5 assert f.der == 2 assert f.jacobian == 1 # negative numbers y = AutoDiff(-5, 2) f = abs(y) assert f.val == 5 assert f.der == -2 assert f.jacobian == -1 def test_abs_vector_results(): x = AutoDiff([4, 3], [2, 1], 1, 1) f = abs(x) assert np.all(f.val == np.array([[4, 3]]).T) assert np.all(f.der == np.array([[2], [1]])) assert np.all(f.jacobian == np.array([[1], [1]])) y = AutoDiff([-4, -3], [2, 1], 1, 1) g = abs(y) assert np.all(g.val == np.array([[4, 3]]).T) assert np.all(g.der == np.array([[-2], [-1]])) assert np.all(g.jacobian == np.array([[-1], [-1]])) def test_abs_constant_results(): x = -3 f = abs(x) assert f == 3 # Comparison tests def test_eq_results(): x = AutoDiff(5, 2) y = AutoDiff(5, 2) z = AutoDiff(5, 1) assert x == y assert (x == z) == False def test_eq_vector_results(): w = AutoDiff([4, 5], [2, 1], 1, 1) x = AutoDiff([4, 3], [2, 1], 1, 1) y = AutoDiff([4, 3], [2, 1], 1, 1) z = AutoDiff([4, 5], [2, 1], 1, 1) assert np.all(x == y) assert np.all(x==z) == False assert np.all(w==x) == False def test_eq_constant(): x = AutoDiff(5, 2) assert (x == 5) == False def test_ne_results(): x = AutoDiff(5, 2) y = AutoDiff(5, 2) z = AutoDiff(5, 1) assert x != z assert (x != y) == False def test_neq_vector_results(): w = AutoDiff([4, 5], [2, 1], 1, 1) x = AutoDiff([4, 3], [2, 1], 1, 1) y = AutoDiff([4, 3], [2, 1], 1, 1) z = AutoDiff([4, 5], [2, 1], 1, 1) assert np.all(x != y) == False assert
np.all(x!=z)
numpy.all
import pickle import os from typing import Set import torch import torch.nn import numpy as np # from numpy import random import random import scipy.signal from collections import deque import matplotlib.pyplot as plt #from running_state import ZFilter import math import logging def set_random_seed(seed: int, using_cuda: bool = False) -> None: """ Seed the different random generators :param seed: (int) :param using_cuda: (bool) """ # Seed python RNG random.seed(seed) # Seed numpy RNG np.random.seed(seed) # seed the RNG for all devices (both CPU and CUDA) torch.manual_seed(seed) if using_cuda: torch.cuda.manual_seed(seed) # Deterministic operations for CuDNN, it may impact performances torch.backends.cudnn.deterministic = True # torch.backends.cudnn.benchmark = False def dump_pickle(saved_fn, variable): with open(saved_fn, 'wb') as ff: pickle.dump(variable, ff) def load_pickle(fn): if not os.path.exists(fn): print(fn, " notexist") return with open(fn, "rb") as f: lookup = pickle.load(f) # print(fn) return lookup # InfoGail related: def discount(x, gamma): assert x.ndim >= 1 #print("discount filter:", x) #print("::::::::", scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1]) return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1] # ZFilter def gauss_prob_np(mu, logstd, x): std = np.exp(logstd) var = np.square(std) gp = np.exp(-np.square(x - mu)/(2*var)) / ((2*np.pi)**.5 * std) return np.prod(gp, axis=1) def gauss_prob(mu, logstd, x): std = torch.exp(logstd) var = torch.square(std) gp = torch.exp(-torch.square(x - mu)/(2*var)) / ((2*np.pi)**.5 * std) return torch.reduce_prod(gp, [1]) def normal_entropy(std): var = std.pow(2) entropy = 0.5 + 0.5 * torch.log(2 * var * math.pi) return entropy.sum(1, keepdim=True) def normal_log_density(x, mean, log_std, std): # pylint: disable=not-callable var = std.pow(2) torch_pi = torch.asin(torch.tensor(1.)) log_density = -(x - mean).pow(2) / ( 2 * var) - 0.5 * torch.log(2 * torch_pi) - log_std return log_density.sum(1, keepdim=True) # def normal_log_density(x, mean, log_std, std): # var = std.pow(2) # log_density = -(x - mean).pow(2) / ( # 2 * var) - 0.5 * math.log(2 * math.pi) - log_std # return log_density.sum(1, keepdim=True) def normal_log_density_fixedstd(x, mean): std = torch.from_numpy(
np.array([2, 2])
numpy.array
import numpy as np import csv import math import matplotlib.pyplot as plt import pandas as pd import random plt.ion() class Waypoints: file_mapping = { "offroad_1": 'Offroad_1.csv', "offroad_2": 'Offroad_2.csv', "offroad_3": 'Offroad_3.csv', "offroad_4": 'Offroad_4.csv', "offroad_5": 'Offroad_5.csv', "offroad_6": 'Offroad_6.csv', "offroad_7": 'Offroad_7.csv', "offroad_8": 'Offroad_8.csv' } def __init__(self, city_name): try: self.raw_waypoints = pd.read_csv("carla_game/waypoints/" + self.file_mapping[city_name.lower()]) except: self.raw_waypoints = pd.read_csv(self.file_mapping[city_name.lower()]) self.city_name = city_name self.city_num = int(self.city_name[-1]) #process cm to m self.point_columns_labels = [] for col in self.raw_waypoints.columns: if '_id' not in str(col): self.point_columns_labels.append(str(col)) self.raw_waypoints[self.point_columns_labels] /= 100 nparray = self.raw_waypoints[self.point_columns_labels].to_numpy() self.total_min = np.min(nparray) self.total_max = np.max(nparray) #nums self.points_num = len(self.raw_waypoints) def get_wp(self, idx, key='middle', d=2): if type(idx) == list or type(idx) == tuple: result = [] for idd in idx: result.append(self.get_wp(idd)) return result else: point = self.raw_waypoints.iloc[idx] data = [] for xyz in ['.x', '.y', '.z']: data.append(point[key+xyz]) data = data[:d] return data def get_init_pos(self): index = random.randint(0, self.points_num - 1) point = self.raw_waypoints.iloc[index] idxs = self.get_nearest_waypoints_idx(index) prev, next = idxs[random.randint(0, len(idxs) - 1)] yaw = get_degree(self.get_wp(prev[-1]), self.get_wp(next[0])) init_pos = (point["middle.x"], point["middle.y"], point["middle.z"], yaw) paths = self.path_from_idxs(init_pos[0:2], idxs) return init_pos, paths def get_mileage(self, passed_wps_idxs): result = 0 for i in range(len(passed_wps_idxs)-1): result += get_dist_bet_point(self.get_wp(passed_wps_idxs[i]), self.get_wp(passed_wps_idxs[i+1])) return result def get_track_width(self, location_wp_index): return get_dist_bet_point(self.get_wp(location_wp_index, key='side1'), self.get_wp(location_wp_index, key='side2')) def get_nearest_waypoints_idx(self, location_wp_index, k=10): raise NotImplementedError def get_all_wps(self): result = [] for i in range(self.points_num): result.append(self.get_wp(i)) result.append(self.get_wp(i, key='side1')) result.append(self.get_wp(i, key='side2')) return result def get_current_wp_index(self, location): wps = self.raw_waypoints[["middle.x", "middle.y"]].values return find_nearest_waypoints(wps, location, 1)[0] def path_from_idxs(self, location, idxs): paths = [] for prev, next in idxs: temp = { "prev_wps": np.asarray(self.get_wp(prev)), "next_wps": np.asarray(self.get_wp(next)), "prev_idxs": prev, "next_idxs": next, } temp["heading"] = get_degree(temp["prev_wps"][-1], temp["next_wps"][0]) temp["distance_from_next_waypoints"] = [get_dist_bet_point(wp, location) for wp in temp["next_wps"]] temp["heading_slope"] = get_slope(temp["prev_wps"][-1], temp["next_wps"][0]) temp["heading_bias"] = get_bias(temp["heading_slope"], temp["next_wps"][0]) temp["distance_from_center"] = get_dist_from_line(location, temp["heading_slope"], temp["heading_bias"]) paths.append(temp) return paths def get_paths(self, location, location_wp_index, prev_location_wp_index): idxs = self.get_prev_next_waypoints_idx(location_wp_index, prev_location_wp_index) return self.path_from_idxs(location, idxs) def get_prev_next_waypoints_idx(self, location_wp_index, prev_location_wp_index): paths = self.get_nearest_waypoints_idx(location_wp_index) if any([prev_location_wp_index in prev for prev, next in paths]): pass elif any([prev_location_wp_index in next for prev, next in paths]): # reverse paths for i in range(len(paths)): prev, next = paths[i] paths[i] = list(reversed(next)), list(reversed(prev)) ''' else: raise RuntimeError("Worng location_wp_index, prev_location_wp_index : {}, {}".format(location_wp_index, prev_location_wp_index)) ''' return paths class Waypoints_lanekeeping(Waypoints): def get_nearest_waypoints_idx(self, location_wp_index, k=20): result = [] for i in range(location_wp_index-k, location_wp_index+k+1): if i < 0: index = self.points_num + i else: index = i index = index % self.points_num result.append(index) return [[result[:k], result[k+1:]]] class Waypoints_forked(Waypoints): def __init__(self, city_name): super(Waypoints_forked, self).__init__(city_name) self.groups_num = len(set(self.raw_waypoints["group_id"])) # gather indexs by path self.wp_idxs_by_path = [] for gid in range(self.groups_num): temp = [] for i in range(self.points_num): point = self.raw_waypoints.iloc[i] if point["group_id"] == gid: temp.append(i) self.wp_idxs_by_path.append(temp) def get_nearest_waypoints_idx(self, location_wp_index): for path in self.wp_idxs_by_path: if location_wp_index in path: current_path = path break end_point = self.raw_waypoints.iloc[current_path[-1]] start_point = self.raw_waypoints.iloc[current_path[0]] front_paths = [] end_paths = [] #get available paths. for i in range(self.points_num): if end_point["inter_id"] == self.raw_waypoints.iloc[i]["inter_id"]\ and end_point["group_id"] != self.raw_waypoints.iloc[i]["group_id"]: for path in self.wp_idxs_by_path: if i in path: temp_path = path if path[-1] == i: temp_path.reverse() elif path[0] == i: pass else: print(current_path, path, i, end_point["inter_id"]) assert False, "invaild waypoints csv" front_paths.append(temp_path) elif start_point["inter_id"] == self.raw_waypoints.iloc[i]["inter_id"]\ and start_point["group_id"] != self.raw_waypoints.iloc[i]["group_id"]: for path in self.wp_idxs_by_path: if i in path: temp_path = path if path[0] == i: temp_path.reverse() elif path[-1] == i: pass else: print(current_path, path, i, start_point["inter_id"]) assert False, "invaild waypoints csv" end_paths.append(temp_path) #set points seq through heading current_idx = current_path.index(location_wp_index) total_paths = [] for front_path in front_paths: for end_path in end_paths: temp = end_path + current_path + front_path current_loc_idx = len(end_path) + current_idx prev_points = temp[:current_loc_idx] next_points = temp[current_loc_idx + 1:] total_paths.append([prev_points, next_points]) #remove overlap for i in range(len(total_paths)): total_paths[i] = list(total_paths[i]) total_paths[i][0] = tuple(total_paths[i][0]) total_paths[i][1] = tuple(total_paths[i][1]) total_paths[i] = tuple(total_paths[i]) total_paths = list(set(tuple(total_paths))) return total_paths def get_waypoints_manager(city_name): if int(city_name[-1]) > 4: return Waypoints_forked(city_name) else: return Waypoints_lanekeeping(city_name) class Animator: def __init__(self, figsize=(10, 10), lims=(-400, 400)): self.fig, self.ax = plt.subplots(figsize=figsize) self.ax.set_xlim(lims) # for legend, expand y max limit self.ax.set_ylim([lims[0], lims[1]+70]) self.points_controller = {} self.linear_controller = {} def plot_points(self, dictt): ''' dictt[key] = [array, dotsize] ''' for key in dictt: if key in self.points_controller.keys(): self.points_controller[key].set_data(dictt[key][0][:, 1], dictt[key][0][:, 0]) else: self.points_controller[key] = plot_points(* [self.ax]+dictt[key]+[key]) def plot_linears(self, dictt): ''' dictt[key] = [slope, bias, minv, maxv] ''' for key in dictt: if key in self.linear_controller.keys(): x, y = get_dots_from_linear(*dictt[key]) self.linear_controller[key].set_data(y, x) else: self.linear_controller[key] = plot_linear(* [self.ax]+dictt[key]+[key]) def update(self): self.ax.legend(fontsize=10, loc='upper left') self.fig.canvas.draw() def __del__(self): plt.close(self.fig) def plot_points(ax, array, dotsize, label): data_setter = ax.plot( array[:, 1], array[:, 0], marker='o', linestyle='', markersize=dotsize, label=label ) return data_setter[0] def get_dots_from_linear(slope, bias, minv, maxv): linear = lambda x: x * slope + bias width = maxv - minv x = np.linspace(minv, maxv, width) y = linear(x) return x, y def plot_linear(ax, slope, bias, minv, maxv, label=''): x, y = get_dots_from_linear(slope, bias, minv, maxv) return ax.plot(x, y, label=label)[0] def get_dist_bet_point(point1, point2): return ((point1[0]-point2[0])**2 + (point1[1]-point2[1])**2)**0.5 def get_dist_from_line(point, slope, b): x, y = point[0], point[1] ax, by, c = slope, -1, b return abs(ax*x + by*y + c)/(ax**2 + by**2)**(1/2) def get_slope(point1, point2): return (point1[1] - point2[1])/(point1[0] - point2[0]) def get_vertical_slope(point1, point2): return -1/get_slope(point1, point2) def get_bias(slope, point): b = -slope*point[0] + point[1] return b def sign(num): if num==0: return 0 result = int(num/abs(num)) assert result==1 or result==-1, "sign error | num:{}, result:{}".format(num, result) return result def find_nearest_waypoints(waypoints, location, k): num_wps = len(waypoints) repeated_location = np.repeat(np.expand_dims(location, 0), num_wps, axis=0) mse = np.sum((repeated_location - waypoints)**2, axis = 1) idx = np.argpartition(mse, k) return idx[:k] def load_waypoints(path): txts = [] with open(path,'r') as f: reader = csv.reader(f) for txt in reader: txts.append(txt) x_idx = txts[0].index('location.x') y_idx = txts[0].index('location.y') waypoints = np.array([[i[x_idx], i[y_idx]] for i in txts[1:]], dtype=np.float32) return waypoints def get_vector_from_degree(degree): radian = degree / 180 * 3.14 return np.array([math.cos(radian), math.sin(radian)]) def linear_transform(basis_vector, vector): transformer = np.zeros((2, 2)) transformer[0][0] = basis_vector[0] transformer[0][1] = basis_vector[1] transformer[1][0] = -basis_vector[1] transformer[1][1] = basis_vector[0] transformer =
np.linalg.inv(transformer)
numpy.linalg.inv
""" Copyright 2015 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import heapq import random import mmh3 import numpy as np from sklearn.feature_extraction import FeatureHasher from .feature_extraction import * COUNTS_FEATURE_TYPE = "allele-counts" CATEGORIES_FEATURE_TYPE = "genotype-categories" RESERVOIR_SAMPLING = "reservoir" FEATURE_HASHING = "feature-hashing" BOTTOMK_SKETCHING = "bottom-k" class FeatureHashingAccumulator(object): def __init__(self, n_features, n_samples): self.n_features = n_features self.n_samples = n_samples def transform(self, stream): feature_columns = dict() for feature_idx, ((chrom, pos, gt), column) in enumerate(stream, start=1): feature_name = "{}_{}_{}".format(chrom, pos, gt) # this will cause collisions. that's okay -- we want that. hash_ = abs(mmh3.hash(feature_name)) % self.n_features # allows for sparse storage if hash_ in feature_columns: feature_columns[hash_] += np.array(column) else: feature_columns[hash_] = np.array(column) if feature_idx % 10000 == 0: print("Chunk", feature_idx // 10000, len(feature_columns)) # need to transpose, otherwise we get (n_features, n_individuals) instead feature_matrix = np.array(list(feature_columns.values())).T print(feature_matrix.shape) return feature_matrix class BottomKAccumulator(object): """ Online sampling of columns using bottom-k sketching """ def __init__(self, n_features): self.n_features = n_features def transform(self, stream): feature_columns = [] for feature_idx, ((chrom, pos, gt), column) in enumerate(stream): feature_name = "{}_{}_{}".format(chrom, pos, gt) # Python's built-in heap is a min heap, so it # will keep the largest elements. In practice, # this probably doesn't matter but we are going # to negate the hashes anyway so it keeps the # smallest elements. Note that for signed ints, # 0 replaces one of the positive values so we can # convert any positive value to negative without an # overflow but not the other way around # Also, mmh3.hash returns a 32-bit signed int hash_ = abs(mmh3.hash(feature_name)) # we use the feature_idx to break ties since numpy arrays # are not comparable (sortable) if len(feature_columns) < self.n_features: heapq.heappush(feature_columns, (hash_, feature_idx, column)) else: heapq.heapreplace(feature_columns, (hash_, feature_idx, column)) if feature_idx % 10000 == 0: print("Chunk", feature_idx // 10000, len(feature_columns)) # drop the hash and feature idx feature_columns = [column for _, _, column in feature_columns] # need to transpose, otherwise we get (n_features, n_individuals) instead feature_matrix =
np.array(feature_columns)
numpy.array
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED)
np.random.shuffle(idx)
numpy.random.shuffle
""" CBMA methods from the multilevel kernel density analysis (MKDA) family """ import logging import multiprocessing as mp import numpy as np import nibabel as nib from tqdm.auto import tqdm from scipy import ndimage, special from nilearn.masking import apply_mask, unmask from statsmodels.sandbox.stats.multicomp import multipletests from .kernel import MKDAKernel, KDAKernel from ...results import MetaResult from .base import CBMAEstimator from .kernel import KernelTransformer from ...stats import null_to_p, p_to_z, one_way, two_way from ...due import due from ... import references LGR = logging.getLogger(__name__) @due.dcite(references.MKDA, description='Introduces MKDA.') class MKDADensity(CBMAEstimator): r""" Multilevel kernel density analysis- Density analysis [1]_. Parameters ---------- kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional Kernel with which to convolve coordinates from dataset. Default is MKDAKernel. **kwargs Keyword arguments. Arguments for the kernel_estimator can be assigned here, with the prefix '\kernel__' in the variable name. References ---------- .. [1] Wager, <NAME>., <NAME>, and <NAME>. "Meta-analysis of functional neuroimaging data: current and future directions." Social cognitive and affective neuroscience 2.2 (2007): 150-158. https://doi.org/10.1093/scan/nsm015 """ def __init__(self, kernel_estimator=MKDAKernel, **kwargs): kernel_args = {k.split('kernel__')[1]: v for k, v in kwargs.items() if k.startswith('kernel__')} if not issubclass(kernel_estimator, KernelTransformer): raise ValueError('Argument "kernel_estimator" must be a ' 'KernelTransformer') kwargs = {k: v for k, v in kwargs.items() if not k.startswith('kernel__')} for k in kwargs.keys(): LGR.warning('Keyword argument "{0}" not recognized'.format(k)) self.kernel_estimator = kernel_estimator(**kernel_args) self.mask = None self.dataset = None self.results = None def _fit(self, dataset): """ Perform MKDA density meta-analysis on dataset. Parameters ---------- dataset : :obj:`nimare.dataset.Dataset` Dataset to analyze. """ self.dataset = dataset self.mask = dataset.masker.mask_img ma_values = self.kernel_estimator.transform(dataset, masked=True) # Weight each SCM by square root of sample size ids_df = self.dataset.coordinates.groupby('id').first() if 'n' in ids_df.columns and 'inference' not in ids_df.columns: ids_n = ids_df['n'].astype(float).values weight_vec = np.sqrt(ids_n)[:, None] / np.sum(np.sqrt(ids_n)) elif 'n' in ids_df.columns and 'inference' in ids_df.columns: ids_n = ids_df['n'].astype(float).values ids_inf = ids_df['inference'].map({'ffx': 0.75, 'rfx': 1.}).values weight_vec = ((np.sqrt(ids_n)[:, None] * ids_inf[:, None]) / np.sum(np.sqrt(ids_n) * ids_inf)) else: weight_vec = np.ones((ma_values.shape[0], 1)) self.weight_vec = weight_vec ma_values *= self.weight_vec of_values = np.sum(ma_values, axis=0) images = {'of': of_values} return images def _run_fwe_permutation(self, params): iter_ijk, iter_df, conn, voxel_thresh = params iter_ijk = np.squeeze(iter_ijk) iter_df[['i', 'j', 'k']] = iter_ijk iter_ma_maps = self.kernel_estimator.transform(iter_df, mask=self.mask, masked=True) iter_ma_maps *= self.weight_vec iter_of_map = np.sum(iter_ma_maps, axis=0) iter_max_value = np.max(iter_of_map) iter_of_map = unmask(iter_of_map, self.mask) vthresh_iter_of_map = iter_of_map.get_data().copy() vthresh_iter_of_map[vthresh_iter_of_map < voxel_thresh] = 0 labeled_matrix = ndimage.measurements.label(vthresh_iter_of_map, conn)[0] clust_sizes = [np.sum(labeled_matrix == val) for val in np.unique(labeled_matrix)] clust_sizes = clust_sizes[1:] # First cluster is zeros in matrix if clust_sizes: iter_max_cluster = np.max(clust_sizes) else: iter_max_cluster = 0 return iter_max_value, iter_max_cluster def _fwe_correct_permutation(self, result, voxel_thresh=0.01, n_iters=1000, n_cores=-1): of_map = result.get_map('of', return_type='image') null_ijk = np.vstack(np.where(self.mask.get_data())).T if n_cores <= 0: n_cores = mp.cpu_count() elif n_cores > mp.cpu_count(): LGR.warning( 'Desired number of cores ({0}) greater than number ' 'available ({1}). Setting to {1}.'.format(n_cores, mp.cpu_count())) n_cores = mp.cpu_count() vthresh_of_map = of_map.get_data().copy() vthresh_of_map[vthresh_of_map < voxel_thresh] = 0 rand_idx = np.random.choice( null_ijk.shape[0], size=(self.dataset.coordinates.shape[0], n_iters)) rand_ijk = null_ijk[rand_idx, :] iter_ijks = np.split(rand_ijk, rand_ijk.shape[1], axis=1) iter_df = self.dataset.coordinates.copy() conn = np.ones((3, 3, 3)) # Define parameters iter_conn = [conn] * n_iters iter_dfs = [iter_df] * n_iters iter_voxel_thresh = [voxel_thresh] * n_iters params = zip(iter_ijks, iter_dfs, iter_conn, iter_voxel_thresh) if n_cores == 1: perm_results = [] for pp in tqdm(params, total=n_iters): perm_results.append(self._run_fwe_permutation(pp)) else: with mp.Pool(n_cores) as p: perm_results = list(tqdm(p.imap(self._run_fwe_permutation, params), total=n_iters)) perm_max_values, perm_clust_sizes = zip(*perm_results) # Cluster-level FWE labeled_matrix, n_clusters = ndimage.measurements.label(vthresh_of_map, conn) cfwe_map = np.zeros(self.mask.shape) for i_clust in range(1, n_clusters + 1): clust_size = np.sum(labeled_matrix == i_clust) clust_idx = np.where(labeled_matrix == i_clust) cfwe_map[clust_idx] = -np.log(null_to_p( clust_size, perm_clust_sizes, 'upper')) cfwe_map[np.isinf(cfwe_map)] = -np.log(np.finfo(float).eps) cfwe_map = apply_mask(nib.Nifti1Image(cfwe_map, self.mask.affine), self.mask) # Voxel-level FWE vfwe_map = apply_mask(of_map, self.mask) for i_vox, val in enumerate(vfwe_map): vfwe_map[i_vox] = -np.log(null_to_p(val, perm_max_values, 'upper')) vfwe_map[np.isinf(vfwe_map)] = -np.log(np.finfo(float).eps) vthresh_of_map = apply_mask(nib.Nifti1Image(vthresh_of_map, of_map.affine), self.mask) images = {'vthresh': vthresh_of_map, 'logp_level-cluster': cfwe_map, 'logp_level-voxel': vfwe_map} return images @due.dcite(references.MKDA, description='Introduces MKDA.') class MKDAChi2(CBMAEstimator): r""" Multilevel kernel density analysis- Chi-square analysis [1]_. Parameters ---------- prior : float, optional Uniform prior probability of each feature being active in a map in the absence of evidence from the map. Default: 0.5 kernel_estimator : :obj:`nimare.meta.cbma.base.KernelTransformer`, optional Kernel with which to convolve coordinates from dataset. Default is MKDAKernel. **kwargs Keyword arguments. Arguments for the kernel_estimator can be assigned here, with the prefix '\kernel__' in the variable name. References ---------- .. [1] Wager, <NAME>., <NAME>, and <NAME>. "Meta-analysis of functional neuroimaging data: current and future directions." Social cognitive and affective neuroscience 2.2 (2007): 150-158. https://doi.org/10.1093/scan/nsm015 """ def __init__(self, prior=0.5, kernel_estimator=MKDAKernel, **kwargs): kernel_args = {k.split('kernel__')[1]: v for k, v in kwargs.items() if k.startswith('kernel__')} if not issubclass(kernel_estimator, KernelTransformer): raise ValueError('Argument "kernel_estimator" must be a ' 'KernelTransformer') kwargs = {k: v for k, v in kwargs.items() if not k.startswith('kernel__')} for k in kwargs.keys(): LGR.warning('Keyword argument "{0}" not recognized'.format(k)) self.kernel_estimator = kernel_estimator(**kernel_args) self.prior = prior def fit(self, dataset, dataset2): """ Fit Estimator to datasets. Parameters ---------- dataset, dataset2 : :obj:`nimare.dataset.Dataset` Dataset objects to analyze. Returns ------- :obj:`nimare.base.base.MetaResult` Results of Estimator fitting. """ self._validate_input(dataset) self._validate_input(dataset2) maps = self._fit(dataset, dataset2) self.results = MetaResult(self, dataset.masker.mask_img, maps) return self.results def _fit(self, dataset, dataset2): self.dataset = dataset self.dataset2 = dataset2 self.mask = dataset.masker.mask_img ma_maps1 = self.kernel_estimator.transform(self.dataset, mask=self.mask, masked=True) ma_maps2 = self.kernel_estimator.transform(self.dataset2, mask=self.mask, masked=True) # Calculate different count variables n_selected = ma_maps1.shape[0] n_unselected = ma_maps2.shape[0] n_mappables = n_selected + n_unselected # Transform MA maps to 1d arrays ma_maps_all = np.vstack((ma_maps1, ma_maps2)) n_selected_active_voxels = np.sum(ma_maps1, axis=0) n_unselected_active_voxels = np.sum(ma_maps2, axis=0) # Nomenclature for variables below: p = probability, # F = feature present, g = given, U = unselected, A = activation. # So, e.g., pAgF = p(A|F) = probability of activation # in a voxel if we know that the feature is present in a study. pF = (n_selected * 1.0) / n_mappables pA = np.array(np.sum(ma_maps_all, axis=0) / n_mappables).squeeze() # Conditional probabilities pAgF = n_selected_active_voxels * 1.0 / n_selected pAgU = n_unselected_active_voxels * 1.0 / n_unselected pFgA = pAgF * pF / pA # Recompute conditionals with uniform prior pAgF_prior = self.prior * pAgF + (1 - self.prior) * pAgU pFgA_prior = pAgF * self.prior / pAgF_prior # One-way chi-square test for consistency of activation pAgF_chi2_vals = one_way(np.squeeze(n_selected_active_voxels), n_selected) pAgF_p_vals = special.chdtrc(1, pAgF_chi2_vals) pAgF_sign = np.sign(n_selected_active_voxels - np.mean(n_selected_active_voxels)) pAgF_z = p_to_z(pAgF_p_vals, tail='two') * pAgF_sign # Two-way chi-square for specificity of activation cells = np.squeeze( np.array([[n_selected_active_voxels, n_unselected_active_voxels], [n_selected - n_selected_active_voxels, n_unselected - n_unselected_active_voxels]]).T) pFgA_chi2_vals = two_way(cells) pFgA_p_vals = special.chdtrc(1, pFgA_chi2_vals) pFgA_p_vals[pFgA_p_vals < 1e-240] = 1e-240 pFgA_sign = np.sign(pAgF - pAgU).ravel() pFgA_z = p_to_z(pFgA_p_vals, tail='two') * pFgA_sign images = { 'pA': pA, 'pAgF': pAgF, 'pFgA': pFgA, ('pAgF_given_pF=%0.2f' % self.prior): pAgF_prior, ('pFgA_given_pF=%0.2f' % self.prior): pFgA_prior, 'consistency_z': pAgF_z, 'specificity_z': pFgA_z, 'consistency_chi2': pAgF_chi2_vals, 'specificity_chi2': pFgA_chi2_vals, 'consistency_p': pAgF_p_vals, 'specificity_p': pFgA_p_vals, } return images def _run_fwe_permutation(self, params): iter_df1, iter_df2, iter_ijk1, iter_ijk2 = params iter_ijk1 = np.squeeze(iter_ijk1) iter_ijk2 = np.squeeze(iter_ijk2) iter_df1[['i', 'j', 'k']] = iter_ijk1 iter_df2[['i', 'j', 'k']] = iter_ijk2 temp_ma_maps1 = self.kernel_estimator.transform(iter_df1, self.mask, masked=True) temp_ma_maps2 = self.kernel_estimator.transform(iter_df2, self.mask, masked=True) n_selected = temp_ma_maps1.shape[0] n_unselected = temp_ma_maps2.shape[0] n_selected_active_voxels = np.sum(temp_ma_maps1, axis=0) n_unselected_active_voxels = np.sum(temp_ma_maps2, axis=0) # Conditional probabilities # pAgF = n_selected_active_voxels * 1.0 / n_selected # pAgU = n_unselected_active_voxels * 1.0 / n_unselected # One-way chi-square test for consistency of activation pAgF_chi2_vals = one_way(np.squeeze(n_selected_active_voxels), n_selected) iter_pAgF_chi2 = np.max(pAgF_chi2_vals) # Two-way chi-square for specificity of activation cells = np.squeeze( np.array([[n_selected_active_voxels, n_unselected_active_voxels], [n_selected - n_selected_active_voxels, n_unselected - n_unselected_active_voxels]]).T) pFgA_chi2_vals = two_way(cells) iter_pFgA_chi2 = np.max(pFgA_chi2_vals) return iter_pAgF_chi2, iter_pFgA_chi2 def _fwe_correct_permutation(self, result, voxel_thresh=0.01, n_iters=5000, n_cores=-1): null_ijk = np.vstack(np.where(self.mask.get_data())).T pAgF_chi2_vals = result.get_map('consistency_chi2', return_type='array') pFgA_chi2_vals = result.get_map('specificity_chi2', return_type='array') pAgF_z_vals = result.get_map('consistency_z', return_type='array') pFgA_z_vals = result.get_map('specificity_z', return_type='array') pAgF_sign = np.sign(pAgF_z_vals) pFgA_sign = np.sign(pFgA_z_vals) if n_cores <= 0: n_cores = mp.cpu_count() elif n_cores > mp.cpu_count(): LGR.warning( 'Desired number of cores ({0}) greater than number ' 'available ({1}). Setting to {1}.'.format(n_cores, mp.cpu_count())) n_cores = mp.cpu_count() iter_df1 = self.dataset.coordinates.copy() iter_df2 = self.dataset2.coordinates.copy() iter_dfs1 = [iter_df1] * n_iters iter_dfs2 = [iter_df2] * n_iters rand_idx1 = np.random.choice(null_ijk.shape[0], size=(iter_df1.shape[0], n_iters)) rand_ijk1 = null_ijk[rand_idx1, :] iter_ijks1 =
np.split(rand_ijk1, rand_ijk1.shape[1], axis=1)
numpy.split
""" Tools for DESI spectroperfectionism extractions implemented for a CPU """ import sys import numpy as np from numpy.polynomial.legendre import legvander, legval from numpy.polynomial import hermite_e as He import scipy.special import numba #------------------------------------------------------------------------- def evalcoeffs(psfdata, wavelengths, specmin=0, nspec=None): ''' evaluate PSF coefficients parameterized as Legendre polynomials Args: psfdata: PSF data from io.read_psf() of Gauss Hermite PSF file wavelengths: 1D array of wavelengths Options: specmin: first spectrum to include nspec: number of spectra to include (default: all) Returns a dictionary params[paramname] = value[nspec, nwave] The Gauss Hermite coefficients are treated differently: params['GH'] = value[i,j,nspec,nwave] The dictionary also contains scalars with the recommended spot size 2*(HSIZEX, HSIZEY)+1 and Gauss-Hermite degrees GHDEGX, GHDEGY (which is also derivable from the dimensions of params['GH']) ''' if nspec is None: nspec = psfdata['PSF']['COEFF'].shape[1] p = dict(WAVE=wavelengths) #- Evaluate X and Y which have different dimensionality from the #- PSF coefficients (and might have different WAVEMIN, WAVEMAX) meta = psfdata['XTRACE'].meta wavemin, wavemax = meta['WAVEMIN'], meta['WAVEMAX'] ww = (wavelengths - wavemin) * (2.0 / (wavemax - wavemin)) - 1.0 p['X'] = legval(ww, psfdata['XTRACE']['X'][specmin:specmin+nspec].T) meta = psfdata['YTRACE'].meta wavemin, wavemax = meta['WAVEMIN'], meta['WAVEMAX'] ww = (wavelengths - wavemin) * (2.0 / (wavemax - wavemin)) - 1.0 p['Y'] = legval(ww, psfdata['YTRACE']['Y'][specmin:specmin+nspec].T) #- Evaluate the remaining PSF coefficients with a shared dimensionality #- and WAVEMIN, WAVEMAX meta = psfdata['PSF'].meta wavemin, wavemax = meta['WAVEMIN'], meta['WAVEMAX'] ww = (wavelengths - wavemin) * (2.0 / (wavemax - wavemin)) - 1.0 L = np.polynomial.legendre.legvander(ww, meta['LEGDEG']) nparam = psfdata['PSF']['COEFF'].shape[0] ndeg = psfdata['PSF']['COEFF'].shape[2] nwave = L.shape[0] nghx = meta['GHDEGX']+1 nghy = meta['GHDEGY']+1 p['GH'] = np.zeros((nghx, nghy, nspec, nwave)) for name, coeff in zip(psfdata['PSF']['PARAM'], psfdata['PSF']['COEFF']): name = name.strip() coeff = coeff[specmin:specmin+nspec] if name.startswith('GH-'): i, j = map(int, name.split('-')[1:3]) p['GH'][i,j] = L.dot(coeff.T).T else: p[name] = L.dot(coeff.T).T #- Include some additional keywords that we'll need for key in ['HSIZEX', 'HSIZEY', 'GHDEGX', 'GHDEGY']: p[key] = meta[key] return p def calc_pgh(ispec, wavelengths, psfparams): ''' Calculate pixelated Gauss Hermite for all wavelengths of a single spectrum Args: ispec : integer spectrum number wavelengths : array of wavelengths to evaluate psfparams : dictionary of PSF parameters returned by evalcoeffs returns pGHx, pGHy where pGHx[ghdeg+1, nwave, nbinsx] contains the pixel-integrated Gauss-Hermite polynomial for all degrees at all wavelengths across nbinsx bins spaning the PSF spot, and similarly for pGHy. The core PSF will then be evaluated as PSFcore = sum_ij c_ij outer(pGHy[j], pGHx[i]) ''' #- shorthand p = psfparams #- spot size (ny,nx) nx = 2*p['HSIZEX']+1 ny = 2*p['HSIZEY']+1 nwave = len(wavelengths) # print('Spot size (ny,nx) = {},{}'.format(ny, nx)) # print('nwave = {}'.format(nwave)) #- x and y edges of bins that span the center of the PSF spot xedges = np.repeat(np.arange(nx+1) - nx//2 - 0.5, nwave).reshape(nx+1, nwave) yedges = np.repeat(np.arange(ny+1) - ny//2 - 0.5, nwave).reshape(ny+1, nwave) #- Shift to be relative to the PSF center and normalize #- by the PSF sigma (GHSIGX, GHSIGY). #- Note: x,y = 0,0 is center of pixel 0,0 not corner #- Dimensions: xedges[nx+1, nwave], yedges[ny+1, nwave] dx = (p['X'][ispec]+0.5)%1 - 0.5 dy = (p['Y'][ispec]+0.5)%1 - 0.5 xedges = ((xedges - dx)/p['GHSIGX'][ispec]) yedges = ((yedges - dy)/p['GHSIGY'][ispec]) # print('xedges.shape = {}'.format(xedges.shape)) # print('yedges.shape = {}'.format(yedges.shape)) #- Degree of the Gauss-Hermite polynomials ghdegx = p['GHDEGX'] ghdegy = p['GHDEGY'] #- Evaluate the Hermite polynomials at the pixel edges #- HVx[ghdegx+1, nwave, nx+1] #- HVy[ghdegy+1, nwave, ny+1] HVx = He.hermevander(xedges, ghdegx).T HVy = He.hermevander(yedges, ghdegy).T # print('HVx.shape = {}'.format(HVx.shape)) # print('HVy.shape = {}'.format(HVy.shape)) #- Evaluate the Gaussians at the pixel edges #- Gx[nwave, nx+1] #- Gy[nwave, ny+1] Gx = np.exp(-0.5*xedges**2).T / np.sqrt(2. * np.pi) # (nwave, nedges) Gy = np.exp(-0.5*yedges**2).T / np.sqrt(2. * np.pi) # print('Gx.shape = {}'.format(Gx.shape)) # print('Gy.shape = {}'.format(Gy.shape)) #- Combine into Gauss*Hermite GHx = HVx * Gx GHy = HVy * Gy #- Integrate over the pixels using the relationship # Integral{ H_k(x) exp(-0.5 x^2) dx} = -H_{k-1}(x) exp(-0.5 x^2) + const #- pGHx[ghdegx+1, nwave, nx] #- pGHy[ghdegy+1, nwave, ny] pGHx = np.zeros((ghdegx+1, nwave, nx)) pGHy = np.zeros((ghdegy+1, nwave, ny)) pGHx[0] = 0.5 * np.diff(scipy.special.erf(xedges/np.sqrt(2.)).T) pGHy[0] = 0.5 * np.diff(scipy.special.erf(yedges/np.sqrt(2.)).T) pGHx[1:] = GHx[:ghdegx,:,0:nx] - GHx[:ghdegx,:,1:nx+1] pGHy[1:] = GHy[:ghdegy,:,0:ny] - GHy[:ghdegy,:,1:ny+1] # print('pGHx.shape = {}'.format(pGHx.shape)) # print('pGHy.shape = {}'.format(pGHy.shape)) return pGHx, pGHy @numba.jit(nopython=True) def multispot(pGHx, pGHy, ghc): ''' TODO: Document ''' nx = pGHx.shape[-1] ny = pGHy.shape[-1] nwave = pGHx.shape[1] spots = np.zeros((nwave, ny, nx)) for iwave in range(nwave): for i in range(pGHx.shape[0]): px = pGHx[i,iwave] for j in range(0, pGHy.shape[0]): py = pGHy[j,iwave] c = ghc[i,j,iwave] #- c * outer(py, px) for iy in range(len(py)): for ix in range(len(px)): spots[iwave, iy, ix] += c * py[iy] * px[ix] return spots def get_spots(specmin, nspec, wavelengths, psfdata): '''Calculate PSF spots for the specified spectra and wavelengths Args: specmin: first spectrum to include nspec: number of spectra to evaluate spots for wavelengths: 1D array of wavelengths psfdata: PSF data from io.read_psf() of Gauss Hermite PSF file Returns: spots: 4D array[ispec, iwave, ny, nx] of PSF spots corners: (xc,yc) where each is 2D array[ispec,iwave] lower left corner of spot ''' nwave = len(wavelengths) p = evalcoeffs(psfdata, wavelengths, specmin, nspec) nx = 2*p['HSIZEX']+1 ny = 2*p['HSIZEY']+1 spots = np.zeros((nspec, nwave, ny, nx)) for ispec in range(nspec): pGHx, pGHy = calc_pgh(ispec, wavelengths, p) spots[ispec] = multispot(pGHx, pGHy, p['GH'][:,:,ispec,:]) #- ensure positivity and normalize #- TODO: should this be within multispot itself? spots = spots.clip(0.0) norm = np.sum(spots, axis=(2,3)) #- norm[nspec, nwave] = sum over each spot spots = (spots.T / norm.T).T #- transpose magic for numpy array broadcasting #- Define corners of spots #- extra 0.5 is because X and Y are relative to center of pixel not edge xc = np.floor(p['X'] - p['HSIZEX'] + 0.5).astype(int) yc = np.floor(p['Y'] - p['HSIZEY'] + 0.5).astype(int) corners = (xc, yc) return spots, corners, p @numba.jit def get_xyrange(ispec, nspec, iwave, nwave, spots, corners): """ Find xy ranges that these spectra cover Args: ispec: starting spectrum index nspec: number of spectra iwave: starting wavelength index nwave: number of wavelengths spots: 4D array[ispec, iwave, ny, nx] of PSF spots corners: (xc,yc) where each is 2D array[ispec,iwave] lower left corner of spot Returns (xmin, xmax, ymin, ymax) spots[ispec:ispec+nspec,iwave:iwave+nwave] touch pixels[ymin:ymax,xmin:xmax] """ ny, nx = spots.shape[2:4] xc = corners[0][ispec:ispec+nspec, iwave:iwave+nwave] yc = corners[1][ispec:ispec+nspec, iwave:iwave+nwave] xmin = np.min(xc) xmax = np.max(xc) + nx ymin = np.min(yc) ymax = np.max(yc) + ny return xmin, xmax, ymin, ymax @numba.jit def projection_matrix(ispec, nspec, iwave, nwave, spots, corners): ''' Create the projection matrix A for p = Af Args: ispec: starting spectrum index nspec: number of spectra iwave: starting wavelength index nwave: number of wavelengths spots: 4D array[ispec, iwave, ny, nx] of PSF spots corners: (xc,yc) where each is 2D array[ispec,iwave] lower left corner of spot Returns (A[iy, ix, ispec, iwave], (xmin, xmax, ymin, ymax)) Cast to 2D for using with linear algebra: nypix, nxpix, nspec, nwave = A.shape A2D = A.reshape((nypix*nxpix, nspec*nwave)) pix1D = A2D.dot(flux1D) ''' ny, nx = spots.shape[2:4] xc, yc = corners xmin, xmax, ymin, ymax = get_xyrange(ispec, nspec, iwave, nwave, spots, corners) A = np.zeros((ymax-ymin,xmax-xmin,nspec,nwave)) for i in range(nspec): for j in range(nwave): ixc = xc[ispec+i, iwave+j] - xmin iyc = yc[ispec+i, iwave+j] - ymin A[iyc:iyc+ny, ixc:ixc+nx, i, j] = spots[ispec+i,iwave+j] return A, (xmin, xmax, ymin, ymax) def get_spec_padding(ispec, nspec, bundlesize): """ Calculate padding needed for boundary spectra Args: ispec: starting spectrum index nspec: number of spectra to extract (not including padding) bundlesize: size of fiber bundles; padding not needed on their edges returns specmin, nspecpad """ #- if not at upper boundary, extract one additional spectrum if (ispec+nspec) % bundlesize == 0: nspecpad = nspec else: nspecpad = nspec + 1 #- if not at lower boundary, start one lower and extract one more if ispec % bundlesize == 0: specmin = ispec else: specmin = ispec-1 nspecpad += 1 assert nspecpad <= nspec+2 assert specmin >= ispec-1 assert specmin+nspecpad <= ispec+nspec+1 return specmin, nspecpad def get_resolution_diags(R, ndiag, ispec, nspec, nwave, wavepad): """Returns the diagonals of R in a form suited for creating scipy.sparse.dia_matrix Args: R: dense resolution matrix ndiag: number of diagonal elements to keep in the resolution matrix ispec: starting spectrum index relative to padding nspec: number of spectra to extract (not including padding) nwave: number of wavelengths to extract (not including padding) wavepad: number of extra wave bins to extract (and discard) on each end Returns: Rdiags (nspec, 2*ndiag+1, nwave): resolution matrix diagonals """ nwavetot = 2*wavepad + nwave Rdiags = np.zeros( (nspec, 2*ndiag+1, nwave) ) #- TODO: check indexing for i in np.arange(ispec, ispec+nspec): #- subregion of R for this spectrum ii = slice(nwavetot*i, nwavetot*(i+1)) Rx = R[ii, ii] #- subregion of non-padded wavelengths for this spectrum for j in range(wavepad,wavepad+nwave): # Rdiags dimensions [nspec, 2*ndiag+1, nwave] Rdiags[i-ispec, :, j-wavepad] = Rx[j-ndiag:j+ndiag+1, j] return Rdiags def ex2d_padded(image, imageivar, patch, spots, corners, pixpad_frac, regularize, model, psferr): """ Extracted a patch with border padding, but only return results for patch Args: image: full image (not trimmed to a particular xy range) imageivar: image inverse variance (same dimensions as image) ispec: starting spectrum index relative to `spots` indexing nspec: number of spectra to extract (not including padding) iwave: starting wavelength index nwave: number of wavelengths to extract (not including padding) spots: array[nspec, nwave, ny, nx] pre-evaluated PSF spots corners: tuple of arrays xcorners[nspec, nwave], ycorners[nspec, nwave] wavepad: number of extra wave bins to extract (and discard) on each end Options: bundlesize: size of fiber bundles; padding not needed on their edges """ ispec = patch.ispec - patch.bspecmin nspec = patch.nspectra_per_patch iwave = patch.iwave nwave = patch.nwavestep wavepad = patch.wavepad specmin, nspecpad = get_spec_padding(ispec, nspec, patch.bundlesize) #- Total number of wavelengths to be extracted, including padding nwavetot = nwave+2*wavepad #- Get the projection matrix for the full wavelength range with padding A4, xyrange = projection_matrix(specmin, nspecpad, iwave-wavepad, nwave+2*wavepad, spots, corners) xmin, xmax, ypadmin, ypadmax = xyrange #- But we only want to use the pixels covered by the original wavelengths #- TODO: this unnecessarily also re-calculates xranges xlo, xhi, ymin, ymax = get_xyrange(specmin, nspecpad, iwave, nwave, spots, corners) ypadlo = int((ymin - ypadmin) * (1 - pixpad_frac)) ypadhi = int((ymax - ypadmin) + (ypadmax - ymax) * (pixpad_frac)) A4 = A4[ypadlo:ypadhi] #- Number of image pixels in y and x ny, nx = A4.shape[0:2] ymin = ypadmin+ypadlo ymax = ypadmin+ypadhi #- Check dimensions assert A4.shape[2] == nspecpad assert A4.shape[3] == nwave + 2*wavepad #- Diagonals of R in a form suited for creating scipy.sparse.dia_matrix ndiag = spots.shape[2]//2 specslice = np.s_[ispec-specmin:ispec-specmin+nspec,wavepad:wavepad+nwave] if (0 <= ymin) & (ymin+ny <= image.shape[0]): xyslice = np.s_[ymin:ymin+ny, xmin:xmin+nx] patchpixels = image[xyslice] patchivar = imageivar[xyslice] fx, ivarfx, R = ex2d_patch(patchpixels, patchivar, A4, regularize=regularize) #- Select the non-padded spectra x wavelength core region specflux = fx[specslice] specivar = ivarfx[specslice] #- Diagonals of R in a form suited for creating scipy.sparse.dia_matrix Rdiags = get_resolution_diags(R, ndiag, ispec-specmin, nspec, nwave, wavepad) else: #- TODO: this zeros out the entire patch if any of it is off the edge #- of the image; we can do better than that fx = np.zeros((nspecpad, nwavetot)) specflux = np.zeros((nspec, nwave)) specivar = np.zeros((nspec, nwave)) Rdiags = np.zeros( (nspec, 2*ndiag+1, nwave) ) # xyslice = np.s_[ # max(0, ymin):min(ymin+ny, image.shape[0]), # max(0, xmin):min(xmin+nx, image.shape[1]) # ] xyslice = None patchivar = np.zeros((ny, nx)) patchpixels = np.zeros((ny, nx)) if np.any(np.isnan(specflux)): raise RuntimeError('Found NaN in extracted flux') Apadded = A4.reshape(ny*nx, nspecpad*nwavetot) Apatch = A4[:, :, ispec-specmin:ispec-specmin+nspec, wavepad:wavepad+nwave] Apatch = Apatch.reshape(ny*nx, nspec*nwave) pixmask_fraction = Apatch.T.dot(patchivar.ravel() == 0) pixmask_fraction = pixmask_fraction.reshape(nspec, nwave) modelpadded = Apadded.dot(fx.ravel()).reshape(ny, nx) modelivar = (modelpadded*psferr + 1e-32)**-2 ii = (modelivar > 0 ) & (patchivar > 0) totpix_ivar = np.zeros((ny, nx)) totpix_ivar[ii] = 1.0 / (1.0/modelivar[ii] + 1.0/patchivar[ii]) #- Weighted chi2 of pixels that contribute to each flux bin; #- only use unmasked pixels and avoid dividing by 0 chi = (patchpixels - modelpadded)*np.sqrt(totpix_ivar) psfweight = Apadded.T.dot(totpix_ivar.ravel() > 0) bad = psfweight == 0 #- Compute chi2pix and reshape chi2pix = (Apadded.T.dot(chi.ravel()**2) * ~bad) / (psfweight + bad) chi2pix = chi2pix.reshape(nspecpad, nwavetot)[specslice] if model: modelimage = Apatch.dot(specflux.ravel()).reshape(ny, nx) else: modelimage = None #- TODO: add chi2pix, pixmask_fraction, optionally modelimage; see specter result = dict( flux = specflux, ivar = specivar, Rdiags = Rdiags, modelimage = modelimage, xyslice = xyslice, pixmask_fraction = pixmask_fraction, chi2pix = chi2pix, ) return result #- Simplest form of A.T.dot( Diag(w).dot(A) ) def dotdot1(A, w): ''' return A.T.dot( Diag(w).dot(A) ) = (A.T * w).dot(A) ''' return (A.T * w).dot(A) #- 2x faster than dotdot1 by using sparse arrays def dotdot2(A, w): ''' return A.T.dot( Diag(w).dot(A) ) when A is sparse ''' import scipy.sparse W = scipy.sparse.spdiags(data=w, diags=[0,], m=len(w), n=len(w)) Ax = scipy.sparse.csc_matrix(A) return Ax.T.dot(W.dot(Ax)).toarray() #- 3x faster than dotdot1 by using numba and sparsity @numba.jit(nopython=True) def dotdot3(A, w): ''' return A.T.dot( Diag(w).dot(A) ) when A is sparse using numba ''' n, m = A.shape B = np.zeros((m,m)) for i in range(n): for j1 in range(m): Aw = w[i] * A[i,j1] if Aw != 0.0: for j2 in range(j1, m): tmp = Aw * A[i,j2] B[j1, j2] += tmp #- fill in other half for j1 in range(m-1): for j2 in range(j1+1, m): B[j2, j1] = B[j1, j2] return B @numba.jit(nopython=True) def dotall(p, w, A): '''Compute icov, y and fluxweight in the same loop(s) icov = A^T W A y = A^T W p fluxweight = (A^T W).sum(axis=1) Arguments: pixel_values: pixel values pixel_ivar: pixel weights A: projection matrix Returns: icov, y, fluxweight ''' n, m = A.shape icov = np.zeros((m,m)) y = np.zeros(m) fluxweight = np.zeros(m) for i in range(n): for j1 in range(m): Aw = w[i] * A[i,j1] if Aw != 0.0: for j2 in range(j1, m): tmp = Aw * A[i,j2] icov[j1, j2] += tmp fluxweight[j1] += Aw y[j1] += Aw * p[i] #- fill in other half for j1 in range(m-1): for j2 in range(j1+1, m): icov[j2, j1] = icov[j1, j2] return icov, y, fluxweight def deconvolve(pixel_values, pixel_ivar, A, regularize=0, debug=False): """Calculate the weighted linear least-squares flux solution for an observed trace. Args: pixel_values (ny*nx,): 1D array of pixel values pixel_ivar (ny*nx,): 1D array of pixel inverse variances to use for weighting A (ny*nx, nspec*nwave): projection matrix that transforms a 1D spectrum into a 2D image Returns: deconvolved (nspec*nwave): the best-fit 1D array of flux values iCov (nspec*nwave, nspec*nwave): the correlated inverse covariance matrix of the deconvolved flux """ #- Set up the equation to solve (B&S eq 4) iCov, y, fluxweight = dotall(pixel_values, pixel_ivar, A) #- Add a weak flux=0 prior to avoid singular matrices #- TODO: review this; compare to specter minweight = 1e-4*np.max(fluxweight) ibad = fluxweight < minweight lambda_squared = regularize*regularize*np.ones_like(y) lambda_squared[ibad] = minweight - fluxweight[ibad] if np.any(lambda_squared): iCov += np.diag(lambda_squared) #- Solve the linear least-squares problem. deconvolved = scipy.linalg.solve(iCov, y) return deconvolved, iCov def decorrelate_noise(iCov, debug=False): """Calculate the decorrelated errors and resolution matrix via BS Eq 10-13 Args: iCov (nspec*nwave, nspec*nwave): the inverse covariance matrix Returns: ivar (ny*nx,): uncorrelated flux inverse variances R (nspec*nwave, nspec*nwave): resoultion matrix """ # Calculate the matrix square root of iCov to diagonalize the flux errors. u, v = np.linalg.eigh(iCov) # Check that all eigenvalues are positive. assert not debug or np.all(u > 0), 'Found some negative iCov eigenvalues.' # Check that the eigenvectors are orthonormal so that vt.v = 1 assert not debug or np.allclose(np.eye(len(u)), v.T.dot(v)) Q = (v * np.sqrt(u)).dot(v.T) # Check BS eqn.10 assert not debug or np.allclose(iCov, Q.dot(Q)) #- Calculate the corresponding resolution matrix and diagonal flux errors. (BS Eq 11-13) s = np.sum(Q, axis=1) R = Q/s[:, np.newaxis] ivar = s**2 # Check BS eqn.14 assert not debug or np.allclose(iCov, R.T.dot(np.diag(ivar).dot(R))) return ivar, R def decorrelate_blocks(iCov, block_size, debug=False): """Calculate the decorrelated errors and resolution matrix via BS Eq 19 Args: iCov (nspec*nwave, nspec*nwave): the inverse covariance matrix block_size (int): size of the block corresponding to a single spectrum (i.e. nwave) Returns: ivar (ny*nx,): uncorrelated flux inverse variances R (nspec*nwave, nspec*nwave): resoultion matrix """ size = iCov.shape[0] assert not debug or size % block_size == 0 #- Invert iCov (B&S eq 17) u, v = np.linalg.eigh((iCov + iCov.T)/2.) assert not debug or np.all(u > 0), 'Found some negative iCov eigenvalues.' # Check that the eigenvectors are orthonormal so that vt.v = 1 assert not debug or np.allclose(np.eye(len(u)), v.T.dot(v)) if debug: threshold = 10.0 * sys.float_info.epsilon maxval = np.max(u) minval = maxval * threshold i = u > minval if np.any(~i): raise RuntimeError(f'Eigenvalue below minval {minval}: {u[i]}') # u = np.clip(u, minval, None) C = (v * (1.0/u)).dot(v.T) #- Calculate C^-1 = QQ (B&S eq 17-19) Q = np.zeros_like(iCov) #- Proceed one block at a time for i in range(0, size, block_size): s = np.s_[i:i+block_size, i:i+block_size] #- Invert this block bu, bv = np.linalg.eigh(C[s]) assert not debug or
np.all(bu > 0)
numpy.all
from tqdm import tqdm from taskinit import ms, tb, qa from taskinit import iatool from taskinit import cltool from delmod_cli import delmod_cli as delmod from clearcal_cli import clearcal_cli as clearcal from suncasa.utils import mstools as mstl from suncasa.utils import helioimage2fits as hf import shutil, os import sunpy.coordinates.ephemeris as eph import numpy as np from gaincal_cli import gaincal_cli as gaincal from applycal_cli import applycal_cli as applycal from flagdata_cli import flagdata_cli as flagdata from flagmanager_cli import flagmanager_cli as flagmanager from uvsub_cli import uvsub_cli as uvsub from split_cli import split_cli as split from tclean_cli import tclean_cli as tclean from ft_cli import ft_cli as ft from suncasa.utils import mstools as mstl # def ant_trange(vis): # ''' Figure out nominal times for tracking of old EOVSA antennas, and return time # range in CASA format # ''' # import eovsa_array as ea # from astropy.time import Time # # Get the Sun transit time, based on the date in the vis file name (must have UDByyyymmdd in the name) # aa = ea.eovsa_array() # date = vis.split('UDB')[-1][:8] # slashdate = date[:4] + '/' + date[4:6] + '/' + date[6:8] # aa.date = slashdate # sun = aa.cat['Sun'] # mjd_transit = Time(aa.next_transit(sun).datetime(), format='datetime').mjd # # Construct timerange based on +/- 3h55m from transit time (when all dishes are nominally tracking) # trange = Time(mjd_transit - 0.1632, format='mjd').iso[:19] + '~' + Time(mjd_transit + 0.1632, format='mjd').iso[:19] # trange = trange.replace('-', '/').replace(' ', '/') # return trange def ant_trange(vis): ''' Figure out nominal times for tracking of old EOVSA antennas, and return time range in CASA format ''' import eovsa_array as ea from astropy.time import Time from taskinit import ms # Get timerange from the visibility file # msinfo = dict.fromkeys(['vis', 'scans', 'fieldids', 'btimes', 'btimestr', 'inttimes', 'ras', 'decs', 'observatory']) ms.open(vis) # metadata = ms.metadata() scans = ms.getscansummary() sk = np.sort(scans.keys()) vistrange = np.array([scans[sk[0]]['0']['BeginTime'], scans[sk[-1]]['0']['EndTime']]) # Get the Sun transit time, based on the date in the vis file name (must have UDByyyymmdd in the name) aa = ea.eovsa_array() date = vis.split('UDB')[-1][:8] slashdate = date[:4] + '/' + date[4:6] + '/' + date[6:8] aa.date = slashdate sun = aa.cat['Sun'] mjd_transit = Time(aa.next_transit(sun).datetime(), format='datetime').mjd # Construct timerange limits based on +/- 3h55m from transit time (when all dishes are nominally tracking) # and clip the visibility range not to exceed those limits mjdrange = np.clip(vistrange, mjd_transit - 0.1632, mjd_transit + 0.1632) trange = Time(mjdrange[0], format='mjd').iso[:19] + '~' + Time(mjdrange[1], format='mjd').iso[:19] trange = trange.replace('-', '/').replace(' ', '/') return trange def gaussian2d(x, y, amplitude, x0, y0, sigma_x, sigma_y, theta): x0 = float(x0) y0 = float(y0) a = (np.cos(theta) ** 2) / (2 * sigma_x ** 2) + (np.sin(theta) ** 2) / (2 * sigma_y ** 2) b = -(np.sin(2 * theta)) / (4 * sigma_x ** 2) + (np.sin(2 * theta)) / (4 * sigma_y ** 2) c = (np.sin(theta) ** 2) / (2 * sigma_x ** 2) + (np.cos(theta) ** 2) / (2 * sigma_y ** 2) g = amplitude * np.exp(- (a * ((x - x0) ** 2) + 2 * b * (x - x0) * (y - y0) + c * ((y - y0) ** 2))) return g def writediskxml(dsize, fdens, freq, xmlfile='SOLDISK.xml'): import xml.etree.ElementTree as ET # create the file structure sdk = ET.Element('SOLDISK') sdk_dsize = ET.SubElement(sdk, 'item') sdk_fdens = ET.SubElement(sdk, 'item') sdk_freqs = ET.SubElement(sdk, 'item') sdk_dsize.set('disk_size', ','.join(dsize)) sdk_fdens.set('flux_dens', ','.join(['{:.1f}Jy'.format(s) for s in fdens])) sdk_freqs.set('freq', ','.join(freq)) # create a new XML file with the results mydata = ET.tostring(sdk) if os.path.exists(xmlfile): os.system('rm -rf {}'.format(xmlfile)) with open(xmlfile, 'w') as sf: sf.write(mydata) return xmlfile def readdiskxml(xmlfile): import astropy.units as u import xml.etree.ElementTree as ET tree = ET.parse(xmlfile) root = tree.getroot() diskinfo = {} for elem in root: d = elem.attrib for k, v in d.items(): v_ = v.split(',') v_ = [u.Unit(f).to_string().split(' ') for f in v_] diskinfo[k] = [] for val, uni in v_: diskinfo[k].append(float(val)) diskinfo[k] = np.array(diskinfo[k]) * u.Unit(uni) return diskinfo def image_adddisk(eofile, diskinfo, edgeconvmode='frommergeddisk', caltbonly=False): ''' :param eofile: :param diskxmlfile: :param edgeconvmode: available mode: frommergeddisk,frombeam :return: ''' from sunpy import map as smap from suncasa.utils import plot_mapX as pmX from scipy import constants import astropy.units as u from sunpy import io as sio dsize = diskinfo['disk_size'] fdens = diskinfo['flux_dens'] freqs = diskinfo['freq'] eomap = smap.Map(eofile) eomap_ = pmX.Sunmap(eomap) header = eomap.meta bmaj = header['bmaj'] * 3600 * u.arcsec bmin = header['bmin'] * 3600 * u.arcsec cell = (header['cdelt1'] * u.Unit(header['cunit1']) + header['cdelt2'] * u.Unit(header['cunit2'])) / 2.0 bmsize = (bmaj + bmin) / 2.0 data = eomap.data # remember the data order is reversed due to the FITS convension keys = header.keys() values = header.values() mapx, mapy = eomap_.map2wcsgrids(cell=False) mapx = mapx[:-1, :-1] mapy = mapy[:-1, :-1] rdisk = np.sqrt(mapx ** 2 + mapy ** 2) k_b = constants.k c_l = constants.c const = 2. * k_b / c_l ** 2 pix_area = (cell.to(u.rad).value) ** 2 jy_to_si = 1e-26 factor2 = 1. faxis = keys[values.index('FREQ')][-1] if caltbonly: edgeconvmode = '' if edgeconvmode == 'frommergeddisk': nul = header['CRVAL' + faxis] + header['CDELT' + faxis] * (1 - header['CRPIX' + faxis]) nuh = header['CRVAL' + faxis] + header['CDELT' + faxis] * (header['NAXIS' + faxis] - header['CRPIX' + faxis]) ## get the frequency range of the image nu_bound = (np.array([nul, nuh]) + 0.5 * np.array([-1, 1]) * header['CDELT' + faxis]) * u.Unit( header['cunit' + faxis]) nu_bound = nu_bound.to(u.GHz) ## get the frequencies of the disk models fidxs = np.logical_and(freqs > nu_bound[0], freqs < nu_bound[1]) ny, nx = rdisk.shape freqs_ = freqs[fidxs] fdens_ = fdens[fidxs] / 2.0 # divide by 2 because fdens is 2x solar flux density dsize_ = dsize[fidxs] fdisk_ = np.empty((len(freqs_), ny, nx)) fdisk_[:] = np.nan for fidx, freq in enumerate(freqs_): fdisk_[fidx, ...][rdisk <= dsize_[fidx].value] = 1.0 # nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * (1 - header['CRPIX' + faxis]) factor = const * freq.to(u.Hz).value ** 2 # SI unit jy2tb = jy_to_si / pix_area / factor * factor2 fdisk_[fidx, ...] = fdisk_[fidx, ...] / np.nansum(fdisk_[fidx, ...]) * fdens_[fidx].value fdisk_[fidx, ...] = fdisk_[fidx, ...] * jy2tb # # fdisk_[np.isnan(fdisk_)] = 0.0 tbdisk = np.nanmean(fdisk_, axis=0) tbdisk[np.isnan(tbdisk)] = 0.0 sig2fwhm = 2.0 * np.sqrt(2 * np.log(2)) x0, y0 = 0, 0 sigx, sigy = bmaj.value / sig2fwhm, bmin.value / sig2fwhm theta = -(90.0 - header['bpa']) * u.deg x = (np.arange(31) - 15) * cell.value y = (np.arange(31) - 15) * cell.value x, y = np.meshgrid(x, y) kernel = gaussian2d(x, y, 1.0, x0, y0, sigx, sigy, theta.to(u.radian).value) kernel = kernel / np.nansum(kernel) from scipy import signal tbdisk = signal.fftconvolve(tbdisk, kernel, mode='same') else: nu = header['CRVAL' + faxis] + header['CDELT' + faxis] * (1 - header['CRPIX' + faxis]) freqghz = nu / 1.0e9 factor = const * nu ** 2 # SI unit jy2tb = jy_to_si / pix_area / factor * factor2 p_dsize = np.poly1d(np.polyfit(freqs.value, dsize.value, 15)) p_fdens = np.poly1d( np.polyfit(freqs.value, fdens.value, 15)) / 2. # divide by 2 because fdens is 2x solar flux density if edgeconvmode == 'frombeam': from scipy.special import erfc factor_erfc = 2.0 ## erfc function ranges from 0 to 2 fdisk = erfc((rdisk - p_dsize(freqghz)) / bmsize.value) / factor_erfc else: fdisk = np.zeros_like(rdisk) fdisk[rdisk <= p_dsize(freqghz)] = 1.0 fdisk = fdisk / np.nansum(fdisk) * p_fdens(freqghz) tbdisk = fdisk * jy2tb tb_disk = np.nanmax(tbdisk) if caltbonly: return tb_disk else: datanew = data + tbdisk # datanew[np.isnan(data)] = 0.0 header['TBDISK'] = tb_disk header['TBUNIT'] = 'K' eomap_disk = smap.Map(datanew, header) nametmp = eofile.split('.') nametmp.insert(-1, 'disk') outfits = '.'.join(nametmp) datanew = datanew.astype(np.float32) if os.path.exists(outfits): os.system('rm -rf {}'.format(outfits)) sio.write_file(outfits, datanew, header) return eomap_disk, tb_disk, outfits def read_ms(vis): ''' Read a CASA ms file and return a dictionary of amplitude, phase, uvdistance, uvangle, frequency (GHz) and time (MJD). Currently only returns the XX IF channel. vis Name of the visibility (ms) folder ''' ms.open(vis) spwinfo = ms.getspectralwindowinfo() nspw = len(spwinfo.keys()) for i in range(nspw): print('Working on spw', i) ms.selectinit(datadescid=0, reset=True) ms.selectinit(datadescid=i) if i == 0: spw = ms.getdata(['amplitude', 'phase', 'u', 'v', 'axis_info'], ifraxis=True) xxamp = spw['amplitude'] xxpha = spw['phase'] fghz = spw['axis_info']['freq_axis']['chan_freq'][:, 0] / 1e9 band = np.ones_like(fghz) * i mjd = spw['axis_info']['time_axis']['MJDseconds'] / 86400. uvdist = np.sqrt(spw['u'] ** 2 + spw['v'] ** 2) uvang = np.angle(spw['u'] + 1j * spw['v']) else: spw = ms.getdata(['amplitude', 'phase', 'axis_info'], ifraxis=True) xxamp = np.concatenate((xxamp, spw['amplitude']), 1) xxpha = np.concatenate((xxpha, spw['phase']), 1) fg = spw['axis_info']['freq_axis']['chan_freq'][:, 0] / 1e9 fghz = np.concatenate((fghz, fg)) band = np.concatenate((band, np.ones_like(fg) * i)) ms.close() return {'amp': xxamp, 'phase': xxpha, 'fghz': fghz, 'band': band, 'mjd': mjd, 'uvdist': uvdist, 'uvangle': uvang} def im2cl(imname, clname, convol=True, verbose=False): if os.path.exists(clname): os.system('rm -rf {}'.format(clname)) ia = iatool() ia.open(imname) ia2 = iatool() ia2.open(imname.replace('.model', '.image')) bm = ia2.restoringbeam() bmsize = (qa.convert(qa.quantity(bm['major']), 'arcsec')['value'] + qa.convert(qa.quantity(bm['minor']), 'arcsec')['value']) / 2.0 if convol: im2 = ia.sepconvolve(types=['gaussian', 'gaussian'], widths="{0:}arcsec {0:}arcsec".format(2.5*bmsize), overwrite=True) ia2.done() else: im2 = ia cl = cltool() srcs = im2.findsources(point=False, cutoff=0.3, width=int(np.ceil(bmsize/2.5))) # srcs = ia.findsources(point=False, cutoff=0.1, width=5) if verbose: for k, v in srcs.iteritems(): if k.startswith('comp'): ## note: Stokes I to XX print(srcs[k]['flux']['value']) # srcs[k]['flux']['value'] = srcs[k]['flux']['value'] / 2.0 cl.fromrecord(srcs) cl.rename(clname) cl.done() ia.done() im2.done() def fit_diskmodel(out, bidx, rstn_flux, uvfitrange=[1, 150], angle_tolerance=np.pi / 2, doplot=True): ''' Given the result returned by read_ms(), plots the amplitude vs. uvdistance separately for polar and equatorial directions rotated for P-angle, then overplots a disk model for a disk enlarged by eqfac in the equatorial direction, and polfac in the polar direction. Also requires the RSTN flux spectrum for the date of the ms, determined from (example for 2019-09-01): import rstn frq, flux = rstn.rd_rstnflux(t=Time('2019-09-01')) rstn_flux = rstn.rstn2ant(frq, flux, out['fghz']*1000, t=Time('2019-09-01')) ''' from util import bl2ord, lobe import matplotlib.pylab as plt import sun_pos from scipy.special import j1 import scipy.constants mperns = scipy.constants.c / 1e9 # speed of light in m/ns # Rotate uv angle for P-angle pa, b0, r = sun_pos.get_pb0r(out['mjd'][0], arcsec=True) uvangle = lobe(out['uvangle'] - pa * np.pi / 180.) a = 2 * r * np.pi ** 2 / (180. * 3600.) # Initial scale for z, uses photospheric radius of the Sun if doplot: f, ax = plt.subplots(3, 1) uvmin, uvmax = uvfitrange uvdeq = [] uvdpol = [] ampeq = [] amppol = [] zeq = [] zpol = [] # Loop over antennas 1-4 antmax = 7 at = angle_tolerance for i in range(4): fidx, = np.where(out['band'] == bidx) # Array of frequency indexes for channels in this band for j, fi in enumerate(fidx): amp = out['amp'][0, fi, bl2ord[i, i + 1:antmax]].flatten() / 10000. # Convert to sfu # Use only non-zero amplitudes good, = np.where(amp != 0) amp = amp[good] uva = uvangle[bl2ord[i, i + 1:antmax]].flatten()[good] # Equatorial points are within +/- pi/8 of solar equator eq, = np.where(np.logical_or(np.abs(uva) < at / 2, np.abs(uva) >= np.pi - at / 2)) # Polar points are within +/- pi/8 of solar pole pol, = np.where(np.logical_and(np.abs(uva) >= np.pi / 2 - at / 2, np.abs(uva) < np.pi / 2 + at / 2)) uvd = out['uvdist'][bl2ord[i, i + 1:antmax]].flatten()[good] * out['fghz'][fi] / mperns # Wavelengths # Add data for this set of baselines to global arrays uvdeq.append(uvd[eq]) uvdpol.append(uvd[pol]) ampeq.append(amp[eq]) amppol.append(amp[pol]) zeq.append(uvd[eq]) zpol.append(uvd[pol]) uvdeq = np.concatenate(uvdeq) uvdpol = np.concatenate(uvdpol) uvdall = np.concatenate((uvdeq, uvdpol)) ampeq = np.concatenate(ampeq) amppol = np.concatenate(amppol) ampall = np.concatenate((ampeq, amppol)) zeq = np.concatenate(zeq) zpol = np.concatenate(zpol) zall = np.concatenate((zeq, zpol)) # These indexes are for a restricted uv-range to be fitted ieq, = np.where(np.logical_and(uvdeq > uvmin, uvdeq <= uvmax)) ipol, = np.where(np.logical_and(uvdpol > uvmin, uvdpol <= uvmax)) iall, = np.where(np.logical_and(uvdall > uvmin, uvdall <= uvmax)) if doplot: # Plot all of the data points ax[0].plot(uvdeq, ampeq, 'k+') ax[1].plot(uvdpol, amppol, 'k+') ax[2].plot(uvdall, ampall, 'k+') # Overplot the fitted data points in a different color ax[0].plot(uvdeq[ieq], ampeq[ieq], 'b+') ax[1].plot(uvdpol[ipol], amppol[ipol], 'b+') ax[2].plot(uvdall[iall], ampall[iall], 'b+') # Minimize ratio of points to model ntries = 300 solfac = np.linspace(1.0, 1.3, ntries) d2m_eq = np.zeros(ntries, np.float) d2m_pol = np.zeros(ntries, np.float) d2m_all = np.zeros(ntries, np.float) sfac =
np.zeros(ntries, np.float)
numpy.zeros
import pytest from xarray import DataArray import scipy.stats as st from numpy import ( argmin, array, concatenate, dot, exp, eye, kron, nan, reshape, sqrt, zeros, ) from numpy.random import RandomState from numpy.testing import assert_allclose, assert_array_equal from pandas import DataFrame from limix.qc import normalise_covariance from limix.qtl import scan from limix.stats import linear_kinship, multivariate_normal as mvn def _test_qtl_scan_st(lik): random = RandomState(0) n = 30 ncovariates = 3 M = random.randn(n, ncovariates) v0 = random.rand() v1 = random.rand() G = random.randn(n, 4) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = random.randn(ncovariates) alpha = random.randn(G.shape[1]) m = M @ beta + G @ alpha y = mvn(random, m, v0 * K + v1 * eye(n)) idx = [[0, 1], 2, [3]] if lik == "poisson": y = random.poisson(exp(y)) elif lik == "bernoulli": y = random.binomial(1, 1 / (1 + exp(-y))) elif lik == "probit": y = random.binomial(1, st.norm.cdf(y)) elif lik == "binomial": ntrials = random.randint(0, 30, len(y)) y = random.binomial(ntrials, 1 / (1 + exp(-y))) lik = (lik, ntrials) r = scan(G, y, lik=lik, idx=idx, K=K, M=M, verbose=False) str(r) str(r.stats.head()) str(r.effsizes["h2"].head()) str(r.h0.trait) str(r.h0.likelihood) str(r.h0.lml) str(r.h0.effsizes) str(r.h0.variances) def test_qtl_scan_st(): _test_qtl_scan_st("normal") _test_qtl_scan_st("poisson") _test_qtl_scan_st("bernoulli") _test_qtl_scan_st("probit") _test_qtl_scan_st("binomial") def test_qtl_scan_three_hypotheses_mt(): random = RandomState(0) n = 30 ntraits = 2 ncovariates = 3 A = random.randn(ntraits, ntraits) A = A @ A.T M = random.randn(n, ncovariates) C0 = random.randn(ntraits, ntraits) C0 = C0 @ C0.T C1 = random.randn(ntraits, ntraits) C1 = C1 @ C1.T G = random.randn(n, 4) A0 = random.randn(ntraits, 1) A1 = random.randn(ntraits, 2) A01 = concatenate((A0, A1), axis=1) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = vec(random.randn(ntraits, ncovariates)) alpha = vec(random.randn(A01.shape[1], G.shape[1])) m = kron(A, M) @ beta + kron(A01, G) @ alpha Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1)) idx = [[0, 1], 2, [3]] r = scan(G, Y, idx=idx, K=K, M=M, A=A, A0=A0, A1=A1, verbose=False) str(r) def test_qtl_scan_two_hypotheses_mt(): random = RandomState(0) n = 30 ntraits = 2 ncovariates = 3 A = random.randn(ntraits, ntraits) A = A @ A.T M = random.randn(n, ncovariates) C0 = random.randn(ntraits, ntraits) C0 = C0 @ C0.T C1 = random.randn(ntraits, ntraits) C1 = C1 @ C1.T G = random.randn(n, 4) A0 = random.randn(ntraits, 1) A1 = random.randn(ntraits, 2) A01 = concatenate((A0, A1), axis=1) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = vec(random.randn(ntraits, ncovariates)) alpha = vec(random.randn(A01.shape[1], G.shape[1])) m = kron(A, M) @ beta + kron(A01, G) @ alpha Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1)) idx = [[0, 1], 2, [3]] r = scan(G, Y, idx=idx, K=K, M=M, A=A, A1=A1, verbose=False) str(r) def test_qtl_scan_two_hypotheses_mt_A0A1_none(): random = RandomState(0) n = 30 ntraits = 2 ncovariates = 3 A = random.randn(ntraits, ntraits) A = A @ A.T M = random.randn(n, ncovariates) C0 = random.randn(ntraits, ntraits) C0 = C0 @ C0.T C1 = random.randn(ntraits, ntraits) C1 = C1 @ C1.T G = random.randn(n, 4) A1 = eye(ntraits) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = vec(random.randn(ntraits, ncovariates)) alpha = vec(random.randn(A1.shape[1], G.shape[1])) m = kron(A, M) @ beta + kron(A1, G) @ alpha Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1)) Y = DataArray(Y, dims=["sample", "trait"], coords={"trait": ["WA", "Cx"]}) idx = [[0, 1], 2, [3]] r = scan(G, Y, idx=idx, K=K, M=M, A=A, verbose=False) df = r.effsizes["h2"] df = df[df["test"] == 0] assert_array_equal(df["trait"], ["WA"] * 3 + ["Cx"] * 3 + [None] * 4) assert_array_equal( df["env"], [None] * 6 + ["env1_WA", "env1_WA", "env1_Cx", "env1_Cx"] ) str(r) def test_qtl_scan_lmm(): random = RandomState(0) nsamples = 50 G = random.randn(50, 100) K = linear_kinship(G[:, 0:80], verbose=False) y = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) M = G[:, :5] X = G[:, 68:70] result = scan(X, y, lik="normal", K=K, M=M, verbose=False) pv = result.stats["pv20"] ix_best_snp = argmin(array(pv)) M = concatenate((M, X[:, [ix_best_snp]]), axis=1) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[ix_best_snp], 1.0, atol=1e-6) def test_qtl_scan_lmm_nokinship(): random = RandomState(0) nsamples = 50 G = random.randn(50, 100) K = linear_kinship(G[:, 0:80], verbose=False) y = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) M = G[:, :5] X = G[:, 68:70] result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"].values assert_allclose(pv[:2], [8.159539103135342e-05, 0.10807353641893498], atol=1e-5) def test_qtl_scan_lmm_repeat_samples_by_index(): random = RandomState(0) nsamples = 30 samples = ["sample{}".format(i) for i in range(nsamples)] G = random.randn(nsamples, 100) G = DataFrame(data=G, index=samples) K = linear_kinship(G.values[:, 0:80], verbose=False) K = DataFrame(data=K, index=samples, columns=samples) y0 = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) y1 = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) y = concatenate((y0, y1)) y = DataFrame(data=y, index=samples + samples) M = G.values[:, :5] X = G.values[:, 68:70] M = DataFrame(data=M, index=samples) X = DataFrame(data=X, index=samples) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv.values[0], 0.9920306566395604, rtol=1e-6) ix_best_snp = argmin(array(result.stats["pv20"])) M = concatenate((M, X.loc[:, [ix_best_snp]]), axis=1) M = DataFrame(data=M, index=samples) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[ix_best_snp], 1.0, rtol=1e-6) assert_allclose(pv.values[0], 0.6684700834450028, rtol=1e-6) X.sort_index(inplace=True, ascending=False) X = DataFrame(X.values, index=X.index.values) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[ix_best_snp], 1.0, rtol=1e-6) assert_allclose(pv.values[0], 0.6684700834450028, rtol=1e-6) def test_qtl_scan_lmm_different_samples_order(): random = RandomState(0) nsamples = 50 samples = ["sample{}".format(i) for i in range(nsamples)] G = random.randn(nsamples, 100) G = DataFrame(data=G, index=samples) K = linear_kinship(G.values[:, 0:80], verbose=False) K = DataFrame(data=K, index=samples, columns=samples) y = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) y = DataFrame(data=y, index=samples) M = G.values[:, :5] X = G.values[:, 68:70] M = DataFrame(data=M, index=samples) X = DataFrame(data=X, index=samples) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv.values[1], 0.10807353644788478, rtol=1e-6) X.sort_index(inplace=True, ascending=False) X = DataFrame(X.values, index=X.index.values) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv.values[1], 0.10807353644788478, rtol=1e-6) def test_qtl_scan_glmm_binomial(): random = RandomState(0) nsamples = 25 X = random.randn(nsamples, 2) G = random.randn(nsamples, 100) K = dot(G, G.T) ntrials = random.randint(1, 100, nsamples) z = dot(G, random.randn(100)) / sqrt(100) successes = zeros(len(ntrials), int) for i, nt in enumerate(ntrials): for _ in range(nt): successes[i] += int(z[i] + 0.5 * random.randn() > 0) result = scan(X, successes, ("binomial", ntrials), K, verbose=False) pv = result.stats["pv20"] assert_allclose(pv, [0.9315770010211236, 0.8457015828837173], atol=1e-6, rtol=1e-6) def test_qtl_scan_glmm_wrong_dimensions(): random = RandomState(0) nsamples = 25 X = random.randn(nsamples, 2) G = random.randn(nsamples, 100) K = dot(G, G.T) ntrials = random.randint(1, 100, nsamples) z = dot(G, random.randn(100)) / sqrt(100) successes = zeros(len(ntrials), int) for i, nt in enumerate(ntrials): for _ in range(nt): successes[i] += int(z[i] + 0.5 * random.randn() > 0) M = random.randn(49, 2) scan(X, successes, ("binomial", ntrials), K, M=M, verbose=False) def test_qtl_scan_glmm_bernoulli(): random = RandomState(0) nsamples = 25 X = random.randn(nsamples, 2) G = random.randn(nsamples, 100) K = dot(G, G.T) ntrials = random.randint(1, 2, nsamples) z = dot(G, random.randn(100)) / sqrt(100) successes = zeros(len(ntrials), int) for i, nt in enumerate(ntrials): for _ in range(nt): successes[i] += int(z[i] + 0.5 * random.randn() > 0) result = scan(X, successes, "bernoulli", K, verbose=False) pv = result.stats["pv20"] assert_allclose(pv, [0.3399326545917558, 0.8269454251659921], rtol=1e-5) def test_qtl_scan_glmm_bernoulli_nokinship(): random = RandomState(0) nsamples = 25 X = random.randn(nsamples, 2) G = random.randn(nsamples, 100) ntrials = random.randint(1, 2, nsamples) z = dot(G, random.randn(100)) / sqrt(100) successes = zeros(len(ntrials), int) for i, nt in enumerate(ntrials): for _ in range(nt): successes[i] += int(z[i] + 0.5 * random.randn() > 0) result = scan(X, successes, "bernoulli", verbose=False) pv = result.stats["pv20"] assert_allclose(pv, [0.3399067917883736, 0.8269568797830423], rtol=1e-5) def test_qtl_scan_lm(): random = RandomState(0) nsamples = 25 G = random.randn(nsamples, 100) y = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) M = G[:, :5] X = G[:, 5:] result = scan(X, y, "normal", M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[:2], [0.02625506841465465, 0.9162689001409643], rtol=1e-5) def test_qtl_scan_gmm_binomial(): random = RandomState(0) nsamples = 25 X = random.randn(nsamples, 2) ntrials = random.randint(1, nsamples, nsamples) z = dot(X, random.randn(2)) successes = zeros(len(ntrials), int) for i in range(len(ntrials)): for _ in range(ntrials[i]): successes[i] += int(z[i] + 0.5 * random.randn() > 0) result = scan(X, successes, ("binomial", ntrials), verbose=False) pv = result.stats["pv20"] assert_allclose( pv, [2.4604711379400065e-06, 0.01823278752006871], rtol=1e-5, atol=1e-5 ) def test_qtl_finite(): random =
RandomState(0)
numpy.random.RandomState
from __future__ import absolute_import, print_function, division import theano import theano.tensor as T from theano import function, shared from theano.tests import unittest_tools as utt from theano.tensor.nnet.ConvTransp3D import convTransp3D, ConvTransp3D from theano.tensor.nnet.ConvGrad3D import convGrad3D, ConvGrad3D from theano.tensor.nnet.Conv3D import conv3D, Conv3D from theano.tests.unittest_tools import attr from nose.plugins.skip import SkipTest import numpy as N from six.moves import xrange import copy import theano.sparse if theano.sparse.enable_sparse: from scipy import sparse floatX = theano.config.floatX # TODO: each individual test method should seed rng with utt.fetch_seed() # as it is right now, setUp does the seeding, so if you run just # a subset of the tests they will do different things than if you # run all of them class DummyConv3D: """A dummy version of Conv3D passed to verify_grad Stores a fixed stride, since stride is not differentiable Exposes only one scalar argument, which is used as the position along a parametrically defined line, with 0 being at VwbVals Direction of the line is chosen randomly at construction The reason for locking the inputs to lie on this line is so that the verify_grad will not need to test hundreds of variables. Disadvantage is we can't be certain that all of them are correct, advantange is that this random projection lets us test lots of variables very quickly """ def __init__(self, rng, VWbVals, d): """ param: rng Random number generator used to pick direction of the line param: VWbVals tuple containing values to test V,W,b around param: d shared variable for d, the stride """ self.V, self.W, self.b = VWbVals self.dV = shared(rng.uniform(-1, 1, self.V.get_value(borrow=True).shape)) self.dW = shared(rng.uniform(-1, 1, self.W.get_value(borrow=True).shape)) self.db = shared(rng.uniform(-1, 1, self.b.get_value(borrow=True).shape)) self.d = d def __call__(self, t): output = conv3D(self.V + t * self.dV, self.W + t * self.dW, self.b + t * self.db, self.d) return output class DummyConvGrad3D: def __init__(self, rng, VdHvals, d, WShape): """ param: rng Random number generator used to pick direction of the line param: VWbVals tuple containing values to test V,W,b around param: d shared variable for d, the stride """ self.V, self.dCdH = VdHvals self.dV = shared(rng.uniform(-1, 1, self.V.get_value(borrow=True).shape)) self.ddCdH = shared(rng.uniform( -1, 1, self.dCdH.get_value(borrow=True).shape)) self.d = d self.WShape = WShape def __call__(self, t): output = convGrad3D(self.V + t * self.dV, self.d, self.WShape, self.dCdH + t * self.ddCdH) return output class DummyConvTransp3D: def __init__(self, rng, WbHvals, d, RShape): """ param: rng Random number generator used to pick direction of the line param: VWbVals tuple containing values to test V,W,b around param: d shared variable for d, the stride """ self.W, self.b, self.H = WbHvals self.dW = rng.uniform(-1, 1, self.W.get_value(borrow=True).shape) self.db = rng.uniform(-1, 1, self.b.get_value(borrow=True).shape) self.dH = rng.uniform(-1, 1, self.H.get_value(borrow=True).shape) self.dW, self.db = shared(self.dW), shared(self.db), self.dH = shared(self.dH) self.d = d self.RShape = RShape def __call__(self, t): output = convTransp3D(self.W + t * self.dW, self.b + t * self.db, self.d, self.H + t * self.dH, self.RShape) return output class TestConv3D(utt.InferShapeTester): def setUp(self): super(TestConv3D, self).setUp() utt.seed_rng() self.rng = N.random.RandomState(utt.fetch_seed()) mode = copy.copy(theano.compile.mode.get_default_mode()) mode.check_py_code = False self.W = shared(N.ndarray(shape=(1, 1, 1, 1, 1), dtype=floatX)) self.W.name = 'W' self.b = shared(
N.zeros(1, dtype=floatX)
numpy.zeros
import torch import argparse import os import json import data_def import numpy as np from pprint import pprint from tqdm import tqdm from data_utils import * import data_loader_util import reprocess_labels_utils import spatial_transforms from PIL import Image DEFAULT_VIDEO_PATH = '../data/video_small' DEFAULT_LABEL_PATH = '../data/label_aligned' DEFAULT_SEGMENTED_LABEL_PATH = '../data/label_cropped/annotation.json' DEFAULT_CLIP_LENGTH = 200 # frames DATALOADER_NUM_WORKERS = 1 TRAIN_FILENAMES_MINI = [ 'russell_stable3.mp4', ] TRAIN_FILENAMES = [ 'kevin_random_moves_quick.mp4', 'kevin_random_moves_quick_2.mp4', 'kevin_random_moves_quick_3.mp4', 'kevin_random_moves_quick_4.mp4', 'kevin_rotate_1.mp4', 'kevin_simple_shuffle_1.mp4', 'kevin_single_moves_2.mp4', 'kevin_single_solve_1.mp4', 'kevin_solve_play_1.mp4', 'kevin_solve_play_10.mp4', 'kevin_solve_play_11.mp4', 'kevin_solve_play_12.mp4', 'kevin_solve_play_13.mp4', 'kevin_solve_play_2.mp4', 'kevin_solve_play_3.mp4', 'kevin_solve_play_7.mp4', 'kevin_solve_play_8.mp4', 'kevin_solve_play_9.mp4', 'russell_scramble0.mp4', 'russell_scramble1.mp4', 'russell_scramble3.mp4', 'russell_scramble4.mp4', 'russell_scramble5.mp4', 'russell_scramble7.mp4', 'russell_stable0.mp4', 'russell_stable1.mp4', 'russell_stable2.mp4', 'russell_stable3.mp4', 'zhouheng_cfop_solve.mp4', 'zhouheng_long_solve_1.mp4', 'zhouheng_long_solve_2.mp4', 'zhouheng_long_solve_3.mp4', 'zhouheng_oll_algorithm.mp4', 'zhouheng_pll_algorithm_fast.mp4', 'zhouheng_rotation.mp4', 'zhouheng_scramble_01.mp4', 'zhouheng_scramble_03.mp4', 'zhouheng_weird_turns.mp4', ] DEV_FILENAMES = [ 'kevin_single_moves_1.mp4', 'kevin_solve_play_6.mp4', 'zhouheng_scramble_02.mp4', 'russell_scramble2.mp4', ] TEST_FILENAMES = [ 'zhouheng_long_solve_5.mp4', 'kevin_solve_play_5.mp4', 'zhouheng_long_solve_4.mp4', 'russell_scramble6.mp4', ] EXCLUDE_FILENAMES = [ # 'kevin_solve_play_1.mp4', # 'kevin_solve_play_10.mp4', # 'kevin_solve_play_11.mp4', # 'kevin_solve_play_12.mp4', # 'kevin_solve_play_13.mp4', # 'kevin_solve_play_2.mp4', # 'kevin_solve_play_3.mp4', # 'kevin_solve_play_7.mp4', # 'kevin_solve_play_8.mp4', # 'kevin_solve_play_9.mp4', # 'kevin_solve_play_6.mp4', # 'kevin_solve_play_5.mp4', ] def get_train_data(B, L, verbose_init=True, shorten_factor=1, spatial_augment=True): train_dataset = VideoDataset( DEFAULT_VIDEO_PATH, DEFAULT_LABEL_PATH, clip_length=L, verbose_init=verbose_init, video_filenames=TRAIN_FILENAMES, shorten_factor=shorten_factor, spatial_augment=spatial_augment, ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=B, num_workers=DATALOADER_NUM_WORKERS, ) return train_dataset, train_loader def get_dev_data(B, L, verbose_init=True): dev_dataset = VideoDatasetNoSample( DEFAULT_VIDEO_PATH, DEFAULT_LABEL_PATH, clip_length=L, verbose_init=verbose_init, video_filenames=DEV_FILENAMES ) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=B, num_workers=DATALOADER_NUM_WORKERS, ) return dev_dataset, dev_loader def get_eval_dev_data(video_filenames, overlap_length=15): dev_dataset = VideoDatasetOverlapped( DEFAULT_VIDEO_PATH, DEFAULT_LABEL_PATH, video_filenames=video_filenames, overlap_length=overlap_length ) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=1, num_workers=DATALOADER_NUM_WORKERS, ) return dev_dataset, dev_loader def get_segmented_train_data(B, L, spatial_transform=None, temporal_shift=False, verbose_init=True): print("\nGetting TRAIN data...") train_dataset = VideoDatasetSegmented( DEFAULT_VIDEO_PATH, DEFAULT_SEGMENTED_LABEL_PATH, spatial_transform=spatial_transform, temporal_shift=temporal_shift, verbose_init=verbose_init, min_accepted_frames=L, video_filenames=TRAIN_FILENAMES # video_filenames=TRAIN_FILENAMES_MINI ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=B, num_workers=DATALOADER_NUM_WORKERS, ) return train_dataset, train_loader def get_segmented_dev_data(B, L, verbose_init=True): print("\nGetting DEV data...") dev_dataset = VideoDatasetSegmented( DEFAULT_VIDEO_PATH, DEFAULT_SEGMENTED_LABEL_PATH, verbose_init=verbose_init, min_accepted_frames=L, video_filenames=DEV_FILENAMES # video_filenames=TRAIN_FILENAMES_MINI ) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=B, num_workers=DATALOADER_NUM_WORKERS, ) return dev_dataset, dev_loader def get_segmented_eval_data(L, verbose_init=True): print("\nGetting TEST data...") test_dataset = VideoDatasetSegmented( DEFAULT_VIDEO_PATH, DEFAULT_SEGMENTED_LABEL_PATH, verbose_init=verbose_init, min_accepted_frames=L, video_filenames=TEST_FILENAMES # video_filenames=TRAIN_FILENAMES_MINI ) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=5, num_workers=DATALOADER_NUM_WORKERS, ) return test_dataset, test_loader class VideoDataset(torch.utils.data.Dataset): def __init__( self, video_path, label_path, clip_length=DEFAULT_CLIP_LENGTH, verbose_init=False, video_filenames=None, shorten_factor=1, spatial_augment=True, ): self.clip_length = clip_length self.spatial_augment = spatial_augment if video_filenames is None: video_filenames = data_loader_util.walk_video_filenames(video_path) json_filenames = data_loader_util.get_json_filenames(video_filenames) for f in json_filenames: assert os.path.exists( os.path.join(label_path, f) ), f'Found video, but [{f}] does not exist.' # load json labels self.label_dicts = data_loader_util.load_json_labels( label_path, json_filenames) # load video specs self.video_specs = [ get_video_specs(os.path.join(video_path, f)) for f in video_filenames ] self.num_videos = len(self.video_specs) # check that all videos have same height and width assert len(set([spec['height'] for spec in self.video_specs])) == 1, \ 'videos are of different height' assert len(set([spec['width'] for spec in self.video_specs])) == 1, \ 'videos are of different width' data_loader_util.populate_segmentable_ranges( self.label_dicts, self.video_specs, self.clip_length ) # check that sampleable segment frames are at least clip_length in each video for spec in self.video_specs: assert spec['max_seg_frame'] - spec['min_seg_frame'] >= clip_length,\ f'{spec["filename"]} does not have at least {clip_length} frames within sample-able range' # when sampling, randomly choose a video proportional to its (num_frames - clip_length + 1) # such that any valid sampleable segments in the dataset has an equal chance of selected total_num_valid_segments = [ num_valid_segments( spec['min_seg_frame'], spec['max_seg_frame'], clip_length ) for spec in self.video_specs ] self.random_video_p = np.array( total_num_valid_segments) / np.sum(total_num_valid_segments) # since we're randomly sampling clip_length frames per sample, we say that the length of # this dataset is however many expected sample needed to span number of total frames self.len = int(np.ceil(sum(total_num_valid_segments) / clip_length / shorten_factor)) self.random_state = None if verbose_init: print('VideoDataset __init__') print('clip_length:', clip_length) print( 'frame size:', self.video_specs[0]['height'], 'x', self.video_specs[0]['width'] ) print('video files:') pprint(video_filenames) # print('json files:', json_filenames) def __len__(self): return self.len def __getitem__(self, idx): if self.random_state is None: self.random_state =
np.random.RandomState()
numpy.random.RandomState
import matplotlib, zipfile matplotlib.use('agg') import sys, numpy as np, matplotlib.pyplot as plt, os, tools21cm as t2c, matplotlib.gridspec as gridspec from sklearn.metrics import matthews_corrcoef from glob import glob from tensorflow.keras.models import load_model from tqdm import tqdm from config.net_config import NetworkConfig from utils.other_utils import RotateCube from utils_network.metrics import iou, iou_loss, dice_coef, dice_coef_loss, balanced_cross_entropy, phi_coef from utils_network.prediction import SegUnet21cmPredict from myutils.utils import OrderNdimArray title_a = '\t\t _ _ _ _ _ \n\t\t| | | | \ | | | | \n\t\t| | | | \| | ___| |_ \n\t\t| | | | . ` |/ _ \ __|\n\t\t| |__| | |\ | __/ |_ \n\t\t \____/|_| \_|\___|\__|\n' title_b = ' _____ _ _ _ ___ __ \n| __ \ | (_) | | |__ \/_ | \n| |__) | __ ___ __| |_ ___| |_ ___ ) || | ___ _ __ ___ \n| ___/ `__/ _ \/ _` | |/ __| __/ __| / / | |/ __| `_ ` _ \ \n| | | | | __/ (_| | | (__| |_\__ \ / /_ | | (__| | | | | |\n|_| |_| \___|\__,_|_|\___|\__|___/ |____||_|\___|_| |_| |_|\n' print(title_a+'\n'+title_b) config_file = sys.argv[1] conf = PredictionConfig(config_file) PATH_OUT = conf.path_out PATH_INPUT = conf.path+conf.pred_data print(' PATH_INPUT = %s' %PATH_INPUT) if(PATH_INPUT[-3:] == 'zip'): ZIPFILE = True PATH_IN_ZIP = PATH_INPUT[PATH_INPUT.rfind('/')+1:-4]+'/' PATH_UNZIP = PATH_INPUT[:PATH_INPUT.rfind('/')+1] MAKE_PLOTS = True # load model avail_metrics = {'binary_accuracy':'binary_accuracy', 'iou':iou, 'dice_coef':dice_coef, 'iou_loss':iou_loss, 'dice_coef_loss':dice_coef_loss, 'phi_coef':phi_coef, 'mse':'mse', 'mae':'mae', 'binary_crossentropy':'binary_crossentropy', 'balanced_cross_entropy':balanced_cross_entropy} MODEL_EPOCH = conf.best_epoch METRICS = [avail_metrics[m] for m in np.append(conf.loss, conf.metrics)] cb = {func.__name__:func for func in METRICS if not isinstance(func, str)} model = load_model('%smodel-sem21cm_ep%d.h5' %(PATH_OUT+'checkpoints/', MODEL_EPOCH), custom_objects=cb) try: os.makedirs(PATH_OUT+'predictions') except: pass PATH_OUT += 'predictions/pred_tobs1200/' print(' PATH_OUTPUT = %s' %PATH_OUT) try: os.makedirs(PATH_OUT+'data') os.makedirs(PATH_OUT+'plots') except: pass if(os.path.exists('%sastro_data.txt' %PATH_OUT)): astr_data = np.loadtxt('%sastro_data.txt' %PATH_OUT, unpack=True) restarts = astr_data[6:].argmin(axis=1) if(all(int(np.mean(restarts)) == restarts)): restart = int(np.mean(restarts)) print(' Restart from idx=%d' %restart) else: ValueError(' Restart points does not match.') phicoef_seg, phicoef_err, phicoef_sp, xn_mask, xn_seg, xn_err, xn_sp, b0_true, b1_true, b2_true, b0_seg, b1_seg, b2_seg, b0_sp, b1_sp, b2_sp = astr_data[6:] astr_data = astr_data[:6] else: if(ZIPFILE): with zipfile.ZipFile(PATH_INPUT, 'r') as myzip: astr_data = np.loadtxt(myzip.open('%sastro_params.txt' %PATH_IN_ZIP), unpack=True) else: astr_data = np.loadtxt('%sastro_params.txt' %PATH_INPUT, unpack=True) restart = 0 phicoef_seg = np.zeros(astr_data.shape[1]) phicoef_err = np.zeros_like(phicoef_seg) phicoef_sp = np.zeros_like(phicoef_seg) xn_mask = np.zeros_like(phicoef_seg) xn_seg = np.zeros_like(phicoef_seg) xn_err = np.zeros_like(phicoef_seg) xn_sp = np.zeros_like(phicoef_sp) b0_true = np.zeros_like(phicoef_sp) b1_true = np.zeros_like(phicoef_sp) b2_true = np.zeros_like(phicoef_sp) b0_sp = np.zeros_like(phicoef_sp) b1_sp = np.zeros_like(phicoef_sp) b2_sp = np.zeros_like(phicoef_sp) b0_seg = np.zeros_like(phicoef_sp) b1_seg = np.zeros_like(phicoef_sp) b2_seg = np.zeros_like(phicoef_sp) params = {'HII_DIM':128, 'DIM':384, 'BOX_LEN':256} my_ext = [0, params['BOX_LEN'], 0, params['BOX_LEN']] zc = (astr_data[1,:] < 7.5) + (astr_data[1,:] > 8.3) c1 = (astr_data[5,:]<=0.25)*(astr_data[5,:]>=0.15)*zc c2 = (astr_data[5,:]<=0.55)*(astr_data[5,:]>=0.45)*zc c3 = (astr_data[5,:]<=0.75)*(astr_data[5,:]>=0.85)*zc indexes = astr_data[0,:] new_idx = indexes[c1+c2+c3].astype(int) #for i in tqdm(range(restart, astr_data.shape[1])): print(new_idx) for new_i in tqdm(range(3, new_idx.size)): i = new_idx[new_i] z = astr_data[1,i] zeta = astr_data[2,i] Rmfp = astr_data[3,i] Tvir = astr_data[4,i] xn = astr_data[5,i] #print('z = %.3f x_n =%.3f zeta = %.3f R_mfp = %.3f T_vir = %.3f' %(z, xn, zeta, Rmfp, Tvir)) if(ZIPFILE): with zipfile.ZipFile(PATH_INPUT, 'r') as myzip: f = myzip.extract(member='%simage_21cm_i%d.bin' %(PATH_IN_ZIP+'data/', i), path=PATH_UNZIP) dT3 = t2c.read_cbin(f) f = myzip.extract(member='%smask_21cm_i%d.bin' %(PATH_IN_ZIP+'data/', i), path=PATH_UNZIP) mask_xn = t2c.read_cbin(f) os.system('rm -r %s/' %(PATH_UNZIP+PATH_IN_ZIP)) else: dT3 = t2c.read_cbin('%simage_21cm_i%d.bin' %(PATH_INPUT+'data/', i)) mask_xn = t2c.read_cbin('%smask_21cm_i%d.bin' %(PATH_INPUT+'data/', i)) # Calculate Betti number b0_true[i] = t2c.betti0(data=mask_xn) b1_true[i] = t2c.betti1(data=mask_xn) b2_true[i] = t2c.betti2(data=mask_xn) xn_mask[i] = np.mean(mask_xn) plt.rcParams['font.size'] = 20 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['xtick.top'] = False plt.rcParams['ytick.right'] = False plt.rcParams['axes.linewidth'] = 1.2 ls = 22 # -------- predict with SegUnet 3D -------- print(' calculating predictioon for data i = %d...' %i) X_tta = SegUnet21cmPredict(unet=model, x=dT3, TTA=True) X_seg = np.round(np.mean(X_tta, axis=0)) X_seg_err = np.std(X_tta, axis=0) # calculate Matthew coef and mean neutral fraction phicoef_seg[i] = matthews_corrcoef(mask_xn.flatten(), X_seg.flatten()) xn_seg[i] = np.mean(X_seg) # calculate errors phicoef_tta = np.zeros(X_tta.shape[0]) xn_tta = np.zeros(X_tta.shape[0]) for k in tqdm(range(len(X_tta))): xn_tta[k] = np.mean(np.round(X_tta[k])) phicoef_tta[k] = matthews_corrcoef(mask_xn.flatten(), np.round(X_tta[k]).flatten()) xn_err[i] = np.std(xn_tta) phicoef_err[i] = np.std(phicoef_tta) # Calculate Betti number b0_seg[i] = t2c.betti0(data=X_seg) b1_seg[i] = t2c.betti1(data=X_seg) b2_seg[i] = t2c.betti2(data=X_seg) # -------------------------------------------- # -------- predict with Super-Pixel -------- labels = t2c.slic_cube(dT3.astype(dtype='float64'), n_segments=5000, compactness=0.1, max_iter=20, sigma=0, min_size_factor=0.5, max_size_factor=3, cmap=None) superpixel_map = t2c.superpixel_map(dT3, labels) X_sp = 1-t2c.stitch_superpixels(dT3, labels, bins='knuth', binary=True, on_superpixel_map=True) # calculate Matthew coef and mean neutral fraction phicoef_sp[i] = matthews_corrcoef(mask_xn.flatten(), X_sp.flatten()) xn_sp[i] = np.mean(X_sp) # Calculate Betti number b0_sp[i] = t2c.betti0(data=X_sp) b1_sp[i] = t2c.betti1(data=X_sp) b2_sp[i] = t2c.betti2(data=X_sp) # -------------------------------------------- if(i in new_idx and MAKE_PLOTS): plt.rcParams['xtick.direction'] = 'out' plt.rcParams['ytick.direction'] = 'out' plt.rcParams['figure.figsize'] = [20, 10] idx = params['HII_DIM']//2 # Plot visual comparison fig, axs = plt.subplots(figsize=(20,10), ncols=3, sharey=True, sharex=True) (ax0, ax1, ax2) = axs ax0.set_title('Super-Pixel ($r_{\phi}=%.3f$)' %phicoef_sp[i], size=ls) ax0.imshow(X_sp[:,:,idx], origin='lower', cmap='jet', extent=my_ext) ax0.contour(mask_xn[:,:,idx], colors='lime', levels=[0.5], extent=my_ext) ax0.set_xlabel('x [Mpc]'), ax0.set_ylabel('y [Mpc]') ax1.set_title('SegU-Net ($r_{\phi}=%.3f$)' %phicoef_seg[i], size=ls) ax1.imshow(X_seg[:,:,idx], origin='lower', cmap='jet', extent=my_ext) ax1.contour(mask_xn[:,:,idx], colors='lime', levels=[0.5], extent=my_ext) ax1.set_xlabel('x [Mpc]') ax2.set_title('SegUNet Pixel-Error', size=ls) im = plt.imshow(X_seg_err[:,:,idx], origin='lower', cmap='jet', extent=my_ext) fig.colorbar(im, label=r'$\sigma_{std}$', ax=ax2, pad=0.02, cax=fig.add_axes([0.905, 0.25, 0.02, 0.51])) ax2.set_xlabel('x [Mpc]') plt.subplots_adjust(hspace=0.1, wspace=0.01) for ax in axs.flat: ax.label_outer() plt.savefig('%svisual_comparison_i%d.png' %(PATH_OUT+'plots/', i), bbox_inches='tight'), plt.clf() # Plot BSD-MFP of the prediction mfp_pred_ml = t2c.bubble_stats.mfp(X_seg, xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_pred_sp = t2c.bubble_stats.mfp(X_sp, xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_true = t2c.bubble_stats.mfp(mask_xn, xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_tta = np.zeros((X_tta.shape[0], 2, 128)) for j in tqdm(range(0, X_tta.shape[0])): mfp_pred_ml1, mfp_pred_ml2 = t2c.bubble_stats.mfp(np.round(X_tta[j]), xth=0.5, boxsize=params['BOX_LEN'], iterations=2000000, verbose=False, upper_lim=False, bins=None, r_min=None, r_max=None) mfp_tta[j,0] = mfp_pred_ml1 mfp_tta[j,1] = mfp_pred_ml2 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' compare_ml = (mfp_pred_ml[1]/mfp_true[1]) compare_ml_tta = (mfp_tta[:,1,:]/mfp_true[1]) compare_sp = (mfp_pred_sp[1]/mfp_true[1]) fig, ax0 = plt.subplots(figsize=(12, 9)) gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1.8]) # set height ratios for sublots ax0 = plt.subplot(gs[0]) ax0.set_title('$z=%.3f$\t$x_n=%.3f$\t$r_{\phi}=%.3f$' %(z, xn_mask[i], phicoef_seg[i]), fontsize=ls) ax0.fill_between(mfp_pred_ml[0], np.min(mfp_tta[:,1,:], axis=0), np.max(mfp_tta[:,1,:], axis=0), color='tab:blue', alpha=0.2) ax0.loglog(mfp_pred_ml[0], mfp_pred_ml[1], '-', color='tab:blue', label='SegUNet', lw=2) ax0.loglog(mfp_pred_sp[0], mfp_pred_sp[1], '-', color='tab:orange', label='Super-Pixel', lw=2) ax0.loglog(mfp_true[0], mfp_true[1], 'k--', label='Ground true', lw=2) ax0.legend(loc=0, borderpad=0.5) ax0.tick_params(axis='both', length=7, width=1.2) ax0.tick_params(axis='both', which='minor', length=5, width=1.2) ax0.set_ylabel('RdP/dR', size=18), ax0.set_xlabel('R (Mpc)') ax1 = plt.subplot(gs[1], sharex=ax0) ax1.loglog(mfp_true[0], compare_ml, '-', lw=2) ax1.loglog(mfp_true[0], compare_sp, '-', lw=2) ax1.loglog(mfp_true[0], np.ones_like(mfp_true[0]), 'k--', lw=2) ax1.fill_between(mfp_true[0], np.min(compare_ml_tta, axis=0), np.max(compare_ml_tta, axis=0), color='tab:blue', alpha=0.2) ax1.tick_params(axis='both', length=7, width=1.2, labelsize=15) ax1.set_ylabel('difference (%)', size=15) ax1.set_xlabel('R (Mpc)', size=18) plt.setp(ax0.get_xticklabels(), visible=False) plt.subplots_adjust(hspace=0.0) ax1.tick_params(which='minor', axis='both', length=5, width=1.2) plt.savefig('%sbs_comparison_i%d.png' %(PATH_OUT+'plots/', i), bbox_inches='tight'), plt.clf() # Plot dimensioneless power spectra of the x field ps_true, ks_true = t2c.power_spectrum_1d(mask_xn, kbins=20, box_dims=256, binning='log') ps_pred_sp, ks_pred_sp = t2c.power_spectrum_1d(X_sp, kbins=20, box_dims=256, binning='log') ps_pred_ml, ks_pred_ml = t2c.power_spectrum_1d(X_seg, kbins=20, box_dims=256, binning='log') ps_tta = np.zeros((X_tta.shape[0],20)) for k in range(0,X_tta.shape[0]): ps_tta[k], ks_pred_ml = t2c.power_spectrum_1d(np.round(X_tta[k]), kbins=20, box_dims=256, binning='log') compare_ml = 100*(ps_pred_ml/ps_true - 1.) compare_ml_tta = 100*(ps_tta/ps_true - 1.) compare_sp = 100*(ps_pred_sp/ps_true - 1.) fig, ax = plt.subplots(figsize=(16, 12)) gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1.8]) ax0 = plt.subplot(gs[0]) ax0.set_title('$z=%.3f$\t$x_n=%.3f$\t$r_{\phi}=%.3f$' %(z, xn_mask[i], phicoef_seg[i]), fontsize=ls) ax0.fill_between(ks_pred_ml, np.min(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0), np.max(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0), color='tab:blue', alpha=0.2) ax0.loglog(ks_pred_ml, ps_pred_ml*ks_pred_ml**3/2/np.pi**2, '-', color='tab:blue', label='SegUNet', lw=2) ax0.loglog(ks_pred_sp, ps_pred_sp*ks_pred_sp**3/2/np.pi**2, '-', color='tab:orange', label='Super-Pixel', lw=2) ax0.loglog(ks_true, ps_true*ks_true**3/2/np.pi**2, 'k--', label='Ground true', lw=2) ax0.set_yscale('log') ax1 = plt.subplot(gs[1], sharex=ax0) ax1.semilogx(ks_true, compare_ml, '-', lw=2) ax1.semilogx(ks_true, compare_sp, '-', lw=2) ax1.semilogx(ks_true, np.zeros_like(ks_true), 'k--', lw=2) ax1.fill_between(ks_true, np.min(compare_ml_tta, axis=0), np.max(compare_ml_tta, axis=0), color='tab:blue', alpha=0.2) ax1.tick_params(axis='both', length=7, width=1.2, labelsize=15) ax1.set_xlabel('k (Mpc$^{-1}$)'), ax0.set_ylabel('$\Delta^2_{xx}$') ax1.set_ylabel('difference (%)', size=15) ax0.tick_params(axis='both', length=10, width=1.2) ax0.tick_params(which='minor', axis='both', length=5, width=1.2) ax1.tick_params(which='minor', axis='both', length=5, width=1.2) ax0.legend(loc=0, borderpad=0.5) plt.setp(ax0.get_xticklabels(), visible=False) plt.subplots_adjust(hspace=0.0) plt.savefig('%sPk_comparison_i%d.png' %(PATH_OUT+'plots/', i), bbox_inches='tight'), plt.clf() ds_data = np.vstack((ks_true, np.vstack((ps_true*ks_true**3/2/np.pi**2, np.vstack((np.vstack((ps_pred_ml*ks_pred_ml**3/2/np.pi**2, np.vstack((np.min(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0), np.max(ps_tta*ks_pred_ml**3/2/np.pi**2, axis=0))))), ps_pred_sp*ks_pred_sp**3/2/np.pi**2)))))) bsd_data = np.vstack((mfp_true[0], np.vstack((mfp_true[1], np.vstack((np.vstack((mfp_pred_ml[1], np.vstack((np.min(mfp_tta[:,1,:], axis=0), np.max(mfp_tta[:,1,:], axis=0))))), mfp_pred_sp[1])))))) np.savetxt('%sds_data_i%d.txt' %(PATH_OUT+'data/', i), ds_data.T, fmt='%.6e', delimiter='\t', header='k [Mpc^-1]\tds_true\tds_seg_mean\tds_err_min\tds_err_max\tds_sp') np.savetxt('%sbsd_data_i%d.txt' %(PATH_OUT+'data/', i), bsd_data.T, fmt='%.6e', delimiter='\t', header='R [Mpc]\tbs_true\tbs_seg_mean\tb_err_min\tbs_err_max\tbs_sp') new_astr_data = np.vstack((astr_data, phicoef_seg)) new_astr_data = np.vstack((new_astr_data, phicoef_err)) new_astr_data = np.vstack((new_astr_data, phicoef_sp)) new_astr_data = np.vstack((new_astr_data, xn_mask)) new_astr_data = np.vstack((new_astr_data, xn_seg)) new_astr_data = np.vstack((new_astr_data, xn_err)) new_astr_data = np.vstack((new_astr_data, xn_sp)) new_astr_data = np.vstack((new_astr_data, b0_true)) new_astr_data = np.vstack((new_astr_data, b1_true)) new_astr_data = np.vstack((new_astr_data, b2_true)) new_astr_data = np.vstack((new_astr_data, b0_seg)) new_astr_data = np.vstack((new_astr_data, b1_seg)) new_astr_data = np.vstack((new_astr_data, b2_seg)) new_astr_data = np.vstack((new_astr_data, b0_sp)) new_astr_data = np.vstack((new_astr_data, b1_sp)) new_astr_data = np.vstack((new_astr_data, b2_sp)) np.savetxt('%sastro_data.txt' %(PATH_OUT), new_astr_data.T, fmt='%d\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d', header='i\tz\teff_f\tRmfp\tTvir\tx_n\tphi_ML\tphi_err phi_SP\txn_mask xn_seg\txn_err\txn_sp\tb0 true b1\tb2\tb0 ML\tb1\tb2\tb0 SP\tb1\tb2') np.savetxt('%sastro_data_sample.txt' %(PATH_OUT+'data/'), new_astr_data[:,new_idx].T, fmt='%d\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d', header='i\tz\teff_f\tRmfp\tTvir\tx_n\tphi_ML\tphi_err phi_SP\txn_mask xn_seg\txn_err\txn_sp\tb0 true b1\tb2\tb0 ML\tb1\tb2\tb0 SP\tb1\tb2') # Plot phi coeff plt.rcParams['font.size'] = 16 redshift, xfrac, phicoef_seg, phicoef_seg_err, phicoef_sp, xn_mask_true, xn_seg, xn_seg_err, xn_sp = OrderNdimArray(np.loadtxt(PATH_OUT+'astro_data.txt', unpack=True, usecols=(1,5,6,7,8,9,10,11,12)), 1) print('phi_coef = %.3f +/- %.3f\t(SegUnet)' %(np.mean(phicoef_seg), np.std(phicoef_seg))) print('phi_coef = %.3f\t\t(Superpixel)' %(np.mean(phicoef_sp))) fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(20,8)) #ax0.hlines(y=np.mean(phicoef_seg), xmin=0, xmax=1, ls='--', alpha=0.5) #ax0.fill_between(x=np.linspace(0, 1, 100), y1=np.mean(phicoef_seg)+np.std(phicoef_seg), y2=np.mean(phicoef_seg)-np.std(phicoef_seg), alpha=0.5, color='lightgray') # MCC SegUnet cm = matplotlib.cm.plasma sc = ax0.scatter(xfrac, phicoef_seg, c=redshift, vmin=7, vmax=9, s=25, cmap=cm, marker='.') norm = matplotlib.colors.Normalize(vmin=7, vmax=9, clip=True) mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap=cm) redshift_color = np.array([(mapper.to_rgba(v)) for v in redshift]) for x, y, e, clr in zip(xfrac, phicoef_seg, phicoef_seg_err, redshift_color): ax0.errorbar(x, y, e, lw=1, marker='o', capsize=3, color=clr) ax0.set_xlim(xfrac.min()-0.02, xfrac.max()+0.02), ax0.set_xlabel(r'$x_i$') ax0.set_ylim(-0.02, 1.02), ax0.set_ylabel(r'$r_{\phi}$') fig.colorbar(sc, ax=ax0, pad=0.01, label=r'$z$') ax2 = ax0.twinx() ax2.hist(xfrac, np.linspace(0.09, 0.81, 15), density=True, histtype='step', color='tab:blue', alpha=0.5) ax2.axes.get_yaxis().set_visible(False) # MCC comparison ax1.hlines(y=np.mean(phicoef_seg), xmin=0, xmax=1, ls='--', alpha=0.5, color='tab:blue') ax1.hlines(y=np.mean(phicoef_sp), xmin=0, xmax=1, ls='--', alpha=0.5, color='tab:orange') new_x = np.linspace(xfrac.min(), xfrac.max(), 100) f1 = np.poly1d(np.polyfit(xfrac, phicoef_seg, 10)) ax1.plot(new_x, f1(new_x), label='SegUnet', color='tab:blue') f2 = np.poly1d(np.polyfit(xfrac, phicoef_sp, 10)) ax1.plot(new_x, f2(new_x), label='Super-Pixel', color='tab:orange') ax1.set_xlim(xfrac.min()-0.02, xfrac.max()+0.02), ax1.set_xlabel(r'$x_i$') ax1.set_ylim(-0.02, 1.02), ax1.set_ylabel(r'$r_{\phi}$') ax1.legend(loc=4) plt.savefig('%sphi_coef.png' %PATH_OUT, bbox_inches="tight"), plt.clf() # Plot correlation fig, (ax0, ax1) = plt.subplots(ncols=2) ax0.plot(xn_mask_true, xn_mask_true, 'k--') cm = matplotlib.cm.plasma sc = ax0.scatter(xn_mask_true, xn_seg, c=redshift, vmin=7, vmax=9, s=25, cmap=cm, marker='.') norm = matplotlib.colors.Normalize(vmin=7, vmax=9, clip=True) mapper = matplotlib.cm.ScalarMappable(norm=norm, cmap='plasma') redshift_color = np.array([(mapper.to_rgba(v)) for v in redshift]) for x, y, e, clr in zip(xn_mask_true, xn_seg, xn_seg_err, redshift_color): ax0.errorbar(x, y, e, lw=1, marker='o', capsize=3, color=clr) ax0.set_xlim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax0.set_xlabel(r'$\rm x_{n,\,true}$') ax0.set_ylim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax0.set_ylabel(r'$\rm x_{n,\,predict}$') fig.colorbar(sc, ax=ax0, pad=0.01, label=r'$z$') ax1.plot(xn_mask_true, xn_mask_true, 'k--', label='Ground True') ax1.scatter(xn_mask_true, xn_seg, color='tab:blue', marker='o', label='SegUnet') ax1.scatter(xn_mask_true, xn_sp, color='tab:orange', marker='o', label='Super-Pixel') ax1.set_xlim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax1.set_xlabel(r'$\rm x_{n,\,true}$') ax1.set_ylim(xn_mask_true.min()-0.02, xn_mask_true.max()+0.02), ax1.set_ylabel(r'$\rm x_{n,\,predict}$') plt.legend(loc=4) plt.savefig('%scorr.png' %PATH_OUT, bbox_inches="tight"), plt.clf() # Betti numbers plot fig, (ax0, ax1, ax2) = plt.subplots(ncols=3, figsize=(23,5), sharex=True) h = np.histogram(xn_mask_true, np.linspace(1e-5, 1., 20), density=True) new_x = h[1][:-1]+0.5*(h[1][1:]-h[1][:-1]) # Betti 0 f_b0_true = np.array([
np.mean(b0_true[(xn_mask_true < h[1][i+1]) * (xn_mask_true >= h[1][i])])
numpy.mean
import isopy import numpy as np import pytest # calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation def test_mass_fractionation1(): # Testing with input as isotope array # Using default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed = 46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd') c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor) assert c_fractionated1.keys == unfractionated.keys assert c_fractionated1.size == unfractionated.size assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd') c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor) assert c_unfractionated1.keys == unfractionated.keys assert c_unfractionated1.size == unfractionated.size assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd') np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key/'105pd') fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated1[key], fractionated) np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key]) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) #Changing reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated2 = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated1 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, '105pd', isotope_masses=mass_ref) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref) assert c_fractionated1.keys == unfractionated.keys assert c_fractionated1.size == unfractionated.size assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated1 = isopy.tb.remove_mass_fractionation(c_fractionated1, mf_factor, '105pd', isotope_masses=mass_ref) c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref) assert c_unfractionated1.keys == unfractionated.keys assert c_unfractionated1.size == unfractionated.size assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated1, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key / '105pd') fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated1[key], fractionated) np.testing.assert_allclose(c_unfractionated1[key], unfractionated[key]) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) # calculate_mass_fractionation_factor, remove_mass_fractionation, add_mass_fractionation def test_mass_fractionation2(): # Testing with input as ratio array # Using default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor) assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor) assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd') np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key) fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated2[key], fractionated) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) # Changing reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated = unfractionated * fraction_ref unfractionated['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated['105pd'] unfractionated = unfractionated.ratio('105pd') mf_factor = isopy.random(100, (0, 2), seed=47) c_fractionated2 = isopy.tb.add_mass_fractionation(unfractionated, mf_factor, isotope_masses=mass_ref) assert c_fractionated2.keys == unfractionated.keys assert c_fractionated2.size == unfractionated.size c_unfractionated2 = isopy.tb.remove_mass_fractionation(c_fractionated2, mf_factor, isotope_masses=mass_ref) assert c_unfractionated2.keys == unfractionated.keys assert c_unfractionated2.size == unfractionated.size c_mf_factor2 = isopy.tb.calculate_mass_fractionation_factor(c_fractionated2, '108pd/105pd', isotope_masses=mass_ref, isotope_fractions=fraction_ref) np.testing.assert_allclose(c_mf_factor2, mf_factor) for key in unfractionated.keys: mass_diff = mass_ref.get(key) fractionated = unfractionated[key] * (mass_diff ** mf_factor) np.testing.assert_allclose(c_fractionated2[key], fractionated) np.testing.assert_allclose(c_unfractionated2[key], unfractionated[key]) class Test_MassIndependentCorrection: def test_one(self): # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated1 = unfractionated1 * fraction_ref unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd'] unfractionated2 = unfractionated1.ratio('105pd') n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000 mf_factor = isopy.random(100, (0, 2), seed=47) fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor) fractionated2 = fractionated1.deratio(unfractionated1['105pd']) self.run(fractionated1, unfractionated2, '108pd/105pd') self.run(fractionated2, unfractionated2, '108pd/105pd') self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon') self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon') # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 unfractionated1 = isopy.random(100, (1, 0.001), keys=isopy.refval.element.isotopes['pd'], seed=46) unfractionated1 = unfractionated1 * fraction_ref unfractionated1['108pd'] = fraction_ref.get('108pd/105pd') * unfractionated1['105pd'] unfractionated2 = unfractionated1.ratio('105pd') n_unfractionated2 = (unfractionated2 / fraction_ref - 1) * 10000 mf_factor = isopy.random(100, (0, 2), seed=47) fractionated1 = isopy.tb.add_mass_fractionation(unfractionated2, mf_factor, isotope_masses=mass_ref) fractionated2 = fractionated1.deratio(unfractionated1['105pd']) self.run(fractionated1, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, unfractionated2, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated1, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated2, n_unfractionated2, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) def test_two(self): # With interference correctionn # We wont get an exact match here so we have to lower the tolerance. # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor) for key in fractionated.keys.filter(element_symbol='pd'): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= fractionated['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) fractionated[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= fractionated['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) fractionated[key] += cd correct1 = data.copy(element_symbol = 'pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = (correct1 / fraction_ref - 1) * 10_000 self.run(fractionated, correct1, '108pd/105pd') self.run(fractionated, correct2, '108pd/105pd', factor=1) self.run(fractionated, correct3, '108pd/105pd', factor=10_000) self.run(fractionated, correct3, '108pd/105pd', factor='epsilon') # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref) for key in fractionated.keys.filter(element_symbol='pd'): if (ru := fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= fractionated['101ru'] * ( mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) fractionated[key] += ru if (cd := fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= fractionated['111cd'] * ( mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) fractionated[key] += cd correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = (correct1 / fraction_ref - 1) * 10_000 self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) def test_three(self): # Normalisations # Default reference values mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor) correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct1, '108pd/105pd') self.run(fractionated, correct2, '108pd/105pd', factor=1) self.run(fractionated, correct3, '108pd/105pd', factor=1000) self.run(fractionated, correct3, '108pd/105pd', factor='ppt') self.run(fractionated, correct3, '108pd/105pd', factor='permil') self.run(fractionated, correct4, '108pd/105pd', factor=10_000) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon') self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000) self.run(fractionated, correct5, '108pd/105pd', factor='mu') self.run(fractionated, correct5, '108pd/105pd', factor='ppm') # Single value std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48) std1 = std1 * fraction_ref rstd1 = std1.ratio('pd105') correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / np.mean(rstd1) - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1) std1 = np.mean(std1) rstd1 = np.mean(rstd1) self.run(fractionated, correct2, '108pd/105pd', norm_val=rstd1) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=rstd1) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=rstd1) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=rstd1) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=rstd1) # Multiple std1 = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=48) std1 = std1 * fraction_ref rstd1 = std1.ratio('pd105') std2 = isopy.random(50, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=49) std2 = std2 * fraction_ref rstd2 = std2.ratio('pd105') correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / (np.mean(rstd1)/2 + np.mean(rstd2)/2) - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) std1 = np.mean(std1) rstd1 = np.mean(rstd1) self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) std2 = np.mean(std2) rstd2 = np.mean(rstd2) self.run(fractionated, correct2, '108pd/105pd', norm_val=(rstd1, rstd2)) self.run(fractionated, correct2, '108pd/105pd', factor=1, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor=1000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', norm_val=(rstd1, rstd2)) self.run(fractionated, correct3, '108pd/105pd', factor='permil', norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='mu', norm_val=(rstd1, rstd2)) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', norm_val=(rstd1, rstd2)) # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 mf_factor = isopy.random(100, (0, 2), seed=47) data = isopy.random(100, (1, 0.1), keys='102pd 104pd 105pd 106pd 108pd 110pd'.split(), seed=46) data = data * fraction_ref data['108pd'] = fraction_ref.get('108pd/105pd') * data['105pd'] fractionated = data.copy() fractionated = isopy.tb.add_mass_fractionation(fractionated, mf_factor, isotope_masses=mass_ref) correct1 = data.copy(element_symbol='pd').ratio('105pd') correct2 = (correct1 / fraction_ref - 1) correct3 = correct2 * 1000 correct4 = correct2 * 10_000 correct5 = correct2 * 1_000_000 self.run(fractionated, correct1, '108pd/105pd', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct2, '108pd/105pd', factor=1, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor=1000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='ppt', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct3, '108pd/105pd', factor='permil', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct4, '108pd/105pd', factor=10_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct4, '108pd/105pd', factor='epsilon', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor=1_000_000, mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor='mu', mass_ref=mass_ref, fraction_ref=fraction_ref) self.run(fractionated, correct5, '108pd/105pd', factor='ppm', mass_ref=mass_ref, fraction_ref=fraction_ref) def run(self, data, correct, mb_ratio, factor = None, mass_ref = None, fraction_ref=None, norm_val = None): if type(factor) is str: func = getattr(isopy.tb.internal_normalisation, factor) factor2 = None else: factor2 = factor func = isopy.tb.internal_normalisation kwargs = {} if factor2 is not None: kwargs['extnorm_factor'] = factor2 if mass_ref is not None: kwargs['isotope_masses'] = mass_ref if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref if norm_val is not None: kwargs['extnorm_value'] = norm_val corrected = func(data, mb_ratio, **kwargs) assert corrected.keys == correct.keys - mb_ratio assert corrected.size == correct.size assert corrected.ndim == correct.ndim for key in corrected.keys: np.testing.assert_allclose(corrected[key], correct[key]) # mass independent correction if type(factor) is str: func = getattr(isopy.tb.mass_independent_correction, factor) factor2 = None else: factor2 = factor func = isopy.tb.mass_independent_correction kwargs = {} if factor2 is not None: kwargs['normalisation_factor'] = factor2 if mass_ref is not None: kwargs['isotope_masses'] = mass_ref if fraction_ref is not None: kwargs['isotope_fractions'] = fraction_ref if norm_val is not None: kwargs['normalisation_value'] = norm_val corrected = func(data, mb_ratio, **kwargs) assert corrected.keys == correct.keys - mb_ratio assert corrected.size == correct.size assert corrected.ndim == correct.ndim for key in corrected.keys: np.testing.assert_allclose(corrected[key], correct[key]) class Test_IsobaricInterferences: def test_one(self): # No mass fractionation factor # Single interference isotope # Default reference values fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru'] data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd') # Different reference values fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd'.split()) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): data[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data['101ru'] data[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data['111cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref) def test_two(self): # No mass fractionation factor # Multiple interference isotopes # Default reference values fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq = '<KEY>'.split()): data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru'] data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()): data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru'] data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd'] correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd') # Different reference values fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq='<KEY>'.split()): data1[key] += fraction_ref.get(f'ru{key.mass_number}/ru101', 0) * data1['101ru'] data1[key] += fraction_ref.get(f'cd{key.mass_number}/cd112', 0) * data1['112cd'] interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='<KEY>'.split()): data2[key] += fraction_ref.get(f'ru{key.mass_number}/ru99', 0) * data2['99ru'] data2[key] += fraction_ref.get(f'cd{key.mass_number}/cd111', 0) * data2['111cd'] correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref) def test_three(self): #Mass fractionation #Single interference isotope mass_ref = isopy.refval.isotope.mass_W17 fraction_ref = isopy.refval.isotope.best_measurement_fraction_M16 base_data = isopy.random(100, (1, 0.01), keys='<KEY>'.split()) mf_factor = isopy.random(100, (0,2)) base_data = base_data * fraction_ref data = base_data.copy() for key in data.keys.filter(element_symbol='pd'): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= data['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) data[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= data['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) data[key] += cd interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '111cd'] = 0 interferences2 = {'ru': ('104pd',), 'cd': ('106pd', '108pd')} correct2 = base_data.copy() correct2['101ru', '111cd'] = 0 correct2['102pd'] = data['102pd'] correct2['110pd'] = data['110pd'] self.run(data, data, correct1, correct2, interferences1, interferences2, '105pd', mf_factor=mf_factor) #M Multiple interference isotopes # Different reference values mass_ref = isopy.refval.isotope.mass_number fraction_ref = isopy.refval.isotope.initial_solar_system_fraction_L09 base_data = isopy.random(100, (1, 0.01), keys='99ru 101ru 102pd 104pd 105pd 106pd 108pd 110pd 111cd 112cd'.split()) # 112cd > 111cd, 101ru > 99ru base_data = base_data * fraction_ref data1 = base_data.copy() data1['99ru', '111cd'] = -1 # so that we dont accidentally make this the largest isotope for key in data1.keys.filter(key_neq='<KEY>'.split()): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru101', 0)) > 0: ru *= data1['101ru'] * (mass_ref.get(f'ru{key.mass_number}/ru101', 0) ** mf_factor) data1[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd112', 0)) > 0: cd *= data1['cd112'] * (mass_ref.get(f'cd{key.mass_number}/cd112', 0) ** mf_factor) data1[key] += cd interferences1 = {'ru': ('102pd', '104pd'), 'cd': ('106pd', '108pd', '110pd')} correct1 = base_data.copy() correct1['101ru', '112cd'] = 0 correct1['99ru', '111cd'] = -1 interferences2 = {'ru99': ('104pd',), 'cd111': ('106pd', '108pd')} data2 = base_data.copy() data2['ru101', 'cd112'] = -1 # so that we dont accidentally make this the largest isotope for key in data2.keys.filter(key_neq='ru99 cd111 102pd 110pd'.split()): if (ru:=fraction_ref.get(f'ru{key.mass_number}/ru99', 0)) > 0: ru *= data2['ru99'] * (mass_ref.get(f'ru{key.mass_number}/ru99', 0) ** mf_factor) data2[key] += ru if (cd:=fraction_ref.get(f'cd{key.mass_number}/cd111', 0)) > 0: cd *= data2['111cd'] * (mass_ref.get(f'cd{key.mass_number}/cd111', 0) ** mf_factor) data2[key] += cd correct2 = base_data.copy() correct2['99ru', '111cd'] = 0 correct2['101ru', '112cd'] = -1 self.run(data1, data2, correct1, correct2, interferences1, interferences2, '105pd', fraction_ref=fraction_ref, mass_ref=mass_ref, mf_factor=mf_factor) def run(self, data1, data2, correct1, correct2, interferences1, interferences2, denom=None, mf_factor=None, fraction_ref=None, mass_ref=None): interferences = isopy.tb.find_isobaric_interferences('pd', data1) assert len(interferences) == len(interferences) for key in interferences1: assert key in interferences assert interferences[key] == interferences1[key] corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected1.keys == correct1.keys assert corrected1.size == correct1.size for key in corrected1.keys: np.testing.assert_allclose(corrected1[key], correct1[key]) corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected2.keys == correct2.keys assert corrected2.size == correct2.size for key in corrected2.keys: np.testing.assert_allclose(corrected2[key], correct2[key]) #Ratio test data if denom is not None: data1 = data1.ratio(denom) data2 = data2.ratio(denom) correct1 = correct1.ratio(denom) correct2 = correct2.ratio(denom) interferences = isopy.tb.find_isobaric_interferences('pd', data1) assert len(interferences) == len(interferences) for key in interferences1: assert key in interferences assert interferences[key] == interferences1[key] corrected1 = isopy.tb.remove_isobaric_interferences(data1, interferences, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected1.keys == correct1.keys assert corrected1.size == correct1.size for key in corrected1.keys: np.testing.assert_allclose(corrected1[key], correct1[key]) corrected2 = isopy.tb.remove_isobaric_interferences(data2, interferences2, mf_factor=mf_factor, isotope_fractions=fraction_ref, isotope_masses=mass_ref) assert corrected2.keys == correct2.keys assert corrected2.size == correct2.size for key in corrected2.keys: np.testing.assert_allclose(corrected2[key], correct2[key]) def test_find(self): interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'cd')) assert len(interferences) == 2 assert 'ru' in interferences assert interferences['ru'] == ('102Pd', '104Pd') assert 'cd' in interferences assert interferences['cd'] == ('106Pd', '108Pd', '110Pd') interferences = isopy.tb.find_isobaric_interferences('pd', ('ru', 'rh', 'ag', 'cd')) assert len(interferences) == 2 assert 'ru' in interferences assert interferences['ru'] == ('102Pd', '104Pd') assert 'cd' in interferences assert interferences['cd'] == ('106Pd', '108Pd', '110Pd') interferences = isopy.tb.find_isobaric_interferences('ce') assert len(interferences) == 4 assert 'xe' in interferences assert interferences['xe'] == ('136Ce',) assert 'ba' in interferences assert interferences['ba'] == ('136Ce', '138Ce') assert 'la' in interferences assert interferences['la'] == ('138Ce', ) assert 'nd' in interferences assert interferences['nd'] == ('142Ce',) interferences = isopy.tb.find_isobaric_interferences('138ce') assert len(interferences) == 2 assert 'ba' in interferences assert interferences['ba'] == ('138Ce',) assert 'la' in interferences assert interferences['la'] == ('138Ce',) interferences = isopy.tb.find_isobaric_interferences('zn', ('ni', 'ge', 'ba++')) assert len(interferences) == 3 assert 'ni' in interferences assert interferences['ni'] == ('64Zn',) assert 'ge' in interferences assert interferences['ge'] == ('70Zn',) assert 'ba++' in interferences assert interferences['ba++'] == ('66Zn', '67Zn', '68Zn') class Test_rDelta(): def test_rDelta1(self): # Data is a single value data = isopy.refval.isotope.fraction.to_array(element_symbol='pd') # Dict reference = isopy.refval.isotope.fraction correct1 = isopy.zeros(None, data.keys) correct2 = isopy.ones(None, data.keys) self.run(data, data, reference, correct1, correct2) # Single array reference = isopy.random(100, keys=data.keys) correct1 = data / np.mean(reference) - 1 correct2 = data / np.mean(reference) self.run(data, data, reference, correct1, correct2) self.run(data, data, np.mean(reference), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, reference, correct1, correct2, 10_000) self.run(data, data, np.mean(reference), correct1, correct2, 10_000) # Multiple values reference1 = isopy.random(100, keys=data.keys) reference2 = isopy.random(100, keys=data.keys) meanmean = np.mean(reference1)/2 + np.mean(reference2)/2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data, (reference1, reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) # Keys that do not match data2 = data.copy() data2['105pd', '106pd'] = np.nan reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split()) reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split()) meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data2, (reference1, reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) def test_rDelta2(self): data = isopy.random(100, keys=isopy.refval.element.isotopes['pd']) data = data * isopy.refval.isotope.fraction # Dict reference = isopy.refval.isotope.fraction correct1 = data / reference - 1 correct2 = data / reference self.run(data, data, reference, correct1, correct2) # Single array reference = isopy.random(100, keys=data.keys) correct1 = data / np.mean(reference) - 1 correct2 = data / np.mean(reference) self.run(data, data, reference, correct1, correct2) self.run(data, data, np.mean(reference), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, reference, correct1, correct2, 10_000) self.run(data, data, np.mean(reference), correct1, correct2, 10_000) # Multiple values reference1 = isopy.random(100, keys=data.keys) reference2 = isopy.random(100, keys=data.keys) meanmean = np.mean(reference1)/2 + np.mean(reference2)/2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data, (reference1, reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) # Keys that do not match data2 = data.copy() data2['105pd', '106pd'] = np.nan reference1 = isopy.random(100, keys='101ru 102pd 104pd 105pd 108pd 110pd 111cd'.split()) reference2 = isopy.random(100, keys='101ru 102pd 104pd 106pd 108pd 110pd 111cd'.split()) meanmean = np.mean(reference1) / 2 + np.mean(reference2) / 2 correct1 = data / meanmean - 1 correct2 = data / meanmean self.run(data, data2, (reference1, reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2) correct1 = correct1 * 10_000 correct2 = correct2 * 10_000 self.run(data, data2, (reference1, reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), reference2), correct1, correct2, 10_000) self.run(data, data2, (np.mean(reference1), np.mean(reference2)), correct1, correct2, 10_000) def test_presets(self): data = isopy.random(100, keys=isopy.refval.element.isotopes['pd']) data = data * isopy.refval.isotope.fraction reference = isopy.refval.isotope.fraction correct = (data / reference - 1) * 1000 normalised = isopy.tb.rDelta.ppt(data, reference) denormalised = isopy.tb.inverse_rDelta.ppt(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1000 normalised = isopy.tb.rDelta.permil(data, reference) denormalised = isopy.tb.inverse_rDelta.permil(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 10_000 normalised = isopy.tb.rDelta.epsilon(data, reference) denormalised = isopy.tb.inverse_rDelta.epsilon(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1_000_000 normalised = isopy.tb.rDelta.mu(data, reference) denormalised = isopy.tb.inverse_rDelta.mu(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) correct = (data / reference - 1) * 1_000_000 normalised = isopy.tb.rDelta.ppm(data, reference) denormalised = isopy.tb.inverse_rDelta.ppm(normalised, reference) self.compare(correct, normalised) self.compare(data, denormalised) def run(self, data1, data2, reference_value, correct1, correct2, factor=1): normalised = isopy.tb.rDelta(data1, reference_value, factor=factor) assert normalised.keys == data1.keys assert normalised.size == data1.size assert normalised.ndim == data1.ndim for key in normalised.keys: np.testing.assert_allclose(normalised[key], correct1[key]) denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor) assert denormalised.keys == data1.keys assert denormalised.size == data1.size assert denormalised.ndim == data1.ndim for key in denormalised.keys: np.testing.assert_allclose(denormalised[key], data2[key]) normalised = isopy.tb.rDelta(data1, reference_value, factor=factor, deviations=0) assert normalised.keys == data1.keys assert normalised.size == data1.size assert normalised.ndim == data1.ndim for key in normalised.keys: np.testing.assert_allclose(normalised[key], correct2[key]) denormalised = isopy.tb.inverse_rDelta(normalised, reference_value, factor=factor, deviations=0) assert denormalised.keys == data1.keys assert denormalised.size == data1.size assert denormalised.ndim == data1.ndim for key in denormalised.keys: np.testing.assert_allclose(denormalised[key], data2[key]) def compare(self, correct, calculated): assert calculated.keys == correct.keys assert calculated.size == correct.size assert calculated.ndim == correct.ndim for key in calculated.keys: np.testing.assert_allclose(calculated[key], correct[key]) class Test_OutliersLimits: def test_limits(self): data = isopy.random(100, (1,1), keys=isopy.refval.element.isotopes['pd']) median = np.median(data) mean = np.mean(data) mad3 = isopy.mad3(data) sd2 = isopy.sd2(data) upper = isopy.tb.upper_limit(data) assert upper == median + mad3 upper = isopy.tb.upper_limit(data, np.mean, isopy.sd2) assert upper == mean + sd2 upper = isopy.tb.upper_limit.sd2(data) assert upper == mean + sd2 upper = isopy.tb.upper_limit(data, 1, isopy.sd2) assert upper == 1 + sd2 upper = isopy.tb.upper_limit(data, np.mean, 1) assert upper == mean + 1 upper = isopy.tb.upper_limit(data, 1, 1) assert upper == 2 lower = isopy.tb.lower_limit(data) assert lower == median - mad3 lower = isopy.tb.lower_limit.sd2(data) assert lower == mean - sd2 lower = isopy.tb.lower_limit(data, np.mean, isopy.sd2) assert lower == mean - sd2 lower = isopy.tb.lower_limit(data, 1, isopy.sd2) assert lower == 1 - sd2 lower = isopy.tb.lower_limit(data, np.mean, 1) assert lower == mean - 1 lower = isopy.tb.lower_limit(data, 1, 1) assert lower == 0 def test_find_outliers1(self): #axis = 0 data = isopy.random(100, (1, 1), keys=isopy.refval.element.isotopes['pd']) median = np.median(data) mean = np.mean(data) mad3 = isopy.mad3(data) sd = isopy.sd(data) median_outliers = (data > (median + mad3)) + (data < (median - mad3)) mean_outliers = (data > (mean + sd)) + (data < (mean - sd)) mean_outliers1 = (data > (1 + sd)) + (data < (1 - sd)) mean_outliers2 = (data > (mean + 1)) + (data < (mean - 1)) mean_outliers3 = (data > (1 + 1)) + (data < (1 - 1)) outliers = isopy.tb.find_outliers(data) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], median_outliers[key]) outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers.sd(data) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers(data, 1, isopy.sd) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers1[key]) outliers = isopy.tb.find_outliers(data, np.mean, 1) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers2[key]) outliers = isopy.tb.find_outliers(data, 1, 1) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers3[key]) # invert median_outliers = np.invert(median_outliers) mean_outliers = np.invert(mean_outliers) mean_outliers1 = np.invert(mean_outliers1) mean_outliers2 = np.invert(mean_outliers2) mean_outliers3 = np.invert(mean_outliers3) outliers = isopy.tb.find_outliers(data, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], median_outliers[key]) outliers = isopy.tb.find_outliers(data, np.mean, isopy.sd, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys: np.testing.assert_allclose(outliers[key], mean_outliers[key]) outliers = isopy.tb.find_outliers.sd(data, invert=True) assert outliers.keys == data.keys assert outliers.size == data.size for key in outliers.keys:
np.testing.assert_allclose(outliers[key], mean_outliers[key])
numpy.testing.assert_allclose
# -*- coding: utf-8 -*- """ Special case: binning data with only (x, y) coords. :copyright: 2022 Agile Geoscience :license: Apache 2.0 """ import numpy as np import scipy.spatial.distance as sd from scipy.stats import gaussian_kde from scipy.signal import find_peaks from scipy.interpolate import interp1d def nearest_neighbours(x, y, precision=5): """ Vector between 2 closest points. If there's a tie (there likely will be), then we get the first point with a minimally nearest neighbour (and its first such neighbour). The precision cut-off is needed to deal with floating-point imprecision. """ X = np.array([x, y]).T # Make the pairwise distance matrix, D. D = sd.squareform(sd.pdist(X)) D[D==0] = np.inf D =
np.round(D, decimals=precision)
numpy.round
# -*- coding: utf-8 -*- """ utils ~~~~~ Utility functions. """ import numpy as np def vec_to_beta(vec, d): """Convert vector into correlated model beta structure. Parameters ---------- vec : array_like Vector that needed to the convert. d : array_like Number of covariates for each parameter and outcome. Come from correlated model. Returns ------- :obj: `list` of :obj: `list` of :obj: `numpy.ndarray` `beta` structure in the correlated model. """ num_covs =
np.sum(d, axis=1)
numpy.sum
""" PatternDetector: train classifier to find pattern occurrences in time series. """ # Authors: <NAME>, 2018. import sys, os, time import numpy as np import pandas as pd import scipy.stats as sps from datetime import datetime from collections import Counter from tqdm import tqdm from dtaidistance import dtw from sklearn.cluster import SpectralClustering from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler from .utils.validation import check_time_series # ------------- # CLASSES # ------------- class FingerprintDetector(): """ Find occurrences of a pattern in the time series """ def __init__(self, features='all', n_clusters=10, warping_width=0.1, alpha=0.5, detector_type='dtw', # 'dtw', 'feature' tol=1e-8, verbose=False): # class parameters self.features = str(features) self.n_clusters = int(n_clusters) self.warping_width = float(warping_width) self.alpha = float(alpha) self.detector_type = str(detector_type) self.tol = float(tol) self.verbose = bool(verbose) def fit_predict_fingerprints(self, timestamps, time_series, y): """ Find all pattern occurrences in the time series :param timestamps : np.array(), shape (n_samples) The timestamps of the time series, datetime.datetime objects. :param time_series : np.array(), shape (n_samples, n_variables) The measured time series data. :param y : np.array(), shape (n_samples) Indicates the user-labeled y of a pattern (0, 1). :returns exact_locations : np.array(), shape (n_samples) Exact locations of each pattern: 1 = pattern, 0 = no pattern. """ # TODO: make better, this is just to save time on the feature construction self.fit_fingerprints(timestamps, time_series, y) return self.exact_locations def fit_fingerprints(self, timestamps, time_series, y): """ Fit the model using the time series data. :param timestamps : np.array(), shape (n_samples) The timestamps of the time series, datetime.datetime objects. :param time_series : np.array(), shape (n_samples, n_variables) The measured time series data. :param y : np.array(), shape (n_samples) Indicates the user-labeled y of a pattern (0, 1). :returns self : object """ times, ts, y = check_time_series(timestamps, time_series, y) n_samples = len(ts) # 1. determine the exact locations of the known patterns + window size t = time.time() ranges = self._find_pattern_ranges(y) user_labeled_ranges = ranges.copy() self._average_length = np.mean([len(r) for r in user_labeled_ranges]) self._average_deviation = np.std([len(r) for r in user_labeled_ranges]) patterns = np.array([time_series[ixs] for ixs in ranges]) self.w_size = self._find_window_size(ranges) # 2. find the shape templates: the raw patterns or feature vectors if self.detector_type == 'dtw': # also normalize the patterns self.shape_templates = [] for i, p in enumerate(patterns): m, s = np.mean(p), np.std(p) if s == 0.0: self.shape_templates.append(p) else: self.shape_templates.append((p - m) / s) self.shape_templates = np.array(self.shape_templates) elif self.detector_type == 'feature': # the shape templates are feature vectors self.pattern_templates = self._find_shape_templates(patterns) features = self._construct_features_and_labels(times, ts, self.pattern_templates, ranges, labels=False) self.scaler = StandardScaler() features = self.scaler.fit_transform(features) """ TODO: this is a bit ad-hoc! """ labels = np.array([ix[0] for ix in ranges]) self.shape_templates = features[labels, :].copy() else: pass # 3. apply the shape templates to find determine the detection threshold self.max_threshold = self._determine_fingerprint_threshold(self.shape_templates) # 4. detect the remaining occurrences using the threshold if self.detector_type == 'dtw': segments = np.zeros((int(n_samples-self.w_size)+1, int(self.w_size)), dtype=float) for i in range(int(n_samples-self.w_size)+1): segment = ts[i:int(i+self.w_size)] segments[i, :] = segment scaler = StandardScaler() segments = scaler.fit_transform(segments.T).T elif self.detector_type == 'feature': segments = features else: pass self.exact_locations = self._find_exact_fingerprint_locations(segments, n_samples, self.w_size, self.shape_templates) """ FIX: correction if it does not find all labeled ranges """ ix_found = np.where(self.exact_locations > 0.0)[0] if len(ix_found) < len(user_labeled_ranges): print('The PatternDetector does not pick up on all given occurrences, only:', len(ix_found), '/', len(user_labeled_ranges)) for r in user_labeled_ranges: ixr = int((r[-1] + r[0]) / 2) self.exact_locations[ixr] = 1.0 return self def predict_fingerprints(self, timestamps, time_series): """ Compute the anomaly score + predict the label of instances in X. :returns exact_locations : np.array(), shape (n_samples) Exact locations of each pattern: 1 = pattern, 0 = no pattern. """ times, ts, _ = check_time_series(timestamps, time_series, None) n_samples = len(ts) # 1. construct the feature vectors (if needed) if self.detector_type == 'dtw': segments = np.zeros((int(n_samples-self.w_size)+1, int(self.w_size)), dtype=float) for i in range(int(n_samples-self.w_size)+1): segment = ts[i:int(i+self.w_size)] segments[i, :] = segment scaler = StandardScaler() segments = scaler.fit_transform(segments.T).T elif self.detector_type == 'feature': features = self._construct_features_and_labels(times, ts, self.pattern_templates, labels=False) segments = self.scaler.transform(features) else: pass # 2. predict the occurrences exact_locations = self._find_exact_fingerprint_locations(segments, n_samples, self.w_size, self.shape_templates) return exact_locations def _determine_fingerprint_threshold(self, shapes): """ Determine the max threshold """ thresholds = [] for i, s1 in enumerate(shapes): for j, s2 in enumerate(shapes): if i == j: continue else: if self.detector_type == 'dtw': d = dtw.distance(s1, s2, use_c=True, window=int(self.warping_width * self.w_size)) elif self.detector_type == 'feature': d = np.linalg.norm(s1 - s2) else: pass thresholds.append(d) """ TODO: ad-hoc trimming of outliers """ thresholds = np.sort(np.array(thresholds)) return np.amax(thresholds[:int(0.9 * len(thresholds))]) def _find_exact_fingerprint_locations(self, segments, n, w, shapes): """ Find the exact locations """ ns = len(segments) w = int(w) w1 = int(w / 2) - 1 w2 = w - w1 - 1 # 1. fingerprint detection pattern_locations = np.zeros(n, dtype=np.float) for _, shape in tqdm(enumerate(shapes), disable=not(self.verbose)): # distance between each segment and a shape (sliding window with w_increment = 1) dists = np.zeros(n, dtype=np.float) for i in range(ns): v = segments[i, :] if self.detector_type == 'dtw': dists[i] = dtw.distance(shape, v, use_c=True, window=int(self.warping_width * w)) elif self.detector_type == 'feature': dists[i] = np.linalg.norm(shape - v) else: pass new_locations = np.zeros(n, dtype=np.float) new_locations[dists < self.max_threshold] = 1.0 pattern_locations += new_locations pattern_locations = np.minimum(pattern_locations, 1.0) """ FIX: it is possible that the threshold is too high!!! and everything is considered to be the pattern """ """ THIS IS NOT FOOL-PROOF: it could be that the thresholds on the IF-tests are not strong enough """ correction = False pattern_ranges = self._find_pattern_ranges(pattern_locations) if len(pattern_ranges) == 1 and len(pattern_ranges[0]) > self._average_length * 10: # HIGHLY suspicious correction = True if abs(len(np.where(pattern_locations > 0.0)[0]) - ns) < self._average_length: correction = True if correction: # no patterns found because it is NOT discriminative enough exact_locations = np.zeros(n, dtype=np.float) return exact_locations # 2. only keep the center occurrence if multiple detected range_ixs = np.array([int((ix[0] + ix[-1]) / 2) for ix in pattern_ranges]) remove = [] for i, ix in enumerate(range_ixs): if i > 1: if ix - prev_ix < w: remove.append(ix) continue prev_ix = ix remove = np.array(remove) locs = np.setdiff1d(range_ixs, remove) # 3. exact locations + shift with window size / 2 exact_locations = np.zeros(n, dtype=float) exact_locations[locs] = 1.0 exact_locations = np.pad(exact_locations[:-w+1], (w1, w2), 'constant', constant_values=(0.0, 0.0)) return exact_locations def _construct_features_and_labels(self, times, ts, shape_templates, ranges=None, labels=True): """ Construct the feature vectors and labels. :returns features : array, shape (n_segments, n_features) Feature vectors constructed from the the time series. :returns labels : array, shape (n_segments) Labels for the constructed segments. """ # construct the segments n = len(ts) segments = np.zeros((int(n-self.w_size)+1, int(self.w_size)), dtype=float) for i in range(int(n-self.w_size)+1): segment = ts[i:int(i+self.w_size)] segments[i, :] = segment # construct feature vectors and labels features = self._construct_feature_matrix(segments, times, int(n-self.w_size)+1, shape_templates) if labels: labels = self._construct_labeling(ranges, int(n-self.w_size)+1) return features, labels else: return features def _construct_labeling(self, ranges, n): """ Construct labels for the segments. Rules: 1. if contained in labeled segment: give it that label 2. if not contained but overlapping: ignore later on 3. if not contained and not overlapping: unlabeled :returns labels : array, shape (n_segments) Labels for the constructed segments. """ # we ignore all segments that contain only a part of the pattern unless they are fully overlapped by the pattern labeling = np.zeros(n, dtype=float) pattern_locations = [[ixs[0], ixs[-1]+1] for ixs in ranges] for _, v in enumerate(pattern_locations): """FIX: does not work when the final pattern is too close to the end of the series """ b = v[1] - self.w_size if b < v[0]: # pattern is shorter than w_size: every segment fully containing the pattern is pos pos = np.arange(b, v[0]+1, 1) ign = np.concatenate((np.arange(v[0]-self.w_size+1, b, 1), np.arange(v[0]+1, v[1], 1))) else: # pattern is longer than w_size: every segment fully contained in the pattern is pos pos = np.arange(v[0], v[1]-self.w_size+1, 1) ign = np.concatenate((np.arange(v[0]-self.w_size+1, v[0], 1), np.arange(v[1]-self.w_size+1, v[1], 1))) # annotate labeling[pos.astype(int)] = 1.0 labeling[ign.astype(int)] = -1.0 return labeling def _construct_feature_matrix(self, segments, times, n, shape_templates): """ Construct the feature vectors. :returns features : array, shape (n_segments, n_features) Feature vectors constructed from the the time series. """ if self.features == 'all': use_features = ['stat', 'time', 'shape'] elif self.features == 'stat_time': use_features = ['stat', 'time'] elif self.features == 'stat_shape': use_features = ['stat', 'shape'] elif self.features == 'time_shape': use_features = ['time', 'shape'] else: use_features = [self.features] # stat, time, shape # summary statistics if 'stat' in use_features: if self.verbose: print('\tconstructing statistics...') avg = pd.Series(np.mean(segments, axis=1)) std = pd.Series(np.std(segments, axis=1)) vari = pd.Series(np.var(segments, axis=1)) maxi = pd.Series(np.amax(segments, axis=1)) mini = pd.Series(np.amin(segments, axis=1)) med = pd.Series(np.median(segments, axis=1)) tsum = pd.Series(np.sum(segments, axis=1)) skew = pd.Series(sps.describe(segments, axis=1, bias=False).skewness) kurt = pd.Series(sps.describe(segments, axis=1, bias=False).kurtosis) # time features if 'time' in use_features: if self.verbose: print('\tconstructing time features...') time_stamps = np.array([ts.hour for ts in times[:n]]) xhr = pd.Series(np.sin(2 * np.pi * time_stamps / 24)) yhr = pd.Series(np.cos(2 * np.pi * time_stamps / 24)) # shape features if 'shape' in use_features: # find nearest euclid function def _find_nearest_euclid(a, b): if len(a) >= len(b): short = b long = a else: short = a long = b n1, n2 = len(long), len(short) d = np.zeros(n1-n2+1, dtype=float) for i in range(n1-n2+1): d[i] = np.linalg.norm(long[i:i+n2] - short) return
np.amin(d)
numpy.amin
# -*- coding: utf-8 -*- """Script to show text from DeepOBS text datasets.""" import os import sys import pickle import numpy as np import tensorflow as tf import matplotlib.pyplot as plt sys.path.insert( 0, os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__))) ), ) from deepobs.tensorflow import datasets import deepobs.config as config def display_text(dataset_cls, grid_size=5, phase="train"): """Display text from a DeepOBS text dataset. Args: dataset_cls: The DeepOBS dataset class to display text from. Is assumed to yield a tuple (x, y) of input and output text. phase (str): Images from this phase ('train', 'train_eval', 'test') will be displayed. """ tf.reset_default_graph() dataset = dataset_cls(batch_size=grid_size * grid_size) x, y = dataset.batch if phase == "train": init_op = dataset.train_init_op elif phase == "train_eval": init_op = dataset.train_eval_init_op elif phase == "valid": init_op = dataset.valid_init_op elif phase == "test": init_op = dataset.test_init_op else: raise ValueError( "Choose 'phase' from ['train', 'train_eval', 'valid', 'test']." ) with tf.Session() as sess: sess.run(init_op) x_, y_ = sess.run([x, y]) x_next, y_next = sess.run([x, y]) # Next batch, will be plotted in red label_dict = load_label_dict(dataset_cls.__name__) fig = plt.figure() for i in range(grid_size * grid_size): axis = fig.add_subplot(grid_size, grid_size, i + 1) input_txt = "".join([label_dict[char] for char in np.squeeze(x_[i])]) output_txt = "".join([label_dict[char] for char in
np.squeeze(y_[i])
numpy.squeeze
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from .analysis_gauss_numerical_integration import gauss_numerical_integration from .exoplanet_orbit import exoplanet_orbit def integral_r_claret(limb_darkening_coefficients, r): a1, a2, a3, a4 = limb_darkening_coefficients mu44 = 1.0 - r * r mu24 = np.sqrt(mu44) mu14 = np.sqrt(mu24) return - (2.0 * (1.0 - a1 - a2 - a3 - a4) / 4) * mu44 \ - (2.0 * a1 / 5) * mu44 * mu14 \ - (2.0 * a2 / 6) * mu44 * mu24 \ - (2.0 * a3 / 7) * mu44 * mu24 * mu14 \ - (2.0 * a4 / 8) * mu44 * mu44 def num_claret(r, limb_darkening_coefficients, rprs, z): a1, a2, a3, a4 = limb_darkening_coefficients rsq = r * r mu44 = 1.0 - rsq mu24 = np.sqrt(mu44) mu14 = np.sqrt(mu24) return ((1.0 - a1 - a2 - a3 - a4) + a1 * mu14 + a2 * mu24 + a3 * mu24 * mu14 + a4 * mu44) \ * r * np.arccos(np.minimum((-rprs ** 2 + z * z + rsq) / (2.0 * z * r), 1.0)) def integral_r_f_claret(limb_darkening_coefficients, rprs, z, r1, r2, precision=3): return gauss_numerical_integration(num_claret, r1, r2, precision, limb_darkening_coefficients, rprs, z) # integral definitions for zero method def integral_r_zero(limb_darkening_coefficients, r): musq = 1 - r * r return (-1.0 / 6) * musq * 3.0 def num_zero(r, limb_darkening_coefficients, rprs, z): rsq = r * r return r * np.arccos(np.minimum((-rprs ** 2 + z * z + rsq) / (2.0 * z * r), 1.0)) def integral_r_f_zero(limb_darkening_coefficients, rprs, z, r1, r2, precision=3): return gauss_numerical_integration(num_zero, r1, r2, precision, limb_darkening_coefficients, rprs, z) # integral definitions for linear method def integral_r_linear(limb_darkening_coefficients, r): a1 = limb_darkening_coefficients[0] musq = 1 - r * r return (-1.0 / 6) * musq * (3.0 + a1 * (-3.0 + 2.0 * np.sqrt(musq))) def num_linear(r, limb_darkening_coefficients, rprs, z): a1 = limb_darkening_coefficients[0] rsq = r * r return (1.0 - a1 * (1.0 - np.sqrt(1.0 - rsq))) \ * r * np.arccos(np.minimum((-rprs ** 2 + z * z + rsq) / (2.0 * z * r), 1.0)) def integral_r_f_linear(limb_darkening_coefficients, rprs, z, r1, r2, precision=3): return gauss_numerical_integration(num_linear, r1, r2, precision, limb_darkening_coefficients, rprs, z) # integral definitions for quadratic method def integral_r_quad(limb_darkening_coefficients, r): a1, a2 = limb_darkening_coefficients[:2] musq = 1 - r * r mu = np.sqrt(musq) return (1.0 / 12) * (-4.0 * (a1 + 2.0 * a2) * mu * musq + 6.0 * (-1 + a1 + a2) * musq + 3.0 * a2 * musq * musq) def num_quad(r, limb_darkening_coefficients, rprs, z): a1, a2 = limb_darkening_coefficients[:2] rsq = r * r cc = 1.0 - np.sqrt(1.0 - rsq) return (1.0 - a1 * cc - a2 * cc * cc) \ * r * np.arccos(np.minimum((-rprs ** 2 + z * z + rsq) / (2.0 * z * r), 1.0)) def integral_r_f_quad(limb_darkening_coefficients, rprs, z, r1, r2, precision=3): return gauss_numerical_integration(num_quad, r1, r2, precision, limb_darkening_coefficients, rprs, z) # integral definitions for square root method def integral_r_sqrt(limb_darkening_coefficients, r): a1, a2 = limb_darkening_coefficients[:2] musq = 1 - r * r mu = np.sqrt(musq) return ((-2.0 / 5) * a2 * np.sqrt(mu) - (1.0 / 3) * a1 * mu + (1.0 / 2) * (-1 + a1 + a2)) * musq def num_sqrt(r, limb_darkening_coefficients, rprs, z): a1, a2 = limb_darkening_coefficients[:2] rsq = r * r mu = np.sqrt(1.0 - rsq) return (1.0 - a1 * (1 - mu) - a2 * (1.0 - np.sqrt(mu))) \ * r * np.arccos(np.minimum((-rprs ** 2 + z * z + rsq) / (2.0 * z * r), 1.0)) def integral_r_f_sqrt(limb_darkening_coefficients, rprs, z, r1, r2, precision=3): return gauss_numerical_integration(num_sqrt, r1, r2, precision, limb_darkening_coefficients, rprs, z) # dictionaries containing the different methods, # if you define a new method, include the functions in the dictionary as well integral_r = { 'claret': integral_r_claret, 'linear': integral_r_linear, 'quad': integral_r_quad, 'sqrt': integral_r_sqrt, 'zero': integral_r_zero } integral_r_f = { 'claret': integral_r_f_claret, 'linear': integral_r_f_linear, 'quad': integral_r_f_quad, 'sqrt': integral_r_f_sqrt, 'zero': integral_r_f_zero, } def integral_centred(method, limb_darkening_coefficients, rprs, ww1, ww2): return (integral_r[method](limb_darkening_coefficients, rprs) - integral_r[method](limb_darkening_coefficients, 0.0)) * np.abs(ww2 - ww1) def integral_plus_core(method, limb_darkening_coefficients, rprs, z, ww1, ww2, precision=3): if len(z) == 0: return z rr1 = z * np.cos(ww1) + np.sqrt(np.maximum(rprs ** 2 - (z * np.sin(ww1)) ** 2, 0)) rr1 = np.clip(rr1, 0, 1) rr2 = z * np.cos(ww2) + np.sqrt(np.maximum(rprs ** 2 - (z * np.sin(ww2)) ** 2, 0)) rr2 = np.clip(rr2, 0, 1) w1 = np.minimum(ww1, ww2) r1 = np.minimum(rr1, rr2) w2 = np.maximum(ww1, ww2) r2 = np.maximum(rr1, rr2) parta = integral_r[method](limb_darkening_coefficients, 0.0) * (w1 - w2) partb = integral_r[method](limb_darkening_coefficients, r1) * w2 partc = integral_r[method](limb_darkening_coefficients, r2) * (-w1) partd = integral_r_f[method](limb_darkening_coefficients, rprs, z, r1, r2, precision=precision) return parta + partb + partc + partd def integral_minus_core(method, limb_darkening_coefficients, rprs, z, ww1, ww2, precision=3): if len(z) == 0: return z rr1 = z *
np.cos(ww1)
numpy.cos
"""Utilities to estimate and evaluate Chebyshev coefficients of a function. Implementation of Newhall, <NAME>. 1989, Celestial Mechanics, 45, p. 305-310 """ import numpy as np __all__ = ['chebeval', 'chebfit', 'makeChebMatrix', 'makeChebMatrixOnlyX'] # Evaluation routine. def chebeval(x, p, interval=(-1., 1.), doVelocity=True, mask=False): """Evaluate a Chebyshev series and first derivative at points x. If p is of length n + 1, this function returns: y_hat(x) = p_0 * T_0(x*) + p_1 * T_1(x*) + ... + p_n * T_n(x*) where T_n(x*) are the orthogonal Chebyshev polynomials of the first kind, defined on the interval [-1, 1] and p_n are the coefficients. The scaled variable x* is defined on the [-1, 1] interval such that (x*) = (2*x - a - b)/(b - a), and x is defined on the [a, b] interval. Parameters ---------- x: scalar or numpy.ndarray Points at which to evaluate the polynomial. p: numpy.ndarray Chebyshev polynomial coefficients, as returned by chebfit. interval: 2-element list/tuple Bounds the x-interval on which the Chebyshev coefficients were fit. doVelocity: bool If True, compute the first derivative at points x. mask: bool If True, return Nans when the x goes beyond 'interval'. If False, extrapolate fit beyond 'interval' limits. Returns ------- scalar or numpy.ndarray, scalar or numpy.ndarray Y (position) and velocity values (if computed) """ if len(interval) != 2: raise RuntimeError("interval must have length 2") intervalBegin = float(interval[0]) intervalEnd = float(interval[-1]) t = 2. * np.array(x, dtype=np.float64) - intervalBegin - intervalEnd t /= intervalEnd - intervalBegin y = 0. v = 0. y0 = np.ones_like(t) y1 = t v0 = np.zeros_like(t) v1 = np.ones_like(t) v2 = 4. * t t = 2. * t N = len(p) if doVelocity: for i in np.arange(0, N, 2): if i == N - 1: y1 = 0. v1 = 0. j = min(i + 1, N - 1) y += p[i] * y0 + p[j] * y1 v += p[i] * v0 + p[j] * v1 y2 = t * y1 - y0 y3 = t * y2 - y1 v2 = t * v1 - v0 + 2 * y1 v3 = t * v2 - v1 + 2 * y2 y0 = y2 y1 = y3 v0 = v2 v1 = v3 if mask: mask = np.where((x < intervalBegin) | (x > intervalEnd), True, False) y = np.where(mask, np.nan, y) v =
np.where(mask, np.nan, v)
numpy.where
import numpy as np import gym from gym import spaces import math MAX_MARCH = 20 EPSILON = 0.1 DEG_TO_RAD = 0.0174533 WINDOW_SIZE = (200, 300) # Width x Height in pixels def generate_box(pos=None, size=[10, 25], inside_window=True, color=(255, 255, 255), is_goal=False): ''' Generate a box with width and height drawn randomly uniformly from size[0] to size[1] if inside_window is True, we force the box to stay inside the window ''' box_size =
np.random.uniform([size[0], size[0]], [size[1], size[1]])
numpy.random.uniform
import numpy as np import pandas as pd from collections import Counter from copy import deepcopy from queue import Queue from math import floor, log from random import randint from scipy import stats from sklearn.base import ClassifierMixin class RandomForest(ClassifierMixin): def __init__(self, num_trees=10, d=5): self.num_trees = num_trees self.d = d def fit(self, X, y): self.trees = [] X, y = np.array(X), np.array(y) shuffle_idx = np.array(range(0, y.size)) np.random.shuffle(shuffle_idx) X_s, y_s = X[shuffle_idx], y[shuffle_idx] bag_size = floor(X_s.shape[0]/self.num_trees) # Bag data and train trees for t in range(0, self.num_trees): start, end = t*bag_size, min((t + 1)*bag_size, y.size) X_b, y_b = X_s[start: end], y_s[start: end] self.trees.append(DecisionTree(self.d)) self.trees[t].fit(X_b, y_b) def predict(self, X): votes = [self.trees[t].predict(X) for t in range(0, self.num_trees)] predictions = stats.mode(np.array(votes))[0][0] return predictions class DecisionTree(ClassifierMixin): def __init__(self, d=None): self.tree = {} self.nodes = 0 self.d = d def fit(self, X, y): queue = Queue() queue.put([np.array(X), np.array(y), self.tree]) while not queue.empty(): [X_full, y, subtree] = queue.get() if self.d is None: X = X_full else: subset_idx = np.array(range(0, X_full.shape[1])) # Remove attributes randomly while subset_idx.size > self.d: subset_idx = np.delete(subset_idx, randint(0, subset_idx.size - 1)) X = X_full[:, subset_idx] gain_ratios = [self.gain_ratio(x, y) for x in X.T] max_idx = np.argmax(np.array(gain_ratios)) # If no information, store proportion of y if len(X) == 0 or gain_ratios[max_idx] <= 0: subtree['col'] = -1 subtree['p'], subtree['label'] = self.p(y) continue x = X[:, max_idx] categories = set(x) # If information gain is positive, column & branches of largest gain subtree['col'] = max_idx subtree['branches'] = {} subtree['p'], subtree['label'] = self.p(y) for category in categories: rows_c = np.where(x == category) x_c, y_c = x[rows_c], y[rows_c] subtree_c = {} subtree['branches'][category] = subtree_c # X_c = np.delete(X[rows_c], max_idx, axis=1) X_c = X_full[rows_c] self.nodes += 1 queue.put([X_c, y_c, subtree_c]) def prune(self, X, y): if len(self.tree) == 0: print("Classifier has not been trained / Classifier's tree is empty") should_continue = True iteration = 1 while should_continue: tree_copy = deepcopy(self.tree) scores = [] leaves = self.find_leaves() if len(leaves) == 0: should_continue = False continue for [parent, child] in leaves: col = parent['col'] parent['col'] = -1 scores.append(self.score(X, y)) parent['col'] = col # Get current accuracy scores = np.array(scores) max_idx = np.argmax(scores) if scores[max_idx] >= self.score(X, y): [parent, child] = leaves[max_idx] parent['col'] = -1 parent['branches'] = {} else: should_continue = False print('Iteration ', iteration, ' is complete') iteration += 1 return self.score(X, y) def find_leaves(self): queue = Queue() queue.put([None, self.tree]) leaves = [] while not queue.empty(): [parent, child] = queue.get() if child['col'] > -1: for bkey, branch in child['branches'].items(): queue.put([child, branch]) else: if parent is not None: leaves.append([parent, child]) return leaves def predict(self, X): X = np.array(X) predictions = [] if X.ndim == 1: X = np.array([X]) for x in X: tree = self.tree while tree['col'] > -1: category = x[tree['col']] if category in tree['branches']: tree = tree['branches'][category] else: break predictions.append(tree['label']) return predictions def gain_ratio(self, x, y): # if x.dtype.kind in set('buifc'): categories = Counter(x) if len(categories) == 1: return 0 data_len = len(x) gain = self.entropy(self.p(y, array=True)) # information gain iv = 0 #intrinsic value for category, count in categories.items(): y_c = y[
np.where(x == category)
numpy.where
from skimage.feature import greycoprops,greycomatrix import matplotlib.image as mpimg import pandas as pd import numpy as np import glob import SimpleITK as sitk import scipy.misc as sci # Returns all column names with patch NO., distance and angles def getGLCMColumnNames(patch=[1,2,3,4,5],distances = [1,3,5],angles=[0,np.pi/4.0,np.pi/2.0, 3*np.pi/4.0]): glcm_columns = [] for i in range(len(patch)): for j in range(len(distances)): for k in range(len(angles)): glcm_columns.append('GlCM_CONTRAST_{}_{}_{}'.format(patch[i],distances[j],angles[k])) glcm_columns.append('GlCM_DISSIMILARITY_{}_{}_{}'.format(patch[i],distances[j],angles[k])) glcm_columns.append('GlCM_HOMOGENEITY_{}_{}_{}'.format(patch[i],distances[j],angles[k])) glcm_columns.append('GlCM_ASM_{}_{}_{}'.format(patch[i],distances[j],angles[k])) glcm_columns.append('GlCM_ENERGY_{}_{}_{}'.format(patch[i],distances[j],angles[k])) glcm_columns.append('GlCM_CORRELATION_{}_{}_{}'.format(patch[i],distances[j],angles[k])) return glcm_columns # returns the FeatureVector for all distance and angles def getGLCMFeatures(image, distances=[1,3,5], angles=[0, np.pi / 4.0, np.pi / 2.0, 3 * np.pi / 4.0]): glcm_feature_vector = [] x = 0 for i in range(0,5): patch = image[x:x+20][:] x+=20 glcm = greycomatrix(patch, distances, angles, 2, symmetric=True, normed=True) for j in range(len(distances)): for k in range(len(angles)): contrast = float(greycoprops(glcm, 'contrast')[j, k]) glcm_feature_vector.append(contrast) dissimilarity = greycoprops(glcm, 'dissimilarity')[j, k] glcm_feature_vector.append(dissimilarity) homogeneity = greycoprops(glcm, 'homogeneity')[j, k] glcm_feature_vector.append(homogeneity) ASM = greycoprops(glcm, 'ASM')[j, k] glcm_feature_vector.append(ASM) energy = greycoprops(glcm, 'energy')[j, k] glcm_feature_vector.append(energy) correlation = greycoprops(glcm, 'correlation')[j, k] glcm_feature_vector.append(correlation) glcm_feature_vector = np.array(glcm_feature_vector) return glcm_feature_vector def preprocess(img): s_image = sitk.GetImageFromArray(img) #Inversion and threshold if(np.max(img) <= 1): inverted = sitk.InvertIntensity(s_image, maximum=1) thresh = sitk.BinaryThreshold(inverted, 0.5, 1) elif(
np.max(img)
numpy.max
from __future__ import unicode_literals import Levenshtein import numpy as np def representative_sampling(words, k): dist = distances(words) medoids, _ = best_of(dist, k) for m in medoids: yield words[m] def distances(words): # symmetry is wasted dist = Levenshtein.compare_lists(words, words, 0.0, 0) return dist def k_medoids(dist, k, tmax=100): m, n = dist.shape # randomly initialize an array of k medoid indices medoids = np.arange(n) np.random.shuffle(medoids) medoids = medoids[:k] medoids_old = np.copy(medoids) clusters = {} for t in xrange(tmax): # determine clusters, i.e. arrays of data indices J =
np.argmin(dist[:, medoids], axis=1)
numpy.argmin
#!/usr/bin/env python #This code is to plot the result from ImpactZ #Input : fort.xx #Output: figures about beam size and emittance # plots are saved at '/post' import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import tkinter as tk from tkinter import ttk,filedialog import time,os,sys from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg from matplotlib.figure import Figure from matplotlib.ticker import MultipleLocator, FormatStrFormatter from scipy.stats import gaussian_kde import numpy as np import ParticlePlot, SlicePlot _height=300 _width =200 IMPACT_T_ADVANCED_PLOT_TYPE= {'Centriod location (mm)' :2, 'Rms size (mm)' :3, 'Centriod momentum (MC)' :4, 'Rms momentum (MC)' :5, 'Twiss' :6, 'Emittance (mm-mrad)' :7} IMPACT_T_SciFormatter = FormatStrFormatter('%2.1E') IMPACT_T_sciMaxLimit = 99999 *2 IMPACT_T_sciMinLimit = 0.0001*2 class AdvancedPlotControlFrame(tk.Toplevel): """Output""" def __init__(self, master=None, cnf={}, **kw): tk.Toplevel.__init__(self, master, cnf, **kw) self.title('ImpactT Plot') self.focus_set() """Plot Control""" self.frame_plotButton = tk.Frame(self) self.frame_plotButton.grid(column=0, row = 0, pady=5 ,padx=10, sticky="we") self.frame_radio = tk.Frame(self.frame_plotButton) self.frame_radio.pack(side='top') self.plotDirct = tk.IntVar() self.plotDirct.set(0) self.frame_radio.x = tk.Radiobutton(self.frame_radio, variable=self.plotDirct, text="X", value=0) self.frame_radio.x.pack(side='left') self.frame_radio.y = tk.Radiobutton(self.frame_radio, variable=self.plotDirct, text="Y", value=1) self.frame_radio.y.pack(side='left') self.frame_radio.z = tk.Radiobutton(self.frame_radio, variable=self.plotDirct, text="Z", value=2) self.frame_radio.z.pack(side='left') self.plotTypeComx = tk.StringVar(self.frame_plotButton,'Rms size (mm)') self.plotType = ttk.Combobox(self.frame_plotButton,text=self.plotTypeComx, width = 20, values=list(IMPACT_T_ADVANCED_PLOT_TYPE.keys())) self.plotType.pack(side = 'top') self.plot = tk.Button(self.frame_plotButton,text='plot',command=self.makePlot) self.plot.pack(fill = 'both',expand =1,side = 'top',padx=10) self.t = ttk.Separator(self, orient=tk.HORIZONTAL).grid(column=0, row = 1, sticky="we") self.frame2 = tk.Frame(self, height =_height/5, width = _width) self.frame2.grid(column=0, row = 2, pady=5 ,padx=10, sticky="nswe") rowN=0 self.button_overall = tk.Button(self.frame2,text='Overall', command = self.overallPlot) self.button_overall.grid(row = rowN, column=0, pady=5 ,padx=5, columnspan = 2, sticky="nswe") rowN+=1 self.button_emitGrowth = tk.Button(self.frame2,text='EmitGrowth', command = self.emitGrowthPlot) self.button_emitGrowth .grid(row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_Ek = tk.Button(self.frame2,text='Kinetic Energy', command = lambda: self.energyPlot(3,'Kinetic Energy (MeV)')) self.button_Ek .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 ''' self.button_beta = tk.Button(self.frame2,text='Beta', command = lambda: self.energyPlot(4,'Beta')) self.button_beta .grid(row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_gamma = tk.Button(self.frame2,text='Gamma', command = lambda: self.energyPlot(2,'Gamma')) self.button_gamma .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 ''' self.button_rmax = tk.Button(self.frame2,text='Rmax', command = lambda: self.energyPlot(5,'Rmax (mm)')) self.button_rmax .grid(row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_dw = tk.Button(self.frame2,text='Rms delta E', command = lambda: self.energyPlot(6,'Rms delta E (MC^2)')) self.button_dw .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 self.button_Temperature = tk.Button(self.frame2,text='Temperature Plot', command = self.makeTemperaturePlot) self.button_Temperature .grid(row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_Loss = tk.Button(self.frame2,text='live Particle #', command = self.liveParticlePlot) self.button_Loss .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 self.t = ttk.Separator(self.frame2, orient=tk.HORIZONTAL).grid(column=0, row = rowN, columnspan=2,sticky="we") rowN+=1 self.max = tk.Button(self.frame2,text='Max amplitude', command = self.maxPlot) self.max .grid(row = rowN, column=0, pady=5 ,padx=5, columnspan=2,sticky="nswe") rowN+=1 self.button_3order = tk.Button(self.frame2,text='3 order parameter', command = self.make3orderPlot) self.button_3order .grid(row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_4order = tk.Button(self.frame2,text='4 order parameter', command = self.make4orderPlot) self.button_4order .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 self.t = ttk.Separator(self.frame2, orient=tk.HORIZONTAL).grid(column=0, row = rowN, columnspan=2,sticky="we") rowN+=1 self.button_Particle = tk.Button(self.frame2,text='Phase Space Plot', command = self.ParticlePlot) self.button_Particle .grid(row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_ParticleDesity1D = tk.Button(self.frame2,text='Density1D', command = self.ParticleDensityPlot1D) self.button_ParticleDesity1D .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 self.button_ParticleDensity = tk.Button(self.frame2,text='Density2D (by Grid)', command = self.ParticleDensityPlot) self.button_ParticleDensity .grid( row = rowN, column=0, pady=5 ,padx=5, sticky="nswe") self.button_ParticleDensity2 = tk.Button(self.frame2,text='Density2D (by Ptc)', command = self.ParticleDensityPlot2) self.button_ParticleDensity2 .grid(row = rowN, column=1, pady=5 ,padx=5, sticky="nswe") rowN+=1 self.t = ttk.Separator(self.frame2, orient=tk.HORIZONTAL).grid(column=0, row = rowN, columnspan=2,sticky="we") rowN+=1 self.button_SlicePlot = tk.Button(self.frame2,text='Slice plot', command = self.SlicePlot) self.button_SlicePlot .grid( row = rowN, column=0, columnspan=2, pady=5 ,padx=5, sticky="nswe") rowN+=1 def overallPlot(self): print(self.__class__.__name__) plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=OverallFrame(plotWindow) l.pack() def energyPlot(self,y,ylabel): print(sys._getframe().f_back.f_code.co_name) plotWindow = tk.Toplevel(self) plotWindow.title(sys._getframe().f_back.f_code.co_name) l=PlotFrame(plotWindow,'fort.18',1,y,ylabel) l.pack() def emitGrowthPlot(self): print(sys._getframe().f_back.f_code.co_name) plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=EmitGrowthFrame(plotWindow) l.pack() def makeTemperaturePlot(self): print((self.plotType)) plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=TemperatureFrame(plotWindow) l.pack() def liveParticlePlot(self): print(sys._getframe().f_back.f_code.co_name) plotWindow = tk.Toplevel(self) plotWindow.title(sys._getframe().f_back.f_code.co_name) l=PlotFrame(plotWindow,'fort.28',1,4,'Live particle number') l.pack() def ParticlePlot(self): print(self.__class__.__name__) filename = filedialog.askopenfilename(parent=self) try: t=open(filename) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('Phase Space Plot') l=ParticlePlot.ParticleFrame(plotWindow,filename,1.0,'ImpactT') l.pack() def ParticleDensityPlot(self): print(self.__class__.__name__) fileName=filedialog.askopenfilename(parent=self) try: t=open(fileName) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=ParticlePlot.ParticleDensityFrame_weight2D(plotWindow,fileName,1.0,'ImpactT') l.pack() def ParticleDensityPlot1D(self): print(self.__class__.__name__) fileName=filedialog.askopenfilename(parent=self) try: t=open(fileName) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=ParticlePlot.ParticleDensityFrame_weight1D(plotWindow,fileName,1.0,'ImpactT') l.pack() def ParticleDensityPlot2(self): print(self.__class__.__name__) fileName=filedialog.askopenfilename(parent=self) try: t=open(fileName) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=ParticlePlot.ParticleDensityFrame2D_slow(plotWindow,fileName,1.0,'ImpactT') l.pack() def SlicePlot(self): fileName=filedialog.askopenfilename(parent=self) try: t=open(fileName) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('Slice Plot') l=SlicePlot.SliceBaseFrame(plotWindow,fileName) l.pack() def makePlot(self): print(self.__class__.__name__) PlotFileName='fort.'+str(self.plotDirct.get()+24) yx=IMPACT_T_ADVANCED_PLOT_TYPE[self.plotType.get()] yl=yx if self.plotDirct.get()!=2 else yx-1 plotWindow = tk.Toplevel(self) plotWindow.title('Plot') l=PlotFrame(plotWindow,PlotFileName,1,yl,self.plotType.get()) l.pack() def maxPlot(self): print(self.__class__.__name__) filename = 'fort.27' try: t=open(filename) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('maxPlot') l=PlotMaxFrame(plotWindow,filename) l.pack() def make3orderPlot(self): print(self.__class__.__name__) filename = 'fort.29' try: t=open(filename) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('make3orderPlot') l=Plot3orderFrame(plotWindow,filename) l.pack() def make4orderPlot(self): print(self.__class__.__name__) filename = 'fort.30' try: t=open(filename) t.close() except: return plotWindow = tk.Toplevel(self) plotWindow.title('make4orderPlot') l=Plot4orderFrame(plotWindow,filename) l.pack() class PlotBaseFrame(tk.Frame): def __init__(self, parent): tk.Frame.__init__(self, parent) self.fig = Figure(figsize=(7,5), dpi=100) self.subfig = self.fig.add_subplot(111) self.canvas = FigureCanvasTkAgg(self.fig, self) self.canvas.show() self.canvas.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) self.toolbar = NavigationToolbar2TkAgg(self.canvas, self) self.toolbar.update() self.canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) class PlotFrame(tk.Frame): def __init__(self, parent,PlotFileName,xl,yl,labelY): tk.Frame.__init__(self, parent) #LARGE_FONT= ("Verdana", 12) #label = tk.Label(self, font=LARGE_FONT, # text='plot '+PlotFileName+ # ' use '+str(xl)+':'+str(yl)) #label.pack(pady=10,padx=10) try: fin = open(PlotFileName,'r') except: print(( " ERRPR! Can't open file '" + PlotFileName + "'")) return linesList = fin.readlines() fin .close() linesList = [line.split() for line in linesList ] x = np.array([float(xrt[xl]) for xrt in linesList]) y = np.array([float(xrt[yl]) for xrt in linesList]) if labelY in ['Centriod location (mm)','Rms size (mm)','Rmax (mm)']: y = y*1.0e3 # unit convert from m to mm elif labelY in ['Emittance (mm-mrad)']: y = y*1.0e6 # unit convert from (m-rad) to (mm-mrad) fig = Figure(figsize=(7,5), dpi=100) subfig = fig.add_subplot(111) subfig.plot(x,y) subfig.set_xlabel('Z (m)') subfig.set_ylabel(labelY) xMax = np.max(x) xMin = np.min(x) yMax = np.max(y) yMin = np.min(y) if (xMax-xMin)>IMPACT_T_sciMaxLimit or (xMax-xMin)<IMPACT_T_sciMinLimit: self.subfig.xaxis.set_major_formatter(IMPACT_T_SciFormatter) if (yMax-yMin)>IMPACT_T_sciMaxLimit or (yMax-yMin)<IMPACT_T_sciMinLimit: self.subfig.yaxis.set_major_formatter(IMPACT_T_SciFormatter) #xmajorFormatter = FormatStrFormatter('%2.2E') #subfig.yaxis.set_major_formatter(xmajorFormatter) box = subfig.get_position() subfig.set_position([box.x0*1.45, box.y0*1.1, box.width, box.height]) canvas = FigureCanvasTkAgg(fig, self) canvas.show() canvas.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) toolbar = NavigationToolbar2TkAgg(canvas, self) toolbar.update() canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) def quit(self): self.destroy() class OverallFrame(tk.Frame): def __init__(self, parent): tk.Frame.__init__(self, parent) self.fig = Figure(figsize=(12,5), dpi=100) self.subfig = [] self.subfig.append(self.fig.add_subplot(221)) self.subfig.append(self.fig.add_subplot(222)) self.subfig.append(self.fig.add_subplot(223)) self.subfig.append(self.fig.add_subplot(224)) self.canvas = FigureCanvasTkAgg(self.fig, self) self.canvas.show() self.canvas.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) self.toolbar = NavigationToolbar2TkAgg(self.canvas, self) self.toolbar.update() self.canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.plot() def plot(self): picNum = 4 fileList = [[]*2]*picNum saveName = [] labelList = [[]*2]*picNum xdataList = [[]*2]*picNum ydataList = [[]*2]*picNum xyLabelList = [[]*2]*picNum xl = 2 saveName.append('sizeX') fileList[0] = ['fort.24','fort.27'] labelList[0] = ['rms.X','max.X'] xdataList[0] = [xl,xl] ydataList[0] = [4,3] xyLabelList[0] = ['z drection (m)','beam size in X (mm)'] saveName.append('sizeY') fileList[1] = ['fort.25','fort.27'] labelList[1] = ['rms.Y','max.Y'] xdataList[1] = [xl,xl] ydataList[1] = [4,5] xyLabelList[1] = ['z drection (m)','beam size in Y (mm)'] saveName.append('sizeZ') fileList[2] = ['fort.26','fort.27'] labelList[2] = ['rms.Z','max.Z'] xdataList[2] = [xl,xl] ydataList[2] = [3,7] xyLabelList[2] = ['z drection (m)','beam size in Z (mm)'] saveName.append('emitXY') fileList[3] = ['fort.24','fort.25'] labelList[3] = ['emit.nor.X','emit.nor.Y'] xdataList[3] = [xl,xl] ydataList[3] = [8,8] xyLabelList[3] = ['z drection (m)','emittance at X and Y (mm*mrad)'] lineType = ['r-','b--'] for i in range(0,picNum): for j in range(0,2): try: fin = open(fileList[i][j],'r') except: print("ERRPR Can't open file ' " + fileList[i][j] + "'") return linesList = fin.readlines() fin .close() linesList = [line.split() for line in linesList ] xId = xdataList[i][j]-1 yId = ydataList[i][j]-1 x = np.array([float(xrt[xId]) for xrt in linesList]) y = np.array([float(xrt[yId]) for xrt in linesList]) if i in range(0,picNum-1): y=y*1.0e3 elif i == picNum-1: y=y*1.0e6 self.subfig[i].plot(x, y, lineType[j], linewidth=2, label=labelList[i][j]) self.subfig[i].set_xlabel(xyLabelList[i][0]) self.subfig[i].set_ylabel(xyLabelList[i][1]) box = self.subfig[i].get_position() self.subfig[i].set_position([box.x0*1.1, box.y0*1.1, box.width, box.height *0.88]) xMax = np.max(x) xMin = np.min(x) yMax = np.max(y) yMin = np.min(y) if (xMax-xMin)>IMPACT_T_sciMaxLimit or (xMax-xMin)<IMPACT_T_sciMinLimit: self.subfig[i].xaxis.set_major_formatter(IMPACT_T_SciFormatter) if (yMax-yMin)>IMPACT_T_sciMaxLimit or (yMax-yMin)<IMPACT_T_sciMinLimit: self.subfig[i].yaxis.set_major_formatter(IMPACT_T_SciFormatter) self.subfig[i].legend(loc='upper center', bbox_to_anchor=(0.5, 1.21),fancybox=True, shadow=True, ncol=5) self.canvas.draw() class EmitGrowthFrame(PlotBaseFrame): def __init__(self, parent): PlotBaseFrame.__init__(self, parent) self.plot() def plot(self): fileList = ['fort.24','fort.25'] xdataList = [2,2] ydataList = [8,8] xyLabelList = ['Z (m)','Avg emit growth in X and Y'] lineType = ['r-','b--'] try: fin1 = open(fileList[0],'r') except: print(" ERRPR! Can't open file '" + fileList[0] + "'") return try: fin2 = open(fileList[1],'r') except: print(" ERRPR! Can't open file '" + fileList[1] + "'") return linesList1 = fin1.readlines() linesList2 = fin2.readlines() fin1 .close() fin2 .close() linesList1 = [line.split() for line in linesList1 ] linesList2 = [line.split() for line in linesList2 ] xId = xdataList[0]-1 yId = ydataList[0]-1 try: x = [float(xrt[xId]) for xrt in linesList1] start = (float(linesList1[0][yId]) + float(linesList2[0][yId]))/2 if start < 1.0e-16: start=1.0e-16 y = [(float(linesList1[k][yId]) + float(linesList2[k][yId]))/2 / start -1 for k in range(len(linesList1))] except: print(" ERRPR! Can't read data '" + fileList[1] + "'") self.subfig.cla() self.subfig.plot(x, y, lineType[0], linewidth=2, label='emit.growth') box = self.subfig.get_position() self.subfig.set_position([box.x0*1.4, box.y0, box.width, box.height]) self.subfig.set_xlabel(xyLabelList[0]) self.subfig.set_ylabel(xyLabelList[1]) self.subfig.legend() self.canvas.draw() class TemperatureFrame(PlotBaseFrame): def __init__(self, parent): PlotBaseFrame.__init__(self, parent) self.plot() def plot(self): arg=['ct','fort.24','fort.25','fort.26'] labelList= ['X','Y','Z'] lineType = ['-','--',':'] col = ['b','g','r'] linew = [2,2,3] picNum = len(arg) - 1 plotPath = './post' if os.path.exists(plotPath) == False: os.makedirs(plotPath) self.subfig.cla() for i in range(1,picNum+1): try: fin = open(arg[i],'r') except: print( " ERRPR! Can't open file '" + arg[i] + "'") return linesList = fin.readlines() fin .close() linesList = [line.split() for line in linesList ] x = [float(xrt[0]) for xrt in linesList] yl=5 if i==3: yl=4 y = [float(xrt[yl])*float(xrt[yl]) for xrt in linesList] self.subfig.plot(x, y, color = col[(i-1)],linestyle=lineType[i-1], linewidth=linew[i-1],label=labelList[i-1]) box = self.subfig.get_position() self.subfig.set_position([box.x0*1.2, box.y0, box.width, box.height]) self.subfig.set_xlabel('T (s)') self.subfig.set_ylabel('Temperature') self.subfig.legend() self.canvas.draw() class PlotHighOrderBaseFrame(tk.Frame): ParticleDirec = {'X (mm)' :2, 'Px (MC)' :3, 'Y (mm)' :4, 'Py (MC)' :5, 'Z (mm)' :6, 'Pz (MC)' :7} data = np.array([]) def __init__(self, parent, PlotFileName): tk.Frame.__init__(self, parent) try: self.data = np.loadtxt(PlotFileName) except: print(( " ERROR! Can't open file '" + PlotFileName + "'")) return self.data = np.transpose(self.data) for i in range(0,6,2): self.data[i] = self.data[i] * 1e3 # from m to mm self.frame_PlotParticleControl = tk.Frame(self) self.frame_PlotParticleControl.pack() self.label_x = tk.Label(self.frame_PlotParticleControl, text="Direction:") self.label_x.pack(side='left') self.ppc1Value = tk.StringVar(self.frame_PlotParticleControl,'X (mm)') self.ppc1 = ttk.Combobox(self.frame_PlotParticleControl,text=self.ppc1Value, width=6, values=['X (mm)', 'Px (MC)', 'Y (mm)', 'Py (MC)','Z (mm)','Pz (MC)']) self.ppc1.pack(fill = 'both',expand =1,side = 'left') LARGE_FONT= ("Verdana", 12) self.button_ppc=tk.Button(self.frame_PlotParticleControl) self.button_ppc["text"] = "Plot" self.button_ppc["foreground"] = "blue" self.button_ppc["bg"] = "red" self.button_ppc["font"] = LARGE_FONT self.button_ppc["command"] = self.plot self.button_ppc.pack(fill = 'both',expand =1,side = 'left') x = 1 y = self.ParticleDirec[self.ppc1.get()] self.fig = Figure(figsize=(7,5), dpi=100) self.subfig = self.fig.add_subplot(111) self.subfig.scatter(self.data[x],self.data[y],s=1) xmajorFormatter = FormatStrFormatter('%2.2E') self.subfig.yaxis.set_major_formatter(xmajorFormatter) box = self.subfig.get_position() self.subfig.set_position([box.x0*1.4, box.y0, box.width, box.height]) self.canvas = FigureCanvasTkAgg(self.fig, self) self.canvas.show() self.canvas.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) self.toolbar = NavigationToolbar2TkAgg(self.canvas, self) self.toolbar.update() self.canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True) self.plot() class PlotMaxFrame(PlotHighOrderBaseFrame): def __init__(self, parent,ifile): PlotHighOrderBaseFrame.__init__(self, parent, ifile) def plot(self): y = self.ParticleDirec[self.ppc1.get()] self.subfig.cla() self.subfig.plot(self.data[1],self.data[y]) axis_format_T(self.data[1],self.data[y], self.subfig) self.subfig.set_xlabel('Z (m)') if y%2==0: self.subfig.set_ylabel('Max '+ self.ppc1.get()) else: self.subfig.set_ylabel('Max '+ self.ppc1.get()) self.canvas.draw() class Plot3orderFrame(PlotHighOrderBaseFrame): def __init__(self, parent,ifile): PlotHighOrderBaseFrame.__init__(self, parent, ifile) def plot(self): y = self.ParticleDirec[self.ppc1.get()] self.subfig.cla() self.subfig.plot(self.data[1],self.data[y]) xmajorFormatter = FormatStrFormatter('%2.2E') self.subfig.yaxis.set_major_formatter(xmajorFormatter) self.subfig.set_xlabel('Z (m)') if y%2==0: self.subfig.set_ylabel('cubic root of 3rd'+ self.ppc1.get()) else: self.subfig.set_ylabel('cubic root of 3rd'+ self.ppc1.get()) self.canvas.draw() class Plot4orderFrame(PlotHighOrderBaseFrame): def __init__(self, parent,ifile): PlotHighOrderBaseFrame.__init__(self, parent, ifile) def plot(self): y = self.ParticleDirec[self.ppc1.get()] self.subfig.cla() self.subfig.plot(self.data[1],self.data[y]) #xmajorFormatter = FormatStrFormatter('%2.2E') #self.subfig.yaxis.set_major_formatter(xmajorFormatter) self.subfig.set_xlabel('Z (m)') if y%2==0: self.subfig.set_ylabel('square square root of 4th '+ self.ppc1.get()) else: self.subfig.set_ylabel('square square root of 4th '+ self.ppc1.get()) self.canvas.draw() def axis_format_T(xData,yData,subfig): xMax =
np.max(xData)
numpy.max
# Authors: # # <NAME> # # License: BSD 3 clause import warnings import itertools import numpy as np import numpy.linalg as la from scipy import sparse, stats import pytest from sklearn.utils import gen_batches from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_less from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import assert_allclose_dense_sparse from sklearn.utils._testing import skip_if_32bit from sklearn.utils._testing import _convert_container from sklearn.utils.sparsefuncs import mean_variance_axis from sklearn.preprocessing import Binarizer from sklearn.preprocessing import KernelCenterer from sklearn.preprocessing import Normalizer from sklearn.preprocessing import normalize from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import scale from sklearn.preprocessing import MinMaxScaler from sklearn.preprocessing import minmax_scale from sklearn.preprocessing import QuantileTransformer from sklearn.preprocessing import quantile_transform from sklearn.preprocessing import MaxAbsScaler from sklearn.preprocessing import maxabs_scale from sklearn.preprocessing import RobustScaler from sklearn.preprocessing import robust_scale from sklearn.preprocessing import add_dummy_feature from sklearn.preprocessing import PowerTransformer from sklearn.preprocessing import power_transform from sklearn.preprocessing._data import _handle_zeros_in_scale from sklearn.preprocessing._data import BOUNDS_THRESHOLD from sklearn.exceptions import NotFittedError from sklearn.base import clone from sklearn.pipeline import Pipeline from sklearn.model_selection import cross_val_predict from sklearn.svm import SVR from sklearn.utils import shuffle from sklearn import datasets iris = datasets.load_iris() # Make some data to be used many times rng = np.random.RandomState(0) n_features = 30 n_samples = 1000 offsets = rng.uniform(-1, 1, size=n_features) scales = rng.uniform(1, 10, size=n_features) X_2d = rng.randn(n_samples, n_features) * scales + offsets X_1row = X_2d[0, :].reshape(1, n_features) X_1col = X_2d[:, 0].reshape(n_samples, 1) X_list_1row = X_1row.tolist() X_list_1col = X_1col.tolist() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def _check_dim_1axis(a): return np.asarray(a).shape[0] def assert_correct_incr(i, batch_start, batch_stop, n, chunk_size, n_samples_seen): if batch_stop != n: assert (i + 1) * chunk_size == n_samples_seen else: assert (i * chunk_size + (batch_stop - batch_start) == n_samples_seen) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) scaler = StandardScaler() # make sure Error is raised the sample weights greater than 1d sample_weight_notOK = rng.randn(n_samples, 1) ** 2 with pytest.raises(ValueError): scaler.fit(X, y, sample_weight=sample_weight_notOK) @pytest.mark.parametrize(['Xw', 'X', 'sample_weight'], [([[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [1, 2, 3], [4, 5, 6]], [2., 1.]), ([[1, 0, 1], [0, 0, 1]], [[1, 0, 1], [0, 0, 1], [0, 0, 1], [0, 0, 1]], np.array([1, 3])), ([[1, np.nan, 1], [np.nan, np.nan, 1]], [[1, np.nan, 1], [np.nan, np.nan, 1], [np.nan, np.nan, 1], [np.nan, np.nan, 1]], np.array([1, 3])), ]) @pytest.mark.parametrize( "array_constructor", ["array", "sparse_csr", "sparse_csc"] ) def test_standard_scaler_sample_weight( Xw, X, sample_weight, array_constructor): with_mean = not array_constructor.startswith("sparse") X = _convert_container(X, array_constructor) Xw = _convert_container(Xw, array_constructor) # weighted StandardScaler yw = np.ones(Xw.shape[0]) scaler_w = StandardScaler(with_mean=with_mean) scaler_w.fit(Xw, yw, sample_weight=sample_weight) # unweighted, but with repeated samples y = np.ones(X.shape[0]) scaler = StandardScaler(with_mean=with_mean) scaler.fit(X, y) X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]] assert_almost_equal(scaler.mean_, scaler_w.mean_) assert_almost_equal(scaler.var_, scaler_w.var_) assert_almost_equal(scaler.transform(X_test), scaler_w.transform(X_test)) def test_standard_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_almost_equal(scaler.mean_, X.ravel()) assert_almost_equal(scaler.scale_, np.ones(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.std(axis=0), np.zeros_like(n_features)) else: assert_almost_equal(scaler.mean_, X.mean()) assert_almost_equal(scaler.scale_, X.std()) assert_array_almost_equal(X_scaled.mean(axis=0), np.zeros_like(n_features)) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), 1.) assert scaler.n_samples_seen_ == X.shape[0] # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert_almost_equal(scaler.mean_, 1.) assert_almost_equal(scaler.scale_, 1.) assert_array_almost_equal(X_scaled.mean(axis=0), .0) assert_array_almost_equal(X_scaled.std(axis=0), .0) assert scaler.n_samples_seen_ == X.shape[0] @pytest.mark.parametrize("sparse_constructor", [None, sparse.csc_matrix, sparse.csr_matrix]) @pytest.mark.parametrize("add_sample_weight", [False, True]) def test_standard_scaler_dtype(add_sample_weight, sparse_constructor): # Ensure scaling does not affect dtype rng = np.random.RandomState(0) n_samples = 10 n_features = 3 if add_sample_weight: sample_weight = np.ones(n_samples) else: sample_weight = None with_mean = True for dtype in [np.float16, np.float32, np.float64]: X = rng.randn(n_samples, n_features).astype(dtype) if sparse_constructor is not None: X = sparse_constructor(X) with_mean = False scaler = StandardScaler(with_mean=with_mean) X_scaled = scaler.fit(X, sample_weight=sample_weight).transform(X) assert X.dtype == X_scaled.dtype assert scaler.mean_.dtype == np.float64 assert scaler.scale_.dtype == np.float64 @pytest.mark.parametrize("scaler", [ StandardScaler(with_mean=False), RobustScaler(with_centering=False), ]) @pytest.mark.parametrize("sparse_constructor", [np.asarray, sparse.csc_matrix, sparse.csr_matrix]) @pytest.mark.parametrize("add_sample_weight", [False, True]) @pytest.mark.parametrize("dtype", [np.float32, np.float64]) @pytest.mark.parametrize("constant", [0, 1., 100.]) def test_standard_scaler_constant_features( scaler, add_sample_weight, sparse_constructor, dtype, constant): if (isinstance(scaler, StandardScaler) and constant > 1 and sparse_constructor is not np.asarray and add_sample_weight): # https://github.com/scikit-learn/scikit-learn/issues/19546 pytest.xfail("Computation of weighted variance is numerically unstable" " for sparse data. See: #19546.") if isinstance(scaler, RobustScaler) and add_sample_weight: pytest.skip(f"{scaler.__class__.__name__} does not yet support" f" sample_weight") rng = np.random.RandomState(0) n_samples = 100 n_features = 1 if add_sample_weight: fit_params = dict(sample_weight=rng.uniform(size=n_samples) * 2) else: fit_params = {} X_array = np.full(shape=(n_samples, n_features), fill_value=constant, dtype=dtype) X = sparse_constructor(X_array) X_scaled = scaler.fit(X, **fit_params).transform(X) if isinstance(scaler, StandardScaler): # The variance info should be close to zero for constant features. assert_allclose(scaler.var_, np.zeros(X.shape[1]), atol=1e-7) # Constant features should not be scaled (scale of 1.): assert_allclose(scaler.scale_, np.ones(X.shape[1])) if hasattr(X_scaled, "toarray"): assert_allclose(X_scaled.toarray(), X_array) else: assert_allclose(X_scaled, X) if isinstance(scaler, StandardScaler) and not add_sample_weight: # Also check consistency with the standard scale function. X_scaled_2 = scale(X, with_mean=scaler.with_mean) if hasattr(X_scaled_2, "toarray"): assert_allclose(X_scaled_2.toarray(), X_scaled_2.toarray()) else: assert_allclose(X_scaled_2, X_scaled_2) def test_scale_1d(): # 1-d inputs X_list = [1., 3., 5., 0.] X_arr = np.array(X_list) for X in [X_list, X_arr]: X_scaled = scale(X) assert_array_almost_equal(X_scaled.mean(), 0.0) assert_array_almost_equal(X_scaled.std(), 1.0) assert_array_equal(scale(X, with_mean=False, with_std=False), X) @skip_if_32bit def test_standard_scaler_numerical_stability(): # Test numerical stability of scaling # np.log(1e-5) is taken because of its floating point representation # was empirically found to cause numerical problems with np.mean & np.std. x = np.full(8, np.log(1e-5), dtype=np.float64) # This does not raise a warning as the number of samples is too low # to trigger the problem in recent numpy with pytest.warns(None) as record: scale(x) assert len(record) == 0 assert_array_almost_equal(scale(x), np.zeros(8)) # with 2 more samples, the std computation run into numerical issues: x = np.full(10, np.log(1e-5), dtype=np.float64) warning_message = ( "standard deviation of the data is probably very close to 0" ) with pytest.warns(UserWarning, match=warning_message): x_scaled = scale(x) assert_array_almost_equal(x_scaled, np.zeros(10)) x = np.full(10, 1e-100, dtype=np.float64) with pytest.warns(None) as record: x_small_scaled = scale(x) assert len(record) == 0 assert_array_almost_equal(x_small_scaled, np.zeros(10)) # Large values can cause (often recoverable) numerical stability issues: x_big = np.full(10, 1e100, dtype=np.float64) warning_message = ( "Dataset may contain too large values" ) with pytest.warns(UserWarning, match=warning_message): x_big_scaled = scale(x_big) assert_array_almost_equal(x_big_scaled, np.zeros(10)) assert_array_almost_equal(x_big_scaled, x_small_scaled) with pytest.warns(UserWarning, match=warning_message): x_big_centered = scale(x_big, with_std=False) assert_array_almost_equal(x_big_centered, np.zeros(10)) assert_array_almost_equal(x_big_centered, x_small_scaled) def test_scaler_2d_arrays(): # Test scaling of 2d array along first axis rng = np.random.RandomState(0) n_features = 5 n_samples = 4 X = rng.randn(n_samples, n_features) X[:, 0] = 0.0 # first feature is always of zero scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) assert scaler.n_samples_seen_ == n_samples assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has been copied assert X_scaled is not X # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_scaled = scale(X, axis=1, with_std=False) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) X_scaled = scale(X, axis=1, with_std=True) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=1), n_samples * [0.0]) assert_array_almost_equal(X_scaled.std(axis=1), n_samples * [1.0]) # Check that the data hasn't been modified assert X_scaled is not X X_scaled = scaler.fit(X).transform(X, copy=False) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert X_scaled is X X = rng.randn(4, 5) X[:, 0] = 1.0 # first feature is a constant, non zero feature scaler = StandardScaler() X_scaled = scaler.fit(X).transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) assert_array_almost_equal(X_scaled.mean(axis=0), n_features * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert X_scaled is not X def test_scaler_float16_overflow(): # Test if the scaler will not overflow on float16 numpy arrays rng = np.random.RandomState(0) # float16 has a maximum of 65500.0. On the worst case 5 * 200000 is 100000 # which is enough to overflow the data type X = rng.uniform(5, 10, [200000, 1]).astype(np.float16) with np.errstate(over='raise'): scaler = StandardScaler().fit(X) X_scaled = scaler.transform(X) # Calculate the float64 equivalent to verify result X_scaled_f64 = StandardScaler().fit_transform(X.astype(np.float64)) # Overflow calculations may cause -inf, inf, or nan. Since there is no nan # input, all of the outputs should be finite. This may be redundant since a # FloatingPointError exception will be thrown on overflow above. assert np.all(np.isfinite(X_scaled)) # The normal distribution is very unlikely to go above 4. At 4.0-8.0 the # float16 precision is 2^-8 which is around 0.004. Thus only 2 decimals are # checked to account for precision differences. assert_array_almost_equal(X_scaled, X_scaled_f64, decimal=2) def test_handle_zeros_in_scale(): s1 = np.array([0, 1e-16, 1, 2, 3]) s2 = _handle_zeros_in_scale(s1, copy=True) assert_allclose(s1, np.array([0, 1e-16, 1, 2, 3])) assert_allclose(s2, np.array([1, 1, 1, 2, 3])) def test_minmax_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MinMaxScaler().fit(X[batch0]) scaler_incr = MinMaxScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.data_min_, scaler_incr.data_min_) assert_array_almost_equal(scaler_batch.data_max_, scaler_incr.data_max_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ assert_array_almost_equal(scaler_batch.data_range_, scaler_incr.data_range_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.min_, scaler_incr.min_) # Test std until the end of partial fits, and scaler_batch = MinMaxScaler().fit(X) scaler_incr = MinMaxScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_standard_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = StandardScaler(with_std=False).fit(X) scaler_incr = StandardScaler(with_std=False) for batch in gen_batches(n_samples, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_array_almost_equal(scaler_batch.mean_, scaler_incr.mean_) assert scaler_batch.var_ == scaler_incr.var_ # Nones assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ # Test std after 1 step batch0 = slice(0, chunk_size) scaler_incr = StandardScaler().partial_fit(X[batch0]) if chunk_size == 1: assert_array_almost_equal(np.zeros(n_features, dtype=np.float64), scaler_incr.var_) assert_array_almost_equal(np.ones(n_features, dtype=np.float64), scaler_incr.scale_) else: assert_array_almost_equal(np.var(X[batch0], axis=0), scaler_incr.var_) assert_array_almost_equal(np.std(X[batch0], axis=0), scaler_incr.scale_) # no constants # Test std until the end of partial fits, and scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() # Clean estimator for i, batch in enumerate(gen_batches(n_samples, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) assert_array_almost_equal(scaler_batch.var_, scaler_incr.var_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ def test_standard_scaler_partial_fit_numerical_stability(): # Test if the incremental computation introduces significative errors # for large datasets with values of large magniture rng = np.random.RandomState(0) n_features = 2 n_samples = 100 offsets = rng.uniform(-1e15, 1e15, size=n_features) scales = rng.uniform(1e3, 1e6, size=n_features) X = rng.randn(n_samples, n_features) * scales + offsets scaler_batch = StandardScaler().fit(X) scaler_incr = StandardScaler() for chunk in X: scaler_incr = scaler_incr.partial_fit(chunk.reshape(1, n_features)) # Regardless of abs values, they must not be more diff 6 significant digits tol = 10 ** (-6) assert_allclose(scaler_incr.mean_, scaler_batch.mean_, rtol=tol) assert_allclose(scaler_incr.var_, scaler_batch.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler_batch.scale_, rtol=tol) # NOTE Be aware that for much larger offsets std is very unstable (last # assert) while mean is OK. # Sparse input size = (100, 3) scale = 1e20 X = rng.randint(0, 2, size).astype(np.float64) * scale X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) for X in [X_csr, X_csc]: # with_mean=False is required with sparse input scaler = StandardScaler(with_mean=False).fit(X) scaler_incr = StandardScaler(with_mean=False) for chunk in X: # chunk = sparse.csr_matrix(data_chunks) scaler_incr = scaler_incr.partial_fit(chunk) # Regardless of magnitude, they must not differ more than of 6 digits tol = 10 ** (-6) assert scaler.mean_ is not None assert_allclose(scaler_incr.var_, scaler.var_, rtol=tol) assert_allclose(scaler_incr.scale_, scaler.scale_, rtol=tol) @pytest.mark.parametrize("sample_weight", [True, None]) def test_partial_fit_sparse_input(sample_weight): # Check that sparsity is not destroyed X = np.array([[1.], [0.], [0.], [5.]]) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) if sample_weight: sample_weight = rng.rand(X_csc.shape[0]) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) for X in [X_csr, X_csc]: X_null = null_transform.partial_fit( X, sample_weight=sample_weight).transform(X) assert_array_equal(X_null.toarray(), X.toarray()) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.toarray(), X_null.toarray()) assert_array_equal(X_orig.toarray(), X.toarray()) @pytest.mark.parametrize("sample_weight", [True, None]) def test_standard_scaler_trasform_with_partial_fit(sample_weight): # Check some postconditions after applying partial_fit and transform X = X_2d[:100, :] if sample_weight: sample_weight = rng.rand(X.shape[0]) scaler_incr = StandardScaler() for i, batch in enumerate(gen_batches(X.shape[0], 1)): X_sofar = X[:(i + 1), :] chunks_copy = X_sofar.copy() if sample_weight is None: scaled_batch = StandardScaler().fit_transform(X_sofar) scaler_incr = scaler_incr.partial_fit(X[batch]) else: scaled_batch = StandardScaler().fit_transform( X_sofar, sample_weight=sample_weight[:i + 1]) scaler_incr = scaler_incr.partial_fit( X[batch], sample_weight=sample_weight[batch]) scaled_incr = scaler_incr.transform(X_sofar) assert_array_almost_equal(scaled_batch, scaled_incr) assert_array_almost_equal(X_sofar, chunks_copy) # No change right_input = scaler_incr.inverse_transform(scaled_incr) assert_array_almost_equal(X_sofar, right_input) zero = np.zeros(X.shape[1]) epsilon = np.finfo(float).eps assert_array_less(zero, scaler_incr.var_ + epsilon) # as less or equal assert_array_less(zero, scaler_incr.scale_ + epsilon) if sample_weight is None: # (i+1) because the Scaler has been already fitted assert (i + 1) == scaler_incr.n_samples_seen_ else: assert ( np.sum(sample_weight[:i + 1]) == pytest.approx(scaler_incr.n_samples_seen_) ) def test_min_max_scaler_iris(): X = iris.data scaler = MinMaxScaler() # default params X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 0) assert_array_almost_equal(X_trans.max(axis=0), 1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # not default params: min=1, max=2 scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), 1) assert_array_almost_equal(X_trans.max(axis=0), 2) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # min=-.5, max=.6 scaler = MinMaxScaler(feature_range=(-.5, .6)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(X_trans.min(axis=0), -.5) assert_array_almost_equal(X_trans.max(axis=0), .6) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # raises on invalid range scaler = MinMaxScaler(feature_range=(2, 1)) with pytest.raises(ValueError): scaler.fit(X) def test_min_max_scaler_zero_variance_features(): # Check min max scaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] # default params scaler = MinMaxScaler() X_trans = scaler.fit_transform(X) X_expected_0_1 = [[0., 0., 0.5], [0., 0., 0.0], [0., 0., 1.0]] assert_array_almost_equal(X_trans, X_expected_0_1) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) X_trans_new = scaler.transform(X_new) X_expected_0_1_new = [[+0., 1., 0.500], [-1., 0., 0.083], [+0., 0., 1.333]] assert_array_almost_equal(X_trans_new, X_expected_0_1_new, decimal=2) # not default params scaler = MinMaxScaler(feature_range=(1, 2)) X_trans = scaler.fit_transform(X) X_expected_1_2 = [[1., 1., 1.5], [1., 1., 1.0], [1., 1., 2.0]] assert_array_almost_equal(X_trans, X_expected_1_2) # function interface X_trans = minmax_scale(X) assert_array_almost_equal(X_trans, X_expected_0_1) X_trans = minmax_scale(X, feature_range=(1, 2)) assert_array_almost_equal(X_trans, X_expected_1_2) def test_minmax_scale_axis1(): X = iris.data X_trans = minmax_scale(X, axis=1) assert_array_almost_equal(np.min(X_trans, axis=1), 0) assert_array_almost_equal(np.max(X_trans, axis=1), 1) def test_min_max_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MinMaxScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(X_scaled.min(axis=0), np.zeros(n_features)) assert_array_almost_equal(X_scaled.max(axis=0), np.zeros(n_features)) else: assert_array_almost_equal(X_scaled.min(axis=0), .0) assert_array_almost_equal(X_scaled.max(axis=0), 1.) assert scaler.n_samples_seen_ == X.shape[0] # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = MinMaxScaler() X_scaled = scaler.fit(X).transform(X) assert X_scaled.min() >= 0. assert X_scaled.max() <= 1. assert scaler.n_samples_seen_ == X.shape[0] # Function interface X_1d = X_1row.ravel() min_ = X_1d.min() max_ = X_1d.max() assert_array_almost_equal((X_1d - min_) / (max_ - min_), minmax_scale(X_1d, copy=True)) @pytest.mark.parametrize("sample_weight", [True, None]) def test_scaler_without_centering(sample_weight): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) if sample_weight: sample_weight = rng.rand(X.shape[0]) with pytest.raises(ValueError): StandardScaler().fit(X_csr) with pytest.raises(ValueError): StandardScaler().fit(X_csc) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) scaler = StandardScaler(with_mean=False).fit( X, sample_weight=sample_weight) X_scaled = scaler.transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) scaler_csr = StandardScaler(with_mean=False).fit( X_csr, sample_weight=sample_weight) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert not np.any(np.isnan(X_csr_scaled.data)) scaler_csc = StandardScaler(with_mean=False).fit( X_csc, sample_weight=sample_weight) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert not np.any(np.isnan(X_csc_scaled.data)) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.n_samples_seen_, scaler_csr.n_samples_seen_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal(scaler.n_samples_seen_, scaler_csc.n_samples_seen_) if sample_weight is None: assert_array_almost_equal( X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_var = \ mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_var, X_scaled.var(axis=0)) # Check that X has not been modified (copy) assert X_scaled is not X assert X_csr_scaled is not X_csr X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert X_csr_scaled_back is not X_csr assert X_csr_scaled_back is not X_csr_scaled assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert X_csc_scaled_back is not X_csc assert X_csc_scaled_back is not X_csc_scaled assert_array_almost_equal(X_csc_scaled_back.toarray(), X) @pytest.mark.parametrize("with_mean", [True, False]) @pytest.mark.parametrize("with_std", [True, False]) @pytest.mark.parametrize("array_constructor", [np.asarray, sparse.csc_matrix, sparse.csr_matrix]) def test_scaler_n_samples_seen_with_nan(with_mean, with_std, array_constructor): X = np.array([[0, 1, 3], [np.nan, 6, 10], [5, 4, np.nan], [8, 0, np.nan]], dtype=np.float64) X = array_constructor(X) if sparse.issparse(X) and with_mean: pytest.skip("'with_mean=True' cannot be used with sparse matrix.") transformer = StandardScaler(with_mean=with_mean, with_std=with_std) transformer.fit(X) assert_array_equal(transformer.n_samples_seen_, np.array([3, 4, 2])) def _check_identity_scalers_attributes(scaler_1, scaler_2): assert scaler_1.mean_ is scaler_2.mean_ is None assert scaler_1.var_ is scaler_2.var_ is None assert scaler_1.scale_ is scaler_2.scale_ is None assert scaler_1.n_samples_seen_ == scaler_2.n_samples_seen_ def test_scaler_return_identity(): # test that the scaler return identity when with_mean and with_std are # False X_dense = np.array([[0, 1, 3], [5, 6, 0], [8, 0, 10]], dtype=np.float64) X_csr = sparse.csr_matrix(X_dense) X_csc = X_csr.tocsc() transformer_dense = StandardScaler(with_mean=False, with_std=False) X_trans_dense = transformer_dense.fit_transform(X_dense) transformer_csr = clone(transformer_dense) X_trans_csr = transformer_csr.fit_transform(X_csr) transformer_csc = clone(transformer_dense) X_trans_csc = transformer_csc.fit_transform(X_csc) assert_allclose_dense_sparse(X_trans_csr, X_csr) assert_allclose_dense_sparse(X_trans_csc, X_csc) assert_allclose(X_trans_dense, X_dense) for trans_1, trans_2 in itertools.combinations([transformer_dense, transformer_csr, transformer_csc], 2): _check_identity_scalers_attributes(trans_1, trans_2) transformer_dense.partial_fit(X_dense) transformer_csr.partial_fit(X_csr) transformer_csc.partial_fit(X_csc) for trans_1, trans_2 in itertools.combinations([transformer_dense, transformer_csr, transformer_csc], 2): _check_identity_scalers_attributes(trans_1, trans_2) transformer_dense.fit(X_dense) transformer_csr.fit(X_csr) transformer_csc.fit(X_csc) for trans_1, trans_2 in itertools.combinations([transformer_dense, transformer_csr, transformer_csc], 2): _check_identity_scalers_attributes(trans_1, trans_2) def test_scaler_int(): # test that scaler converts integer input to floating # for both sparse and dense matrices rng = np.random.RandomState(42) X = rng.randint(20, size=(4, 5)) X[:, 0] = 0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) null_transform = StandardScaler(with_mean=False, with_std=False, copy=True) with warnings.catch_warnings(record=True): X_null = null_transform.fit_transform(X_csr) assert_array_equal(X_null.data, X_csr.data) X_orig = null_transform.inverse_transform(X_null) assert_array_equal(X_orig.data, X_csr.data) with warnings.catch_warnings(record=True): scaler = StandardScaler(with_mean=False).fit(X) X_scaled = scaler.transform(X, copy=True) assert not np.any(np.isnan(X_scaled)) with warnings.catch_warnings(record=True): scaler_csr = StandardScaler(with_mean=False).fit(X_csr) X_csr_scaled = scaler_csr.transform(X_csr, copy=True) assert not np.any(np.isnan(X_csr_scaled.data)) with warnings.catch_warnings(record=True): scaler_csc = StandardScaler(with_mean=False).fit(X_csc) X_csc_scaled = scaler_csc.transform(X_csc, copy=True) assert not np.any(np.isnan(X_csc_scaled.data)) assert_array_almost_equal(scaler.mean_, scaler_csr.mean_) assert_array_almost_equal(scaler.var_, scaler_csr.var_) assert_array_almost_equal(scaler.scale_, scaler_csr.scale_) assert_array_almost_equal(scaler.mean_, scaler_csc.mean_) assert_array_almost_equal(scaler.var_, scaler_csc.var_) assert_array_almost_equal(scaler.scale_, scaler_csc.scale_) assert_array_almost_equal( X_scaled.mean(axis=0), [0., 1.109, 1.856, 21., 1.559], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis( X_csr_scaled.astype(float), 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # Check that X has not been modified (copy) assert X_scaled is not X assert X_csr_scaled is not X_csr X_scaled_back = scaler.inverse_transform(X_scaled) assert X_scaled_back is not X assert X_scaled_back is not X_scaled assert_array_almost_equal(X_scaled_back, X) X_csr_scaled_back = scaler_csr.inverse_transform(X_csr_scaled) assert X_csr_scaled_back is not X_csr assert X_csr_scaled_back is not X_csr_scaled assert_array_almost_equal(X_csr_scaled_back.toarray(), X) X_csc_scaled_back = scaler_csr.inverse_transform(X_csc_scaled.tocsc()) assert X_csc_scaled_back is not X_csc assert X_csc_scaled_back is not X_csc_scaled assert_array_almost_equal(X_csc_scaled_back.toarray(), X) def test_scaler_without_copy(): # Check that StandardScaler.fit does not change input rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_copy = X.copy() StandardScaler(copy=False).fit(X) assert_array_equal(X, X_copy) X_csr_copy = X_csr.copy() StandardScaler(with_mean=False, copy=False).fit(X_csr) assert_array_equal(X_csr.toarray(), X_csr_copy.toarray()) X_csc_copy = X_csc.copy() StandardScaler(with_mean=False, copy=False).fit(X_csc) assert_array_equal(X_csc.toarray(), X_csc_copy.toarray()) def test_scale_sparse_with_mean_raise_exception(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) # check scaling and fit with direct calls on sparse data with pytest.raises(ValueError): scale(X_csr, with_mean=True) with pytest.raises(ValueError): StandardScaler(with_mean=True).fit(X_csr) with pytest.raises(ValueError): scale(X_csc, with_mean=True) with pytest.raises(ValueError): StandardScaler(with_mean=True).fit(X_csc) # check transform and inverse_transform after a fit on a dense array scaler = StandardScaler(with_mean=True).fit(X) with pytest.raises(ValueError): scaler.transform(X_csr) with pytest.raises(ValueError): scaler.transform(X_csc) X_transformed_csr = sparse.csr_matrix(scaler.transform(X)) with pytest.raises(ValueError): scaler.inverse_transform(X_transformed_csr) X_transformed_csc = sparse.csc_matrix(scaler.transform(X)) with pytest.raises(ValueError): scaler.inverse_transform(X_transformed_csc) def test_scale_input_finiteness_validation(): # Check if non finite inputs raise ValueError X = [[np.inf, 5, 6, 7, 8]] with pytest.raises(ValueError, match="Input contains infinity " "or a value too large"): scale(X) def test_robust_scaler_error_sparse(): X_sparse = sparse.rand(1000, 10) scaler = RobustScaler(with_centering=True) err_msg = "Cannot center sparse matrices" with pytest.raises(ValueError, match=err_msg): scaler.fit(X_sparse) @pytest.mark.parametrize("with_centering", [True, False]) @pytest.mark.parametrize("with_scaling", [True, False]) @pytest.mark.parametrize("X", [np.random.randn(10, 3), sparse.rand(10, 3, density=0.5)]) def test_robust_scaler_attributes(X, with_centering, with_scaling): # check consistent type of attributes if with_centering and sparse.issparse(X): pytest.skip("RobustScaler cannot center sparse matrix") scaler = RobustScaler(with_centering=with_centering, with_scaling=with_scaling) scaler.fit(X) if with_centering: assert isinstance(scaler.center_, np.ndarray) else: assert scaler.center_ is None if with_scaling: assert isinstance(scaler.scale_, np.ndarray) else: assert scaler.scale_ is None def test_robust_scaler_col_zero_sparse(): # check that the scaler is working when there is not data materialized in a # column of a sparse matrix X = np.random.randn(10, 5) X[:, 0] = 0 X = sparse.csr_matrix(X) scaler = RobustScaler(with_centering=False) scaler.fit(X) assert scaler.scale_[0] == pytest.approx(1) X_trans = scaler.transform(X) assert_allclose(X[:, 0].toarray(), X_trans[:, 0].toarray()) def test_robust_scaler_2d_arrays(): # Test robust scaling of 2d array along first axis rng = np.random.RandomState(0) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero scaler = RobustScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.median(X_scaled, axis=0), 5 * [0.0]) assert_array_almost_equal(X_scaled.std(axis=0)[0], 0) @pytest.mark.parametrize("density", [0, 0.05, 0.1, 0.5, 1]) @pytest.mark.parametrize("strictly_signed", ['positive', 'negative', 'zeros', None]) def test_robust_scaler_equivalence_dense_sparse(density, strictly_signed): # Check the equivalence of the fitting with dense and sparse matrices X_sparse = sparse.rand(1000, 5, density=density).tocsc() if strictly_signed == 'positive': X_sparse.data = np.abs(X_sparse.data) elif strictly_signed == 'negative': X_sparse.data = - np.abs(X_sparse.data) elif strictly_signed == 'zeros': X_sparse.data = np.zeros(X_sparse.data.shape, dtype=np.float64) X_dense = X_sparse.toarray() scaler_sparse = RobustScaler(with_centering=False) scaler_dense = RobustScaler(with_centering=False) scaler_sparse.fit(X_sparse) scaler_dense.fit(X_dense) assert_allclose(scaler_sparse.scale_, scaler_dense.scale_) def test_robust_scaler_transform_one_row_csr(): # Check RobustScaler on transforming csr matrix with one row rng = np.random.RandomState(0) X = rng.randn(4, 5) single_row = np.array([[0.1, 1., 2., 0., -1.]]) scaler = RobustScaler(with_centering=False) scaler = scaler.fit(X) row_trans = scaler.transform(sparse.csr_matrix(single_row)) row_expected = single_row / scaler.scale_ assert_array_almost_equal(row_trans.toarray(), row_expected) row_scaled_back = scaler.inverse_transform(row_trans) assert_array_almost_equal(single_row, row_scaled_back.toarray()) def test_robust_scaler_iris(): X = iris.data scaler = RobustScaler() X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(25, 75), axis=0) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_iris_quantiles(): X = iris.data scaler = RobustScaler(quantile_range=(10, 90)) X_trans = scaler.fit_transform(X) assert_array_almost_equal(np.median(X_trans, axis=0), 0) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) q = np.percentile(X_trans, q=(10, 90), axis=0) q_range = q[1] - q[0] assert_array_almost_equal(q_range, 1) def test_quantile_transform_iris(): X = iris.data # uniform output distribution transformer = QuantileTransformer(n_quantiles=30) X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # normal output distribution transformer = QuantileTransformer(n_quantiles=30, output_distribution='normal') X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure it is possible to take the inverse of a sparse matrix # which contain negative value; this is the case in the iris dataset X_sparse = sparse.csc_matrix(X) X_sparse_tran = transformer.fit_transform(X_sparse) X_sparse_tran_inv = transformer.inverse_transform(X_sparse_tran) assert_array_almost_equal(X_sparse.A, X_sparse_tran_inv.A) def test_quantile_transform_check_error(): X = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [2, 4, 0, 0, 6, 8, 0, 10, 0, 0], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) X = sparse.csc_matrix(X) X_neg = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [-2, 4, 0, 0, 6, 8, 0, 10, 0, 0], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) X_neg = sparse.csc_matrix(X_neg) err_msg = "Invalid value for 'n_quantiles': 0." with pytest.raises(ValueError, match=err_msg): QuantileTransformer(n_quantiles=0).fit(X) err_msg = "Invalid value for 'subsample': 0." with pytest.raises(ValueError, match=err_msg): QuantileTransformer(subsample=0).fit(X) err_msg = ("The number of quantiles cannot be greater than " "the number of samples used. Got 1000 quantiles " "and 10 samples.") with pytest.raises(ValueError, match=err_msg): QuantileTransformer(subsample=10).fit(X) transformer = QuantileTransformer(n_quantiles=10) err_msg = "QuantileTransformer only accepts non-negative sparse matrices." with pytest.raises(ValueError, match=err_msg): transformer.fit(X_neg) transformer.fit(X) err_msg = "QuantileTransformer only accepts non-negative sparse matrices." with pytest.raises(ValueError, match=err_msg): transformer.transform(X_neg) X_bad_feat = np.transpose([[0, 25, 50, 0, 0, 0, 75, 0, 0, 100], [0, 0, 2.6, 4.1, 0, 0, 2.3, 0, 9.5, 0.1]]) err_msg = ("X has 2 features, but QuantileTransformer is expecting " "3 features as input.") with pytest.raises(ValueError, match=err_msg): transformer.inverse_transform(X_bad_feat) transformer = QuantileTransformer(n_quantiles=10, output_distribution='rnd') # check that an error is raised at fit time err_msg = ("'output_distribution' has to be either 'normal' or " "'uniform'. Got 'rnd' instead.") with pytest.raises(ValueError, match=err_msg): transformer.fit(X) # check that an error is raised at transform time transformer.output_distribution = 'uniform' transformer.fit(X) X_tran = transformer.transform(X) transformer.output_distribution = 'rnd' err_msg = ("'output_distribution' has to be either 'normal' or 'uniform'." " Got 'rnd' instead.") with pytest.raises(ValueError, match=err_msg): transformer.transform(X) # check that an error is raised at inverse_transform time err_msg = ("'output_distribution' has to be either 'normal' or 'uniform'." " Got 'rnd' instead.") with pytest.raises(ValueError, match=err_msg): transformer.inverse_transform(X_tran) # check that an error is raised if input is scalar with pytest.raises(ValueError, match='Expected 2D array, got scalar array instead'): transformer.transform(10) # check that a warning is raised is n_quantiles > n_samples transformer = QuantileTransformer(n_quantiles=100) warn_msg = "n_quantiles is set to n_samples" with pytest.warns(UserWarning, match=warn_msg) as record: transformer.fit(X) assert len(record) == 1 assert transformer.n_quantiles_ == X.shape[0] def test_quantile_transform_sparse_ignore_zeros(): X = np.array([[0, 1], [0, 0], [0, 2], [0, 2], [0, 1]]) X_sparse = sparse.csc_matrix(X) transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) # dense case -> warning raise warning_message = ("'ignore_implicit_zeros' takes effect" " only with sparse matrix. This parameter has no" " effect.") with pytest.warns(UserWarning, match=warning_message): transformer.fit(X) X_expected = np.array([[0, 0], [0, 0], [0, 1], [0, 1], [0, 0]]) X_trans = transformer.fit_transform(X_sparse) assert_almost_equal(X_expected, X_trans.A) # consider the case where sparse entries are missing values and user-given # zeros are to be considered X_data = np.array([0, 0, 1, 0, 2, 2, 1, 0, 1, 2, 0]) X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1]) X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6, 7, 8]) X_sparse = sparse.csc_matrix((X_data, (X_row, X_col))) X_trans = transformer.fit_transform(X_sparse) X_expected = np.array([[0., 0.5], [0., 0.], [0., 1.], [0., 1.], [0., 0.5], [0., 0.], [0., 0.5], [0., 1.], [0., 0.]]) assert_almost_equal(X_expected, X_trans.A) transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5) X_data = np.array([-1, -1, 1, 0, 0, 0, 1, -1, 1]) X_col = np.array([0, 0, 1, 1, 1, 1, 1, 1, 1]) X_row = np.array([0, 4, 0, 1, 2, 3, 4, 5, 6]) X_sparse = sparse.csc_matrix((X_data, (X_row, X_col))) X_trans = transformer.fit_transform(X_sparse) X_expected = np.array([[0, 1], [0, 0.375], [0, 0.375], [0, 0.375], [0, 1], [0, 0], [0, 1]]) assert_almost_equal(X_expected, X_trans.A) assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A) # check in conjunction with subsampling transformer = QuantileTransformer(ignore_implicit_zeros=True, n_quantiles=5, subsample=8, random_state=0) X_trans = transformer.fit_transform(X_sparse) assert_almost_equal(X_expected, X_trans.A) assert_almost_equal(X_sparse.A, transformer.inverse_transform(X_trans).A) def test_quantile_transform_dense_toy(): X = np.array([[0, 2, 2.6], [25, 4, 4.1], [50, 6, 2.3], [75, 8, 9.5], [100, 10, 0.1]]) transformer = QuantileTransformer(n_quantiles=5) transformer.fit(X) # using the a uniform output, each entry of X should be map between 0 and 1 # and equally spaced X_trans = transformer.fit_transform(X) X_expected = np.tile(np.linspace(0, 1, num=5), (3, 1)).T assert_almost_equal(np.sort(X_trans, axis=0), X_expected) X_test = np.array([ [-1, 1, 0], [101, 11, 10], ]) X_expected = np.array([ [0, 0, 0], [1, 1, 1], ]) assert_array_almost_equal(transformer.transform(X_test), X_expected) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) def test_quantile_transform_subsampling(): # Test that subsampling the input yield to a consistent results We check # that the computed quantiles are almost mapped to a [0, 1] vector where # values are equally spaced. The infinite norm is checked to be smaller # than a given threshold. This is repeated 5 times. # dense support n_samples = 1000000 n_quantiles = 1000 X = np.sort(np.random.sample((n_samples, 1)), axis=0) ROUND = 5 inf_norm_arr = [] for random_state in range(ROUND): transformer = QuantileTransformer(random_state=random_state, n_quantiles=n_quantiles, subsample=n_samples // 10) transformer.fit(X) diff = (np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)) inf_norm = np.max(np.abs(diff)) assert inf_norm < 1e-2 inf_norm_arr.append(inf_norm) # each random subsampling yield a unique approximation to the expected # linspace CDF assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr) # sparse support X = sparse.rand(n_samples, 1, density=.99, format='csc', random_state=0) inf_norm_arr = [] for random_state in range(ROUND): transformer = QuantileTransformer(random_state=random_state, n_quantiles=n_quantiles, subsample=n_samples // 10) transformer.fit(X) diff = (np.linspace(0, 1, n_quantiles) - np.ravel(transformer.quantiles_)) inf_norm = np.max(np.abs(diff)) assert inf_norm < 1e-1 inf_norm_arr.append(inf_norm) # each random subsampling yield a unique approximation to the expected # linspace CDF assert len(np.unique(inf_norm_arr)) == len(inf_norm_arr) def test_quantile_transform_sparse_toy(): X = np.array([[0., 2., 0.], [25., 4., 0.], [50., 0., 2.6], [0., 0., 4.1], [0., 6., 0.], [0., 8., 0.], [75., 0., 2.3], [0., 10., 0.], [0., 0., 9.5], [100., 0., 0.1]]) X = sparse.csc_matrix(X) transformer = QuantileTransformer(n_quantiles=10) transformer.fit(X) X_trans = transformer.fit_transform(X) assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.) assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) transformer_dense = QuantileTransformer(n_quantiles=10).fit( X.toarray()) X_trans = transformer_dense.transform(X) assert_array_almost_equal(np.min(X_trans.toarray(), axis=0), 0.) assert_array_almost_equal(np.max(X_trans.toarray(), axis=0), 1.) X_trans_inv = transformer_dense.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_trans_inv.toarray()) def test_quantile_transform_axis1(): X = np.array([[0, 25, 50, 75, 100], [2, 4, 6, 8, 10], [2.6, 4.1, 2.3, 9.5, 0.1]]) X_trans_a0 = quantile_transform(X.T, axis=0, n_quantiles=5) X_trans_a1 = quantile_transform(X, axis=1, n_quantiles=5) assert_array_almost_equal(X_trans_a0, X_trans_a1.T) def test_quantile_transform_bounds(): # Lower and upper bounds are manually mapped. We checked that in the case # of a constant feature and binary feature, the bounds are properly mapped. X_dense = np.array([[0, 0], [0, 0], [1, 0]]) X_sparse = sparse.csc_matrix(X_dense) # check sparse and dense are consistent X_trans = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_dense) assert_array_almost_equal(X_trans, X_dense) X_trans_sp = QuantileTransformer(n_quantiles=3, random_state=0).fit_transform(X_sparse) assert_array_almost_equal(X_trans_sp.A, X_dense) assert_array_almost_equal(X_trans, X_trans_sp.A) # check the consistency of the bounds by learning on 1 matrix # and transforming another X = np.array([[0, 1], [0, 0.5], [1, 0]]) X1 = np.array([[0, 0.1], [0, 0.5], [1, 0.1]]) transformer = QuantileTransformer(n_quantiles=3).fit(X) X_trans = transformer.transform(X1) assert_array_almost_equal(X_trans, X1) # check that values outside of the range learned will be mapped properly. X = np.random.random((1000, 1)) transformer = QuantileTransformer() transformer.fit(X) assert (transformer.transform([[-10]]) == transformer.transform([[np.min(X)]])) assert (transformer.transform([[10]]) == transformer.transform([[np.max(X)]])) assert (transformer.inverse_transform([[-10]]) == transformer.inverse_transform([[np.min(transformer.references_)]])) assert (transformer.inverse_transform([[10]]) == transformer.inverse_transform([[np.max(transformer.references_)]])) def test_quantile_transform_and_inverse(): X_1 = iris.data X_2 = np.array([[0.], [BOUNDS_THRESHOLD / 10], [1.5], [2], [3], [3], [4]]) for X in [X_1, X_2]: transformer = QuantileTransformer(n_quantiles=1000, random_state=0) X_trans = transformer.fit_transform(X) X_trans_inv = transformer.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv, decimal=9) def test_quantile_transform_nan(): X = np.array([[np.nan, 0, 0, 1], [np.nan, np.nan, 0, 0.5], [np.nan, 1, 1, 0]]) transformer = QuantileTransformer(n_quantiles=10, random_state=42) transformer.fit_transform(X) # check that the quantile of the first column is all NaN assert np.isnan(transformer.quantiles_[:, 0]).all() # all other column should not contain NaN assert not np.isnan(transformer.quantiles_[:, 1:]).any() @pytest.mark.parametrize("array_type", ['array', 'sparse']) def test_quantile_transformer_sorted_quantiles(array_type): # Non-regression test for: # https://github.com/scikit-learn/scikit-learn/issues/15733 # Taken from upstream bug report: # https://github.com/numpy/numpy/issues/14685 X = np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, 8, 8, 7] * 10) X = 0.1 * X.reshape(-1, 1) X = _convert_container(X, array_type) n_quantiles = 100 qt = QuantileTransformer(n_quantiles=n_quantiles).fit(X) # Check that the estimated quantile threasholds are monotically # increasing: quantiles = qt.quantiles_[:, 0] assert len(quantiles) == 100 assert all(np.diff(quantiles) >= 0) def test_robust_scaler_invalid_range(): for range_ in [ (-1, 90), (-2, -3), (10, 101), (100.5, 101), (90, 50), ]: scaler = RobustScaler(quantile_range=range_) with pytest.raises(ValueError, match=r'Invalid quantile range: \('): scaler.fit(iris.data) def test_scale_function_without_centering(): rng = np.random.RandomState(42) X = rng.randn(4, 5) X[:, 0] = 0.0 # first feature is always of zero X_csr = sparse.csr_matrix(X) X_scaled = scale(X, with_mean=False) assert not np.any(np.isnan(X_scaled)) X_csr_scaled = scale(X_csr, with_mean=False) assert not np.any(np.isnan(X_csr_scaled.data)) # test csc has same outcome X_csc_scaled = scale(X_csr.tocsc(), with_mean=False) assert_array_almost_equal(X_scaled, X_csc_scaled.toarray()) # raises value error on axis != 0 with pytest.raises(ValueError): scale(X_csr, with_mean=False, axis=1) assert_array_almost_equal(X_scaled.mean(axis=0), [0., -0.01, 2.24, -0.35, -0.78], 2) assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.]) # Check that X has not been copied assert X_scaled is not X X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0) assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0)) assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0)) # null scale X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True) assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray()) def test_robust_scale_axis1(): X = iris.data X_trans = robust_scale(X, axis=1) assert_array_almost_equal(np.median(X_trans, axis=1), 0) q = np.percentile(X_trans, q=(25, 75), axis=1) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scale_1d_array(): X = iris.data[:, 1] X_trans = robust_scale(X) assert_array_almost_equal(np.median(X_trans), 0) q = np.percentile(X_trans, q=(25, 75)) iqr = q[1] - q[0] assert_array_almost_equal(iqr, 1) def test_robust_scaler_zero_variance_features(): # Check RobustScaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.1], [0., 1., +1.1]] scaler = RobustScaler() X_trans = scaler.fit_transform(X) # NOTE: for such a small sample size, what we expect in the third column # depends HEAVILY on the method used to calculate quantiles. The values # here were calculated to fit the quantiles produces by np.percentile # using numpy 1.9 Calculating quantiles with # scipy.stats.mstats.scoreatquantile or scipy.stats.mstats.mquantiles # would yield very different results! X_expected = [[0., 0., +0.0], [0., 0., -1.0], [0., 0., +1.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 1., +0.], [-1., 0., -0.83333], [+0., 0., +1.66667]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=3) def test_robust_scaler_unit_variance(): # Check RobustScaler with unit_variance=True on standard normal data with # outliers rng = np.random.RandomState(42) X = rng.randn(1000000, 1) X_with_outliers = np.vstack( [X, np.ones((100, 1)) * 100, np.ones((100, 1)) * -100] ) quantile_range = (1, 99) robust_scaler = RobustScaler( quantile_range=quantile_range, unit_variance=True ).fit(X_with_outliers) X_trans = robust_scaler.transform(X) assert robust_scaler.center_ == pytest.approx(0, abs=1e-3) assert robust_scaler.scale_ == pytest.approx(1, abs=1e-2) assert X_trans.std() == pytest.approx(1, abs=1e-2) def test_maxabs_scaler_zero_variance_features(): # Check MaxAbsScaler on toy data with zero variance features X = [[0., 1., +0.5], [0., 1., -0.3], [0., 1., +1.5], [0., 0., +0.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans, X_expected) X_trans_inv = scaler.inverse_transform(X_trans) assert_array_almost_equal(X, X_trans_inv) # make sure new data gets transformed correctly X_new = [[+0., 2., 0.5], [-1., 1., 0.0], [+0., 1., 1.5]] X_trans_new = scaler.transform(X_new) X_expected_new = [[+0., 2.0, 1.0 / 3.0], [-1., 1.0, 0.0], [+0., 1.0, 1.0]] assert_array_almost_equal(X_trans_new, X_expected_new, decimal=2) # function interface X_trans = maxabs_scale(X) assert_array_almost_equal(X_trans, X_expected) # sparse data X_csr = sparse.csr_matrix(X) X_csc = sparse.csc_matrix(X) X_trans_csr = scaler.fit_transform(X_csr) X_trans_csc = scaler.fit_transform(X_csc) X_expected = [[0., 1., 1.0 / 3.0], [0., 1., -0.2], [0., 1., 1.0], [0., 0., 0.0]] assert_array_almost_equal(X_trans_csr.A, X_expected) assert_array_almost_equal(X_trans_csc.A, X_expected) X_trans_csr_inv = scaler.inverse_transform(X_trans_csr) X_trans_csc_inv = scaler.inverse_transform(X_trans_csc) assert_array_almost_equal(X, X_trans_csr_inv.A) assert_array_almost_equal(X, X_trans_csc_inv.A) def test_maxabs_scaler_large_negative_value(): # Check MaxAbsScaler on toy data with a large negative value X = [[0., 1., +0.5, -1.0], [0., 1., -0.3, -0.5], [0., 1., -100.0, 0.0], [0., 0., +0.0, -2.0]] scaler = MaxAbsScaler() X_trans = scaler.fit_transform(X) X_expected = [[0., 1., 0.005, -0.5], [0., 1., -0.003, -0.25], [0., 1., -1.0, 0.0], [0., 0., 0.0, -1.0]] assert_array_almost_equal(X_trans, X_expected) def test_maxabs_scaler_transform_one_row_csr(): # Check MaxAbsScaler on transforming csr matrix with one row X = sparse.csr_matrix([[0.5, 1., 1.]]) scaler = MaxAbsScaler() scaler = scaler.fit(X) X_trans = scaler.transform(X) X_expected = sparse.csr_matrix([[1., 1., 1.]]) assert_array_almost_equal(X_trans.toarray(), X_expected.toarray()) X_scaled_back = scaler.inverse_transform(X_trans) assert_array_almost_equal(X.toarray(), X_scaled_back.toarray()) def test_maxabs_scaler_1d(): # Test scaling of dataset along single axis for X in [X_1row, X_1col, X_list_1row, X_list_1row]: scaler = MaxAbsScaler(copy=True) X_scaled = scaler.fit(X).transform(X) if isinstance(X, list): X = np.array(X) # cast only after scaling done if _check_dim_1axis(X) == 1: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), np.ones(n_features)) else: assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert scaler.n_samples_seen_ == X.shape[0] # check inverse transform X_scaled_back = scaler.inverse_transform(X_scaled) assert_array_almost_equal(X_scaled_back, X) # Constant feature X = np.ones((5, 1)) scaler = MaxAbsScaler() X_scaled = scaler.fit(X).transform(X) assert_array_almost_equal(np.abs(X_scaled.max(axis=0)), 1.) assert scaler.n_samples_seen_ == X.shape[0] # function interface X_1d = X_1row.ravel() max_abs = np.abs(X_1d).max() assert_array_almost_equal(X_1d / max_abs, maxabs_scale(X_1d, copy=True)) def test_maxabs_scaler_partial_fit(): # Test if partial_fit run over many batches of size 1 and 50 # gives the same results as fit X = X_2d[:100, :] n = X.shape[0] for chunk_size in [1, 2, 50, n, n + 42]: # Test mean at the end of the process scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() scaler_incr_csr = MaxAbsScaler() scaler_incr_csc = MaxAbsScaler() for batch in gen_batches(n, chunk_size): scaler_incr = scaler_incr.partial_fit(X[batch]) X_csr = sparse.csr_matrix(X[batch]) scaler_incr_csr = scaler_incr_csr.partial_fit(X_csr) X_csc = sparse.csc_matrix(X[batch]) scaler_incr_csc = scaler_incr_csc.partial_fit(X_csc) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csr.max_abs_) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr_csc.max_abs_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ assert (scaler_batch.n_samples_seen_ == scaler_incr_csr.n_samples_seen_) assert (scaler_batch.n_samples_seen_ == scaler_incr_csc.n_samples_seen_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csr.scale_) assert_array_almost_equal(scaler_batch.scale_, scaler_incr_csc.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std after 1 step batch0 = slice(0, chunk_size) scaler_batch = MaxAbsScaler().fit(X[batch0]) scaler_incr = MaxAbsScaler().partial_fit(X[batch0]) assert_array_almost_equal(scaler_batch.max_abs_, scaler_incr.max_abs_) assert scaler_batch.n_samples_seen_ == scaler_incr.n_samples_seen_ assert_array_almost_equal(scaler_batch.scale_, scaler_incr.scale_) assert_array_almost_equal(scaler_batch.transform(X), scaler_incr.transform(X)) # Test std until the end of partial fits, and scaler_batch = MaxAbsScaler().fit(X) scaler_incr = MaxAbsScaler() # Clean estimator for i, batch in enumerate(gen_batches(n, chunk_size)): scaler_incr = scaler_incr.partial_fit(X[batch]) assert_correct_incr(i, batch_start=batch.start, batch_stop=batch.stop, n=n, chunk_size=chunk_size, n_samples_seen=scaler_incr.n_samples_seen_) def test_normalizer_l1(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l1', copy=True) X_norm = normalizer.transform(X) assert X_norm is not X X_norm1 = toarray(X_norm) normalizer = Normalizer(norm='l1', copy=False) X_norm = normalizer.transform(X) assert X_norm is X X_norm2 = toarray(X_norm) for X_norm in (X_norm1, X_norm2): row_sums = np.abs(X_norm).sum(axis=1) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(row_sums[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert X_norm is not X assert isinstance(X_norm, sparse.csr_matrix) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_sums[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_l2(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='l2', copy=True) X_norm1 = normalizer.transform(X) assert X_norm1 is not X X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='l2', copy=False) X_norm2 = normalizer.transform(X) assert X_norm2 is X X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert X_norm is not X assert isinstance(X_norm, sparse.csr_matrix) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(la.norm(X_norm[i]), 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max(): rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) X_sparse_unpruned = sparse.csr_matrix(X_dense) # set the row number 3 to zero X_dense[3, :] = 0.0 # set the row number 3 to zero without pruning (can happen in real life) indptr_3 = X_sparse_unpruned.indptr[3] indptr_4 = X_sparse_unpruned.indptr[4] X_sparse_unpruned.data[indptr_3:indptr_4] = 0.0 # build the pruned variant using the regular constructor X_sparse_pruned = sparse.csr_matrix(X_dense) # check inputs that support the no-copy optim for X in (X_dense, X_sparse_pruned, X_sparse_unpruned): normalizer = Normalizer(norm='max', copy=True) X_norm1 = normalizer.transform(X) assert X_norm1 is not X X_norm1 = toarray(X_norm1) normalizer = Normalizer(norm='max', copy=False) X_norm2 = normalizer.transform(X) assert X_norm2 is X X_norm2 = toarray(X_norm2) for X_norm in (X_norm1, X_norm2): row_maxs = abs(X_norm).max(axis=1) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(row_maxs[3], 0.0) # check input for which copy=False won't prevent a copy for init in (sparse.coo_matrix, sparse.csc_matrix, sparse.lil_matrix): X = init(X_dense) X_norm = normalizer = Normalizer(norm='l2', copy=False).transform(X) assert X_norm is not X assert isinstance(X_norm, sparse.csr_matrix) X_norm = toarray(X_norm) for i in range(3): assert_almost_equal(row_maxs[i], 1.0) assert_almost_equal(la.norm(X_norm[3]), 0.0) def test_normalizer_max_sign(): # check that we normalize by a positive number even for negative data rng = np.random.RandomState(0) X_dense = rng.randn(4, 5) # set the row number 3 to zero X_dense[3, :] = 0.0 # check for mixed data where the value with # largest magnitude is negative X_dense[2, abs(X_dense[2, :]).argmax()] *= -1 X_all_neg = -np.abs(X_dense) X_all_neg_sparse = sparse.csr_matrix(X_all_neg) for X in (X_dense, X_all_neg, X_all_neg_sparse): normalizer = Normalizer(norm='max') X_norm = normalizer.transform(X) assert X_norm is not X X_norm = toarray(X_norm) assert_array_equal( np.sign(X_norm), np.sign(toarray(X))) def test_normalize(): # Test normalize function # Only tests functionality not used by the tests for Normalizer. X = np.random.RandomState(37).randn(3, 2) assert_array_equal(normalize(X, copy=False), normalize(X.T, axis=0, copy=False).T) with pytest.raises(ValueError): normalize([[0]], axis=2) with pytest.raises(ValueError): normalize([[0]], norm='l3') rs = np.random.RandomState(0) X_dense = rs.randn(10, 5) X_sparse = sparse.csr_matrix(X_dense) ones = np.ones((10)) for X in (X_dense, X_sparse): for dtype in (np.float32, np.float64): for norm in ('l1', 'l2'): X = X.astype(dtype) X_norm = normalize(X, norm=norm) assert X_norm.dtype == dtype X_norm = toarray(X_norm) if norm == 'l1': row_sums = np.abs(X_norm).sum(axis=1) else: X_norm_squared = X_norm**2 row_sums = X_norm_squared.sum(axis=1) assert_array_almost_equal(row_sums, ones) # Test return_norm X_dense = np.array([[3.0, 0, 4.0], [1.0, 0.0, 0.0], [2.0, 3.0, 0.0]]) for norm in ('l1', 'l2', 'max'): _, norms = normalize(X_dense, norm=norm, return_norm=True) if norm == 'l1': assert_array_almost_equal(norms, np.array([7.0, 1.0, 5.0])) elif norm == 'l2': assert_array_almost_equal(norms, np.array([5.0, 1.0, 3.60555127])) else: assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) X_sparse = sparse.csr_matrix(X_dense) for norm in ('l1', 'l2'): with pytest.raises(NotImplementedError): normalize(X_sparse, norm=norm, return_norm=True) _, norms = normalize(X_sparse, norm='max', return_norm=True) assert_array_almost_equal(norms, np.array([4.0, 1.0, 3.0])) def test_binarizer(): X_ = np.array([[1, 0, 5], [2, 3, -1]]) for init in (np.array, list, sparse.csr_matrix, sparse.csc_matrix): X = init(X_.copy()) binarizer = Binarizer(threshold=2.0, copy=True) X_bin = toarray(binarizer.transform(X)) assert np.sum(X_bin == 0) == 4 assert np.sum(X_bin == 1) == 2 X_bin = binarizer.transform(X) assert sparse.issparse(X) == sparse.issparse(X_bin) binarizer = Binarizer(copy=True).fit(X) X_bin = toarray(binarizer.transform(X)) assert X_bin is not X assert np.sum(X_bin == 0) == 2 assert np.sum(X_bin == 1) == 4 binarizer = Binarizer(copy=True) X_bin = binarizer.transform(X) assert X_bin is not X X_bin = toarray(X_bin) assert np.sum(X_bin == 0) == 2 assert np.sum(X_bin == 1) == 4 binarizer = Binarizer(copy=False) X_bin = binarizer.transform(X) if init is not list: assert X_bin is X binarizer = Binarizer(copy=False) X_float = np.array([[1, 0, 5], [2, 3, -1]], dtype=np.float64) X_bin = binarizer.transform(X_float) if init is not list: assert X_bin is X_float X_bin = toarray(X_bin) assert np.sum(X_bin == 0) == 2 assert np.sum(X_bin == 1) == 4 binarizer = Binarizer(threshold=-0.5, copy=True) for init in (np.array, list): X = init(X_.copy()) X_bin = toarray(binarizer.transform(X)) assert np.sum(X_bin == 0) == 1 assert np.sum(X_bin == 1) == 5 X_bin = binarizer.transform(X) # Cannot use threshold < 0 for sparse with pytest.raises(ValueError): binarizer.transform(sparse.csc_matrix(X)) def test_center_kernel(): # Test that KernelCenterer is equivalent to StandardScaler # in feature space rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) scaler = StandardScaler(with_std=False) scaler.fit(X_fit) X_fit_centered = scaler.transform(X_fit) K_fit = np.dot(X_fit, X_fit.T) # center fit time matrix centerer = KernelCenterer() K_fit_centered =
np.dot(X_fit_centered, X_fit_centered.T)
numpy.dot
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the SPORCO package. Details of the copyright # and user license can be found in the 'LICENSE.txt' file distributed # with the package. """ CSC with a Spatial Mask ======================= This example demonstrates the use of :class:`.cbpdn.AddMaskSim` for convolutional sparse coding with a spatial mask :cite:`wohlberg-2016-boundary`. If the ``sporco-cuda`` extension is installed and a GPU is available, a GPU accelerated version is used. The example problem is inpainting of randomly distributed corruption of a greyscale image. """ from __future__ import print_function from builtins import input import pyfftw # See https://github.com/pyFFTW/pyFFTW/issues/40 import numpy as np from sporco import util from sporco import signal from sporco import metric from sporco import plot from sporco.admm import tvl2 from sporco.admm import cbpdn from sporco.fft import fftconv from sporco import cuda # If running in a notebook, try to use wurlitzer so that output from the CUDA # code will be properly captured in the notebook. sys_pipes = util.notebook_system_output() """ Load a reference image. """ img = util.ExampleImages().image('monarch.png', zoom=0.5, scaled=True, gray=True, idxexp=np.s_[:, 160:672]) """ Create random mask and apply to reference image to obtain test image. (The call to ``numpy.random.seed`` ensures that the pseudo-random noise is reproducible.) """ np.random.seed(12345) frc = 0.5 msk = signal.rndmask(img.shape, frc, dtype=np.float32) imgw = msk * img """ Define pad and crop functions. """ pn = 8 spad = lambda x: np.pad(x, pn, mode='symmetric') zpad = lambda x: np.pad(x, pn, mode='constant') crop = lambda x: x[pn:-pn, pn:-pn] """ Construct padded mask and test image. """ mskp = zpad(msk) imgwp = spad(imgw) """ $\ell_2$-TV denoising with a spatial mask as a non-linear lowpass filter. The highpass component is the difference between the test image and the lowpass component, multiplied by the mask for faster convergence of the convolutional sparse coding (see :cite:`wohlberg-2017-convolutional3`). """ lmbda = 0.05 opt = tvl2.TVL2Denoise.Options({'Verbose': False, 'MaxMainIter': 200, 'DFidWeight': mskp, 'gEvalY': False, 'AutoRho': {'Enabled': True}}) b = tvl2.TVL2Denoise(imgwp, lmbda, opt) sl = b.solve() sh = mskp * (imgwp - sl) """ Load dictionary. """ D = util.convdicts()['G:8x8x128'] """ Set up :class:`.admm.cbpdn.ConvBPDN` options. """ lmbda = 2e-2 opt = cbpdn.ConvBPDN.Options({'Verbose': True, 'MaxMainIter': 200, 'HighMemSolve': True, 'RelStopTol': 5e-3, 'AuxVarObj': False, 'RelaxParam': 1.8, 'rho': 5e1*lmbda + 1e-1, 'AutoRho': {'Enabled': False, 'StdResiduals': False}}) """ Construct :class:`.admm.cbpdn.AddMaskSim` wrapper for :class:`.admm.cbpdn.ConvBPDN` and solve via wrapper. This example could also have made use of :class:`.admm.cbpdn.ConvBPDNMaskDcpl` (see example `cbpdn_md_gry`), which has similar performance in this application, but :class:`.admm.cbpdn.AddMaskSim` has the advantage of greater flexibility in that the wrapper can be applied to a variety of CSC solver objects. If the ``sporco-cuda`` extension is installed and a GPU is available, use the CUDA implementation of this combination. """ if cuda.device_count() > 0: ams = None print('%s GPU found: running CUDA solver' % cuda.device_name()) tm = util.Timer() with sys_pipes(), util.ContextTimer(tm): X = cuda.cbpdnmsk(D, sh, mskp, lmbda, opt) t = tm.elapsed() imgr = crop(sl + np.sum(fftconv(D, X, axes=(0, 1)), axis=-1)) else: ams = cbpdn.AddMaskSim(cbpdn.ConvBPDN, D, sh, mskp, lmbda, opt=opt) X = ams.solve() t = ams.timer.elapsed('solve') imgr = crop(sl + ams.reconstruct().squeeze()) """ Display solve time and reconstruction performance. """ print("AddMaskSim wrapped ConvBPDN solve time: %.2fs" % t) print("Corrupted image PSNR: %5.2f dB" % metric.psnr(img, imgw)) print("Recovered image PSNR: %5.2f dB" % metric.psnr(img, imgr)) """ Display reference, test, and reconstructed image """ fig = plot.figure(figsize=(21, 7)) plot.subplot(1, 3, 1) plot.imview(img, title='Reference image', fig=fig) plot.subplot(1, 3, 2) plot.imview(imgw, title='Corrupted image', fig=fig) plot.subplot(1, 3, 3) plot.imview(imgr, title='Reconstructed image', fig=fig) fig.show() """ Display lowpass component and sparse representation """ fig = plot.figure(figsize=(14, 7)) plot.subplot(1, 2, 1) plot.imview(sl, cmap=plot.cm.Blues, title='Lowpass component', fig=fig) plot.subplot(1, 2, 2) plot.imview(np.sum(abs(X).squeeze(), axis=-1), cmap=plot.cm.Blues, title='Sparse representation', fig=fig) fig.show() """ Plot functional value, residuals, and rho (not available if GPU implementation used). """ if ams is not None: its = ams.getitstat() fig = plot.figure(figsize=(21, 7)) plot.subplot(1, 3, 1) plot.plot(its.ObjFun, xlbl='Iterations', ylbl='Functional', fig=fig) plot.subplot(1, 3, 2) plot.plot(
np.vstack((its.PrimalRsdl, its.DualRsdl))
numpy.vstack
#!/usr/bin/env python import numpy as np import rospy from geometry_msgs.msg import PoseStamped from styx_msgs.msg import Lane, Waypoint from scipy.spatial import KDTree from std_msgs.msg import Int32 import sensor_msgs.point_cloud2 as pc2 from sensor_msgs.msg import PointCloud2 import math import copy import yaml ''' This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. ''' LOOKAHEAD_WPS = 50 # Number of waypoints we will publish. You can change this number MAX_DECEL = .5 class WaypointUpdater(object): def __init__(self): rospy.init_node('waypoint_updater') self.base_lane = [None, None, None] self.pose = None self.stopline_wp_idx = -1 self.waypoints_2d = None self.waypoint_tree = None self.lasttraffic = 0 self.lane = 1 # 0,1,2 self.lanetime = 0 self.prev_pose = None self.stopobstacle_idx = -1 self.obstacles = np.array([]) config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.stop_line_positions = self.config['stop_line_positions'] rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb) rospy.Subscriber('/vehicle/obstacle_points', PointCloud2, self.obstacle_cb) # TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size=1) # TODO: Add other member variables you need below self.loop() def loop(self): rate = rospy.Rate(30) while not rospy.is_shutdown(): if self.pose and self.base_lane[1]: self.publish_waypoints() rate.sleep() def get_closest_waypoint_idx(self): x = self.pose.pose.position.x y = self.pose.pose.position.y if self.waypoint_tree is not None: closest_idx = self.waypoint_tree.query([x, y], 1)[1] # check if closest is ahead or behind vehicle closest_coord = self.waypoints_2d[closest_idx] prev_coord = self.waypoints_2d[closest_idx - 1] # equation for hyperplane through closest_coords cl_vect = np.array(closest_coord) pre_vect = np.array(prev_coord) pos_vect = np.array([x, y]) val = np.dot(cl_vect - pre_vect, pos_vect - cl_vect) if val > 0: closest_idx = (closest_idx + 1) % len(self.waypoints_2d) return closest_idx return 0 def get_closest_waypoint_idx1(self, p): x = p[0] y = p[1] if self.waypoint_tree is not None: closest_idx = self.waypoint_tree.query([x, y], 1)[1] # check if closest is ahead or behind vehicle closest_coord = self.waypoints_2d[closest_idx] prev_coord = self.waypoints_2d[closest_idx - 1] # equation for hyperplane through closest_coords cl_vect = np.array(closest_coord) pre_vect = np.array(prev_coord) pos_vect = np.array([x, y]) val = np.dot(cl_vect - pre_vect, pos_vect - cl_vect) if val > 0: closest_idx = (closest_idx + 1) % len(self.waypoints_2d) return closest_idx return 0 # select the best lane,if the current lane has obstacles,than change to other lane @staticmethod def choose_best_lane(obstacles, lane, s, snum): close_s = [] for j in range(3): item = [100000, 0] item1 = [item, item] close_s.append(item1) # calculate the most nearest car before or after the ego car in each lane,get their distance and velocity for i in range(len(obstacles)): d = obstacles[i][1] if (d > 0) and (d < 12): if d > 8: check_lane = 2 elif d < 4: check_lane = 0 else: check_lane = 1 check_car_s = obstacles[i][0] pre_dis = (check_car_s - s + snum) % snum after_dis = (s - check_car_s + snum) % snum if close_s[check_lane][0][0] > pre_dis: close_s[check_lane][0][0] = pre_dis close_s[check_lane][0][1] = 0 if close_s[check_lane][1][0] > after_dis: close_s[check_lane][1][0] = after_dis close_s[check_lane][1][1] = 0 # calculate the cost of each lane # print(close_s) costs = [0, 0, 0] for j in range(3): if close_s[j][0][0] <= 50: # if the distance of the car that is before the ego car in that lane is less then 30 meters,don't change costs[j] = 10000 else: # if the distance of the car that is after the ego car in that lane is less then 15 meters,don't change if j != lane and close_s[j][1][0] < 15: costs[j] = 10000 elif costs[j] == 0: tems = close_s[j][0][0] cost1 = 1 - math.exp(-1 * (1 / tems)) costs[j] = 1000 * cost1 # decrease the cost of current lane by 1,in order to hold the current lane if it is equal to others. costs[lane] -= 1 min_cost = costs[0] min_lane = 0 # select the minimum cost lane for j in range(3): if min_cost > costs[j]: min_cost = costs[j] min_lane = j # if change lane from 0 to 2 or from 2 to 0,than look at the cost of lane 1. # If the cost of lane 1 is 10000,don't change lane.Otherwise,change to lane 1 first. if abs(min_lane - lane) == 2: if costs[1] < 10000: return 1 else: return lane return min_lane # whether the car is too close to the obstacles,if current lane has obstacles def istooclose(self, closest_idx): size = len(self.obstacles) too_close = False self.stopobstacle_idx = -1 closedis = 10000 for i in range(size): d = self.obstacles[i][1] s = self.obstacles[i][0] # the vehicle which is changing to this line is also considered as in this lane if (2 + 4 * self.lane + 2) + 1 > d > (2 + 4 * self.lane - 2) - 1 \ and s > closest_idx and s - closest_idx < 30: too_close = True if closedis > s - closest_idx: closedis = s - closest_idx if closedis == 10000: self.stopobstacle_idx = -1 else: self.stopobstacle_idx = closedis return too_close def publish_waypoints(self): if self.waypoint_tree: final_lane = self.generate_lane() self.final_waypoints_pub.publish(final_lane) # convert the s,d coordinates to x,y coordinates @staticmethod def get_xy(s, d, waypoints): d = d - 6 wlen = len(waypoints) ret = copy.deepcopy(waypoints[s]) ps = (s - 1 + wlen) % wlen x2 = waypoints[s].pose.pose.position.x y2 = waypoints[s].pose.pose.position.y x1 = waypoints[ps].pose.pose.position.x y1 = waypoints[ps].pose.pose.position.y alf = math.atan2(y2 - y1, x2 - x1) # print(alf) # print(str(ps)+','+str(x1)+','+str(y1)+'=='+str(s)+','+str(x2)+','+str(y2)) dy21 = y2 - y1 dx21 = x2 - x1 if (dy21 >= 0 and dx21 >= 0) or (dy21 < 0 and dx21 < 0): alf = math.pi / 2 - alf y0 = y2 - d * math.sin(alf) x0 = x2 + d * math.cos(alf) ret.pose.pose.position.x = x0 ret.pose.pose.position.y = y0 elif (dy21 >= 0 > dx21) or (dy21 < 0 <= dx21): alf = math.pi / 2 + alf y0 = y2 - d * math.sin(alf) x0 = x2 - d * math.cos(alf) ret.pose.pose.position.x = x0 ret.pose.pose.position.y = y0 return ret # calculate the distance from current car position to the nearest front stop_line which is read from config file def distostopline(self, closest_idx): ret = 10000 for i in range(len(self.stop_line_positions)): stopline_idx = self.get_closest_waypoint_idx1(self.stop_line_positions[i]) dis = stopline_idx - closest_idx if (dis > 0) and (ret > dis): ret = dis return ret def generate_lane(self): lane = Lane() closest_idx = self.get_closest_waypoint_idx() stopdis = self.distostopline(closest_idx) # select new lane if stopdis > 50 and len(self.obstacles) > 0: self.lane = self.choose_best_lane(self.obstacles, self.lane, closest_idx, len(self.base_lane[1].waypoints)) # print('newlane:'+str(self.lane)) farthest_idx = closest_idx + LOOKAHEAD_WPS base_waypoints = copy.deepcopy(self.base_lane[self.lane].waypoints[closest_idx:farthest_idx]) if len(base_waypoints) > 10: x1 = self.pose.pose.position.x y1 = self.pose.pose.position.y x2 = base_waypoints[0].pose.pose.position.x y2 = base_waypoints[0].pose.pose.position.y x3 = base_waypoints[1].pose.pose.position.x y3 = base_waypoints[1].pose.pose.position.y # if change lane,than caculate the first 10 points of the path if self.distance2line([x1, y1], [x2, y2], [x3, y3]) > 1: x2 = base_waypoints[10].pose.pose.position.x y2 = base_waypoints[10].pose.pose.position.y for i in range(10): base_waypoints[i].pose.pose.position.y = (y2 - y1) * (i + 2) / 10 + y1 base_waypoints[i].pose.pose.position.x = (x2 - x1) * (i + 2) / 10 + x1 # judge if too close self.stopobstacle_idx = -1 if len(self.obstacles) > 0: self.istooclose(closest_idx) if self.stopobstacle_idx != -1: print('obs_point:' + str(self.stopobstacle_idx)) if self.stopline_wp_idx != -1 and self.stopline_wp_idx < farthest_idx: stop_point = min(self.stopobstacle_idx, self.stopline_wp_idx) else: stop_point = self.stopobstacle_idx else: if self.stopline_wp_idx != -1 and self.stopline_wp_idx < farthest_idx: stop_point = self.stopline_wp_idx else: stop_point = -1 # print('stop:'+str(self.stopline_wp_idx)) if stop_point != -1: lane.waypoints = self.decelerate_waypoints(base_waypoints, closest_idx, stop_point) else: lane.waypoints = base_waypoints return lane def decelerate_waypoints(self, waypoints, closest_idx, stop_point): temp = [] # rospy.loginfo('%s %s %s',closest_idx,self.stopline_wp_idx,len(waypoints)) for i, wp in enumerate(waypoints): p = Waypoint() p.pose = wp.pose stop_idx = max(stop_point - closest_idx - 2, 0) dist = self.distance(waypoints, i, stop_idx) vel = math.sqrt(2 * MAX_DECEL * dist) if vel < 1.: vel = 0. p.twist.twist.linear.x = min(vel, wp.twist.twist.linear.x) temp.append(p) return temp def pose_cb(self, msg): # TODO: Implement self.pose = msg # rospy.loginfo('self_pos:%s',self.pose.pose.position.x) def waypoints_cb(self, waypoints): # TODO: Implement print('waypoints_cb') self.base_lane[1] = waypoints self.base_lane[0] = copy.deepcopy(waypoints) self.base_lane[2] = copy.deepcopy(waypoints) for i in range(len(self.base_lane[1].waypoints)): self.base_lane[0].waypoints[i] = self.get_xy(i, 2, self.base_lane[1].waypoints) self.base_lane[2].waypoints[i] = self.get_xy(i, 10, self.base_lane[1].waypoints) if not self.waypoints_2d: self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) def traffic_cb(self, msg): # TODO: Callback for /traffic_waypoint message. Implement if self.lasttraffic != msg.data: # rospy.loginfo('traffic:%s',msg.data) self.lasttraffic = msg.data self.stopline_wp_idx = msg.data @staticmethod def distance2line(p0, p1, p2): x0 = p0[0] y0 = p0[1] x1 = p1[0] y1 = p1[1] x2 = p2[0] y2 = p2[1] d = math.sqrt((y2 - y1) * (y2 - y1) + (x1 - x2) * (x1 - x2)) return (x0 * (y2 - y1) + y0 * (x1 - x2) + y1 * x2 - x1 * y2) / d def obstacle_cb(self, msg): # TODO: Callback for /obstacle_waypoint message. We will implement it later obstacle_list = [] if self.waypoint_tree: for p in pc2.read_points(msg, skip_nans=True, field_names=('x', 'y', 'z')): closest_idx = self.waypoint_tree.query([p[0], p[1]], 1)[1] prev_idx = (closest_idx - 1) % len(self.waypoints_2d) closest_coord = self.waypoints_2d[closest_idx] prev_coord = self.waypoints_2d[closest_idx - 1] # equation for hyperplane through closest_coords cl_vect = np.array(closest_coord) pre_vect =
np.array(prev_coord)
numpy.array